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Regional differences in clonal Japanese 
knotweed revealed by chemometrics-linked 
attenuated total reflection Fourier-transform 
infrared spectroscopy
Claire A. Holden1*, Camilo L. M. Morais2, Jane E. Taylor1, Francis L. Martin3, Paul Beckett4 and Martin McAinsh1 

Abstract 

Background: Japanese knotweed (R. japonica var japonica) is one of the world’s 100 worst invasive species, causing 
crop losses, damage to infrastructure, and erosion of ecosystem services. In the UK, this species is an all-female clone, 
which spreads by vegetative reproduction. Despite this genetic continuity, Japanese knotweed can colonise a wide 
variety of environmental habitats. However, little is known about the phenotypic plasticity responsible for the ability 
of Japanese knotweed to invade and thrive in such diverse habitats. We have used attenuated total reflection Fourier-
transform infrared (ATR-FTIR) spectroscopy, in which the spectral fingerprint generated allows subtle differences in 
composition to be clearly visualized, to examine regional differences in clonal Japanese knotweed.

Results: We have shown distinct differences in the spectral fingerprint region (1800–900  cm− 1) of Japanese knot-
weed from three different regions in the UK that were sufficient to successfully identify plants from different geo-
graphical regions with high accuracy using support vector machine (SVM) chemometrics.

Conclusions: These differences were not correlated with environmental variations between regions, raising the 
possibility that epigenetic modifications may contribute to the phenotypic plasticity responsible for the ability of R. 
japonica to invade and thrive in such diverse habitats.

Keywords: Ecosystem, Epigenomics, FTIR spectroscopy, Invasive species, Japanese knotweed, Physiological 
adaptation, Plants, Principal component analysis, Spectrum analysis, Support vector machine
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Background
Invasive Alien Species (IAS) constitute a major threat 
to global biodiversity [1]. Japanese knotweed (Reynou-
tria japonica var. japonica) [2, 3] is particularly invasive 
throughout North America, Europe, Australia and New 
Zealand [3, 4]. It grows vigorously into tall, dense mono-
dominant clumps or ‘stands’ which possess a shared 
underground rhizome system and spread vegetatively to 

expand up to several metres outwards and over a metre 
downwards from the parent plant [5, 6]. These stands 
have marked negative effects on the environment [7] 
including: a reduction in ecosystem services in riparian 
zones [8–11], the weakening of flood defences [9, 11, 12], 
changes in species abundance [13–16] and a diminution 
in property values [5, 17]. The socio-economic cost also 
includes the expense of control measures, usually com-
prising repeated treatments with the controversial herbi-
cide, glyphosate [14].

Many hypotheses have been proposed to explain inva-
sive success, including: fluctuating-resource-availability, 
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enemy-release, Evolution of Increased Competitive Abil-
ity (EICA), naturalization, diversity-invasibility, novel 
weapons (NWH), shifting-defence, hybridisation-inva-
sion, ecotype, plasticity [13, 18–20]. The ecotype hypoth-
esis suggests that the ability of invasive plant species to 
thrive across different habitats is underpinned by genetic 
variations leading to local adaptations [16]. Whilst in 
some cases a genetic bottleneck can reduce the fitness 
of the resultant population, paradoxically some invasive 
species appear to thrive despite a reduced genetic diver-
sity in the founder population [15]. Japanese knotweed 
exhibits minimal genetic variation in Central Europe [21], 
Norway [22] and the USA [23], and exists as a female 
clone in the United Kingdom from a single introduction 
[24, 25]. The ability of populations with low genetic diver-
sity such as Japanese knotweed to take advantage of a 
wider ecological niche has been attributed to phenotypic 
plasticity [13, 26–32], efficient resource partitioning [33] 
and vegetative regeneration [34], allowing R. japonica to 
colonise a broad geographic range across diverse habi-
tats such as riparian wetlands, urban transport courses, 
and coastal areas [21, 23]. However, there is also evidence 
that phenotypic plasticity is similar between invasive 
plants and native or non-invasive closely related species 
[35, 36]. Previous studies have suggested that invasive 
plants are phytochemically unique in their new habitats, 
conferring advantages such as antiherbivore, antifungal, 
antimicrobial and allelopathic effects [37]. Plant anti-her-
bivory and anti-pathogen defences are conferred in part 
by phenolic phytochemicals such as tannins, lignin and 
quercetin [38].

Here we have employed the technique of attenuated 
total reflection Fourier transform infrared (ATR-FTIR) 
spectroscopy combined with chemometrics to study the 
biomolecular adaptations of clonal R. japonica to growth 
in habitats with contrasting soil characteristics and cli-
matic conditions. This technique provides rapid, marker-
free, non-destructive analysis of biological samples [39]. 
Applications of ATR-FTIR studies in plants now include 
identification of plants from different growing regions 
[40–42]; plant response to abiotic factors such as soil fer-
tility [43], heavy metals [44, 45], water and temperature 
stress [46], nutrient deficiency and uptake [47, 48]; as 
well as monitoring plant health and development [49–51] 
and infection [52].

ATR-FTIR works by using infrared light of wavenum-
bers 4000–400  cm− 1 (2.5–25 μm wavelengths) to induce 
atomic displacement and a change of dipole moment 
within the bonds of biomolecules [53], which preferen-
tially absorb light of wavenumbers 1800–900  cm− 1, a 
range known as the ‘fingerprint region’. Spectral acqui-
sition provides complex multivariate data and is there-
fore coupled with chemometrics. Subtle differences in 

sample composition can be analysed using mathematical 
techniques such as principal component analysis (PCA) 
and linear discriminant analysis (LDA), support vector 
machine (SVM), naïve bayes, and artificial neural net-
works (ANN) [54–57]. This provides biochemical infor-
mation about proteins, nucleic acids (DNA/RNA), lipids 
and carbohydrates [58] because the absorption patterns 
are characteristic of the chemical composition, structure 
and function of the sample [59]. Associated wavenumber 
shifts in the ATR-FTIR spectral fingerprint have been 
identified for biologically significant compounds of inter-
est such as the herbicide glyphosate [60], and the endog-
enous biological compounds; tannins [61], cutin [62], 
cutan [62], lignin [50], carotenoids [50], ellagic acid [63], 
and quercetin [63]. Definitions for characteristic peak 
frequencies commonly seen in ATR-FTIR studies have 
been compiled in databases and are available in the litera-
ture from previous studies, for example see [64, 65].

The process from chemometric biomarker identifica-
tion to physical biomolecular extraction is a developing 
area of spectroscopy with an ongoing research effort cur-
rently focused on optimising the quantification of bio-
molecular concentrations with the resultant spectra in 
biological extracts [66, 67], consolidating the expanding 
database of key wavenumber changes and their associ-
ated molecular definitions [64], and trialling new biologi-
cal applications [48, 49, 52]. Sample preparation such 
as freeze drying or grinding may influence the spectra 
acquired from vegetative plant material and the resultant 
classification success of subsequent chemometric analy-
sis. To ensure optimum spectral quality and molecular 
sensitivity, instrumental settings and sample preparation 
must be adjusted prior to spectral acquisition [53, 54, 68, 
69].

To gain insight into how Japanese knotweed plants 
respond to and colonise varied environmental habi-
tats, we examined their spectral fingerprints using 
the machine learning method, SVM. Variations in the 
obtained spectral fingerprint region were sufficiently 
distinct to differentiate between plants collected from 
sites in North-East England, North-West England, and 
Scotland with high accuracy. Key wavenumber changes 
indicated chemical differences between growing regions 
in several biomolecules: the cell wall component pectin, 
phenolic and antioxidant compounds (including carot-
enoids, tannins, ellagic acid, quercetin), lipids and fatty 
acids, the Amide I and II regions of proteins, and the 
nucleobases adenine and cytosine. To correlate spectral 
differences with environmental data, soil was collected 
from each site and climatic data collected by the United 
Kingdom Met Office was used [70]. Regional differences 
in the spectral fingerprint of R. japonica detected by 
ATR-FTIR spectroscopy and SVM could not be explained 
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by pH, water content, organic matter content, plant avail-
able phosphorus, carbon to nitrogen ratio, maximum 
temperature, minimum temperature, air frost, days of 
rain, amount of rain, or the number of days of sunlight. 
Future studies will identify the mechanisms that under-
pin the regional differences in the spectral fingerprint of 
R. japonica and which contribute plasticity to R. japonica 
allowing it to thrive in such diverse habitats.

Methods
Field sites
In late-summer 2018, plant and soil samples were col-
lected from seven contrasting sites across the Northern 
United Kingdom where Japanese knotweed is known to 
be a problem (see Supplementary Table S1). Stands were 
identified according to their morphological features as 
described within the literature, see [71]. The data were 
then analysed by region (West Scotland [WS], North 
West England [NWE], North East England [NEE]) or site 
(Scotland [SOM, SAP, SLM, SRC], North East England 
[EDB], North West England [ESA, ESB]).

Sample collection and storage
Leaves were collected from three different canes per site 
of Japanese knotweed. On each cane, three leaves were 
collected from different positions on the plant, desig-
nated the labels ‘New’, ‘Height’, or ‘Mature’. The relevant 
landowners were contacted for permissions to collect 
sample materials. The topmost newly unfurled leaf was 
collected, designated ‘New’. ‘Height’ leaves were col-
lected from 1 m above the soil surface from the main 
cane, to account for stands of different statures. ‘Mature’ 
leaves were the second leaf off the first stem branching 
off the main cane. Interestingly, the spectral profiles were 
affected by leaf position, data not shown. Therefore, to 
ensure that developmental stage was not a confounding 
factor when comparing sites all three leaf positions were 
included in the analysis. Leaves were dried at 37 °C for 1 
week and stored in a dry airtight container at room tem-
perature before analysis using ATR-FTIR. Soil was col-
lected from the base of each cane used in the leaf study, 
using a 25 cm long and 1 cm diameter bore [72]. The soil 
was passed through a 0.5 mm sieve and air dried before 
analysis [73].

ATR‑FTIR spectroscopy
Dried leaves were analysed using a Tensor 27 FTIR spec-
trometer with a Helios ATR attachment (Bruker Optics 
Ltd., Coventry, UK). The sampling area, defined by the 
Internal Reflection Element (IRE), which was a diamond 
crystal, was 250 μm × 250 μm. Each leaf was placed on a 
slide with the section to be analysed facing upwards; the 
slide was then placed on a moving platform and moved 

upwards to ensure a good and consistent contact with 
the diamond crystal. Spectral resolution was 8  cm− 1 with 
two-times zero-filling, giving a data-spacing of 4  cm− 1 
over the range 4000 to 400  cm− 1; 32 co-additions and a 
mirror velocity of 2.2 kHz were used for optimum sig-
nal to noise ratio. In total 1260 spectra were taken, ten 
spectra from each side of sixty-three leaves (three leaves 
from each of three canes per seven sites). All spectra are 
available in the Supplementary Dataset. To minimise 
bias, an even spread of ten spectra were taken from each 
surface of the leaf, resulting in a total of twenty spectra 
per leaf. Approximately the same position on each leaf 
was located using a camera attachment, with five spectra 
taken either side of the central leaf vein.

Spectral data handling and analysis
All spectral information was converted from OPUS 
format to suitable files (.txt) before input to MAT-
LAB (Mathworks, Natick, USA). Pre-processing of the 
acquired spectra is an essential step of all spectroscopic 
experiments and is used to improve the signal-to-noise 
ratio by correcting problems associated with random or 
systematic artefacts during spectral acquisition includ-
ing different sample thickness [74]. Pre-processing and 
computational analysis of the data were performed using 
an in-house developed IRootLab toolbox [39, 75] and the 
PLS Toolbox version 7.9.3 (Eigenvector Research, Inc., 
Manson, USA), according to standardised protocols for 
analysis of biochemical spectra [69, 76]. Spectra were cut 
at the biochemical fingerprint region (1800–900  cm− 1), 
Savitzky-Golay (SG) second differentiated and vector 
normalised. The number of points used in SG smoothing 
was nine. All data were mean-centred before multivari-
ate analysis. To view the raw spectra see Supplementary 
Figure S1.

For the classification of groups, principal component 
analysis followed by linear discriminant analysis (PCA-
LDA) and support vector machines (SVM) were used. 
PCA was used to reduce the original data into a few sets 
of variables called principal components (PCs). These 
variables, composed of ‘scores’ and ‘loadings’, are orthog-
onal to each other and account for most of the explained 
variance from the original data set. Scores were used to 
identify similarities and dissimilarities among the sam-
ples whilst loadings identify the weight contributed to 
the PCA model by each variable [42]. As PCA is an unsu-
pervised technique, the category variables were not used 
for this dataset reduction. To perform a supervised clas-
sification model, the PCA scores were employed as input 
variables for the discriminant algorithm, linear discrimi-
nant analysis (LDA; Morais & Lima, 2018). LDA created 
a linear classification rule between the classes based on a 
Mahalanobis distance. For exploratory data-analysis this 
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study used the composite analysis PCA-LDA as well as 
the non-linear classifier, SVM [77], which was addition-
ally used for biomarker identification. The SVM classi-
fier was used to find the classification hyperplane which 
provided the largest margin of separation between the 
data clusters. During model construction, the data were 
transformed into a different feature space by means of a 
kernel function that is responsible for the SVM classifica-
tion ability. The most common kernel function, the radial 
basis function (RBF [78];) was used here. Correlation 
between spectral differences and soil traits were assessed 
with PCA and partial least squares (PLS) regression. The 
relationship between spectra and climatic conditions 
(maximum temperature, minimum temperature, mean 
temperature, hours of sunshine, days of rainfall, days of 
rain ≥1 mm, and days of air frost) were also evaluated by 
PLS regression. Cross-validation is a model validation 
method used to evaluate the performance of the model 
when applied to an unknown sample. In this study, the 
number of components of PCA-LDA, PLS regression, 
and all SVM parameters were optimized by venetian 
blinds (10 data splits) cross-validation. The samples’ 
spectra were randomly divided into a training set (70%, 
882 spectra) and an external test set (30%, 378 spectra) to 
perform validation.

Soil moisture content and organic matter level
For each biological replicate, two separate technical repli-
cates were analysed. Approximately 6.5 g of air-dried soil 
was dried for 48 h at 105 °C in an oven and the oven-dried 
mass was noted to calculate the percentage soil moisture 
content. The soil organic matter level was subsequently 
calculated by loss on ignition (LOI) [79]. The oven dried 
soil was placed in a furnace at 550 °C for 6 hours, and the 
final mass noted to calculate the percentage LOI.

C:n
In addition to calculating organic matter content by LOI, 
carbon and nitrogen levels were measured individually, 
and their values compared. Soil samples were dried over-
night at 105 °C, before grinding for 2 min at 400 rpm. A 
microbalance was used to measure out 30 mg of dried-
ground soil, which was then wrapped in tin foil boats for 
analysis in an Elemental Analyser (elementar vario EL 
III).

Plant available phosphate
Plant available phosphate was measured using the Olsen 
P method [80]. This method uses bicarbonate as a chemi-
cal extractant to simulate the uptake of phosphorus by 
plants from the solution and exchange surfaces in soil in 
the form of phosphate. Three biological replicates were 
analysed per site. For each replicate, air-dried soil (2 g) 

was added to pH adjusted sodium bicarbonate  (NaHCO3, 
0.5 M, 40 mL). This mixture was placed in an orbital 
shaker at 200 rpm for 30 mins, before filtration with 
Whatman 42,110 mm filter paper. Plant available phos-
phorus was measured using a SEAL AA3 AutoAnalyser 
with a SEAL XY-2 AutoSampler. The solutions from the 
first six samples were measured three times to check the 
consistency of the machine.

pH
Soil pH was measured based on the procedure created 
by Allen [81]. Soil (10 g fresh weight) was mixed with dis-
tilled mili-Q water (25 mL) for 30 min in an orbital shaker. 
The mixture was left in the fridge overnight to settle. The 
pH at the soil-water interface was then measured out 
using a Mettler Toledo SevenCompact™ pH meter.

Climatic data
Met Office published climatic data were used for this 
study, for the regions West Scotland, North West Eng-
land, and North East England, for the time period of the 
growing season ‘Summer 2018’ [70]. Maximum tempera-
ture, minimum temperature, mean temperature, hours of 
sunshine (as a measure of photoperiod), days of rainfall, 
days of rain ≥1 mm, and days of air frost were considered.

Statistics
Statistical significance of measured soil parameters was 
calculated in R [82]. A Shapiro–Wilk test indicated non-
normal distribution therefore the data were analysed 
using the non-parametric Kruskal-Wallis test followed 
by a post hoc test using the criterium Fisher’s least sig-
nificant difference (LSD) within the package ‘agricolae’ 
[83] to determine where the difference lies between sites, 
signified by lowercase letters (Fig. 6a-d). Alpha was set at 
0.05. Within each graph, all bars which share letters are 
not significantly different from each other. Graphs were 
produced in RStudio using the package ggplot [84].

Results and discussion
Pre‑processing of IR spectra in the fingerprint region 
reveals differences between regions
To capture and quantify the plant’s response to its envi-
ronment, ATR-FTIR spectroscopy was used. ATR-FTIR 
spectra were taken from both leaf surfaces of Japanese 
knotweed. Figure  1 shows the raw and pre-processed 
spectra, where the mean spectra at the fingerprint region 
are depicted by region (West Scotland [WS], North West 
England [NWE], North East England [NEE]; Fig. 1a and 
b) and sites (Scotland [SOM, SAP, SLM, SRC], North 
East England [EDB], North West England [ESA, ESB]; 
Fig.  1c and d) from which they were collected. There 
are subtle visual differences in the mean spectra from 
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knotweeds collected in the WS, in particular at around 
1648  cm− 1 (Amide I band), 1586  cm− 1 (Amide II band) 
and 1400  cm− 1 (symmetric stretching of COO- of amino 
and fatty acids). Amide bands confer information on the 
secondary structure of proteins and are sensitive to pro-
tein conformation by differing degrees [85]. The Amide I 
band is the most sensitive, and originates from the C=O 
stretching vibration of the amide group coupled with 
the in-phase bending of the N-H bond and stretching of 
the C-N bond [86, 87]. The Amide II peak is a combina-
tion of N-H in plane bending and C-N stretching [87].. 
The mean knotweed spectra collected from NWE also 
show subtle visual differences at around 1650  cm− 1 and 
1580  cm− 1.

Knotweed from different regions are distinguishable 
on the basis of spectral profile
Changes in the spectral fingerprint region were sufficient 
to successfully identify sites from different geographical 
regions with high accuracy using SVM chemometrics, 

indicating that Japanese knotweed from within each 
region share common properties that are distinct from 
those of plants from other regions. This resulted in them 
grouping together (Fig. 2).

Unsupervised PCA was used to explore natural differ-
ences between knotweed samples collected from differ-
ent regions (NEE, NWE and WS). No clear difference is 
observed in the scores on PC1 and PC2, indicating high 
similarities between the spectral profiles (Fig.  2a). This 
is consistent with most Japanese knotweed in the United 
Kingdom being a genetically uniform clone, described 
as a component of the “world’s largest female” in bio-
mass terms [9]. Therefore, supervised methods of analy-
sis, PCA-LDA and SVM, were applied to distinguish 
the samples based on their region. PCA-LDA was con-
structed using 10 PCs (93% explained variance) with a 
training performance of 68% accuracy (cross-validation 
accuracy of 67%). The predictive performance of PCA-
LDA towards the external test set was relatively poor 
(96, 90, 50% specificity; 51, 40, 87% sensitivity; 69, 62, 

Fig. 1 (a) Class means raw and (b) class means pre-processed (SG smoothed and vector normalised) IR spectra in the fingerprint region (1800–
900  cm− 1) grouped by the different regions where knotweed samples were collected (NEE: North East England, NWE: North West England, WS: 
West Scotland); (c) class means raw and (d) class means pre-processed (SG smoothed and vector normalised) spectra in the fingerprint region 
(1800–900  cm− 1) grouped by the different sites where knotweed samples were collected (Scotland: SRC, SOM, SLM, SAP; North West England: ESA, 
ESB; North East England: EDB)
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70% precision for classes 1,2, and 3 respectively; Table 1), 
where the groups were found overlapping (Fig. 2b). SVM 
(cost = 10, γ = 3.16, NSV: 439) however, performed bet-
ter in both training (~ 100% accuracy) and test sets (95%) 

(Table  1), indicating that knotweed plants can be dif-
ferentiated by region based on their IR spectral profile. 
PCA-LDA assumes that the features of Japanese knot-
weed from each region are a realisation of a multivariate 
normal distribution, which is unlikely to be true. SVM on 
the other hand does not make this assumption, and given 
the right kernel function can uniformly approximate the 
true boundary between the classes of knotweed from 
each region by the universal approximation theorem [88].

Examination of the difference-between-mean support 
vectors spectra found by SVM revealed spectral markers 
indicative of marked chemical differences between Japa-
nese knotweed from different regions. Figure 3 shows the 
main wavenumbers responsible for class differentiation 
between the three regions which, through comparison 
with the literature, have been used to identify spec-
tral biomarkers (Table  2). This indicates that there are 
marked chemical differences between Japanese knotweed 
from Scotland, North West England and North East 
England. Differences between regions were identified at 

Fig. 2 (a) PCA scores, (b) PCA-LDA canonical scores and (c) SVM class predicted probability for the IR spectral dataset according to different regions 
where knotweed samples were collected (NEE: North East England, NWE: North West England, WS: West Scotland). Numbers inside parenthesis 
indicate the percentage of explained variance in each PC. Each spectral point in these scores plots represents a single spectral acquisition

Table 1 Quality parameters for spectral classification based 
on different regions. The predictive performance of PCA-LDA 
towards the external test set was relatively poor. However, 
SVM performed well in training and test sets, indicating that 
knotweed leaf samples can be differentiated by region based on 
their IR spectral profile

Algorithm Class Accuracy Sensitivity Specificity

PCA-LDA North East England 63% 30% 96%

North West England 62% 37% 87%

West Scotland 67% 88% 47%

SVM North East England 100% 100% 100%

North West England 98% 95% 100%

West Scotland 98% 100% 97%



Page 7 of 20Holden et al. BMC Plant Biology          (2021) 21:522  

wavenumbers 1736, 1643, 1605, 1546, 1466, 1446, 1405, 
1385, 1158, 1034, 1015, 964  cm− 1 between NEE and 
NWE; 1725, 1662, 1648, 1608, 1586, 1542, 1531, 1446, 
1530, 1014  cm− 1 between NEE and WS; 1725, 1678, 
1662, 1445, 1397 between NWE and WS  cm− 1 (Table 2). 
These are indicative of differences in the cell wall compo-
nent pectin, phenolic and antioxidant compounds, lipids 
and fatty acids, the Amide I and II regions of proteins, 
and the nucleobases adenine and cytosine between knot-
weed from different regions.

Two of the key peaks for differentiation between NEE 
and NWE regions, 1015 and 1605  cm− 1, were linked to 
pectin. The rubber-band corrected spectra indicated 
that the pectin concentration was lowest for NEE at both 
peaks compared with other regions. A horizontal shift in 
the SG differentiated spectra for NEE at both peaks indi-
cate an altered pectin structure for North East samples. 
This could be of interest as manipulation of pectin syn-
thesis is often studied, due to the compound’s importance 
in food products and biofuel production [92]. Two peaks 
corresponding to tannins, 1034  cm− 1 and 1608  cm− 1, 
were responsible for the differences between regions, 
NEE vs NWE and NEE vs WS respectively.

The concentration of tannins is higher in WS and NWE 
than in NEE, indicated by the higher absorbance levels in 
the rubber-band corrected spectra. A biochemical struc-
tural change in tannins at NEE is exhibited, indicated by 
a horizontal shift at both 1034  cm− 1 and 1608  cm− 1 in 
the SG differentiated spectra. This would suggest that the 
reduced tannin levels of Japanese knotweed at the site 
in North East England would make it a more favourable 
host for herbivorous biocontrol agents [38].

ATR‑FTIR spectral changes allowed discrimination 
on a site‑by‑site basis
In addition to investigating interregional variations 
between knotweed from different geographical areas, 
each site colonised by Japanese knotweed was further 
investigated individually to see how varying environ-
mental conditions in each habitat affected the plant’s 
spectral fingerprint. Due to the highly satisfactory clas-
sification performance of SVM, site differences were 
also investigated using this method. To view the PCA 
scores plots see Supplementary Fig. S5. SVM was trained 
using cost = 10, γ = 3.16; NSV: 675, generating accura-
cies at 100% for training and 94% for class validation. The 

Fig. 3 Difference between mean support vector spectra for (a) North East England (+ coefficients) and North West England (− coefficients), (b) 
North East England (+ coefficients) and West Scotland (− coefficients), (c) North West England (+ coefficients) and West Scotland (− coefficients). 
The main wavenumbers responsible for class differentiation between the three regions are labelled, and have been used to identify spectral 
markers
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Table 2 Biomolecular markers for class differentiation between the three regions (Scotland, North West England and North East 
England) and each site (SOM, SAP, SRC, SLM, ESA, ESB and EDB). Spectral markers were found by investigating the difference-between-
mean support vectors spectra found by SVM, and linked to the biomolecules associated with each wavenumber from published 
literature

Comparison Wavenumber/ 
 cm−1

Tentative Molecular Assignment Reference

NEE and NW 1736 C=O stretching [lipids] [65]

1643 C=O stretching [Amide I] [65]

1605 vas  (COO−) [polysaccharides, pectin] [65]

1546 Amide II: [protein N–H bending, C–N stretching], α-helical structure [89]

1466 CH2 bending in lipid [50]

1446 aromatic ring stretch vibrations, tannins [61]

1405 CH3 asymmetric deformation [65]

1385 Ring stretching vibrations mixed strongly with CH in-plane bending [65]

1158 vC-O of proteins and carbohydrates [65]

1034 C-O stretch, tannins [61]

1015 ν (CO), ν (CC), δ (OCH), ring in pectin [50]

964 C-O deoxyribose, C-C [65]

NEE and WS 1725 C=O stretching band mode of the fatty acid ester [65]

1662 Amide I, or fatty acid esters [65]

1648 Amide I [65]

1608 aromatic ring stretch vibrations, tannins [61]

1586 Amide II [65]

1542 Amide II [90]

1531 Amide II [91]

1446 aromatic ring stretch vibrations, tannins [61]

1530 C=N adenine, cytosine [65]

1014 phosphodiester stretching bands [symmetrical and asymmetrical] [65]

NWE and WS 1725 C=O stretching band mode of the fatty acid ester [65]

1678 Stretching C=O vibrations that are H-bonded [changes in the C=O stretching vibrations could be con-
nected with destruction of old H-bonds and creation of the new ones]

[65]

1662 Amide I, or fatty acid esters [65]

1445 lipids [63]

1397 CH3 symmetric deformation [65]

SRC and others 1748 C=O stretching vibration of alkyl ester, pectin [62]

1728 ν (C=O) ester, cutin [62]

1678 Stretching C=O vibrations that are H-bonded [changes in the C55O stretching vibrations could be 
connected with destruction of old H-bonds and creation of the new ones]

[65]

1651 phenolic compounds/ cutan [aromatic and C=C functional groups] [62]

1608 aromatic ring stretch vibrations, tannins [61]

1542 Amide II [90]

1455 C-O-H [65]

1443 δ  (CH2) [lipids, fatty acids], or δ(CH) [polysaccharides, pectin] [65]

SLM and others 1755 lipid [51]

1735 C=O stretching, the phenolic compound ellagic acid/ the secondary metabolite quercetin [63]

1512 ν (C-C) aromatic (conjugated with C=C phenolic compounds [62]

1481 symmetric deformation  NH2
+,  glyphosateX [60]

1466 CH2 bending in lipid [50]
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predictive capability of SVM was tested in an external 
test set where accuracies were found ranging from 97 to 
100%, sensitivities from 94 to 100%, and specificities from 
99 to 100% (Table 3), indicating that the knotweed sam-
ples can be differentiated by the site at which they were 
collected. Figure 4 shows the SVM class predicted prob-
ability for the IR spectral dataset on a site-by-site basis.

Using the same method described above, the difference 
between mean support vector spectra of a site was com-
pared with the other six sites, for each site in turn. These 
comparisons were used to identify the key wavenum-
bers responsible for the differences between sites (Fig. 5). 
The spectral markers associated with site difference were 
at wavenumbers: 1748, 1728, 1678, 1651, 1542, 1455, 
1443  cm− 1 for SRC and others; 1755, 1735, 1512, 1481, 
1466  cm− 1 for SLM and others; 1755, 1736, 1481, 1466, 
1161, 1103  cm− 1 for SOM and others; 1755, 1736, 1481, 
1466, 1103  cm− 1 for SAP and others; 1755, 1732, 1647, 
1512, 1481, 1466  cm− 1 for ESA and others; 1755, 1736, 
1481, 1466  cm− 1 for ESB and others; 1728, 1446, 1408  cm− 1 
for EDB and others, (Table  2). The changes in spectral 

Table 2 (continued)

Comparison Wavenumber/ 
 cm−1

Tentative Molecular Assignment Reference

SOM and others 1755 lipid [51]

1736 lipids [63]

1481 symmetric deformation  NH2
+,  glyphosateX [60]

1466 CH2 bending in lipid [50]

1161 carbohydrate; stretching vibrations of hydrogen-bonding C–OH groups (found in serine, threonine and 
tyrosine residues of cellular proteins); cellulose

[51]

1103 ν(C–O–C) in ester [50]

SAP and others 1755 lipid [51]

1736 lipid [63]

1481 symmetric deformation  NH2
+,  glyphosateX [60]

1466 CH2 bending in lipid [50]

1103 ν(C–O–C) in ester [50]

ESA and others 1755 lipid [51]

1732 lipid; fatty acid esters; hemicellulose [51]

1647 amide I; pectin [51]

1512 ν(C=C) in lignin, carotenoid or protein [50]

1481 symmetric deformation  NH2
+,  glyphosateX [60]

1466 aromatic ring stretch vibrations, tannins [61]

ESB and others 1755 lipid [51]

1736 C=O stretching [lipids] [65]

1481 symmetric deformation  NH2
+,  glyphosateX [60]

1466 CH2 bending in lipid, or aromatic ring stretch vibrations, tannins [50, 61]

EDB and others 1728 ν (C=O) ester, cutin [62]

1446 aromatic ring stretch vibrations, tannins [61]

1408 CH3 deformation, νs  (COO−) in pectin [50]

Table 3 Quality parameters for spectral classification based 
on different sites. Separation by PCA-LDA was relatively poor. 
However, SVM performed much better, indicating that knotweed 
leaf samples can be differentiated by the site at which they were 
collected using this method

Algorithm Class Accuracy Sensitivity Specificity

PCA-LDA (10 PCs, 91% 
explained variance)

SRC 85% 80% 90%

SLM 70% 57% 83%

SOM 60% 24% 97%

SAP 62% 35% 89%

ESA 73% 52% 95%

ESB 56% 20% 92%

EDB 65% 43% 88%

SVM SRC 100% 100% 100%

SLM 100% 100% 100%

SOM 99% 98% 100%

SAP 100% 100% 100%

ESA 100% 100% 100%

ESB 97% 94% 100%

EDB 99% 100% 99%
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Fig. 4 SVM class predicted probability for the IR spectral dataset according to different sites where knotweed samples were collected (Scotland: 
SRC, SOM, SLM, SAP; North West England: ESA, ESB; North East England: EDB). The clear separation indicates that the knotweed samples can be 
differentiated by the site at which they were collected
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profile were associated with the prominent cuticle compo-
nents, cutan and cutin, and the cell wall component, pectin. 
While cuticle components were key for site-by-site classi-
fication, these were not used for regional distinction. Site-
by-site classification required spectral biomarkers strongly 
associated with phenolic antioxidant compounds, includ-
ing carotenoids, tannins, ellagic acid, quercetin. Other key 
identifiers included lipids, fatty acids, and the Amide I and 
II vibrational modes of proteins.

Five of the seven sites showed traces of treatment with 
glyphosate: EDB, ESA, SAP, SOM and SLM. Three of 
the sites, ESB, SOM, and SAP, appeared dead the follow-
ing summer, indicating that they had received an effective 
dose of glyphosate the previous year. Upon collection at 
site SLM, the plants were noted to appear in good health, 
and despite showing traces of herbicide in ATR-FTIR spec-
troscopy studies, plants at the site were still alive and well 
the following year. The herbicide history of NEE and WS 
sites is unknown, however, ESA and ESB are known to have 
been treated the year prior to sample collection. Repeti-
tive herbicide use is commonplace in Japanese knotweed 
removal, with a minimum of 3 years glyphosate treatment 
being the most common chemical treatment method. 
Jones et al. [14], found that repeated glyphosate use was the 
most effective control method. However, sub-lethal herbi-
cide doses are known to have a hormetic effect on plants 
[93], with the potential to increase vigour of target plants 
and arm them against other stresses. Therefore, prior sub-
lethal herbicide treatment may have resulted in altered 
gene expression being reflected in the spectral biomarkers 
in certain sites.

A family of membrane-stabilising plant pigments called 
carotenoids were flagged up as a biomarker for site ESA. 
Carotenoids participate in light-harvesting and are essen-
tial for photoprotection against excess light [94]. It is there-
fore surprising that they would appear as a key identifier 
of a shaded woodland site like ESA. However, biomark-
ers for both glyphosate (at 1481  cm− 1), and carotenoid (at 
1512  cm− 1), presented as differences between ESA and the 
other sites. Carotenoid levels are known to be affected by 
herbicide application, including a temporary increase in 
response to reactive oxygen species, followed by a decrease 
due to reduced biosynthesis [95–97].

The presence of the biomarker for quercetin (at 
1735  cm− 1) is consistent with current knowledge of this 
plant species [98, 99]. Quercetin is a flavonoid with anti-
oxidant properties which also acts as a naturally occurring 

auxin polar transport inhibitor [100]. The marker at 
1608  cm− 1 has been linked to tannins in the quebracho 
tree, and the marker at 1446  cm− 1 is present in several tan-
nins [61].

Soil analysis indicates the environmental diversity 
between sites
As a clonal species which spreads by physical disturbance 
of rhizome, crown and stem propagules, Japanese knot-
weed occupies habitats where disturbance occurs, such 
as near roads, railways and water courses [101]. Although 
all the sites from which Japanese knotweed was collected 
share these characteristics, the environmental condi-
tions and habitats colonised by this species were variable 
within each region. For example, within Scotland there 
were two riverside sites with adjacent forest: a brown-
field site repurposed as a park which had historically 
been farmed, built on, mined, quarried, dug for clay and 
used as a landfill site and a railway siding; in addition to 
an urban site adjacent to a railway line, road, and public 
footpath (see Supplementary Table S1 for site descrip-
tions, Google Maps coordinates, and photographs).

This environmental diversity between sites is reflected 
in differences in measured soil characteristics; consid-
ered individually in Fig.  6, and in combination through 
the multivariate analysis shown in Fig. 7. The two related 
graphs shown in Fig. 7 are the PCA scores (7a) and PCA 
loadings (7b) plots for the relationship between the 
chemical soil parameters measured at each site. Over-
all, Fig.  7a shows a segregation pattern which indicates 
site-by-site differences in measured soil traits. The three 
points of each category in the scores plot represent the 
three biological replicates collected from each site, their 
proximity to one another is an indication of variation 
within the site. The distance of scores away from the ori-
gin in Fig. 7a show how different the sites were from one 
another, and the explanations for their separation can be 
found by looking at the loadings in Fig. 7b. Scores which 
are close to a loading point have a higher value of this 
parameter. The trajectory of the samples can be thought 
of as a modulus, because a negative score or loading can 
still mean a higher value in terms of the soil trait. For 
example, the North East samples, EDB, which are closer 
to the C:N loading area had a higher C:N ratio than the 
others despite being in the negative region of the graph.

EDB soil was found to be naturally different from that 
of the other sites on the PCA scores plot, with a greater 

(See figure on next page.)
Fig. 5 Difference between mean support vector spectra for (a) SRC (+ coefficients) and others (− coefficients), (b) SLM (+ coefficients) and others 
(− coefficients), (c) SOM (+ coefficients) and others (− coefficients), (d) SAP (+ coefficients) and others (− coefficients), (e) ESA (+ coefficients) 
and others (− coefficients), (f) ESB (+ coefficients) and others (− coefficients), and (g) EDB (+ coefficients) and others (− coefficients). These 
comparisons can be used to identify the key wavenumbers responsible for the differences between sites, which have been labelled above, and can 
be used to find spectral biomarkers



Page 12 of 20Holden et al. BMC Plant Biology          (2021) 21:522 

Fig. 5 (See legend on previous page.)
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Fig. 6 Soil parameters for each site, with error bars showing standard error; a) percentage mass lost on ignition (LOI), b) % water loss, c) pH, d) plant 
available phosphorus, e) carbon to nitrogen ratio (C:N). Statistical significance was calculated using a Kruskal-Wallis followed by a post hoc test using 
the criterium Fisher’s least significant difference (LSD) to determine where the difference lies, signified by lowercase letters above the bars. Within 
each graph, all bars which share letters are not significantly different from each other. Data are mean +/− standard errors. pH, n = 9; C:N n = 9; % 
water loss mean, n = 6; % loss on ignition mean, n = 6; plant available phosphorus mean, n = 3 except for EDB and ESB where n = 9

Fig. 7 (a) PCA scores and (b) loadings for soil data (abbreviations define sites where samples were collected, Scotland: SRC, SOM, SLM, SAP; North 
West England: ESA, ESB; North East England: EDB). The North East England soil sample, EDB, has a high C:N ratio, and a lower pH than the other 
samples. EDB soil was found to be naturally different from the others on the PCA scores plot, with a greater separation in the Y-plane (PC2). ESB has 
a higher C:N than the other sites. SOM and SAP have high phosphorus, water loss, and LOI (organic carbon) compared with SRC, SLM, ESA, ESB, and 
EDB. SLM was a mixed sample, sharing similar soil traits with ESA and SRC. Note: An extreme sample was removed. SAP3 was a non-homologous 
urban environment and one of the three soil samples was an outlier. The bar graphs in Fig. 6a and b show high standard deviation for loss on 
ignition and percentage water loss for SAP, due to this sample
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separation in the Y-plane (PC2). Although both Figs.  6 
and 7 agree that EDB had a higher C:N ratio compared 
with the other sites (nearly double), when considered 
individually in Fig. 6e it is clear from the error bars that 
this high level varied between samples, whereas the lower 
ratios for SAP and SOM were more consistent between 
samples. Nitrogen is vital for the synthesis of chlorophyll, 
nucleic acids and proteins [102] and the C:N ratio is a 
good measure of decomposition rates, with higher C:N 
ratios generally leading to longer decomposition rates. 
Figure  7 highlights that ESB had a lower C:N than the 
other sites, suggesting that this riverside site in full sun 
had the fastest decomposition rate of all the sites.

In addition to a high C:N ratio, Fig. 7 shows that EBD 
also had a lower pH than the other samples. This is con-
sistent with Soilscapes’ definition of this area as having 
‘slowly permeable seasonally wet acid loamy and clayey 
soils’, with low fertility and impeded drainage (UK Soil 
Observatory, 2020). Soil pH affects nutrient availability 
and in clay soils pH may alter the structure of the soil; 
pH in the range 5.5 to 6.5 is normally optimum for allow-
ing plants access to most nutrients [103]. The pH was 
higher in SOM compared with all other sites (Fig.  6c). 
The pH of SRC and ESB were significantly higher than 
SLM, EDB and ESA, with SRC additionally higher than 
SAP (Fig. 6c). SAP has a mid-range pH which is similar to 
SLM but higher than EDB and ESA. EDB and ESA have 
the lowest pHs, although there was variability between 
samples (Fig.  6c). In general, phosphorus availability 
decreases with increasing pH, however the multivari-
ate analysis placed these loadings within the same quad-
rant, connecting instead a high C:N ratio with a low pH. 
Low pH soil reduces the growth of the bacteria and fungi 
responsible for the breakdown of organic matter and 
nutrient cycling. As a species which produces abundant 
recalcitrant polyphenol-rich leaf litter [7, 104], Japanese 
knotweed may therefore be expected to have a more det-
rimental effect on the nutrient cycling in acidic soil sites 
such as EDB and ESA. However, only EDB exhibited this 
carbon accumulation.

Overall, SOM had the highest pH, organic matter, and 
water content, with little variability between samples. In 
Fig.  7, PC1 separates SOM and SAP whilst PC2 sepa-
rates the other samples. The loadings show that SOM 
and SAP have high phosphorus, water loss, and LOI 
(organic carbon) compared with SRC, SLM, ESA, ESB, 
and EDB. Although collected in a similar region to the 
mineral gleys of SLM and SRC, SOM and SAP were both 
urban sites with anthropic soils. Soil organic matter can 
improve the soil’s water holding capacity, enhances aggre-
gate stability, increases cation exchange capacity, acts as 
a nutrient source and alters the soil microbiome [105]. 
The site with the lowest organic matter content, ESB, is 

significantly different from the other sites (Fig. 6a). Sites 
SLM and SRC have lower organic matter levels than all 
sites except ESB (Fig. 6a). ESA had a mid-range organic 
matter content which is different from the other sites 
(Fig.  6a). SOM has a similar organic matter content to 
both EDB and SAP. The site with the highest organic mat-
ter content, SAP, had a high level of variability between 
the samples (Fig. 6a).

The water content of EDB and ESB was lower than the 
other sites. SRC soil contained the next highest level of 
water, followed by ESA and SLM, followed by SAP and 
SOM which have the highest (Fig.  6b). Overall ESB, a 
clay-to-sandy loam soil [106] collected from a site on the 
River Wyre had both low organic matter and water con-
tents with minimal variation between samples. The PCA 
in Fig.  7 shows that SLM was a mixed sample, sharing 
similar soil traits with ESA and SRC. This grouping may 
be surprising as site ESB had a more comparable riverside 
location to SLM and SRC. Despite their differing proxim-
ity to water, the soils of ESA, SRC, and SLM were all a 
similar cohesive clay-like consistency whereas the soil of 
riverside site ESB was much sandier in texture. Addition-
ally, the surrounding vegetation was similarly well-pop-
ulated by trees at sites ESA, SRC and SLM, presumably 
providing similar levels of cover and nutrient deposition 
from leaf litter.

Phosphorus (P) is essential for both ATP and nucleic 
acids formation [102] and often limits plant productiv-
ity because of its low mobility in soil. ESA and ESB had 
similar levels of plant available phosphorus, whilst ESB 
was lower than the other sites, ESA was similar to SOM, 
which in turn is similar to EDB (Fig. 6d). SAP, SLM and 
SRC had significantly higher plant available phosphorus 
values compared with the other sites (Fig. 6d), although 
the variation between samples in SAP was much greater. 
One possible reason for the enhanced phosphorus con-
tent of soil from site SAP is its proximity to an urban 
footpath likely to contain dog excrement, which would 
support the high variability within the site of plant avail-
able phosphorus. When all five soil parameters are com-
pared at once using PCA multivariate analysis to detect 
outlying data [107], one of the SAP samples appears as 
anomalous in terms of high values for organic mat-
ter and water content (Supplementary Figure S3). This 
is consistent with SAP being a non-homologous urban 
environment located between a footpath and a railway 
embankment with a nearby road, thereby being prone 
to contamination with organic matter, and partial shade. 
The spectral data for SAP3 concur with the anomalous 
nature of this sample, as does the variability shown in 
Fig. 6a, b, and d. Consequently, this outlier was removed 
from subsequent multivariant analyses (Fig. 7a). This out-
lier effect supports that the bar graphs for loss on ignition 
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and percentage water loss for SAP display a high stand-
ard deviation due to this sample.

Soil and climatic conditions do not explain the spectral 
differences between site
Chemometric analysis of ATR-FTIR spectral data shows 
that Japanese knotweed can be identified on a site-by 
site basis, but that, despite this intra-regional variation, 
enough commonality is present within a whole region 
to allow discrimination of samples on a regional-basis. 
This raises the question of what environmental stimu-
lus causes the variation in functional groups detected 
by ATR-FTIR spectroscopy? In order to investigate this, 
spectral data and soil data were considered together (see 
Supplementary Fig. S2 for PCA scores of spectral and soil 
data combined). The main climatic difference between 
the three regions was higher rainfall in West Scotland, 
see Supplementary Fig. S4. Partial least squares (PLS) 
regression of the soil characteristic data climatic data 
(maximum temperature, minimum temperature, mean 
temperature, hours of sunshine, days of rainfall, days of 
rain ≥1 mm, and days of air frost) from the Met Office 
records for Summer 2018 [70] revealed only a minimal 
correlation between spectral differences and soil traits 
(Supplementary Figs. S6a-e) or climatic conditions (Sup-
plementary Figs. S7a-e). Therefore, the chemical differ-
ences between Japanese knotweed from NWE, NEE and 
WS could not be explained by the soil or climatic param-
eters measured in this study.

Allelopathy, releasing chemicals into the soil to alter its 
characteristics (Murrell et al., 2011) for example to alter 
nutrient availability in the rhizosphere, could provide 
an explanation for the absence of any correlation. Root-
mediated localised acidification of the rhizosphere and 
soil microbes can have a marked effect on plant avail-
able phosphorus. Allelopathic plants, such as Japanese 
knotweed and other weed species, are particularly good 
at altering their soil environment [108–110]. It is stand-
ard practice to collect soil samples at one of two depths: 
7.5 cm for grassland, or 25 cm depth for agricultural fields 
[72]. A 25 cm depth was chosen for this study, although 
the extensive rhizome system of Japanese knotweed 
spans much deeper than this (often up to 2 m below the 
surface [111]. Therefore, the measured depth of topsoil 
may not have been representative of the soil environ-
ment experienced by a well-established site of Japanese 
knotweed, with an interconnected rhizome system. Fur-
thermore, Japanese knotweed demonstrates stronger 
allelopathic effects in artificial soils which have greater 
aeration, water retention, permeability, and nitrogen con-
tent and lower bulk density [108], adding a greater level 
of complexity to the interaction of these plants with their 
habitats. Allelopathy in Japanese knotweed is thought to 

be subject to resource allocation and is increased when 
nutrient supply is high [108], inhibiting the growth rather 
than the germination of native species [109]. This plant 
species is a known opportunist, which is able to take 
advantage of the fluctuation in resources associated with 
riparian areas [112] using its superior nitrogen-use effi-
ciency compared with native species [113]. Plasticity 
is also thought to be resource dependent, with invasive 
species showing greater phenotypic plasticity than native 
plants if resources are plentiful [35].

Additionally, rapidly growing plant species often pro-
mote nutrient cycling displaying exploitative traits such 
as high tissue nitrogen content and specific leaf area, 
because these plants input high-quality resources to the 
soil [114, 115]. Japanese knotweed can increase nutrient 
cycling, with the greatest impact on sites which if unin-
vaded would have low nutrient levels. Sites occupied by 
Japanese knotweed can increase topsoil concentrations 
of exchangeable nutrients when compared with nearby 
uninvaded sites; Cu: + 45%, K: + 34%, Mg: + 49%, Mn: 
+ 61%, P: + 44%, Zn: + 75% [116] possibly due to the 
deep extensive rhizome system allowing extraction of 
nutrients which are not easily accessible to other vascular 
plants [117]. In addition to altering the nutritional value 
of its soil environment, Japanese knotweed can also capi-
talise on available resources when they arise. In fact it 
performs best when nutrients come in waves rather than 
at a consistent level [112]. This adaptability and the fluc-
tuating nutrition of water-side sites may explain the min-
imal correlation between the soil measurements and the 
ATR-FTIR spectral data derived from vegetative tissues.

Differences between regions may result from phenotypic 
plasticity
ATR-FTIR spectroscopy with subsequent chemometric 
analysis has proven effective at differentiating Japanese 
knotweed from different geographical regions, despite 
this plant being considered clonal in the United King-
dom. Phenotypic plasticity, where one genotype can 
express different phenotypes, could be an explanation 
for the ability to identify plants from different regions, 
despite their supposable genetic consistency. This is par-
ticularly significant for clonal plants, such as Japanese 
knotweed [118]. Phenotypic plasticity is a potentially 
important mechanism for introduced species in over-
coming the genetic bottleneck, maintaining health com-
ponents such as growth, survival, fertility and overall 
vigour [16, 29–31]. Populations of alien plants are known 
to have higher frequencies of clonality than native plant 
species [119], and clonality is thought to be an important 
characteristic of invasive alien plants [118, 120]. A high 
proportion of successful invasive plants are clonal; 70% 
of 468 studied species from the ICUN database and 81% 
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of the one hundred worst invasive plants [118]. Epigenet-
ics could be an important mechanism for clonal plants 
as by reproducing asexually they are able to bypass the 
meiotic resetting of epigenetic modifications [118]. Asex-
ual species can additionally maintain genetic variation 
through somatic mutation, allowing adaptation to chang-
ing environmental conditions [118, 121]. Epigenetic 
modifications in gene expression and function have been 
recognized as key mechanisms behind phenotypic vari-
ation of plant traits in response to environmental cues 
[18, 122]. Although there are plastic responses which 
are not epigenetic such as provisioning and biochemi-
cal functioning [118, 123–127], phenotypic variation of 
plant traits in response to environmental cues could be 
a result of epigenetic modifications to gene expression 
and function [18, 122]. This raises the intriguing pos-
sibility that epigenetic modifications may contribute to 
the phenotypic plasticity allowing successful invasion 
of Japanese knotweed in a diverse range of habitats [21, 
23, 32]. In Western Europe, very little genetic variation 
of Japanese knotweed has been found [21, 25], which is 
consistent with the lack of dramatic variation shown 
in the PCA results in this study (Fig.  2a). However, the 
ability to separate Japanese knotweed spectra with SVM 
(Fig.  2c) indicates that there are differences common to 
each region. Despite its clonal nature, AFLP studies have 
shown an unprecedented level of epigenetic variation in 
R. japonica, particularly across Central Europe [21, 23]. 
Additionally, in North America invasion of diverse habi-
tats by few Japanese knotweed genotypes has been corre-
lated with epigenetic differentiation, with the conclusion 
that some epigenetic loci may respond to local micro-
habitat conditions [23]. Japanese knotweed from different 
sources grown in the same greenhouse have been known 
to possess differing levels of physiological vigour, with 
the French variant growing more vigorously than its Japa-
nese counterpart, suggesting either a rapid evolution or 
pre-adaptation [128].

Conclusion and future work
Japanese knotweed can colonise a wide variety of envi-
ronmental habitats despite its genetic continuity as 
the world’s largest female clone. ATR-FTIR spectros-
copy with subsequent chemometric analysis proved to 
be a successful tool for identifying Japanese knotweed 
grown in different environments, and even individual 
sites within the same geographical region. However, 
the chemical differences between Japanese knotweed 
from NWE, NEE and WS could not be explained by the 
soil or climatic parameters measured in this study. This 
lack of correlation raises important questions about the 
causes of these subtle variances because, as revealed 

by ATR-FTIR spectroscopy, subtle differences do exist 
between regions. These variations may be due to phe-
notypic plasticity, a trait shared by other clonal invasive 
plants. Further studies will be necessary to elucidate 
the mechanistic basis for the effects of environmental 
conditions on Japanese knotweed, including the pos-
sible contribution of epigenetic modifications, and the 
connection with the robust growth habit of this species.
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