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ABSTRACT

An efficient method for computing thermodynamic equilibrium states at the micromagnetic length scale is introduced using the Markov
chain Monte Carlo method. Trial moves include not only rotations of vectors, but also a change in their magnetization length. The method
is parameterized using the longitudinal susceptibility, reproduces the same Maxwell–Boltzmann distribution as the stochastic Landau–
Lifshitz–Bloch equation, and is applicable both below and above the Curie temperature. The algorithm is fully parallel, can be executed on
graphical processing units, and efficiently includes the long-range dipolar interaction. This method is generally useful for computing finite-
temperature relaxation states for both uniform and non-uniform temperature profiles and can be considered as complementary to zero-tem-
perature micromagnetic energy minimization solvers, with comparable computation time. Compared to the dynamic approach, it is shown
that the micromagnetic Monte Carlo method is up to almost 20 times faster. Moreover, unlike quasizero temperature approaches that do
not take into account the magnetization length distribution and stochasticity, the method is better suited for structures with unbroken sym-
metry around the applied field axis, granular films, and at higher temperatures and fields. In particular, applications to finite-temperature
hysteresis loop modelling, chiral magnetic thin films, granular magnetic media, and artificial spin ices are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059745

I. INTRODUCTION

Monte Carlo computations are widely used in many fields of
research, including statistical physics and atomistic spin lattice
modelling. For the Ising and Heisenberg Hamiltonian spin lattice
models, the Metropolis Monte Carlo1 algorithm has proved
popular. This allows computation not only of magnetic parameters
temperature dependences and phase transition temperatures, but
also of hysteresis loops.2 In micromagnetics modelling, a common
need is computation of relaxed magnetization states. For zero-
temperature models, this may be accomplished efficiently using
energy minimization solvers, such as a steepest descent method.3

Finite-temperature micromagnetic models include the stochastic
Landau–Lifshitz–Gilbert equation (sLLG)4 and the Landau–
Lifshitz–Bloch (LLB) equation5 and its stochastic forms (sLLB).6,7

Although the sLLG equation is a reasonable approximation at low

temperatures, it fails to take into account the magnetization length
distribution, which has been shown to play an important role in
magnetization reversal,8 including linear and elliptical reversal
mechanisms,9 particularly for temperatures approaching the Curie
point. Thus, while the sLLB equation may be used to compute
finite-temperature relaxation states, this dynamic approach to relax-
ation is very inefficient and requires lengthy computation times.
Alternative methods, such as a Monte Carlo approach, are required
to efficiently compute relaxation states of thermodynamic equilib-
rium, which should ideally be applicable across the entire tempera-
ture range, both below and above the Curie temperature; for this
reason, correct reproduction of the magnetization length probabil-
ity distribution at the micromagnetic length scale is essential.

A previous work extended the Monte Carlo method to the
micromagnetic length scale; however, the magnetization length
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distribution was not taken into account;10 the resulting thermody-
namic equilibrium properties are the same as those produced by the
sLLG equation. Other works along this line also include a micro-
magnetic one-dimensional model11 and a two-dimensional
model.12 Alternatively, a thermodynamic rescaling for the atomistic
cluster Monte Carlo approach was also discussed.13 A Monte Carlo
method was also used for the Landau–Heisenberg Hamiltonian,
applied to the study of phase transitions in FeRh including mag-
netic and non-magnetic contributions.14 A micromagnetic hybrid
Monte Carlo method was introduced previously15 based on the
hybrid (molecular dynamics/Langevin) Monte Carlo approach,16

which reproduces a Boltzmann distribution for free energy. At the
micromagnetic length scale however, particularly when approaching
the Curie temperature, the distribution of the free energy does not
follow a Boltzmann distribution but a Maxwell–Boltzmann type
distribution.7 Moreover, for the purposes of computing thermody-
namic equilibrium states at the micromagnetic length scale, the
hybrid Monte Carlo approach is inefficient, since an ensemble of
conjugate momenta must be evolved over many iterations (typically
100 or more), before a new micromagnetic magnetization configu-
ration may be accepted or rejected.

Here we describe a micromagnetic Monte Carlo (MMC)
method based on the Markov Chain approach, thus similar to the
Metropolis Monte Carlo method1 commonly used for atomistic
spin lattice simulations but including trial moves for magnetization
length change. The resulting method not only correctly reproduces
the expected Maxwell–Boltzmann distribution for the free energy
but generates new micromagnetic magnetization configurations for
every iteration. The algorithm has been implemented in Boris17

and is publically available and open-source.18 In Sec. II, the algo-
rithm and related theory are described and tested. In Sec. III, the
inclusion of the long-range demagnetizing interaction in the paral-
lel MMC implementation is described and tested by the computa-
tion of hysteresis loops and comparison with established methods.
In Sec. IV, the application of MMC to chiral magnetic films with
Dzyaloshinsky–Moriya interaction (DMI)19,20 is discussed. Finally,
in Sec. V, the application of MMC to the study of artificial spin ices
(ASI) is addressed, before summarizing possible future develop-
ments in the concluding remarks.

II. MICROMAGNETIC MARKOV CHAIN MONTE CARLO
METHOD

For atomistic spin lattice models, where the spins have fixed
length, at thermodynamic equilibrium, the internal energy E
follows a Boltzmann distribution, exp(�E/kBT)/Z, where Z is the
partition function, kB is the Boltzmann constant, and T is the tem-
perature. At the micromagnetic length scale however, where the
magnetization length can vary due to thermodynamic averaging
over many atomistic spins, the distribution of the free energy
follows a Maxwell–Boltzmann type distribution,7 given as follows:

f (m) ¼ m2exp(�F(m)/kBT)/Z,

Z ¼
X
i

m2
i exp(�F(mi)/kBT):

(1)

Here, m ¼ M/MS0, where M is the magnetization vector and
MS0 is the zero-temperature saturation magnetization, and m = |m|.

F(m) is the micromagnetic free energy and contains a number of
interactions, including applied field, exchange interaction, DMI,
magnetocrystalline anisotropy, and demagnetizing interaction. The
distribution in Eq. (1) is reproduced by the sLLB equation7 and
atomistic spin lattice simulations where the magnetization is com-
puted by thermodynamic averaging of atomistic spins, as we have
verified numerically. While the sLLB equation may be used to
compute relaxed magnetization states in thermodynamic equilib-
rium, as required, for example, for finite-temperature hysteresis
loop modelling, this approach is very inefficient, particularly for
large-scale simulations. A far more efficient approach may be
obtained using a Monte Carlo method. In particular, we wish to
establish a method that generates the distribution in Eq. (1), using a
similar method to the Metropolis Monte Carlo1 employed for atom-
istic spin lattices, by generating new micromagnetic magnetization
configurations every iteration. For atomistic simulations, trial moves
generally consist of spin rotations about the initial direction. For
micromagnetic simulations, where the magnetization length is not
fixed, we must compound this by an additional trial move, namely,
a change in the magnetization length. A Monte Carlo iteration then
consists of a sequence of trial moves, exactly one per micromagnetic
magnetization vector (rotation and length change), each of which is
accepted with a given probability. In the Markov chain Monte
Carlo approach, a sequence of ensembles is generated, which con-
verges to the required thermodynamic equilibrium distribution. A
sufficient condition for convergence is that of detailed balance,

f (mA)W(A ! B) ¼ f (mB)W(B ! A): (2)

Here, W(A ! B) is the transition probability from state A to
state B in the Markov chain. Thus, we obtain the following ratio:

W(A ! B)
W(B ! A)

¼ m2
B

m2
A
exp(�ΔF/kBT),

ΔF ¼ F(mB)� F(mA):

(3)

The Markov chain transition probability is given by

W(A ! B) ¼ p(A)Paccept(A ! B),

p(A)/m2
A:

(4)

Here, Paccept(A ! B) is the trial move acceptance probability,
and p(A) is the conditional probability. For atomistic spin lattice
simulations, we simply have p(A) ¼ 1/N , where N is the total
number of spins, i.e., each spin receives an equal weight. For micro-
magnetic magnetization vectors however, the weight is proportional
to m2, as may be seen by inspecting the partition function in
Eq. (1). Thus, we arrive at the following acceptance probability that
satisfies Eq. (3) and hence the detailed balance:

Paccept(A ! B) ¼ min 1,
m4

B

m4
A
exp(�ΔF/kBT)

� �
: (5)

In Eq. (1), we now separate the longitudinal energy contribu-
tion and rewrite it as
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f (m) ¼ exp(�F(m̂)/kBT)fl(m)Zl/Z: (6)

Here, fl(m) is the magnetization length probability distribu-
tion, with Zl being a renormalization factor, given by

fl(m) ¼ m2

Zl

exp � VMS0

8~χjjm2
e kBT

(m2 �m2
e )

2

 !
, T , TC

exp �VMS0m2

2~χjjkBT
1þ 3TCm2

10(T � TC)

� � !
, T . TC:

8>>>><
>>>>:

(7)

The longitudinal term contribution in Eq. (7), where V is the
micromagnetic computational cell size volume (e.g., V = h3 for a
cubic cell with cell size h), is the same which appears in the sLLB
or LLB equation and which gives rise to a longitudinal field. It is
parametrized using the relative longitudinal susceptibility given as5

~χjj(T) ¼
μ

kBT
B0(x)

1� B0(x)(3TC/T)
, x ¼ me3TC/T: (8)

Here, B(x) ¼ coth (x)� 1/x is the Langevin function, μ is the
atomic moment, TC is the Curie temperature, and me =Me/Ms0 is
the normalized temperature-dependent equilibrium magnetization
length given as5

me(T) ¼ B me
3TC

T
þ μμ0Hext

kBT

� �
: (9)

The remaining terms that contribute to free energy F(m̂) in
Eq. (6) include all the usual micromagnetic terms, and these may
be obtained directly from the corresponding energy density terms
by multiplying with the computational cell size volume V. There
are a few terms that require special attention however, namely,
exchange interactions (direct and DMI) and demagnetizing interac-
tion. First we treat the direct exchange interaction and discuss the
remaining terms later. The micromagnetic exchange free energy for
a given magnetization vector i is given below, where A is the
temperature-dependent exchange stiffness,

Fex,i ¼ �V
2A
M2

e
Mi:∇2Mi: (10)

It is important to note the multiplicative factor of 2 here: the
micromagnetic exchange energy density (see Ref. 17) expression is
derived from the atomistic Heisenberg direct exchange
Hamiltonian contribution that includes compensation for double-
counting of spins. In order to calculate the free energy contribution
of a single magnetization vector however, just as with the atomistic
Monte Carlo method, the factor of 2 must be restored.

Single-site energy terms are obtained directly from the corre-
sponding micromagnetic energy density expressions,17 for example,

the uniaxial magnetocrystalline anisotropy is included as

FUan,i ¼ VK1[1� (mi:eA)
2]þ VK2[1� (mi:eA)

2]
2
: (11)

Here, eA is the symmetry axis direction, and K1 and K2 are the
second and fourth order uniaxial anisotropy constants, respectively.
Cubic magnetocrystalline anisotropy is included as

FCan,i ¼ VK1[α
2
i β

2
i þ α2

i γ
2
i þ β2i γ

2
i ]þ VK2α

2
i β

2
i γ

2
i : (12)

Here, K1 and K2 are the fourth and sixth order cubic anisot-
ropy constants, respectively, αi, βi, and γi are direction cosines of
the magnetization vector.

Thus, the MMC method consists of the following steps: (1)
for a vector i perform a rotation trial move in a cone of given solid
angle. (2) For the same vector i perform a magnetization length
change trial move. (3) Compute the total free energy change,
including the longitudinal free energy change using the energy
term appearing in the exponent of Eq. (7). (4) Accept the com-
pound trial move with probability given in Eq. (5). This procedure
is done exactly once for each micromagnetic vector, which com-
pletes an MMC iteration. The algorithm is fully parallel, imple-
mented with the red–black checkerboard decomposition scheme
discussed previously for the atomistic Monte Carlo algorithm,21,22

and is thus suitable for computations on graphical processing units
(GPUs). The final question is how the solid angle for the rotation
trial moves should be chosen and how the magnetization length
should be changed. With time-quantized Monte Carlo
(TQMC),23,24 the cone solid angle is set such that real-time pro-
cesses may be reproduced, for example, the effect of the field sweep
rate on hysteresis loops25 or thermally activated grain reversal
time.26 This may also be possible with MMC; however, this topic is
outside the scope of the current work. Instead, the cone solid angle
is adaptively set such that the acceptance rate is kept at an optimal
value of ∼0.5,22 which allows rapid thermalization across the entire
applicable temperature range.

The acceptance rate is computed every 100 iterations, and the
cone angle adjusted by 1° up or down if an acceptance tolerance
threshold of ±0.05 is exceeded, in order to decrease or respectively
increase the acceptance rate. During thermodynamic equilibrium,
this typically results in a cone angle variation around a mean value
with a standard deviation of ∼1°. The magnetization length change
is performed by multiplying with a random factor uniformly
chosen in the range [1− σ, 1 + σ], where 0 < σ < 1. At low tempera-
tures, σ should be small in order to avoid excessive rejection of trial
steps, while at high temperatures σ should be large enough to allow
for rapid convergence to thermodynamic equilibrium. A good
choice for σ may be obtained by noticing from Eq. (7) that
fl(m)/m2 is a Gaussian distribution of m2 with mean m2

e and width
σ given by

σ ¼ 2me

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~χjjkBT
VMS0

s
: (13)

In practice, this needs to be capped to a maximum value, and
we use σ≤ 0.03 that is reached close to TC, and also for T > TC, this
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latter constant value is used. It should be noted that since the algo-
rithm generates a magnetization length distribution governed by
Eq. (7), the probability of generating a vector with |M| >MS0 is
practically zero.

We now verify the MMC method that correctly reproduces
the target probability distribution by comparison with the sLLB
equation. For this purpose, a 50 × 50 × 50 nm simulation space is
chosen with parameters typical for Ni80Fe20 [Ms0 = 800 kA/m,
A(T) ¼ A0m2

e
27 with A0 = 13 pJ/m]; a value of TC = 680 K was set.

The direct exchange interaction is enabled with periodic boundary
conditions in all directions, and a magnetic field of 10 kA/m is
applied. The sLLB equation is implemented as given in Ref. 17,
evaluated using the Heun method with a fixed time step of 2 fs. A
zero-temperature damping value of 0.1 was set; however, the equi-
librium thermodynamic distributions do not depend on damping
factor, nor on the integration time step as we have verified (a small
enough time step is required for numerical convergence however,
and also very small—less than 0.001—and very large—greater than
0.5—damping values are difficult to accommodate with good
numerical precision). Results for the magnetization length distribu-
tion, averaged over >50 000 ensembles following an equal number

of thermalization iterations, are shown in Figs. 1(a)–1(c). Very
good agreement between the MMC and sLLB solutions is obtained
(R2 values >0.99), also in agreement with the expected distribution
in Eq. (7) both below and above TC. A slight discrepancy for sLLB
exists close to TC, reflecting difficulty in accurate numerical evalua-
tion; however, the more accurate MMC result is in excellent agree-
ment with the theoretical distribution even around TC. The
equilibrium magnetization—Eq. (9)—and relative longitudinal sus-
ceptibility—Eq. (8)—input functions are shown in Fig. 2, compared
with the values obtained by fitting numerically computed distribu-
tions, as shown in Fig. 1, with Eq. (7). This shows that the MMC
method correctly reproduces the magnetization length probability
distribution across the entire simulated temperature range.

Finally, we verify that the transverse distribution in Eq. (6) is
reproduced correctly. For this, the angular deviation from mean
direction probability distribution is computed. Thus, for each
micromagnetic magnetization configuration, the mean direction is
obtained, and for each vector in the ensemble, the polar angle θ to
this mean direction is found. Using 100 bins for θ, between the
minimum and maximum θ values, a histogram is obtained. This is
then averaged over >50 000 ensembles. Example results are shown

FIG. 1. Verification of single-domain thermodynamic equilibrium properties produced by MMC, compared to sLLB. Examples are shown for 300 K (left panels), 679 K
(middle panels), and 700 K (right panels), where TC = 680 K. (a)–(c) Normalized magnetization length probability distributions for indicated temperatures. (d)–(f )
Histograms of angular deviation from mean direction, weighted by solid angle unit sphere differential surface area. These are equilibrium distributions averaged over many
ensembles (>50 000), which do not depend on damping constant or integration time step in the sLLB equation.
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in Figs. 1(d)–1(f ), for both MMC and sLLB, showing excellent
agreement. Note the histograms thus obtained are weighted by the
bin solid angle differential surface area on the unit sphere; hence,
the computed probability tends to zero as θ tends to zero or to π
radians.

III. HYSTERESIS LOOP MODELLING

One important application for MMC is finite-temperature
hysteresis loop modelling. Here we concentrate on the static hyster-
esis limit; using kinetic Monte Carlo,28,29 it is possible to simulate
the effect of the field sweep rate. Alternatively TQMC may be
employed, and time quantization may also be extended to MMC;
however, this is left for a future work. For computation of hysteresis
loops, in general, it is essential that the demagnetizing interaction
is included, allowing for shape anisotropy effects. Such long-range
interactions are notoriously difficult to include in a parallel Monte
Carlo algorithm. Since each spin interacts with all other spins, an
exact computation of the interaction energy is not compatible with
domain decomposition methods. For the atomistic spin lattice case,
the dipole–dipole interaction was previously approximately
included using a complex stream processing domain decomposition
method.30 Here we discuss a simpler alternative approach, which
only requires a single demagnetizing field computation per MMC

iteration, and may be achieved using the usual efficient FFT-based
convolution method.17,31 The demagnetizing field may be obtained
using the discrete convolution sum shown below, where N is the
demagnetizing tensor,

Hd,i ¼ �
X
j

NijMj,

Fd,i ¼ �Vμ0Mi:Hd,i:

(14)

The free energy contribution of magnetization vector i is given
by Fd,i, whereas for the exchange interaction the value is compen-
sated for the factor of 1/2 arising from double counting of magneti-
zation vectors in the usual demagnetizing energy density formula.
At the start of an MMC iteration, the demagnetizing field is fully
computed, and for each trial move, the energy change ΔFd,i is
obtained from Eq. (14) as ΔFd,i ¼ �Vμ0ΔMi:Hd,i. Once a trial
move is accepted, the demagnetizing field is not immediately
updated. Thus, while this approach is also inevitably an approxima-
tion, it may be made more accurate by having more than one
demagnetizing field update per MMC iteration; for example, since
a red–black checkerboard decomposition scheme is used, the
demagnetizing field can be updated before each red and black par-
allel passes. In turn, the red and black passes can be further decom-
posed to include more demagnetizing field updates. This approach
was numerically tested extensively, also against a serial algorithm
implementation where ΔFd,i was computed exactly. Results compar-
ing the parallel and serial MMC implementations are shown in the
Appendix B, with no statistical difference found between them.
This method works since locally the demagnetizing interaction is
relatively weak, and the change in the demagnetizing field from
one iteration to another is small. Thus, in thermodynamic equilib-
rium, locally the trial move acceptance probability is largely driven
by the exchange interaction, with |ΔFex,i| being over 1–2 orders of
magnitude larger than |ΔFd,i|, even for ultrathin films with perpen-
dicular magnetization (see Appendix B). The effect of the demag-
netizing field becomes apparent only over many iterations and on a
large spatial scale, appearing as a bias in the acceptance probability.

First, we take a simple example to verify that the shape anisot-
ropy effect is correctly reproduced by comparing the MMC method
with the sLLB equation solution. Easy and hard axis hysteresis
loops in a 400 × 200 × 5 nm Ni80Fe20 ellipse, with 5 nm cubic dis-
cretization cell size, are computed at 300 and 600 K, with results in
Fig. 3 showing excellent agreement. Note that for all the hysteresis
loops shown in this work only the increasing field sweep has been
simulated, with the decreasing field sweep completed through
inverse symmetry. For sLLB, at each field step, the magnetization
configuration solution is accepted when the average normalized
torque value falls below 10−4 (smaller values lead to excessive simu-
lation times). With the MMC method, we need to ensure enough
iterations are used to obtain correct thermodynamic equilibrium
states. From atomistic Monte Carlo simulations of hysteresis loops,
it is known that the switching field estimation becomes increasingly
more accurate as the number of Monte Carlo iterations increases.2

One could run the MMC algorithm with a fixed number of itera-
tions for each field step. Here a more efficient approach is taken; a
chunk with a fixed number of iterations (2000) is defined, with an

FIG. 2. (a) Normalized equilibrium magnetization length and (b) relative longitu-
dinal susceptibility, computed numerically and compared to model input func-
tions for verification. The distributions produced by MMC and sLLB, respectively,
are fitted to obtain to obtain me and ~χ [with Eq. (7) for the longitudinal
distribution].
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ensemble average magnetization value computed for each chunk.
For each field step, the MMC algorithm is then executed for at least
two chunks of iterations, and if their respective final average mag-
netization values along the applied field direction are close enough
within an acceptance threshold (0.01 normalized change acceptance
threshold used), the computation accepts the last chunk average
magnetization and proceeds to the next applied field value. This
adaptive approach ensures that a small number of iterations are
used at parts of the hysteresis loop which change slowly, and a
large number of iterations are expended at switching events or at
steep parts of the hysteresis curve.

As a further test, we show the hysteresis loops obtained for a
400 × 200 × 100 nm Ni80Fe20 ellipsoid at 300 K, also discretized
using a 5 nm cubic cell size, computed along the easy, medium,
and hard axes. Here MMC is compared with results obtained
using the steepest descent (SDesc) energy minimizer,3 where field
steps are considered solved when the maximum normalized
torque value falls below 10−5. This is used as a quasi-zero temper-
ature method, where the material parameters are simply rescaled
for the required temperature, but otherwise the SDesc method
does not include stochasticity or a magnetization length distribu-
tion. A very good agreement is observed for the medium and
hard axes, with hysteresis loop behavior largely dictated by the
shape anisotropy effect. A reasonable agreement is also obtained
for the easy axis hysteresis loop; however, here stochasticity also
plays a part, resulting in magnetization configuration switching to
a vortex state close to the zero field sooner for MMC compared to
SDesc; the zero-field vortex state is shown in the inset of Fig. 4(a).
In the Appendix A, the easy-axis ellipsoid hysteresis loops are
plotted at higher temperatures, showing the SDesc solution
becomes increasingly inaccurate as the temperature increases,
thus necessitating the use of MMC.

Finally, we test the MMC method by computing the hysteresis
loop in a large-scale granular Fe film with cubic anisotropy

(Ms0 = 1.71MA/m, A0 = 21 pJ/m, K1 = 48 kJ/m3 fourth order anisot-
ropy constant, K2 =−10 kJ/m3 sixth order anisotropy constant, and
TC = 1044 K). For the anisotropy constants, a ml(lþ1)/2

e scaling law32

is used, with l being the anisotropy term order. The simulation

FIG. 4. Hysteresis loops computed in a 400 × 200 × 100 nm Ni80Fe20 ellipsoid
at 300 K, compared between the MMC and SDesc methods, along the indicated
(a) easy, (b) medium, and (c) hard axes. For (a), 250 field steps were used,
and for (b) and (c), 1000 field steps were used. The SDesc energy minimization
solver is applied with material parameters rescaled for T = 300 K but otherwise
does not include stochasticity and the magnetization length is constrained to the
equilibrium value. The insets show the vortex state obtained at zero field from
MMC.

FIG. 3. Hysteresis loops computed in a 400 × 200 × 5 nm Ni80Fe20 ellipse at
300 and 600 K, compared between the MMC and sLLB methods, along the
easy axis and the in-plane hard axis with 200 field steps. A shape anisotropy
arises due to the demagnetizing interaction, with no magnetocrystalline anisot-
ropy included.
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space consists of a 800 × 800 × 20 nm3 mesh with periodic boun-
dary conditions in the plane and cubic discretization cell with 2 nm
cell size (total of 1.6 × 106 cells included in simulation). The grains
are generated using three-dimensional Voronoi tessellation with
average 10 nm spacing between seed points and with phase separa-
tion (i.e., grains interact through the demagnetizing field only). A
typical granular structure generated is shown in the inset of Fig. 5,
with the resulting hysteresis loops obtained from MMC and
temperature-rescaled SDesc also shown for T = 300 K. The field was
applied along the in-plane horizontal direction (along cubic easy
axis). A good agreement is obtained between the two methods, con-
firming the demagnetizing interaction is correctly evaluated in the
implemented MMC method. Granular films are important for mag-
netic storage media, including heat-assisted magnetic recording.33

Specialized methods exist for computing hysteresis loops in granu-
lar media, including a thermal activation model34 and micromag-
netic kinetic theory.35 The MMC approach presented here,
however, is a general-purpose method for computing thermody-
namic equilibrium states; the resulting collection of states are the
same as those that would be obtained by integrating the sLLB equa-
tion given sufficient simulation time. For relaxation problems, the
MMC method is over 2–3 orders of magnitude faster compared to
sLLB. We also note that for the granular film problem of Fig. 5, the
MMC method is slightly faster (typical computation time ∼1 h on a
modern GPU) than the SDesc method, which requires many itera-
tions to reach the normalized torque convergence threshold of 10−5.

IV. MAGNETIC THIN FILMS WITH DMI

The free energy contribution of the interfacial DMI term is
given below, which is included in addition to the direct exchange

contribution of Eq. (10),

FiDMI,i ¼ �V
2D
M2

e
Mi:(ẑ∇:Mi � ∇Mz,i): (15)

Here we simulate the finite-temperature hysteresis loops in
thin chiral Co/Pt films (Ms0 = 600 kA/m, A0 = 10 pJ/m, uniaxial
anisotropy with perpendicular easy axis and second-order anisot-
ropy constant Ku = 300 kJ/m3, and TC = 600 K), where the interfa-
cial DMI is included as D(T) ¼ D0m2

e
36 in Eq. (15), with

D0 =−3 mJ/m2 being the zero-temperature micromagnetic DMI
constant. The simulation space is taken as 1000 × 1000 × 2 nm3

with periodic boundary conditions in the plane and the cubic dis-
cretization cell with 2 nm cell size. Hysteresis loops at 300, 350, and
400 K are shown in Fig. 6, where the field is applied perpendicular
to the plane. The hysteresis loops are typical of experimental
results.37 A labyrinth domain structure is observed at the zero field
in all cases, resulting in sheared hysteresis loops. Inspecting the
increasing field sweep, for T = 300 K, the labyrinth domain struc-
ture is suddenly formed at a negative field, nucleated through
thermal activation, as indicated in the inset of Fig. 6(a). As the field
strength is increased, the labyrinth domain structure is gradually
reduced, eventually forming a small number of skyrmions; further
increasing the field results in thermal annihilation of skyrmions,
leading to saturation. The magnetization reversal process depends
on the sample temperature, not only due to the increased effect of
stochasticity, but more importantly due to the temperature depen-
dence of the DMI constant and effective anisotropy. Thus, at
higher temperatures, instead of nucleating a labyrinth domain
structure, first skyrmions are nucleated, which then grown into a
labyrinth structure as shown in Figs. 6(b) and 6(c). Also at higher
temperatures, increasing the field toward saturation results in a
dense array of skyrmions formed out of the labyrinth structure,
approximately arranged into a hexagonal lattice—see inset in
Fig. 6(b). The thermodynamic equilibrium states arising at each
field step for the hysteresis loops in Fig. 6 are detailed in the
Multimedia view (see Fig. 6 caption).

Simulation of such hysteresis loops in chiral films, with rota-
tional symmetry about the applied field axis, is problematic with
quasi-zero temperature methods such as SDesc, since the nucle-
ation and annihilation of skyrmions and labyrinth domain struc-
ture are principally a thermally activated process. With the SDesc
method, generation of a labyrinth domain structure from a
uniform state purely by energy minimization requires breaking of
rotational symmetry and topological protection and is strongly
dependent on numerical floating point errors. Thus, the SDesc hys-
teresis loop shown in Fig. 6(a) is neither in quantitative nor in
qualitative agreement with the MMC simulations, also failing the
reproduce the gradual transition from the labyrinth domain struc-
ture to skyrmions and gradual thermal annihilation of skyrmions
toward saturation; instead, a sudden jump is observed from a near-
labyrinth domain structure to saturation.

Finally, we also compute the hysteresis loop with a non-
uniform temperature profile, in particular, a Gaussian temperature
profile as in Ref. 38, with 300 nm width, reaching a maximum of
400 K at the center, from 300 K at the extremities. Such non-
uniform temperature profiles are encountered in ultrafast laser-

FIG. 5. Hysteresis loop in a cubic anisotropy Fe film with 20 nm thickness and
granular structure with 10 nm average grain size. The simulation space contains
over 12 000 grains discretized using a 2 nm cubic cell size. The hysteresis
loops are computed at 300 K with the MMC and SDesc methods, respectively,
using 500 field steps. The inset shows the magnetization configuration obtained
from MMC at the coercive field (red denotes grains pointing right and blue point-
ing left).
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induced skyrmion nucleation studies.37–40 While the MMC method
evidently does not reproduce the dynamics, it may be used to
analyze the states resulting on a long time-scale, such as mixed lab-
yrinth domain and skyrmion states. Results are shown in Fig. 7. In

contrast to simulation with a uniform temperature, where a
labyrinth domain structure is nucleated, instead a number of
skyrmions are nucleated inside the Gaussian profile at a larger
negative field, which then grows into a labyrinth domain structure.
On the positive side of the hysteresis loop, first a number of sky-
rmions are formed from the labyrinth structure inside the Gaussian
profile, resulting in a mixed state as noted in a recent experimental
study.37

The MMC method may thus be used to study thermodynamic
equilibrium states also for materials with DMI, which includes hys-
teresis loop modelling, but also relaxed states in magnetic nano-
structures, for example, as observed in a recent study on Co/Pt
multi-layered nano-dots.41 For such multi-layered structures, the
demagnetizing field used for the MMC method may also be com-
puted using the multi-layered convolution algorithm.31 The analy-
sis of skyrmion arrangements and temperature-driven diffusive
motion in magnetic nano-structures was previously done using a
quasi-particle Monte Carlo model.42 The MMC method may also
be used for such studies to analyze the probability distribution of
skyrmion positions, having the advantage of treating the energy
terms on an equal footing with micromagnetic approaches, with
full spatial resolution. Thus, in particular, the MMC method natu-
rally takes into account skyrmion deformations, thermal nucle-
ation, and annihilation of skyrmions.

V. ARTIFICIAL SPIN ICES

Artificial spin ices (ASI) is an active and growing field of
research; for recent reviews, see Refs. 43 and 44. Here we briefly
point out the applicability of the MMC method to the study of
ASI. Monte Carlo methods have been successfully applied to the
study of ASI, relying on a point dipole approximation for the

FIG. 7. Hysteresis loop in the same Co film of Fig. 6, using instead a Gaussian
temperature profile with 300 nm width, reaching a maximum of 400 K at the
center, from 300 K at the extremities. The insets show the perpendicular magne-
tization component at the indicated points on the increasing field sweep, with
blue denoting magnetization into the plane and red out of the plane. Multimedia
view: https://doi.org/10.1063/5.0059745.4

FIG. 6. Hysteresis loops in a thin Co film with interfacial DMI and perpendicular
anisotropy, 1000 × 1000 × 2 nm with in-plane periodic boundary conditions, com-
puted for (a) 300, (b) 350, and (c) 400 K using 600 field steps. The insets show
the perpendicular magnetization component at the indicated points on the
increasing field sweep, with blue denoting magnetization into the plane and red
out of the plane. In (a), the SDesc energy minimizer solution is shown for com-
parison. Multimedia views: https://doi.org/10.1063/5.0059745.1; https://doi.org/10.
1063/5.0059745.2; https://doi.org/10.1063/5.0059745.3

Journal of
Applied Physics METHOD scitation.org/journal/jap

J. Appl. Phys. 130, 163902 (2021); doi: 10.1063/5.0059745 130, 163902-8

Published under an exclusive license by AIP Publishing

https://doi.org/10.1063/5.0059745.4
https://doi.org/10.1063/5.0059745.4
https://doi.org/10.1063/5.0059745.1
https://doi.org/10.1063/5.0059745.1
https://doi.org/10.1063/5.0059745.2
https://doi.org/10.1063/5.0059745.2
https://doi.org/10.1063/5.0059745.2
https://doi.org/10.1063/5.0059745.3
https://doi.org/10.1063/5.0059745.3
https://aip.scitation.org/journal/jap


magnetic moments of islands comprising ASI arrays.45,46 On the
one hand, this allows computation of the blocking temperature,47

TB; annealing with T > TB (normally TB< TC) allows the magnetic
islands to settle into a different overall energy state, as the energy
barriers for flipping their moment directions are overcome, dictated
by magnetic frustration due to the dipolar interaction. Use of the
dipole approximation Monte Carlo method also allows the study of
statistics of the vertex population types (vertex configurations
grouped by the energy state). The MMC method presented here
may also be used, having the advantage of not relying on a dipole
approximation for the magnetic islands moments. This allows, for
example, resolving the domain configuration of magnetic islands,
which may not be in a single domain state, particularly for larger
magnetic islands. Effects due to magnetic islands shape can in prin-
ciple be taken into account, and also connected ASI arrays may be
studied, where the exchange interaction contributes to frustration.
Thus, the MMC approach is a more general method compared to
the point dipole Monte Carlo approach; the computational com-
plexity is greater; however, efficient use may be made of GPUs,
which, as we show below, allows simulations of ASI arrays of
dimensions approaching those used in experimental studies.

In Fig. 8, we show results for a square ASI array, with dimen-
sions of 6 μm× 6 μm× 25 nm. The Ni80Fe20 islands are stadium-
shaped and of dimensions 200 × 40 × 25 nm, with lattice spacing of
250 nm. The simulation space was discretized using a 5 nm cubic
cell size, with in-plane periodic boundary conditions, thus resulting
in 7.2 × 106 simulation cells. An example region of the simulated
ASI array is shown in Fig. 8(a). Here we compute the blocking tem-
perature TB as well as the vertex population statistics—for a square
ASI, as is well known, there are four vertex types as given, e.g., in
Ref. 48; for brevity, the definitions are not repeated here. The sim-
plest approach to compute TB is by analyzing field-cooled (FC) and
zero-field-cooled (ZFC) curves—see Ref. 47. We also use this
method with MMC. Thus, starting from a large temperature near
TC, a small field of 10 kA/m, but large enough to switch the mag-
netic islands along the field direction, is applied—FC—and the
magnetization length in thermodynamic equilibrium along the
applied field direction (horizontal direction in Fig. 8) is recorded.
The same is repeated in zero field—ZFC—and the temperature dif-
ferential of the FC and ZFC difference curve is plotted in Fig. 8(c);
the point of minimum is the blocking temperature, obtained as
TB = 656 K.

Next, an alternative method of computing TB, which has the
advantage of obtaining statistical information on vertex popula-
tions, is used. The ASI array is saturated in a large field (100 kA/m)
at room temperature, along the horizontal direction, and then
relaxed at the zero field; this starting state, showing all the horizon-
tal islands pointing toward the right (red color), is indicated in
Fig. 8(a). Next, an annealing temperature is set and thermodynamic
equilibrium achieved, before relaxing the ASI array at room tem-
perature again where the vertex types are counted. This is repeated
with increasing annealing temperature, and results are shown in
Fig. 8(b). Below TB, the vertex types are exclusively type 2 and type
3, as these are the only possible types with the horizontal islands all
pointing in the same direction. Above TB however, the magnetic
moments overcome the energy barrier and settle into a different
energy state, giving rise to a significant number of type 1 vertices,

largely at the cost of type 2 vertices, although a small number of
higher energy type 4 vertices are also created. This transition is
fairly abrupt at 656 K, in perfect agreement with the FC method
shown in Fig. 8(c). It is interesting to note that with these dimen-
sions not all islands are in a single domain state, as seen in
Fig. 8(a), with a small number containing a transverse domain wall,

FIG. 8. Computation of blocking temperature TB and vertex populations in
square ASI. The Ni80Fe20 islands are stadium-shaped and of dimensions
200 × 40 × 25 nm, with lattice spacing of 250 nm. The simulation space is
6 μm × 6 μm × 25 nm using periodic boundary conditions in the plane and cubic
cell size of 5 nm. (a) Left-side shows a region of the simulated array before
annealing obtained at zero field after saturation. The right-side shows the same
array, after annealing with a temperature above TB; some elements are not in a
single domain state. Red is magnetization pointing right, blue pointing left,
yellow pointing up, and cyan pointing down. (b) Computation of vertex popula-
tions as a function of annealing temperature. The TB value of 656 K is indicated
by the vertical dashed line. (c) Direct computation of TB using FC and ZFC
curves, obtaining the same blocking temperature of 656 K as in panel (b).
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which is stable against thermal fluctuations. Thus, the
MMC method may also be used to study ASI, including not only
square arrays, but also kagome lattices49 and magnetic
quasicrystals.50

VI. CONCLUSIONS

In this work, an efficient method for computing thermody-
namic equilibrium states at the micromagnetic length scale was
introduced, which mirrors the Metropolis Monte Carlo method
commonly used for atomistic spin lattice simulations. Since micro-
magnetic magnetization vectors are thermodynamic averages of
atomistic spins, a magnetization length distribution arises on the
micromagnetic length scale. This follows a Maxwell–Boltzmann
type distribution, and the micromagnetic Monte Carlo method
reproduces this, in agreement with the stochastic Landau–Lifshitz–
Bloch equation, by use of an additional magnetization length
change trial move. Thus, the micromagnetic Monte Carlo method
gives rise to the same collection of magnetization vector ensembles
in thermodynamic equilibrium as the dynamic stochastic Landau–
Lifshitz–Bloch equation does given sufficient simulation time. This
approach is far more efficient however, allowing computation of
relaxed states in large-scale systems, for which the use of the
dynamic approach is not practically feasible. Particular examples
have been given, including computation of hysteresis loops, both in
two-dimensional and in three-dimensional structures, granular
films, chiral magnetic films, and study of artificial spin ices. The set
of applications is not limited to these cases however, as the micro-
magnetic Monte Carlo method is a general approach for computing
relaxed states at finite temperatures, and further work is required to
fully exploit the range of applicability. Possible future extensions
include the use of time quantization to allow study of, for example,
the field sweep rate on hysteresis loops and grain reversal times.
Finally, the method introduced here was applied to ferromagnetic
materials; however, a future work will investigate extensions to two-
sublattice models, allowing applications to ferrimagnetic and anti-
ferromagnetic materials.51

APPENDIX A: COMPARISON OF MMC AND
QUASI-ZERO TEMPERATURE SOLUTIONS AT HIGH
TEMPERATURES AND FIELDS

The SDesc and MMC methods generally agree well at low
temperatures far below TC, especially when magnetization reversal
occurs largely through coherent rotation. An important exception
to this is for processes where magnetization reversal is principally
driven by thermally activated reversal, and we have given an
example in the main text for chiral magnetic thin films. For such
problems, quasi-zero temperature methods (SDesc) are inadequate.
Here we further show also for high temperatures the SDesc method
is increasingly inaccurate, necessitating the use of MMC.

Figure 9 shows the Ni80Fe20 ellipsoid problem of Fig. 4, with
hysteresis loops given along the easy axis for 300, 500, 600, and
650 K (TC = 680 K). As the temperature increases, the MMC and
SDesc solutions increasingly diverge. The difference between the
solutions at high fields is due to lack of stochasticity in the SDesc
method, which becomes increasingly important at higher tempera-
tures, as the average angular deviation from the mean direction

increases [see Figs. 1(d)–1(f )]. Thus, the SDesc solutions reach the
magnetization saturation value at low fields, failing to reproduce a
realistic high field behavior—comparisons of high field behavior
for the SDesc and MMC solutions are shown in Fig. 10. For the
MMC solutions however, large fields are required at high tempera-
tures to fully saturate the magnetization along the applied field
direction, requiring narrowing of the angular deviation from the
mean direction probability distribution. It should be noted for the
sLLB equation form of Ref. 7—for which the current MMC
method reproduces the same thermodynamic equilibrium proper-
ties—the un-weighted average magnetization does not coincide
with the equilibrium magnetization, as noted in Ref. 7 and as may

FIG. 9. Comparison of MMC and SDesc methods for the ellipsoid problem of
Fig. 4, showing the easy axis hysteresis loops at higher temperatures for (a)
500, (b) 600, and (c) 650 K. As the temperature increases, the SDesc solution
becomes increasingly inaccurate due to lack of stochasticity and uniform magne-
tization length.
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easily be verified numerically. Conceptually this is problematic,
since in atomistic modelling, the two values are identical. This
problem has been addressed recently,52 with an alternative form of
the sLLB equation obtained from the LLB equation in Ref. 5. It

may be possible to extend the MMC method to this alternative
sLLB formulation; however, this is left for future work.

APPENDIX B: FREE ENERGY CONTRIBUTIONS TO MMC
TRIAL MOVES

The free energy contributions to MMC trial moves are com-
puted (a) for the Ni80Fe20 ellipsoid problem of Figs. 4 and 4(b) for
the ultrathin Co/Pt film (here 1 nm Co thickness) of Fig. 6, in
order to illustrate the relative importance of the different interac-
tions to the trial move acceptance rate. Results are shown in Fig. 11
as a function of temperature, with (a) the ellipsoid initialized at
zero field with the vortex state shown in the insets to Figs. 4 and 4(b)
the ultrathin Co film perpendicularly magnetized and with a
100 kA/m perpendicular magnetic field. The exchange interaction
is the dominant contribution, with the demagnetizing interaction
typically relatively negligible except when close to TC. The exchange
interaction term is computed using Eq. (10), the demagnetizing
interaction term is computed using Eq. (14), and the longitudinal

FIG. 10. High-field behavior of easy-axis hysteresis loops for the ellipsoid
problem of Figs. 4 and 9.

FIG. 12. Magnetization switching for the ellipse problem around the coercive
field, H = 12 kA/m, as a function of number of iterations. (a) Averages over 500
switching events, showing normalized magnetization as a function of iteration
number, computed with the parallel MMC algorithm, as well as the serial MMC
algorithm where the demagnetizing field is updated after every accepted move.
Some individual switching events are also shown. (b) Probability of crossing the
x axis as a function of number of iterations, shown for both the parallel and
serial MMC algorithms.

FIG. 11. Average change in free energies for MMC trial moves for (a) the
Ni80Fe20 ellipsoid problem of Fig. 4, initialized at zero field with the vortex state
shown in the insets of Figs. 4 and 4(b) the ultrathin Co/Pt film (here 1 nm Co
thickness) of Fig. 6.
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term is obtained from the energy term appearing in the exponent
of Eq. (7). This justifies the use of a single demagnetizing field
update per MMC iteration, as consecutive MMC ensembles are
largely correlated through the exchange interaction, with the influ-
ence of the demagnetizing interaction on thermodynamic equilib-
rium states being important only after many iterations (typically
102–104).

Finally, we compare the parallel MMC algorithm, where the
demagnetizing field is update once per iteration, with the serial
MMC version where the demagnetizing field is updated after every
accepted move. The latter thus exactly takes into account the long-
range demagnetizing interaction. Magnetization switching events
are computed as a function of number of iterations for the ellipse
problem of Fig. 3. Starting from the remanence state with magneti-
zation pointing along the –x direction, the coercive field value of
H = 12 kA/m is applied, and the magnetization along the field
recorded over 10 000 iterations. Individual switching events are
shown in Fig. 12(a), as well as averages over 500 switching events
for both algorithms. The switching probability is strongly influ-
enced by the demagnetizing field, which gives rise to an effective
uniaxial anisotropy. The probability of crossing the x axis is plotted
in Fig. 12(b) as a function of iteration number. These results show
there is no significant difference between the two approaches, again
justifying the use of Eq. (14) for including the demagnetizing inter-
action in the parallel MMC algorithm.

APPENDIX C: MMC AND SLLB COMPUTATION TIMES
COMPARISON

Comparisons of computation times between the MMC and
sLLB methods are shown here. These are given in Table I for the
ellipse and ellipsoid problems of Fig. 3 and 4, respectively. For the
ellipse problem, the computations were done on the central pro-
cessing unit (CPU) using a Linux OS (Ubuntu)—AMD R7 3700X
(16 logical cores). For the ellipsoid problem, the computations were
done on the GPU—Nvidia GTX 980 Ti.

For sLLB, the RK4 method was used with a fixed time step of
50 fs and a damping value of α = 0.1. For non-stochastic equations,
higher damping values result in faster relaxation, with an optimum
damping value of α = 1.0 due to a maximum in the damping
torque [proportional to α/(1 + α2)]. For sLLB, however, higher
damping values require smaller time steps for integration, while
smaller damping values result in excessive oscillations, resulting in
increased computation times when relaxing; the value α = 0.1 is a
good compromise. The integration time step was determined by
computing the magnetization length probability distribution as
shown in Fig. 1. The value of 50 fs is the largest time step that
reproduces Eq. (7), with larger time steps resulting in significant
deviations from the analytical result before any numerical diver-
gence is observed.

For MMC, the demagnetizing field is computed once per iter-
ation as explained in the main text. For sLLB with the RK4
method, which consists of four sub-steps per time step iteration,
normally the demagnetizing field is computed once per sub-step.
In order to improve the computation time, a recently proposed
method of speeding up explicit evaluation methods using demagne-
tizing field polynomial extrapolation53 was used, thus also

employing one demagnetizing field evaluation per iteration. As
expected, computation times for MMC are significantly smaller,
with speedup factors of almost 20 obtained as shown in Table I.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request, and the
micromagnetic Monte Carlo algorithm code is available at https://
github.com/SerbanL/Boris2, Ref. 18.
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