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Abstract

Understanding the magnetic connections from the Sun to interplanetary space is crucial for linking in situ particle
observations with the solar source regions of the particles. A simple connection along the large-scale Parker spiral
magnetic field is made complex by the turbulent random walk of field lines. In this paper, we present the first
analytical model of heliospheric magnetic fields where the dominant 2D component of the turbulence is transverse
to the Parker spiral. The 2D wave field is supplemented with a minor wave field component that has asymptotic
slab geometry at small and large heliocentric distances. We show that turbulence spreads field lines from a small
source region at the Sun to a 60° heliolongitudinal and heliolatitudinal range at 1 au, with a standard deviation of
the angular spread of the field lines of 14°. Small source regions map to an intermittent range of longitudes and
latitudes at 1 au, consistent with dropouts in solar energetic particle intensities. The lengths of the field lines are
significantly extended from the nominal Parker spiral length of 1.17 au up to 1.6 au, with field lines from sources at
and behind the west limb considerably longer than those closer to the solar disk center. We discuss the implications
of our findings for understanding charged particle propagation and the importance of understanding the turbulence
properties close to the Sun.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Interplanetary physics (827); Helio-
sphere (711)

1. Introduction

Interplanetary space consists of plasma that flows from the
Sun as solar wind and extends to the outer heliosphere. This
plasma is permeated by a magnetic field that extends as an open
field from the Sun and, due to solar rotation, forms an
Archimedean spiral, the so-called Parker spiral (Parker 1958).
Fast charged solar particles are guided along the magnetic field,
and through in situ observations of these particles, we can gain
information on processes that heat and accelerate particles at
the Sun via different mechanisms from thermal to relativistic
energies.

The analysis of in situ particle observations and comparison
to the solar sources, however, is complicated by the presence of
fluctuations of order up to the background magnetic field
magnitude in the solar wind (e.g., Bruno & Carbone 2005, and
references therein). Analysis of heliospheric magnetic field
observations (e.g., Matthaeus et al. 1990; Bieber et al. 1996)
suggests that the majority of the fluctuations are transverse,
varying in the direction normal to the background magnetic
field. Such turbulence will cause the field lines to meander
across the mean field direction, either circling helically around
magnetic islands or spreading through x-points between such
islands (e.g Chuychai et al. 2007). This “2D landscape” is
broken by variation of the fields in the direction along the
background field caused by the nonlinear evolution of the
turbulence (Goldreich & Sridhar 1995).

Turbulence in magnetized plasmas has been investigated
using various computational approaches (see, e.g., Beresnyak
2019, for a review). Plasma turbulence simulations are,

however, computationally very expensive, and for applications
where the magnetic connectivity and its effects on plasma and
particle transport are investigated, simpler methods are often
used. A popular choice is to describe plasma turbulence as a
superposition of random-phase transverse wave modes with
wavenumber vectors normal (the so-called 2D component) and
along (the slab component) the background magnetic field.
This so-called composite turbulence model has been widely
used for the analysis of field lines (e.g., Matthaeus et al. 1995;
Ruffolo et al. 2004; Chuychai et al. 2007), as well as cosmic
rays (e.g., Giacalone & Jokipii 1999; Qin 2002; Tautz 2010;
Laitinen et al. 2012), often comparing numerical simulations
with theoretical descriptions. In most of these models, spatially
homogeneous turbulence is superposed on a uniform and
constant background magnetic field. Such a configuration is
useful for determining how the field line or particle diffusion
coefficients depend on the properties of the turbulence and the
temporal scales of the charged particle propagation along the
meandering field lines.
However, the homogeneous environment and assumption of

uniform constant background magnetic field B0 fail to properly
account for the interplay between the spatially varying
turbulence (e.g., Bruno & Carbone 2005) and the large-scale
Parker spiral magnetic field. We are often interested in the
propagation of charged particles from the Sun to the Earth or
other locations in the heliosphere where observations are made
with in situ instruments. Stochastic processes are likely to alter
the field line connection between the solar source and
interplanetary point of observation and to extend the length
of the field lines the particles propagate on. However, the
connectivity and lengthening of the field lines will also depend
on the underlying Parker spiral geometry that introduces
asymmetry to the field line configuration. Will such asymmetry
also result in asymmetry of the path lengths from the Sun to
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1 au, and to what extent are the field line lengths extended?
What properties of the heliospheric turbulence affect the path
length, and how?

Aside of diffusion-based and random walk models (e.g.,
Pommois et al. 2001b, 2001a; Laitinen & Dalla 2019; Chhiber
et al. 2021a; Bian & Li 2022), three main approaches have been
used to investigate turbulent magnetic field lines in a
heliospheric configuration. Giacalone (2001) introduced a
model where the motion of the magnetic field footpoints in
the photosphere is modeled with a stream function at the solar
surface, resulting in magnetic fluctuations in the latitude–
longitude plane. The Giacalone (2001) model benefits from the
physical link between the photospheric motions and the
interplanetary turbulence, thus providing an observational
constraint for the source of the turbulence. However, the
fluctuations in the model are transverse at the solar surface,
whereas to remain transverse in the Parker spiral geometry, the
fluctuations would also need a radial component of the
fluctuating field. Thus, the Giacalone (2001) model does not
fulfill the requirement of the transverse nature of the plasma
turbulence modes in the outer heliosphere. Ruffolo et al. (2013)
used a different approach, where the composite turbulence
model with a constant background magnetic field is projected
on a spherically extending sector. This enabled their model to
be fully transverse, with 2D and slab modes with respect to the
radial magnetic field. However, their model is limited to a
radial background magnetic field and thus lacks the asymmetry
that is created by the Parker spiral. Finally, Tautz et al. (2011)
and Fraschetti et al. (2018) superposed isotropic turbulence on
the Parker spiral geometry; however, the isotropic turbulence
model does not agree with the expected dominance of
transverse 2D modes in the heliosphere, and, as noted by
Fraschetti et al. (2018)1, there are currently no methods to
constrain a non-uniform turbulent magnetic field to be
divergence-free2. The difficulty of keeping the magnetic field
divergence-free is the crux of the problem; in Parker spiral
geometry, typically presented in heliocentric spherical coordi-
nates (r, θ, f), the magnetic field vectors of transverse
fluctuations, δB, in general have a nonvanishing radial
component, which in the general case depends on the radial
coordinate. Such a component, δBr(r), generates divergence
that must be canceled by θ- or f-dependence of the θ- or f-
component of the fluctuating vector.

In this paper, we introduce a novel analytical model for
interplanetary turbulence, where the background magnetic field
is of a Parker spiral shape, and ∇ ·B= 0 everywhere. The
turbulence is dominated by 2D mode waves for which the
fluctuating vector is normal to the Parker spiral, and the
wavevector is normal to both the Parker spiral and the
fluctuating vector δB. The 2D mode turbulence is supplemen-
ted with a minor component of slab mode waves, which are
approximated as a superposition of radial and azimuthal waves.
The model allows us to analytically calculate the turbulent
magnetic field everywhere in the heliosphere, and the
logarithmic spacing of the wave modes allows us to cover a
large range of turbulence scales with a small number of wave
modes. Using the newly constructed model, we investigate the
meandering of the field lines across the Parker spiral,
comparing our results with recent results that evaluate the field

line random walk as diffusion. We apply our model to evaluate
the length of field lines from the Sun to 1 au, demonstrating
how the asymmetry created by the Parker spiral is reflected as
asymmetry in the field line lengths. We present the turbulence
model in Section 2 and our results in Section 3. We discuss the
significance of our results in Section 4 and draw our
conclusions in Section 5.

2. Turbulence Model

2.1. 2D Turbulence

We model the 2D magnetic field turbulence in Parker spiral
geometry as a superposition of Fourier modes with both the
fluctuating vector δB and the wavenumber vector k normal
to the background magnetic field direction and δB ⊥ k. In
addition, the divergence-free condition ∇ · δB= 0 must be
fulfilled. These requirements can be satisfied by introducing a
vector potential A that is aligned with the background magnetic
field and has a phase term that is constant along the background
field. The transverse fluctuating field can then be obtained from
this vector potential as δB=∇× A. In Cartesian geometry
with coordinates (x, y, z) and a constant background magnetic
field directed along the z-coordinate unit vector êz, a transverse
2D mode with magnetic field amplitude δB0 can be constructed
with a vector potential d= - ( ( )) ˆA eB k g x ysin , z0

1 , where g(x,
y) is the oscillating phase of the wave, given by k · r+ δ, where
δ is a random phase offset, and r is a Cartesian position vector.
Choosing a a= - +ˆ ˆk e ek kcos sinx y, with polarization
angle α, we get fluctuating field components:

d d a d a= +[ ( )] ˆ [ ( )] ˆB e eB g x y B g x ysin sin , cos sin , .i i x i y0 0

To construct the vector potential in spherical geometry,
Ruffolo et al. (2013) suggested a conversion of the Cartesian
Fourier modes to heliolongitude f= x/r and heliolatitude
Λ= y/r. We use the same approach and cast the phase of the
2D waves in the form

q f kf a kq a d= - +( )g , sin cos ,

where θ= π/2−Λ. Note that in this representation, the
wavevector κ= kr is now in angular units per radian.
We define a vector potential

d k k q f= -( ) ( ( )) ˆ ( )A eB r g, sin , 1i i r0
1

from which we obtain the fluctuating magnetic field vector

d
q
d k a q f

d k a q f

=

+
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f

( ) [ ( )] ˆ

( ) [ ( )] ˆ ( )

B e

e

r
B r g
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In Parker spiral geometry, we must take into account that the
2D modes must have their wavevectors normal to the Parker
spiral direction,

y y= - fˆ ˆ ˆ ( )B e ecos sin , 3r

where ψ is the angle between the radial direction and the Parker
spiral, and

y
q

=
+ ( )r a

cos
1

1 sin
,

2

1 gary.zank@aasjournals.org
2 Fraschetti et al. (2018) do present a method to fulfill the solenoidal
constraint within an MHD grid.
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where a= vsw/Ωe. For a 2D mode in this geometry, we
introduce a phase term,

q f kf a kq a= + +( ) ( )g r k r, , sin cos ,r

where the radial wavenumber kr is chosen so that for a
displacement from (r, θ, f) to (r+ δr, θ, f+ δf) along the
Parker spiral, the phase term remains constant, that is,

d kdf a+ =( )k r sin 0.r

A displacement δs along the Parker spiral has components
d d y=r s cos , qdf d y= -r ssin sin . Thus, for a constant
phase over the displacement, we find

y
q

k= =k r
r

a

tan

sin
,r

and the phase term can be written as

q f k kf a kq a d= + + +⎛
⎝

⎞
⎠

( ) ( )g r
r

a
, , sin cos . 4

Subsequently, the vector potential can be written as

d k k

k kf a kq a d

y y

=

´ + + +

´ - f

-

⎡
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⎛
⎝

⎞
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The magnetic field can be trivially obtained from this vector
potential as δBi=∇×Ai. However, with the introduction of
the radial dependence of the phase term and the azimuthal
vector potential component, the expression for δBi is lengthy
and will not be written down here.

Following Giacalone & Jokipii (1999), we define a spectrum
of wave modes of logarithmically spaced wavenumbers
between κ0 and κ1 as

d d
pk k k
l k

=
D

+ ^
+

( )
( ( ) )

( )B B r C
r r

2

1
, 6i

i i i
p

c i
q p0

2
0
2

where κi is the ith wavenumber, Δκi is the corresponding
width of the wavenumber bin, and d= å-C Bi i

1
0
2 is a

normalization factor. The spectral shape is composed of an
inertial range with a Kolmogorov spectral shape given by
q= 8/3 at large wavenumbers and the so-called energy-
containing range with spectral index p at low wavenumbers.
The transition between the two scales takes place at a break
scale length λc⊥(r). The variance of the spectrum is given by
d ( )B r0

2 . The division of κi by r in the denominator is done to
take into account the fact that κi is in units per radian, whereas
the spectral break scale λc⊥(r) is defined in length units. Note
that both λc⊥(r) and δB0(r)

2 have radial dependence, which
must be taken into account when taking ∇× A.

We introduce a cyclic boundary condition in f, which gives
a condition for the wavenumber k a= n sin for α≠ 0 and
integer n. We do not introduce boundaries in the θ direction;
thus, our model is not applicable across the poles.

To demonstrate that the turbulence model generated
by Equation (5) fulfills the requirements of 2D
turbulence in Parker spiral geometry, we show the vector
potential, Equation (5), in Figure 1 as a contour of

q f d(∣ ( ) ( )∣)A r B rlog , , 0 in the r−f plane at θ= π/2. As can

be seen, the contours trace the Parker spiral, shown by the
yellow curve.
As an additional test of our model, we also inspect whether

the magnetic field lines remain on the equipotential surfaces of
the vector potential, as expected for 2D turbulence. To this end,
we have integrated a sample of 100,000 field lines from an area
of 2°× 2° in longitude and colatitude centered at (r, θ,
f)= (2re, 90°, 0°), where re is the solar radius, to 1 au by
solving the field line equations

= ( )dr

ds

B

B
, 7i i

where ri indicates the Cartesian coordinates x, y, z; B is the total
magnitude of the magnetic field, including the Parker spiral
background field; and s is a parameter of the curve in
parametric form. In Figure 2, the black dots indicate where the
field lines in the sample cross a 1 au heliocentric sphere, with
the white dashed rectangle depicting the mapping of the source
region onto a 1 au sphere when a simple Parker spiral is used.
The dots are superposed on a contour of the vector potential
magnitude at 1 au. As can be seen, the field lines cross the 1 au
sphere along narrow lanes, which coincide with the vector
potential equipotentials, thus indicating that as the field lines
traverse the interplanetary space, they remain on the same
equipotential surface.

2.2. Slab Turbulence

A slab mode wave in magnetized plasma is defined as having
its wavenumber vector aligned with the background magnetic
field, while the fluctuating vector is in the plane normal to the
background field. It is possible to construct such a slab
component in a Parker spiral configuration using a similar
approach as for the 2D component (Section 2.1). However, the
periodic boundary condition in f limits κ to integer multiples
of a/re∼ 200, which means that the largest scales in the slab
spectrum would be of order re/200, as opposed to re for the

Figure 1. Vector potential magnitude in heliospheric equatorial plane (θ =
π/2) for the 2D turbulence model. The contoured quantity is d(∣ ( )∣)A B rlog 0 .
The yellow curve traces the Parker spiral from heliolongitude f = 0°.
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2D turbulence. To avoid such a disparity of the largest scales in
the slab and 2D components, we do not use pure slab
turbulence in our Parker spiral turbulence model but instead use
a combination of radial and azimuthal slab modes, with the
former dominating in the inner heliosphere and the latter in the
outer. The transition between the components is facilitated
by multiplying the radial slab component with y¢cos
and the azimuthal slab component with y¢sin , where
y y q¢ º =( p )2 3.

The radial slab component can be formulated with a vector
potential with direction a a= +q fˆ ˆ ˆA e ecos sin and with a
phase term g(r)= kir+ δ that depends only on the radial
coordinate r. However, because the spectral breakpoint, as well
as the scales resonant with energetic particles, evolves with
radial distance from the Sun, constant wavenumbers for the
discrete wave modes, ki, would remain significant for the
simulations only for a limited range in the heliosphere. For this
reason, we define the wavenumber magnitude as radially
dependent,4 as k= =( )k k r rai . The phase term is then

k d= +( )g r r ai . With this definition, for a given
κ in angular units, k= = -( )k r r1 215 au 1

 and
k(r= 1 au)= κ au−1.

As the radial slab vector potential described above depends
only on the radial coordinate, the radial component of ∇× A
vanishes. We can further simplify the derivation by noting that
for a magnetic field vector B that has no radial component,
 =· ( ( ) )BC r 0 for an arbitrary C(r). This enables us to first
calculate the phase dependence of the radial slab component
field by defining a reduced vector potential,

¢ = ( )A 0, 8r,rad

k q
k d a¢ =

¢
¢
+q ⎛

⎝
⎞
⎠

( ) ( )A r
a

r

r

asin
sin cos , 9,rad

k q
k d a¢ =

¢
¢
+f ⎛

⎝
⎞
⎠

( ) ( )A r
a

r

r

asin
sin sin , 10,rad

and then scaling its curl  ´ ¢A appropriately to obtain a
fluctuating magnetic field with amplitude δB0i,rad(r, κ) as

d d k y= ¢ ¢  ´ ¢( ) ( ) ( )B AB r r ra2 , cos . 11i i,slab,rad 0 ,rad rad

Note that we have also divided the vector potential by qr sin to
avoid a radial component arising from the radial component
of  ´ ¢A .
The azimuthal slab turbulence is formed from a vector

potential

f k q d k k
k f d y a

=
´ + ¢

-( ) ( )
( ) ( )

A r r B r, , sin ,

sin sin sin , 12
r az i az, 0 ,

1

f k q d k k
k f d y a

=
´ + ¢

q
-( ) ( )

( ) ( )
A r r B r, , sin ,

sin sin cos , 13
az i az, 0 ,

1

=f ( )A 0. 14az,

It should be noted that because of the r and θ dependencies of
this vector potential, the azimuthal slab mode fields have a
nonvanishing f component.
The slab spectrum for the slab modes is given as

d d
k k

l k
=

D
+ +

( )
( ( ) )

( )B B r C
r ar1

, 15i
i

p

c i
q p,rad

2
0
2

rad


d d
k k

l k
=

D
+ +

( )
( ( ) )

( )B B r C
r r1

, 16i az az
i

p

c i
q p,

2
0
2



where κi is the ith wavenumber, Δκi is the corresponding
width of the wavenumber bin, and = å-C dBi i

1 2 is a
normalization factor. Similar to the 2D spectrum, the spectral
shape of the slab spectrum consists of a spectral breakpoint
between the flatter low-wavenumber spectrum and the
Kolmogorov spectrum with q= 5/3, separated by the spectral
break scale λc∥(r), and the variance of the turbulence is given
by δB0(r)

2. As in the case of the 2D spectrum, the division of κi
by ar and r in the denominator of Equations (15) and (16),
respectively, is done to take into account the fact that κi is in
units per radian.

2.3. Turbulence Parameters

The new model of turbulence given by Equation (5) for the
2D component and Equations (8)–(14) for the slab component
is used to simulate the heliospheric turbulent environment in
Parker spiral geometry. We construct realizations of our
turbulence model as a superposition of typically 1024
logarithmically spaced 2D and slab mode waves with random
polarizations and phases ranging from the largest scales,
κ0= 1, to κ1= 100,000. For the 2D spectrum and azimuthal
slab spectrum, the largest scale, κ= 1, corresponds to the
smallest wavenumber, k0= 1/r, where r is the heliocentric
distance of the point where the spectrum is evaluated, and
for the radial slab spectrum, the smallest wavenumber
is =k r a0 .
Turbulence parameters, required for our model, can vary

substantially from one solar wind stream to another, as well as
radially, as discussed in more detail in Section 4. In the current
study, the first one to use the new turbulence model introduced
in this paper, we select one set of turbulence parameters, as

Figure 2. Vector potential at 1 au (colored contours) for a realization of the 2D
turbulence model. The black dots show where field lines integrated from a
2° × 2° area in longitude and latitude at (r, θ, f) = (2re, 90°, 0°) cross the 1 au
sphere. The white dashed rectangle shows the field line source region translated
along the Parker spiral. The point where the Parker spiral from the source
region center crosses the 1 au sphere is shown with a red filled circle.

3 The dependence on θ is removed to avoid unwanted wave modes when
taking B = ∇ × A.
4 The square-root dependence is a compromise; using linear dependence
would result in a constant phase for the radial slab component.
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given below, and leave a more in-depth investigation of the
parameter space to a future publication.

The turbulence total energy varies as a function of
heliocentric distance. Here we assume a power-law dependence
δB2∝ r− γ. The WKB description of the turbulence evolution
(Richter & Olbers 1974; Tu et al. 1984) suggests γ= 3 in the
interplanetary space, and recent modeling by Adhikari et al.
(2020) based on the Parker Solar Probe (PSP) observations
gives similar values, with γ= 3.14 and 2.19 for the 2D and slab
components, respectively. On the other hand, Helios observa-
tions (Bavassano et al. 1982) and modeling (Chhiber et al.
2019) suggest that the ratio δB/B remains almost constant
within 1 au, indicating γ= 4 close to the Sun. We choose an
intermediate value of γ= 3.3 for this study. Our turbulence
amplitude is set by value δB2/B2= 0.03 at 1 re, which results
in δB2/B2≈ 0.6 at 1 au, a value in line with observations (e.g.,
Bavassano et al. 1982; Bieber et al. 1994). The energy balance
between the 2D and slab modes is set to give 80% of the
turbulence energy to the 2D modes, following Bieber et al.
(1996).

The spectral shape is formed by the Kolmogorov inertial
scale, shown in Equations (6), (15), and (16), with a so-called
energy-containing range with spectrum kp at low wavenum-
bers. The spectral index p has been reported to have an effect
on particle diffusion coefficients as calculated for different
particle transport theories (e.g., Shalchi et al. 2010; Chhiber
et al. 2017). We will investigate the influence of p on the field
line random walk in the Parker spiral in a future study. In this
study, we use the power-law index p= 0 between the minimum
wavenumber κ0= 1 and the breakpoint scales λc⊥ and λc∥ for
the 2D and slab spectra, respectively.

The spectral break scale lengths λc∥ and λc⊥ are also
typically considered to have a radial dependence. Based on
modeling in Chhiber et al. (2017), we will use l =^c

( )r r r0.04 0.8
 , which is a reasonable fit to their correlation

scale near the equator, taking to account the relation between
correlation length and spectral break scale λcorr⊥= 0.8λc⊥ for
our spectral shape (Matthaeus et al. 2007; Chhiber et al.
2021a). The parallel spectral breakpoint is taken as 2 × λc⊥,
following similar ratios reported for the parallel and perpend-
icular correlation scales (e.g., Osman & Horbury 2007).

Finally, we set the solar wind speed to 400 km s−1, the solar
rotation rate to 2.86533× 10−6 rad s−1, and the magnetic field
at 1 re to 1.78 G.

3. Results

3.1. Field Line Maps at 1 au

In this section, we investigate the magnetic field line
behavior in the interplanetary space in the presence of
turbulence as described by our model. We solve Equation (7)
for a sample of 100,000 field lines for each simulation run. In
Figure 3, we trace 50 field lines that start at r= 2re in a
latitudinal and longitudinal area of 8°× 8° centered at the solar
equator at heliolongitude f= 0°. As can be seen, the field lines
in general follow the Parker spiral geometry; however, they
clearly show random fluctuations, which spread the field lines
in heliolongitude to a range considerably wider than the
initial 8°.

We will now concentrate on the extent to which the field
lines spread in heliolongitude and heliolatitude as they advance
from the Sun to 1 au. In Figure 4, we show in panel (a) how the

field lines map from 2re to the 1 au sphere for the 2D
turbulence case displayed in Figure 2 over a wider heliolongi-
tudinal and colatitudinal view. The color scale shows the
density of the field lines in logarithmic scale. The red circle and
yellow diamond show the Parker spiral crossing point and the
mean of the field line crossings, respectively, and the magenta
square shows the standard deviation range in latitude and
longitude, centered around the mean of the field line
distribution. As we can see, the field lines cross the 1 au
sphere only at narrow lanes in the f−θ plane, spanning an
angular range of 60° in longitude and 45° in latitude.
Compared to Figure 4(a), in Figure 4(b), the turbulence

parameters have been changed from a 100% 2D contribution to
an 80%:20% 2D–slab mixture. As can be seen, the slab
component makes it possible for the field lines to spread from
the vector potential equipotential surfaces. As a result, the field
lines map over a wider range, filling a large proportion of a
60°× 60° angular area, with field line density variation of an
order of magnitude. We do, however, see notable fine structure
and regions where the field lines have no access. Also, the
mean of the crossing locations is still considerably displaced
from the Parker spiral crossing point (red circle).
In Figure 5, we investigate the effect of the source size on the

crossing point distribution. We can see that when increasing the
source size from 2° to 8°, the crossing points have spread
further; however, we can still see some fine structure and
notable distortions due to the local structure of the turbulent
field. The longitudinal standard deviations differ significantly,
with σf= 10°.6 for the 2°× 2° source and 14°.2 for the 8°× 8°
source. The latitudinal extent is of the same order as the
longitudinal extent. As can be seen, the distribution of the field
lines is significantly displaced from the Parker spiral (red
circle). This indicates that when the source region at the Sun is
small, the local turbulent structures can significantly distort the
connection from the solar source to 1 au from the nominal
Parker spiral.
While the local structures give information on the complex-

ity of the field line mappings at 1 au, they complicate the
comparison of the field line simulations with models based on

Figure 3. Sample of field lines starting from an 8° × 8° source region at the
solar equator at 2re for composite turbulence.
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field line diffusion, where such local turbulent structures do not
exist. For this purpose, we have formed a field line crossing
map averaged over an ensemble of turbulent field lines. This is
done by using a wide range of source longitudes, between 0°
and 360°, and forming a density map of field line crossings at
1 au from the 1 au latitude and the change in heliolongitude of
each field line from the source to 1 au, f f-r2 1 au

, which we
present in Figure 5(c). As can be seen, the distribution is now
almost symmetric with respect to the Parker spiral crossing
point (red circle). The longitudinal and latitudinal standard
deviations are both about 14°, and the distribution at 1 au is
centered around the Parker spiral crossing point. This kind of
ensemble-averaged distribution can be more easily used for
comparison of our results against field line transport models.

3.2. Field Line Random Walk from 2re to 1 au

In this section, we investigate how the extent of the random-
walking field lines perpendicular to the mean magnetic field
evolves as a function of heliocentric distance and compare our
simulation results with theoretical approaches on the field line
behavior due to plasma turbulence. The random walk of field
lines is often described in terms of field line diffusion.
Matthaeus et al. (1995) introduced a link between the
turbulence properties and a field line diffusion coefficient for
the field lines across the mean field direction in two-component
turbulence as

= + +^ ( ) ( )D D D D
1

2
4 , 17slab slab

2
2D
2

where Dslab and D2D are contributions to the diffusion
coefficient from the slab and 2D turbulence. The contribution
of the 2D turbulence can be written in the form

l= ˜ ( )D
dB

B

2
, 18D2

2D
2

where òl d= ^ ^
-˜ ( )S k k d k B2 2 2

2D is the so-called ultrascale
(see also Matthaeus et al. 2007), with S⊥(k⊥) as the 2D
turbulence spectrum and k⊥ as the perpendicular wavenumber.
We calculated the ultrascale for our spectrum using a piecewise
approximation as in Matthaeus et al. (2007) to find
l l» ^˜ 1.34 c at the limit of small k0λc⊥. It should be noted

that on the limit of k0= 0, the ultrascale diverges for p= 0 (see
also Engelbrecht 2019). The slab contribution, =Dslab

l dB Bcorr, slab
2 2

 , is small compared to the 2D contribution for
our parameters.
An alternative formulation for the field line diffusion

coefficient was suggested by Ghilea et al. (2011), who
employed random ballistic decorrelation (RBD) instead of
dynamic decorrelation (DD), used in Matthaeus et al. (1995), to
obtain D⊥=Dslab+D2D,RBD, where

l
p

= ^ ( )D
dB

B2
, 192D,RBD corr

2D
2

with λcorr⊥= 0.8λc⊥ for our turbulence spectrum (Chhiber
et al. 2021a).
These diffusion coefficients can be used to evaluate the

spread of field lines in the heliosphere. In this work, we do not
solve the full field line diffusion equation in the Parker spiral.
Instead, in Appendix A, we derive a method to directly
calculate the longitudinal variance of diffusively spreading field
lines in radial geometry.
In Figure 6, we present a comparison of the longitudinal

standard deviation σf of the field lines for the integrated field lines
from our turbulence model (solid black curve) and the solution of
the radial diffusion Equation (A5) for the two diffusion
coefficients given by Equations (18) and (19) (dashed–dotted
cyan and dashed magenta curves, respectively). As can be seen in
the figure, the longitudinal width obtained with our new model
increases rapidly within the first 30re and then continues to
increase at a much slower rate, reaching 13°.5 at 1 au (215re). A
similar initial fast and later slower increase is also seen for both of
the radial diffusion models. The RBD diffusion coefficient given
by Equation (19) is closer to the σf obtained from our new model
than the DD coefficient, with both resulting in a slightly larger
longitudinal extent. This can be expected based on the comparison
of the diffusion models with turbulence simulations by Ghilea
et al. (2011; with constant background magnetic field), who
showed that for a low slab fraction and turbulence amplitude
δB2/B2, both the RBD and DD models overestimate the spreading
of the field lines.
It is important to note the initial rapid increase of the

longitudinal standard deviation in Figure 6, as it demonstrates

Figure 4. Distribution of field line crossings at 1 au for (a) 2D turbulence and (b) a composite source for a 2° × 2° source centered at the solar equator at longitude
f = 0°. The red circle depicts the location where the Parker spiral from the center of the source region traverses the 1 au square. The magenta box depicts the range of
standard deviation in latitude and longitude around the mean (yellow diamond).
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that the conditions close to the Sun are very significant for the
evolution of the field line extent. For the parameters in our
study, the field line diffusion coefficient, as given by
Equations (18) and (19), scales as DFL∝ r1.15. However, it is
more informative to describe diffusion in angular units, rather
than distance units, as in Equation (A5), since we are interested
in the evolution of the longitudinal extent of the field lines. In
angular units, the field line diffusion coefficient is given as
Dang∝ r−0.85, that is, a decreasing function of the heliocentric
distance. Thus, the field line random walk in longitude and
latitude is dominated by the conditions at heliocentric distances
close to the Sun. We demonstrate this in Figure 7, where the
field lines are integrated from an 8°× 8° source region at 20re
to 1 au instead of from 2re. The distribution of the field line
crossings at 1 au is clearly narrower than that in Figure 5(b),
with a longitudinal standard deviation of 8°.

3.3. Field Line Lengths in Parker Spiral Turbulence

We next turn our attention to the length of the field lines and
their dependence on the relative position between the source
region and a 1 au observer. In Figure 8, we show the density of
the field line lengths s as a function of the change in the

heliolongitude of the field line from 2re to 1 au, summed over
latitude. The abscissa in panels (a) and (b) is the change
between the heliolongitude of the center of the source region
and the field line at 1 au. In Figure 8(c), the distribution is
formed from an ensemble average of source longitudes as in
Figure 5(c), and the abscissa is the change in the heliolongitude
for each field line in the distribution.
As we can see in all of the panels of Figure 8, the path length in

our turbulence model is typically significantly longer than the
Parker spiral length, shown by the horizontal red line. At 60°, the
field line length varies between 1.15 and 1.45 au (within 1 order of
magnitude of the most likely length). The field line length
distribution is strongly dependent on the source longitude of the
field lines. Locations with a small angular separation, f f-r2 1au

,
corresponding to sources that would be near the center of the solar
disk from the perspective of a 1 au observer, tend to have smaller
s-values, close to the nominal Parker spiral length. Some field
lines, east of the nominal Parker spiral–connected longitude
f f- ~ 60r2 1au

, are shorter than the nominal Parker spiral
length due to turbulence “straightening” the curved Parker spiral to
a more radial field line (see also Laitinen & Dalla 2019). However,
even from those source longitudes, the majority of the field lines
are longer than the nominal Parker spiral. Further to the west, the
source regions are connected to the observer at 1 au by

Figure 5. Distribution of field line crossings at 1 au for (a) a narrow 2° × 2° source and (b) an 8° × 8° source, both centered at r = 2re, θ = π/2, and f = 0, and (c) a
source ensemble-averaged over longitude, with a latitudinal extent of 8°, at r = 2re, θ = π/2. In panel (c), the abscissa shows the difference between the initial (2re)
and final (1 au) longitude for each field line. The symbols and magenta box are the same as in Figure 4.

Figure 6. Standard deviation of the longitudinal distribution of field lines as a
function of distance from the Sun. The solid black curve shows the result of field
line integration with our new turbulence model, whereas the dashed–dotted cyan
and dashed magenta curves show the solution of Equation (A5) for the DD
(Equation (18)) and RBD (Equation (19)) diffusion coefficients, respectively.

Figure 7. Distribution of field line crossings at 1 au for an 8° × 8° source
at 20re.
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progressively longer paths, with the sources behind the west limb
almost 40% longer than the nominal Parker spiral.

The effect of the source size can be seen in the three panels of
Figure 5. Panel (a) refers to a small source, and we can see that
the range of longitudes is patchier and narrower than in the wider
source in panel (b), with intermittent ranges of shorter and longer
path lengths. In panel (c), the field line lengths are ensemble-
averaged over source longitudes, which results in smoothing
over the fine structure of the small localized source regions.

4. Discussion

In this paper, we presented the first model of interplanetary
turbulence in a Parker spiral geometry that contains a 2D
component with respect to the Parker spiral mean field
direction. The wave modes are spaced logarithmically, making
it possible to model turbulent scales over several orders of
magnitude. The turbulence is defined using an analytic
formulation, which enables us to avoid the divergence of the
field that may arise from interpolation of the field on finite
grids. We validated the model by showing that the 2D
turbulence model fulfills the required invariance of the vector
potential along the Parker spiral mean magnetic field and the
trapping of field lines on constant vector potential equisurfaces
(Figures 1 and 2). Further, we demonstrated that the evolution
of the longitudinal extent of the field lines is consistent with the
commonly used theoretical descriptions, taking into account
the applicability of those models within the heliospheric
turbulence parameter range (Figure 6). The new model enables
us to investigate the turbulent field line behavior in an
environment where the turbulence varies radially and is
coupled to the nonradial, Parker spiral large-scale geometry.
Applied to charged particle transport in magnetized turbulence,
the model can be used to investigate the interplay between
large-scale drifts and particle propagation, initially along
meandering field lines and, at longer timescales, diffusively
across the mean magnetic field.

Our results agree with suggestions in earlier field line
simulation studies that find that the field lines spread to a large
range of longitudes and latitudes in the heliosphere (e.g.,
Tooprakai et al. 2016; Chhiber et al. 2021a)5. We also note that

the regions with depleted field line density in the field line
maps (Figures 5(a) and (b)) may offer an explanation for
energetic particle intensity dropouts reported in some solar
energetic particle (SEP) events (e.g., Mazur et al. 2000), as
already reported in earlier simulation studies (Giacalone et al.
2000; Ruffolo et al. 2003; Tooprakai et al. 2016).
The wide heliolongitudinal and heliolatitudinal extent of the

field lines due to turbulence is also significant for the observed
wide longitudinal extent of SEP events. Several works report a
wide longitudinal extent of the peak SEP intensities, with a
standard deviation of 30°–50° (Lario et al. 2006, 2013;
Wiedenbeck et al. 2013; Cohen et al. 2014; Richardson et al.
2014). This range is wider than the field line extents in our
study, with a longitudinal standard deviation of 13°; however, a
wider range could be obtained with stronger turbulence,
particularly closer to the Sun. The wider SEP peak intensity
extent may also be affected by the cross-field diffusion of
particles that spreads the SEPs further from the meandering
field lines (see, e.g., Laitinen et al. 2013, 2017). It should be
noted that the longitudinal extent of SEPs can be due to several
mechanisms, such as wide SEP sources at CME-driven shock
waves (e.g., Cliver et al. 1995), field line spreading in the
corona (e.g., Liewer et al. 2004), sympathetic flaring (e.g.,
Schrijver & Title 2011), and cross-field diffusion from the
mean magnetic field (as opposed to from the turbulently
meandering field lines; e.g., Zhang et al. 2009; Droge et al.
2010; Strauss et al. 2017; see also, e.g., Wiedenbeck et al.
2013, for a discussion). Thus, our results only strengthen the
suggestions that a field line random walk is one possible
mechanism, without overruling other mechanisms. We will
investigate this issue by performing full-orbit simulations in the
magnetic field configuration described in this paper in the near
future.
Magnetic field line lengths to 1 au have recently been

investigated by several research groups using a variety of
different modeling approaches. Chhiber et al. (2021c) intro-
duced a simple method based on random-walking field lines
to evaluate the length of turbulent field lines with

d= » +s s B B B B10 0
2 2/ / , where B0 and B are the

magnitudes of the background and the total magnetic field,
B=B0+ δB, and s0 is the length of the undisturbed field line.
The red horizontal dashed line in Figure 9 shows this estimate
for the δB2/B2 used in our study (see Section 2.3). The

Figure 8. Contour plot of the density of the lengths of the field lines as a function of the change in field line heliolongitude from 2re to 1 au for (a) a 2° × 2° source
and (b) an 8° × 8° source and (c) source ensemble-averaged over longitudes. In panels (a) and (b), the abscissa shows the heliolongitude of the field line at 1 au with
respect to the heliolongitude of the center of the source region at 2re, and in panel (c), the distribution is formed for the change in heliolongitude of each field line as in
Figure 5(c). The red horizontal line at s = 1.17 au shows the nominal Parker spiral length.

5 Note that the Giacalone & Jokipii (2004) footpoint random walk model
results in a narrower range.
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obtained path length of Chhiber et al. (2021c) is slightly larger
than the peak of our simulations (the filled contours in
Figure 9), possibly because their simple model does not
evaluate the sum of random-walking step lengths as a
stochastic process. They also proposed a more rigorous method
to evaluate the path length, but due to its complexity for a
nonconstant δB/B heliosphere, we do not present that estimate
here. Chhiber et al. (2021c) also analyzed field line simulations
in composite turbulence in radial geometry, which in general
agreed with both their simple and rigorous analytic models.

The black contour lines in Figure 9 show the path length
distribution derived from the stochastic model by Laitinen &
Dalla (2019), adjusted to the parameters of our study (including
using the RDB field line diffusion coefficient (Ghilea et al.
2011) instead of DD (Matthaeus et al. 1995); see Appendix B).
As one can see, both the range of path lengths and the
heliolongitudinal dependence of the path lengths obtained with
the Laitinen & Dalla (2019) method are very similar to those in
our study. It should be noted that the Laitinen & Dalla (2019)
model is 2D, which is likely to result in shorter path lengths
than a 3D model would. Also, as implied by Figure 6, the field
line diffusion coefficient given by Equation (19) is larger than
that implied by our simulation studies, resulting in longer path
lengths. These two effects compensate for each other to some
extent, which results in good agreement with the results from
our new analytical turbulence model.

The vertical bars in Figure 9 show the ranges obtained by Pei
et al. (2006; dashed blue) and Moradi & Li (2019; dotted–
dashed magenta) using the magnetic field footpoint motion
model of Giacalone (2001) for random walk rms speeds of 4
and 2.5 km s−1, respectively. The values are obtained as a
range, where the field line length distribution f (s) fulfills the
condition > -( ) { ( )}f s f smax e 1 2. The Pei et al. (2006) study
started their field lines from 0.1 au (which we have compen-
sated in Figure 9), which may contribute to the lower range of
path lengths for 4 km s−1 rms speeds, as compared to the
Moradi & Li (2019) 2.5 km s−1 case. It should be noted that the
Giacalone (2001) model turbulence is not purely transverse
with respect to the Parker spiral, and this may affect the path
lengths, as compared to our path lengths. Direct comparison of

the Pei et al. (2006) and Moradi & Li (2019) path lengths with
our model is not trivial, as the spectral shape and the range of
spectral scales in their works are very different from those used
in our study.
The length of the field lines from the Sun to Earth is often

discussed in the context of the arrival of SEPs from their
sources near the Sun. A popular method for obtaining the solar
particle injection time, the velocity dispersion analysis (VDA)
method (e.g., Lin et al. 1981), fits the observed SEP onset times
and returns the solar injection time and the path length the first
particles have traveled, under the assumption that the first
particles have propagated scatter-free. The obtained path
lengths are often very long compared with the nominal Parker
spiral lengths (e.g., in large-statistic studies of SOHO, ACE,
and STEREO-observed SEP events (Paassilta et al.
2017, 2018) and analysis of Ulysses SEP observations (Dalla
et al. 2003)). Recently, long VDA path lengths have also been
reported close to the Sun (e.g., Leske et al. 2020). However, the
VDA method is known to produce unreliable results,
particularly for the path length, due to its assumption of
scatter-free propagation of first particles, which essentially
ignores the effect of SEP transport in a turbulent medium.
Several modeling studies have shown that the transport effects
have a significant effect on the VDA path lengths (e.g.,
Lintunen & Vainio 2004; Saiz et al. 2005; Laitinen et al. 2015;
Wang & Qin 2015). However, our results (and those of, e.g.,
Pei et al. 2006; Laitinen & Dalla 2019; Moradi & Li 2019;
Chhiber et al. 2021c) suggest that the lengthening may also be
caused by physical effects instead of only being a by-product of
ambitious assumptions within the VDA method.
As discussed in Laitinen & Dalla (2019), not properly

accounting for the field line lengths may have significant
implications on past modeling efforts of SEP transport that
include the transport as spatial diffusion across the mean field.
Such models are unphysical in that the spreading of the particle
population diffusively across the mean field is not constrained
by causality (see also Strauss & Fichtner 2015). This can be
readily seen in the stochastic differential equation description
of the diffusion equation (e.g., Gardiner 2009); only the
propagation along the mean field direction is consistent with
the particle velocity, whereas the stochastic displacement
across the mean magnetic field contributes to the distance
propagated by the pseudoparticle but takes no time. This can
result in nonphysical arrival times for the modeled SEPs. In
particular, the asymmetry of the path lengths caused by the
Parker spiral geometry (as seen in Figure 8) may significantly
affect the SEP time-intensity profiles.
The asymmetry caused by the Parker spiral also has other

consequences for energetic particles. Charged particles experi-
ence latitudinal drifts due to the gradient and curvature of the
Parker spiral field, resulting in deceleration particles in the
convective solar wind electric field (e.g., Dalla et al.
2013, 2015; Marsh et al. 2013). However, it is unclear how
these drifts interplay with the meandering of the field lines.
Comparison of galactic cosmic-ray observations with modula-
tion models (e.g., Potgieter et al. 1989) suggests that the
heliospheric charged particle drifts, as described by the
antisymmetric part of the cosmic-ray diffusion tensor (Jokipii
et al. 1977), are reduced, and it has recently been suggested that
a similar reduction would also affect the drifts of SEPs (e.g.,
Engelbrecht et al. 2017; van den Berg et al. 2021). Simulation
studies have indicated that turbulence would have the effect of

Figure 9. Length of the field line between 2re and 1 au as a function of
longitude at 1 au. The color contour distribution is formed for the change in
heliolongitude as in Figure 8(c).
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reducing the drifts (e.g., Giacalone et al. 1999; Minnie et al.
2007; Tautz & Shalchi 2012). It should be noted that Giacalone
et al. (1999) and Tautz & Shalchi (2012) investigated the
nonzero asymmetric part of the diffusion tensor in the presence
of a constant background magnetic field, that is, in a
configuration where macroscopic drifts do not exist (see also
Burger & Visser 2010), whereas Minnie et al. (2007)
implemented a nonconstant background that produces macro-
scopic gradient drift but without curvature or spatially varying
turbulence parameters. Our new turbulence model provides an
ideal tool for investigating the drift reduction of SEPs in the
heliospheric environment with curvature and gradient drifts in a
spatially varied turbulence, and this will be the subject of a
future study.

The path lengths and the longitudinal and latitudinal extent
of the field mapping at 1 au depend on the turbulence
parameters and their spatial dependence in the heliosphere. In
this study, we used moderate turbulence parameters with the
energy-containing range spectral index p= 0, λcorr⊥ ∝ r0.8, and
δB2∝ r−3.3. The values used for these parameters vary greatly
in the literature. The energy-containing range spectrum affects
the relation of the correlation scale and the spectral break scale
and, through that connection, the field line and particle
diffusion coefficients (e.g., Matthaeus et al. 2007; Shalchi
et al. 2010; Engelbrecht & Burger 2015). For correlation
length, one option is to use the Hollweg (1986) assumption of
λcorr∝ 1/B1/2, giving λcorr∝ 1/r close to the Sun (e.g., Perri
et al. 2020), whereas some studies have used constant
correlation lengths (e.g., Qin & Wang 2015; Laitinen et al.
2016; Strauss et al. 2017), and some use the results of
turbulence transport simulations (e.g Chhiber et al. 2017; van
den Berg et al. 2021). Recent results from the PSP (Fox et al.
2016) suggest a radial dependence of λcorr∝ r0.746 at helio-
centric heights above 30re, close to our model assumption. It
should also be noted that the PSP observations suggest λcorr to
vary by an order of magnitude from one solar wind stream to
another (Chhiber et al. 2021b). Further, the ratio of the slab and
2D correlation lengths can vary both from one solar wind
stream to another and radially (e.g., Weygand et al. 2011;
Adhikari et al. 2022).

The amplitude of the fluctuations, δB2, and its dependence
on distance from the Sun also vary considerably, both in
observations and in modeling. The Helios observations found
that δB2/B2 remained almost constant between 0.3 and 1 au in
some frequency ranges (Bavassano et al. 1982), varying up to
an order of magnitude at different times and solar wind streams
(see also Chhiber et al. 2021b, for recent PSP observations),
and this near-constancy has been used in several field line and
cosmic-ray modeling studies, with values up to δB/B∼ 1 (e.g.,
Qin & Wang 2015; Chhiber et al. 2021c). However, as
discussed in Section 2.3, there is also significant support for
WKB turbulence evolution, with δB2∝ 1/r3 in the interplane-
tary space, which would result in a radially increasing δB2/B2

closer to the Sun. It should be noted that close to the Sun, in the
sub-Alfvénic regime, the WKB approach gives a weaker radial
dependency, depending on the solar wind model (e.g.,
δB2∝ 1/r in sub-Alfvénic WKB solar wind in Laitinen et al.
2016). Finally, the energy partition between the slab and 2D
modes, here 20%:80%, has also been reported to vary in
different solar wind environments (see Oughton et al. 2015, for
a review) and also radially (Adhikari et al. 2022).

In a future study, we will investigate how the different
models and observed ranges of the turbulence parameters,
particularly close to the Sun in the sub-Alfvénic solar wind,
affect the field line behavior in turbulent interplanetary space.
While our understanding of the sub-Alfvénic region is limited,
the recent and future observations performed by PSP (e.g.,
Bandyopadhyay et al. 2022; Zhao et al. 2022) will guide us to a
better understanding of turbulent heliospheric field lines.

5. Conclusions

In this paper, we have investigated the turbulent field line
behavior in the heliosphere, where the mean magnetic field is in
a Parker spiral shape. The main contributions from our work
are as follows.

1. We have introduced a new analytical model for
interplanetary turbulence, where the dominant 2D waves
are transverse with respect to the Parker spiral magnetic
field direction, and the minor slab component is
approximated with an inner heliosphere radial and outer
heliosphere azimuthal slab component.

2. For the interplanetary turbulence parameters in our study,
the magnetic field traced from an 8°× 8° heliolongitu-
dinal range at the equator at 2re maps to a heliolatitudinal
and heliolongitudinal range of approximately 60°× 60°
at 1 au heliocentric distance, with a standard deviation of
14°. Areas with smaller field line densities are found, in
particular for smaller source regions, indicating potential
regions where SEP dropouts could take place.

3. The radial evolution of the longitudinal and latitudinal
extent of the mapped field lines is slower than predicted
by two popular field line diffusion models (Matthaeus
et al. 1995; Ghilea et al. 2011), consistent with the Ghilea
et al. (2011) comparison of the models with simulations
in Cartesian geometry for the turbulence parameters used.

4. The turbulence parameters at small heliocentric distances
are central to the longitudinal and latitudinal extent of the
mapped field lines, and understanding the turbulence
composition low in the corona is of utmost importance
for understanding the causes behind SEP event cross-field
extents.

5. The lengths of the field lines from 2re to 1 au are
significantly longer than that of the Parker spiral magnetic
field. Further, field lines connecting a 1 au observer to
sources behind the west limb are longer than those
connecting the observer to on-disk sources. Our model
and that presented in Laitinen & Dalla (2019) provide a
useful tool for the interpretation of SEP onset
observations.

Our results imply that the diffusion-based SEP transport
models can result in erroneous solar injection times of the
SEPs, as they are not able to account for the increased length of
the random-walking field lines. In future work, we will employ
full-orbit simulations of energetic particles in the newly
modeled interplanetary turbulence to analyze this effect and
compare the full-orbit simulations to predictions of the
diffusion models.
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Appendix A
Equation for Longitudinal Variance in Radial Geometry

Here we derive an equation for longitudinal variance for
diffusively propagating passive scalars to aid in the estimation
of the spread of field lines for different radial dependencies of
the field line diffusion coefficient. We start with the diffusion–
convection equation,

¶
¶
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where f is the density of the passive scalars, v is their velocity,
and D is the diffusion coefficients. We limit to the 2D case in
the r−f plane, with velocity describing the radial motion, and
D the longitudinal diffusion. Further, we write DFL=D/v.
Going to the steady-state limit, we can thus write the equation
in the form
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We next take the zeroth and second moments of
Equation (A2). For the zeroth moment, f0, the right-hand side
vanishes, and the remaining equation integrates to
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where f00 is the density at r0 integrated over f.
The second moment of the left-hand side of Equation (A2) is

trivial. The right-hand side reduces to 2DFLf0 at the limit
f <<{ ( )} ( )f r f rmin , 0 . Thus, we get
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where f2= ∫f2fdf. We can rewrite this into an ordinary
differential equation for the longitudinal variance Vf= f2/f0 as
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where we have defined the diffusion coefficient in angular units
as Dang=DFL/r

2. For a power law = a( )D D r rang ang0 0 , this
simply integrates to
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Appendix B
Stochastic Field Line Length with RBD Approach to Field

Line Diffusion

Laitinen & Dalla (2019) derived the length of a meandering
magnetic field using a random walk for step length across the
mean magnetic field direction comparable to the turbulence
ultrascale, láD ñ = ˜x2 2. The corresponding step length along
the field,Δz, can then be obtained by using the definition of the
field line diffusion coefficient, = áD ñ D( )D x z2FL

2 . In
Laitinen & Dalla (2019), the diffusion coefficient was taken
to be the one given by Matthaeus et al. (1995), resulting in
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However, in this study, we found that the Ghilea et al. (2011)
RBD method yields a diffusion coefficient that agrees better
with our results than that of Matthaeus et al. (1995). Using the
RBD diffusion coefficient, we get
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The change from the Matthaeus et al. (1995) to the Ghilea
et al. (2011) diffusion coefficient also changes the simple
approximation in Laitinen & Dalla (2019) to the form

f f hrdá ñ = +( ) ( )( ) ( )s r s r B B, , 1 , B20
2 2

where s0(r, f) is the length of a Parker spiral from the source
longitude to longitude f, ρ is a geometric factor within the
range [0, 1], and h p l l= »^( )( ˜ )2 0.56corr

2 .
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