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Completely bounded homomorphisms
of the Fourier algebra revisited

Matthew Daws*

Communicated by Adrian Ioana

Abstract. Assume that A.G/ and B.H/ are the Fourier and Fourier–Stieltjes algebras of
locally compact groups G and H , respectively. Ilie and Spronk have shown that continu-
ous piecewise affine maps ˛WY � H ! G induce completely bounded homomorphisms
ˆWA.G/! B.H/ and that, when G is amenable, every completely bounded homomor-
phism arises in this way. This generalised work of Cohen in the abelian setting. We believe
that there is a gap in a key lemma of the existing argument, which we do not see how to
repair. We present here a different strategy to show the result, which instead of using
topological arguments, is more combinatorial and makes use of measure-theoretic ideas,
following more closely the original ideas of Cohen.

1 Introduction

Cohen [1] classified all bounded homomorphisms from the group algebra L1.G/

to the measure algebra M.H/, for locally compact abelian groups G;H ; this was
later expounded with different proofs by Rudin [8]. The characterisation given was
in terms of Pontryagin duals and so, in modern language, is more naturally stated
as studying homomorphisms between the Fourier algebra A. yG/ and the Fourier–
Stieltjes algebra B. yH/, these algebras being introduced by Eymard [2] for arbi-
trary locally compact groups. It is now widely recognised that it is natural to work
in the category of operator spaces and completely bounded maps when studying
Fourier algebras of non-abelian groups. In [3], Ilie provided a generalisation of
Cohen’s result for discrete groups, characterising completely bounded homomor-
phisms A.G/! B.H/ in terms of coset rings of H , and piecewise affine maps.
In [4], Ilie and Spronk extended this result to all locally compact groups, mak-
ing use of open coset rings. We also mention [7] which shows similar results for
merely contractive (not completely bounded) homomorphisms.

We do not fully follow the proof given in [4], nor that of Rudin in [8]. The
proof of a key lemma in [4] appears to have a gap, and we have been unable
to see how to repair this. In this paper, we return to Cohen’s original proof for
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2 M. Daws

inspiration and provide a new proof of the main result of [4], using a more compli-
cated combinatorial argument and using measure theory ideas. Cohen’s proof is,
in places, firmly a proof about abelian groups, which necessitates new ideas in the
non-abelian setting.

The papers [3, 4] have been widely cited, used and generalised in the 15 years
since they were published, and we feel it is important that this result has a solid,
careful proof attached to it. Let us now provide some further background, which
will allow us to be precise about the perceived problems in [4,8]. We will then give
an overview of our alternative strategy. The rest of the paper is concerned with the
precise details of executing this new strategy.

Let X be a set. For us, a ring of subsets of X , say S , is a (non-empty) collection
of subsets of X such that, for A;B 2 S , also A \ B;A [ B 2 S , and if A 2 S ,
also X n A 2 S . Then ;, and so also X , are in S , and notice that S is also closed
under taking symmetric differences.

Let G be a group, and let H � G be a subgroup. A coset of H is a left coset,
s0H , for some s0 2 G. We remark that right cosets Hs0 D s0.s�1

0 Hs0/ are left
cosets of the (possibly different) subgroup s�1

0 Hs0. If C D s0H is a coset, then
C�1C D H and CC�1C D C . With G1 another group, a map ˛WH ! G1 is
affine if ˛.rs�1t /D ˛.r/˛.s/�1˛.t/ for r; s; t 2H . This is equivalent toH !G1,
s 7! ˛.s0/

�1˛.s0s/ being a group homomorphism. Given a subset A � G, let
aff.A/ be the smallest coset containing A.

The coset ring ofG, denoted�.G/, is the smallest ring of subsets ofG contain-
ing all cosets of all subgroups ofG. Given Y � G, a map ˛WY ! G1 is piecewise
affine when Y is the finite disjoint union of sets .Yi /

n
iD1 in �.G/, and for each i ,

there is an affine map ˛i W aff.Yi /! G1 with ˛jYi
D ˛i jYi

. See [3, Sections 2, 4]
and [4, Section 1.2] for combinatorial details about cosets and �.G/.

Now let G be a locally compact group, and let �o.G/ be the ring of sets gen-
erated by open cosets of G. As an open subgroup is also closed, the same applies
to open cosets, and so every member of �o.G/ is clopen. The key lemma in [4]
is Lemma 1.3 (ii), which states that, with G1 another locally compact group, if
˛WY ! G1 is piecewise affine, and ˛ is continuous, and Y is open, then ˛ has
a continuous extension to ˛WY ! G1. Furthermore, Y is open, and in the decom-
position Y D

F
i Yi , we may assume that each Yi 2 �o.G/, and for each i , there

is an open coset Ci containing Yi , and a continuous affine map ˛i WCi ! G1 which
agrees with ˛ on Yi . The use of this lemma is that it allows us to combine the al-
gebraic property that ˛ is piecewise affine with the topological property that ˛ is
continuous, and conclude that ˛ is the “union” of continuous affine maps.

In the proof of [4, Lemma 1.3 (ii)], we have a cosetK and subcosetsN1; : : : ; Nk

of infinite index, and it is claimed that if Y D K n
S

j Nj with Y having non-
empty interior, then Y D K n

S
j2J Nj , where J is the collection of indices with
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Nj having non-empty interior. This is not true. A counter-example from [10] ex-
hibits a compact abelian group G0 and an index 2 subgroup H0 so that both H0

and H1 D G0 nH0 have empty interior, and yet of course G0 D H0 tH1. If we
set G D K D G0 � Z and Ni D Hi � ¹0º, then each Ni has infinite index in K,
each has empty interior, Y D K n .N0 [N1/ D G0 � .Z n ¹0º/ is already clopen,
as is K, and yet Y ¤ K. The same issue can be seen in the middle of [8, Sec-
tion 4.5.2].

This counter-example does not mention (piecewise) affine maps, but we could
simply let ˛ be the identity. The moral seems to be that we chose a “silly” way
to write ˛ as a piecewise affine map. However, given an arbitrary piecewise affine
map ˛ which we happen to know is continuous, we need some argument to show
that we can exhibit that ˛ is piecewise affine in a “sensible” way. Cohen’s original
argument uses knowledge about the graph of ˛ and then a delicate combinatorial
argument to show that we can exhibit the graph using sets built from the graph
itself (compare Theorem 3.2 below). This result can then be used to show that
we can exhibit that ˛ is piecewise affine using at least measurable sets (the sub-
groupH0 in the example above is not measurable) which together with a measure-
theoretic argument then yields an analogue of [4, Lemma 1.3 (ii)]. We will use
exactly the same general approach, but adapted to possibly non-abelian groups.

Some of our argument closely follows Cohen’s paper [1]. We must say that
we find many of Cohen’s arguments rather hard to follow. In particular, our key
technical result, Proposition 3.9, is similar to the lemma on [1, pp. 223–224], the
proof of which we do not understand. From our limited understanding, it seems
clear, however, that this lemma of Cohen requires at least that every subgroup
involved be normal (which is automatic if the groups are abelian!). Given that we
need to check that all results hold for non-abelian groups, and that our central
argument is entirely new, we have decided to give full details for all our results.
We indicate in a number of places where we follow Cohen quite closely.

2 Initial setup of the problem

We fix locally compact groups G;H and a completely bounded homomorphism
ˆWA.G/! B.H/. Following the proof of [4, Theorem 3.7], there is a continuous
map ˛WH ! G1 with ˆ.u/.s/ D u.˛.s// for each s 2 H . Here G1 is either
the one-point compactification of G if G is not compact, or the disjoint union
G t ¹1º ifG is compact. We extend each u 2 A.G/ to a (continuous) function on
G1 by setting u.1/ D 0. Then Y D ˛�1.G/ is open in H . Under the additional
hypothesis thatG is amenable, ˛WY ! G is piecewise affine if we regardH andG
as just groups, with no topology. In what follows, we shall not use amenability
again.
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From now on, G and H will be arbitrary groups, with additional hypothe-
ses stated as needed. Given Y � H and ˛WY ! G, we shall in the sequel write
˛WY � H ! G. The graph of ˛ is

G .˛/ D ¹.s; ˛.s// W s 2 Y º � H �G:

An extremely useful result is the following.

Lemma 2.1 ([4, Lemma 1.2]). Let ˛WY � H ! G be a map. Then

G .˛/ 2 �.H �G/

if and only if ˛ is piecewise affine.

In the next section, we shall prove our main result, Theorem 3.2. In the follow-
ing section, we apply this to show that ˛ can be exhibited as a piecewise affine
map with the component sets involved at least being Borel, Proposition 4.4. In the
� -finite case, a measure-theoretic argument then yields what we want and can be
bootstrapped into a proof in the general case, Theorem 4.7.

3 Combinatorial lemma

We begin by making a non-standard, but useful, definition. (This definition is
sometimes termed the “measure theory ring of sets”, but we shall stick to our
ad hoc definition for clarity.)

Definition 3.1. Let X be a set and S a collection of subsets of X . We say that S is
a relative ring of subsets when S is closed under finite unions, intersections, and
relative complements, in the sense that if A;B 2 S , then A n B 2 S . This means
that ; 2 S , but perhaps X is not in S .

Let G be a group and ˛ a collection of subsets of G. Let R.˛/ be the relative
ring of subsets generated by ˛ and all left translations of elements of ˛. Let R2.˛/

be the relative ring of subsets generated by ˛ and all two-sided translates of ˛, that
is, sets of the form sAt , where A 2 ˛, s; t 2 G.

This section is devoted to proving the following result. As to why we work with
two-sided translates and not just left translates, see Remark 3.16 below.

Theorem 3.2. Let G be a group, and let Y 2 �.G/. Then there are subgroups
H1;H2; : : : ;Hn in R2.¹Y º/ such that Y 2 R.¹H1; : : : ;Hnº/.

We first of all collect some combinatorial lemmas. These results are similar in
spirit to arguments found in [1, Section 3]. In the following, the empty intersection
is by definition equal to X , and the empty union equal to ;.
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Lemma 3.3. Let X be a set, let A be a collection of subsets of X , and let B be in
the relative ring generated by A. Then B is the finite (disjoint if we wish) union of
sets of the form

n\
iD1

Ai \

m\
jD1

.X n Bj / D

� n\
iD1

Ai

�
n

� m[
jD1

Bj

�
(3.1)

for some n � 1, m � 0, and some Ai ; Bj 2 A.

Proof. Let B be the relative ring generated by A, so B 2 B. Let B0 be the collec-
tion of finite unions of sets of the form (3.1) so that A � B0 � B. We shall prove
that B0 is a relative ring of sets so that B0 D B, as claimed.

By definition, B0 is closed under unions. If .Pk/
t
kD1

and .Ql/
s
lD1

are of the
form (3.1), set P D

S
k Pk and Q D

S
l Ql ; then

P \Q D .P1 [ � � � [ Pt / \ .Q1 [ � � � [Qs/ D
[
k;l

Pk \Ql ;

and clearly Pk \Ql is of the form (3.1). So B0 is closed under intersections.
Furthermore,

P nQ D P \ .X nQ/ D P \ .X nQ1/ \ � � � \ .X nQs/:

Thus, to show that P nQ 2 B0, it suffices to show that, say P \ .X nQ1/ 2 B0.
Let Q1 D

Tn
iD1Ai \

Tm
jD1.X n Bj / so that

P \ .X nQ1/ D P \

� n[
iD1

.X n Ai / [

m[
jD1

Bj

�

D

n[
iD1

.P \ .X n Ai // [

m[
jD1

.P \ Bj /

D

n[
iD1

.P n Ai / [

m[
jD1

.P \ Bj /:

As each P \ Bj 2 B0 and B0 is closed under unions, it remains to show that, say
P n A1 2 B0, but P n A1 D

St
kD1 Pk n A1, so in fact, it remains to show that,

say P1 n A1 2 B0. If P1 D
Tn0

iD1 Ci \
Tm0

jD1.X nDj /, then

P1 n A1 D

n0\
iD1

Ci \

m0\
jD1

.X nDj / \ .X n A1/

and so indeed P1 n A1 2 B0.
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Having shown that B D B0, it is easy that each member of B is a disjoint union
of sets of the form (1) because, for any sets .Ai /, we have that

n[
iD1

Ai D A1 [ .A2 n A1/ [ .A3 n .A1 [ A2// [ � � � :

We shall use the following repeatedly, and so we pull it out as a lemma.

Lemma 3.4. Let G be a group, and let H1; : : : ;Hn be subgroups. There are sub-
groups K1; : : : ; Kn0 , each a subgroup of some Hi , and with ŒKi W Ki \Kj � D 1

or1 for all i; j , and with each Hi a finite union of cosets of the Kj . If the family
of subgroups ¹Hiº is closed under taking intersections, then the family ¹Kiº is
a subfamily of ¹Hiº.

Proof. If, for some i , ŒH1 W H1 \Hi � is not 1 or1, then L D H1 \Hi is a sub-
group of H1 of finite index, and so H1 can be covered by finitely many translates
of L. We can hence replace H1 by L; notice that ŒL W L \Hi � D 1. We claim
further that, by replacing H1 by L, if previously ŒH1 W H1 \Hj � 2 ¹1;1º, then
we do not change this property.

Indeed, if ŒH1 W H1 \Hj � D 1, then H1 D H1 \Hj , and so also L � Hj ,
so ŒL W L \Hj � D 1. If ŒH1 W H1 \Hj � D1, then let K D H1 \Hj so that
L \Hj D H1 \Hi \Hj D L \K, and hence we have L \K � L � H1. To-
wards a contradiction, suppose that ŒL W L \Hj � <1, so ŒL W L \K� <1. As
L is of finite index in H1, we can find ti 2 H1 with H1 D

Sm
iD1 tiL, and we can

find rj in L with L D
Sm0

jD1 rj .L \K/. Thus

H1 D

m[
iD1

tiL D

m[
iD1

m0[
jD1

tirj .L \K/;

and so certainlyH1 D
S

i;j tirjK, so ŒH1 W H1 \Hj � � mm
0 <1, a contradic-

tion.
By performing this argument finitely many times, we may suppose that, for

each i , ŒH1 W H1 \Hi � 2 ¹1;1º. We now look at H2 and apply the same argu-
ment, and so forth. This process could lead to repeats, and so possibly n0 � n.

For the final remark, note that, by construction, each Ki is an intersection of
some of the Hj , and thus ¹Kiº is a subfamily of the ¹Hj º.

The following result is used extensively in [1, 4] and appears to have first been
shown in [5]. Given the tools we now have, this is easy, so we give the proof. This
proof is essentially Cohen’s from [1].
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Lemma 3.5. Let G be a group. G cannot be written as the finite union of cosets of
infinite index.

Proof. Towards a contradiction, suppose that G is the finite union of cosets of
subgroupsH1; : : : ;Hk , where ŒG W Hi � D1 for each i . By Lemma 3.4, there are
subgroups of these, say K1; : : : ; Kk0 with ŒKi W Ki \Kj � D 1 or 1 for all i; j ,
and still with each Ki of infinite index in G. As each Hj is the finite union of
cosets of some Ki , it follows that G can be covered by finitely many cosets of
the Ki , say C1; : : : ; Cn.

AsK1 is of infinite index inG, there is some coset ofK1 which is not a member
of our covering, sayK D sK1. ThenK \Ki is a coset ofK1 \Ki or is empty for
each i . However, as G is covered by the Ci , also K is covered by ¹K \ Ciº. If Ci

is a coset of H1, then K \ Ci D ;, so we conclude that K is covered by finitely
many cosets of the subgroups K2; K3; : : : ; Kk0 . By translating by s�1, also K1 is
covered by finitely many cosets of the subgroups K2; K3; : : : ; Kk0 .

We now complete the argument by using induction on the number of subgroups,
k0. If we have only one subgroup, that is, k0 D 1, the result is trivially true. The
previous paragraph then provides the induction step.

As the intersection of two cosets is again a coset, Lemma 3.3 immediately im-
plies that every member of �.G/ is the finite disjoint union of sets of the form
E0 n

Sn
iD1Ei , where each E0 is a coset, and by replacing Ei with E0 \Ei , we

may suppose further that Ei � E0 for each i . In fact, by using the arguments
above, we can say more (again, see [1, 3]).

Corollary 3.6. Let G be a group. Every member of �.G/ is either empty or is
a finite disjoint union of sets of the form

E0 n

n[
iD1

Ei ; (3.2)

where eachEi is a coset,Ei � E0, andEi has infinite index inE0 for each i > 0.

Proof. Let Y 2 �.G/, so in particular, Y is in the ring generated by some sub-
groups H1; : : : ;Hn and their translates. By adding in intersections, we may sup-
pose that the finite family ¹Hiº is closed under intersections. By Lemma 3.4, we
may suppose that ŒHi W Hi \Hj � D 1 or 1 for each i; j . By using this lemma,
the resulting family ¹Hiº may no longer be closed under intersections, but if H
is an intersection of some of the Hi , then H is at least a finite union of cosets of
some Hj .
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By Lemma 3.3, Y is the disjoint union of say n sets of the form E0 n
Sm

iD1Ei ,
where E0 is a coset of some finite intersection of the Hj , and each Ei is a coset
of some Hj . Hence E0 is a finite union of cosets of the Hj , and so (by maybe
increasing n) we may suppose that E0 actually is a coset of some Hj . As before,
by replacing Ei by E0 \Ei , we may suppose that Ei is a subcoset of E0. As
ŒHi W Hi \Hj � D1 unless Hi � Hj , if Ei has finite index in E0, then Ei and
E0 must be cosets of the same subgroup, and asEi � E0, we must haveE0 D Ei ,
a case which may be ignored.

We now depart from the presentation of [1] and collect some further lemmas
which will be used later.

Lemma 3.7. Let G be a group, and let H1; : : : ;Hn be subgroups of infinite in-
dex in G. Let .Ki /

N
iD1 be cosets of the Hj , and let C D

S
i Ki . There is m and

t1; : : : ; tm 2 G with
T

i tiC D ;.

Proof. Notice that

m\
iD1

tiC D

m\
iD1

[
j

tiKj D

[² m\
iD1

tiKj.i/

³
;

where the union is over all functions j W ¹1; : : : ; mº ! ¹1; : : : ; N º. Thus we need to
find ti so that

Tm
iD1 tiKj.i/ D ; for any such function j . In what follows, suppose

that Kj is the coset sjHk.j / for each j .
Set t1 D e, the identity. We claim that there is t2 withKj \ t2Kj D ; for all j .

Indeed, if not, then for each t2, there is j with sjHk.j / D t2sjHk.j / (as cosets are
either equal or disjoint). Equivalently, for each t2, there is j with s�1

j t2sj 2 Hk.j /,
so t2 2 sjHk.j /s

�1
j . As each subgroup sjHk.j /s

�1
j is of infinite index in G, this

shows that G is covered by a finite union of subgroups of infinite index, a contra-
diction.

Suppose we have chosen t1; : : : ; tp with the property that t1Kj.1/\ � � � \tpKj.p/

is only (possibly) non-empty when the j.i/ are all distinct. We have already shown
this is true for p D 2. To show that the claim holds for p C 1, it suffices to find
tpC1 with tiKj \ tpC1Kj D ; for all i � p and all j . This is sufficient, for if
we have j.1/; : : : ; j.p C 1/ not all distinct, say j.k/ D j.k0/ for k < k0, then if
k0 � p, we know already that

Tp
iD1 tiKj.i/ D ;, while if k0 D p C 1, then by

construction, tkKj.k/ \ tpC1Kj.k/ D ;, so certainly
TpC1

iD1 tiKj.i/ D ;.
To find tpC1, we again proceed by contradiction and suppose that, for each

t 2 G, there are some i; j with tiKj D tKj so that tisjHk.j / D tsjHk.j /, so
s�1
j t�1

i tsj 2 Hk.j /. That is, t 2
S

i;j tisjHk.j /s
�1
j which is again a finite union

of cosets of infinite index, which cannot cover G.
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So, by induction, our claim holds for all p. Thus
Tp

iD1 tiKj.i/ can only possibly
be non-empty when the j.i/ are all distinct, but there are only N many choices,
and so if p > N , we have shown our claim.

Lemma 3.8. Let G be a group, H a subgroup, and H1; : : : ;Hn subgroups with
ŒH W H \Hi � D1 for each i . Let C be a union of finitely many cosets of theHi .
There are m and t1; : : : ; tm 2 H with

T
i Cti D ;.

Proof. The proof is similar to the previous one; but note here we need to choose
ti in H not G. Let our cosets be Cj for j D 1; : : : ; N . Again, we need to find ti
with Cj.1/t1 \ � � � \ Cj.m/tm D ; for any choices j.i/. Set t1 D e.

Suppose we have t1; : : : ; tp so that if j.1/; : : : ; j.p/ are not distinct, then

p\
iD1

Cj.i/ti D ;:

Proceeding by induction, tpC1 2 H needs to satisfy that Cj ti \ Cj tpC1 D ; for
all i; j . If no such tpC1 exists, then for all t 2 H , there are some i; j with

Cj ti \ Cj t ¤ ;:

If Cj D sHk , say, then sHkti \ sHkt ¤ ;, so there are a;b 2Hk with sati D sbt ,
so ati D bt , so t t�1

i D b�1a 2 Hk , so t 2 Hkti . Thus H �
S

i;k Hkti , but as
each ti 2 H , we have H \Hkti D .H \Hk/ti , and so H D

S
i;k.H \Hk/ti .

As each H \Hk is of infinite index in H , this is a contradiction.

We now start on our proof of Theorem 3.2. We start with Y 2 �.G/, so there
are subgroups H1; : : : ;Hn so that Y is in the relative ring of sets generated by the
Hi (if necessary, we can choose one of the Hi to be G). We may suppose that the
family ¹Hiº is closed under intersection. Then apply Lemma 3.4 to suppose that
ŒHi W Hi \Hj � D 1 or1 for all i; j , and that if H is the intersection of some of
the Hi , then H is a finite disjoint union of cosets of some Hj . Using Lemma 3.3
as in the proof of Corollary 3.6, Y is a finite union of sets L1; : : : ; Lm, where

Li D E
.i/
0 n

ni[
jD1

E
.i/
j ; (3.3)

where each E.i/
j is a coset of some Hk , and E.i/

j is a subcoset of infinite index in
E.i/

0 for each i and j > 0.
Our proof will be an induction, with the base case provided by the following

proposition.
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Proposition 3.9. With notation as above, if Hi is not contained in any other Hj ,
then there is a subgroupH which containsHi as a finite-index subgroup (possibly
H D Hi ) such that H 2 R2.¹Y º/ and such that Y 2 R.¹H º [ ¹Hj W j ¤ iº/.

Given this, we can now prove Theorem 3.2.

Proof of Theorem 3.2. We can form a directed acyclic graph (DAG, see [6] for
example) with vertices the subgroupsHi , and with a directed edge fromHi toHj

when Hi � Hj and there is no other Hk with Hi � Hk � Hj . We shall say that
Hi is top level if Hi is not contained in any other Hj , that is, there is no edge
intoHi . The depth of a DAG is the length of the longest directed path in the DAG.

For each top level Hi , let H be given by Proposition 3.9. For any i ¤ j as
ŒHi W Hi \Hj � D 1 or 1, also ŒH W H \Hj � D 1 or 1; see Lemma 3.15 be-
low. Also, if Hi \Hj is the finite union of cosets of Hk , then so is H \Hj ; see
Lemma 3.15 below. Hence we may replace Hi by H and not change any of our
assumptions. Do this for all top level Hi so that Y 2 R.¹Hiº/ and each top-level
Hi is in R2.¹Y º/.

We shall give a proof by induction on the depth of the DAG. Notice that Propo-
sition 3.9, and the previous paragraph, shows that the result is true when the DAG
has depth 0 (that is, all subgroups are top level).

Let H be some top level Hi . Let Y D
F

i Li as before (see (3.3)), and reorder
these so that E.i/

0 is a coset of H for i � n0, and not for i > n0. Define

Y0 D

n0[
iD1

E
.i/
0 n Y �

n0[
iD1

E
.i/
0 :

From the form that each Li is written in, namely that E.i/
j is a coset of infinite

index in E.i/
0 , it is clear that E.i/

j is not a coset of H for j � 1. From this, it fol-
lows that Y0 2 R.¹H \Hiº n ¹H º/. For each i , either H \Hi D H which we
remove, or H \Hi is a union of cosets of some Hk , where necessarily Hk � H .
Thus actually Y0 2 R.¹Hk W Hk ¨ H º/.

Now the family ¹Hk W Hk ¨ H º forms a subgraph of our DAG; in fact, it is
DAG “underneath”H (all the vertices which have a path leading to them fromH ).
Thus it is of smaller depth, so by induction, there are subgroups H 0j in R2.¹Y0º/

with Y0 2 R.¹H 0j º/. Notice that, as Y;H 2 R2.¹Y º/, also Y0 2 R2.¹Y º/, and so
also each H 0j 2 R2.¹Y º/.

Next, reorder so thatHi is top level for i � n0, and not for i > n0, so if i > n0,
the subgroup Hi is contained in some Hj with j � n0. For i � n0, let Ai be
the union of the sets E.k/

0 which are cosets of Hi . Set Bi D Ai n Y , and set
C D Y n

S
i�n0

Ai . We have shown that, for each i , there are subgroups H 0j in
R.¹Y º/ with Bi 2 R.¹H 0j º/.
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We now consider C . As each E.i/
0 is a coset of some Hj , either E.i/

0 � Aj for
some j , or otherwise E.i/

0 is a coset of some Hj which is not top level. Since
each E.i/

j is a subcoset of E.i/
0 , we see that C is contained in[

¹E
.i/
0 W E

.i/
0 coset of some Hj which is not top levelº;

and so C 2 R.¹Hi W Hi not top levelº/. The DAG given by removing all top level
subgroups has smaller depth, and so again by induction, there are subgroups H 00j
in R2.¹C º/ with C 2 R.¹H 00j º/. Notice that

C 2 R2.¹Y;Aiº/ � R2.¹Y;Hi W i � n0º/ D R2.¹Y º/;

and so each H 00j 2 R2.¹Y º/.
Let ˛ be the collection of all the H 0j , the H 00j , and the top level Hi , so each

subgroup in ˛ is in R2.¹Y º/. Then Ai ; Bi ; C 2 R.˛/. As Ai n Bi D Ai \ Y , we
see that

C [
[

i�n0

.Ai n Bi / D
�
Y n

[
i�n0

Ai

�
[

[
i�n0

.Ai \ Y / D Y:

Thus also Y 2 R.˛/, which completes the proof.

Thus it remains to show Proposition 3.9.

Definition 3.10. Given the subgroups .Hi /, and A � G some subset, we shall say
that a coset sHj is big in A if A \ sHj cannot be covered by finitely many cosets
of subgroups in ¹Hi W i ¤ j º.

Let us make some easy remarks about this definition, which we put into a lemma
for future reference.

Lemma 3.11. Let .Hi / be subgroups as above.

(1) If A � B and sHj is big in A, then it is big in B .

(2) With A D
Sn

iD1Ai , we have that sHj is big in A if and only if it is big in
some Ai .

Proof. (1) is clear. For (2), if sHj is not big in anyAi , so sHj \ Ai can be covered,
and hence so can A (as A is a finite union); the converse follows as Ai � A for
each i .

In the following results, we state the result for the subgroup H1, but this is
merely for notational convenience, as clearly there is nothing special about H1 as
compared to any other Hi .
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Lemma 3.12. With Y D
F

i Li as before, we have that sH1 is big in Y if and only
if some Li is of the form E0 n

S
j Ej with E0 D sH1. Furthermore, in this case,

the choice of i is unique.

Proof. If Li D sH1 n
S
Ej and yet sH1 is not big in Li , then sH1 \ Li D Li

can be covered by finitely many cosets of infinite index in H1. Union these cosets
with the ¹Ej W j > 0º and we have covered all of sH1 by finitely many cosets of
infinite index in H1, a contradiction. So sH1 is big in Li and hence big in Y , by
Lemma 3.11 (1).

If sH1 is big in Y , then by Lemma 3.11 (2), we have that sH1 is big in some Li .
If Li D E0 n

S
j Ej , then towards a contradiction, suppose that E0 is not sH1.

If E0 is some other coset of H1, then sH1 \E0 D ;, so certainly sH1 is not big
in Li . So E0 is a coset of some other subgroup Hj , and so sH1 \Hj is either
empty (again, not possible) or is a coset of H1 \Hj which has infinite index
in H1. Then sH1 \ Li is contained in a coset of infinite index in sH1 and so is
covered, so sH1 is not big in Li , a contradiction.

To show uniqueness, let each Li have the form (3.3). If E.i/
0 D E

.j /
0 D sH1,

then if i ¤ j , then as Li and Lj are disjoint, we must have that[
k�1

E
.i/

k
[

[
k�1

E
.j /

k

is all of sH1, a contradiction as these are cosets of infinite index.

Let C be the union of all E.i/
0 which are cosets of H1, so by the lemma, C is

the union of all cosets of H1 which are big in Y . Define

B D

² n[
iD1

siH1 W there exists A 2 R.¹Y º/ so that sH1 is big in A

if and only if sH1 D siH1 for some i
³
:

That is, B is the collection of sets B which are finite unions of cosets of H1, with
the given property: there is A 2 R.¹Y º/ such that a coset sH1 is big in A if and
only if sH1 � B .

Lemma 3.13. B D R.¹C º/.

Proof. To get a handle on B, we need some information about R.¹Y º/. By Lem-
ma 3.3, every A 2 R.¹Y º/ is of the form

A D

� n\
iD1

siY

�
n

� m[
jD1

tjY

�
;
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where n� 1 and si ; tj 2G. (This follows as if A is left-invariant, so will be R.A/.)
We wish to know when sH1 is big in A, in terms of the form Y D

F
Li as in

equation (3.3).
Let us think about these two parts individually. Consider

Y \ tY D
G
i;j

Li \ tLj D

G
i;j

�
.E

.i/
0 \ tE

.j /
0 / n

�[
k

E
.i/

k
[

[
l

tE
.j /

l

��
:

As argued in the “uniqueness” part of Lemma 3.12, either E.i/
0 D tE

.j /
0 D sH1,

or E.i/
0 \ tE

.j /
0 \ sH1 is either empty or is a coset of infinite index in sH1. It

then follows from Lemma 3.12 that sH1 is big in Y \ tY if and only if there are
(unique) i; j with E.i/

0 D tE
.j /
0 D sH1. A similar argument now shows that sH1

is big in
T
siY if and only if, for each i , there is a (necessarily unique) j with

siE
.j /
0 D sH1.

By Lemma 3.11 (2), we see that sH1 is big in
S
tjY if and only if there is some

j with sH1 big in tjY , if and only if, by Lemma 3.12, there is j and a (necessarily
unique) k with sH1 D tjE

.k/
0 .

Let B0 D
T
siY and B1 D

S
tjY , so A D B0 n B1.

� If sH1 is not big in B0, then it is not big in A by Lemma 3.11 (1).

� If sH1 is big in B0 and not big in B1, then as B0 D A [ B1, also sH1 is big
in A by Lemma 3.11 (2).

� If sH1 is big in both B0 and B1, then from above, we know that sH1 \ B0

is equal to sH1 with a finite union of cosets of infinite index removed, while
sH1 \ B1 contains a set of the form sH1 with a finite union of cosets of infinite
index removed. Thus sH1 \ .B0 n B1/ is contained in a finite union of cosets of
infinite index, so sH1 is not big in A D B0 n B1.

In conclusion, sH1 is big in A if and only if sH1 is big in B0 but not big in B1.
Now sH1 is big in B0 if and only if sH1 � siC for all i , that is, sH1 �

T
siC .

Also, sH1 is big inB1 exactly when sH1 � tjC for some j , that is, sH1 �
S
tjC .

Thus [
¹sH1 W sH1 big in Aº D

\
siC n

[
tjC; (3.4)

as all these sets are unions of cosets of H1. This shows that B � R.¹C º/.
To show the converse, we simply observe that, by Lemma 3.3, any member of

R.¹C º/ is of the form given by the right-hand side of equation (3.4) for some
.si / and .tj /, and so the associated A will be a member of R.¹Y º/, showing that
R.¹C º/ � B.

Proposition 3.14. There is a subgroup H , which is in B and so a finite union of
cosets of H1, such that any element of B is a finite union of cosets of H .
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Proof. Every member of B is a finite union of cosets of H1. Let

H D s1H1 t � � � t snH1 2 B

be chosen with n > 0 minimal (so H is the disjoint union of n cosets of H1, and
any member of B is the disjoint union of at least n cosets of H1). By translating,
we may suppose that s1 D e, the identity. We will show that H is a subgroup.

If A D
F
tiH1 2 B, then A \H 2 B and so is either empty or the union of at

least n cosets ofH1. As A \H � H , we must haveH D A \H or A \H D ;.
In particular, for each s, either sH \H D H or sH \H D ;. If s 2 H , then as
e 2 H , also s 2 sH , so s 2 H \ sH , so H \ sH D H . Thus HH � H . Also,
e 2 H \ s�1H , and so H \ s�1H D H , so in particular,

s�1
D s�1e 2 s�1H � H;

and we conclude that H is a subgroup.
Given A 2 B and s 2 G, notice that sH \ A D s.H \ s�1A/ is either empty

or equal to sH because s�1A 2 B. It follows that A is a (necessarily finite) union
of cosets of H .

Lemma 3.15. Let H be a subgroup containing H1 with ŒH W H1� <1. For each
i > 1, we have that ŒH W H \Hi � D1 or 1, and thatH \Hi is a finite union of
cosets of some Hk .

Proof. For i > 1, we know that either

ŒH1 W H1 \Hi � D 1 or1:

If ŒH1 W H1 \Hi � D 1, then Hi � H1 � H . Otherwise, ŒH1 W H1 \Hi � D1,
and we claim that also ŒH W H \Hi � D1. If not, then H D

Sn
iD1 si .H \Hi /

say, and as H1 � H , it follows that H1 D H1 \H D
S
H1 \ si .H \Hi /. For

each i , either H1 \ si .H \Hi / is empty or is a coset of

H1 \ .H \Hi / D H1 \Hi ;

and so ŒH1 W H1 \Hi � � n, a contradiction.
LetH1 \Hi be a finite union of cosets of someHk , this being one of our prop-

erties of the family ¹Hiº. As H1 is finite index in H , we have H D
Sn

jD1 sjH1

say. Then H \Hi D
S

j sjH1 \Hi , and for each j , either sjH1 \Hi is empty
or is a coset of H1 \Hi , which is a finite union of cosets of Hk . Thus H \Hi is
also a finite union of cosets of Hk .

We can now complete the proof of Proposition 3.9.
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Proof of Proposition 3.9. Our hypothesis is that Hi is not contained in any other
Hj . We have been supposing, by reordering, that i D 1. LetH be given by Propo-
sition 3.14. We need to show thatH 2R2.¹Y º/ and Y 2R.¹H º [ ¹Hj W j ¤ 1º/.

AsH 2 B, there is some A0 2 R.¹Y º/ � R.¹Hj º/ so that sH1 is big in A0 if
and only if sH1 � H . Then A0 has the form

A0 D

G
i

�
F

.i/
0 n

[
j

F
.i/

j

�
; (3.5)

where each F .i/
j is some coset of some Hk , and each F .i/

j , j > 0, is a subcoset
of infinite index in F .i/

0 . Then sH1 is big in A0 if and only if sH1 D F
.i/
0 for

some i . It follows that H n A0 is contained in the union of (1) F .i/
j , where F .i/

0 is
a coset of H1, and (2) F .i/

0 a coset of some Hj for j > 1. So H n A0 is contained
in a finite union of cosets of ¹H \Hj W j > 1º. By Lemma 3.15, H \Hj is of
infinite index in H for j > 1, and so we can apply Lemma 3.7 to H to find .ti / in
H with

; D

\
i

ti .H n A0/ D H n
[

i

tiA0:

So if we set B0 D
S

i tiA0, then H � B0 and B0 2 R.¹Y º/.
We claim that sH1 is big in B0 if and only if sH1 � H , which is equivalent to

s 2 H . As H � B0, “if” is clear. To show “only if”, suppose sH1 is big in B0,
so by Lemma 3.11 (2), sH1 is big in tiA0 for some i , so t�1

i sH1 is big in A0, so
t�1
i sH1 � H , so sH1 � tiH D H .
B0 has the same form as in equation (3.5), so again sH1 � H if and only if

some F .i/
0 is equal to sH1. Thus, again, we see that B0 is contained in the union of

H and cosets of ¹Hj W j > 1º, say B0 � H [
SN

iD1Ai , so each Ai is a coset of
some Hj ; j > 1. With C D

S
i Ai , by Lemma 3.8, there are t1; : : : ; tm 2 H withT

i Cti D ;. As B0 � H [ C ,\
i

B0ti �
\

i

.H [ C/ti D
\

i

.H [ Cti / D H [
\

i

Cti D H:

Thus clearly H D
T

i B0ti , and so H 2 R2.¹Y º/.
To finish the proof of Proposition 3.9, it remains to show that

Y 2 R.¹H º [ ¹Hj W j ¤ 1º/:

By Lemma 3.13, we have that
S
¹E.i/

0 W E
.i/
0 a coset of H1º is a union of cosets

of H . Reorder so that E.1/
0 [ � � � [E.k/

0 D sH , say, so that

k[
iD1

E
.i/
0 n

[
j

E
.i/
j D sH n

k[
iD1

[
j

E
.i/
j :
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Notice that eachE.i/
j is a coset of someHt for some t > 1. AsH1 is not contained

in any other Hk , no E.i/
j , with j > 0, is a coset of H1. Thus, in this way, we can

replace every usage of a coset of H1 by a coset of H , so proving the claim and
completing the proof.

Remark 3.16. It was only in the final step of the previous proof that we started to
work with right translations, as well as left translations. This seems necessary, as
the following example shows. Consider F2 the free group with generators a; b, and
set H1 D ha i D ¹a

n W n 2 Zº and H2 D bH1b
�1. Then H1;H2 are subgroups

and H1 \H2 D ¹eº, so the family ¹H1;H2º satisfies our assumptions.
Now let Y D H1 t b

�1H2 which is the disjoint union of cosets of the Hi .
Then Y D ha i t ha ib�1. For x 2 F2, let x D yan, where y is a reduced word
in a; b which does not end in a; a�1, and n 2 Z, so that xhai D yhai. Thus
xY D yhai t yhaib�1, and so xY is either equal to Y or disjoint from Y .

We conclude that R.¹Y º/ just consists of finite disjoint unions of left translates
of Y . In particular, neither H1 nor H2 is in R.¹Y º/.

4 Application to completely bounded maps

We now use Theorem 3.2 to give a new proof of the main result of [4]. We are
now following the end of [1, Section 4] fairly closely, but again with more details
provided and changes made from the abelian setting.

Lemma 4.1. Let G;H be topological spaces, Y � H a subset, and ˛WY ! G

a map which is continuous when Y has the subspace topology. Suppose there is
a continuous map ˛WY ! G extending ˛. Let � D G .˛/ � H �G, the graph
of ˛. If � D U \ C for some open U and closed C in H �G, then Y D Y \ V
for some open V � H . In particular, Y is Borel.

Proof. As � � C , also � � C , and as � � U , also � � � \ U � C \ U D � ,
so we conclude that � D � \ U .

We claim that G .˛/D� , which follows by continuity of ˛. Indeed, given y 2 Y ,
let .yi / be a net in Y converging to y so that ˛.yi / D ˛.yi /! ˛.y/ by continu-
ity, and hence .yi ; ˛.yi //! .y; ˛.y//. Hence G .˛/ � � . Given .y; x/ 2 � , let
.yi ; ˛.yi // be a net in � converging to .y; x/, so yi ! y, ˛.yi /! x, so continu-
ity of ˛ ensures that ˛.y/ D x. Thus � � G .˛/.

Let V0 D ¹y 2 Y W .y; ˛.y// 2 U º. Given y 2 V0, as U � H �G is open, by
the definition of the product topology, there are W1 � H and W2 � G both open,
with y 2 W1; ˛.y/ 2 W2 andW1 �W2 � U . Then ˛�1.W2/ is open in Y , so there
is W0 � H open with W0 \ Y D ˛

�1.W2/. Given x 2 W0 \W1 \ Y , we have
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that x 2 ˛�1.W2/, so ˛.x/ 2 W2, and x 2 W1, so .x; ˛.x// 2 U , so x 2 V0. Also,
y 2 W0 \W1 \ Y . Thus V0 is open in Y , as we have shown that each point y has
an open neighbourhood, namely W0 \W1 \ Y .

Let V � H be open with V \ Y D V0. Given y 2 V0, so .y; ˛.y// 2 U , also
.y; ˛.y// 2 G .˛/ D � , and so .y; ˛.y// 2 U \ � D � , and so y 2 Y . Con-
versely, if y 2 Y , then .y; ˛.y// D .y; ˛.y// 2 � D � \ U , and so y 2 V0. Thus
Y \ V D Y as required.

Proposition 4.3 below is implicitly assumed in the proof of [4, Lemma 1.3 (ii)],
but we do not see why it follows immediately “by uniformity of the topology”;
compare the argument on [1, p. 223], which we follow.

Lemma 4.2. Let L D E0 n
Sn

kD1Ek be of the form (3.2), so E0 is a coset and
each Ek is a subcoset of infinite index. For any N , there are a1; : : : ; aN 2 L with,
for i ¤ j , a�1

i aj … E
�1
k
Ek for any k � 1.

Proof. We first show that this is true for N D 2. If not, then for all a; b 2 L, there
is some k with a�1b 2 E�1

k
Ek . That is, for each a 2 L, we have

L �

n[
kD1

a E�1
k Ek :

As E�1
k
Ek is the subgroup which Ek is a coset of, this shows that L is contained

in the finite union of cosets of infinite index, and so E0 is contained in some finite
union of cosets of infinite index, a contradiction.

We now proceed by induction. Suppose the claim holds forN � 2, but does not
hold for N C 1. Then, given any a1; : : : ; aN satisfying the claim, we cannot find
aNC1 satisfying the claim so that, for any b 2 L, we have that a�1

i b 2 E�1
k
Ek for

some i; k. That is,

L �

N[
iD1

n[
kD1

aiE
�1
k Ek :

Again, it follows from this that E0 is contained in some finite union of cosets of
infinite index, which is a contradiction.

Proposition 4.3. Let G;H be locally compact groups, and let

L D E0 n

n[
kD1

Ek � H

be of the form (3.2). Let ˛WL! G be a map which is continuous on L for the
subspace topology and is the restriction of some affine map  WE0 ! G. Then  
is continuous.
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Proof. Choose a1; : : : ; anC1 2 L using the lemma. We claim that,

for any x; y 2 E0; there is k with xy�1ak 2 L:

Indeed, if not, then as xy�1ak 2 E0, we must have that xy�1ak 2
Sn

iD1Ei for
each k. By the pigeonhole principle, there is i and 1 � r < s � nC 1 with

xy�1ar ; xy
�1as 2 Ei :

Thus .xy�1ar/
�1xy�1as D a

�1
r as 2 E

�1
i Ei , a contradiction.

Let U be an open neighbourhood of e in G, and choose an open symmetric
neighbourhood V of e with V V � U . Then V˛.ak/ is an open neighbourhood
of ˛.ak/, and so, by continuity of ˛, and the definition of the subspace topology,
there is an open Vk in H with

Vk \ L D ˛
�1.V˛.ak//:

Then ak 2 Vk \ L, and given x; y 2 Vk \ L, we see that ˛.x/ D v0˛.ak/ and
˛.y/ D v1˛.ak/ for some v0; v1 2 V . Then

˛.x/˛.y/�1
D v0˛.ak/˛.ak/

�1v�1
1 D v0v

�1
1 2 V V � U:

Now set V0 D
Tm

kD1 Vka
�1
k

an open neighbourhood of e in H . Let x; y 2 E0

with xy�1 2 V0. Then there is k with xy�1ak 2 L, as above. Also, we have
xy�1ak 2 V0ak � Vk and ak 2 V0ak � Vk . As also ak 2 L, we conclude that
˛.xy�1ak/˛.ak/

�1 2 U . Choose any z 2 E0. Then ak D zz
�1ak . As  is affine

and agrees with ˛ on L, we see that

 .x/ .y/�1
D  .x/ .y/�1 .ak/ .ak/

�1 .z/ .z/�1

D  .x/ .y/�1 .ak/
�
 .z/ .z/�1 .ak/

��1

D  .xy�1ak/ .zz
�1ak/

�1
D ˛.xy�1ak/˛.ak/

�1
2 U:

It follows that  is (uniformly) continuous. Indeed, if x 2 E0 and .xi / is a net
in E0 converging to x, then x�1

i x ! e in H . Given any neighbourhood U of e in
G, pick V0 as above, and observe that eventually x�1

i x 2 V0. Thus

 .x�1
i x/ D  .xi /

�1 .x/ 2 U:

This shows that  .xi /
�1 .x/! e in G so that  .xi /!  .x/.
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We are now in a position to complete our argument. We recall the setup from the
start of Section 2, so ˆWA.G/! B.H/ is a completely bounded homomorphism,
and withG amenable, and there is ˛WH ! G1 continuous, which implementsˆ.
With Y D ˛�1.G/, we additionally know that ˛WY � H ! G is piecewise affine.

Proposition 4.4. With ˛WY � H ! G as above, we have that Y is clopen. Fur-
thermore, Y may be written as the disjoint union of sets Li of the form (3.2), say

Li D E
.i/
0 n

[
j

E
.i/
j ;

with eachE.i/
j Borel, and for each i , there is a continuous affine map ˛i WE

.i/
0 !G

which restricts to ˛ on Li .

Proof. Write Y as the disjoint union of sets of the form (3.2), say Y D
F

i Li ,
and for each i , there is an affine map ˛i which agrees with ˛ on Li . By Proposi-
tion 4.3, we know that ˛i is continuous, and as ˛i is affine, it admits a (unique)
continuous extension to the closure of the coset on which it is defined; compare
[4, Lemma 1.3 (i)].

We claim thatLi � Y . Indeed, given x 2Li , there is a net .xj / inLi which con-
verges to x, so limj ˛i .xj /D ˛i .x/, and as ˛i extends ˛, also limj ˛.xj /D ˛i .x/.
As ˛WH ! G1 is continuous, we conclude that ˛.x/ D ˛i .x/ 2 G, and so x 2 Y
(that is, x is not the point1). Notice that we have also shown that ˛ agrees with
˛i on Li . Thus we have that

Y D

n[
iD1

Li �

n[
iD1

Li � Y;

and so we have equality throughout. Hence Y is closed (and also open).
Now consider the graph � D G .˛/ D ¹.y; ˛.y// W y 2 Y º � H �G. That ˛

is continuous shows that � is closed, and that ˛ is piecewise affine shows that
� 2 �.H �G/. By Theorem 3.2, there are subgroupsK1; : : : ; Kn in R2.¹�º/ so
that � 2 R.¹K1; : : : ; Knº/. By Lemma 3.3, we can write � D

F
i �i , where each

�i is of the form (3.2), say �i D F
.i/
0 n

S
j F

.i/
j , with each F .i/

j a coset of some
Kk , and with F .i/

j � F .i/
0 for each j . From Lemma 3.3, we also know that each

Kk is of the form C \ U for some closed set C and some open set U because � is
closed, and so translates of � are closed. From Lemma 3.3 once more, it follows
that each member of R.¹Kiº/ is also a finite union of sets of the form “closed
intersect open”; in particular, this applies to each F .i/

j .
The proof of [4, Lemma 1.2 (iii)] (Lemma 2.1) shows that each F .i/

0 � H �G

is the graph of an affine map, say �i WE
.i/
0 !G, for some coset E.i/

0 of H . Then
F .i/

j � F .i/
0 is also a graph of the restriction of �i to a coset, say E.i/

j . Thus, in
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the start of the proof, we could actually take Li D E
.i/
0 n

S
j E

.i/
j and ˛i D �i . In

particular, each �i is continuous. Applying Lemma 4.1 to the restriction of �i to
E.i/

j shows that E.i/
j is Borel (as F .i/

j is the graph).

We now suppose that H is � -compact. Under this hypothesis, Steinhaus’s the-
orem (see [9]) shows that if C � H is a coset of non-zero (Haar) measure, then
C is open. In the following proof, we use this to show that a finite family of Borel
cosets, each of which has empty interior, also has union with empty interior. This
is exactly the point which goes wrong in the attempted purely topological proof of
[4, Lemma 1.3].

Proposition 4.5. Let H be � -compact, and continue with the notation of Proposi-
tion 4.4. There are Y1; : : : ; Ym in the open coset ring ofH so that Y is the disjoint
union of the Yi , and for each i , there is a continuous affine map ˛i W aff.Yi /! G

which agrees with ˛ on Yi .

Proof. If E.i/
0 is open, then as it is a coset, it must also be closed. Reorder so that

E.i/
j is open for 1 � j � m and not open for j > m. LetZi D E

.i/
0 n

Sm
jD1E

.i/
j .

As each E.i/
j is clopen for j � m, it follows that Zi is clopen.

For j > m, as E.i/
j is not open, it has measure zero, and so also

S
j >mE

.i/
j

has measure zero, and so
S

j >mE
.i/
j has empty interior. As Li � Zi it follows

that Zi n Li �
S

j >mE
.i/
j so Zi n Li has empty interior. As Zi is open, we have

shown that Zi � Li .
However,Zi is closed, so asLi � Zi alsoLi � Zi . We conclude thatLi D Zi

is clopen, and clearly in the open coset ring of H .
Now reorder so that E.i/

0 is open for i � m and not for i > m. For i > m,
we again have that E.i/

0 has measure zero, so also Li has measure zero, so we
again conclude that

S
i>mLi has empty interior. As Y is clopen, and

Sm
iD1Li is

clopen, it follows that Y n
Sm

iD1Li is open. As
Sm

iD1Li �
Sm

iD1Li , it follows
that Y n

Sm
iD1Li � Y n

Sm
iD1Li D

S
i>mLi , and so Y n

Sm
iD1Li has empty

interior and hence must be empty. So Y �
Sm

iD1Li , but then

m[
iD1

Li �

m[
iD1

Li � Y D Y;

so we conclude that Y D
Sm

iD1Li .
Finally, we use that ˛i extends continuously to ˛i a continuous affine map;

restrict this to Li . It seems possible that the .Li / are not disjoint, but if we replace
L2 by L2 n L1, then we do not leave the open coset ring, and so we can simply
adjust to obtain the disjoint family .Yi / as required.

We can finally state and prove the main part of [4, Theorem 3.7].
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Definition 4.6. Let G;H be locally compact groups. A map ˛WY � H ! G is
a continuous piecewise affine map when Y is open, and can be written as a disjoint
union Y D

F
i Yi with each Yi 2 �o.H/, and for each i , there is an open coset

Ci and a continuous affine map ˛i WCi ! G, with Yi � Ci and ˛i agrees with ˛
on Yi .

Notice that each Yi 2 �o.H/ is also closed, and so also Y is closed; compare
also Remark 4.8 below.

Theorem 4.7. Let ˆWA.G/! B.H/ be a completely bounded homomorphism,
with G amenable. There is a continuous piecewise affine map ˛WY � H ! G

with

ˆ.u/.h/ D

´
u.˛.h//; h 2 Y;

0; h … Y
.u 2 A.G/; h 2 H/:

Proof. We have already proved this in the � -compact case. Now let H be an arbi-
trary locally compact group. With Li as in Proposition 4.4, we again wish to prove
that Y D

Sm
iD1Li , where E.i/

0 is open for i � m, and not open otherwise.
There is H0 � H an open (and so closed) � -compact subgroup. Let ˇ be the

restriction of ˛ to Y \H0. We can apply Proposition 4.5 to ˇ and so conclude that
H0 \ Y is the union of the setsH0 \ Li for those i withH0 \E

.i/
0 open and non-

empty. However, if E.i/
0 is open, then also H0 \E

.i/
0 is open, and if it is empty,

there is no harm in considering it in the union. Thus H0 \ Y D
Sm

iD1H0 \ Li .
This argument would also apply to any translate of Y , equivalently, to any coset
of H0, so we conclude that sH0 \ Y D

Sm
iD1 sH0 \ Li for any s. As each sH0

is clopen, it follows that Y D
Sm

iD1Li as required.

Remark 4.8. On [4, p. 487], ˛WY � H ! G is defined to be “continuous piece-
wise affine” when ˛ is piecewise affine, and Y is clopen in H . If ˛ is of this form,
then we can extend ˛ to a map ˛WH ! G1 by defining ˛.y/ D1 for y … Y ,
and then ˛ will still be continuous because Y is clopen. Then we are in exactly the
situation of Proposition 4.4, and so the results above imply that ˛ is a continuous
piecewise affine map in our sense.

As such, the use of [4, Lemma 1.3 (ii)] in the proof of the converse of the result
above, [4, Proposition 3.1], is also corrected.

The original use of [4, Lemma 1.3 (ii)] was to show that if ˛WY � G ! H is
piecewise affine, and continuous, with Y open, then also Y is open, and there is
a continuous piecewise affine map ˛WY ! H extending ˛. We have been unable
to decide if this result is true or not.
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