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Abstract  18 
Understanding a neuron’s input-output relationship is a longstanding challenge. Arguably, these signalling 19 
dynamics can be better understood if studied at three levels of analysis: computational, algorithmic and 20 
implementational (Marr, 1982). But it is difficult to integrate such analyses into a single platform that can 21 
realistically simulate neural information processing. Multiscale dynamical “whole-cell” modelling, a recent 22 
systems biology approach, makes this possible. Dynamical “whole-cell” models are computational models 23 
that aim to account for the integrated function of numerous genes or molecules to behave like virtual cells 24 
in silico. However, because constructing such models is laborious, only a couple of examples have emerged 25 
since the first one, built for Mycoplasma genitalium bacterium, was reported in 2012. Here, we review 26 
dynamic “whole-cell” neuron models for fly photoreceptors and how these have been used to study neural 27 
information processing. Specifically, we review how the models have helped uncover the mechanisms and 28 
evolutionary rules of quantal light information sampling and integration, which underlie light adaptation and 29 
further improve our understanding of insect vision. 30 
 31 

Introduction 32 
Single neurons are the main building blocks of the nervous system. A central problem in neuroscience is to 33 
understand mechanistically how neurons sample and communicate information. Quantitative computational 34 
models can help reproduce a neuron’s physical properties, simulate its dynamics, and approximate its 35 
information processing. However, incorporating the essential details to achieve appropriate model 36 
complexity with computational tractability is a notoriously difficult balancing act (Herz et al., 2006). As Yakov 37 
Frenkel (1894–1952), a Russian physicist, mulled: A good theoretical model of a complex system should be 38 
like a good caricature: it should emphasise those features, which are most important and should downplay 39 
the inessential details. However, the only snag with this advice is that one does not really know which are the 40 
inessential details until one has understood the phenomena under study (Hemberger et al., 2016). To search 41 
for the essential details to study neural information processing, we think there is a need for biomimetic 42 
“whole-cell” neurons models, which implement microscopic molecular details to reproduce macroscopic 43 
cellular input-output dynamics. We will next highlight this point by briefly reviewing the major single-neuron 44 
model categories.  45 
 46 
A brief overview of single-neuron model categories in computational neuroscience 47 
Single-neuron models fall into two major categories: detailed biophysical models and simple 48 
phenomenological models. The phenomenological models adopt a reductionist approach, aiming to derive 49 
the simplest mathematical format describing a particular feature of a stimulus-response function. Such 50 
models can be derived from experimental data or can emerge from theoretical derivations out of first 51 
principles. The models typically start from empirical mathematical descriptions, such as Volterra filter series 52 
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and static nonlinearities (French et al., 1993; Juusola et al., 1995b), with parameters fitted to reproduce 1 
neural responses to explicit stimuli (Ostojic and Brunel, 2011). However, because these generic black-box 2 
“block-components” are too simple to mimic real neurons’ adaptive sampling dynamics, the models provide 3 
limited predictive power and generalisability beyond the tested conditions and cannot respond like real 4 
neurons to a broad range of stimuli (Juusola et al., 2017; van Kleef et al., 2010). 5 
 6 
To study how the emergent properties come about from complex systems, such as living cells, it seems 7 
reasonable to construct bottom‐up biomimetic models, which aim to replicate the cell's ultrastructure, 8 
signalling pathways and response dynamics. Such biologically-realistic models follow a constructionist 9 
approach, assembling the relevant biological details to achieve sufficient verisimilitude for the neuron’s 10 
workings to be studied systematically and understood mechanically (Clark et al., 2013; Juusola et al., 2017).  11 
 12 
Whilst there is a spectrum of neuronal modelling techniques that lie between the phenomenological and 13 
biologically-realistic models (Herz et al., 2006), we focus on the most detail-oriented single neuron models 14 
because they can act as diagnostic simulation platforms to understand the studied phenomena. 15 
Trendsettingly, these modelling approaches are being applied in large regional brain initiatives, such as the 16 
human brain project (HBP), highlighting their growing influence on the field. 17 
 18 
The HBP hypothesises that building biologically accurate brain models can help explore the emergence of 19 
biological intelligence (Markram, 2006). The “realistic” single neuron models have shown their emergent 20 
explanatory power in revealing the mechanisms for a neuron’s nonlinear signalling dynamics, with examples 21 
tabled in (Herz et al., 2006). It is even assumed that these kinds of complex single-neuron computations may 22 
underlie biological intelligence. For example, Goriounova et al. showed in silico, with a detailed pyramidal 23 
neuron model, that more extensive and more complex dendrites of human pyramidal neurons may associate 24 
with large temporal cortical thickness and high IQ scores, reflecting fast action potential kinetics (Goriounova 25 
et al., 2018).  26 
 27 
More than a decade ago, scientists began to use the biologically-detailed single neuron models to simulate 28 
large neuronal population activity (Markram, 2006, 2012; Markram et al., 2015). The Blue Brain Project, a 29 
collaboration between EPFL and the IBM computing corporation, even started to assemble 100,000 30 
“realistic” neuron models to simulate a rat’s neocortical column, considered to be an elementary cortical unit 31 
within the brain (Markram, 2006, 2012; Markram et al., 2015). More recently, biological-realistic simulation 32 
of large neural networks is included in several well-funded national and global brain initiatives, including the 33 
Human Brain Project (HBP) (Markram, 2012) and Obama’s BRAIN initiatives (Szalavitz, 2013). The on-going 34 
China Brain Project (Poo et al., 2016) also emphasises a more applied aspect, the brain-inspired Artificial 35 
Intelligence (AI). However, we would like to take a step back and look critically at this “realistic” neuronal 36 
modelling approach, asking: “is the current realistic neuronal modelling approach realistic?”. 37 
 38 
Biophysical single neuron models originate from the Hodgkin-Huxley’s formalism (Hodgkin and Huxley, 39 
1952), which simulates how action potentials arise from two specific ion-channel population’s push-pull 40 
dynamics on the cell membrane. Wilfred Rall recognised that the complexity of the dendritic and axonal 41 
structures would profoundly affect a neuron’s voltage generation and propagation (Rall, 1959) and 42 
developed the cable theory to quantify how current flows in realistic neuronal structures (Rall, 1964). The 43 
main idea was to segment the neurons into many little compartments, following their real morphology, 44 
building HH models for each compartment, and connecting them by resistors through which axial current 45 
flows. Such detailed compartmental models are currently the most widely-used biologically “realistic” 46 
neuronal models. They can be quite complicated, with a single model composed of tens of thousands of 47 
compartments (Goriounova et al., 2018), but enable investigations about how the complicated neural 48 
morphology, the ionic conductance compositions, and the synaptic input distributions influence the neuron’s 49 
signal processing. 50 
 51 
Nonetheless, the detailed compartmental model’s core remains electro-centric, describing mainly the 52 
generation and propagation of electrical signals in the brain. Consequently, Bhalla pointed out that it is 53 
perhaps best to think of neuronal computation as a seamless blend of electrical and chemical signalling 54 
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(Bhalla, 2014). Numerous neuronal functions are initiated, modulated or maintained by chemical signalling 1 
pathways: environmental signals are quite often transduced into neuronal signals through molecular reaction 2 
pathways; neurons mainly communicate through chemical synaptic transmissions; ionic or molecular 3 
diffusions and changes to cytoplasmic ionic concentrations can be typical feedback regulator for intracellular 4 
pathways; and neuronal functions are also subject to other chemical processes, including neuromodulations, 5 
homeostasis, metabolisms and housekeeping processes. 6 
 7 
The electro-centric models lack the integration of chemo-centric systems’ biochemical models, making them 8 
insufficient to explain how chemical signals influence neuronal signalling and communications (De Schutter, 9 
2008). As a result, a detailed compartmental neuron model, no matter how complicated and realistic in 10 
morphology, cannot mimic a real neuron in its natural environment, where its input would be dynamically 11 
integrated from many chemical synaptic events from numerous pre-synaptic neurons. This realisation raises 12 
the question: If a single neuron’s input and output relationships cannot be investigated concerning its natural 13 
environment, what are the fundamental hypotheses for these models and simulations to test about their 14 
information flow and processing, or the proposed emergence of intelligence? 15 
 16 
Need for biomimetic “whole-cell” neuron models to study neural information processing 17 
A neuron is a signal processor that transforms its input or multiple inputs to its electrical outputs, from the 18 
information processing viewpoint. Forty years ago, David Marr proposed that three analysis levels are 19 
needed for a comprehensive understanding of neural information processing: the computational, the 20 
algorithmic and the implementational levels (Marr, 1982). Out of these, the mechanistic implementations 21 
have continuously remained elusive (Herz et al., 2006). It is hoped that this becomes possible with the help 22 
of biologically-realistic neuron models.  23 
 24 
The ideal biologically-realistic single neuron models should integrate both the electrical membrane 25 
properties and the chemical transduction pathways. The first chemical kinetic models for neural signalling 26 
were published several decades ago (Land et al., 1981). Many pioneering studies have since highlighted the 27 
importance of integrating the electrical and biochemical reaction events for improving understanding of 28 
neuronal signalling (Bhalla, 2011; Bhalla and Iyengar, 1999; Kotter and Schirok, 1999). A wide range of kinetic 29 
models of chemical signalling pathways for signal transduction (Klipp and Liebermeister, 2006), synaptic 30 
transmission and plasticity (Kim et al., 2013; Naoki et al., 2005; Smolen et al., 2012) have been constructed, 31 
with standardised open-source simulation packages enabling the reaction kinetics to be coupled with particle 32 
diffusion in realistic neuronal morphology (Stiles and Bartol, 2000; Vayttaden et al., 2004). These models 33 
primarily comprise subcellular structures, such as synapses, spines and dendrites, and can be analysed using 34 
dynamical systems approaches. But because the models are local, tuned for neural sub-structures, they are 35 
inherently limited in quantifying the input-output relationship of a “whole-neuron”; thus, these models 36 
cannot explain neural information processing at the global (cellular) level.  37 
 38 
Biochemistry models and biophysical models should be integrated across the entire cell membrane at 39 
multiple spatial scales; from synapses and spines at nanometer scales to action potential propagation along 40 
axons up to a meter scale. “Whole-cell” models are such biomimetic models, implementing microscopic 41 
molecular details to reproduce macroscopic “whole-cell” dynamical input-output behaviours (Goldberg et 42 
al., 2018). The ultimate aim of “whole-cell” dynamical models is to act as virtual in silico cells, accounting for 43 
the integrated function of numerous genes or known molecules (Tomita, 2001). Such methodology is 44 
contemporary in systems biology. Several whole-cell dynamical models have been reported to simulate gene 45 
networks or cellular metabolisms (Goldberg et al., 2018), and this approach is predicted to have real potential 46 
to make a powerful impact on molecular and systems biology, bioengineering and medicine.  47 
 48 
Unfortunately, however, it is hard to interlink stochastically operating signalling pathways, ionic diffusion, 49 
and electrical dynamics, and there are only a few “whole-cell” models for analysing neural information 50 
processing. This sparsity stems from the incomplete data to constrain the biochemical dynamics in neural 51 
signalling and the neurons’ complicated structural sophistication and connectivity. Therefore, it is a 52 
formidable challenge to accurately assess and quantify a neuron's real inputs in its natural environments. 53 
Advantageously, peripheral sensory neurons, especially the receptor neurons, directly face the environment, 54 
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their input can be effectively characterised (van der Schaaf and van Hateren, 1996). As such, the first “whole-1 
cell” neuron models were built for fly (Drosophila, Calliphora and Coenosia) photoreceptors (Song et al., 2 
2012a). Photoreceptors populate the retina, the first neural layer of the eye, where they sample and 3 
transduce changes in environmental photon influx (light input) into electrical responses (neural output), 4 
initiating vision.    5 
 6 
From the information processing perspective, abided by data processing inequality (Shannon, 1948), which 7 
states that any post-processing cannot increase information, photon sampling constitutes the absolute visual 8 
information bottleneck (Juusola and de Polavieja, 2003). Any information the photoreceptors lose cannot be 9 
recovered downstream. Consequently, it is vital to understand how a single photoreceptor samples and 10 
processes light information and the underlying mechanisms that determine its capacity to do so.  11 
 12 
Furthermore, because of the unprecedented molecular, ultrastructural, electrophysiological knowledge 13 
about the phototransduction pathways, and because its quantal sampling dynamics were obtained from 14 
systematic in and ex vivo experimental and information-theoretical investigations (Goldberg et al., 2018; 15 
Hardie, 1991; Hardie and Minke, 1992; Hardie et al., 1993; Hardie and Postma, 2008; Hardie et al., 2001; 16 
Juusola and de Polavieja, 2003; Juusola and Hardie, 2001a, b; Juusola et al., 1994; Niven et al., 2003; Song et 17 
al., 2012b; Vähäsöyrinki et al., 2006; Wardill et al., 2012; Zheng et al., 2006; Zheng et al., 2009), fly 18 
photoreceptors became the premier “whole-cell” models for simulating neural information processing.  19 
 20 
The “whole-cell” fly photoreceptor models are multiscale. For the first time to our knowledge, they 21 
connected the microscopic molecular reaction dynamics and the macroscopic “whole-cell” input-output 22 
transformations in a single simulation platform. The previous state-of-the-art biophysical fly photoreceptor 23 
models either focused on mapping the cell’s steady-state nonlinear input-output relationships (French et al., 24 
1993; Juusola et al., 1995b; van Hateren and Snippe, 2006) or simulating its molecular reaction pathways in 25 
transducing single photon energy (Pumir et al., 2008). In clear contrast, the “whole-cell” photoreceptor 26 
models (Song et al., 2012a) combined these two separate objectives. These new models accurately simulate 27 
the molecular reactions of a photoreceptor’s sampling unit (microvillus) in transducing a single photon and 28 
the reaction dynamics of 30,000-90,000 microvilli when transducing millions of photons. And crucially, by 29 
following the experimentally quantified quantum bump (elementary response) dynamics and statistics 30 
(Gonzalez-Bellido et al., 2011; Juusola and de Polavieja, 2003; Juusola and Hardie, 2001a, b), these models 31 
could reliably reproduce continuous voltage responses with realistic variability to any light intensity time 32 
series, without the need to train any parameters (Juusola et al., 2017; Song and Juusola, 2014).  33 
 34 
The “whole-cell” fly photoreceptor models enable information processing studies at the three levels of 35 
analysis. At the implementation level, they have been crucial in revealing novel light adaptation mechanisms, 36 
such as the subcellular refractory period (RP) and the signalling stochasticity (Song et al., 2012a). At the 37 
algorithmic level, they have paved the way for developing algorithms with only four sampling parameters to 38 
achieve automatic gain control and temporal adaptation (Song et al., 2017). At the computational level, they 39 
have elucidated phototransduction dynamics through a framework of refractory photon information 40 
sampling, leading to a trade-off between coding efficiency and energy consumption (Li et al., 2019; Song and 41 
Juusola, 2014). We next review the multiscale “whole-cell” fly photoreceptor models, specifically focussing 42 
on the Drosophila R1-R6 photoreceptor model and its emergent properties at these levels.  43 
 44 

Drosophila R1-R6 “whole-cell” photoreceptor model  45 
The first “whole-cell” model built for a neuron was a fly photoreceptor model (Song et al., 2009; Song et al., 46 
2012b). The model simulates the cell’s light response dynamics at multiple spatial scales. It linked the 47 
intracellular molecular dynamics with the “whole-cell” input-output relationships and was constructed to 48 
map light intensity time series input into a continuous voltage response at the cellular level. Light input 49 
mimics a photoreceptor’s light-intensity-time-series input at its receptive field. Because light is composed of 50 
photons, the light intensity changes were quantified as photons/s (Juusola and de Polavieja, 2003; Juusola 51 
and Hardie, 2001a). For model validations, the simulations were compared to the corresponding real 52 
recordings. In in vivo recordings, the light intensity time series of specific statistics are played back to the 53 
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photoreceptor using a feedback-controlled LED/light-guide-stimulator (Juusola and de Polavieja, 2003; 1 
Juusola and Hardie, 2001a; Zheng et al., 2006), while the resulting photoreceptor output, the voltage 2 
response to the light input, was recorded intracellularly using a sharp microelectrode in an intact living fly 3 
(Juusola et al., 2016; Juusola and Hardie, 2001a).  4 
 5 
At the molecular level, the light input is quantal, with information carried by discrete photon arrivals. Photons 6 
are absorbed by rhodopsin-molecules (light-sensitive G‐protein‐coupled receptors) inside 30,000 microvilli 7 
(sampling units), each of which is a compartmentalised finger-like membrane protrusion. Together, the 8 
microvilli stack up the rhabdomere, the photosensitive part of the photoreceptor (Fig. 1A). Each microvillus 9 
contains a full G‐protein‐coupled receptor (GPCR) signalling pathway (Hardie and Juusola, 2015; Hardie and 10 
Postma, 2008), which constitutes a sequence of biochemical reactions called the phototransduction cascade 11 
(Fig. 1B). This cascade can transduce a single photon into a quantum bump (QB), a unitary analogue current 12 
influx (Hardie, 1991; Henderson et al., 2000; Juusola and Hardie, 2001a).  13 
 14 
The first state-of-the-art phototransduction cascade model simulated the production of single QBs inside one 15 
microvillus (Pumir et al., 2008). Whereas the later R1–R6 photoreceptor models describe how 30,000 16 
microvilli act in parallel, transducing millions of photons into thousands of QBs and integrating them into the 17 
macroscopic “whole-cell” light-induced-current (LIC) (Song et al., 2009; Song et al., 2012a). The macroscopic 18 
LIC then charge the photoreceptor’s photo-insensitive membrane, generating a macroscopic voltage 19 
response (Li et al., 2019; Niven et al., 2003; Vähäsöyrinki et al., 2006) (Fig. 1C).  20 
 21 
The “whole-cell” photoreceptor model structure 22 
Akin to a real R1–R6 photoreceptor, the model comprises four biophysically realistic submodules (Fig. 1D) 23 
(Juusola et al., 2015; Song et al., 2012a): 24 
● Random Photon Absorption Model (RandPAM) distributes the incoming photons to the 30,000 microvilli 25 

following Poisson statistics. Its output is the absorbed photon sequences of each microvillus (Song et al., 26 
2012a; Song et al., 2016). 27 

● Stochastic Bump Model: stochastic biochemical reactions inside a microvillus transduce the absorbed 28 
photon sequences to QB sequences (Pumir et al., 2008; Song et al., 2012a). This model comprises ~20 29 
nonlinear ODEs and includes ~50 parameters, and describes the molecular dynamics of the GPCR 30 
signalling pathway inside a single microvillus (Fig. 1E). The model uses the Gillespie algorithm (Gillespie, 31 
1976), a discrete and stochastic method that explicitly simulates a system with few reactants.  32 

● Summation Model: QBs from 30,000 microvilli integrate to the macroscopic light‐induced current (LIC) 33 
response (Song et al., 2012a) (Fig. 1F). 34 

● Hodgkin–Huxley Model of the photoreceptor plasma membrane. This module transduces LIC into 35 
voltage response by reproducing the voltage‐gated K+ conductance dynamics on the photon‐insensitive 36 
membrane (Li et al., 2019; Niven et al., 2003). 37 

 38 
These modules were assembled and validated step‐by‐step to simulate QBs (Fig. 2A), the QB sequences inside 39 
a single microvillus (Fig. 1E), the photoreceptor’s macroscopic responses to light steps (Fig. 2B), and light 40 
time series with various statistics (Figs. 2C and D). The model’s continuous voltage responses were validated 41 
by the corresponding intracellular recordings (Juusola et al., 2017; Song and Juusola, 2014; Song et al., 42 
2012a). 43 
 44 
The “whole-cell” photoreceptor model samples information like a real photoreceptor  45 
The “whole-cell” fly photoreceptor model surpasses other photoreceptor models in its generalisability and 46 
interpretability. The model is generalisable because it can predict responses to untested stimulus statistics. 47 
It retained its physiological relevance because the model parameters, wherever possible, were fixed to their 48 
physiologically measured or pre‐estimated values (Juusola and Hardie, 2001a, b). The “whole-cell” fly 49 
photoreceptor model was first fitted to reproduce the cell’s light impulse responses and step responses. 50 
Then, without refitting any parameters, the model was stimulated by other light time-series stimuli, including 51 
white noise with various bandwidth and naturalistic stimuli with 1/f power spectra. The model predicted 52 
realistic response waveforms to all tested stimuli, showing its great generalisability (Juusola et al., 2017; 53 
Juusola and Song, 2017; Song et al., 2009; Song and Juusola, 2017, 2014; Song et al., 2012a). 54 
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 1 
The “whole-cell” fly photoreceptor model is interpretable because it mechanistically describes how a 2 
photoreceptor’s 30,000 microvilli (photon sampling units) sample light information in parallel, transducing 3 
millions of photons into thousands of QBs and integrating them into the macroscopic voltage responses (Song 4 
et al., 2009; Song et al., 2012a). Given that the model’s QB statistics match those measured for the ambient 5 
light condition (Juusola et al., 2017; Juusola and Hardie, 2001a, b), the model produces similar voltage 6 
responses to the real recordings (Juusola et al., 2017; Song and Juusola, 2014; Song et al., 2012a). This 7 
equivalence signifies the whole-cell model’s intrinsic accuracy in replicating a real photoreceptor’s adaptive 8 
response dynamics from the photon sampling to QB integration.  9 
 10 
Next, we will review how the whole-cell” photoreceptor model’s generalisability and interpretability have 11 
contributed to scientific advancement in the insect vision field. 12 
 13 
 14 

Fig. 1.  The fly photoreceptor “whole-cell” 
model links microscopic molecular dynamics 
with the macroscopic “whole-cell” responses. 
(A) A fly photoreceptor is functionally divided 
into the photosensitive membrane 
(rhabdomere) and the photo-insensitive part 
(soma). (B) The phototransduction cascade 
inside a single microvillus. (C) voltage-gated K+ 
conductances on the soma. (D) The model 
structure. (E-F) The model not only simulates 
the molecular dynamics inside a single 
microvillus (E) but also integrates light-induced 
current (LIC) quantum bump (QB) influx from 
30,000 microvilli, producing a macroscopic 
“whole-cell” LIC response (F). Figure adapted 
from (Song and Juusola, 2017; Song et al., 
2012a).  
 

 15 
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Fig. 2. Model validation against experimental 
recordings. Comparing different simulations to 
corresponding recordings: (A) light-induced 
current (LIC) quantum bump (QB) waveforms 
(left) and QB latency distribution (right); (B) 
macroscopic LIC responses to dim and bright 
light pulses; (C) macroscopic voltage responses 
to different bandwidth Gaussian white-noise 
(GWN) stimuli; and (D) macroscopic voltage 
responses to the same repeated naturalistic 
light intensity time-series (NS) at dim and 
bright conditions. Data from (Juusola et al., 
2017; Song and Juusola, 2014; Song et al., 
2012a). 
 

 1 
“Whole-cell” fly photoreceptor model elucidate generic encoding rules 2 
 3 
Quantal sampling dynamics govern adaptation  4 
With the real-world objects looking broadly the same from dawn till dusk, visual animals can execute 5 
successful behaviours. Much of this invariance comes from the physical objects’ invariable relative 6 
reflectance, which vision encodes into perceptual contrast constancy. Remarkably, insect photoreceptors 7 
already show early contrast constancy by generating similar response waveforms to the same naturalistic 8 
stimulus from dim to ~1,000,000-times brighter conditions (Faivre and Juusola, 2008; Friederich et al., 2009; 9 
Gonzalez-Bellido et al., 2011; Juusola and de Polavieja, 2003; Zheng et al., 2006; Zheng et al., 2009) (Fig. 2D). 10 
The large dynamic range for encoding similar contrast responses within a photoreceptors’ limited amplitude 11 
(~60 mV) and frequency range (~200-300 Hz) is achieved through light adaptation, the system’s ability to 12 
change its sensitivity according to light intensity changes. In terms of absolute light detection, fly 13 
photoreceptors far surpass man‐made sensors in achieving 8-10 orders of magnitude dynamic range (Howard 14 
et al., 1987; van Hateren, 1997). 15 
 16 
It has been widely studied how photoreceptors adapt over the day/night-cycle by various gain control 17 
mechanisms. But for effective visual course control, photoreceptors must also adapt continuously and near 18 
instantaneously to their local light intensity changes, which could be full of various temporal structures, as 19 
an animal locomotes within a natural scene (Clark et al., 2013; Juusola et al., 2017; Juusola and de Polavieja, 20 
2003; Silva et al., 2001; Zheng et al., 2009).  21 
 22 
How does a fly photoreceptor’s adaption dynamics change within a millisecond-to-second time scale? The 23 
“whole-cell” Drosophila photoreceptor model provides a powerful simulation platform to investigate this 24 
question (Fig. 3). The model can produce realistic photoreceptor responses at vastly varying light conditions 25 
and has elucidated four factors that control fast adaptation. These are: (i) the number of microvilli in the 26 
rhabdomere, the photosensitive structure; (ii) QB size (waveform); (iii) QB latency distribution (latency is the 27 
delay between a photon arrival and its QB emerging), and (iv) RP distribution in a microvillus, (its recovery 28 
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time after a QB) (Song and Juusola, 2014; Song et al., 2012a). These factors constitute a set of rules, which 1 
jointly govern a photoreceptor’s light adaptation and information sampling dynamics: 2 
● Population sampling; the microvillus population size sets the encoding limit (Fig. 3A). The number of 3 

microvilli (photon sampling units) is the critical parameter, limiting a photoreceptor's encoding capacity 4 
(Hochstrate and Hamdorf, 1990; Howard et al., 1987; Song and Juusola, 2014; Song et al., 2012a). 5 
Simulations, in which the microvilli amount and properties were systematically changed, demonstrated 6 
that the photoreceptors with the most and fastest microvilli generate the highest-fidelity responses 7 
(Juusola and Song, 2017; Song and Juusola, 2014; Song et al., 2012a), consistent with corresponding 8 
neuroethological, electrophysiological and ultrastructural data. 9 

● Adaptive QB. QBs get smaller and briefer with brightening (Fig. 3B) and can shrink ~50 times from dark 10 
to bright (Juusola and Hardie, 2001a). This QB desensitisation is caused by the nonlinear biochemical 11 
reactions and the negative feedbacks within the phototransduction cascade.  12 

● Microvillar RP. RP enlarges the dynamic range (Figs 3C-D) and contributes to temporal adaptation (Song 13 
et al., 2012a; Song et al., 2017). Simulations, in which a single microvillus responds to a photon sequence, 14 
established that each QB is followed by a 50-300 ms RP (Juusola et al., 2015; Song et al., 2012a). This RP 15 
is different from an action potential’s RP, which affects the whole neuron at once. Whereas a microvillar 16 
RP is a local phenomenon. Only the microvilli, which generate QBs, become refractory. Because this 17 
happens across subcellular micro-domains (Song et al., 2017), the current recording techniques cannot 18 
measure it directly from the integrated response or QBs. Thus experimentally, it is difficult to assess how 19 
RP impacts encoding. 20 

 21 
RP greatly benefits encoding in graded potential systems. The microvillar RP provides an automatic gain 22 
control mechanism, which enlarges the photoreceptor’s dynamic range by two orders of magnitude (Song 23 
and Juusola, 2017; Song et al., 2012a). Some input information is inevitably lost through RP as some photons 24 
fail to evoke QBs, eventually saturating the QB count (Juusola et al., 2017; Song and Juusola, 2014; Song et 25 
al., 2012a). Nevertheless, for a Drosophila R1-R6, ~105-106 QBs/s in a bursty time series maximise output 26 
information within its bandwidth, and increasing QB count any further makes little difference to its already 27 
lofty signal-to-noise ratio (>20,000) (Juusola et al., 2017). Refractoriness further accentuates responses to 28 
salient brightness changes (Juusola et al., 2017; Juusola et al., 2015; Song and Juusola, 2014; Song et al., 29 
2012a). By enlarging response transients to light on- and offsets, it enhances the neural representation of 30 
phasic information, such as line elements and contrast edges (Friederich et al., 2016; Juusola and de Polavieja, 31 
2003; Song and Juusola, 2014). Thus, using local refractory sampling units could be one general mechanism 32 
affecting adaptation and computations, as suggested by seemingly similar response dynamics of many 33 
sensory neurons and synapses (Juusola and French, 1997; Juusola et al., 1996; Juusola et al., 1995a; 34 
Rabinovich et al., 2008), and as already modelled for a mechanoreceptor’s dynamic behaviour (Song et al., 35 
2015). 36 
 37 



9 

 

Fig. 3. Five mechanisms governing light 
adaptation dynamics. (A) The size of the 
microvillus population limits encoding. (B) 
Normalised QB in dim (red) and bright (blue) 
light conditions. QBs get smaller and briefer 
with brightening. (C-D) RP act as an automatic 
gain control mechanism. In dim light, few 
photons are lost through RP; Quantum 
Efficiency (QE) approaches 100%. But in bright 
light, as more photons are lost through RP, QE 
reduces. The stochastically varying delays, from 
photon absorptions to their QBs emergence (in 
C), jointly constitute the QB latency 
distribution. (E) Stochastic sampling combat 
image aliasing. When sin(x2+y2), plotted with 
0.1 resolution, is resampled with 0.2 resolution, 
ghost rings appear from under-sampling 
aliasing (left). However, there are no ghost 
rings when a random matrix samples the initial 
image with 0.2 mean resolution (right). Its 
trade-off is broadband noise. (F) Stochastic 
sampling combat aliasing in time. Step 
responses simulated with stochastic refractory 
periods reduce oscillations in step responses 
simulated with fixed refractory periods. (G) 
Voltage feedback regulates LIC’s electromotive 
driving force through TRP/TRPL1 channels on 
the photosensitive membrane. (H) Voltage 

feedback changes instantaneously with light intensity, adapting neural responses to input statistics. Data 
from (Juusola et al., 2017; Song et al., 2012a). 

 1 
Stochastic signalling: stochastic QB production anti-aliases temporal responses 2 
Both photon absorptions and QB productions are inherently stochastic (Pumir et al., 2008; Song et al., 2016), 3 
and the term stochastic sampling was coined to describe the stochastic operation of the entire microvillus 4 
population (Song et al., 2012a). By employing the Gillespie algorithm (Gillespie, 1976) - to simulate the 5 
“whole-cell” photoreceptor model, its stochasticity could be mimicked realistically to investigate how QB 6 
variations impact information processing.  7 
 8 
In contrast to the past view, where the QB variations were considered mostly noise that lowers a 9 
photoreceptor's information transfer (Laughlin and Lillywhite, 1982; Lillywhite, 1979; Lillywhite and Laughlin, 10 
1979), both our modelling and experimental results indicate that stochasticity benefits encoding. The 11 
stochastically operating microvilli resist saturation in generating the macroscopic photoreceptor output 12 
(Juusola et al., 2015; Song et al., 2012a). Stochastic QB latency distributions are similar over a wide range of 13 
light backgrounds (Juusola and Hardie, 2001a), weighting microvilli output to evoke similar-looking temporal 14 
responses to naturalistic stimulation in different illumination conditions (Faivre and Juusola, 2008; Juusola 15 
and de Polavieja, 2003).  16 
 17 
Stochastic sampling may represent a generic solution to the temporal aliasing problems (Fig. 3E). Simulations 18 
show that stochastic refractory periods reduce oscillations in photoreceptor output compared to those seen 19 
in models with a fixed refractory period (Fig. 3F) (Song and Juusola, 2017; Song et al., 2012a). A more detailed 20 
account of how stochastic sampling benefits encoding and the related trade‐off between anti-aliasing and 21 
broadband noise can be found in the recent publications (Juusola et al., 2017; Juusola and Song, 2017; Song 22 
and Juusola, 2017). 23 
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 1 
Global voltage feedback performs contrast normalisation 2 
In the “whole-cell” photoreceptor model, voltages produced at the photo-insensitive membrane regulate 3 
the electromotive driving force of LIC through TRP/TRPL1 channels on the photosensitive membrane (Fig. 3G) 4 
acting as global feedback (Song et al., 2012a). Although the concept of regulating an ion channel's driving 5 
force by voltage is not new (Hodgkin and Huxley, 1952), how this influences adaptation, especially to 6 
naturalistic stimulation, was less clear. 7 
 8 
Simulations showed that the voltage regulation act as a global adaptive gain controller, compressing LIC 9 
signals less in dim conditions but far more to bright stimulation (Song et al., 2012a). Importantly, the feedback 10 
signal changes instantaneously as the light changes, adapting the neural responses to input statistics (Juusola 11 
and Song, 2017; Wark et al., 2007). This dynamic contributes to the rapid normalisation of a photoreceptor’s 12 
contrast responses in a natural environment (Figs 2D and 3H) (Heeger, 1992; Juusola and de Polavieja, 2003; 13 
Li et al., 2019). 14 
 15 
Together, the above mechanisms constitute stochastic adaptive sampling (Song et al., 2012a). Within this 16 
scheme, subcellular RP and stochastic signalling were found extremely beneficial for encoding efficient and 17 
invariable neural representations of the visual world. In contrast, these two mechanisms were previously 18 
thought to be detrimental to analogue signalling, as they either lose information or add noise. However, 19 
“whole-cell” model simulations have shown their real importance in elucidating how stochastic sampling 20 
maximises visual information packaging in photoreceptor output while minimising aliasing. For more in-21 
depth reviews, please see (Juusola and Song, 2017; Song and Juusola, 2017).  22 
 23 
Neuroethological adaptations 24 
Different fly species have evolved with distinct behaviours and lifestyles. The fast‐flying Coenosia is a 25 
predator, and the slow‐flying Drosophila can be its prey (Gonzalez-Bellido et al., 2011). Starting from the 26 
photoreceptors, predatory Coenosia has faster vision than its fruit-loving cousin, Drosophila. What 27 
neuroethological adaptations give Coenosia faster photoreceptor dynamics and vision? 28 
 29 
“Whole-cell” photoreceptor models can be tweaked to predict the responses of different fly species. The 30 
same model structure works equally well for simulating Drosophila, Coenosia and Calliphora photoreceptor 31 
responses, with the changes in the four QB sampling factors accounting for most of their differences (Fig. 4). 32 
The fast-flying flies can have more microvilli, briefer QBs, smaller RPs and narrowed latency distributions 33 
(Song and Juusola, 2014; Song et al., 2012a). These findings suggest that evolution may use conserved 34 
computational adaptation mechanisms to match early visual information processing with lifestyles. 35 
 36 

 
1 TRP: Transient receptor potential;   TRPL: Transient receptor potential like; 

TRP channels were initially discovered in the so-called "transient receptor potential" mutant (trp-mutant) strain of 
the fruit fly Drosophila, hence their name. Later, TRP channels were found in vertebrates where they are ubiquitously 
expressed in many cell types and tissues (Hardie, 2007). 

https://en.wikipedia.org/wiki/Drosophila
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Fig.4. Neuroethological 
adaptation differences in 
fly photoreceptor voltage 
responses. Different fly 
species have evolved with 
distinct visual behaviours 
and lifestyles. The same 
model structure can 
accurately predict R1-R6 
photoreceptor voltage 
responses and their 
information transfer rates 
of slow-flying (A) 
Drosophila melanogaster 
and fast-flying Calliphora 
vicina (B) and Coenosia 
attenuata (C). Larger 
microvillus population, 
smaller bumps, narrower 
latency distribution and 
shorter refractory periods 

can make the photoreceptor response dynamics faster, enabling them to capture more information from 
the same naturalistic light contrast stimulus. Figure adapted from (Juusola and Song, 2017; Song et al., 
2012a). 

 1 
Algorithmic photoreceptor signalling implementation  2 
John von Neumann famously proclaimed: With four parameters I can fit an elephant, and with five I can make 3 
him wiggle his trunk (Mayer et al., 2010), meaning that a complex model with enough parameters can fit any 4 
data and perhaps one should not be too impressed by that. 5 
 6 
One can argue that the “whole-cell” photoreceptor models are too complicated with too many details, 7 
containing too much or unnecessary parts. But through their systematic construction and testing against 8 
comparable experimental recordings, the models have played a significant role in revealing a new 9 
understanding of how the fly photoreceptors sample light information (Juusola et al., 2017; Song and Juusola, 10 
2014; Song et al., 2012a). This new understanding then helped to reduce the “whole-cell” model into a much 11 
simple phenomenological model, incorporating as little parameters as possible while being inspired by the 12 
earlier ideas about quantal sampling (Henderson et al., 2000; Juusola et al., 2016; Juusola and Hardie, 2001a, 13 
b; Juusola et al., 1994; Juusola et al., 1995a; Wong and Knight, 1980; Wong et al., 1982, 1980). The new idea 14 
was to probabilistically sample QBs from the latency distribution and the newly discovered refractory 15 
distribution (Song et al., 2017). The resulting reduced 4-parameter model can predict the photoreceptor 16 
response dynamics equally well with the “whole-cell” model (Li et al., 2019; Song et al., 2017). 17 
 18 
The reduced model is parameterised into four sampling factors: the microvillus (sampling unit) count, QB 19 
waveforms, QB latencies, and QB RPs, while its four-parameter algorithm design is based on stochastic 20 
renewal processes. It is assumed that the QB generations inside a microvillus follow a renewal process, and 21 
superpositions of 30,000 independent renewal processes are used to model photoreceptor signalling. The 22 
model implements five rules: (1) A microvilli population absorbs photons based on Poisson processes. (2) 23 
Each successfully absorbed photon leads to a delayed QB. (3) A refractory period follows each QB. (4) All QBs 24 
sum up macroscopic LIC. (5) QB latencies and refractory periods are stochastic variables that follow long-25 
tailed distributions, e.g. log-normal distributions.  26 
 27 
This simple model is important because:  28 
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● From the systems biology perspective, the simple model acts as a mesoscopic bridge to link the 1 
molecular dynamics at the microscopic level to the “whole-cell” response at the macroscopic level, 2 
which otherwise would be hard to do; owing to the complicated interconnections within the molecular 3 
reaction network.  4 

● Extensive computer simulations may help to obtain qualitative insight, but it is the mathematics that 5 
truly delineates the system. Mathematical analysis for quantitative results is easier to perform on the 6 
simple model. A new formula was defined to calculate the probability density function (PDF) for the QB 7 
interval distribution: not the convolution of the PDF of the photon-interval and the RP’s PDF, but the 8 
weighted sum of the two (Song et al., 2017). In the past research, it was unconsidered that photons 9 
could arrive after the RP, in which case the RP does not influence encoding (Franklin and Bair, 1995).  10 

● The simple model is an algorithmic implementation of the photoreceptor signalling, accomplishing the 11 
2nd level in the three analysis levels. Such algorithms can be beneficial in brain-inspired computations.  12 

 13 
Refractory information sampling benefits vision 14 
Light intensities in a natural scene are distributed in a highly structured way, showing strong spatiotemporal 15 
correlations (Juusola and de Polavieja, 2003; Rieke and Rudd, 2009; van Hateren, 1997). The efficient coding 16 
hypothesis proposes that the sensory neurons, networks and organs have evolved to utilise such 17 
environmental regularities in their neural representations (Barlow, 1961). Experiments have shown that 18 
sensory neurons transmit more information when the input stimuli are chosen from natural ensembles 19 
(Juusola and de Polavieja, 2003; Rieke et al., 1995). This realisation means that these neurons are not simple 20 
pre-processing filters. Otherwise, they would sample and transmit maximum information from a Gaussian 21 
white noise stimulus (GWN), which has a “flat” power spectrum and should contain most information within 22 
its bandwidth and variance (Juusola and de Polavieja, 2003; Shannon, 1948). 23 
 24 
Why and how does an early sensory neuron encode various stimuli with different efficiency? What stimuli 25 
excite the neuron the most, producing the highest signal-to-noise ratio? These questions were investigated 26 
by “whole-cell” photoreceptor model simulations to GWN stimuli with different frequency cut-offs and 27 
manipulated naturalistic light time series, which follow different temporal statistics (Figs 5 and 6). (Juusola 28 
et al., 2017; Song and Juusola, 2014).  29 
 30 
Four types of stimuli were used to simulate the “whole-cell” model: 31 
(1) a naturalistic stimulus, NS, selected from van Hateren natural stimulus collection (Juusola and de 32 

Polavieja, 2003; van Hateren, 1997). The NS has complicated higher-order correlations, with neighbour 33 
values more likely to be similar, but its amplitude power spectrum roughly follows 1/f statistics.  34 

(2) A shuffled-NS, having all NS intensity values rearranged in a random order to whiten the NS (Song and 35 
Juusola, 2014).  36 

(3) An artificial GWN-1/f stimulus; a random phase-shifted NS (Song and Juusola, 2014).  37 
(4) NS, modulated by a Drosophila’s saccadic walk within a natural scene (Juusola et al., 2017).  38 
 39 
In each case, the model simulations closely resembled in vivo intracellular voltage responses to the very 40 
same stimuli. Thus, these conclusions were drawn:  41 
 42 
● Naturalistic stimulation generates larger and information-richer photoreceptor responses than stimuli 43 

without its temporal correlations (Juusola and de Polavieja, 2003; Song and Juusola, 2014). A Drosophila 44 
R1-R6 photoreceptor captures 2-to-4-times more information than previous maximum estimates 45 
(Juusola et al., 2017). In particular, this happens when a photoreceptor responds to high-contrast bursts 46 
(periods of rapid bright light changes followed by darker quiescent periods) that resemble light input 47 
from natural scenes generated by saccadic viewing (Fig. 6). These results explain why GWN, which lacks 48 
all these correlations, is a highly inefficient stimulus to study neural performance.  49 

● The mechanistic reason why information sampling is more efficient for NS stimulation is that a 50 
photoreceptor's information capture depends critically upon the stochastic refractoriness of its 30,000 51 
sampling units (microvilli). NS contains more dark contrasts (Ratliff et al., 2010), recovering more 52 
refractory microvilli (Juusola et al., 2017; Juusola and Song, 2017; Song and Juusola, 2014). The more 53 
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available microvilli enable the cell to sample more photons, generating more QBs, from phasic light 1 
changes, and encoding more information (Juusola et al., 2017; Song and Juusola, 2014). 2 

● Stochastic refractory periods also lower the cell’s metabolic costs. For a bright NS stimulus, 40% of 3 
energy is saved by losing 12% of information (Song and Juusola, 2014).  4 

 5 
In summary, at the computational level of analysis, the phototransduction process can be understood 6 
through a framework of refractory photon information sampling. The results provided mechanistic reasons 7 
why and how the earliest neural code and metabolic cost depend upon the stimulation's statistical context.  8 
 9 

Fig. 5. The Naturalistic Stimuli 
generate larger and information-
richer photoreceptor responses 
than the artificial stimuli, 
highlighting the importance of 
temporal correlations in 
naturalistic stimuli. (A) GWN 
stimuli with different frequency 
cut-offs. (B) Three types of 
manipulated NS stimuli. Blue: a 
naturalistic stimulus time series 
(NS) selected from van Hateren 
natural stimulus collection. Green: 
a shuffled-NS, in which all the NS 
intensity values are rearranged in 
a random order, effectively 
whitening the Orange: an artificial 
GWN-1/f stimulus, which is a 
random phase-shifted NS. (C) 
Whitened stimuli have higher 

information content (green and dark red). (D) Photoreceptor responses to the corresponding test stimuli. 
(E) NS evokes information richer responses, i.e. photoreceptors have higher encoding efficiency to NS 
stimuli.  Figure adapted from (Song and Juusola, 2014). 

 10 
Fig. 6. A Drosophila’s saccadic walk 
generates a bursty high-contrast time 
series from natural scenes, enabling its 
photoreceptor to extract more 
information from the environment 
than other walking patterns, Including 
linear scanning. (A-B) Angular velocity 
and yaw of a prototypical walking 
trajectory (Geurten et al., 2014). (C) A 
natural scene used for generating light 
intensity time series: (i) by translating 
the saccadic yaw (A–B) dynamics on it 
(blue trace), and (ii) by a linear walk with 
the median velocity of the saccadic 
walk. (D) Saccadic walk enables an R1-
R6 photoreceptor to capture more 
information from the environment. The 
darker bar colours (left) indicate 
intracellular in vivo photoreceptor 
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voltage recordings, the lighter colours (right) the corresponding model simulations. Figure adapted from 
(Juusola et al., 2017). 

 1 
 2 
Scalable “whole-cell” models: augmented new modules contribute to new discoveries  3 
Many signalling pathways for diverse functions exist in cell physiology. There may be many dynamical 4 
processes that span over multiple spatial and temporal scales, even for a specific signalling process. The 5 
depth of knowledge may not be complete at any time to model all the processes in a cell. Therefore, a “whole-6 
cell” model should be scalable. They should integrate new modules as the knowledge accumulates over time 7 
(Goldberg et al., 2018).  8 
 9 
We have scaled up the “whole-cell” Drosophila photoreceptor model with two separate processes, including 10 
a module for microsaccadic photomechanical photoreceptor contraction dynamics (Juusola et al., 2017) and 11 
a module to infer the cell’s synaptic feedback currents (Li et al., 2019). These new augmented modules have 12 
helped to obtain new understandings about insect vision and synaptic homeostasis. Such development 13 
shows that when a “whole-cell” model is constructed from biophysically realistic modules, as new evidence 14 
accumulates, the emerging discrepancies between the model predictions and experimental observations 15 
may indicate knowledge expansion opportunities. 16 
 17 
Photomechanical Photoreceptor microsaccades combat motion-blur and induce hyperacuity 18 
Whilst light adaptation enlarges the eye's dynamical range, it also desensitises the eye over time, causing 19 
perceptual fading to the unchanging visual stimulus. For example, this happens when nothing moves within 20 
a scene, and the gaze is held completely still (Ditchburn and Ginsborg, 1952). To refresh the retinal image 21 
and prevent it from fading, animals make rapid involuntary eye movements called microsaccades (Ahissar 22 
and Arieli, 2012). It was not known why microsaccades do not blur vision (Packer and Williams, 1992).  23 
 24 
This question could be addressed by systematically striving to replicate experimental in vivo recordings with 25 
the “whole-cell” Drosophila photoreceptor model simulations (Juusola et al., 2017). Using ex vivo atomic 26 
force microscopy, Hardie and Franze (2012b) had found earlier that Drosophila photoreceptors contract 27 
photomechanically. They proposed how these nanoscale twitches contribute to light-sensitive channel gating 28 
but thought these movements were too small to affect vision. However, in vivo, high-speed optical 29 
microscopy with electrophysiology revealed that targeted light stimulation causes a larger ultrafast 30 
axiolateral photoreceptor movement, a microsaccade (Fig. 7), which dynamically shifts and narrows its 31 
receptive field (Juusola et al., 2017). These photomechanics, which simultaneously shape both the light input 32 
and photoreceptor output, could be modelled by a separate module, placed as a pre-processing step in the 33 
“whole-cell” model (Juusola et al., 2017). 34 
 35 
The simulations were tuned to replicate in vivo electrophysiological recordings, in which two bright spatially 36 
separated dots crossed a photoreceptor’s receptive field, generating a highly-phasic two-peaked voltage 37 
response (Fig. 7Biv). With the recordings and model predictions being consistent with the related in vivo 38 
behavioural tests and controls, it became clear that photoreceptor microsaccades significantly improve 39 
Drosophila’s ability to see in fine-resolution fast-moving objects (Juusola et al., 2017). Thus, microsaccades 40 
effectively reduce motion blur, sharpening the retinal image to separate adjacent visual objects in time. This 41 
active sampling mechanism allows Drosophila to see >4-folds finer details than their hypothesised optical 42 
pixelation limit (interommatidial distance), disproving the 100-year-old theory about compound eye acuity 43 
(Juusola et al., 2017).  44 
 45 



15 

 

Fig. 7. Microsaccadic eye movements increase visual acuity 
in insect vision. A microsaccadic movement model was 
developed to tune the light input for the photoreceptor 
model. This model allows the photoreceptor’s receptive field 
to move and narrow with the moving dots. (A) According to 
the old theory, because the photoreceptor has a broad 
Gaussian receptive field (RF, blue, i), which stays still (ii), two 
bright dots crossing across it fast cannot be resolved (iii and 
iv). (B) According to the new theory, when the dots touch the 
edge of the RF (i), the photoreceptor’s light absorption 
causes it to contract (ii). This microsaccade moves and 
narrows the RF (i, red), sharpening light input (iii, red) so that 
the two moving dots can be encoded in time as two separate 
peaks in the voltage response (iv). Figure adapted from 
(Juusola et al., 2017). 
 

 1 
Synaptic feedback: photoreceptor-interneuron-photoreceptor circuit homeostasis 2 
Homeostatic processes regulate neurons’ electrical activity and make circuitry communication fault-tolerant 3 
against perturbations (Marder and Goaillard, 2006). Nevertheless, such robustness could have associated 4 
costs (Abbott and Lemasson, 1993). How do the intrinsic perturbations of missing Ca2+ activated K+ channels 5 
influence the synaptic transmission, and what are the costs? These questions can be investigated by studying 6 
the synaptic transmission between photoreceptors and interneurons (Large Monopolar Cells or LMCs). In 7 
this R-LMC-R system, stereotypical columns of feedforward and feedback synapses are formed to process 8 
and route visual information to the Drosophila brain (Dau et al., 2016; Meinertzhagen and O'Neil, 1991; 9 
Rivera-Alba et al., 2011; Zheng et al., 2006; Zheng et al., 2009). 10 
 11 
The R-LMC-R circuitry is perturbed by gene deletions in SK, “small”, and BK, “big”, conductance Ca2+-activated 12 
K+-channels. One can work out how these channels contribute to neural processing by systematically 13 
comparing intracellularly recorded and “whole-cell”-model-simulated wild-type and mutant photoreceptor 14 
voltage responses to naturalistic light intensity time series (Li et al., 2019; Zheng et al., 2006). Furthermore, 15 
because the original photoreceptor model lacked the synaptic feedback conductances, the differences 16 
between the simulated and recorded responses could be used to infer how these shape photoreceptor 17 
voltage responses (Fig. 8). By directly comparing the model predicted photoreceptor responses (without the 18 
synapse) to the real photoreceptor recordings for the same light stimulation, we could work out how the 19 
synaptic feedback modulation (from LMCs) accentuates the photoreceptor output, and how this modulation 20 
happens homeostatically as the mutant flies’ photoreceptor-LMC-photoreceptor systems adapt their 21 
synaptic loads. This approach gave computational means to quantify the homeostatic changes involved and 22 
their cost in retaining synaptic information transfer (Li et al., 2019). 23 
 24 
The R-LMC-R circuitry shows real robustness: the loss of SK and BK channels did not diminish Drosophila 25 
photoreceptors’ information sampling and transmission capacity in vivo. However, the homeostatic 26 
compensation did come with unavoidable costs. It reduced other K+-currents and overloaded synaptic 27 
feedback from the lamina network, reshaping fast adaptation trends in photoreceptor output. In effect, 28 
communication between the mutant photoreceptors and LMCs became inefficient, consuming more energy 29 
while distorting visual information flow to the brain. Thus, the results indicated that whilst homeostatic 30 
compensation makes neural communication robust, this comes with the price tag of being energetically more 31 
expensive and less adaptive to sudden large light changes (Abou Tayoun et al., 2011; Li et al., 2019). 32 
 33 
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Fig. 8. Synaptic feedback currents are 
tuned so that the difference between 
the simulated and recorded 
responses are minimised.  
 

 1 

Conclusion 2 
“Whole-cell” models are bottom‐up models, which - in their extreme form - aim to account for the integrated 3 
function of every gene or molecule inside a cell. They integrate heterogeneous dataset about the studied 4 
organism into a unified simulation framework for systematic investigations. Such models for bacteria have 5 
already shown their capacity to predict complex cellular dynamics, identify knowledge limitations, and 6 
suggest future experiments for obtaining new knowledge (Carrera and Covert, 2015). However, in 7 
computational neuroscience, there has been a void for “whole-cell” neuron models that can (1) integrate 8 
both biochemistry models for signalling pathways and biophysical models for the electrical behaviours of the 9 
membrane; (2) perform the integration at the “whole-cell” cellular level across many spatial scales, synapses- 10 
soma-axons; and (3) can reliably map the neuron’s naturalistic inputs to its voltage responses at the cellular 11 
level, for the study of neural information processing. 12 
 13 
This gap was narrowed by constructing “whole-cell” fly photoreceptor models (Juusola and Song, 2017; 14 
Juusola et al., 2015; Song and Juusola, 2017; Song et al., 2012a). We reviewed these models and showed how 15 
they had been used to study insect vision and visual information processing. The current models were refined 16 
over many years and represent the latest knowledge of quantal light information sampling in microvillar 17 
compartmentalised phototransduction systems. These models can integrate the molecular dynamics of 18 
biochemical reactions at the microscopic scales and reproduce many experimentally observed dynamics or 19 
theoretically deduced mechanisms at the single-cell level. By simulating the dynamics of the contributing 20 
components, the models have revealed their considerable explanatory power in clarifying our understanding 21 
of various phenomena, such as (1) how to achieve contrast constancy – with objects looking the same in dim 22 
and bright conditions - through quantal stochastic adaptive sampling mechanisms (Juusola and Song, 2017; 23 
Juusola et al., 2015; Song et al., 2012a); (2) how this relates to photoreceptors’ vast dynamic range (Song and 24 
Juusola, 2017; Song et al., 2012a; Song et al., 2017); and (3) how the photoreceptor microsaccades combat 25 
motion-blur, rather than cause it, enabling the flies to see visual details beyond their compound eye’s optical 26 
limit (Juusola et al., 2017). 27 
 28 
Without automatic parameter tuning, the model can respond like a real neuron to light time series that follow 29 
a wide range of statistics, as validated experimentally (Juusola et al., 2017; Song and Juusola, 2014). The close 30 
match between simulations with experiments allows one to explore how the neuron processes stimuli with 31 
complex temporal correlations. Fly photoreceptors are incredibly well adapted to deal with fluctuating 32 
patterns of light that enter the eye, effectively utilising the structures of naturalistic light changes to maximise 33 
visual information sampling (Juusola et al., 2017; Song and Juusola, 2014). Through photomechanical 34 
microsaccades, they auto-regulate the light stimuli falling within their receptive fields, and by that, practically 35 
initiate active sensing (Juusola et al., 2017). These findings challenge the traditional ideas of photoreceptors 36 
being simple light detectors and the concept that the “real” vision only happens downstream in the retinal 37 
networks and within the brain.  38 
 39 
“Whole-cell” models enable dissection of neural information processing at three levels of analysis. At the 40 
implementation level, they can be used to assess light-adaptation results from dynamic changes in quantal 41 
sampling (Song and Juusola, 2014; Song et al., 2012a). At the algorithmic level, the workings of a complex 42 
“whole-cell” model could be reduced to a simple algorithm with only four parameters to achieve automatic 43 
gain control and temporal adaptation (Song et al., 2017). At the computational level, the phototransduction 44 
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process could be understood mechanistically through a framework of stochastic adaptive photon sampling, 1 
which clarified why coding of naturalistic stimuli with complex temporal correlations is more efficient than 2 
encoding GWN stimuli that lack these correlations (Juusola et al., 2017; Song and Juusola, 2014). 3 
 4 
The success of these models is a direct testament to a close marriage between experiments and theory. 5 
Painstakingly perfected experimental methods provided intracellular neural responses and photomechanical 6 
contraction dynamics of wild-type and mutant flies with unprecedented quality (Hardie, 1991; Juusola et al., 7 
2017; Juusola et al., 2016; Juusola and Hardie, 2001a; Song and Juusola, 2014), which could directly guide 8 
the model parameters (Juusola et al., 2017; Li et al., 2019; Song et al., 2009; Song and Juusola, 2014; Song et 9 
al., 2012a) and be used in the result comparisons. Simultaneously, information theoretical and systems 10 
analytical methods with minimal assumptions (Juusola and de Polavieja, 2003; Juusola and Hardie, 2001a; 11 
Shannon, 1948; Song et al., 2017; van Hateren and Snippe, 2006) enabled recordings and simulations (of the 12 
same size and resolution) to be tested and analysed in unbiased ways. From our experience of building and 13 
exploring with these “whole-cell” models, we found this integrative (multidisciplinary constructionist) 14 
approach extremely useful and would like to call for more efforts in this direction. Whole-cell models of more 15 
complex neurons need to integrate efforts from targeted experiments, computer simulations, theoretical 16 
hypothesis and mathematical descriptions, and thus inevitably will require interdisciplinary research 17 
cooperation.  18 
 19 

Appendices 20 

Appendix A：Some conceptual clarifications 21 

“Whole-cell” models. Throughout this paper, “whole-cell” is printed in quotations, as the described 22 
photoreceptor models do not fall within the strict classification of including all signalling pathways. The fly 23 
photoreceptor models focus on the phototransduction signalling dynamics and ignoring other functions, such 24 
as gene encoding, protein synthesis and degradation, transcriptional regulation and metabolism. The models 25 
are not as complicated as the ones reported in systems biology; for example, the M. genitalium model 26 
implements 28 pathways (Goldberg et al., 2018). So “whole-cell” is used in a broader sense, indicating that a 27 
dynamical process is modelled both in the microscopic gene/molecular and macroscopic whole-cell scales.  28 
 29 
Multi-modular, multi-compartmental and multiscale models. Several concepts can describe complex models: 30 
multi-modular models, multi-compartmental models, and multiscale models. We have encountered them all 31 
in our modelling process. Although the three concepts have different definitions, they can also intertwine 32 
with each other.  33 
 34 
A multi-modular model is one where the organism or the model can be divided into different components. 35 
Each of these can be a sub-model for a different function. For example, a “whole-cell” photoreceptor model 36 
contains four modules, with each describing a different dynamical process; including the light absorption 37 
process, the stochastic molecular reaction pathway, and the deterministic membrane charging process. A 38 
multi-compartmental model can encompass different body sections. In computational neuroscience, multi-39 
compartmental models are used to account for the complex morphology of a neuron (Herz et al., 2006), and 40 
a complicated model can include tens of thousands of neural compartments. The “whole-cell” photoreceptor 41 
models have two major compartments: the photosensitive rhabdomere and the photo-insensitive cell body 42 
(Fig. 1). The photosensitive rhabdomere can be further divided into 30,000 microvilli. However, this part of 43 
the model only contains three modules, where the photo-insensitive compartment has only one module. 44 
 45 
Multiscale models integrate models at different scales to describe a system with features that can happen at 46 
multiple space and time scales. The different models usually focus on different resolution scales, such as 47 
atoms, proteins, chemical reaction-diffusion or network dynamics. In computational neuroscience, there are 48 
systems models for neural circuitry, where signals from many neurons are pooled together as excitation or 49 
inhibition signals (van Vreeswijk and Sompolinsky, 1998). There are also single neuron models at various 50 
abstraction levels (Herz et al., 2006), including point-neuron models (Hodgkin and Huxley, 1952); 51 
morphologically-detailed multi-compartmental neuron models (Rall, 1959); subcellular models, described by 52 
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differential equations (Izhikevich, 2004); and molecular dynamics models simulated with Monte Carlo 1 
methods (Vasudeva and Bhalla, 2004).  2 
 3 
By definition, a “whole-cell” model is multiscale, integrating dynamics at many spatial and temporal 4 
resolutions. The “whole-cell” photoreceptor models are multiscale models that integrate intracellular protein 5 
level signalling with whole-cell level membrane electrophysiology. However, multiscale models do not need 6 
to be integrated into one complex model. Instead, they can be parallel models constructed down to different 7 
levels of abstraction. The three-levels-of-analysis framework is multiscale by nature, and we showed how the 8 
photoreceptor models could be analysed at the computational, algorithmic and implementation level.  9 
 10 
Appendices B-E: Brief mathematical presentations of the “whole-cell” model 11 
Akin to a real R1–R6 photoreceptor‘s signal transduction process, the “whole-cell” fly photoreceptor model 12 
comprises four biophysically realistic submodules (Fig. 1D) (Juusola et al., 2015; Song et al., 2012a). We now 13 
briefly present the mathematical summary of the model equations for the relevant modules so that this 14 
review is self-contained. The other details, such as the parameter justifications and the relevant experimental 15 
measurements, can be found in corresponding references. The Matlab scripts for this model are 16 
downloadable from the repository:  17 
https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/BiophysicalPhotoreceptorMo18 
del.  19 
 20 
Appendix B: Random Photon Absorption Model (RandPAM)  21 
Appendix B describes the Random Photon Absorption Model (RandPAM), which distributes the incoming 22 
photons to the 30,000 microvilli following Poisson statistics. Its output is the absorbed photon sequences of 23 
each microvillus (Song et al., 2012a; Song et al., 2016).  24 
 25 
Assuming that all microvilli absorb photons independently and have the same photon absorption probability, 26 
the photon absorption process can be modelled as a multinomial process. At each time incident, the 27 
distribution of 𝑁𝑝ℎ  photons over 𝑁𝑢microvilli is multinomial with a size parameter equal to 𝑁𝑝ℎ, and the 28 

probability vector of length  𝑁𝑢 with each element equal to 
1

𝑁𝑢
 . 29 

 30 
Appendix C: Stochastic Bump Model 31 
Appendix C shows the stochastic bump model (Song et al., 2012a). This model simulates the molecular 32 
reaction network for the fly phototransduction cascade, which transduces a sequence of absorbed photons 33 
to a sequence of unitary current events, called the quantum bumps, inside a single microvillus. Similar work 34 
can also be found in (Pumir et al., 2008), but it only simulates single-photon responses without the capability 35 
of simulating the transduction of photon arrival sequences. Simulation of bump sequences is needed for 36 
studying the light adaptation process. 37 
 38 
The molecular reaction network is rather complicated, including a G-protein coupled receptor signalling 39 
pathway, various Ca2+ signalling pathways and the relevant feedback dynamics. A photon activates rhodopsin, 40 
which then kicks the G protein active, catalysing GDP exchange for GTP. The active Ga-GTP then couples to 41 
PLC and hydrolyses PIP2 to generate DAG, InsP3, and a proton. These reactions result in the activation of two 42 
classes of Ca2+ permeable cation channels, TRP and TRPL. Ca2+ influx via TRP then feeds back to multiple 43 
targets in the phototransduction cascade, including the channels, rhodopsin and PLC. The various feedbacks 44 
influence the light response kinetics, amplification and adaptation (refer to fig1 in Hardie and Juusola, 2015 45 
for a pictorial representation of the pathway).  46 
 47 
The model comprises ~20 coupled nonlinear ODEs with ~50 parameters (Fig. 1E). Because some of the 48 
reactant proteins are low in numbers, the model was simulated by a stochastic method, called the Gillespie 49 
algorithm, which generates the statistically correct solution of the underlying chemical master equation 50 
(Gillespie, 1976). We provide a brief mathematical summary of the model equations, whereas the other 51 
details, such as the detailed meaning and values of the parameters, can be found in Table S1 of the published 52 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556150/figure/tjp12342-fig-0002/
https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/BiophysicalPhotoreceptorModel
https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/BiophysicalPhotoreceptorModel
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supplementary materials (Song et al., 2012a). Parameter justifications, the relevant experimental 1 
measurements are discussed in the supplement materials (Song et al., 2012a).  2 
 3 
In the Gillespie algorithm, the chemical system is assumed to be well-mixed for simplicity. The signalling 4 
pathway is decomposed into a set of unidirectional reactions, denoted as 𝑅𝑢(𝑢 = 1,2,⋯ ,12), each of which 5 
contains only unimolecular or bimolecular reactants (Table A1). In Table A1, the molecules, which are few, 6 
are counted; otherwise, concentrations are used. In general, X is the number of molecules; X* is the active 7 
state of X, and XT the total number of corresponding molecules/channels inside a single microvillus. [X] is the 8 
concentration; [X]i is intracellular concentration, and [X]o the extracellular concentration. 9 
 10 
Each of the reaction steps in Table A1 is characterised by a momentarily-defined stochastic reaction constant 11 
𝑐𝑢, where 𝑐𝑢𝛿𝑡 denotes the average probability that a particular combination of R reactant molecules reacts 12 
accordingly in the next infinitesimal time interval 𝛿𝑡. If ℎ𝑢  is the total number of 𝑅𝑢  reactant pairs, then 13 
𝑎𝑢𝛿𝑡 = 𝑐𝑢ℎ𝑢𝛿𝑡 is the average probability that reaction 𝑅𝑢 will occur during 𝛿𝑡. Assuming during 𝛿𝑡, only 0 14 
or 1 reaction occurs, 𝑑𝑡 (next reaction time increment) and 𝑅𝑢 can be determined independently. When 15 
𝑅𝑢 is chosen, the state vector X is updated with a state transition vector, 𝑉𝑢. The procedure iterates until a 16 
termination criterion is satisfied; e.g. if the current simulation time, t, is larger than a preset value.  17 
 18 

Table A1: The modelled reactions in the phototransduction cascade 19 
 20 

Rection Parameter Parameter 
definition 

Corresponding biological 
process 

𝑀∗
𝑐1
→∅                         (R1) 𝑐1 = 𝛾𝑀∗(1 + ℎ𝑀∗𝑓𝑛) 𝜅 and 𝛾 are 

the activation 
and 
deactivation 
rates, 
respectively 
 
 𝑓𝑝and 𝑓𝑛 are 

the positive 
and feedbacks, 
respectively. 
 
ℎ∗,𝑝 and ℎ∗,𝑛 

are the 
positive and 
negative 
feedback 
strength to the 
relevant 
molecular 
targets. 
 
 𝐾𝐷∗ is the 
transition rate 
from D* to the 
opening of 
TRP/TRPL.  
 
𝐾𝑈 and 𝐾𝑅 are 
the uptake and 

Inactivation of metarhodopsin 
(M*) by arrestin binding. ∅ 
indicates any product, whose 
kinetics are not modelled 
 

𝑀∗ + 𝐺
𝑐2
→𝑀∗ + 𝐺∗    (R2) 𝑐2 = 𝜅𝐺∗ The activation of G into G* by 

M*. Three states are modelled, 
GαGβγGDP (G), GαGTP (G*) and 
GαGTP‐PLC (PLC*) 
 

𝐺∗ + 𝑃𝐿𝐶
𝑐3
→𝑃𝐿𝐶∗      (R3) 𝑐3 = 𝜅𝑃𝐿𝐶∗ G* binds to PLC and becomes 

an active G‐protein‐PLC 
complex (PLC*) 
 

𝐺∗ + 𝑃𝐿𝐶∗
𝑐4
→𝐺𝛼𝐺𝐷𝑃 + 𝑃𝐿𝐶

∗      (R4) 

𝑐4 = 𝛾𝐺𝐴𝑃 The conversion from GαGTP to 
GαGDP by GTPase activity of 
G*, catalysed by PLC* 
 

𝐺𝛼𝐺𝐷𝑃
𝑐5
→𝐺                (R5) 𝑐5 = 𝛾𝐺 GαGTP then rebinds to Gβγ 

before it can be reactivated 
 

𝑃𝐿𝐶∗
𝑐6
→𝐷∗ + 𝑃𝐿𝐶∗    (R6) 𝑐6 = 𝛾𝐷∗ PLC* hydrolyses PIP2 into DAG 

and IP3. Here, PLC* is modelled 
to activate the unknown 
excitation messenger D* 
directly 
 

𝑃𝐿𝐶∗
𝑐7
→𝑃𝐿𝐶 +

𝐺𝛼𝐺𝐷𝑃                          (R7) 

 
𝑐7 = 𝛾𝑃𝐿𝐶∗(1 + ℎ𝑃𝐿𝐶∗𝑓𝑛) 
 
 

PLC* decompose to PLC and 
GαGDP 
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𝐷∗
𝑐8
→∅                          (R8) 𝑐8 = 𝛾𝐷∗(1 + ℎ𝐷∗𝑓𝑛) release rate of 

Ca2+ from 
Calmodulin.  
 
V is the 
microvillus 
volume. 
 
The detailed 
meaning and 
values of the 
parameters 
can be found 
in Table S1 of 
supplementary 
materials of 
Song et al. in 
2012. 

D* degrades  

   

2𝐷∗ + 𝑇
𝑐9
→ 𝑇∗              (R9) 

𝑐9 =
𝜅𝑇∗(1 + ℎ𝑇∗,𝑝𝑓𝑝)

(𝐾𝐷∗)
2

 

 
 

D* excites TRP/TRPL channels 
T to their open states (T*) 
 

𝑇∗
𝑐10
→ 𝑇                         (R10) 𝑐10 = 𝛾𝑇∗(1 + ℎ𝑇∗,𝑛𝑓𝑛) 

 
 

open TRP/TRPL channels close 
 

𝐶𝑎2+ + 𝐶𝑎𝑀
𝑐11
→ 𝐶∗ (R11) 𝑐11 =

𝐾𝑈
𝑉2

 

 
 

Ca2+ binds to Calmodulin C* 
 

𝐶∗
𝑐12
→ 𝐶𝑎2+ + 𝐶𝑎𝑀 (R12) 𝑐12 = 𝐾𝑅 the release of Ca2+ from 

Calmodulin 

 1 

Assuming that, apart from Ca2+, the molecular components cannot enter or leave the microvillus, the 2 
following mass balance equations hold in Table A2. 3 

Table A2: Mass balance equations in the phototransduction cascade of a single microvillus 4 

Mass balance equation Definition Number 

𝑇∗ + 𝑇 = 𝑇𝑇        The total amount of TRP/TRPL channels (𝑇𝑇) is fixed  (1) 

𝐶𝑎𝑀 + 𝐶∗ = 𝐶𝑇 The total amount of Calmodulin (𝐶𝑇) is fixed (2) 

𝑃𝐿𝐶∗ + 𝑃𝐿𝐶 = 𝑃𝐿𝐶𝑇 The total amount of PLC (𝑃𝐿𝐶𝑇) is fixed (3) 

𝐺∗𝐺𝐷𝑃 + 𝐺 + 𝐺∗ + 𝑃𝐿𝐶∗ = 𝐺𝑇  The total amount of G proteins (𝐺𝑇) is fixed (4) 

 5 

Using these mass balance equations in Table A2, the number of state variables can be reduced, and the state 6 
vector, X, is defined as: 7 

𝑋 = [𝑀∗; 𝐺; 𝐺∗; 𝑃𝐿𝐶∗; 𝐷∗; 𝐶∗; 𝑇∗]                                                               (5) 8 

The state transition matrix, V, is defined as: 9 

𝑽 =

[
 
 
 
 
 
 
−1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 0 0
0 1 −1 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 −1 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 1 −1 0 0 ]

 
 
 
 
 
 

                          (6) 10 

 11 
The number of reactant pairs for each reaction is: 12 
 13 

𝒉 =       

[𝑀∗; 𝑀∗(𝐺); 𝐺∗(𝑃𝐿𝐶𝑇 − 𝑃𝐿𝐶
∗); 𝐺∗(𝑃𝐿𝐶∗);

𝐺𝑇 − 𝐺
∗ − 𝐺 − 𝑃𝐿𝐶∗; 𝑃𝐿𝐶∗; 𝑃𝐿𝐶∗; 𝐷∗;

𝐷∗(𝐷∗−1)(𝑇𝑇−𝑇
∗)

2
; 𝑇∗; 𝐶𝑎2+(𝐶𝑎𝑀); 𝐶∗]

                 (7) 14 

 15 
With the definitions of X, V, c, h, the time increment dt, during which the next reaction 𝑅𝑢  reacts, is 16 
determined by Eq.8, and 𝑅𝑢 can be chosen so that Eq. 9 satisfies: 17 
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 1 

 𝑑𝑡 =
1

𝑙𝑎+𝑎𝑠
ln (

1

𝑟1
)                                                                        (8) 2 

 3 
∑ 𝑎𝑣 < 𝑟2𝑎𝑠 ≤ ∑ 𝑎𝑣

𝑢
𝑣=1

𝑢−1
𝑣=1                                                             (9) 4 

where 𝑟1 and 𝑟2 are uniformly distributed random numbers. 𝑎𝑠  is the dot product between 𝑐 and ℎ (𝑎𝑠 =5 
∑ 𝑐𝑢ℎ𝑢
𝑀
𝑢=1 ), and 𝑎𝑣 is a product between 𝑐𝑣 and ℎ𝑣.  6 

 7 
Ca dynamics: Ca2+ is an essential feedback signal in the phototransduction cascade.  Ideally, Ca2+ should be 8 
included as one of the state variables, but because Ca2+ changes up to 1,000-fold during a bump, its dynamics 9 
are approximated by a deterministic approach to save computation time. The formulas to calculate Ca2+ and 10 
the relevant feedbacks are listed in Table 3.  Ca2+ dynamics are assumed to be so fast that the stochastic 11 
simulation framework quantities are updated by the steady-state values.  12 
 13 

Table 3: Formulas for Ca2+ dynamics in the microvillus 14 
Formulas 
 

Parameters # 

 
𝑑[𝐶𝑎2+]

𝑖

𝑑𝑡
 =

𝐼𝐶𝑎,𝑛𝑒𝑡

2𝑉𝐹
− 𝑛

𝑑[𝐶∗]𝑖

𝑑𝑡
− 𝐾𝐶𝑎[𝐶𝑎

2+]𝑖       

1st term: Ca2+ influx; 2nd term: Ca2+ uptake by calcium 
buffer; 3rd term: Ca2+ diffusion to the cell body; 
V: microvillus volume, F: Faraday constant. n: the 
number of Calmodulin Ca2+ binding sites. 1/KCa 
denotes Ca2+ diffusion time constant. 
 

(10) 

𝐼𝐶𝑎,𝑛𝑒𝑡 = 𝐼𝐶𝑎 − 2𝐼𝑁𝑎𝐶𝑎   𝐼𝐶𝑎: Ca2+ influx through TRP/TRPL, calculated as 40% 
of total current influx; 
𝐼𝑁𝑎𝐶𝑎: Ca2+ extrusion from Na+/Ca2+ exchanger 
 

(11) 

𝐼𝑁𝑎𝐶𝑎 = 𝐾𝑁𝑎𝐶𝑎 ([𝑁𝑎
+]𝑖

3
[𝐶𝑎2+]𝑜 −

[𝑁𝑎+]𝑜
3
[𝐶𝑎2+]𝑖𝑒

−
𝑉𝑚𝐹

𝑅𝑇 )     

𝐼𝑁𝑎𝐶𝑎  is calculated from a simplified Na+/Ca2+ 
exchanger model, given that the extracellular ionic 
concentrations ae fixed and the cell is voltage‐
clamped; KNaCa: scaling factor; Vm: the transmembrane 
potential; R: the gas constant; T: the absolute 
temperature 
 

(12) 

𝑑[𝐶∗]𝑖

𝑑𝑡
 = 𝐾𝑢[𝐶𝑎

2+]𝑖[𝐶𝑎𝑀]𝑖 − 𝐾𝑅[𝐶
∗]𝑖    

 

Dynamics of Ca2+ binding to CaM; 𝐾𝑈 and 𝐾𝑅 are the 
uptake and release rate of Ca2+ from Calmodulin.  
 

(13) 

𝑓𝑝([𝐶𝑎
2+]𝑖) =

(
[𝐶𝑎2+]𝑖
𝐾𝑃

)

𝑚𝑝

1+(
[𝐶𝑎2+]𝑖
𝐾𝑃

)

𝑚𝑝    

 

 

The positive and negative feedbacks are 
approximated by Hill functions of [Ca2+]i. 
 
𝐾𝑝  and 𝐾𝑛  are the dissociation constants, i.e., the 

substances that provide half‐occupancy of the binding 
sites; 𝑚𝑝  and 𝑚𝑛  are the Hill coefficients, describing 

the cooperativity of the excitation messengers 

(14) 

𝑓𝑛([𝐶
∗]𝑖) = 𝑛𝑠 ∗

(
[𝐶∗]𝑖
𝐾𝑛

)
𝑚𝑛

1+(
[𝐶∗]𝑖
𝐾𝑛

)
𝑚𝑛      

(15) 

 15 
Despite the many model parameters, adaptation mechanisms can be regulated by only two mass parameters: 16 
𝑛𝑠 in Eq. 15 for the quantum bump (QB) shape and 𝑙𝑎 in Eq. 8 to tune the width of the QB latency distribution. 17 
These parameters had little effect on the QB refractory period when the bump statistics were within the 18 
physiological range for Drosophila (Song et al., 2012). 19 
 20 
Appendix D: Integration of Light-Induced Current (LIC) 21 
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The macroscopic light-induced current (LIC) of the rhabdomere is integrated from the current QBs of up to 1 
Nu microvilli. The formulas for the calculations are listed in Table 4: 2 
 3 

Table 4: Formulas to calculate the macroscopic LIC 4 
Formulas 
 

Parameters  # 

𝐼𝑖𝑛
𝑁 = 𝐼𝑇∗ × 𝑇

∗𝑁 
 

𝐼𝑖𝑛
𝑁  is the (LIC) of microvillus N 

𝑇∗𝑁: the number of opened TRP/TRPL channels in microvillus N 
 

(16) 

𝐼𝑇∗ = 𝑔𝑇𝑅𝑃(𝑇𝑅𝑃𝑟𝑒𝑣 − 𝑉𝑚) 
 

𝐼𝑇∗  is the average single‐channel current conducted by an open 
TRP/TRPL channel; 𝑔𝑇𝑅𝑃 is the single TRP channel conductance 
𝑇𝑅𝑃𝑟𝑒𝑣  is the TRP channel reversal potential; 𝑉𝑚 is the 
photoreceptor membrane potential.  
 

(17) 

𝑔𝑇𝑅𝑃 = 8 × {
1  𝑖𝑓 𝑇𝑅𝑃𝑟𝑒𝑣 > 𝑉𝑚
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Single-channel conductance is 8 pS, 𝑇𝑅𝑃𝑟𝑒𝑣 is 0 mV (18) 

𝐿𝐼𝐶 =  ∑ 𝐼𝑖𝑛
𝑁

𝑁𝑢

𝑁=1

 

 

The microscopic LIC of the rhabdomere is integrated from the 
current QBs of up to Nu microvilli. From Eq. 17, as 𝑉𝑚 increases, 

the bumps 𝐼𝑖𝑛
𝑁  shrink accordingly, LIC decreases. Thus, LIC and 

𝑉𝑚 are calculated iteratively.  
 

(19) 

𝑉𝑚 = 𝐻𝐻(𝐿𝐼𝐶) 
 

𝑉𝑚 is obtained by injecting the macroscopic LIC in into the HH 
model of the cell body.  
 

(20) 

 5 
Appendix E: Hodgkin-Huxley Cell-Body Model 6 
Appendix E describes the Hodgkin–Huxley model of the photoreceptor plasma membrane. This module 7 
transduces LIC into voltage response by reproducing the voltage‐gated K+ conductance dynamics on the 8 
photon‐insensitive membrane (Li et al., 2019; Niven et al., 2003). The model was adopted from (Niven et al., 9 
2003); we only list the major equations and parameters. The details can be found in Vähäsöyrinki’s PhD thesis 10 
(Vähäsöyrinki, 2004).  11 
 12 

Table 5: Formulas for the HH model for the photoreceptor cell body 13 
Formulas Parameters # 

 

𝐶𝑚
𝑑𝑉𝑚
𝑑𝑡

= 𝐿𝐼𝐶 −∑𝑔𝑖(𝑉𝑚 − 𝐸𝑘)

𝑖

− 𝑔𝐿(𝑉𝑚 − 𝐸𝐿) 

LIC is the macroscopic light‐induced current 
integrated from all QBs in the rhabdomere. 𝑔𝑖 
represents various voltage‐gated K+ conductances, 
including fast inactivating Shaker, slow delayed 
rectifier, Shab conductances, and a slowly 
activating, non‐inactivating voltage‐gated K+ 
conductance. 𝑔𝐿 represents K+ and Cl‐ leaks.  

 

Resting potential ‐66 mV (21) 

Specific membrane 
capacitance 

4 uF/cm2 

Maximum Shaker 
conductance 

0.8 mS/cm2 

Maximum Shab 
conductance 

3.0 mS/cm2 

Maximum novel K+ 

conductance 
0.11 mS/cm2 

Potassium leak 
conductance 

0.0855 mS/cm2 

Chloride leak 
conductance 

0.0585 mS/cm2 

𝑔𝑖 = 𝑔𝑖𝑚𝑎𝑥∏[𝛾𝑘(𝑉𝑚, 𝑡)]
𝑛

𝑘

 

 

𝑔𝑖𝑚𝑎𝑥  represents the various maximum 
conductance listed above. n is the number 
of gating variables 

(22) 
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𝑑𝛾𝑘
𝑑𝑡

=  𝛼𝛾(1 − 𝛾𝑘) − 𝛽𝛾𝛾𝑘 
 
𝛾𝑘 is the probability of the permissive state 
of the gating particles; 𝛼𝛾  and 𝛽𝛾  are 

voltage‐dependent rate constants. Steady‐
state activation and inactivation curves (𝑔∞) 
for voltage‐gated K+ channels were fitted to 
experimental data with Boltzmann function. 

(23) 

𝛼𝑘 =
[(
𝑔∞

𝑔𝑚𝑎𝑥⁄ )𝑘]
1
𝑛𝑘⁄

𝜏𝑘
 

 
(24) 

𝛽𝑘 =
1 − [(

𝑔∞
𝑔𝑚𝑎𝑥⁄ )𝑘]

1
𝑛𝑘⁄

𝜏𝑘
 

 

 
(25) 

(
𝑔∞
𝑔𝑚𝑎𝑥

) =
1

1 + 𝑒
𝑉50−𝑉𝑚

𝑠

 

 

𝑉50 is the voltage producing a steady‐state 
conductance of 50% of the maximum value, 
and s is the slope factor 

(26) 

𝜏 =
1

𝑝1𝑒
𝑝2−𝑉𝑚
𝑝3 + 𝑝4

𝑝5 − 𝑉𝑚

𝑒
𝑝5−𝑉𝑚
𝑝6 − 1

 

 

The time constants of activation and 
inactivation curves were fitted to 
experimental data with a bell‐shaped 
function, where 𝑝𝑖  are the free parameters 
for fitting.  

 
(27) 

 1 
Table 5: Parameters for the HH model of the photoreceptor cell body 2 

Variable Shaker Shab Novel K+ 

𝑉50(𝑚𝑉) Act Inact 
 

Act Inact Act 

‐23.7 1st ‐55.3 
2nd ‐74.8 
 

‐1.0 ‐25.7 ‐14 

𝑆(𝑚𝑉) 12.8 1st  ‐3.9 9.1 ‐6.4 10.6 
2nd  ‐10.7 
 

𝑛 3 1 2 1 1 

𝜏 
 
 
 

𝑝1 0.008174 0.2303 0.1163 𝜏𝑖𝑛𝑎𝑐𝑡 =
1200 𝑚𝑠  

𝜏𝑎𝑐𝑡𝑖 = (13 +
6232

30∗√
𝜋

2

exp (−2 ∗

(
𝑉𝑚+19.4

30
)2)  
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𝑝6 4.5012 11.11 1.3455 

 3 
 4 
 5 
 6 

Author contributions 7 
ZS conceptualised the paper; ZS & YZ wrote the first draft; MJ reshaped the draft and improved the figures, 8 
and MJ, ZS and JF edited the paper. 9 
 10 

Conflict of interest statement 11 
All authors declare no competing interests and gave final approval for publication.  12 
 13 

Acknowledgements 14 
Z.S. thanks supporting resources from MOE Frontiers Center for Brain Science, Fudan University, Shanghai 15 
Pujiang talent program (19PJ1400800), National Natural Science Foundation of China (Young Scientist 16 
Program No.12001111). J.F.F. thanks the supporting resources from the National Key R&D Program of China 17 
(2019YFA0709502), the 111 Project (No. B18015), the Key Project of Shanghai Science and Technology (No. 18 
16JC1420402), Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01) and ZJLab, 19 



24 

 

National Key R&D Program of China (No. 2018YFC1312900), National Natural Science Foundation of China 1 
(NSFC 91630314). M.J. is grateful for these grants, which have supported this work: the State Key Laboratory 2 
of Cognitive Neuroscience and Learning Open Research Fund, Natural Science Foundation of China Project 3 
30810103906, Jane and Aatos Erkko Foundation Fellowship, Leverhulme Trust Grant RPG-2012-567, and 4 
Biotechnology and Biological Sciences Research Council Grants BB/F012071/1, BB/D001900/1, 5 
BB/H013849/1 and BB/M009564/1, Engineering and Physical Sciences Research Council Grant 6 
EP/N033264/1. 7 
 8 

References 9 
Abbott LF, Lemasson G. Analysis of Neuron Models with Dynamically Regulated Conductances. Neural 10 
Computation, 1993; 5: 823-42. 11 
Abou Tayoun AN, Li XF, Chu B, Hardie RC, Juusola M, Dolph PJ. The Drosophila SK Channel (dSK) Contributes 12 
to Photoreceptor Performance by Mediating Sensitivity Control at the First Visual Network. Journal of 13 
Neuroscience, 2011; 31: 13897-910. 14 
Ahissar E, Arieli A. Seeing via miniature eye movements: a dynamic hypothesis for vision. Frontiers in 15 
Computational Neuroscience, 2012; 6. 16 
Bhalla US. Molecular computation in neurons: a modeling perspective. Curr Opin Neurobiol, 2014; 25: 31-7. 17 
Bhalla US. Multiscale interactions between chemical and electric signaling in LTP induction, LTP reversal and 18 
dendritic excitability. Neural Networks, 2011; 24: 943-9. 19 
Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science, 1999; 283: 20 
381-7. 21 
Carrera J, Covert MW. Why Build Whole-Cell Models? Trends in Cell Biology, 2015; 25: 719-22. 22 
Clark DA, Benichou R, Meister M, da Silveira RA. Dynamical Adaptation in Photoreceptors. Plos Comput 23 
Biol, 2013; 9. 24 
Dau A, Friederich U, Dongre S, Li XF, Bollepalli MK, Hardie RC, Juusola M. Evidence for Dynamic Network 25 
Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine. 26 
Frontiers in Neural Circuits, 2016; 10. 27 
De Schutter E. Why are computational neuroscience and systems biology so separate? Plos Comput Biol, 28 
2008; 4. 29 
Ditchburn RW, Ginsborg BL. Vision with a Stabilized Retinal Image. Nature, 1952; 170: 36-7. 30 
Faivre O, Juusola M. Visual Coding in Locust Photoreceptors. Plos One, 2008; 3. 31 
Franklin J, Bair W. The Effect of a Refractory Period on the Power Spectrum of Neuronal Discharge. Siam 32 
Journal on Applied Mathematics, 1995; 55: 1074-93. 33 
French AS, Korenberg MJ, Järvilehto M, Kouvalainen E, Juusola M, Weckström M. The Dynamic Nonlinear 34 
Behavior of Fly Photoreceptors Evoked by a Wide-Range of Light Intensities. Biophysical Journal, 1993; 65: 35 
832-9. 36 
Friederich U, Billings SA, Hardie RC, Juusola M, Coca D. Fly Photoreceptors Encode Phase Congruency. Plos 37 
One, 2016; 11. 38 
Friederich U, Coca D, Billings S, Juusola M. Data Modelling for Analysis of Adaptive Changes in Fly 39 
Photoreceptors. Neural Information Processing, Pt 1, Proceedings, 2009; 5863: 34-+. 40 
Geurten BRH, Jahde P, Corthals K, Gopfert MC. Saccadic body turns in walking Drosophila. Frontiers in 41 
Behavioral Neuroscience, 2014; 8. 42 
Gillespie DT. General Method for Numerically Simulating Stochastic Time Evolution of Coupled Chemical-43 
Reactions. Journal of Computational Physics, 1976; 22: 403-34. 44 
Goldberg AP, Szigeti B, Chew YH, Sekar JAP, Roth YD, Karr JR. Emerging whole-cell modeling principles and 45 
methods. Current Opinion in Biotechnology, 2018; 51: 97-102. 46 
Gonzalez-Bellido PT, Wardill TJ, Juusola M. Compound eyes and retinal information processing in miniature 47 
dipteran species match their specific ecological demands. Proceedings of the National Academy of Sciences 48 
of the United States of America, 2011; 108: 4224-9. 49 
Goriounova NA, Heyer DB, Wilbers R, Verhoog MB, Giugliano M, Verbist C, Obermayer J, Kerkhofs A, 50 
Smeding H, Verberne M, Idema S, Baayen JC, Pieneman AW, de Kock CPJ, Klein M, Mansvelder HD. Large 51 
and fast human pyramidal neurons associate with intelligence. Elife, 2018; 7. 52 



25 

 

Hardie RC. Whole-Cell Recordings of the Light-Induced Current in Dissociated Drosophila Photoreceptors - 1 
Evidence for Feedback by Calcium Permeating the Light-Sensitive Channels. Proceedings of the Royal 2 
Society B-Biological Sciences, 1991; 245: 203-10. 3 
Hardie RC, Juusola M. Phototransduction in Drosophila. Curr Opin Neurobiol, 2015; 34: 37-45. 4 
Hardie RC, Minke B. The Trp Gene Is Essential for a Light-Activated Ca2+ Channel in Drosophila 5 
Photoreceptors. Neuron, 1992; 8: 643-51. 6 
Hardie RC, Peretz A, Susstoby E, Romglas A, Bishop SA, Selinger Z, Minke B. Protein-Kinase-C Is Required for 7 
Light Adaptation in Drosophila Photoreceptors. Nature, 1993; 363: 634-7. 8 
Hardie RC. TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol, 2007; 578: 9-24. 9 
Hardie RC, Postma M. Phototransduction in microvillar photoreceptors of Drosophila and other 10 
invertebrates. In Masland RH, Albright TD, editors. The Senses: A Comprehensive Reference. Elsevier, 2008: 11 
77-130. 12 
Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST. Calcium influx via TRP channels is required 13 
to maintain PIP2 levels in Drosophila photoreceptors. Neuron, 2001; 30: 149-59. 14 
Heeger DJ. Normalisation of Cell Responses in Cat Striate Cortex. Visual Neuroscience, 1992; 9: 181-97. 15 
Hemberger M, Pammer L, Laurent G. Comparative approaches to cortical microcircuits. Curr Opin 16 
Neurobiol, 2016; 41: 24-30. 17 
Henderson SR, Reuss H, Hardie RC. Single photon responses in Drosophila photoreceptors and their 18 
regulation by Ca2+. Journal of Physiology-London, 2000; 524: 179-94. 19 
Herz AVM, Gollisch T, Machens CK, Jaeger D. Modeling single-neuron dynamics and computations: A 20 
balance of detail and abstraction. Science, 2006; 314: 80-5. 21 
Hochstrate P, Hamdorf K. Microvillar Components of Light Adaptation in Blowflies. Journal of General 22 
Physiology, 1990; 95: 891-910. 23 
Hodgkin AL, Huxley AF. A Quantitative Description of Membrane Current and Its Application to Conduction 24 
and Excitation in Nerve. Journal of Physiology-London, 1952; 117: 500-44. 25 
Howard J, Blakeslee B, Laughlin SB. The Intracellular Pupil Mechanism and Photoreceptor Signal - Noise 26 
Ratios in the Fly Lucilia-Cuprina. Proceedings of the Royal Society Series B-Biological Sciences, 1987; 231: 27 
415-35. 28 
Izhikevich EM. Which model to use for cortical spiking neurons? IEEE Trans Neural Netw. 2004 Sep;15:1063-29 
70. doi: 10.1109/TNN.2004.832719. 30 
Juusola M, Dau A, Song Z, Solanki N, Rien D, Jaciuch D, Dongre S, Blanchard F, de Polavieja GG, Hardie RC, 31 
Takalo J. Microsaccadic sampling of moving image information provides Drosophila hyperacute vision. Elife, 32 
2017; 6. 33 
Juusola M, Dau A, Zheng L, Rien DN. Electrophysiological Method for Recording Intracellular Voltage 34 
Responses of Drosophila Photoreceptors and Interneurons to Light Stimuli In Vivo. Jove-Journal of 35 
Visualized Experiments, 2016. 36 
Juusola M, de Polavieja GG. The rate of information transfer of naturalistic stimulation by graded 37 
potentials. Journal of General Physiology, 2003; 122: 191-206. 38 
Juusola M, French AS. The efficiency of sensory information coding by mechanoreceptor neurons. Neuron, 39 
1997; 18: 959-68. 40 
Juusola M, French AS, Uusitalo RO, Weckström M. Information processing by graded-potential transmission 41 
through tonically active synapses. Trends in Neurosciences, 1996; 19: 292-7. 42 
Juusola M, Hardie RC. Light adaptation in Drosophila photoreceptors: I. Response dynamics and signaling 43 
efficiency at 25 degrees C. Journal of General Physiology, 2001a; 117: 3-25. 44 
Juusola M, Hardie RC. Light adaptation in Drosophila photoreceptors: II. Rising temperature increases the 45 
bandwidth of reliable signaling. Journal of General Physiology, 2001b; 117: 27-41. 46 
Juusola M, Kouvalainen E, Jarvilehto M, Weckstrom M. Contrast Gain, Signal-to-Noise Ratio, and Linearity in 47 
Light-Adapted Blowfly Photoreceptors. Journal of General Physiology, 1994; 104: 593-621. 48 
Juusola M, Song Z. How a fly photoreceptor samples light information in time. Journal of Physiology-49 
London, 2017; 595: 5427-37. 50 
Juusola M, Song Z, Hardie R. Phototransduction biophysics. In Jaeger D, Jung R, editors. Encyclopedia of 51 
Computational Neuroscience. Springer: New York, 2015: 2359-76. 52 
Juusola M, Uusitalo RO, Weckström M. Transfer of Graded Potentials at the Photoreceptor Interneuron 53 
Synapse. Journal of General Physiology, 1995a; 105: 117-48. 54 



26 

 

Juusola M, Weckström M, Uusitalo RO, Korenberg MJ, French AS. Nonlinear models of the first synapse in 1 
the light-adapted fly retina. Journal of Neurophysiology, 1995b; 74: 2538-47. 2 
Kim B, Hawes SL, Gillani F, Wallace LJ, Blackwell KT. Signaling Pathways Involved in Striatal Synaptic 3 
Plasticity are Sensitive to Temporal Pattern and Exhibit Spatial Specificity. Plos Comput Biol, 2013; 9. 4 
Klipp E, Liebermeister W. Mathematical modeling of intracellular signaling pathways. Bmc Neurosci, 2006; 5 
7. 6 
Kotter R, Schirok D. Towards an integration of biochemical and biophysical models of neuronal information 7 
processing: A case study in the nigro-striatal system. Rev Neuroscience, 1999; 10: 247-66. 8 
Land BR, Salpeter EE, Salpeter MM. Kinetic-Parameters for Acetylcholine Interaction in Intact 9 
Neuromuscular-Junction. P Natl Acad Sci-Biol, 1981; 78: 7200-4. 10 
Laughlin SB, Lillywhite PG. Intrinsic Noise in Locust Photoreceptors. Journal of Physiology-London, 1982; 11 
332: 25-45. 12 
Li XF, Abou Tayoun A, Song ZY, Dau A, Rien D, Jaciuch D, Dongre S, Blanchard F, Nikolaev A, Zheng L, 13 
Bollepalli MK, Chu B, Hardie RC, Dolph PJ, Juusola M. Ca2+-Activated K+ Channels Reduce Network 14 
Excitability, Improving Adaptability and Energetics for Transmitting and Perceiving Sensory Information. 15 
Journal of Neuroscience, 2019; 39: 7132-54. 16 
Lillywhite PG. Single-Photon Signals and Intrinsic Noise in Locust Photoreceptors. Journal of the Optical 17 
Society of America, 1979; 69: 1469-. 18 
Lillywhite PG, Laughlin SB. Transducer Noise in a Photoreceptor. Nature, 1979; 277: 569-72. 19 
Marder E, Goaillard JM. Variability, compensation and homeostasis in neuron and network function. Nat 20 
Rev Neurosci, 2006; 7: 563-74. 21 
Markram H. The Blue Brain Project. Nat Rev Neurosci, 2006; 7: 153-60. 22 
Markram H. The human brain project. Sci Am, 2012; 306: 50-5. 23 
Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares 24 
L, Antille N, Arsever S, Kahou GAA, Berger TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol JD, 25 
Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S, Gal E, Gevaert ME, Ghobril JP, 26 
Gidon A, Graham JW, Gupta A, Haenel V, Hay E, Heinis T, Hernando JB, Hines M, Kanari L, Keller D, Kenyon 27 
J, Khazen G, Kim Y, King JG, Kisvarday Z, Kumbhar P, Lasserre S, Le Be JV, Magalhaes BRC, Merchan-Perez A, 28 
Meystre J, Morrice BR, Muller J, Munoz-Cespedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton TH, 29 
Nolte M, Ovcharenko A, Palacios J, Pastor L, Perin R, Ranjan R, Riachi I, Rodriguez JR, Riquelme JL, Rossert C, 30 
Sfyrakis K, Shi Y, Shillcock JC, Silberberg G, Silva R, Tauheed F, Telefont M, Toledo-Rodriguez M, Trankler T, 31 
Van Geit W, Diaz JV, Walker R, Wang Y, Zaninetta SM, DeFelipe J, Hill SL, Segev I, Schurmann F. 32 
Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 2015; 163: 456-92. 33 
Marr D. Vision: A Computational Investigation into the Human Representation and Processing of Visual 34 
Information. The MIT Press, 1982. 35 
Mayer J, Khairy K, Howard J. Drawing an elephant with four complex parameters. American Journal of 36 
Physics, 2010; 78: 648-9. 37 
Meinertzhagen IA, O'Neil SD. Synaptic organisation of columnar elements in the lamina of the wild type in 38 
Drosophila melanogaster. J Comp Neurol, 1991; 305: 232-63. 39 
Naoki H, Sakumura Y, Ishii S. Local signaling with molecular diffusion as a decoder of Ca2+ signals in 40 
synaptic plasticity. Mol Syst Biol, 2005; 1. 41 
Niven JE, Vahasoyrinki M, Kauranen M, Hardie RC, Juusola M, Weckstrom M. The contribution of Shaker K+ 42 
channels to the information capacity of Drosophila photoreceptors. Nature, 2003; 421: 630-4. 43 
Ostojic S, Brunel N. From Spiking Neuron Models to Linear-Nonlinear Models. Plos Comput Biol, 2011; 7. 44 
Packer O, Williams DR. Blurring by Fixational Eye-Movements. Vision Res, 1992; 32: 1931-9. 45 
Poo MM, Du JL, Ip NY, Xiong ZQ, Xu B, Tan T. China Brain Project: Basic Neuroscience, Brain Diseases, and 46 
Brain-Inspired Computing. Neuron, 2016; 92: 591-6. 47 
Pumir A, Graves J, Ranganathan R, Shraiman BI. Systems analysis of the single photon response in 48 
invertebrate photoreceptors. Proceedings of the National Academy of Sciences of the United States of 49 
America, 2008; 105: 10354-9. 50 
Rabinovich M, Huerta R, Laurent G. Neuroscience - Transient dynamics for neural processing. Science, 51 
2008; 321: 48-50. 52 
Rall W. Branching Dendritic Trees and Motoneuron Membrane Resistivity. Exp Neurol, 1959; 1: 491-527. 53 



27 

 

Rall W. Theoretical significance of dendritic trees for neuronal input-output relations. In Reiss RF, editor. 1 
Neural Theory and Modeling. Stanford University Press, 1964. 2 
Ratliff CP, Borghuis BG, Kao YH, Sterling P, Balasubramanian V. Retina is structured to process an excess of 3 
darkness in natural scenes. Proceedings of the National Academy of Sciences of the United States of 4 
America, 2010; 107: 17368-73. 5 
Rieke F, Bodnar DA, Bialek W. Naturalistic stimuli increase the rate and efficiency of information 6 
transmission by primary auditory afferents. Proceedings of the Royal Society B-Biological Sciences, 1995; 7 
262: 259-65. 8 
Rieke F, Rudd ME. The Challenges Natural Images Pose for Visual Adaptation. Neuron, 2009; 64: 605-16. 9 
Rivera-Alba M, Vitaladevuni SN, Mishchenko Y, Lu Z, Takemura SY, Scheffer L, Meinertzhagen IA, Chklovskii 10 
DB, de Polavieja GG. Wiring economy and volume exclusion determine neuronal placement in the 11 
Drosophila brain. Curr Biol, 2011; 21: 2000-5. 12 
Shannon CE. A Mathematical Theory of Communication. Bell System Technical Journal, 1948; 27: 379-423. 13 
Silva GA, Hetling JR, Pepperberg DR. Dynamic and steady-state light adaptation of mouse rod 14 
photoreceptors in vivo. Journal of Physiology-London, 2001; 534: 203-16. 15 
Smolen P, Baxter DA, Byrne JH. Molecular Constraints on Synaptic Tagging and Maintenance of Long-Term 16 
Potentiation: A Predictive Model. Plos Comput Biol, 2012; 8. 17 
Song Z, Banks RW, Bewick GS. Modelling the mechanoreceptor's dynamic behaviour. Journal of Anatomy, 18 
2015; 227: 243-54. 19 
Song Z, Coca D, Billings S, Postma M, Hardie RC, Juusola M. Biophysical modeling of a Drosophila 20 
photoreceptor. Neural Information Processing, Pt 1, Proceedings 2009: 57-71. 21 
Song Z, Juusola M. A biomimetic fly photoreceptor model elucidates how stochastic adaptive quantal 22 
sampling provides a large dynamic range. Journal of Physiology-London, 2017; 595: 5439-56. 23 
Song Z, Juusola M. Refractory Sampling Links Efficiency and Costs of Sensory Encoding to Stimulus Statistics. 24 
Journal of Neuroscience, 2014; 34: 7216-37. 25 
Song Z, Postma M, Billings SA, Coca D, Hardie RC, Juusola M. Stochastic, Adaptive Sampling of Information 26 
by Microvilli in Fly Photoreceptors. Current Biology, 2012a; 22: 1371-80. 27 
Song Z, Postma M, Billings SA, Coca D, Hardie RC, Juusola M. Stochastic, adaptive sampling of information 28 
by microvilli in fly photoreceptors. Curr Biol, 2012b; 22: 1371-80. 29 
Song Z, Zhou Y, Juusola M. Modeling elucidates how refractory period can provide profound nonlinear gain 30 
control to graded potential neurons. Physiological Reports, 2017; 5. 31 
Song Z, Zhou Y, Juusola M. Random Photon Absorption Model Elucidates How Early Gain Control in Fly 32 
Photoreceptors Arises from Quantal Sampling. Frontiers in Computational Neuroscience, 2016; 10. 33 
Stiles JR, Bartol TM. Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In 34 
De Schutter E, editor. Computational neuroscience: realistic modeling for experimentalists. CRC Press:: Bota 35 
Racon, Florida, 2000: 87-127. 36 
Szalavitz M. Brain Map: President Obama Proposes First Detailed Guide of Human Brain Function. Time. 37 
February 19, 2013. 38 
Vähäsöyrinki M. Voltage-gated K+ Channels in Drosophila photoreceptors. Department of Physical Sciences, 39 
Division of Biophysics. University of Oulu, Finland, 2004. 40 
Vähäsöyrinki M, Niven JE, Hardie RC, Weckström M, Juusola M. Robustness of neural coding in Drosophila 41 
photoreceptors in the absence of slow delayed rectifier K+ channels. Journal of Neuroscience, 2006; 26: 42 
2652-60. 43 
van der Schaaf A, van Hateren JH. Modelling the power spectra of natural images: Statistics and 44 
information. Vision Res, 1996; 36: 2759-70. 45 
van Hateren JH. Processing of natural time series of intensities in the early visual system of the blowfly. 46 
Perception, 1997; 26: 6-7. 47 
van Hateren JH, Snippe HP. Phototransduction in primate cones and blowfly photoreceptors: different 48 
mechanisms, different algorithms, similar response. Journal of Comparative Physiology a-Neuroethology 49 
Sensory Neural and Behavioral Physiology, 2006; 192: 187-97. 50 
van Kleef JP, Stange G, Ibbotson MR. Applicability of White-Noise Techniques to Analyzing Motion 51 
Responses. Journal of Neurophysiology, 2010; 103: 2642-51. 52 
van Vreeswijk, C., and H. Sompolinsky. 1998. Chaotic balanced state in a model of cortical circuits. Neural 53 
Comput, 10: 1321-71. 54 



28 

 

Vayttaden SJ, Ajay SM, Bhalla US. A spectrum of models of signaling pathways. Chembiochem, 2004; 5: 1 
1365-74. 2 
Wardill TJ, List O, Li XF, Dongre S, McCulloch M, Ting CY, O'Kane CJ, Tang SM, Lee CH, Hardie RC, Juusola M. 3 
Multiple Spectral Inputs Improve Motion Discrimination in the Drosophila Visual System. Science, 2012; 4 
336: 925-31. 5 
Wark B, Lundstrom BN, Fairhall A. Sensory adaptation. Curr Opin Neurobiol, 2007; 17: 423-9. 6 
Wong F, Knight BW. Adapting-Bump Model for Eccentric Cells of Limulus. Journal of General Physiology, 7 
1980; 76: 539-57. 8 
Wong F, Knight BW, Dodge FA. Adapting Bump Model for Ventral Photoreceptors of Limulus. Journal of 9 
General Physiology, 1982; 79: 1089-113. 10 
Wong F, Knight BW, Dodge FA. Dispersion of Latencies in Photoreceptors of Limulus and the Adapting-11 
Bump Model. Journal of General Physiology, 1980; 76: 517-37. 12 
Zheng L, de Polavieja GG, Wolfram V, Asyali MH, Hardie RC, Juusola M. Feedback network controls 13 
photoreceptor output at the layer of first visual synapses in Drosophila. Journal of General Physiology, 14 
2006; 127: 495-510. 15 
Zheng L, Nikolaev A, Wardill TJ, O'Kane CJ, de Polavieja GG, Juusola M. Network Adaptation Improves 16 
Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics. Plos One, 2009; 4. 17 
 18 
 19 
 20 
 21 


