A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness

B French, M Leathley, C Sutton, J McAdam, L Thomas, A Forster, P Langhorne, C Price, A Walker and C Watkins

Feedback
The HTA Programme and the authors would like to know your views about this report.

The Correspondence Page on the HTA website (http://www.hta.ac.uk) is a convenient way to publish your comments. If you prefer, you can send your comments to the address below, telling us whether you would like us to transfer them to the website.

We look forward to hearing from you.
How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents:

– fax (with credit card or official purchase order)
– post (with credit card or official purchase order or cheque)
– phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:

HTA Despatch
c/o Direct Mail Works Ltd
4 Oakwood Business Centre
Downley, HAVANT PO9 2NP, UK
Email: orders@hta.ac.uk
Tel: 02392 492 000
Fax: 02392 478 555
Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please see our website for details. Subscriptions can only be purchased for the current or forthcoming volume.

Payment methods

Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to Direct Mail Works Ltd and drawn on a bank with a UK address.

Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.
A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness

B French,1 M Leathley,1 C Sutton,1 J McAdam,1 L Thomas,1 A Forster,2 P Langhorne,3 C Price,4 A Walker3 and C Watkins1*

1 University of Central Lancashire, Preston, UK
2 University of Leeds, UK
3 Faculty of Medicine, University of Glasgow, UK
4 Northumbria Healthcare NHS Trust, Newcastle University, Newcastle upon Tyne, UK

* Corresponding author

Declared competing interests of authors: none

Published August 2008

This report should be referenced as follows:

Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medica/EMBASE and Science Citation Index Expanded (SciSearch®) and Current Contents®/Clinical Medicine.
The Health Technology Assessment (HTA) Programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. ‘Health technologies’ are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The research findings from the HTA Programme directly influence decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC). HTA findings also help to improve the quality of clinical practice in the NHS indirectly in that they form a key component of the ‘National Knowledge Service’.

The HTA Programme is needs-led in that it fills gaps in the evidence needed by the NHS. There are three routes to the start of projects.

First is the commissioned route. Suggestions for research are actively sought from people working in the NHS, the public and consumer groups and professional bodies such as royal colleges and NHS trusts. These suggestions are carefully prioritised by panels of independent experts (including NHS service users). The HTA Programme then commissions the research by competitive tender.

Secondly, the HTA Programme provides grants for clinical trials for researchers who identify research questions. These are assessed for importance to patients and the NHS, and scientific rigour.

Thirdly, through its Technology Assessment Report (TAR) call-off contract, the HTA Programme commissions bespoke reports, principally for NICE, but also for other policy-makers. TARs bring together evidence on the value of specific technologies.

Some HTA research projects, including TARs, may take only months, others need several years. They can cost from as little as £40,000 to over £1 million, and may involve synthesising existing evidence, undertaking a trial, or other research collecting new data to answer a research problem.

The final reports from HTA projects are peer-reviewed by a number of independent expert referees before publication in the widely read journal series Health Technology Assessment.

Criteria for inclusion in the HTA journal series

Reports are published in the HTA journal series if (1) they have resulted from work for the HTA Programme, and (2) they are of a sufficiently high scientific quality as assessed by the referees and editors. Reviews in Health Technology Assessment are termed ‘systematic’ when the account of the search, appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.
Abstract

A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness

B French, M Leathley, C Sutton, J McAdam, L Thomas, A Forster, P Langhorne, C Price, A Walker and C Watkins

1 University of Central Lancashire, Preston, UK
2 University of Leeds, UK
3 Faculty of Medicine, University of Glasgow, UK
4 Northumbria Healthcare NHS Trust, Newcastle University, Newcastle upon Tyne, UK

* Corresponding author

Objectives: To determine whether repetitive functional task practice (RFTP) after stroke improves limb-specific or global function or activities of daily living and whether treatment effects are dependent on the amount of practice, or the type or timing of the intervention. Also to provide estimates of the cost-effectiveness of RFTP.

Data sources: The main electronic databases were searched from inception to week 4, September 2006. Searches were also carried out on non-English-language databases and for unpublished trials up to May 2006.

Review methods: Standard quantitative methods were used to conduct the systematic review. The measures of efficacy of RFTP from the data synthesis were used to inform an economic model. The model used a pre-existing data set and tested the potential impact of RFTP on cost. An incremental cost per quality-adjusted life-year (QALY) gained for RFTP was estimated from the model. Sensitivity analyses around the assumptions made for the model were used to test the robustness of the estimates.

Results: Thirty-one trials with 34 intervention–control pairs and 1078 participants were included. Overall, it was found that some forms of RFTP resulted in improvement in global function, and in both arm and lower limb function. Overall standardised mean difference in data suitable for pooling was 0.38 [95% confidence interval (CI) 0.09 to 0.68] for global motor function, 0.24 (95% CI 0.06 to 0.42) for arm function and 0.28 (95% confidence interval 0.05 to 0.51) for functional ambulation. Results suggest that training may be sufficient to have an impact on activities of daily living. Retention effects of training persist for up to 6 months, but whether they persist beyond this is unclear. There was little or no evidence that treatment effects overall were modified by time since stroke or dosage of task practice, but results for upper limb function were modified by type of intervention. The economic modelling suggested that RFTP was cost-effective. Given a threshold for cost-effectiveness of £20,000 per QALY gained, RFTP is cost-effective so long as the net cost per patient is less than £1963. This result showed some sensitivity to the assumptions made for the model. The cost-effectiveness of RFTP tends to stem from the relatively modest cost associated with this intervention.

Conclusions: The evidence suggests that some form of RFTP can be effective in improving lower limb function at any time after stroke, but that the duration of intervention effect is unclear. There is as yet insufficient good-quality evidence to make any firm recommendations for upper limb interventions. If task-specific training is used, adverse effects should be monitored. While the effectiveness of RFTP is relatively modest, this sort of intervention appears to be cost-effective. Owing to the large number of ongoing trials, this review should be updated within 2 years and any future review should include a comparison against alternative treatments. Further research should evaluate RFTP upper limb interventions and in particular constraint-induced movement therapy, address practical ways of delivering RFTP interventions, be directed towards the evaluation of suitable methods to maintain functional gain, and be powered to detect whether RFTP interventions are cost-effective.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>Executive summary</td>
<td>ix</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Description of the condition</td>
<td>1</td>
</tr>
<tr>
<td>Description of the intervention</td>
<td>1</td>
</tr>
<tr>
<td>Scope of the review</td>
<td>1</td>
</tr>
<tr>
<td>Scope of the cost-effectiveness analysis</td>
<td>2</td>
</tr>
<tr>
<td>Objectives</td>
<td>2</td>
</tr>
<tr>
<td>2 Review methods</td>
<td>3</td>
</tr>
<tr>
<td>Search strategy for identification of studies</td>
<td>3</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>4</td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>5</td>
</tr>
<tr>
<td>Types of outcome measure</td>
<td>5</td>
</tr>
<tr>
<td>Data extraction and assessment of study validity</td>
<td>6</td>
</tr>
<tr>
<td>3 Description of studies</td>
<td>9</td>
</tr>
<tr>
<td>Description of studies</td>
<td>10</td>
</tr>
<tr>
<td>Included studies</td>
<td>10</td>
</tr>
<tr>
<td>Participants</td>
<td>11</td>
</tr>
<tr>
<td>Interventions</td>
<td>11</td>
</tr>
<tr>
<td>Comparison interventions</td>
<td>13</td>
</tr>
<tr>
<td>Primary outcomes</td>
<td>14</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td>14</td>
</tr>
<tr>
<td>Excluded studies</td>
<td>15</td>
</tr>
<tr>
<td>Ongoing studies</td>
<td>15</td>
</tr>
<tr>
<td>Studies not assessed at report completion</td>
<td>15</td>
</tr>
<tr>
<td>Quality of included studies</td>
<td>15</td>
</tr>
<tr>
<td>4 Results of the review</td>
<td>19</td>
</tr>
<tr>
<td>Primary outcomes</td>
<td>19</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td>42</td>
</tr>
<tr>
<td>5 Economic analysis</td>
<td>45</td>
</tr>
<tr>
<td>Background</td>
<td>45</td>
</tr>
<tr>
<td>Methods</td>
<td>45</td>
</tr>
<tr>
<td>Results</td>
<td>47</td>
</tr>
<tr>
<td>6 Discussion</td>
<td>51</td>
</tr>
<tr>
<td>Summary of main results</td>
<td>51</td>
</tr>
<tr>
<td>Overall completeness and applicability of evidence</td>
<td>52</td>
</tr>
<tr>
<td>Quality of evidence</td>
<td>54</td>
</tr>
<tr>
<td>Potential limitations in the review process</td>
<td>55</td>
</tr>
<tr>
<td>Agreement or disagreement with previous reviews</td>
<td>55</td>
</tr>
<tr>
<td>Economic analysis</td>
<td>56</td>
</tr>
<tr>
<td>7 Conclusions</td>
<td>59</td>
</tr>
<tr>
<td>Implications for practice</td>
<td>59</td>
</tr>
<tr>
<td>Recommendations for future research</td>
<td>59</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>61</td>
</tr>
<tr>
<td>References</td>
<td>63</td>
</tr>
<tr>
<td>Appendix 1 Included studies: repetitive task training</td>
<td>71</td>
</tr>
<tr>
<td>Appendix 2 Included studies: constraint-induced movement therapy</td>
<td>87</td>
</tr>
<tr>
<td>Appendix 3 Included studies: treadmill training</td>
<td>99</td>
</tr>
<tr>
<td>Appendix 4 Characteristics of excluded studies</td>
<td>107</td>
</tr>
<tr>
<td>Appendix 5 Characteristics of ongoing studies</td>
<td>109</td>
</tr>
<tr>
<td>Appendix 6 Criteria for subgroup analyses</td>
<td>111</td>
</tr>
<tr>
<td>Appendix 7 Summary of baseline characteristics of patients from the cohort in the patient data set who survived to 3 years</td>
<td>113</td>
</tr>
<tr>
<td>Appendix 8 Numbers of patients and costs in the baseline and new groups</td>
<td>115</td>
</tr>
<tr>
<td>Appendix 9 Cost-effectiveness at 3 years per QALY gained for RFTP on outcome measures that were significant in the systematic review</td>
<td>117</td>
</tr>
<tr>
<td>Health Technology Assessment reports published to date</td>
<td>119</td>
</tr>
<tr>
<td>Health Technology Assessment Programme</td>
<td>137</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADL</td>
<td>activity of daily living</td>
</tr>
<tr>
<td>ARAT</td>
<td>Action Research Arm Test</td>
</tr>
<tr>
<td>BBT</td>
<td>Box and Block Test</td>
</tr>
<tr>
<td>BI</td>
<td>Barthel Index</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CIMT</td>
<td>constraint-induced movement therapy</td>
</tr>
<tr>
<td>df</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>EQ-5D</td>
<td>EuroQol-5 Dimensions</td>
</tr>
<tr>
<td>FAC</td>
<td>Functional Ambulation Classification</td>
</tr>
<tr>
<td>FIM</td>
<td>Functional Independence Measure</td>
</tr>
<tr>
<td>FM</td>
<td>Fugl–Meyer Assessment</td>
</tr>
<tr>
<td>FTHUE</td>
<td>Functional Test of the Hemiparetic Upper Extremity</td>
</tr>
<tr>
<td>9HPT</td>
<td>Nine Hole Peg Test</td>
</tr>
<tr>
<td>10HPT</td>
<td>Ten Hole Peg Test</td>
</tr>
<tr>
<td>ICER</td>
<td>incremental cost-effectiveness ratio</td>
</tr>
<tr>
<td>IQR</td>
<td>interquartile range</td>
</tr>
<tr>
<td>MAL</td>
<td>Motor Activity Log</td>
</tr>
<tr>
<td>MAS</td>
<td>Motor Assessment Scale</td>
</tr>
<tr>
<td>mCIMT</td>
<td>modified constraint-induced movement therapy</td>
</tr>
<tr>
<td>5MWS</td>
<td>Five Metre Walk Speed</td>
</tr>
<tr>
<td>6MWS</td>
<td>Six Metre Walk Speed</td>
</tr>
<tr>
<td>6MWT</td>
<td>Six Minute Walk Test</td>
</tr>
<tr>
<td>10MWS</td>
<td>Ten Metre Walk Speed</td>
</tr>
<tr>
<td>NHP</td>
<td>Nottingham Health Profile</td>
</tr>
<tr>
<td>PSS</td>
<td>Personal Social Services</td>
</tr>
<tr>
<td>QALY</td>
<td>quality-adjusted life-year</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>RFTP</td>
<td>repetitive functional task practice</td>
</tr>
<tr>
<td>RMA</td>
<td>Rivermead Motor Assessment</td>
</tr>
<tr>
<td>RTT</td>
<td>repetitive task training</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SMD</td>
<td>standardised mean difference</td>
</tr>
<tr>
<td>SMES</td>
<td>Sodring Motor Evaluation Scale</td>
</tr>
<tr>
<td>TEMPA</td>
<td>Test Evaluant des Membres Superieurs des Personnes Agées</td>
</tr>
<tr>
<td>TM</td>
<td>treadmill training</td>
</tr>
<tr>
<td>TUG</td>
<td>Timed Up and Go</td>
</tr>
<tr>
<td>WMD</td>
<td>weighted mean difference</td>
</tr>
<tr>
<td>WMFT</td>
<td>Wolf Motor Function Test</td>
</tr>
</tbody>
</table>

All abbreviations that have been used in this report are listed here unless the abbreviation is well known (e.g. NHS), or it has been used only once, or it is a non-standard abbreviation used only in figures/tables/appendices in which case the abbreviation is defined in the figure legend or at the end of the table.
Background

The repetitive practice of functional tasks is a component of current approaches to stroke rehabilitation. Practice may be augmented by strategies to enhance learning as used in movement science approaches, by mechanical means such as treadmills, or by strategies to encourage use of the affected limb in daily life by restraining the unaffected limb.

All these approaches have a core mechanism based on the repeated practice of functional tasks. This has the potential to be a resource-efficient component of stroke rehabilitation, including delivery in a group setting, or instructed practice in the home environment. This review considers the effectiveness and cost-effectiveness of all forms of repetitive functional task practice (RFTP).

Objectives

The aims of this study were:

- to determine whether RFTP after stroke improves limb-specific or global function or activities of daily living
- to determine whether treatment effects are dependent on the amount of practice, or the type or timing of the intervention
- to provide cost-effectiveness estimates for RFTP.

Methods

Data sources

The following searches were undertaken:

- electronic searches of Cochrane Stroke Trials Register, the Cochrane Library, MEDLINE, EMBASE, CINAHL, AMED, SportDiscus, ISI Science Citation Index, Index to Theses, ZETOC, PEDro and OT Seeker (all from inception to week 4, September 2006)
- electronic searches on non-English-language databases and for unpublished trials on MetaRegister, BioMed Central, CRISP, Centerwatch, National Research Register, ReFeR, Stroke Trials Directory, REHABDATA and CIRRIE (to May 2006)
- searches of conference proceedings, reference lists of existing systematic reviews, citation searching, publication on bulletin boards and author contact for all relevant trials.

Study selection

The review included randomised and quasi-randomised trials in adults after stroke, which included an intervention where an active motor sequence was performed repetitively within a single training session, where the practice aimed towards a clear functional goal and where the amount of task practice could be quantified. Studies using mechanical or behavioural strategies to facilitate or encourage functional task practice were also included. Primary outcomes included limb-specific or global functional measures. Secondary outcomes included measures of activities of daily living and adverse events.

Data extraction

Two reviewers independently screened titles and abstracts, extracted data and critically appraised the trials. Assessment of methodological quality was undertaken for allocation concealment, blinding, loss to follow-up, trial size and equivalence of treatment. Trialists were contacted for additional information.

Data synthesis

Standard Cochrane quantitative systematic review methods were used. A fixed-effect model was used, and results were expressed as weighted or standardised mean differences, with 95% confidence interval. Subgroup analyses were conducted for amount, timing and type of intervention, and for adequacy of allocation concealment, type of comparison group, equivalence of therapy time and trial size.

The measures of efficacy of RFTP from the data synthesis were used to inform an economic model. The model used a pre-existing data set and tested the potential impact of RFTP on cost. From the model an incremental cost per quality-adjusted life-year (QALY) gained for RFTP was estimated. Sensitivity analyses around the assumptions made for the model were used to test the robustness of the estimates.
Results

Thirty-one trials with 34 intervention–control pairs and 1078 participants were included. Overall, it was found that some forms of RFTP resulted in improvement in global function, and in both arm and lower limb function. Overall standardised mean difference in data suitable for pooling was 0.38 [95% confidence interval (CI) 0.09 to 0.68] for global motor function, 0.24 (95% CI 0.06 to 0.42) for arm function and 0.28 (95% confidence interval 0.05 to 0.51) for functional ambulation. Results suggest that training may be sufficient to have an impact on activities of daily living. Retention effects of training persist for up to 6 months, but whether they persist beyond this is unclear. There was little or no evidence that treatment effects overall were modified by time since stroke or dosage of task practice, but results for upper limb function were modified by type of intervention. The economic modelling suggested that RFTP was cost-effective. Given a threshold for cost-effectiveness of £20,000 per QALY gained, RFTP is cost-effective so long as the net cost per patient is less than £1963. This result showed some sensitivity to the assumptions made for the model. The cost-effectiveness of RFTP tends to stem from the relatively modest cost associated with this intervention.

Conclusions

Implications for practice

The evidence suggests that some form of RFTP can be effective in improving lower limb function at any time after stroke, but that the duration of intervention effect is unclear. There is as yet insufficient good-quality evidence to make any firm recommendations for upper limb interventions. If task-specific training is used, adverse effects should be monitored. While the effectiveness of RFTP is relatively modest, this sort of intervention appears to be cost-effective.

Recommendations for future research

Owing to the large number of ongoing trials, this review should be updated within 2 years. Any future review should include a comparison against alternative treatments. Further research should:

- evaluate RFTP upper limb interventions and in particular constraint-induced movement therapy
- address practical ways of delivering RFTP interventions
- be directed towards the evaluation of suitable methods to maintain functional gain
- be powered to detect whether RFTP interventions are cost-effective, include a baseline activities of daily living measure, include indirect costs and use quality of life as an outcome measure to facilitate economic analysis.
Chapter 1

Introduction

Description of the condition

The annual incidence of first ever stroke in the UK is approximately 100,000 people per year.\(^1\) Although the incidence of stroke is falling,\(^2\) stroke is still the major cause of long-term neurological disability in adults.\(^3\) The prevalence of disability and impairment varies according to sampling of cohorts, but approximately half of all stroke survivors are left with severe functional problems,\(^4\) and 53% are dependent on others for help with daily activities at 6 months after their stroke.\(^5\) Only 5–20% of people with initial upper limb impairment fully regain arm function, and 30–66% regain no functional use at 6 months.\(^6,9\) At 3 weeks and 6 months after stroke, 40% and 15% of people are unable to walk independently indoors,\(^3\) with only 18% regaining unrestricted walking ability.\(^10\) Initial grade of paresis is the most important predictor for motor recovery, with a longer recovery period for people with severe stroke.\(^11\)

Stroke is thus a leading cause of disability, and as such contributes to 4% of NHS costs.\(^12\) While stroke is a costly condition in the acute stage, over 40% of the 5-year cost of stroke is likely to be incurred subsequent to discharge, with 18% of the total cost being due to institutional care.\(^13\) If the disability and subsequent need for institutional care can be reduced, there is a potential for the long-term care costs to be substantially lowered.

Description of the intervention

Systematic reviews of treatment interventions for the paretic upper limb suggest that patients benefit from exercise programmes in which functional tasks are directly trained, with less benefit if the intervention is focused on the impairment, such as muscle strengthening.\(^14\) Although individual studies do not agree whether increased therapy intensity improves overall outcome, a recent meta-analysis\(^15\) has shown that more intensive therapy may at least improve the rate of recovery of activities of daily living (ADLs), particularly if a direct functional approach is adopted.\(^16\)

Repetitive practice of goal-directed, functional movement under varying conditions for procedural learning is a feature of many forms of intervention in stroke rehabilitation. The use of intensive repetition is grounded in neurophysiological hypotheses about the reasons for loss of movement after stroke. Repeated motor practice enhances motor strength, speed and endurance, while sensorimotor coupling contributes to the adaptation and recovery of neuronal pathways.\(^17\) Repetitive task training (RTT) is common as a specific rehabilitation technique, but it is often combined with techniques to enhance cognitive involvement in the relearning of motor skills, such as functional relevance and knowledge of performance, thereby forming the underlying principles in the motor relearning or movement science physiotherapy approach.\(^18\)

Intensive periods of task practice using shaping techniques (progressively increasing the difficulty of a task in small steps and providing frequent feedback and positive encouragement) to build up to completion of a functional task are also a major feature of constraint-induced movement therapy,\(^19\) where they are combined with restricted use of the unaffected limb to overcome learned non-use or adaptive strategies.

Intensive practice of functional movement can also be assisted by treadmills,\(^20\) gait trainers\(^21\) or robotics.\(^22\) Mechanical assistance is used to overcome impairment which restricts the ability to participate, but also serves to deliver an intensity of training sufficient to develop the amount and power of movement required for functional performance.

Scope of the review

This study will consider the impact and cost-effectiveness of all three of the major forms of therapy that have repeated, functional task practice as a major component, namely repetitive task training (RTT), constraint-induced movement therapy (CIMT) and treadmill training (TM). In combination, these three forms of therapy will be referred to as repetitive functional task practice (RFTP).
Systematic reviews of TM20 and CIMT23 have already been published. To provide an overall picture of the relative effectiveness and cost-effectiveness of all the common forms of RFTP, the references from the systematic reviews for TM and CIMT were followed up and data were extracted from those primary studies that also met the inclusion criteria for this study. A systematic review of RTT studies has already been submitted to The Cochrane Collaboration by the authors of this report. This review therefore presents the results of these three interventions combined. The characteristics, quality and results of the trials for each intervention are reviewed and presented separately to ensure clarity, until combined in subgroup analysis to present a between-intervention overall estimate of efficacy and comparison of effect.

Scope of the cost-effectiveness analysis

An economic model will be developed from an existing data set. The data set contains information on the natural recovery and resource use of a cohort of stroke patients, which allows estimates to be made on outcomes and costs. The efficacy of RFTP and hence its potential impact on outcomes will be obtained from the review; the cost of RFTP will be estimated by considering staff and equipment costs. Using certain assumptions, which will be clearly outlined in the methods, the model data and the efficacy of RFTP from the review will be used to estimate the cost-effectiveness of RFTP. Uncertainty in the estimate will be considered by varying the parameters of any assumptions that are made.

Objectives

The objectives of this study were to carry out a systematic review and cost-effectiveness analysis to determine:

- whether RFTP improves global or limb-specific functional ability and ADL function in adults after stroke
- the factors that could influence primary outcome measures for RFTP, including the effect of amount, type and timing of intervention
- estimates of the cost-effectiveness of RFTP.
Chapter 2

Review methods

Search strategy for identification of studies

Electronic searches

The Cochrane Stroke Group Trials Register was searched in October 2006, using the following parameters: Intervention Type: “Physiotherapy” or “Occupational Therapy”, without restriction of intervention code.

In addition, the following databases were searched as follows: The Cochrane Library (2006 Issue 3), MEDLINE (1966 to September week 4, 2006), EMBASE (1980 to week 40, 2006), CINAHL (1982 to October week 1, 2006), AMED (1985 to week 40, 2006), SportDiscus (1980 to October week 1, 2006), ISI Science Citation Index (1973 to 14 October 2006), Index to Theses (1970 to September 2006), ZETOC (to 14 October 2006), PEDro (to 3 October 2006), OT Seeker (to 21 April 2006) and OT Search (to March 2006).

The main search design was reviewed by the Cochrane Stroke Group Trials Search Coordinator. The MEDLINE search given below was used and adapted for other databases.

MEDLINE (OVID)

1 cerebrovascular disorders/ or exp basal ganglia cerebrovascular disease/ or exp brain ischemia/ or exp carotid artery diseases/ or cerebrovascular accident/ or exp brain infarction/ or exp cerebrovascular trauma/ or exp hypoxia-ischemia, brain/ or exp intracranial arteriovenous malformations/ or exp "Intracranial Embolism and Thrombosis"/ or exp intracranial hemorrhage/ or vasospasm, intracranial/ or vertebral artery dissection/ or hemiplegia/ or exp paresis/

2 (stroke or poststroke or post-stroke or cerebrovascular or or brain vasc$ or cerebral vasc$ or cva$ or apoplex$ or SAH).tw.

3 ((brain$ or cerebr$ or cerebell$ or intracran$ or intracerebral) adj5 (isch?em$ or infarct$ or thrombo$ or emboli$ or occlus$)).tw.

4 ((brain$ or cerebr$ or cerebell$ or intracerebral or intracranial or subarachnoid) adj5 (haemorrhage$ or hemorrhage$ or hematoma$ or hematoma$ or bleed$)).tw.

5 hemiplegia/ or exp paresis/

6 (hemipleg$ or hemipar$ or paresis or paretic).tw.

7 or/1-6

8 *cerebrovascular disorders/rh or exp *basal ganglia cerebrovascular disease/rh or exp *brain ischemia/rh or exp *carotid artery diseases/rh or *cerebrovascular accident/rh or exp *brain infarction/rh or exp *cerebrovascular trauma/rh or exp *hypoxia-ischemia, brain/rh or exp *intracranial arterial diseases/rh or *intracranial arteriovenous malformations/rh or exp *"Intracranial Embolism and Thrombosis"/rh or exp *intracranial hemorrhage/rh or *vasospasm, intracranial/rh or *vertebral artery dissection/rh

9 *hemiplegia/rh or exp *paresis/rh

10 exp *gait Disorders, neurologic/rh or *motor skills disorders/rh

11 rehabilitation/ or "activities of daily living"/ or exercise therapy/ or occupational therapy/

12 Physical Therapy Modalities/

13 Exercise Movement Techniques/ or exercise therapy/ or walking/

14 Robotics/

15 exp Psychomotor Performance/

16 movement/ or gait/ or exp locomotion/ or exp motor activity/

17 "Range of Motion, Articular"/ or "Task Performance and Analysis"/ or "Practice (Psychology)"

18 "Recovery of Function"/

19 ((motor or movement$ or task$ or skill$ or performance) adj5 (repetit$ or repeat$ or train$ or re?train$ or learn$ or re?learn$ or practic$ or practis$ or rehears$ or rehears$)).tw.

20 ((motor or movement$ or task$ or skill$ or performance) adj5 (schedule$ or intervention or therap$ or program$ or regim$ or protocol$)).tw.

21 (functional adj5 (task$ or movement$)).tw.

22 or/8-21

23 7 and 22

The search above was combined with the Cochrane Stroke Review Group search for randomised controlled trials.

A similar search (Search 2), given below, was conducted without limits of study type and/or client group, to check for trials incorrectly
indexed, and to trace trials of RFTP in other client
groups for citation tracking.

MEDLINE OVID
1 *hemiplegia/rh or exp *paresis/rh
2 exp *gait Disorders, neurologic/rh or *motor
 skills disorders/rh
3 1 or 2
4 Physical Therapy Modalities/
5 Exercise Movement Techniques/ or exercise
 therapy/ or walking/
6 Robotics/
7 rehabilitation/ or "activities of daily living"/ or
 occupational therapy/
8 exp Psychomotor Performance/
9 "Task Performance and Analysis"/ or "Practice
 (Psychology)/"
10 ((motor or movement$ or task$ or skill$ or
 performance) adj5 (repetit$ or repeat$ or
 train$ or re?train$ or practic$ or practis$ or
 rehears$ or rehers$)).tw.
11 (functional adj5 (task$ or movement)).tw.
12 or/4-11
13 movement/ or gait/ or exp locomotion/ or exp
 motor activity/
14 "Recovery of Function"
15 13 and 14
16 3 and (12 or 15)

Unpublished trial data were searched for on
national and international databases to May 2006
as follows: MetaRegister of Controlled Trials,
BioMed Central, CRISP, Centerwatch, National
Research Register, ReFeR, Stroke Trials Directory,
REHABDATA and CIRRIE, using simple terms for
stroke and rehabilitation or physical therapy.

Physiotherapy, occupational therapy and robotics
conference proceedings were searched as follows:

- Australian Physiotherapy Association
- Australian Physiotherapy Association Neurology
 and Gerontology Physiotherapy Conference 2005
- American Physical Therapy Congress Annual
 Conference 2005
- Canadian Physiotherapy Conference 2005
- UK College of Occupational Therapists
- National Association of Neurological
 Occupational Therapists Conference 2005
- World Confederation for Physical Therapy 1st
 International Congress 1953, 4th International
 Congress 1963
- World Confederation of Physiotherapy Europe:
 First Congress, Copenhagen 1994:
 Physiotherapy in Stroke Management
- Chartered Society of Physiotherapy Annual
- ICORR Rehabilitation Robotics International
 Conferences 1999, 2001, 2005

Non-English-language literature was identified by
searching Chinese, Russian and Indian databases
via Eastview, Panteleimon and Indmed, using
broad descriptors for stroke, rehabilitation and
physical therapy. The China National Knowledge
database was searched in both English and
Chinese. Searching and translation of Chinese
abstracts were undertaken by personnel from the
Second Military Medical University, Shanghai.

Other sources

RTT
The reference lists of systematic reviews relevant to
physical or occupational therapy in stroke
rehabilitation were searched.11,14–16,24–45 Reference
lists of publications and literature reviews relevant
to RTT identified by the search were combed to
identify further relevant trials.36–48 In addition,
forward citation searching was undertaken on ISI
Web of Knowledge for all included trials, and the
authors were contacted to ask for details of any
other possible relevant trials, either published or
unpublished. A request for information was also
posted to the bulletin boards of World Congress of
Physical Therapy and PHYSIO JISCmail.

CIMT and TM
Studies relevant to CIMT and TM were sourced
from the search identified above, and also from
existing systematic reviews.20,23 Only those trials of
CIMT and TM that met the requirements of this
review (i.e. RFTP intervention with suitable
comparison) were included.

Inclusion criteria

Types of study
Randomised and quasi-randomised trials (such as
those allocating by date or alternation) were
included in the review. Only the first period of
cross-over trials was included.

One arm of the trial had to include RFTP,
compared against usual practice (including ‘no
continuation’) or an attention-control group. For
trials of TM or CIMT, comparison groups using
alternative forms of training were included.

Examples of attention-control treatment are
comparable time spent receiving therapy on a
different limb or participating in an activity with no
potential motor benefits. Usual-practice comparison groups were accepted when the intervention received by the control group was considered a normal or usual component of stroke rehabilitation practices, including neurophysiological or orthopaedic approaches. Early after stroke it was assumed that usual practice would mean that patients would receive some therapy.

Types of participant
Adults (presumed 18 years and older) who had suffered a stroke were included. Stroke was defined according to the World Health Organization (WHO) definition as “a syndrome of rapidly developing symptoms and signs of focal, and at times global, loss of cerebral function lasting more than 24 hours or leading to death, with no apparent cause other than that of vascular origin”. Trials starting at any time after an acute stroke and in any setting were included.

Types of intervention
Trials were required to include an intervention where an active motor sequence was performed repetitively within a single training session, where the practice aimed towards a clear functional goal. Functional goals could involve complex whole tasks, or pretask movements for a whole limb or limb segment such as grasp, grip or movement in a trajectory to facilitate an ADL. To be included, trials of repetitive activity were required to involve complex multijoint movement with functional measurement of outcome, rather than the exercise of a single joint or muscle group orientated to motor-performance outcomes.

Any intensity and duration of task training schedule was included. However, trials were included only if the duration or number of repetitions within a session of practice, and the number of sessions delivered, could be identified. Trials clearly using motor relearning as a whole therapy approach were included if the amount of task-specific training received could be identified.

Trials using person-delivered, mechanical or robotic movement assistance were included if the purpose of the assistance was to facilitate a task-related repetition. Trials combining repetitive task practice with constraint of the unaffected limb were also included.

Exclusion criteria
Trials were excluded if they combined RFTP with other interventions such as electrical stimulation virtual environments, biofeedback, bilateral movement, or mental rehearsal. Trials were also excluded if the intervention used mechanical means simply to increase endurance through the intensity of practice without monitoring or adjustment according to the quality of movement, such as the use of slot machines.

Trial authors were contacted for clarification of the nature of the intervention if it was unclear whether the trial met the definition.

Types of outcome measure
Primary outcomes
The primary outcomes chosen were global and limb-specific functional measures. Owing to the large range of measures used across trials, selection of outcome measures was done by the review authors to maximise quantitative pooling. If more than one measure was available in an outcome category, measures of functional motor ability used in the primary trials were prioritised as follows in the different categories. Items marked with an asterisk are measures where a low score equals a positive outcome. In all other measures, a high score indicates a good outcome.

Upper limb function/reach
- Arm function: Action Research Arm Test (ARAT), Motor Assessment Scale (MAS) – upper limb component, Frenchay Arm Test, Wolf Motor Function Test (WMFT), Functional Test of the Hemiparetic Upper Extremity (FTUHE), Box and Block Test (BBT), Test Evaluant des Membres Supérieurs des Personnes Agées (TEMPA), University of Maryland Arm Questionnaire for Stroke, Motor Activity Log (MAL).
- Sitting balance/reach: Reaching Performance Scale, Functional Reach.

Lower limb function/balance
- Lower limb function: walking distance, walking speed, functional ambulation, sit-to-stand*, measures of lower limb function, e.g. Rivermead Mobility Index, Sodring Motor Evaluation Scale (SMES), Step Test.

Overall functional ability
MAS, Rivermead Motor Assessment (RMA) Scale.
Secondary outcomes
ADL
Barthel Index (BI), Functional Independence Measure (FIM), Modified Rankin Scale, Global Dependency Scale.

Adverse outcome
Pain, injury, falls.

Timing of outcome assessment
Primary outcome timing was at the end of the intervention period. Where the end of the intervention period was not clearly defined, outcome measures at 3 months post-stroke were chosen as primary. Data are presented for follow-up less than 6 months post-stroke, and between 6 months and 1 year post-stroke.

Data extraction and assessment of study validity
Selection of studies
One reviewer (BF) performed the searches. From the initial references, 4443 obviously irrelevant items were excluded on title and abstract by one reviewer (BF) and checked by a second reviewer (JM). All reviewers (BF, JM, ML, and LT) undertook screening on the same titles and abstracts until an acceptable level of inter-rater reliability was achieved (kappa = 0.63). From that point, two reviewers (from BF, JM, ML, and LT) independently screened references.

In total, 447 full papers considered potentially relevant were retrieved, including 71 items in languages other than English. For non-English-language papers, decisions about exclusion were made on English abstract or machine translation of the abstract via WorldLingo or Translation Booth, if adequate. Where machine translation was inadequate, or where inclusion was unclear from English abstracts, the methods sections of full papers were commercially translated by native speakers. Seventeen methods sections of papers and three full non-English-language papers that were screened as potentially relevant were also commercially translated. Two reviewers independently screened all full papers and methods section translations for non-English studies. Altogether, 121 papers were progressed to more detailed filtering by two reviewers (from ML, LT, BF, and JM).

Data extraction and management
All reviewers (BF, JM, ML, and LT) undertook data extraction and critical appraisal on eight studies. Using unweighted multiple kappa, inter-rater reliability of judgement of seven criteria for quality assessment was median kappa = 0.67 (range 0.48–0.85). Disagreements were reviewed and instructions for critical appraisal gradings revised. From that point, two reviewers independently conducted data extraction and review of the methodological quality of the eligible trials. Disagreements were resolved by discussion and referral to a third reviewer. Data were recorded on a standardised checklist, incorporating details of randomisation method, study population, intervention methods and delivery, reason for losses to follow-up, and post-therapy and follow-up outcome measures. In addition, information relating to treatment monitoring, acceptability and adherence was extracted where available.

Assessment of methodological quality
Items were evaluated as adequate, inadequate or unclear, and quality assessment was undertaken using the following criteria:

- selection bias
 - random allocation
 - allocation concealment
 - baseline comparability of groups
- performance bias
 - equal treatment of groups
- attrition bias
 - description of withdrawals, dropouts and those lost to follow-up
 - intention-to-treat analysis
 - percentage loss to follow-up
- detection bias
 - blinding of outcome assessors.

Analyses
The primary comparison to be undertaken was to estimate the overall effect of RFTP. Secondary comparisons were designed to determine whether treatment effects differed for type of intervention (RTT, CIMT or TM), or the timing or amount of intervention.

Measures of treatment effect
For continuous outcomes using similar measurement scales, the weighted mean difference (WMD) with 95% confidence interval (CI) was used. Where similar outcomes were measured using different outcome scales, results were combined using standardised mean difference (SMD) with 95% confidence interval. Outcomes measured using both dichotomous and continuous measurement units were analysed using the generic inverse variance method. For continuous outcomes, means of post-therapy scores and their
respective standard deviations were extracted. Changes from baseline outcome data were extracted if available across all trials.

Unit of analysis issues
Studies with multiple treatment groups
Two RTT trials50–52 compared upper versus lower limb training, so are included as four intervention–control pairs. In the subgroup analyses, these intervention–control pairs are not included as separate trials, as it was considered that the impacts of the interventions on upper and lower limb function in the same person would not be independent. Results for primary outcome of the lower limb training groups were selected, as studies were showing that treatment effects were greater for lower limbs. This strategy may have the effect of inflating effect sizes, but the effect should not bias the tests of subgroup effects. One RTT trial53 compared upper and lower limb training groups against the same control group. To avoid the control group being included twice, and to use a limb-specific rather than a global or an ADL measure, the lower limb training versus splint control comparison was selected for the subgroup analyses.

Dealing with missing data
If data were not in a form suitable for quantitative pooling, trial authors were contacted for additional information. Attempts were made to obtain post-therapy scores from trial authors who had reported median and interquartile ranges (IQRs).

Assessment of heterogeneity
The degree of heterogeneity for each outcome was assessed by the I^2 statistic. If less than or equal to 50\%, any heterogeneity was deemed insubstantial and a fixed-effects meta-analysis was used. If the I^2 statistic was greater than 50\%, the individual trial characteristics were explored to identify potential sources of heterogeneity. Meta-analysis was then performed using both fixed- and random-effects modelling to assess sensitivity to the choice of modelling approach and reported accordingly.

Clinical and methodological diversity was addressed by incorporation of subgroup analyses for type of participant (time from stroke), intervention (type and amount of intervention) and study design (allocation concealment, comparison group, equivalence of treatment, loss to follow-up and trial size).

To test for subgroup effects data were stratified by subgroup and the Q-statistic was partitioned from the unstratified analysis into ‘within subgroups’ and ‘between subgroups’. A χ^2 test of the resulting between-subgroups Q-statistic was performed, using a 10\% significance level.54

Assessment of reporting biases
Assessment of the potential for reporting bias was checked by performing a subgroup analysis based on the trial size (number of participants) and producing a funnel plot of the standard error (of effect estimate) against effect estimate.

Subgroup analysis and investigation of heterogeneity
Planned subgroup analyses for upper and lower limb functional outcomes were undertaken as follows.

- Type of intervention: trials were classified as RTT, CIMT or TM.
- Dosage of task practice: this was calculated by multiplying the number of weeks by the number of sessions per week by the session duration in hours. Trials were divided into those providing up to and including 20 hours’ training and those providing more than 20 hours’ training in total. The division at 20 hours was based on the median value for dosage of task practice from all included trials, and the average length of stay in the National Sentinel Stroke Audit55 after the first 7 days of acute care, presuming the provision of 1 hour of training per day in the inpatient rehabilitation period.
- Time since stroke: mean time since stroke at recruitment was used to classify trials as within 0–6 months post-stroke or more than 6 months post-stroke. The division at 6 months was based on the interpretation of this as the main period of active rehabilitation. Because a number of trials recruited very early post-stroke, a post hoc analysis grouping was included for trials recruiting within 14 days of stroke.

It had been intended to consider whether effect sizes were related to whether training was based on pre-functional or functional activities or pre-intervention level of disability. In the event, most pre-functional trials were excluded because they contained passive or active-assisted movement, and levels of disability proved too difficult to classify because of mixed groups of participants and unsuitable measures and data for this purpose. Therefore, these planned subgroup analyses are not presented.

The selection of outcome measure for subgroup analysis was complicated by the fact that few trials
used similar outcome measures. Subgroup analyses were performed separately for upper and lower limb interventions. Outcomes for subgroup analyses were limited to measures of walking for lower limbs and arm function for upper limbs. If more than one measure was available, lower limb outcomes were prioritised in the following order: (1) walking speed, (2) walking distance and (3) functional ambulation/walking scales; and upper limb outcomes were prioritised as follows: (1) ARAT, (2) MAS – upper extremity (MAS-UE), (3) WMFT and (4) BBT. Outcome selection was based on evidence for correlation and similar responsiveness to change for walking distance, speed and functional ambulation.56 For measures of arm function, there is evidence for correlation and similar responsiveness to change for the MAS-UE and ARAT,57,58 and for correlation between ARAT and BBT.59 There is less evidence for correlation between WMFT and other tests, but ARAT, BBT and WMFT all correlate well with the Fugl–Meyer measure of arm impairment.59,60

Four trials61–64 were omitted from the subgroup analyses because data were unsuitable for pooling. Of the remaining 27 trials, 26 presented means and standard deviations, so SMD could be used as the effect measure. One trial65 was excluded from the subgroup analyses because it used a dichotomous main outcome. This trial was excluded rather than using generic inverse variance, because SMD is easier for clinicians to interpret.

Planned subgroup analyses were also carried out for allocation concealment (adequate or inadequate/unclear). In addition, post hoc subgroup analyses were included to consider the impact of different comparison groups (attention-control, usual care), equivalence of therapy time (equivalent time, additional time) and trial size (under 25 participants, 25 participants and over), based on the median value. Planned subgroup analyses for intervention delivery (therapist versus self-administered, group versus individual) and intervention setting (home versus community) were not undertaken, because of insufficient numbers of trials.
Chapter 3
Description of studies

For the RTT search, 1366 records were identified from the Cochrane Stroke Trials Registry and 18,241 records from the main database searches, totalling 19,607. A further 772 records were added from unpublished trial databases, conference proceedings, and hand and citation searching, totalling 20,379. After removal of duplicates, 14,978 records progressed to filtering.

Figure 1 illustrates that, of the 447 papers retrieved, 360 studies were excluded as irrelevant when full-text details were seen. Thirty-four potentially relevant CIMT and TM studies were identified from existing systematic reviews, totalling 121 potentially relevant studies. Forty-four studies were excluded after more detailed filtering, leaving 77 studies identified as potentially appropriate for inclusion. Of these, eight are ongoing studies, of which one was identified from the Cochrane Stroke Trials Registry, four from handsearching, two from secondary referencing, and one from author contact. Thirty-eight studies are still awaiting assessment, because available information is insufficient to be able to make a decision. Seven of

\[\text{FIGURE 1 Flowchart of included and excluded studies}\]
these were identified from the Cochrane Stroke Trials Registry, 20 from handsearching, three from database searching, five from secondary references and three from author contact.

Unpublished data were sourced from the trial authors for 11 RTT trials \cite{50,51,53,65-72} and two CIMT trials \cite{73,74}.

All of the included studies for RTT were identified from the Cochrane Stroke Trials Registry. For CIMT and TM, all of the included studies were identified from existing systematic reviews, except for one recent CIMT trial identified from the Cochrane Stroke Trials Registry \cite{75}.

Description of studies

Thirty-one studies were included in total, including 34 intervention–control pairs and data from 1078 participants relevant to this review. A description of included studies is presented separately for each of the three forms of RFTP, namely RTT, CIMT and TM. A summary of the characteristics of the included studies is given in Appendices 1–3.

Included studies

RTT

Fourteen trials were identified, comprising 17 intervention–control pairs, which met the inclusion criteria. Three trials included two relevant intervention–control pairs: Kwakkel and colleagues \cite{53} refer to a trial with two intervention–control pairs: a lower limb training group versus splint control, and an upper limb training group versus splint control.

Blennerhassett and Dite \cite{50} also include two intervention–control pairs: an upper limb training group versus lower limb attention-control, and a lower limb training group versus an upper limb training attention-control. Two papers report on two intervention–control pairs of the same trial: Salbach and colleagues \cite{51} refer to a lower limb training group versus upper limb training attention-control, and Higgins and colleagues \cite{52} refer to an upper limb training group versus lower limb training attention-control.

In one trial \cite{71} there were three arms, consisting of a functional task practice group, a strength training group and a usual-care group. Only the data for the intervention–control pair of functional task practice versus control are included here.

Design

The 14 trials considered comprised 13 randomised controlled trials (RCTs) \cite{50,51,53,55,63-68,70-72,76-78} and one quasi-randomised trial \cite{69}.

Four of the trials were identified as pilot RCTs \cite{67,71,76,77} and three of the trials were multicentre \cite{51,53,77}. Three of the trials were stratified for randomisation: one for baseline level of walking deficit \cite{51}, one for gender and side of stroke \cite{68}, and one for severity of deficit \cite{71}.

Sample size

Four trials had 25 participants or fewer \cite{66,67,69,76}, six trials had between 25 and 49 participants \cite{50,65,71,72,77,78}, and five trials had 50 participants or more \cite{51,53,68,70,71}.

Setting

Of the 14 trials, three were carried out in Canada \cite{51,65,67}, three in Australia \cite{50,66,78}, three in the UK \cite{69,70,77}, one in Taiwan \cite{72}, one in the USA \cite{71}, one in The Netherlands \cite{53}, and one in France \cite{76}.

CIMT

Eleven trials met the inclusion criteria. In four trials \cite{61,62,79,80} there were three arms consisting of a modified CIMT group, a traditional rehabilitation group and a no-treatment control group. In two of these trials the traditional rehabilitation group also received RTT, with the only difference between groups being constraint \cite{79,80}.

In these trials, therefore, the no-treatment group was included as the comparison group. In the remaining two trials the data for the modified CIMT and traditional rehabilitation groups were included \cite{61,62}.

Design

All 11 trials were identified as RCTs, of which two were identified as pilot \cite{81,82} and two as preliminary \cite{61,83}, and one trial was labelled a ‘feasibility and efficacy’ study \cite{80}.

All trials were single centre.

Sample size

Ten trials had 25 participants or fewer \cite{61,62,73,74,79-84}.

One trial had 50 participants or more \cite{64}.

Setting

Nine trials were carried out in the USA \cite{61,62,73,74,80-84}, one in Saudi Arabia \cite{79}, and one in Thailand \cite{64}.

TM

Six trials were identified which met the eligibility criteria. One trial with three arms consisted of two TM interventions, speed-dependent TM and limited progressive TM, compared with
conventional gait training. The limited progressive TM group was used in this review, as speed-dependent TM was judged to comprise two mechanisms of action.

Design
One study was a cross-over trial, of which only the first phase was used. The remaining five studies were RCTs. Of these five trials, one was identified as a pilot controlled trial. All of the trials were single centre. Three of the trials were stratified for randomisation, one for walking speed, one for deficit severity and age, and one for initial time to walk 10 m without assistance.

Sample size
Two trials had 25 participants or fewer, one trial had between 26 and 49 participants, and three trials had 50 participants or more.

Setting
Of the six trials, two were carried out in the USA, three in Germany, and one in Australia.

Participants
RTT
The 14 trials included 680 participants, of which 659 were included in the 17 intervention–control pairs relevant to this review. All of the trials included both genders, with three trials having more than 60% male participants. In two trials, the participants had a mean age of less than 60 years, and in five trials the mean age was over 70 years.

Six trials included only participants after a first stroke, and two trials included participants with either first or recurrent stroke. In the remaining trials, it was unclear whether inclusion was limited to first stroke only.

Mean time since stroke
Three trials recruited within 14 days of stroke, three trials recruited between 1 and 6 months post-stroke, and one trial recruited between 3 and 9 months post-stroke. The remaining trials recruited 12 months or more post-stroke.

TM
The six studies included 254 participants, of which data from 229 participants were relevant to this review. Five of the studies included both genders, as participants in one study were all male. Five studies had more than 60% male participants. Two trials had a mean age less than 60 years; no trials had a mean age more than 70 years.

Three trials included only subjects after a first stroke, one trial included subjects with either first or recurrent stroke, and in the remaining two trials it was unclear whether inclusion was limited to first stroke only.

Mean time since stroke
One trial recruited within the first month of stroke, one trial recruited within 3 months post-stroke, one trial recruited within 6 months post-stroke, and three trials recruited in the chronic phase of stroke recovery.

Interventions
RTT
Two trials used whole therapy motor approaches, and four trials trained single tasks, all related to balance, reach or sit-to-stand. The remaining trials consisted of mixed functional task training. Of these, three used a circuit-training approach. While all of the remaining trials included some functional task practice, this was sometimes mixed with other components, including strengthening exercise and
TM,53 upper limb exercise,69 lower limb exercise78 and shaping training.72

Of the 17 intervention–control pairs relevant to this review, four included lower limb or mobility training,50,51,53,67 one trained sit-to-stand movements,65 two trained balance in sitting and standing,76,77 one trained functional reach in sitting,66 and one trained standing balance and mobility.78 Six intervention–control pairs were upper limb training,50,52,53,69,71,72 two intervention–control pairs used whole therapy approaches, training global function.68,70

Setting
Four trials were carried out solely in an inpatient setting,50,65,76,77 four trials included both inpatient and outpatient care,53,68,78,71 four trials were carried out in outpatient or community settings,51,66,67,72 and two trials were in the home environment.69,78

In three trials, the intervention was additional to usual care, of which two were during inpatient rehabilitation71,77 and one was after discharge from inpatient therapy, but additional to outpatient therapy.69

Amount of task practice
The number of hours of training varied considerably across the interventions. Three trials provided less than 10 hours’ training in total,66,70,77 seven trials provided between 10 and 21 hours’ training,50,51,65,67,68,71,76 two trials provided more than 40 hours’ training65,72 and two trials prescribed more than 40 hours’ home-exercise therapy.69,78

Duration of training
The length of time over which training was spread varied from 2 to 4 weeks for seven trials,50,66,67,71,72,76,77 for two trials, the length of time was estimated as 3 weeks of hospital inpatient therapy, with therapy for some patients in an outpatient setting if required.68,70 The intervention in four trials was over 6–8 weeks51,65,69,78 and in one trial the intervention was over 20 weeks.53

Intervention delivery
All of the interventions were delivered by trained physiotherapists or occupational therapists, except for the self-monitored home-exercise programmes,69,78 where trained staff input was restricted to prescription and programme review, one trial where trained physiotherapy assistants provided balance training77 and one trial where registered practical nurses delivered sit-to-stand training.65 Three of the interventions were delivered in a group setting of between four and seven participants per group.50,65,67

Of those programmes delivered in a circuit-class format, trial authors reported between 70 and 80% compliance.50,51,67 For the self-administered programmes in a home setting, trial authors reported 68–75% self-monitored adherence to the prescribed exercise programme.69,78

CIMT
Trials were divided into those evaluating CIMT64,73,74,83,84 and those evaluating modified CIMT (mCIMT).61,62,79–82 CIMT interventions included wearing a padded mitten and/or sling to reduce use of the unaffected arm, together with a programme for improving task performance of the affected limb using techniques such as ‘shaping’ (progressively increasing the difficulty of a task in small steps and providing frequent feedback and positive encouragement) and repetitive task practice. Typically, therapy sessions lasted for 6 hours with participants attending 5 days per week. mCIMT comprised similar interventions, but therapy time was reduced to typically 1 hour per day with participants attending 3 days per week.

Setting
Two trials were carried out solely in an inpatient setting,81,82 and one trial included both inpatient and outpatient care.84 Seven trials were conducted in outpatient clinic settings,61,62,64,73,74,79,80 and the final study83 did not specify a setting, but given that participants were 3–9 months post-stroke it is likely to be an outpatient clinic setting.

Amount of task practice
The number of hours of training varied across trials, with those evaluating CIMT typically providing a larger number of hours, with a minimum of 42 hours84 and a maximum of 75 hours.74 Modified CIMT trials typically provided 30 hours’ training,61,62,79,80 with the exceptions of one trial where 15 hours’ training was provided,82 and another providing 20 hours’ training.81

Duration of training
All CIMT trials spread training over 2 weeks, with the exception of one trial84 where training spanned 2.5 weeks. Trials evaluating mCIMT spread training over a longer period, typically 10 weeks,51,62,78,80,82 with the exception of one trial81 where training lasted for 2 weeks.

Intervention delivery
Interventions in eight trials were delivered by trained physiotherapists and/or occupational...
therapists, 61,62,79–84 with one trial also including delivery by ‘therapy assistants’. 84 In three trials it is unclear who delivered the intervention. 64,73,74

In the majority of trials, it is not clear whether interventions were delivered on a one-to-one or group basis. Exceptions are one trial where treatment was on a one-to-one basis, 83 and one trial where participants were treated in groups of three to four. 64

\textbf{TM}

Two studies evaluated unsupported TM, 87,88 and four studies evaluated bodyweight-supported treadmill training. 63,85,86,89 One trial supported bodyweight to a maximum of 15\%, 89 one trial only allowed bodyweight support in the first three training sessions, 85 and one trial progressively decreased bodyweight support as participants acquired greater self-support. 86

Two trials practised walking training with either a defined training heart rate 89 or a target heart rate of 60–70\%. 88 The other trials did not specify a defined heart rate.

Five trials increased the belt speed of the treadmill during the intervention. One trial identifies the use of a treadmill with a variable belt speed, but does not specify how this was used. 63

\textbf{Setting}

Four trials were carried out in an inpatient setting 63,85,86,89 and two trials in an outpatient setting. 87,88 The four trials in the inpatient setting were in addition to usual care.

\textbf{Amount of task practice}

Only one trial provided more than 20 hours’ task practice. 88

\textbf{Duration of training}

The length of time over which training was spread varied from 2 to 4 weeks for four studies. 63,85–87 For one study the length of time was 6 weeks 89 and for one study it was 6 months. 88

\textbf{Intervention delivery}

All of the interventions were delivered by trained physiotherapists or occupational therapists.

\textbf{Comparison interventions}

\textbf{RTT}

Ten intervention–control pairs compared the intervention against an attention-control: two intervention–control pairs used a recreation or cognitive therapy control group, 65,66 two intervention–control pairs from the same trial used a splint control 53 and six (four from two trials) used a comparison training programme for the upper or lower limb. 50,51,67,78

Seven intervention–control pairs compared the intervention against usual care. Of these, three were during inpatient rehabilitation and provided equivalent hours of therapy, 68,70,76 and one provided additional hours of therapy. 71 The other three intervention–control pairs were after discharge from inpatient rehabilitation, and additional to any outpatient treatment. 69,72,78 It is unclear whether the duration of therapy for the intervention–control pair was equivalent for one of these trials. 72

\textbf{CIMT}

Three studies compared the intervention against an attention-control. One trial used a bimanual neurodevelopmental therapy control group, 64 one trial used procedures designed to focus attention on the affected limb without providing training in active movement, 73 and one trial used a control designed to be less intense and designed to improve task performance with the unaffected side. 74

Three trials compared the intervention against usual care only. 81,82,84 Control groups received an equal frequency of therapy time in two trials, 81,84 and in one trial control participants received half the amount of therapy time compared with intervention participants. 82

A further three trials had two comparison groups, one receiving usual care and one receiving no treatment. 61,62,80 Usual-care participants in all three trials received an equal amount of therapy to the intervention group; the no-treatment group received no interventions during the same period. Another trial also had two comparison groups, one receiving no treatment, the other an attention-control group that received the intervention without the restraint component. 79

The trial by Alberts and colleagues 83 compared the intervention to no treatment, with participants randomised to the latter receiving the intervention 1 year later.

\textbf{TM}

One trial compared the intervention against an attention-control consisting of a home-exercise programme to lengthen and strengthen
muscles. Two trials compared against an alternative intervention. One of these interventions was individual physiotherapy concentrated on walking rehabilitation, and one was based on common components of conventional therapy which would not normally have been received as participants were late post-stroke. Three trials compared the intervention against usual care. These trials were during inpatient rehabilitation and provided equivalent hours of therapy.

Primary outcomes

The 31 included trials used a wide range of different outcome measures, measurement statistics and time intervals for follow-up. Measures selected post-intervention are detailed below.

Upper limb functional outcome measures

Arm

- CIMT: Action Research Arm Test and WMFT.

Hand function

- RTT: Nine Hole Peg Test (9HPT), Ten Hole Peg Test (10HPT), MAS – hand.
- CIMT: Grooved Pegboard Test, a key-turning task, and hand grip and pinch strength.

Sitting balance/reach

- RTT: reaching distance, Sitting Equilibrium Index, MAS – balanced sitting, and lateral reach – time to return to quiet sitting.

Lower limb functional outcome measures

Walking distance

- RTT: Six Minute Walk Test (6MWT) and Five Minute Walk Test.
- TM: Five Minute Walk Speed over 5 minutes were converted to distance over 6 minutes, on the assumption that participants could maintain effort equivalently over such similar periods.

Walking speed

- RTT: Ten Metre Walk Speed (10MWS) with walking aid. Five Metre Walk Speed (5MWS) at comfortable speed and Six Metre Walk Speed (6MWS). TM: 5MWS and walking speed over 30 feet (9.1 m).

Functional ambulation

- RTT: Functional Ambulation Classification (FAC) and MAS – walking.
- TM: FAC.

Sit-to-stand

- RTT: Timed Up and Go (TUG), MAS – sit-to-stand, sit-to-stand time in seconds, and number of people able to stand safely and independently on two occasions.

Lower limb functional measures

- RTT: SMES trunk, balance and gait subscale and Rivermead Leg and Trunk.

Standing balance and reach

- RTT: Upright Equilibrium Index, Functional Reach and Berg Balance Scale.
- TM: measures of standing balance using an instrumented balance assessment system which was not used.

Global motor function

- RTT: MAS and RMA score for gross functions.
- CIMT: none.
- TM: RMA score for gross functions.

Secondary outcomes

ADL measures

- RTT: BI and FIM. Two trials used the BI scoring out of 20 while the other trials used the scoring out of 100.
- CIMT: The BI.
- TM: none.

Adverse events

- RTT: number of falls.
- CIMT: levels of stiffness and discomfort on the affected side.
- TM: no trials reported quantitative data for adverse events. Narrative reports and reasons for withdrawal are summarised.

Timing of outcome measurement

- RTT: within the 0–6-month period post-stroke: one trial measured outcome at 1 month post-intervention and three trials at 2 months post-intervention. Within the 6–12-month post-stroke period, one trial measured outcome at 6 months post-intervention, one trial at 9 months post-intervention, one trial at 6 months post-randomisation, and one trial at 1 year post-stroke.
CIMT: one trial measured outcome 3–4 months post-stroke84 and one trial measured outcome 6 months post-intervention.74 TM: two trials measured outcome at 3 months post-intervention.87,89

Excluded studies

There is a large number of excluded studies ($n = 44$), described in Appendix 4. Because of the difficulties in determining whether trial interventions included task-specific functional repetition, the authors have attempted to be as transparent as possible about the basis on which trials were excluded. The reasons for exclusion were:

- not functional, or no functional outcome: nine studies
- mixed interventions, or interpreted as focusing predominantly on exercise: 11 studies
- not repetition, or unable to determine amount of practice: three studies
- passive movement: one study
- comparison group also includes some form of repetitive functional intervention: 11 studies
- methodological or reporting reasons: nine studies.

The excluded studies included three trials that had been either partially or fully translated from Chinese to English. While translation was undertaken by native-speaking health-service workers, there is the possibility that information was misinterpreted or misunderstood.

Ongoing studies

There are eight ongoing studies, where the information available is sufficient to say that the interventions include an element of RFTP. These are detailed in Appendix 5. Three trials involve training for standing, balance or sit-to-stand,90–92 two trials are of lower limb circuit training93,94 and one trial is of upper limb task-specific training.95 One trial uses a motor relearning approach (Langhammer B, Oslo University College, Oslo, Norway: personal communication, February 2007) and one trial is of CIMT.96 All are with participants in the early stages of stroke recovery, except for the trial by Langhammer.

Studies not assessed at report completion

RTT

Of the 17 studies categorised as unable to be assessed, 12 were ongoing studies identified from trials registers, where the information available was insufficient to be able to exclude them at this stage.97–108 Two studies are unpublished, and the reviewers are awaiting data.109,110 One study was published as a conference proceeding, and the reviewers were unable to contact the authors.111 Two studies are published, and attempts are being made to contact the authors to determine the exact content of the intervention.112,113

CIMT

Of the seven studies awaiting assessment, three are ongoing114,115 (Page S, University of Cincinnati Academic Medical Centre, Ohio, USA: personal communication, February 2007). One recently published study was not in the date range for searching.75 Two related studies have recently completed and been submitted for publication.116 The reviewers were unable to contact the authors of one study to assess for eligibility.117

TM

Of the 14 studies awaiting assessment, the information available for seven ongoing studies is insufficient to be able to exclude them at this stage.118–124 Three studies require translation.125–127 One study is recently completed128 as a follow-up to an included study,86 and three studies could not be traced.129–131

Quality of included studies

Allocation

RTT

Allocation concealment was adequate in eight trials.50,51,53,67,70,71,77,78 In five trials, allocation concealment was unclear; of these, three trials stated that random allocation was used, but provided no description of the procedure for its concealment from those recruiting participants.68,72,76 One trial used coin flipping to randomise participants with no further description of the procedure,65 and one trial attempted concealment with a procedure involving participants drawing cards out of a box containing ten control group and ten experimental group cards, but the procedure for ensuring that those recruiting participants remained unaware of assignments is not described.66 One trial was quasi-randomised, allocating participants to intervention or control groups in alternate runs of five.59

CIMT

The procedure for allocation concealment was unclear in all trials. Seven trials stated that random allocation was used, but provided no description
of the procedure.61,62,73,79,80,83,84 Four trials stated use of tables of random numbers to allocate participants to intervention or control groups, with no description of the procedure.64,74,81,82

TM
Allocation concealment was adequate in four trials.86–89 In two trials, allocation concealment was unclear. One trial stated that participants were assigned to groups by block randomisation on the basis of walking speed, but provided no description of the procedure for concealing the allocation, or the block length.85 One trial stated randomisation, with no description of the procedure.63

Blinding of outcome assessors

RTT
Blinding of primary outcome assessment was stated in all but two trials.69,71 Of the studies that stated observer blinding, three gave no details of how this was done.68,72,78 Four trials checked whether the outcome assessor had become unblinded,51,53,67,70 and out of these, three trials reported that some degree of unmasking might have occurred.51,53,67

CIMT
Blinding of outcome assessment was attempted in all trials with the exception of one trial,79 where there was no mention of blinding. In two trials73,84 action taken at blinding was judged likely to have been effective, for example employing personnel from outside the hospital who were blind to treatment assignment. Eight trials stated that outcome assessment was blinded, but did not describe the procedure.61,62,64,74,80–83 No trial reported checking for the possibility that unblinding had occurred.61,62,64,74,80–83

TM
Blinding of primary outcome assessment was stated in two trials.85,87 Neither trial described checks for unblinding. Two trials attempted blinding, but report that this may not have been successful,88,89 for example one trial stated that as a result of staffing limitations and institutional safety regulations, treadmill exercise testing was conducted by the same staff who provided training,88 hence metabolic fitness tests were unblinded. In one trial, physiotherapists not involved in the therapy were responsible for the assessment of the RMA Scale, but disclosure by patients and team-mates could not be fully excluded.85 One trial did not mention blinding of outcome assessors to participants’ treatment status.86

Owing to the nature of the interventions, blinding of participants, intervention providers or usual care providers was not assessed, as it is essentially impractical in this type of study.

Follow-up and exclusions

RTT
All trials provided information about numbers of withdrawals and reasons for withdrawal. All trials accounted for all participants at the end of the trial, except for one, which included participants in the analysis only if they completed the treatment programme.71 Of the 14 trials in total, three trials had 10–20% loss53,68,78 and two trials had more than 20% loss.67,70 The remaining nine trials had less than 10% loss to follow-up.

CIMT
Nine trials had no withdrawals.61,62,64,73,74,79,80,82,83 One trial provided information about numbers of withdrawals and reasons for withdrawal;84 and one trial81 states overall numbers of withdrawals, but not by intervention group. All except one trial81 accounted for all participants at the end of the trial. All trials had no loss to follow-up, except for one trial with 13% loss81 and one trial with 29%.84

TM
Five trials provided information about numbers of withdrawals and reasons for withdrawal, and accounted for all participants at the end of the trial. Withdrawals and follow-up were unclear in one trial.85 Two trials had less than 10% loss to follow-up post-treatment,87,88 two trials had 11–20% loss to follow-up post-treatment85,86 and one trial had more than 20% loss to follow-up post-treatment.88

Other potential sources of bias

To detect systematic differences in care provided to participants in comparison groups other than the intervention under investigation, trials were assessed to determine whether groups were treated equally during the intervention and during usual care.

RTT
During the intervention, groups were treated equally in all trials, with the following exceptions: in one trial70 there was no significant difference in the amount of treatment; however, the authors state in a supplementary paper that there may have been differences in elements of treatment such as detailed feedback and social conversation.132 In one trial it is not clear whether groups were treated equally72 and in two trials participants in the intervention group received
additional hours of therapy. During usual care, groups were treated equally in eight trials. In four trials no information is provided and in a further two trials there was no usual-care group.

CIMT

During the intervention, comparison groups receiving therapy were treated equally in all except two trials. In one trial, participants in the intervention group spent 7 hours at the rehabilitation centre each weekday for 2 weeks; the comparison group received only four 10-minute periods encouraging them to focus on performing new activities with the affected upper extremity at home and two sessions of ‘physical therapy’, plus a range of exercises to carry out at home. (As it was unknown how long control group participants practised, equivalence of therapy time was assumed for subgroup analyses.) In another trial, participants in the intervention arm of the trial similarly received longer periods of therapy (6 hours per day over 8 weekdays and 4 hours per day over 2 weekend days) than the comparison group (3 hours per day over 8 weekdays and 2 weekend days of rest). Groups were treated equally in all trials with a usual-care comparison.

TM

During the intervention, other than the intervention provided, groups were treated equally in all except one trial, where the control group was given a home-exercise programme to carry out for the same number of sessions as in the intervention group. However, this programme was not prescribed in sufficient number or intensity to provide a training effect and instead aimed to provide a credible sham programme. Groups were treated equally in all trials with a usual-care comparison.
Primary outcomes

Results are presented separately for upper and lower limb outcomes and global function, concluding with an overall treatment effect for all forms of RFTP on functional outcome. All results are post-therapy, except for Langhammer and Stanghelle, which are 3 months post-stroke, and Van Vliet and colleagues, which are 3 months post-baseline.

Upper limb function: post-therapy

Results are presented for arm function, hand function, and sitting balance and reach.

Arm function

Eighteen trials recruiting 634 participants measured arm function, with data suitable for pooling available for 76% (n = 485) (Figure 2). There was some heterogeneity of treatment effects.

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment N</th>
<th>Treatment Mean (SD)</th>
<th>Control N</th>
<th>Control Mean (SD)</th>
<th>SMD (fixed) 95% CI (%)</th>
<th>Weight (%)</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 RTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blennerhassett, 2004</td>
<td>15</td>
<td>4.90 (1.90)</td>
<td>15</td>
<td>5.10 (1.50)</td>
<td>6.45 –0.11 (–0.83 to 0.60)</td>
<td>6.45</td>
<td>–0.11 (–0.83 to 0.60)</td>
</tr>
<tr>
<td>Higgins, 2006</td>
<td>47</td>
<td>2.90 (1.70)</td>
<td>44</td>
<td>2.80 (1.90)</td>
<td>19.58 0.06 (–0.36 to 0.47)</td>
<td>19.58</td>
<td>0.06 (–0.36 to 0.47)</td>
</tr>
<tr>
<td>Kwakkel, 1999</td>
<td>27</td>
<td>2.00 (2.20)</td>
<td>34</td>
<td>10.00 (19.00)</td>
<td>12.59 0.48 (–0.03 to 1.00)</td>
<td>12.59</td>
<td>0.48 (–0.03 to 1.00)</td>
</tr>
<tr>
<td>Langhammer, 2000</td>
<td>29</td>
<td>4.70 (2.00)</td>
<td>24</td>
<td>4.10 (2.30)</td>
<td>11.21 0.28 (–0.27 to 0.82)</td>
<td>11.21</td>
<td>0.28 (–0.27 to 0.82)</td>
</tr>
<tr>
<td>Turton, 1990</td>
<td>12</td>
<td>13.83 (6.00)</td>
<td>10</td>
<td>12.25 (7.20)</td>
<td>4.66 0.23 (–0.61 to 1.07)</td>
<td>4.66</td>
<td>0.23 (–0.61 to 1.07)</td>
</tr>
<tr>
<td>Van Vliet, 2005</td>
<td>42</td>
<td>3.88 (2.33)</td>
<td>43</td>
<td>3.69 (2.38)</td>
<td>18.30 0.08 (–0.34 to 0.51)</td>
<td>18.30</td>
<td>0.08 (–0.34 to 0.51)</td>
</tr>
<tr>
<td>Winston, 2004</td>
<td>20</td>
<td>9.58 (5.70)</td>
<td>20</td>
<td>9.47 (6.30)</td>
<td>8.62 0.02 (–0.60 to 0.64)</td>
<td>8.62</td>
<td>0.02 (–0.60 to 0.64)</td>
</tr>
<tr>
<td>Yen, 2005</td>
<td>13</td>
<td>–2.57 (0.93)</td>
<td>17</td>
<td>–3.06 (1.54)</td>
<td>6.24 0.36 (–0.37 to 1.09)</td>
<td>6.24</td>
<td>0.36 (–0.37 to 1.09)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td>205</td>
<td>207</td>
<td>87.66 0.17 (–0.03 to 0.36)</td>
<td>87.66</td>
<td>0.17 (–0.03 to 0.36)</td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 3.18, \text{df} = 7 (p = 0.87), I^2 = 0$
Test for overall effect: $Z = 1.67 (p = 0.09)$

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment N</th>
<th>Treatment Mean (SD)</th>
<th>Control N</th>
<th>Control Mean (SD)</th>
<th>SMD (fixed) 95% CI (%)</th>
<th>Weight (%)</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 CIMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alberts, 2004</td>
<td>5</td>
<td>–28.89 (24.80)</td>
<td>5</td>
<td>–25.02 (17.96)</td>
<td>2.14 –0.16 (–1.40 to 1.08)</td>
<td>2.14</td>
<td>–0.16 (–1.40 to 1.08)</td>
</tr>
<tr>
<td>Atteya, 2004</td>
<td>2</td>
<td>52.00 (6.00)</td>
<td>2</td>
<td>51.50 (10.50)</td>
<td>0.85 0.03 (–1.94 to 2.00)</td>
<td>0.85</td>
<td>0.03 (–1.94 to 2.00)</td>
</tr>
<tr>
<td>Dromerick, 2000</td>
<td>11</td>
<td>52.80 (5.90)</td>
<td>9</td>
<td>44.30 (11.10)</td>
<td>3.75 0.95 (0.01 to 1.89)</td>
<td>3.75</td>
<td>0.95 (0.01 to 1.89)</td>
</tr>
<tr>
<td>Page, 2001</td>
<td>2</td>
<td>53.00 (6.00)</td>
<td>2</td>
<td>51.00 (10.00)</td>
<td>0.74 0.14 (–1.97 to 2.25)</td>
<td>0.74</td>
<td>0.14 (–1.97 to 2.25)</td>
</tr>
<tr>
<td>Page, 2005</td>
<td>5</td>
<td>49.80 (3.27)</td>
<td>5</td>
<td>35.80 (3.56)</td>
<td>0.56 3.70 (1.28 to 6.12)</td>
<td>0.56</td>
<td>3.70 (1.28 to 6.12)</td>
</tr>
<tr>
<td>Taub, 1993</td>
<td>4</td>
<td>8.10 (0.42)</td>
<td>5</td>
<td>6.90 (0.70)</td>
<td>1.13 1.79 (0.07 to 3.50)</td>
<td>1.13</td>
<td>1.79 (0.07 to 3.50)</td>
</tr>
<tr>
<td>Wittenberg, 2003</td>
<td>9</td>
<td>7.54 (2.04)</td>
<td>7</td>
<td>5.85 (2.79)</td>
<td>3.16 0.67 (–0.35 to 1.69)</td>
<td>3.16</td>
<td>0.67 (–0.35 to 1.69)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>38</td>
<td></td>
<td>35</td>
<td></td>
<td>12.34 0.77 (0.26 to 1.29)</td>
<td>12.34</td>
<td>0.77 (0.26 to 1.29)</td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 10.18, \text{df} = 6 (p = 0.12), I^2 = 41.0$
Test for overall effect: $Z = 2.93 (p = 0.003)$

Total (95% CI) 243 242
Test for heterogeneity: $\chi^2 = 17.99, \text{df} = 14 (p = 0.21), I^2 = 22.2$
Test for overall effect: $Z = 2.59 (p = 0.010)$

![FIGURE 2 Arm function](image-url)
Eight RTT trials recruited 467 participants, with data available for 88% (n = 412) of participants. Ten CIMT trials recruiting 167 participants measured arm function. In three of the CIMT trials with 91 participants in total, data were unsuitable for pooling. Page and colleagues (2002) included outcome data for nine participants, and provided means with no standard deviations (ARAT: CIMT group mean change +11.5, traditional therapy group mean change +1.4). Page and colleagues (2004) included data for 13 participants, and also provided means with no standard deviations (ARAT: CIMT group mean change +11.4, traditional therapy group mean change +7.1). Suputtita and colleagues reported median and ranges for 69 participants (ARAT: CIMT group n = 33, median 55, range 30–57, control group n = 36, median 47.5, range 15–54). Of the remaining seven CIMT trials with 76 participants, data were available for 96% (n = 73).

The pooled effect for the impact of RFTP on arm function across all trials showed a small effect size, which was statistically significant: (SMD 0.24, 95% CI 0.06 to 0.42).

Hand function

Seven trials recruiting 357 participants measured hand function, with data available for 86% (n = 307) (Figure 3). Five RTT trials recruited 324 participants, with data available for 87% (n = 281) of participants. Two CIMT trials recruited 33 participants, with data available for 79% (n = 26). The pooled effect for RFTP on hand function across all trials was small, and marginally statistically non-significant (SMD 0.19, 95% CI –0.03, 0.42).

\[t^2 = 22.2\% \] although not sufficient to merit the use of a random-effects approach.
Sitting balance/reach

Five trials (all RTT) recruiting 256 participants measured sitting balance or functional reach (Figure 4). Data were available for 82% (n = 210). There was some heterogeneity of treatment effects (I^2 = 32%), although not sufficient to merit the use of a random-effects approach.

The impact on sitting balance/reach showed a small effect size that was not statistically significant (SMD 0.23, 95% CI –0.05 to 0.50).

Upper limb function: follow-up

Under 6 months post-therapy

One CIMT trial measuring hand function and two RTT trials measuring sitting balance recruiting 78 participants in total, measured for retention effects between post-therapy and under 6 months post-therapy (Figure 5). Data were available for 86% (n = 67) and effects across trials were homogeneous.

Between 6 and 12 months post-therapy

Four trials (all RTT) recruiting 254 participants measured arm function for retention effects between 6 and 12 months post-therapy (Figure 5). Data were available for 76% (n = 195). Effects across trials were homogeneous (I^2 = 0%). Results showed no effect of treatment (SMD –0.02, 95% CI –0.31 to 0.26).

Subgroup analysis: upper limb function

Subgroup analyses for upper limb interventions are based on trials providing measures of arm function. Trials that only provide measures of hand function or sitting balance/reach are therefore excluded. Subgroup analyses are presented for type, amount and timing of intervention, and to consider the impact of

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>Control</th>
<th>SMD (fixed)</th>
<th>Weight</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean (SD)</td>
<td>N</td>
<td>Mean (SD)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>01 RTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Seze 2001</td>
<td>10</td>
<td>3.30 (0.80)</td>
<td>10</td>
<td>3.00 (0.80)</td>
<td>9.61</td>
</tr>
<tr>
<td>Dean 1999</td>
<td>10</td>
<td>12.00 (0.95)</td>
<td>9</td>
<td>10.80 (0.90)</td>
<td>7.49</td>
</tr>
<tr>
<td>Howe 2005</td>
<td>15</td>
<td>–1.90 (0.80)</td>
<td>18</td>
<td>–2.10 (0.70)</td>
<td>15.89</td>
</tr>
<tr>
<td>Langhammer 2000</td>
<td>29</td>
<td>5.40 (0.90)</td>
<td>24</td>
<td>5.00 (1.50)</td>
<td>25.38</td>
</tr>
<tr>
<td>Van Vliet 2005</td>
<td>42</td>
<td>4.54 (1.49)</td>
<td>43</td>
<td>4.63 (1.42)</td>
<td>41.63</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>106</td>
<td>104</td>
<td>100.00</td>
<td>0.23</td>
<td>(–0.05 to 0.50)</td>
</tr>
<tr>
<td>Test for heterogeneity: χ^2 = 5.88, df = 4 (p = 0.21), I^2 = 32.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.61 (p = 0.11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>106</td>
<td>104</td>
<td>100.00</td>
<td>0.23</td>
<td>(–0.05 to 0.50)</td>
</tr>
<tr>
<td>Test for heterogeneity: χ^2 = 5.88, df = 4 (p = 0.21), I^2 = 32.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.61 (p = 0.11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4 Sitting balance/reach
specific trial features on the results. The classification of trials for each subgroup analysis is given in Appendix 6.

Type of intervention

Subgroups compared the treatment effects for eight RTT trials recruiting 467 participants, and seven CIMT trials recruiting 76 participants (Figure 6). The impact of RTT on upper limb function post-treatment just failed to reach statistical significance (SMD 0.17, 95% CI –0.03 to 0.36). The impact of CIMT on arm function showed some heterogeneity ($I^2 = 41\%$), but not sufficient to necessitate the use of a random-effects approach. There was a large and statistically significant effect size (SMD 0.77, 95% CI 0.26 to 1.29). The difference between effect sizes for CIMT and RTT was statistically significant ($p = 0.03$).
Review: Repetitive functional task practice (including RTT, CIMT, TM)
Comparison: 03 Subgroup analyses: upper limb
Outcome: 01 Type of intervention

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>Control</th>
<th>SMD (fixed)</th>
<th>Weight</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean (SD)</td>
<td>N</td>
<td>Mean (SD)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>01 RTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blennerhassett, 2004</td>
<td>15</td>
<td>4.90 (1.90)</td>
<td>15</td>
<td>5.10 (1.50)</td>
<td>-</td>
</tr>
<tr>
<td>Higgins, 2006</td>
<td>47</td>
<td>29.00 (17.00)</td>
<td>44</td>
<td>28.00 (19.00)</td>
<td>-</td>
</tr>
<tr>
<td>Kwakkel, 1999</td>
<td>27</td>
<td>20.00 (22.00)</td>
<td>34</td>
<td>10.00 (19.00)</td>
<td>-</td>
</tr>
<tr>
<td>Langhammer, 2000</td>
<td>29</td>
<td>4.70 (2.00)</td>
<td>24</td>
<td>4.10 (2.30)</td>
<td>-</td>
</tr>
<tr>
<td>Turton, 1990</td>
<td>12</td>
<td>13.83 (6.00)</td>
<td>10</td>
<td>12.25 (7.20)</td>
<td>-</td>
</tr>
<tr>
<td>Van Vliet, 2005</td>
<td>42</td>
<td>3.88 (2.23)</td>
<td>43</td>
<td>3.69 (2.38)</td>
<td>-</td>
</tr>
<tr>
<td>Wintzen, 2004</td>
<td>20</td>
<td>9.58 (5.70)</td>
<td>20</td>
<td>9.47 (6.30)</td>
<td>-</td>
</tr>
<tr>
<td>Yen, 2005</td>
<td>13</td>
<td>–2.57 (0.93)</td>
<td>17</td>
<td>–3.06 (1.54)</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>205</td>
<td></td>
<td>207</td>
<td></td>
<td>87.66</td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 3.18$, df = 7 ($p = 0.87$), $I^2 = 0$
Test for overall effect: $Z = 1.67$ ($p = 0.09$)

02 CIMT							
Alberts, 2004	5	–28.89 (24.80)	5	–25.02 (17.96)	-	2.14	–0.16 (–1.40 to 1.08)
Attaya, 2004	2	52.00 (6.00)	2	51.50 (10.50)	-	0.85	0.03 (–1.94 to 2.00)
Dromerick, 2000	11	52.80 (5.90)	9	44.30 (11.10)	-	3.75	0.95 (0.01 to 1.89)
Page, 2001	2	53.00 (6.00)	2	51.00 (10.00)	-	0.74	0.14 (–1.97 to 2.25)
Page, 2005	5	49.80 (3.27)	5	35.80 (3.56)	-	0.56	3.70 (1.28 to 6.12)
Taub, 1993	4	8.10 (0.42)	5	6.90 (0.70)	-	1.13	1.79 (0.07 to 3.50)
Wittenberg, 2003	9	7.54 (2.04)	7	5.85 (2.79)	-	3.16	0.67 (–0.35 to 1.69)
Subtotal (95% CI)	38		35		12.34	0.77	(0.26 to 1.29)

Test for heterogeneity: $\chi^2 = 10.18$, df = 6 ($p = 0.12$), $I^2 = 41.0$
Test for overall effect: $Z = 2.93$ ($p = 0.003$)

| Total (95% CI) | 243 | 242 | 100.00 | 0.24 (0.06, 0.42) |

Test for heterogeneity: $\chi^2 = 17.99$, df = 14 ($p = 0.21$), $I^2 = 22.2$
Test for overall effect: $Z = 2.59$ ($p = 0.010$)

FIGURE 6 Subgroup analysis: type of intervention – upper limb trials
Dosage of task practice

Seven trials (five RTT; two CIMT) with 399 participants provided up to 20 hours’ task practice. Eight trials (three RTT; five CIMT) with 163 participants provided more than 20 hours’ task practice (Figure 7). There was substantial heterogeneity ($I^2 = 50.8\%$) in the trials providing up to 20 hours’ task practice. Using a random-effects model to combine the effects from individual trials, while the estimated effect was greater for the subgroup with more than 20 hours of task practice, the difference between subgroups failed to reach statistical significance ($p = 0.18$).

Results of the review

24

Review: Repetitive functional task practice (including RTT, CIMT, TM)
Comparison: 03 Subgroup analyses: upper limb
Outcome: 02 Dosage of task practice

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment N</th>
<th>Treatment Mean (SD)</th>
<th>Control N</th>
<th>Control Mean (SD)</th>
<th>SMD (random) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (random) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 0–20 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blennerhassett, 2004</td>
<td>15</td>
<td>4.90 (1.90)</td>
<td>15</td>
<td>5.10 (1.50)</td>
<td>7.47 (–0.11 to 0.60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dromerick, 2000</td>
<td>11</td>
<td>52.80 (5.90)</td>
<td>9</td>
<td>44.30 (11.10)</td>
<td>4.80 (0.95 to 1.89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higgins, 2006</td>
<td>47</td>
<td>29.00 (17.00)</td>
<td>44</td>
<td>28.00 (19.00)</td>
<td>15.53 (0.06 to 0.47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langhammer, 2000</td>
<td>29</td>
<td>4.70 (2.00)</td>
<td>24</td>
<td>4.10 (2.30)</td>
<td>11.12 (0.28 to 0.82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page, 2005</td>
<td>5</td>
<td>49.80 (3.27)</td>
<td>5</td>
<td>35.80 (3.56)</td>
<td>0.82 (3.70 to 6.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Vliet, 2005</td>
<td>42</td>
<td>3.88 (2.23)</td>
<td>43</td>
<td>3.69 (2.38)</td>
<td>14.97 (0.08 to 0.51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winstead, 2004</td>
<td>20</td>
<td>9.58 (5.70)</td>
<td>20</td>
<td>9.47 (6.30)</td>
<td>9.28 (0.02 to 0.64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>169</td>
<td></td>
<td>160</td>
<td></td>
<td>63.99 (0.22 to 0.57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 12.20$, df = 6 ($p = 0.06$), $\hat{I}^2 = 50.8%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 1.27$ ($p = 0.20$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

02 More than 20 hours							
Alberts, 2004	5	–28.89 (24.80)	5	–25.02 (17.96)	2.92 (–0.16 to 1.40)		
Atzey, 2004	2	52.00 (6.00)	2	51.50 (10.50)	1.23 (–1.94 to 2.00)		
Kwakkel, 1999	27	20.00 (22.00)	34	10.00 (19.00)	11.99 (0.48 to 0.03)		
Page, 2001	2	53.00 (6.00)	2	51.00 (10.00)	1.08 (0.14 to 1.97)		
Taub, 1993	4	8.10 (0.42)	5	6.90 (0.70)	1.60 (1.79 to 3.50)		
Turton, 1990	12	13.83 (6.00)	10	12.25 (7.20)	5.76 (0.23 to 1.07)		
Wittenberg, 2003	9	7.54 (2.04)	7	5.85 (2.79)	4.14 (0.67 to 3.35)		
Yen, 2005	13	–2.57 (0.93)	17	–3.06 (1.54)	7.28 (0.36 to 1.07)		
Subtotal (95% CI)	74		82		36.01 (0.42 to 0.72)		
Test for heterogeneity: $\chi^2 = 4.00$, df = 7 ($p = 0.78$), $\hat{I}^2 = 0\%$							
Test for overall effect: $Z = 2.56$ ($p = 0.01$)							

Total (95% CI)	243	242			100.00 (0.27 to 0.49)		
Test for heterogeneity: $\chi^2 = 17.99$, df = 14 ($p = 0.21$), $\hat{I}^2 = 22.2\%$							
Test for overall effect: $Z = 2.39$ ($p = 0.02$)							

FIGURE 7 Subgroup analysis: dosage of task practice – upper limb trials
Time since stroke

Nine trials (four RTT, five CIMT) with 364 participants measured arm function in participants up to 6 months post-stroke. Six trials (four RTT, two CIMT) with 189 participants included participants more than 6 months post-stroke (Figure 8). There was some heterogeneity in trials 0–6 months post-stroke ($I^2 = 34.8\%$), but not sufficient to warrant using a random-effects model. The difference between subgroups did not reach statistical significance ($p = 0.65$).

Study or subcategory

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Treatment Mean (SD)</th>
<th>N</th>
<th>Control Mean (SD)</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 0–6 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alberts, 2004</td>
<td>83</td>
<td>–28.89 (24.80)</td>
<td>5</td>
<td>–25.02 (17.96)</td>
<td>2.14 –0.16 (–1.40 to 1.08)</td>
<td>2.14</td>
<td>–0.16 (–1.40 to 1.08)</td>
</tr>
<tr>
<td>Arcey, 2004</td>
<td>79</td>
<td>52.00 (6.00)</td>
<td>2</td>
<td>51.50 (10.50)</td>
<td>0.85 0.03 (–1.94 to 2.00)</td>
<td>0.85</td>
<td>0.03 (–1.94 to 2.00)</td>
</tr>
<tr>
<td>Dromerick, 2000</td>
<td>11</td>
<td>52.80 (5.90)</td>
<td>2</td>
<td>46.30 (11.10)</td>
<td>3.75 0.95 (0.01 to 1.89)</td>
<td>3.75</td>
<td>0.95 (0.01 to 1.89)</td>
</tr>
<tr>
<td>Kwakkel, 1999</td>
<td>27</td>
<td>20.00 (22.00)</td>
<td>34</td>
<td>10.00 (19.00)</td>
<td>12.59 0.48 (–0.03 to 1.00)</td>
<td>12.59</td>
<td>0.48 (–0.03 to 1.00)</td>
</tr>
<tr>
<td>Langhammer, 2000</td>
<td>29</td>
<td>4.70 (2.00)</td>
<td>24</td>
<td>4.10 (2.30)</td>
<td>11.21 0.28 (–0.27 to 0.82)</td>
<td>11.21</td>
<td>0.28 (–0.27 to 0.82)</td>
</tr>
<tr>
<td>Page, 2001</td>
<td>2</td>
<td>53.00 (6.00)</td>
<td>2</td>
<td>51.00 (10.00)</td>
<td>0.85 0.14 (–1.97 to 2.25)</td>
<td>0.85</td>
<td>0.14 (–1.97 to 2.25)</td>
</tr>
<tr>
<td>Page, 2005</td>
<td>2</td>
<td>53.00 (6.00)</td>
<td>2</td>
<td>46.30 (11.10)</td>
<td>3.75 0.95 (0.01 to 1.89)</td>
<td>3.75</td>
<td>0.95 (0.01 to 1.89)</td>
</tr>
<tr>
<td>Van Vliet, 2005</td>
<td>42</td>
<td>3.88 (2.23)</td>
<td>43</td>
<td>3.69 (2.38)</td>
<td>18.30 0.08 (–0.34 to 0.51)</td>
<td>18.30</td>
<td>0.08 (–0.34 to 0.51)</td>
</tr>
<tr>
<td>Wrinstein, 2004</td>
<td>20</td>
<td>9.58 (5.70)</td>
<td>20</td>
<td>9.47 (6.30)</td>
<td>8.62 0.02 (–0.60 to 0.64)</td>
<td>8.62</td>
<td>0.02 (–0.60 to 0.64)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>143</td>
<td>58.77 0.28 (0.04 to 0.51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 12.27, df = 8 (p = 0.14), I^2 = 34.8%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 2.28 (p = 0.02)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 More than 6 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blennerhassett, 2004</td>
<td>15</td>
<td>4.90 (1.90)</td>
<td>15</td>
<td>5.10 (1.50)</td>
<td>6.45 –0.11 (–0.83 to 0.60)</td>
<td>6.45</td>
<td>–0.11 (–0.83 to 0.60)</td>
</tr>
<tr>
<td>Higgins, 2006</td>
<td>47</td>
<td>29.00 (17.00)</td>
<td>44</td>
<td>28.00 (19.00)</td>
<td>19.58 0.06 (–0.36 to 0.47)</td>
<td>19.58</td>
<td>0.06 (–0.36 to 0.47)</td>
</tr>
<tr>
<td>Taub, 1993</td>
<td>4</td>
<td>8.10 (0.42)</td>
<td>5</td>
<td>6.90 (0.70)</td>
<td>1.13 1.79 (0.07 to 3.50)</td>
<td>1.13</td>
<td>1.79 (0.07 to 3.50)</td>
</tr>
<tr>
<td>Turton, 1990</td>
<td>12</td>
<td>13.83 (6.00)</td>
<td>10</td>
<td>12.25 (7.20)</td>
<td>4.66 0.23 (–0.61 to 1.07)</td>
<td>4.66</td>
<td>0.23 (–0.61 to 1.07)</td>
</tr>
<tr>
<td>Wittenberg, 2003</td>
<td>9</td>
<td>7.54 (2.04)</td>
<td>10</td>
<td>7.85 (2.79)</td>
<td>3.16 0.67 (–0.35 to 1.69)</td>
<td>3.16</td>
<td>0.67 (–0.35 to 1.69)</td>
</tr>
<tr>
<td>Yen, 2005</td>
<td>13</td>
<td>–2.57 (0.93)</td>
<td>17</td>
<td>–3.06 (1.54)</td>
<td>6.24 0.36 (–0.37 to 1.09)</td>
<td>6.24</td>
<td>0.36 (–0.37 to 1.09)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>100</td>
<td>98.77 0.19 (–0.09 to 0.47)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 5.51, df = 5 (p = 0.36), I^2 = 9.2%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 1.31 (p = 0.19)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>243</td>
<td>242</td>
<td>100.00 0.24 (0.06 to 0.42)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 17.99, df = 14 (p = 0.21), I^2 = 22.2%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 2.59 (p = 0.010)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Allocation concealment

Trials were grouped according to whether allocation concealment was judged to be adequate (five RTT trials) or inadequate/unclear (ten trials: three RTT, seven CIMT) (Figure 9). There was some heterogeneity observed in the ‘inadequate/unclear’ subgroup ($I^2 = 27.3\%$). The difference between subgroups was statistically significant ($p = 0.08$), indicating that the effect of RFTP was greater for trials where allocation concealment was either inadequate or unclear.

![FIGURE 9 Subgroup analysis: allocation concealment – upper limb trials](image-url)
Post hoc analysis: type of comparison group

Seven trials (five RTT, two CIMT) were classified as usual care or alternative treatment, and eight trials (three RTT, five CIMT) were classified as attention-control or no treatment (Figure 10), with some heterogeneity observed in trials with usual care/alternative treatment controls ($I^2 = 46.1\%$). There was no statistically significant difference between subgroups ($p = 0.84$).

Subgroup analyses: upper limb

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>Control</th>
<th>SMD (fixed)</th>
<th>Weight (%)</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean (SD)</td>
<td>N</td>
<td>Mean (SD) (95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>01 Usual care/alternative treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dromerick, 2000 &1</td>
<td>11</td>
<td>52.80 (5.90)</td>
<td>9</td>
<td>44.30 (11.10)</td>
<td>3.75</td>
</tr>
<tr>
<td>Langhammer, 2000 &18</td>
<td>29</td>
<td>4.70 (2.00)</td>
<td>24</td>
<td>4.10 (2.30)</td>
<td>11.21</td>
</tr>
<tr>
<td>Page, 2005 &2</td>
<td>5</td>
<td>49.80 (3.27)</td>
<td>5</td>
<td>35.80 (3.56)</td>
<td>0.56</td>
</tr>
<tr>
<td>Turton, 1990 &9</td>
<td>12</td>
<td>13.83 (6.00)</td>
<td>10</td>
<td>12.25 (7.20)</td>
<td>4.66</td>
</tr>
<tr>
<td>Van Vliet, 2005 &70</td>
<td>42</td>
<td>3.88 (2.23)</td>
<td>43</td>
<td>3.69 (2.38)</td>
<td>18.30</td>
</tr>
<tr>
<td>Winstead, 2004 &71</td>
<td>20</td>
<td>9.58 (5.70)</td>
<td>20</td>
<td>9.47 (6.30)</td>
<td>8.62</td>
</tr>
<tr>
<td>Yen, 2005 &72</td>
<td>13</td>
<td>–2.57 (0.93)</td>
<td>17</td>
<td>–3.06 (1.54)</td>
<td>6.24</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>132</td>
<td></td>
<td>128</td>
<td>53.35</td>
<td>0.26 (0.01 to 0.51)</td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 11.33$, df = 6 ($p = 0.08$), $I^2 = 46.1\%$

Test for overall effect: $Z = 2.02$ ($p = 0.04$)

<table>
<thead>
<tr>
<th>02 Attention control/no treatment</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberts, 2004 &8</td>
<td>5</td>
<td>–28.89 (24.80)</td>
<td>5</td>
<td>–25.02 (17.96)</td>
<td>2.14</td>
</tr>
<tr>
<td>Atteya, 2004 &79</td>
<td>2</td>
<td>52.00 (6.00)</td>
<td>2</td>
<td>1.50 (0.50)</td>
<td>0.85</td>
</tr>
<tr>
<td>Blennerhassett, 2004 &50</td>
<td>15</td>
<td>4.90 (1.90)</td>
<td>15</td>
<td>5.10 (1.50)</td>
<td>6.45</td>
</tr>
<tr>
<td>Higgins, 2006 &52</td>
<td>47</td>
<td>29.00 (17.00)</td>
<td>44</td>
<td>28.00 (19.00)</td>
<td>19.58</td>
</tr>
<tr>
<td>Kwakkel, 1999 &53</td>
<td>27</td>
<td>20.00 (22.00)</td>
<td>34</td>
<td>10.00 (19.00)</td>
<td>12.59</td>
</tr>
<tr>
<td>Page, 2001 &80</td>
<td>2</td>
<td>53.00 (6.00)</td>
<td>2</td>
<td>51.00 (10.00)</td>
<td>0.74</td>
</tr>
<tr>
<td>Taub, 1993 &73</td>
<td>4</td>
<td>8.10 (0.42)</td>
<td>5</td>
<td>6.90 (0.70)</td>
<td>1.13</td>
</tr>
<tr>
<td>Wittenberg, 2003 &74</td>
<td>9</td>
<td>7.54 (2.04)</td>
<td>7</td>
<td>5.85 (2.79)</td>
<td>3.16</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>111</td>
<td></td>
<td>114</td>
<td>53.85</td>
<td>0.22 (–0.04 to 0.49)</td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 6.82$, df = 7 ($p = 0.45$), $I^2 = 0\%$

Test for overall effect: $Z = 1.63$ ($p = 0.10$)

| Total (95% CI) | 243 | 242 | 100.00 | 0.24 (0.06 to 0.42) |

Test for heterogeneity: $\chi^2 = 17.99$, df = 14 ($p = 0.21$), $I^2 = 22.2\%$

Test for overall effect: $Z = 2.59$ ($p = 0.010$)

FIGURE 10 Subgroup analysis: type of comparison group – upper limb trials

© Queen’s Printer and Controller of HMSO 2008. All rights reserved.
Post hoc analysis: equivalence of therapy time

One subgroup comprised seven trials (two RTT, five CIMT) which gave, additional therapy time to the experimental group, and the other contained eight trials (six RTT, two CIMT) where therapy time for experimental and control groups was equivalent (Figure 11). There was some heterogeneity of treatment effects in each subgroup, but not sufficient to merit the use of a random-effects meta-analysis. There was no significant difference between the two subgroups ($p = 0.92$).

Post hoc analysis: trial size

The median number of participants in the trials was 23. A post hoc analysis was therefore undertaken for trials with under 25 participants versus those with 25 or more participants (Figure 12). Some heterogeneity was observed in trials with under 25 participants ($I^2 = 38.2\%$), but not enough to warrant the use of a random-effects model. The difference between effect sizes in the small trial sub-group (<25 participants) and the larger trial sub-group (≥25 participants) was statistically significant ($p = 0.06$). As the effect in the small trial subgroup (SMD 0.62, 95% CI 0.18 to 1.07) is significantly larger than in the larger trial subgroup (SMD 0.16, 95% CI −0.04 to 0.36), this may indicate some degree of reporting bias in upper limb trials. This is supported by the funnel plot in Figure 13, which has some apparent asymmetry indicating a potential lack of reporting of small negative trials with large standard errors.

FIGURE 11 Subgroup analysis: equivalence of therapy time – upper limb trials
Review: Repetitive functional task practice (including RTT, CIMT, TM)

Comparison: 03 Subgroup analyses: upper limb

Outcome: 07 Trial size

Table: Study T reatment Control SMD (fixed) Weight SMD (fixed)

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>Control</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Under 25 participants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alberts, 200483</td>
<td>5 –28.89 (24.80)</td>
<td>5 –25.02 (17.96)</td>
<td>2.14 –0.16 (–1.40 to 1.08)</td>
<td>2.14 –0.16 (–1.40 to 1.08)</td>
<td></td>
</tr>
<tr>
<td>Attewa, 200479</td>
<td>2 52.00 (6.00)</td>
<td>2 51.50 (10.50)</td>
<td>0.85 0.03 (–1.94 to 2.00)</td>
<td>0.85 0.03 (–1.94 to 2.00)</td>
<td></td>
</tr>
<tr>
<td>Dromerick, 200081</td>
<td>11 52.80 (5.90)</td>
<td>9 44.30 (11.10)</td>
<td>3.75 0.95 (0.01 to 1.89)</td>
<td>3.75 0.95 (0.01 to 1.89)</td>
<td></td>
</tr>
<tr>
<td>Page, 200180</td>
<td>5 53.00 (6.00)</td>
<td>5 51.00 (10.00)</td>
<td>0.74 0.14 (–1.97 to 2.25)</td>
<td>0.74 0.14 (–1.97 to 2.25)</td>
<td></td>
</tr>
<tr>
<td>Page, 200568</td>
<td>5 49.80 (3.27)</td>
<td>5 35.80 (3.56)</td>
<td>0.56 3.70 (–1.28 to 6.12)</td>
<td>0.56 3.70 (–1.28 to 6.12)</td>
<td></td>
</tr>
<tr>
<td>Taub, 199373</td>
<td>4 8.10 (0.42)</td>
<td>5 6.90 (0.70)</td>
<td>1.13 1.79 (0.07 to 3.50)</td>
<td>1.13 1.79 (0.07 to 3.50)</td>
<td></td>
</tr>
<tr>
<td>Turton, 199069</td>
<td>12 13.83 (6.00)</td>
<td>10 12.25 (7.20)</td>
<td>4.66 0.23 (–0.61 to 1.07)</td>
<td>4.66 0.23 (–0.61 to 1.07)</td>
<td></td>
</tr>
<tr>
<td>Wittenberg, 200374</td>
<td>9 7.54 (2.04)</td>
<td>7 5.85 (2.79)</td>
<td>3.16 0.67 (–0.35 to 1.69)</td>
<td>3.16 0.67 (–0.35 to 1.69)</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>50</td>
<td>45</td>
<td>17.01 0.62 (0.18 to 1.07)</td>
<td>17.01 0.62 (0.18 to 1.07)</td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 11.33$, df = 7 ($p = 0.12$), $I^2 = 38.2%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 2.77$ ($p = 0.006$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **02 25 or more participants** |
Blennerhassett, 200450	15 4.90 (1.90)	15 5.10 (1.50)	6.45 –0.11 (–0.83 to 0.60)	6.45 –0.11 (–0.83 to 0.60)
Higgins, 200652	47 29.00 (17.00)	44 28.00 (19.00)	19.58 0.06 (–0.36 to 0.47)	19.58 0.06 (–0.36 to 0.47)
Kwakkel, 199953	27 20.00 (22.00)	34 10.00 (19.00)	12.59 0.48 (–0.03 to 1.00)	12.59 0.48 (–0.03 to 1.00)
Langhammer, 200068	29 4.70 (2.00)	24 4.10 (2.30)	11.21 0.28 (–0.27 to 0.82)	11.21 0.28 (–0.27 to 0.82)
Van Vliet, 200570	42 3.88 (2.23)	43 3.69 (2.38)	18.30 0.08 (–0.34 to 0.51)	18.30 0.08 (–0.34 to 0.51)
Weinstein, 200471	20 9.58 (5.70)	20 9.47 (6.30)	8.62 0.02 (–0.60 to 0.64)	8.62 0.02 (–0.60 to 0.64)
Yen, 200572	13 –2.57 (0.93)	17 –3.06 (1.54)	6.24 0.36 (–0.37 to 1.09)	6.24 0.36 (–0.37 to 1.09)
Subtotal (95% CI)	193	196	82.99 0.16 (–0.04 to 0.36)	82.99 0.16 (–0.04 to 0.36)
Test for heterogeneity: $\chi^2 = 3.15$, df = 6 ($p = 0.79$), $I^2 = 0\%$				
Test for overall effect: $Z = 1.59$ ($p = 0.11$)				
Total (95% CI)	243	242	100.00 0.24 (0.06 to 0.42)	100.00 0.24 (0.06 to 0.42)
Test for heterogeneity: $\chi^2 = 17.99$, df = 14 ($p = 0.21$), $I^2 = 22.2\%$				
Test for overall effect: $Z = 2.59$ ($p = 0.010$)				

![FIGURE 12 Subgroup analysis: trial size – upper limb trials](image)

![FIGURE 13 Funnel plot of precision versus effect size – upper limb trials](image)
Results of the review

Lower limb function: post-therapy

Results are presented for walking distance, walking speed, functional ambulation, sit-to-stand, lower limb functional measures and standing balance/reach. All results are post-therapy, except for Langhammer and Stanghelle, which is 3 months post-stroke, and Van Vliet and colleagues, which is 3 months post-baseline.

Walking distance

Seven trials included a measure of walking distance (Figure 14). All results are change from baseline scores except for Macko and colleagues, and are expressed as metres walked in 6 minutes. The degree of heterogeneity ($I^2 = 49.1\%$) in the effect sizes of the seven trials was very close to the study criterion for 'substantial' heterogeneity, so a random-effects model was used. Three RTT trials recruiting 133 participants measured walking distance, with outcome data available for 98% ($n = 130$) of participants. Four TM trials recruiting 155 participants measured walking distance, with outcome data available for 96% ($n = 149$).

For RFTP overall, pooled results showed a statistically significant difference (WMD 50.05 m, 95% CI 29.65 to 70.44 m). Owing to the lack of homogeneity of standard deviations, resulting in a substantial impact on the weighting of several trials, results were reanalysed using the SMD and a random-effects model. The result showed a large effect size, which remained highly statistically significant (SMD 0.98, 95% CI 0.58 to 1.39, excluding Macko and colleagues, which did not provide 'change-from-baseline' data). To improve comparability with effect sizes for other outcomes and for use in the economic analysis, the SMD based on the post-treatment data from the seven trials was also computed (SMD 0.45, 95% CI 0.20 to 0.70; figure not shown). As expected, the SMD based on the post-treatment data is considerably smaller than that based on the change-from-baseline data, primarily owing to its poorer sensitivity to change.

Walking speed

Ten trials included a measure of walking speed (Figure 15). Results were converted into metres per

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment Mean (SD)</th>
<th>Control Mean (SD)</th>
<th>WMD (random) (95% CI)</th>
<th>Weight (%)</th>
<th>WMD (random) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blennerhassett, 2004</td>
<td>15 221.00 (75.60)</td>
<td>15 107.00 (85.60)</td>
<td>9.81 114.00 (59.49 to 168.52)</td>
<td>37.27 (10.18 to 64.36)</td>
<td></td>
</tr>
<tr>
<td>Dean, 2000</td>
<td>5 42.03 (30.42)</td>
<td>4 4.76 (4.90)</td>
<td>20.79 37.27 (10.18 to 64.36)</td>
<td>20.04 35.00 (6.56 to 63.44)</td>
<td></td>
</tr>
<tr>
<td>Salbach, 2004</td>
<td>44 40.00 (72.00)</td>
<td>47 5.00 (66.00)</td>
<td>20.04 35.00 (6.56 to 63.44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>64 50.65</td>
<td>66 54.59</td>
<td>50.65 54.59 (17.50 to 91.68)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 6.94$, df = 2 ($p = 0.03$), $I^2 = 71.2%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 2.88$ ($p = 0.004$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ada, 2003</td>
<td>11 99.00 (70.00)</td>
<td>14 13.00 (27.00)</td>
<td>13.09 86.00 (42.28 to 129.72)</td>
<td>6.19 55.42 (–18.42 to 129.26)</td>
<td></td>
</tr>
<tr>
<td>da Cunha, 2002</td>
<td>6 107.00 (71.52)</td>
<td>7 51.58 (63.00)</td>
<td>24.17 34.90 (13.59 to 56.21)</td>
<td>5.90 16.46 (–59.58 to 92.50)</td>
<td></td>
</tr>
<tr>
<td>Eich, 2004</td>
<td>25 90.60 (43.50)</td>
<td>25 55.70 (32.60)</td>
<td>24.17 34.90 (13.59 to 56.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macko, 2005</td>
<td>25 281.03 (120.00)</td>
<td>20 264.57 (136.31)</td>
<td>5.90 16.46 (–59.58 to 92.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>67 49.35</td>
<td>66 48.88</td>
<td>49.35 48.88 (19.56 to 78.20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 4.84$, df = 3 ($p = 0.18$), $I^2 = 38.0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 3.27$ ($p = 0.001$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>131 100.00</td>
<td>132 50.05</td>
<td>100.00 50.05 (29.65 to 70.44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: $\chi^2 = 11.79$, df = 6 ($p = 0.07$), $I^2 = 49.1%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 4.81$ ($p < 0.00001$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
second, with the exception of Dean and Shepherd66 and Van Vliet and colleagues,70 who presented statistics for the number of seconds to walk 10 m and 6 m, respectively. There was some heterogeneity of treatment effects ($I^2 = 8.7\%$), although not sufficient to merit the use of a random-effects approach. Five RTT trials recruited 311 participants,51,53,66,67,70 with outcome data available for 85\% ($n = 263$) of participants. Six TM trials recruited 229 participants.63,85–89 One TM trial with 30 participants provided data unsuitable for pooling, with data for mean distance walked but no standard deviations.63 Of the five remaining trials with 199 participants, outcome data were available for 87\% ($n = 173$) of participants.

Overall, pooled results for the impact of RFTP on walking speed showed a small effect size, which was statistically significant (SMD 0.28, 95\% CI 0.09 to 0.47). A subgroup analysis was undertaken for walking speed measured over short (5 or 6 m) or medium (10 m) distances, with no significant difference found ($p = 0.57$).

Functional ambulation

For RFTP overall, seven trials recruiting 368 participants measured functional ambulation, with outcome data available for 79\% ($n = 291$) (Figure 16). Effects across trials were homogeneous ($I^2 = 0\%$). Five RTT trials53,68,70,76,78 recruited 295 participants, with outcome data available for 81\% ($n = 238$). Two TM trials85,86 recruited 59 participants, with outcome data available for 89\% ($n = 53$).

Pooling the results from seven trials showed RFTP to have a statistically significant but small effect on functional ambulation measures (SMD 0.28, 95\% CI 0.05 to 0.51), with no significant difference in effects between RTT and TM ($p = 0.66$).

Sit-to-stand

Seven trials (all RTT) recruiting 397 participants included a measure of sit-to-stand,50,51,65,67,68,70,77 with outcome data available for 87\% ($n = 346$) (Figure 17). Effects across trials were homogeneous ($I^2 = 0\%$), showing a small to moderate effect size, which was

FIGURE 15 Walking speed

![Graph](image-url)

TABLE 1

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>N</th>
<th>Treatment Mean (SD)</th>
<th>N</th>
<th>Control Mean (SD)</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 RTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean, 199766</td>
<td>10</td>
<td>–33.80 (18.60)</td>
<td>8</td>
<td>–29.40 (33.90)</td>
<td>4.19 –0.16 (1.09 to 0.77)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean, 200067</td>
<td>5</td>
<td>0.80 (0.43)</td>
<td>4</td>
<td>0.88 (0.52)</td>
<td>2.09 –0.15 (1.47 to 1.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwakkel, 199953</td>
<td>26</td>
<td>0.65 (0.46)</td>
<td>34</td>
<td>0.37 (0.41)</td>
<td>13.22 0.64 (0.12 to 1.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sallbach, 200451</td>
<td>44</td>
<td>0.78 (0.40)</td>
<td>47</td>
<td>0.64 (0.37)</td>
<td>21.13 0.36 (0.05 to 0.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Vliet, 200570</td>
<td>42</td>
<td>–12.19 (9.05)</td>
<td>43</td>
<td>–11.75 (7.88)</td>
<td>20.08 –0.05 (0.48 to 0.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>127</td>
<td></td>
<td>136</td>
<td></td>
<td>60.70 0.23 (–0.01 to 0.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 TM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ada, 200387</td>
<td>11</td>
<td>0.75 (0.26)</td>
<td>14</td>
<td>0.56 (0.30)</td>
<td>5.49 0.65 (–0.17 to 1.46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>da Cunha, 200286</td>
<td>6</td>
<td>0.59 (0.29)</td>
<td>7</td>
<td>0.27 (0.23)</td>
<td>2.47 1.15 (–0.06 to 2.36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eich, 200489</td>
<td>25</td>
<td>0.71 (0.30)</td>
<td>25</td>
<td>0.60 (0.22)</td>
<td>11.55 0.41 (–0.15 to 0.97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macko, 200388</td>
<td>25</td>
<td>0.74 (0.30)</td>
<td>20</td>
<td>0.76 (0.36)</td>
<td>10.50 –0.06 (0.65 to 0.53)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pohl, 200285</td>
<td>20</td>
<td>1.22 (0.74)</td>
<td>20</td>
<td>0.97 (0.64)</td>
<td>9.29 0.35 (–0.27 to 0.98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>87</td>
<td></td>
<td>86</td>
<td></td>
<td>39.30 0.35 (0.05 to 0.66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>214</td>
<td></td>
<td>222</td>
<td></td>
<td>100.00 0.28 (0.09 to 0.47)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Queen’s Printer and Controller of HMSO 2008. All rights reserved.
Results of the review

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>Control</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 RTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Sèze, 2001</td>
<td>10</td>
<td>10</td>
<td>2.60 (1.40)</td>
<td>6.62</td>
<td>0.66 (–0.25 to 1.57)</td>
</tr>
<tr>
<td>Kwakkel, 1999</td>
<td>25</td>
<td>34</td>
<td>4.00 (1.00)</td>
<td>19.47</td>
<td>0.60 (0.07 to 1.12)</td>
</tr>
<tr>
<td>Langhammer, 2000</td>
<td>29</td>
<td>24</td>
<td>4.00 (1.60)</td>
<td>18.54</td>
<td>0.11 (–0.43 to 0.65)</td>
</tr>
<tr>
<td>McClellan, 2004</td>
<td>12</td>
<td>9</td>
<td>4.30 (1.20)</td>
<td>7.15</td>
<td>–0.34 (–1.21 to 0.53)</td>
</tr>
<tr>
<td>Van Vliet, 2005</td>
<td>42</td>
<td>43</td>
<td>3.70 (1.62)</td>
<td>29.93</td>
<td>0.17 (–0.25 to 0.60)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>118</td>
<td>120</td>
<td></td>
<td>81.71</td>
<td>0.25 (0.00 to 0.51)</td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 5.16$, df = 6 ($p = 0.52$), $I^2 = 0$

Test for overall effect: $Z = 3.65$ ($p = 0.0003$)

02 TM					
da Cunha, 2002	6	7	7.93 (3.65)	4.54	0.19 (–0.90 to 1.29)
Pohl, 2002	20	20	4.60 (0.60)	13.75	0.45 (–0.18 to 1.08)
Subtotal (95% CI)	26	27		18.29	0.39 (–0.16 to 0.93)

Test for heterogeneity: $\chi^2 = 0.16$, df = 1 ($p = 0.69$), $I^2 = 0$

Test for overall effect: $Z = 1.39$ ($p = 0.16$)

Total (95% CI) 144 147 100.00 0.28 (0.05 to 0.51)

Test for heterogeneity: $\chi^2 = 4.95$, df = 6 ($p = 0.55$), $I^2 = 0$

Test for overall effect: $Z = 2.34$ ($p = 0.02$)

FIGURE 16 Functional ambulation

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>Control</th>
<th>Estimate (SE)</th>
<th>(Estimate (fixed) (95% CI))</th>
<th>Weight</th>
<th>Estimate (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 RTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barreca, 2004</td>
<td>25</td>
<td>23</td>
<td>0.8715 (0.2812)</td>
<td>14.80 0.87 (0.32 to 1.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blennerhassett, 2004</td>
<td>15</td>
<td>15</td>
<td>0.7000 (0.3775)</td>
<td>8.21 0.70 (–0.04 to 1.44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean, 2000</td>
<td>5</td>
<td>4</td>
<td>0.5700 (0.6900)</td>
<td>2.46 0.57 (–0.78 to 1.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howe, 2005</td>
<td>15</td>
<td>15</td>
<td>0.2500 (0.3673)</td>
<td>8.67 0.25 (–0.47 to 0.97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langhammer, 2000</td>
<td>29</td>
<td>24</td>
<td>0.3000 (0.2800)</td>
<td>14.92 0.30 (–0.25 to 0.85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salbach, 2004</td>
<td>44</td>
<td>47</td>
<td>0.1600 (0.2091)</td>
<td>26.76 0.16 (–0.25 to 0.57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Vliet, 2005</td>
<td>42</td>
<td>43</td>
<td>0.3500 (0.2200)</td>
<td>24.18 0.35 (–0.08 to 0.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>175</td>
<td>171</td>
<td></td>
<td>100.00 0.39 (0.18 to 0.61)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 5.16$, df = 6 ($p = 0.52$), $I^2 = 0$

Test for overall effect: $Z = 3.65$ ($p = 0.0003$)

FIGURE 17 Sit-to-stand
statistically significant (standardised effect size 0.39, 95% CI 0.18 to 0.61).

Lower limb functional measures

Four trials (all RTT) recruiting 223 participants included a measure of lower limb function,\(^50,67,68,70\) with outcome data available for 79% (\(n = 177\)) (Figure 18). Effects across trials were homogeneous (\(I^2 = 0\%\)).

Results overall showed a small effect size, which was not statistically significant (SMD 0.20, 95% CI –0.10 to 0.50).

Standing balance and reach

Three trials (all RTT) recruiting 137 participants measured standing balance or functional reach,\(^51,76,78\) with outcome data available for 96% (\(n = 132\)) (Figure 19).

Effects across trials were homogeneous (\(I^2 = 0\%\)), showing a small effect size, which was not statistically significant (SMD 0.29, 95% CI –0.06 to 0.63).
Lower limb: follow-up

Under 6 months post-therapy

Six trials (four RTT67,76–78 and two TM87,89) recruiting 174 participants measured some aspect of lower limb function for retention effects between post-therapy and under 6 months post-therapy (Figure 20). Outcome data were available for 90% (n = 155). Effects across trials were homogeneous ($I^2 = 0\%$). Results showed a small to moderate effect size which was statistically significant (SMD 0.37, 95% CI 0.05 to 0.69).

Between 6 and 12 months post-therapy

Three RTT trials recruiting 211 participants measured some aspect of lower limb function for retention effects of RTT interventions between 6 and 12 months post-therapy (Figure 20).50,68,70 Outcome data were available for 80% (n = 170).

There was some degree of heterogeneity of treatment effects ($I^2 = 49.1\%$), although not sufficient to merit the use of a random-effects approach (and the small effect size precludes the need to perform a sensitivity analysis on the choice of analytic approach). Results showed no treatment effect (SMD –0.01, 95% CI –0.32 to 0.29).

Subgroup analyses: lower limb function

Subgroup analyses for lower limb interventions are based on trials providing measures of walking function (walking distance, walking speed or functional ambulation rating). Trials that only provide measures of standing balance/reach76 or sit-to-stand65,77 are therefore excluded. Subgroup analyses are presented for type, amount and timing of intervention, and to consider the impact of adequacy of allocation concealment.
and type of comparison group. There were insufficient trials providing additional therapy time or trials of fewer than 25 participants to undertake subgroup analyses. The classification of trials for each subgroup analysis is given in Appendix 6.

Type of intervention

Twelve trials (seven RTT, five TM) included a measure of walking ability (Figure 21). There was some heterogeneity of treatment effects within each subgroup, but not sufficient to merit the use of random-effects analysis.

There was no statistically significant difference between RTT and TM interventions ($p = 0.62$).

Dosage of task practice

Nine trials (five RTT, four TM) provided up to 20 hours’ training time and three trials (two RTT, one TM) provided more than 20 hours’ training time (Figure 22). There was substantial heterogeneity in the more than 20 hours’ practice subgroup ($I^2 = 59.4\%$), so a random-effects model was used. There was no statistically significant difference between subgroups ($p = 0.65$).

Time since stroke

Six trials (three RTT, three TM) recruited 0–6 months post-stroke and six trials (four RTT, two TM) recruited more than 6 months post-stroke (Figure 23). There was some heterogeneity of treatment effects in both subgroups, but not

![Table](image)

FIGURE 21 Subgroup analysis: type of intervention – lower limb trials

© Queen’s Printer and Controller of HMSO 2008. All rights reserved.
sufficient to merit a random-effects analysis. There was no significant difference between subgroups (p = 1.0).

Allocation concealment

Trials were grouped according to whether allocation concealment was judged adequate (eight trials: six RTT, two TM) or inadequate/unclear (four trials: one RTT, three TM) ([Figure 24](#)). There was heterogeneity within each subgroup, but insufficient to warrant using a random-effects meta-analysis. There was no statistically significant difference between subgroups (p = 0.51).

Post hoc analysis: type of comparison group

Six trials (two RTT, four TM) were classified as usual care or alternative treatment, and six trials (five RTT, one TM) as attention-control or no treatment ([Figure 25](#)). There was some

FIGURE 22 Subgroup analysis: dosage of task practice – lower limb trials
heterogeneity within each subgroup, but insufficient to warrant the use of a random-effects meta-analysis. The difference between subgroups was marginally non-significant ($p = 0.10$), with the estimated effect somewhat larger for the attention-control/no treatment subgroup.

Trial size

No trials of lower limb interventions had fewer than 25 participants, so subgroup analysis was not undertaken. The funnel plot in Figure 26 does not suggest reporting bias.

FIGURE 23 Subgroup analysis: time since stroke – lower limb trials
Results of the review

Review: Repetitive functional task practice (including RTT, CIMT, TM)
Comparison: 05 Subgroup analyses - lower limb
Outcome: 04 Allocation concealment

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>Control</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean (SD)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ada, 2003</td>
<td>11</td>
<td>0.75 (0.26)</td>
<td>14</td>
<td>0.56 (0.30)</td>
<td>4.60</td>
</tr>
<tr>
<td>Blennerhassett, 2004</td>
<td>15</td>
<td>494.00 (101.00)</td>
<td>15</td>
<td>288.00 (124.00)</td>
<td>5.20</td>
</tr>
<tr>
<td>Dean, 2000</td>
<td>5</td>
<td>80.20 (42.80)</td>
<td>4</td>
<td>88.40 (52.20)</td>
<td>1.75</td>
</tr>
<tr>
<td>Eich, 2004</td>
<td>25</td>
<td>0.71 (0.30)</td>
<td>25</td>
<td>0.60 (0.22)</td>
<td>9.69</td>
</tr>
<tr>
<td>Kwakkel, 1999</td>
<td>26</td>
<td>0.65 (0.46)</td>
<td>34</td>
<td>0.37 (0.41)</td>
<td>11.09</td>
</tr>
<tr>
<td>McClellan, 2004</td>
<td>12</td>
<td>4.30 (1.20)</td>
<td>9</td>
<td>4.70 (1.00)</td>
<td>4.01</td>
</tr>
<tr>
<td>Salbach, 2004</td>
<td>44</td>
<td>0.78 (0.40)</td>
<td>47</td>
<td>0.64 (0.37)</td>
<td>17.72</td>
</tr>
<tr>
<td>Van Vliet, 2005</td>
<td>42</td>
<td>–12.19 (9.05)</td>
<td>43</td>
<td>–11.75 (7.88)</td>
<td>16.85</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>180</td>
<td></td>
<td>191</td>
<td>70.92</td>
<td>0.33 (0.12 to 0.53)</td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 10.85$, df = 7 ($p = 0.15$), $I^2 = 35.5$
Test for overall effect: $Z = 3.09$ ($p = 0.002$)

Inadequate/unclear						
da Cunha, 2002	6	0.59 (0.29)	7	0.27 (0.23)	2.07	1.15 (–0.06, 2.36)
Langhammer, 2000	29	4.00 (1.60)	24	3.80 (2.00)	10.40	0.11 (–0.43, 0.65)
Macko, 2003	25	0.74 (0.30)	20	0.76 (0.36)	8.81	–0.06 (–0.65, 0.53)
Pohl, 2002	20	1.22 (0.74)	20	0.97 (0.64)	7.80	0.35 (–0.27, 0.98)
Subtotal (95% CI)	80		71		29.08	0.20 (–0.13, 0.52)

Test for heterogeneity: $\chi^2 = 3.45$, df = 3 ($p = 0.33$), $I^2 = 13.0$
Test for overall effect: $Z = 1.20$ ($p = 0.23$)

Total (95% CI) 260 | 262 | 100.00 | 0.29 (0.11 to 0.46)
Test for heterogeneity: $\chi^2 = 14.73$, df = 11 ($p = 0.20$), $R^2 = 25.3$
Test for overall effect: $Z = 3.25$ ($p = 0.001$)

FIGURE 24 Subgroup analysis: allocation concealment – lower limb trials
Review: Repetitive functional task practice (including RTT, CIMT, TM)
Comparison: 05 Subgroup analyses – lower limb
Outcome: 05 Comparison group

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>N</th>
<th>Mean (SD)</th>
<th>Control</th>
<th>N</th>
<th>Mean (SD)</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Usual care/alternative treatment</td>
<td>da Cunha, 2002</td>
<td>6</td>
<td>0.59 (0.29)</td>
<td>7</td>
<td>0.27 (0.23)</td>
<td>2.07</td>
<td>1.15 (–0.06 to 2.36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eich, 2004</td>
<td>25</td>
<td>0.71 (0.30)</td>
<td>25</td>
<td>0.60 (0.22)</td>
<td>9.69</td>
<td>0.41 (–0.15 to 0.97)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langhammer, 2000</td>
<td>29</td>
<td>4.00 (1.60)</td>
<td>24</td>
<td>3.80 (2.00)</td>
<td>10.40</td>
<td>0.11 (–0.43 to 0.65)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macko, 2005</td>
<td>25</td>
<td>0.74 (0.30)</td>
<td>20</td>
<td>0.76 (0.36)</td>
<td>8.81</td>
<td>–0.06 (–0.65 to 0.53)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pohl, 2002</td>
<td>20</td>
<td>1.22 (0.74)</td>
<td>20</td>
<td>0.97 (0.64)</td>
<td>7.80</td>
<td>0.35 (–0.27 to 0.98)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Vliet, 2005</td>
<td>42</td>
<td>–12.19 (9.05)</td>
<td>43</td>
<td>–11.75 (7.88)</td>
<td>16.85</td>
<td>–0.05 (–0.48 to 0.37)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>147</td>
<td></td>
<td></td>
<td>139</td>
<td></td>
<td></td>
<td>55.62</td>
<td>0.16 (–0.07 to 0.39)</td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 5.22, df = 5 (p = 0.39), I^2 = 4.3\%$
Test for overall effect: $Z = 1.34 (p = 0.18)$

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>N</th>
<th>Mean (SD)</th>
<th>Control</th>
<th>N</th>
<th>Mean (SD)</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 Attention control/no treatment</td>
<td>Ada, 2003</td>
<td>11</td>
<td>0.75 (0.26)</td>
<td>14</td>
<td>0.56 (0.30)</td>
<td>4.60</td>
<td>0.65 (–0.17 to 1.46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blennerhassett, 2004</td>
<td>15</td>
<td>404.00 (101.00)</td>
<td>15</td>
<td>288.00 (124.00)</td>
<td>5.20</td>
<td>1.00 (0.23 to 1.76)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean, 2000</td>
<td>5</td>
<td>80.20 (42.80)</td>
<td>4</td>
<td>88.40 (52.20)</td>
<td>1.75</td>
<td>–0.15 (–1.47 to 1.16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwakkel, 1999</td>
<td>26</td>
<td>0.65 (0.46)</td>
<td>34</td>
<td>0.37 (0.41)</td>
<td>11.09</td>
<td>0.64 (0.12 to 1.16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McClellan, 2004</td>
<td>12</td>
<td>4.30 (1.20)</td>
<td>9</td>
<td>4.70 (1.00)</td>
<td>4.01</td>
<td>–0.34 (–1.21 to 0.53)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salbach, 2004</td>
<td>44</td>
<td>0.78 (0.40)</td>
<td>47</td>
<td>0.64 (0.37)</td>
<td>17.72</td>
<td>0.36 (–0.05 to 0.78)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>113</td>
<td></td>
<td></td>
<td>123</td>
<td></td>
<td></td>
<td>44.38</td>
<td>0.45 (0.19 to 0.71)</td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 6.86, df = 5 (p = 0.39), I^2 = 27.1\%$
Test for overall effect: $Z = 3.37 (p = 0.0007)$

Total (95% CI) | 260 | 262 | 100.00 | 0.29 (0.11 to 0.46)

Test for heterogeneity: $\chi^2 = 14.73, df = 11 (p = 0.20), I^2 = 25.3\%$
Test for overall effect: $Z = 3.25 (p = 0.001)$

FIGURE 25 Subgroup analysis: type of comparison group – lower limb trials

FIGURE 26 Funnel plot of precision versus effect size – lower limb trials
Global motor function

Two RTT trials\(^{68,70}\) recruiting 181 participants measured global motor function (Figure 27). Outcome data were available for 76% \((n = 138)\). Three TM trials\(^{63,88,89}\) recruiting 105 participants measured global motor function. Data were not suitable for pooling from two trials.\(^{63,89}\) Standard deviations were not given for one trial.\(^{63}\) One trial\(^{89}\) showed no significant difference in RMA score for gross functions, but provided median and IQR scores only: experimental group median 11 (IQR 11–11), control group median 11 (IQR 10–11).

The trials with outcome data suitable for pooling showed a small to moderate effect size which was statistically significant (SMD 0.38, 95% CI 0.09 to 0.68).

Overall summary analysis

The primary analysis requires an overall estimate of the effect of RFTP on functional outcome (Figure 28). To gain an overall measure of RFTP as a preliminary basis for the economic analysis, a summary plot was constructed, with subcategories for the different intervention types. Some RTT trials included both upper and lower limb intervention–control pairs. To avoid their being included twice, the lower limb intervention–control group was chosen, as it is known that lower limb treatment effects are more likely. By privileging lower limb outcomes, this would have the effect of providing a slightly inflated overall effect size.

Twenty-six intervention–control pairs with 876 participants provided data suitable for pooling, with outcome data available for 88% \((n = 775)\). Figure 28 shows that the overall treatment effect of RFTP (with selection of lower limb functional outcomes in studies with multiple intervention–control pairs, or in studies with both upper and lower limb intervention) was small to moderate and statistically significant (SMD 0.34, 95% CI 0.19 to 0.48).

If selection is based on upper limb functional outcomes from trials with multiple intervention–control pairs, or in studies with both upper and lower limb intervention, the results are small and statistically significant (SMD 0.26, 95% CI 0.12 to 0.41), indicating that the findings are not particularly sensitive to the choice of lower limb rather than upper limb outcomes.

FIGURE 27 Global motor function

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>Control</th>
<th>SMD (fixed)</th>
<th>Weight (%)</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (Mean (SD))</td>
<td>N (Mean (SD))</td>
<td>(95% CI)</td>
<td>(%)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>01 RTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langhammer, 2000(^{68})</td>
<td>29 (37.00 (12.00))</td>
<td>24 (33.00 (15.00))</td>
<td>0.39 (–0.81 to, 1.58)</td>
<td>29.14</td>
<td>0.29 (–0.25 to, 0.84)</td>
</tr>
<tr>
<td>Van Vliet, 2005(^{70})</td>
<td>42 (7.85 (3.17))</td>
<td>43 (6.69 (3.52))</td>
<td>0.14 (–0.73 to 0.96)</td>
<td>27.30</td>
<td>0.96 (–0.08 to 0.77)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>71</td>
<td>67</td>
<td>0.32 (–0.01 to 0.66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: (\chi^2 = 0.02, df = 1 (p = 0.89), I^2 = 0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: (Z = 1.89 (p = 0.06))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 TM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macko, 2005(^{88})</td>
<td>25 (12.00 (0.30))</td>
<td>20 (11.80 (0.40))</td>
<td>0.37 (–0.13 to, 0.40)</td>
<td>23.90</td>
<td>0.57 (–0.04 to 1.17)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>25</td>
<td>20</td>
<td>0.57 (–0.04 to 1.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: (Z = 1.84 (p = 0.07))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>96</td>
<td>87</td>
<td>0.38 (0.09 to 0.68)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: (\chi^2 = 0.49, df = 2 (p = 0.78), I^2 = 0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: (Z = 2.55 (p = 0.01))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Review: Repetitive functional task practice (including RTT, CIMT, TM)

Comparison: 07 Summary analysis RFTP

Outcome: 01 Functional outcomes (inc. lower limb)

Study or subcategory

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td>(95% CI)</td>
<td></td>
<td>(95% CI)</td>
</tr>
</tbody>
</table>

01 Upper limb RTT

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Mean (SD)</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turton, 1990</td>
<td>12</td>
<td>13.83 (6.00)</td>
<td>2.95</td>
<td>0.23 (–0.61 to 1.07)</td>
<td></td>
</tr>
<tr>
<td>Winstein, 2004</td>
<td>20</td>
<td>9.58 (5.70)</td>
<td>5.45</td>
<td>0.02 (–0.60 to 0.64)</td>
<td></td>
</tr>
<tr>
<td>Yen, 2005</td>
<td>13</td>
<td>–2.57 (0.93)</td>
<td>3.94</td>
<td>0.36 (–0.37 to 1.09)</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal (95% CI): 12.33 (0.18 (–0.23 to 0.59))

Test for heterogeneity: $\chi^2 = 0.52$, df = 2 ($p = 0.77$), $I^2 = 0$

Test for overall effect: $Z = 0.85$ ($p = 0.39$)

02 Upper limb CIMT

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Mean (SD)</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberts, 2004</td>
<td>5</td>
<td>–28.89 (24.80)</td>
<td>1.35</td>
<td>–0.16 (–1.40 to 1.08)</td>
<td></td>
</tr>
<tr>
<td>Atteya, 2004</td>
<td>2</td>
<td>52.00 (6.00)</td>
<td>0.54</td>
<td>0.03 (–1.94 to 2.00)</td>
<td></td>
</tr>
<tr>
<td>Boake, 2006</td>
<td>9</td>
<td>0.08 (0.06)</td>
<td>2.04</td>
<td>0.55 (–0.47 to 1.56)</td>
<td></td>
</tr>
<tr>
<td>Dromerick, 2000</td>
<td>11</td>
<td>52.80 (5.90)</td>
<td>2.37</td>
<td>0.95 (0.01 to 2.25)</td>
<td></td>
</tr>
<tr>
<td>Page, 2001</td>
<td>2</td>
<td>53.00 (6.00)</td>
<td>0.47</td>
<td>0.14 (–1.97 to 2.25)</td>
<td></td>
</tr>
<tr>
<td>Page, 2005</td>
<td>5</td>
<td>49.80 (3.27)</td>
<td>0.36</td>
<td>3.70 (0.27 to 6.12)</td>
<td></td>
</tr>
<tr>
<td>Taub, 1993</td>
<td>4</td>
<td>8.10 (0.42)</td>
<td>0.71</td>
<td>1.79 (0.07 to 3.50)</td>
<td></td>
</tr>
<tr>
<td>Wittenberg, 2003</td>
<td>9</td>
<td>7.54 (2.04)</td>
<td>0.20</td>
<td>0.67 (–0.35 to 1.69)</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal (95% CI): 9.84 (0.73 (0.27 to 1.19))

Test for heterogeneity: $\chi^2 = 10.33$, df = 7 ($p = 0.17$), $I^2 = 32.2$

Test for overall effect: $Z = 3.09$ ($p = 0.002$)

03 Lower limb RTT

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Mean (SD)</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blennerhassett, 2004</td>
<td>15</td>
<td>404.00 (101.00)</td>
<td>3.57</td>
<td>1.00 (0.23 to 1.76)</td>
<td></td>
</tr>
<tr>
<td>Dean, 2000</td>
<td>5</td>
<td>80.20 (42.80)</td>
<td>1.20</td>
<td>–0.15 (–1.47 to 1.16)</td>
<td></td>
</tr>
<tr>
<td>Kwakkel, 1999</td>
<td>26</td>
<td>0.65 (0.46)</td>
<td>7.62</td>
<td>0.64 (0.12 to 1.16)</td>
<td></td>
</tr>
<tr>
<td>Langhammer, 2000</td>
<td>29</td>
<td>4.00 (1.60)</td>
<td>7.14</td>
<td>0.11 (–0.43 to 0.65)</td>
<td></td>
</tr>
<tr>
<td>McClellan, 2004</td>
<td>12</td>
<td>4.30 (1.20)</td>
<td>2.75</td>
<td>–0.34 (–1.21 to 0.53)</td>
<td></td>
</tr>
<tr>
<td>McClellan, 2004</td>
<td>44</td>
<td>0.78 (0.40)</td>
<td>12.17</td>
<td>0.36 (–0.05 to 0.78)</td>
<td></td>
</tr>
<tr>
<td>Salbach, 2004</td>
<td>42</td>
<td>–12.19 (9.05)</td>
<td>11.57</td>
<td>–0.05 (–0.48 to 0.37)</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal (95% CI): 46.02 (0.26 (0.05 to 0.47))

Test for heterogeneity: $\chi^2 = 10.38$, df = 6 ($p = 0.11$), $I^2 = 42.2$

Test for overall effect: $Z = 2.37$ ($p = 0.02$)

04 Lower limb TM

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Mean (SD)</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada, 2003</td>
<td>11</td>
<td>0.75 (0.26)</td>
<td>3.16</td>
<td>0.65 (–0.17 to 1.46)</td>
<td></td>
</tr>
<tr>
<td>da Cunha, 2002</td>
<td>6</td>
<td>0.59 (0.29)</td>
<td>1.42</td>
<td>1.15 (–0.06 to 2.36)</td>
<td></td>
</tr>
<tr>
<td>Eich, 2004</td>
<td>25</td>
<td>0.71 (0.30)</td>
<td>6.65</td>
<td>0.41 (–0.15 to 0.97)</td>
<td></td>
</tr>
<tr>
<td>Macko, 2005</td>
<td>25</td>
<td>0.74 (0.30)</td>
<td>6.05</td>
<td>–0.06 (–0.65 to 0.53)</td>
<td></td>
</tr>
<tr>
<td>Pohl, 2002</td>
<td>20</td>
<td>1.22 (0.74)</td>
<td>5.35</td>
<td>0.35 (–0.27 to 0.98)</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal (95% CI): 22.64 (0.35 (0.05 to 0.66))

Test for heterogeneity: $\chi^2 = 4.10$, df = 4 ($p = 0.39$), $I^2 = 2.5$

Test for overall effect: $Z = 2.27$ ($p = 0.02$)

05 Sitting and standing balance RTT

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Mean (SD)</th>
<th>SMD (fixed) (95% CI)</th>
<th>Weight (%)</th>
<th>SMD (fixed) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Seze, 2001</td>
<td>10</td>
<td>3.30 (0.80)</td>
<td>2.67</td>
<td>0.36 (–0.53 to 1.24)</td>
<td></td>
</tr>
<tr>
<td>Dean, 1995</td>
<td>10</td>
<td>12.00 (0.95)</td>
<td>2.08</td>
<td>1.24 (0.23 to 2.24)</td>
<td></td>
</tr>
<tr>
<td>Howe, 2005</td>
<td>15</td>
<td>–1.90 (0.80)</td>
<td>4.41</td>
<td>0.26 (–0.43 to 0.95)</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal (95% CI): 9.16 (0.51 (0.03 to 0.99))

Test for heterogeneity: $\chi^2 = 2.63$, df = 2 ($p = 0.27$), $I^2 = 23.9$

Test for overall effect: $Z = 2.10$ ($p = 0.04$)

Total (95% CI): 387 (100.00 (0.19 to 0.48))

Test for heterogeneity: $\chi^2 = 32.31$, df = 25 ($p = 0.15$), $I^2 = 22.6$

Test for overall effect: $Z = 4.59$ ($p < 0.00001$)

FIGURE 28 Overall impact of all forms of RFTP on functional outcome

© Queen’s Printer and Controller of HMSO 2008. All rights reserved.
Secondary outcomes

ADL function

Five RTT trials with seven intervention–control pairs\(^51\),\(^53\),\(^68\),\(^70\),\(^76\) and recruiting a total of 399 people used a measure of ADL, with data available for 81% (\(n = 325\)) (Figure 29). One CIMT trial\(^81\) recruiting 23 participants used a measure of ADL, with data available for 87% (\(n = 20\)). No TM trials included ADL data. For RFTP overall, six trials recruiting 422 participants included a measure of ADL, with outcome data available for 82% (\(n = 345\)).

Results showed a small statistically significant effect size (SMD 0.30, 95% CI 0.09 to 0.52).

Adverse effects

One RTT trial of sit-to-stand training\(^65\) presented data for the number of falls: intervention group 3/25 (12%) versus control group 4/23 (17.4%), (odds ratio 0.65, 95% CI 0.13 to 3.27). No other trials presented data for adverse events, but two trials narratively reported no adverse effects.\(^76\),\(^78\) In one trial,\(^51\) intervention-related reasons for withdrawal that could be interpreted as adverse events included one person out of 47 in a mobility-training group who experienced the onset of groin pain. Four participants also fell during the mobility intervention, but did not suffer injury and continued to participate in the group. Two falls also occurred during evaluation. No other trials reported intervention-related reasons for withdrawal.

Eight CIMT trials did not mention adverse events,\(^61\),\(^62\),\(^64\),\(^74\),\(^79\),\(^80\),\(^82\),\(^83\) although four of these trials stated that participants were highly satisfied with the protocol.\(^61\),\(^79\),\(^80\),\(^82\) A further two trials stated there were no adverse events,\(^81\),\(^84\) with one trial author commenting further that there was no

FIGURE 29 ADL function

<table>
<thead>
<tr>
<th>Study or subcategory</th>
<th>Treatment</th>
<th>Control</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight (%)</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 RTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Sèze, 2001(^76)</td>
<td>10</td>
<td>10</td>
<td>5.98 (–0.17 to 0.70)</td>
<td>95% CI</td>
<td>95% CI</td>
</tr>
<tr>
<td>Kwakkel, 1999(^53)</td>
<td>54</td>
<td>34</td>
<td>23.67 (0.25 to 1.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langhammer, 2000(^68)</td>
<td>29</td>
<td>24</td>
<td>15.51 (–0.18 to 0.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salbach, 2004(^51)</td>
<td>40</td>
<td>39</td>
<td>14.78 (0.20 to 0.64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Vliet, 2005(^70)</td>
<td>42</td>
<td>43</td>
<td>25.53 (0.06 to 0.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>175</td>
<td>150</td>
<td>94.31 (0.29 to 0.51)</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: (\chi^2 = 5.69, df = 4 (p = 0.22), I^2 = 29.7%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: (Z = 2.56 (p = 0.01))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 TM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 CIMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dromerick, 2000(^81)</td>
<td>11</td>
<td>9</td>
<td>5.69 (0.54 to 1.44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>11</td>
<td>9</td>
<td>5.69 (0.54 to 1.44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: (Z = 1.18 (p = 0.24))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>186</td>
<td>159</td>
<td>100.00 (0.30 to 0.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: (\chi^2 = 5.98, df = 5 (p = 0.31), I^2 = 16.3%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: (Z = 2.77 (p = 0.006))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In one trial, the first three participants to receive restraint reported stiffness and discomfort on the involved side half-way through the 2-week treatment period. These effects were associated with overuse of the affected limb and led to modification of the intervention protocol for the fourth participant, with motor demands increasing more slowly. The fourth participant reported no muscle soreness. There were no intervention-related reasons for withdrawal in any CIMT or mCIMT trial. Of the six TM trials, three reported that there were no adverse events. There are no reports of adverse events in three trials. None of the trials reported intervention-related reasons for withdrawal that could be interpreted as adverse events.

Sensitivity analysis

A sensitivity analysis was undertaken to evaluate the effect on upper limb outcomes of including cross-over and quasi-randomised trials, finding no substantive difference between including (SMD 0.24, 95% CI 0.06 to 0.42) and not including (SMD 0.24, 95% CI 0.05 to 0.43) these trials. A sensitivity analysis was also undertaken on lower limb trials to evaluate the effect of excluding studies with more than 20% loss to follow-up (only one upper limb trial had loss to follow-up of greater than 20%). The effect of RFTP was significantly greater ($p = 0.02$) for trials with loss to follow-up of 20% or less (SMD 0.42, 95% CI 0.22 to 0.63) than for trials with more than 20% loss to follow-up (SMD –0.06, 95% CI –0.39 to 0.27).
Background

The systematic review identified studies that will potentially alter patient outcomes by using RTT. There were three forms of therapy that had RTT as a major component: RTT, CIMT, and TM. The therapies will subsequently be referred to as RFTP. The economic modelling reported below was designed to determine whether RFTP is cost-effective.

Study question

From the perspective of the NHS, is RFTP for stroke (in addition to usual care) cost-effective over 3 years as judged by the incremental cost per quality-adjusted life-year (QALY) gained?

Perspective

The analyses performed took the perspective of the NHS and Personal Social Services (PSS). The cost of stroke tends to be higher in the acute stage owing to the inpatient cost. Once a patient is discharged from hospital, some of the costs will be borne by the NHS through provision of therapy and aids, and some will be borne by PSS through provision of support services. RFTP would take place after the acute stage of treatment and hence will have no effect on these costs; therefore they are not considered in this analysis.

Current treatment

At present, the amount of physical therapy input to post-stroke patients varies widely. In hospital, most patients receive physiotherapy and occupational therapy. Once their care is transferred into the community, the provision of therapies is much less structured. This means that it is difficult to define a standard package of physical therapy after stroke. For this analysis usual care was based on observations of a cohort of patients treated in the NHS over time with the amount of physical therapy varying between patients. For the cost analysis the alternative treatments compared here are usual care and usual care plus RFTP.

Methods

Form of evaluation

A cost–utility approach was adopted, assessing gains in QALYs. The authors believe this to be the most meaningful outcome measure on which to base the economic evaluation. The nature of RFTP means that it will not directly prevent death, excluding a cost-effectiveness analysis of life-years gained. An alternative would be to express the effects of RFTP in terms of a change in units of some measure of function; however, the authors believe that this would be generally less meaningful than identifying a cost per QALY gained. The modelling is based over a 3-year period.

Choice of RFTP intervention

The economic analysis is based around the three forms of therapy described in the systematic review: RTT, CIMT and TM.

Measures of benefit

The health outcome summary measure is the number of QALYs gained. A health outcome was needed that could be used across the three forms of therapy described.

The patient data set

The patient data set used for the modelling is a longitudinal data set that contains follow-up data for a cohort of 539 stroke patients, consecutively identified over a 6-month period in 1996, on stroke registers in two hospitals. Data were collected on admission, at discharge, and at 3 and 6 months, and subsequently 1, 2, and 3 years post-stroke. The data collected in hospital included admission and discharge dates, basic demographics, stroke characteristics and scan results. At each follow-up time patient status (alive or dead) was identified, and data were collected regarding residence, function, social service input, therapy input and aids provided. These patients received usual stroke care and their 3-year data were used as the baseline from which to judge the potential impact of RFTP. The baseline characteristics of these patients can be seen in Appendix 7. The characteristics of the data set compare favourably with the characteristics of the patients in the included studies.

Assumptions about health outcomes

The Barthel Activities of Daily Living Index (BI) at 3 years post-stroke was used to define outcome groups, which represented a range of disability...
levels, and such that there were similar numbers in each group. The choice of the BI was based on its widespread usage as a global outcome in stroke research and because it had been mapped onto the EuroQol-5 Dimensions (EQ-5D). The BI is a ten-item scale ranging from 0 (dependent on others for ADLs) to 20 (independent of others for ADLs); the items measured include mobility, transfers, grooming and feeding. The number of patients in each Barthel category was 28 (BI ≤ 10); 34 (BI = 11–14); 33 (BI = 15–17), 25 (BI = 18 or 19) and 30 (BI = 20).

Efficacy of RFTP
A range of different outcome measures was used in the systematic review. For each outcome the effectiveness of RFTP was expressed as the SMD with associated 95% CI. The exception to this was for walking distance, which was expressed as WMD. However, for the economic analysis, the SMD will be used. In the economic analysis the focus was on those outcomes that showed a significant benefit of RFTP and where there were at least 250 patients in the analysis of efficacy, because the estimates based on such a sample size would be more robust. However, walking speed was not included in the economic analysis because it was felt that walking distance was the more meaningful of these two outcomes. To determine the potential impact of RFTP, it was necessary to estimate how a change in the SMD would equate to a change on the BI. It was estimated that a change in the SMD of 0.2 was equivalent to a change in 1 point on the BI. This was based on the following assumption: SMD = (treatment mean – control mean)/SD; a ‘typical SD’ for the BI in a rehabilitation stroke population might be 5 units; therefore, an SMD of 0.2 would be 1 Barthel unit.

Patient values preferences
A study was identified that examined the association between the BI and the EQ-5D. Although this study was based in The Netherlands, the characteristics of the patients included in the study are similar to the characteristics of those in the present patient data set (at 6 months). The study suggested that 1 point on the BI was equivalent to 0.05 of a QALY.

Cost
The cost estimates reflect 2005/06 prices. Direct costs have been used, valued from an NHS public-sector perspective. The majority of the costs were obtained from national figures. The exception to this was the cost for aids, which were obtained from an NHS loan store. The assumptions made about the costs for the RFTP studies are detailed below.

Assumptions about costing

Patient data set
The analysis focused on the costs that were likely to be influenced by RFTP, which included the cost of services, therapy and aids post-discharge. Costs were estimated from the following inputs: home care, meals on wheels, chiropody, physiotherapy, occupational therapy, day centre, day hospital, wheelchair, walking frame, walking stick, toilet seat raiser, chair raiser, bed raiser, toilet frame, trolley and shopping trolley. The costs that were not included were GP attendance, readmission to hospital, clinic attendance or medication. Also excluded were hospital costs for the index stroke and subsequent hotel costs for residence in institutions. Although RFTP is likely to promote independence in everyday activities, it is unlikely that it would prevent admission to institutions. Moreover, there was some concern that high hotel costs of institutions, or even readmissions to hospital, would unduly influence the model and the authors wished to adopt a conservative approach to the estimates of cost-effectiveness.

RFTP studies
The RFTP studies included in the review exhibited some diversity in when and where they were performed; some were more than 10 years old and many were not based in the UK. To estimate the costs of such studies, an assumption was made that they could be performed in a similar manner in the UK. In addition, although the studies reported on how much therapy was provided, there were no data on the impact of the training on subsequent resource use. Therefore, it was assumed that the RFTP training did not result in additional costs owing to readmission or clinic attendance, caused by patients’ conditions worsening.

Because of the diverse nature of studies and the data reported therein, a somewhat pragmatic approach to costing methodology was taken. It was assumed that for all studies the therapy staff cost was £40 per hour and that as well as the cost of providing the therapy there would be an additional 20 hours of staff training per study. The lack of CIMT data from the UK meant that an estimate of the cost of CIMT equipment had to be made, of £100 per patient. The TM studies used a cost of £25,000 for the equipment plus an additional £1500 for installation. Within the RTT studies there were miscellaneous costs for which the following cost estimates were made: Bon Saint Côme trunk control and retraining device £1000, videotaped instructions and telephone contacts £500, and instruction booklets £600. In one study a Kinetron machine was used in one
workstation out of ten. The original cost of this machine was approximately £32,000. Because this device is no longer manufactured and it contributed only a small part to the RTT input, a cost of £1000 was attributed to this device. For all equipment the one-off cost of purchase was used and no assumptions were made about the lifetime of the equipment or how often it was used.

For each trial an average cost per patient was calculated based on staff time, equipment used and number of patients randomised into the trial. Subsequently, an average cost per therapy (i.e. RTT, CIMT and TM) was calculated based on the average cost for each trial and the number of trials that contributed to that therapy modality. From this calculation the estimated average cost per patient for the individual therapies was £651 for RTT, £1773 for CIMT and £1870 for TM. Further estimates were then made of the average cost per patient for combinations of therapy. To make the calculation for combinations of therapy, an average cost for all trials in the relevant therapy modalities was estimated. This resulted in an average cost per patient of £1126 for RTT and CIMT combined, and £999 for RTT and TM combined. The overall average cost per person of RFTP (i.e. RTT, CIMT and TM combined) for the base model was estimated to be £1265.

Where outcome measures reflected all forms of therapy (overall effect), the cost of the intervention was taken from the overall average cost of RFTP. Where outcome measures reflected therapy focusing on the upper limb (arm function and ADL), the cost of the intervention was taken from the average cost of RTT and CIMT: Where outcome measures reflected therapy focusing on the lower limb (walking distance, functional ambulation and sit-to-stand), the cost of the intervention was taken from the average cost of RTT and TM.

The model

Groups were identified, based on the BI at 3 years as described above. For each group the 3-year cost was estimated: the baseline cost in this analysis. It was then assumed that for an SMD of 0.2, there would be a 1-point increase per patient on the BI, that the BI scores were evenly distributed within the groups and that the effect would be maintained over 3 years. Using this assumption, the number of patients in each of the Barthel groups was re-estimated. A new (3-year) cost was then calculated based on the new numbers in each of the groups. The difference between the baseline cost and the new cost was considered to represent the impact of RFTP on cost. An average cost per patient, reflecting the potential cost saving of RFTP, was subsequently calculated, as £47,523/150 = £316.82 (Appendix 8).

Adjustment for timing of costs and benefits

For the base model the cost-utility of RFTP over 3 years was assessed, and costs and effects were discounted at an annual rate of 3.5%.

Allowances for uncertainty

Several sensitivity analyses were performed to explore the impact of varying certain parameters on the base model:

- RFTP efficacy
- association between the SMD and the BI
- association between the BI and the EQ-5D
- cost of therapy
- discount rates.

The relationship between the cost of RFTP per patient and the cost per QALY was also explored.

Results

From the systematic review, the overall effect size for RFTP was SMD 0.34 (95% CI 0.19 to 0.48). The following outcomes were based on studies where the combined sample size was more than 250 patients, and revealed a significant effect of RFTP:

- arm function: SMD 0.24 (95% CI 0.06 to 0.42)
- ADL: SMD 0.30 (95% CI 0.09 to 0.52)
- walking distance: SMD 0.45 (95% CI 0.20 to 0.70)
- functional ambulation: SMD 0.28 (95% CI 0.05 to 0.51)
- sit-to-stand: SMD 0.39 (95% CI 0.18 to 0.61).

The effect sizes for the five outcomes are based on RTT plus one of either CIMT or TM. For arm function there was heterogeneity of effect between RTT, which was non significant (SMD 0.17, 95% CI –0.03 to 0.36) and CIMT, which was significant (SMD 0.77, 95% CI 0.26 to 1.29). However, the estimates of cost-effectiveness will use the combined effect size.

Cost-effectiveness at 3 years

In the base-case analysis using the overall effect size, the incremental cost-effectiveness ratio...
(ICER) of RFTP was £10,870. Considering the efficacy and cost data for the outcome of arm function, the cost per QALY gained was £15,185 and when focusing on the efficacy and cost data for ADLs the cost per QALY gained was £11,009. Based on efficacy and cost data for walking distance the cost per QALY gained was £4187, and for functional ambulation and sit-to-stand the cost per QALY gained was £10,187 and £5708, respectively. An intervention with an ICER of less than £20,000 is considered cost-effective138 (although interventions with an ICER of up to £30,000 may be considered cost-effective). Therefore, for all outcomes listed, the base analysis suggests that RFTP is cost-effective. Moreover, for walking distance and sit-to-stand, when the ICER was calculated using the lower limit of effectiveness from the 95% CI, both of the ICER values were less than £20,000 (Appendix 9; Analysis 1).

Varying the association between the SMD and the BI
If a unit change of the SMD was related to a smaller change on the BI, the cost per QALY gained increases for all outcome measures. In the base case the ratio of SMD to BI is 1:5. Even if this ratio is changed to 1:4, the ICER remains below £20,000 per QALY gained for all outcomes except for arm function (£20,405). Sit-to-stand remains cost-effective at a ratio of 1:3 and walking distance remains cost-effective at a ratio of 1:2 (Appendix 9; Analysis 2).

Varying the association between the BI and the EQ-5D
If a unit change on the BI is associated with a smaller change in the EQ-5D the ICER increases for all outcome measures. If a change in 1 point on the BI is equivalent to only 0.04 of a QALY, all outcomes continue to suggest that RFTP is cost effective (Appendix 9; Analysis 3).

Varying therapy cost
RFTP remains cost-effective on all outcomes except for arm function if the cost of therapy per hour is increased to £60. However, RFTP is marginally cost-effective for arm function if the cost of therapy rises to £50 per hour (Appendix 9; Analysis 4).

Varying discount rate (cost)
If the discount rate for costs is reduced from 3.5% to 0% then the ICER is reduced to £10,228 for the overall outcome and, for example, £3545 for walking distance and £14,543 for arm function. If the discount rate for cost is increased from 3.5% to 6%, RFTP is cost-effective on all outcomes (Appendix 9; Analysis 5).

Varying discount rate (outcome)
If outcome is not discounted then the ICER is reduced to £9191 for the overall outcome and, for example, £3186 for walking distance and £13,068 for arm function. Even if the discount rate is increased to 6%, RFTP is cost-effective on all outcomes (Appendix 9; Analysis 6).
Association between cost of RFTP and cost per QALY gained

The base costs were used to calculate how a change in the cost of RFTP per patient affects the ICER per QALY gained. At an ICER of £20,000 per QALY gained, the average cost of RFTP per patient is £1963, which approximates to 49 hours’ contact per patient, excluding equipment costs (Figure 30).
Chapter 6
Discussion

Summary of main results

Upper limb function/sitting balance
In total, 19 RFTP trials with 634 participants measured arm or hand function. Eight were RTT trials with 467 participants. Of these, two trials were whole therapy approaches,68,70 two trials were circuit-training approaches,50,52 three trials were functional task practice mixed in with other forms of upper limb exercise,53,69,71 and one trial was the intensive practice component of constraint-induced movement therapy, without the constraint.72 All of these interventions were delivered by a therapist, except for one trial, which consisted of self-initiated practice in the home environment, using a booklet of exercises, after instruction by a therapist.69 Of the upper limb training trials, all but two52,72 were carried out 0–6 months post-stroke. Five trials had a total training time of 20 hours or less,50,52,68,70,71 and three trials provided more than 20 hours’ total training time.53,69,72 In two of the trials training time was additional.69,71 All eight trials with eight intervention–control pairs relevant to this review provided data suitable for pooling.

Eleven of the 19 trials measuring arm or hand function were CIMT trials with 190 participants. Of these, five trials were of constraint-induced therapy,64,73,74,83,84 and six trials were of modified constraint-induced therapy.61,62,79–81,139 All of the interventions were delivered by a therapist, in one-to-one therapy. Three trials recruited within 14 days post-stroke,81,82,84 four trials recruited between 15 days and 6 months post-stroke,61,79,80,85 and four trials recruited after more than 6 months post-stroke.64,73,74,139 All but two trials81,82 had a total training time of over 20 hours, with the majority providing between 30 and 60 hours’ training. In four trials, training time was additional to the amount of training time provided to the comparison group,74,79,80,82 while in one trial it was unclear whether training time between experimental and comparison groups was equivalent.73 Eight CIMT trials including 151 participants in eight intervention–control pairs relevant to this review provided data suitable for pooling. Pooled results show evidence of a small effect (SMD 0.24, 95% CI 0.06 to 0.42).

Seven RFTP trials with 357 participants measured hand function. There was no statistically significant pooled effect (SMD 0.19, 95% CI –0.03 to 0.42).

Five trials (all RTT) with 256 participants measured sitting balance/reach from sitting.66,68,70,76,77 Of these, two trials were whole therapy approaches,68,70 while the other three trials specifically trained sitting balance or reach from sitting. All of the interventions were carried out in the 0–6-month post-stroke period and were delivered by a therapist in a hospital setting, except for one trial where the intervention was carried out at home, with people more than 6 months post-stroke.66 All of the interventions were 20 hours’ training or less. There was no evidence for impact on sitting balance/reach (SMD 0.23, 95% CI –0.05 to 0.50).

Results at follow-up for all upper limb trials to 6 months post-therapy were moderate and statistically significant (SMD 0.55, 95% CI 0.06 to 1.04). Evidence for a retention effect at more than 6 months post-therapy was unclear (SMD –0.02 to 95% CI –0.31 to 0.26), as it was noted that the trials with 6–12-month follow-up also showed little or no effect post-treatment.

Treatment effects for upper limb interventions were not modified by amount/dosage of task practice or time since stroke, but were modified by type of intervention, with RTT showing a small effect size just failing to reach significance (SMD 0.17, 95% CI –0.03 to 0.36), and CIMT showing a large, statistically significant effect (SMD 0.77, 95% CI 0.26 to 1.29). However, tests for the effect of quality of allocation concealment and trial size were also significant, with all of the CIMT trials in both the inadequate/unclear allocation concealment subgroup and the small trials subgroup. This suggests that the results for CIMT trials could be influenced by quality issues and reporting bias.

Lower limb function/standing balance
Seventeen RFTP trials with 747 participants measured some aspect of lower limb function or standing balance/reach. Eleven were RTT trials with 531 participants. Of these, one trial...
specifically trained sit-to-stand movements,65 three trials trained balance,66,76,77 two trials were whole therapy approaches,68,70 three trials were circuit-training approaches,50,51,67 and two trials were lower limb task practice mixed in with other forms of mobility exercise.53,78 All interventions were delivered by a therapist in a hospital or community setting, except for one trial, which was a home mobility programme, where the participant followed videotaped exercise with therapist telephone contact and follow-up.78 Three of the interventions were carried out more than 6 months post-stroke.51,67,78 Two trials included more than 20 hours’ total practice time.53,78 All 11 trials had data suitable for pooling. Six of the 17 trials were TM trials with 229 participants. Of these, two trials were of unsupported TM87,88 and four trials were of bodyweight supported TM.63,85,86,89 All interventions were delivered by a therapist in a hospital setting. Two interventions were carried out more than 6 months post-stroke.87,88 Only one of the trials included more than 20 hours’ training time.88 Five trials with 199 participants provided data suitable for pooling.

Results show large statistically significant effects for walking distance (WMD 50.05 m, 95% CI 29.65 to 70.44 m; SMD 0.98, 95% CI 0.58 to 1.39). In effect, participants in the experimental groups could walk on average 50 m further in 6 minutes than the control groups. However, there was some heterogeneity of treatment effects for walking distance. There were also small statistically significant effects for walking speed (SMD 0.28, 95% CI 0.09 to 0.47) and functional ambulation (SMD 0.28, 95% CI 0.05 to 0.51). Trials of RTT showed a small to moderate effect on sit-to-stand (standardised effect size 0.39, 95% CI 0.18 to 0.61), but no evidence of effect on lower limb function measures (SMD 0.20, 95% CI –0.10 to 0.50) or standing balance/reach (SMD 0.29, 95% CI –0.06 to 0.63).

Retention effects on lower limbs were small to moderate and statistically significant up to 6 months post-therapy (SMD 0.37, 95% CI 0.05 to 0.69), but there was no evidence of an effect at later than 6 months (SMD –0.01, 95% CI –0.32 to 0.29). This difference in retention effects was borderline statistically significant (p = 0.09). However, few trials had long follow-up and those that did tended to show little or no effect post-treatment. Findings are also quite heterogeneous, which suggests that they are inconclusive.

Treatment effects were not modified by amount of task practice, time since stroke or type of intervention. Tests for the effect of quality of allocation concealment were not statistically significant. However, trials with high (>20%) loss to follow-up showed a significantly lower effect of RFTP than did trials with lower (≤20%) loss. This is an indication that any bias due to very high dropout is not in favour of RTT, although it would be important in future trials to try to characterise dropouts and attempt to determine their effect on the effectiveness of RFTP. There was some indication that treatment effects might be modified by type of comparison group (p = 0.10), with usual care or alternative treatment comparisons showing a smaller treatment effect than attention-control or no-treatment comparisons. This suggests that type of comparison group should be taken into consideration in future analyses.

Global motor function
Two RTT trials68,70 and one TM trial with data suitable for pooling88 recruiting 242 participants in total measured global motor function. Data were available for 76% (n = 183). There was a pooled small to moderate, statistically significant effect (SMD 0.38, 95% CI 0.09 to 0.68).

ADL function
Five RTT trials and one CIMT trial recruiting a total of 422 participants used an ADL measure. Outcome data were available for 83% (n = 345). Overall results indicated a small effect size that was statistically significant (SMD 0.30, 95% CI 0.09 to 0.52).

Adverse events
Ten out of the 31 trials included some report of adverse events. Of these, seven reported no adverse events. One RTT trial reported a number of falls occurring during the intervention or evaluation, none of which was serious,51 and one CIMT trial reported that three participants had some discomfort in the unaffected limb, attributed to overuse during the constraint period.73 The protocol was subsequently modified. The only trial formally to measure adverse events did not show any significant difference in fall rates between the intervention and control groups.65

Overall completeness and applicability of evidence
The included trials were clinically diverse in terms of timing and focus, and there are gaps in the evidence base, particularly for people more than 6 months post-stroke. Of the five trials that
evaluated more than 20 hours’ therapy for upper limbs in this participant group, only three had usable data. Only one trial evaluated 20 hours or less of upper limb therapy in people at least 6 months post-stroke.32

There were only three trials that evaluated up to 20 hours of lower limb therapy in people more than 6 months post-stroke,51,67,87 and two trials evaluating more than 20 hours of lower limb therapy in this group.78,88

There have been more trials undertaken with people in the 0–6-month post-stroke period, but here there are also gaps in the evidence base. Of the seven trials evaluating upper limb therapy of more than 20 hours’ duration, one had data unsuitable for pooling. Of the remaining six, one was quasi-experimental, and three had ten participants or fewer. While 11 trials have evaluated 20 hours or less of lower limb therapy, only one trial has evaluated more than 20 hours of lower limb therapy in the 0–6-month post-stroke period.

Although it was not possible to classify studies into more disabled or less disabled participant subgroups, the tables of included studies (Appendices 1–3) illustrate the wide range of disability levels of the participants in the included trials. However, many of the trials had inclusion criteria specifying either minimum, or minimum and maximum levels of ability, motivation to participate and ability to understand instruction. The general evidence provided by the review therefore appears to be widely applicable, perhaps with the exception of very severely disabled people with little postural control or voluntary movement, those with very mild deficits and those with severe communication difficulties who were excluded by trialists. The exception to the above may be in CIMT studies, which identified criteria for minimum levels of finger and wrist extension. Treatment effects for CIMT may only be applicable to a subgroup of participants with a degree of voluntary movement in the hand or arm. There is also the possibility that exclusion criteria for maximum residual ability reduce generalisability. The preliminary phase of a CIMT trial reported that less than 5% of stroke admissions qualified for randomisation.84

Trials were excluded where repetition appeared to be primarily for strength or endurance training (e.g. cycling and gait training), or where the type of training appeared divorced from the functional aim (e.g. backward walking training, slot machines and computer games). This may have consequences for the applicability of the evidence. The exclusion of trials of what could be defined as ‘prefunctional’ types of movement will effectively have excluded a group of people who cannot yet participate in functional movement. The same consequence applies to the exclusion of trials with a large element of passive and active assisted movement.

In terms of generalisability to the UK, only RTT-type interventional have been evaluated in this setting. One trial is a whole therapy approach,70 one trial evaluates balance training77 and one quasi-experimental trial evaluated self-delivered exercise in the home environment.59 RTT has not traditionally been a significant part of therapy after stroke in the UK, which has been dominated by the Bobath approach. This specifically minimises repetitive active movement, and relies on therapist-guided restoration of ‘normal movement’ patterns, rather than the functional but unnatural ones that could occur as a result of the more pragmatic approach within RFTP. Many studies in this review were from outside the UK, or used therapy approaches that have been less popular, such as motor learning. While clinical experience suggests that modern UK stroke units have a more eclectic therapy approach, it may take longer for the results to change practice within the UK than in countries that already use RFTP routinely.

There are no published trials of either CIMT or TM in a UK setting. While all of the interventions are likely to be transferable in principle, their effectiveness against other forms of care usual in the UK and their acceptability in this healthcare setting have not been tested. In particular, the feasibility and acceptability of CIMT and circuit-training interventions delivered in community settings would need to be evaluated. The intensity of CIMT and the delivery of interventions after the normal rehabilitation period represent additional periods of treatment to those currently provided.

The acceptability and safety of the different forms of RFTP to all types of participants are also unclear. While there were few adverse effects reported overall, the lack of formal reporting in many trials means that this finding is inconclusive. Of the information provided about reasons for dropouts in the trials, the most frequent cause was physical illness, and only a very small proportion of those participating dropped out for physical reasons that might have been related to the intervention. However, there was also a small
number of participants who were lost to follow-up for reasons related to compliance or treatment preference. In the CIMT trials in particular, relatively long periods of constraint and intensive periods of practice with the affected limb have the potential to impact on acceptability, although none of the trials reported problems.

Information about recruitment was not often provided, but of those that did provide information, a trial recruiting in hospital in the early rehabilitation period had relatively low numbers of refusal to participate (e.g. Kwakkel53 had four out of 101 people who did not give consent), while a trial recruiting in the community after rehabilitation had high numbers of refusal of the intervention (e.g. Salbach51 had 73\% refusal). It may be that some forms of intervention are less acceptable, or that interventions only appeal to a subset of stroke survivors, particularly if travel is involved.

No conclusions could be reached about the impact of numbers of repetitions as a measure of the intensity of practice, as this information was only provided in one or two trials. The amount of task practice is therefore a measure of the duration (i.e. time spent).

By virtue of its focus on functional movement, this review does not consider the evidence for electronic forms of delivery of repetitive movement such as robotics or computer-mediated practice. The authors were also unable to comment on the implications of different sites of treatment, therapist-delivered versus self-delivered interventions or group versus individual delivery, as there were too few trials for comparison. However, the presence of two trials involving self-delivery in the home environment and four trials involving group delivery of task-specific training suggests that these modes of delivery are feasible, and further ongoing trials should provide more information. The studies that collected information showed generally high levels of satisfaction with the programme. Attendance levels at community programmes were also very good, suggesting that training programmes were well received by those who chose to participate.

Quality of evidence

For lower limb trials, Salbach and colleagues51 estimate that a sample size of 60 would be required to detect a group difference of 28 m in average change in the 6WMT (type I error = 0.05, type II error = 0.10, expected dropout rate of 10\%) based on the results of a pilot study67 which recruited 91 patients. Five of the 17 trials of lower limb interventions had sample sizes above 60 (four RTT, one TM). For upper limb trials, the same research group estimated that a sample size of 60 participants was required to detect a clinically meaningful difference for the BBT.52 Of the 19 trials of upper limb interventions, five trials had sample sizes greater than 60 (five RTT). No CIMT trial had more than 25 participants.

Two-thirds of RTT trials had adequate allocation concealment and most of the trials stated that blinded independent assessors were used. Therapy time was non-equivalent in two trials. For TM, two out of five trials with data included in the meta-analysis described adequate allocation concealment methods, blinding of outcome assessors was attempted in three trials, and all trials provided equivalent therapy time to experimental and comparison groups. Only four trials (two RTT, one CIMT, one TM) had over 20\% dropout. For CIMT, three trials provided data unsuitable for pooling; and all of the CIMT trials had unclear allocation concealment.

The overall quality of the included trials provides a degree of confidence in the pooled results for RTT and TM, although there were only five TM trials with data suitable for pooling from 199 participants. The results for CIMT have to be considered in the light of small size of the trials, together with the confounding effects of the selection of trials with non-equivalent therapy time in the experimental and control groups (i.e. no-treatment control groups). A number of CIMT trials did include comparison groups who received therapy with no constraint, but these were intervention–control pairs that could not be used for this review as the comparison was also repetitive task practice. The use of no-treatment control comparison may lead to a different conclusion from other reviews of CIMT. Three out of eight included CIMT trials compared the intervention against no therapy. This may explain the large effect of the intervention on upper limb function, as the differential between these groups may be larger than would be expected by comparing the intervention against usual care or another intervention, such as bimanual training.

Non-reporting bias also has to be considered. Subgroup analysis for trial size and the funnel plot for upper limb interventions suggested greater effects for smaller trials, suggesting an absence of small, negative trials. This might have led to small or negative effect estimates not being included.
and, in particular, an ‘unbalancing’ due to the four trials with large effects.

Potential limitations in the review process

This review combined the results of trials of RTT with results from trials of enhanced forms of RTT, namely TM and CIMT. Care must therefore be taken regarding attribution of pooled treatment effects solely to the task practice component. For this reason, both separate and pooled results are shown. This study also generally used fixed-effect analyses, which some might criticise owing to the presence of some clinical heterogeneity in the treatments and trials combined. Many of the trials originally reported data in median and interquartile ranges. In addition, many of the outcomes are measured on scales that are short and bounded, where the use of means and standard deviations can be misleading. However, the effect size for RFTP is greatest for walking distance, which is a truly quantitative measure. It is also relatively consistent across other outcomes, including walking speed which is, like walking distance, a continuous measure with essentially no strict upper bound. This would tend to indicate that the use of means and standard deviations for short, bounded, ordinal scales has not substantively affected the conclusions, at least for the lower limb outcomes.

The major focus in this review was impact on task-specific function. In practice, a large number of studies was excluded on the basis that the reviewers did not judge the outcomes to be functional or the intervention to be task specific. Studies were also included where the reviewers’ interpretation of the intervention was that repetition of functional movement was a major mechanism of action, even when this was not explicitly stated by the authors (e.g. de Sèze76). Whether balance training is truly ‘functional’ is also a matter of interpretation, but its inclusion was felt to be important so as not unintentionally to exclude RFTP training for people with more severe levels of disability, where the recovery of balance is a prerequisite of functional activity.

As CIMT and TM trials were sourced from existing reviews, trials with alternative or no-treatment comparisons were included. Two TM trials included comparisons against alternative forms of treatment, which is potentially likely to have resulted in lower estimates of effect than comparison against usual care; subgroup analysis for type of comparison group was close to statistical significance, with a lower effect estimate for the usual care/alternative treatment than for the attention-control/no-treatment comparison subgroup. Three CIMT trials included comparison against a no-treatment group, with the potential to result in greater estimates of effect than comparison against usual care. However, analysis of the impact of comparison group provided no evidence of any difference between the effects in the two subgroups.

Agreement or disagreement with previous reviews

All of the studies included in this review have a core component of repeated, task-specific practice, but they are also very diverse. The CIMT and TM components of the review were subsets of existing reviews.20,23 While combining the results from such a diverse group of studies has potential dangers, the summary finding of a pooled moderate impact on functional ability (SMD 0.34, 95% CI 0.19 to 0.48) supports previous authors who have suggested a focus on the efficacy of task-specific treatments.14,34

Whether functional gain can be attributed to task specificity or repeated practice is unclear and any attribution is highly speculative. This review did not find a significant difference in treatment effect dependent on the amount of practice for lower limb interventions. Conversely, the greatest gains for lower limbs were seen in walking distance, while gains for walking speed were of a smaller magnitude, suggesting that an endurance training element contained in repeated motor practice makes some contribution to impact. In addition, this review could not take into account the pretherapy ability levels of the participants, and it may also be that the mechanisms of repetition and task specificity have different roles at different stages of recovery. Repetition is the major mechanism of action of robotics, and a recent review has shown impact at the level of impairment, but not for functional ability.36

For upper limb interventions, five out of eight CIMT studies with data suitable for pooling provided more than 20 hours of therapy. Although the overall difference between smaller and larger amounts of task practice was not statistically significant, there was potential evidence of a trend (p = 0.18) towards larger effect sizes for more than 20 hours’ practice (SMD 0.42, 95% CI 0.10 to 0.75) versus 0–20 hours’ practice (SMD 0.22,
95% CI –0.12 to 0.57) for arm function. This finding is consistent with other reviews that have suggested that upper limb recovery may require intensive intervention.\(^{16}\)

Overall for RFTP, there were small to moderate effects for ADLs and global motor function, and a small effect on functional ambulation classification. Even though the amount of change for these outcomes is modest, the clinical benefits are likely to be meaningful in relation to quality of life.\(^{136}\)

In those studies that did show a benefit and provided later assessments, improvements at the end of training were not evident at the later stage. It is unclear from this review whether this is related to characteristics of the participants, the intensity of training or the degree of improvement required before detectable change was noted.

Evidence from RFTP interventions does not concur with the suggestion that earlier provision of treatment results in greater functional improvement, as treatment effects were not modified by time since stroke. Improvement in function was possible even in the later stages of recovery.\(^{139}\) A recent review concluded that it was surprising that CIMT should work in the chronic phase of stroke, but agreed that the trial and laboratory evidence suggested that this was the case. However, they concluded that teaching bimanual activities rather than constraint might create the same outcome.\(^{140}\)

The authors were unable to come to any conclusions about the previously identified dose–response relationship between amount of therapy and improved outcome,\(^{15}\) but the results from subgroup analysis suggest this as a priority for further research.

Economic analysis

The base-case analysis suggested that RFTP is cost-effective. This analysis is based on a number of assumptions about therapeutic inputs that had to be made because of the paucity of economic data associated with the individual trials. Furthermore, in calculating cost-effectiveness the authors had to estimate the potential impact of RFTP on pre-existing longitudinal data. To allow for these assumptions their magnitude was varied in sensitivity analysis. The sensitivity analyses tended to find that RFTP was cost-effective overall, and in particular on the outcome measures of walking distance and sit-to-stand.

The existing data set used to estimate the impact of RFTP was appropriate to the study’s needs because it reflected the normal course of recovery after stroke in a cohort of patients that had been systematically identified. The disadvantage of using this data set was that the analysis was based around predetermined data, which did not specifically lend itself to assessing the impact of RFTP. However, the existing data did allow reasonable assumptions to be made about how RFTP may have affected outcomes and costs, and meant that the research team did not have to wait for 3 years to collect data on resource use and outcomes in a UK post-stroke population.

One of the costs from the existing data set that could have been included was the cost incurred through residence in institutions. These costs tend to be high and would most likely be important in patients with more severe disability. Not including the cost of residence in institutions means that the costs of these severe states are likely to have been underestimated. Evidence from this review suggested that RFTP reduced disability. Therefore, by excluding the high severe state costs due to institutionalisation, the review is likely to have underestimated the potential savings and consequently the cost-effectiveness of RFTP.

Translation of the potential effect of RFTP on the patients in the data set made an assumption about the relationship between the effect size and the BI. This assumption was based around the size of the standard deviation in rehabilitation trials. The assumption that the standard deviation was about 5 is consistent with published data.\(^{53,68,141–143}\) Furthermore, in this systematic review the effect of RFTP on ADLs resulted in an SMD of 0.30. This would suggest that the assumption about the relationship between the SMD and the BI was, if anything, a conservative one, therefore, it is likely that the cost-effectiveness of RFTP has been underestimated.

A further assumption was then made about the relationship between the BI and the EQ-5D. This assumption allowed the calculation of ICER per QALY gained. The systematic review showed that none of the studies used the EQ-5D and only one\(^{65}\) used a measure of quality of life (not including health status) as an outcome. It therefore seemed unreasonable to generate an effect size for quality of life, based on one study. Consequently, this makes it difficult to compare directly the relationship between RFTP and quality of life, and suggests that future RFTP studies should use a quality of life measure as an outcome.
To test the assumptions that were made about the relationships between the effect size, the BI and QALYs, sensitivity analyses were performed. These analyses explored what would happen if the impact of RFTP on outcome was less than in the base model. For the assumptions made, the cost per QALY gained was more sensitive to variations between the effect size and the BI than to variations between the BI and the EQ-5D. Overall, the cost per QALY gained for walking distance did not rise much above £20,000, except for one of the assumptions made in the sensitivity analysis. This means that even when the assumptions are stacked against RFTP, this intervention still demonstrates cost-effectiveness.

The estimation of the cost of providing RFTP in the trials was complicated for a number of reasons. Many of the trials were not conducted in the UK, so it was difficult to cost some items of equipment. The grade of staff performing the training was not often reported; this was further compounded by the trials not being UK based. In addition, because the individual trials had not specifically recorded resource-use data, no information was available about the impact of RFTP on future therapy, support services or provision of mobility aids. Moreover, there were no consistent data about adverse events, which would have the potential to increase costs through patients attending clinics or being admitted to hospital. In one study some patients were transported to hospital at the expense of the researcher; for all other studies post discharge, patients made their own way to clinics. It is likely that this cost was incurred because the intervention was being used in the context of a research study rather than normal clinical practice. Furthermore, if RFTP was introduced as a rehabilitation therapy it is unlikely that it would incur major direct costs for patient transport. For this reason the cost of this transport was not included as a source of cost for RFTP. Given the lack of associated economic data, the costing of RFTP was a fair reflection of the direct costs incurred by this intervention.

The systematic review revealed the complex nature of RFTP in terms of what is being delivered as well as when (after stroke), where and how it is delivered. This provided a challenge for modelling the cost-effectiveness of this intervention. It was therefore decided that rather than develop a complex model, the modelling should be kept simple and transparent. As a result of this decision the reviewers considered how RFTP might influence 3-year costs by looking at the potential impact on the 3-year BI. It is self-evident that to have a 3-year BI a patient must be alive; this meant that the estimate did not take into account the possibility that a patient who had RFTP died within the 3-year period, which may have impacted on the cost. A further analysis was subsequently performed that examined how the impact of RFTP on the 3-month BI would affect cost at 3 years, i.e. this analysis included people alive at 3 months, some of whom had died by 3 years. It was found that the magnitude of the potential cost saving was similar whether the 3-month or 3-year BI scores were used.

To make the modelling feasible a number of other assumptions had to be made. The costing of usual care went from discharge to 3 years post-stroke, which makes the assumption that the cost over 3 years would be the same whenever RFTP was started. Another related assumption was that the effect of RFTP is constant over time. It is acknowledged that these assumptions are rather general. However, given the complex nature of the intervention, described in the previous paragraph, and the lack of economic data about the intervention and its likely impact on cost, the authors believe that these assumptions provided a reasonable estimate.

In summary, the systematic review was able to combine the results from different studies and provide an overall effect size for RFTP. The lack of economic data associated with the existing studies meant that an economic model had to be developed to estimate the potential cost-effectiveness of RFTP. The modelling had the advantage of using effect sizes from a large sample; the disadvantage was that it relied on pre-existing data. This meant that the modelling that was performed relied on a number of assumptions about costs and effectiveness. The assumptions that were made were generally weighted against RFTP. Despite these assumptions, RFTP demonstrated that it was cost-effective.

To combat the issues around measures of costs and effectiveness, future trials need to be sufficiently powered to detect the effectiveness of both functional and economic outcomes. Furthermore, trials need to decide a priori what resources to cost; because the effects of RFTP are likely to extend beyond its impact on direct costs future trials should also consider indirect and possibly intangible costs. Economic analysis would be facilitated further by including quality of life as an outcome measure.
Implications for practice

The results of this review provide sufficient evidence to validate the general principle that RFTP for lower limbs can result in functional gain, when compared against other forms of usual care or attention-control. While functional gain overall is modest, impact does appear to be of a clinically meaningful magnitude. It is, however, unclear as to whether effects are sustained over 6 months post-therapy.

There is insufficient evidence to make any recommendations for upper limb interventions. Although effects of RFTP on arm function were statistically significant, the variable quality of the evidence and the clinical heterogeneity of the interventions mean that further research is needed before specific recommendations can be made.

Some caution is needed in interpreting the lack of evidence for adverse effects, as few trials specifically monitored these as an outcome. If task-specific training is used in clinical practice, adverse effects should be monitored.

While the overall effectiveness of RFTP is relatively modest, this sort of intervention appears to be cost-effective, primarily because the intervention itself has a relatively small cost.

Recommendations for future research

There is a large number of ongoing trials in this area. The first recommendation is that this review is updated within 2 years. The updated review should also consider any potential interaction effects between type of training, amount of task practice and stroke-related impairments. This review focused initially on the evidence for the efficacy of RFTP versus usual care or attention-control comparisons. Any future review should include comparison of RFTP against alternative forms of therapy, such as strength and stamina training.

Further well-designed, adequately powered trials evaluating the impact of upper limb interventions, and in particular CIMT, are needed. One trial was published shortly after the closing date for this review, and should provide more information on efficacy. Future CIMT trials should also target and measure hand function.

There were insufficient trials included in this review to evaluate the efficacy and cost-effectiveness of different intervention delivery methods for RFTP, such as group training, delivery by assistants or practice in the home environment. Further research should address practical and cost-effective ways of delivering such interventions. In particular, the acceptability of CIMT and of circuit-training-type interventions delivered in community settings would need to be evaluated.

The existence of retention effects up to 6 months post-therapy is a promising finding, and further research should be directed towards evaluating long-term functional gain by routine inclusion of longer follow-up periods of 1 or possibly 2 years. Suitable methods to maintain functional gain should also be investigated.

Future trials need to be designed to take account of the following:

- This study was unable to investigate the impact of training on people with different levels of pre-intervention disability, because of the wide range of baseline measures used. Analyses of this type would be facilitated by the inclusion in trials of baseline data using a common measure such as the BI, which can be related to population norms dependent on time since stroke.
- Monitoring and reporting of adverse effects should be explicitly included.
- When designing future trials of any type of RFTP it is critical that the study is powered to detect not only a clinical effect, but also whether it is cost-effective.
- Future studies need to identify clearly which resources are likely to be affected by RFTP and ensure that they are included in any economic analysis. In addition, studies should include a quality of life measure as one of the outcomes to facilitate economic analysis.
- The benefit of RFTP may not be clear from direct costs alone; therefore, future studies should include indirect costs and give some consideration to the inclusion of intangible costs.
We wish to acknowledge the help and support of Brenda Thomas and Hazel Fraser from the Cochrane Stroke Group, for their help in the review process. We would also like to thank all of the trial authors who kindly replied to our requests for information, and our translators: Jie Shen, Dr Qinghai Huang, Hua Zhang, Gediminas Juaga and Luyan Fang.

Contribution of authors

Beverley French (Senior Research Fellow, University of Central Lancashire) led the systematic review, including coordinating the review process, managing searching and main data input and drafting the final report. Michael Leathley (Postdoctoral Research Fellow, University of Central Lancashire) led the cost-effectiveness component of the review, and contributed to data extraction and appraisal for the review. Christopher Sutton (Senior Lecturer, University of Central Lancashire) provided statistical expertise to the review and cost-effectiveness analysis. Joanna McAdam (Research Coordinator, University of Central Lancashire) managed the TM component of the review, was responsible for administration of the review process and contributed to data extraction and appraisal and to drafting the final report. Lois Thomas (Senior Research Fellow, University of Central Lancashire) managed the CIMT component of the review and contributed to data extraction and appraisal, and to drafting the final report. Anne Forster (Reader, Elderly Care, University of Leeds), Peter Langhorne (Professor of Stroke Care, University of Glasgow) and Christopher Price (Clinical Senior Lecturer/Consultant Physician, Northumbria Healthcare NHS Trust) directed the review focus and quality, and undertook critical reading of outputs. Andrew Walker (Senior Lecturer in Health Economics, University of Glasgow) directed the focus and quality of the cost-effectiveness component of the review. Caroline Watkins (Professor of Stroke and Older People’s Care, University of Central Lancashire) was lead investigator for the project, responsible for managing the overall review process and quality of outputs.
References

References

References

102. DeLaurentis KJ. HARI: the hand/arm robotic rehabilitation interface for training the hand following stroke. *National Rehabilitation Information Center H133S040149; 2004.*

115. Light KE. Examining parameters of constraint-induced therapy. CRISP 5R01HD045751-02; 2005.
121. Kilbreath SL. PBWST (partial body-weight supported treadmill training) and muscle power training after sub-acute stroke. Clinical Trials.gov NCT00108050; 2004.
References

159. Katz-Leurer M, Sender I, Keren O, Dvir Z. The influence of early cycling training on balance in

Appendix I

Included studies: repetitive task training
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barreca, 2004<sup>65</sup></td>
<td>Single-centre RCT Randomisation by coin flip. During first 4 months, eligible subjects were assigned to a conventional practice group; during second 4 months, eligible subjects were assigned to an extra practice group, with this sequence of block randomisation occurring three times in total</td>
<td>Canada 48 participants: 25 intervention, 23 control Participants recruited from admission to a rehabilitation centre within 1 month of stroke Inclusion criteria: Between the ages of 18 and 90, medically stable, postural control stage 3 or greater on the Chedoke McMaster Stroke Assessment (lying to sitting in bed using strong side), but not stage IV (lying to sitting on side of bed, using strong side) Exclusion criteria: None stated Mean age: 68 years (range 56–78) 65% male Stroke details: Not stated whether first or recurrent stroke, 73% ischaemic, 42% right hemiparesis Time since stroke: 30 days, range 18–50 days Preintervention functional ability level: Lack of postural control</td>
<td>Sit-to-stand training: Group class practice in attaining standing from sitting from a variety of different heights and surfaces Training was additional to usual care, which included daily strengthening exercise, repetitive training, functional training, electrical stimulation and other exercise Sessions were 45 minutes, three times a week until competence or discharge (approx. 6 weeks) = 13.5 hours + practice on ward. Each session aimed to involve three practice sets of five sit-to-stand manoeuvres per class. Average total repetitions during training = 450–500. Classes had six or seven participants, supervised by two registered practical nurses, with extra practice delivered by nurses trained on the sit-to-stand protocol in a ward setting using videotapes, written instruction and practice</td>
<td>Outcomes recorded at competence or discharge (approx. 6 weeks) Limb-specific function: Number of people able to stand independently and safely on two consecutive occasions Other: Number of falls, health status satisfaction (with ability to stand) and satisfaction with quality of life (Dartmouth Primary Care Cooperative Chart)</td>
<td>No significant differences in baseline characteristics No loss to follow-up at end of treatment phase Outcome assessors blinded to group allocation No intervention related withdrawals</td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blennerhassett, 2004<sup>50</sup></td>
<td>Single-centre RCT Randomisation procedure not described. Concealed allocation to groups using independent allocator and sealed opaque envelopes</td>
<td>Australia</td>
<td>30 participants: 15 intervention, 15 control Participants recruited from inpatient admissions to a rehabilitation centre, 2001–2003, with a primary diagnosis of stroke, within 3 months of stroke</td>
<td>Mobility intervention: Lower limb circuit training: functional tasks such as sit-to-stand, step-ups, obstacle course walking, plus stretching and strengthening exercise, and some endurance training on stationary bikes/treadmills Upper extremity intervention: Functional tasks to improve reach and grasp, hand–eye coordination activities, and stretching and strengthening exercises Both groups were during inpatient rehabilitation and additional to usual care of 1 hour of physiotherapy, 5 days a week, based on Movement Science Approach Sessions were 60 minutes, five times a week for 4 weeks (20 hours total training time). Each circuit included ten 5-minute workstations Sessions were delivered by a physical therapist in groups of up to four subjects Comparator group: Blennerhassett, 2004a: lower limb attention control, Blennerhassett 2004b: upper limb attention control</td>
<td>Outcomes recorded at baseline, which was approx. 6 weeks post-stroke (range 54–74 days), and at 4 weeks and 6 months after training Upper limb function: MAS upper arm, MAS hand, Jebsen Taylor Test of Hand Function Lower limb function: 6MWT, TUG, Step Test</td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>de Sèze, 2001</td>
<td>Single-centre, pilot RCT Randomisation table used. No details of allocation concealment process</td>
<td>France</td>
<td>Experimental intervention: Postural training using the Bon Saint Côme device, a custom-moulded orthosis that holds a pointing device, used by the subject to point to targets on a vertical panel, which emit light and sound when activated. The subject performs exercises of locating and pointing by controlling trunk movement</td>
<td>Outcomes recorded at baseline, post-intervention (4 weeks) and at 2 months</td>
<td>At baseline, postural deficit and unilateral neglect tended to be more severe in the device group, although not significant. Trunk Control Test: device group 36.6 (SD 32.3), control group 50.4 (SD 31.9), Upright Equilibrium Index, FAC Motor performance: Trunk Control Test, Motricity Index, Ashworth Scale ADL: FIM</td>
</tr>
<tr>
<td>de Sèze, 2001</td>
<td>20 participants: ten experimental, ten control</td>
<td>Subjects recruited from admissions to a neurorehabilitation unit in 1998 Inclusion criteria: Hemiplegia caused by a single stroke occurring at least 1 month previously. Static imbalance of the trunk resulting from the stroke Exclusion criteria: Multiple cerebral lesions, disorders of the locomotor system, a severe visual or auditory deficit, a severe deficit of executive functions, or deterioration in general health Mean age: Experimental group 63.5 years (SD 17), control group 67.7 years (SD 15) 55% male Stroke details: First stroke: 35% ischaemic, 25% right hemiparesis Time since stroke: Experimental group 36.8 days (SD 25), control group 27.7 days (SD 15) Preintervention functional ability level: Lack of postural balance</td>
<td>Usual care consisted of a Bobath-inspired approach and functional therapy for 1 hour per day, plus a session of occupational therapy 5 days a week Sessions were 60 minutes (undear whether 5 or 7 days per week), for 4 weeks = 20–28 hours Sessions were delivered individually, by a physical therapist Comparison group: Conventional rehabilitation for 2 hours per day</td>
<td>0% lost to follow-up at end of treatment phase Outcome assessors blind to treatment group No intervention related reasons for withdrawal All subjects completed training</td>
<td></td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Dean, 1997[6]</td>
<td>Single-centre RCT</td>
<td>Australia</td>
<td>Experimental intervention: Training designed to improve sitting balance and involving emphasis on appropriate loading of the affected leg while practising reaching tasks using the unaffected hand to grasp objects located beyond arm’s length</td>
<td>Outcomes recorded at baseline and at 2 weeks (post-treatment)</td>
<td>No significant differences reported at baseline</td>
</tr>
<tr>
<td></td>
<td>Randomisation was blocked. Subjects allocated by drawing a card from a box of ten experimental and ten control cards</td>
<td>20 participants: ten experimental, ten control. Subjects were recruited from stroke clubs around Sydney, Australia</td>
<td>Intervention was after discharge from all rehabilitation programmes</td>
<td>Limb-specific function: Reaching distance, reaching speed, walking speed (6MWT)</td>
<td>5% loss to follow-up at end of treatment phase</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: Diagnosis of stroke resulting in hemiplegia at least 12 months previously, discharged from all rehabilitation services, ability to understand instructions and give informed consent, no orthopaedic problem that would interfere with seated reaching, ability to sit unsupported for 20 minutes</td>
<td>Exclusion criteria: None stated</td>
<td>Sessions were 30 minutes, 5 days per week for 2 weeks = 5 hours</td>
<td>Outcome assessors blind to treatment group</td>
<td>No intervention-related reasons for withdrawal</td>
</tr>
<tr>
<td></td>
<td>Mean age: 66.9 years (SD 8.2) 70% male</td>
<td>Stroke details: Not stated whether first or recurrent stroke, 42% right hemiparesis</td>
<td>Sessions were delivered by a physical therapist in the person’s own home</td>
<td>Comparison group: Upper extremity attention control: performance of cognitive manipulative tasks while seated at a table</td>
<td>No intervention-related reasons for withdrawal</td>
</tr>
<tr>
<td></td>
<td>Time since stroke: Experimental group 6.7 years (SD 5.8), control group 5.9 years (SD 2.9)</td>
<td>Preintervention functional ability level: 6MWT: mean 207 m (SD 128)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean, 2000</td>
<td>Pilot RCT</td>
<td>Subjects grouped into matched pairs based on walking speed, then randomised by drawing cards from a box. Cards drawn by a person independent from the study.</td>
<td>Mobility intervention: Lower limb circuit training of ten workstations including sitting reach, sit-to-stand, stepping, heel lifts, standing balance, leg strengthening, treadmill walking, obstacle walking, slope and stair walking, plus participation in walking races and relays.</td>
<td>Outcomes recorded at baseline, at 4 weeks (post-treatment) and 2 months after completion of training.</td>
<td>No significant difference in walking velocity at baseline for total group, but after withdrawals, measures of walking speed and distance favoured the control group. 6MWT: mobility group 207.9 m (SD 119), upper limb group 259.6 m (SD 154.6); walking speed with assistive device: mobility group 70.7 cm/s (SD 41.8), upper limb group 86.1 cm/s (SD 52.6).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subjects recruited from a rehabilitation research group database.</td>
<td></td>
<td></td>
<td>25% loss to follow-up at end of treatment phase.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion criteria: First stroke, at least 3 months post-stroke, discharged from all rehabilitation services, able to attend a rehabilitation centre three times a week for 4 weeks, able to walk 10 m.</td>
<td></td>
<td></td>
<td>Outcome assessors blinded to group allocation, but may have been inadvertently unmasked. 6MWT undertaken by one of the investigators.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria: Any medical condition that would prevent participation.</td>
<td></td>
<td></td>
<td>Intervention-related reasons for withdrawal: two subjects withdrew before training (one owing to transport costs).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean age: Experimental group 66.2 years (7.7), control group 62.3 years (6.6). 58% male.</td>
<td></td>
<td></td>
<td>Nine participants attended at least nine out of 12 sessions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke details: Not stated whether first or recurrent stroke. 58% right hemiparesis.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Higgins, 2006<sup>52</sup></td>
<td>See Salbach, 2004<sup>51</sup></td>
<td>UK</td>
<td>35 participants: 18 experimental, 17 control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howe, 2005<sup>77</sup></td>
<td>Two-centre, pilot RCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group allocation via randomised permuted blocks, with the project manager holding details of assignment until allocation by a therapist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subjects recruited from admissions to an acute stroke unit between 2001 and 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: Aged 18 and over, acute vascular stroke presenting with hemiplegia, medically stable, able to cooperate, previously independently mobile, and independent in ADLs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: History of conditions or medication affecting balance, dementia, impaired consciousness levels, concomitant medical illness or musculoskeletal condition, serious perceptual problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean age: Experimental group: 71.5 years (SD 10.9), control group 70.7 years (SD 7.6) 51% male</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stroke details: Unknown whether recurrent stroke included, 47% right hemiparesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time since stroke: Experimental group 26.5 days (SD 15.7), control group 23.1 days (SD 17.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preintervention functional ability level: Rivermead Mobility Index 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experimental group: Usual care plus exercises aimed at improving lateral weight transference in sitting and standing. This included repetition of self-initiated goal-orientated activities in various postures. 16 tasks in total, with ten repetitions of each exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sessions were 30 minutes, three times a week, for 4 weeks = 6 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sessions were delivered by trained physiotherapy assistants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparison group: Usual care: no details given</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outcomes recorded at baseline, post-treatment (4 weeks) and at 8 weeks post-baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limb-specific function: Sit-to-stand, stand-to-sit (time in seconds), lateral reach test (time to return to quiet sitting)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No significant differences reported at baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6% lost to follow-up at end of treatment phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outcome assessors blind to treatment group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No intervention-related reasons for withdrawal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subjects completed 10.6 sessions on average</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Kwakkel, 1999</td>
<td>Multicentre RCT</td>
<td>Netherlands</td>
<td>Leg training group: Sitting, standing and weight-bearing exercise, emphasis on achieving stability and improving gait velocity. Treadmill training was used if available</td>
<td>Outcomes recorded at baseline, weekly between weeks 1 and 10, and every 2 weeks between weeks 11 and 26. Post-intervention measures were at week 20. Final measurements were at 26 weeks. Results are presented for baseline, weeks 6, 12, 20 and 26.</td>
<td>No significant differences reported at baseline</td>
</tr>
<tr>
<td></td>
<td>Restricted randomisation (permuted blocks of nine) was applied, using random number tables for each of three participating hospitals. Allocation was concealed by use of sealed envelopes.</td>
<td>101 participants: 31 leg training group, 33 arm training group, 37 control</td>
<td>Arm training group: Functional exercise to facilitate forced arm and hand activity such as leaning, punching a ball, grasping, reaching, dressing, hair-combing and moving objects</td>
<td>Lower limb function: FAC, walking speed (comfortable and maximum)</td>
<td>Assessors were blind to group allocation. Treatment assignment was unintentionally disclosed for ten subjects (one leg training, four arm training, five control group)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Participants recruited from seven hospitals in The Netherlands, 1994–1997</td>
<td>Both groups: If treatment at disability level not possible, strengthening exercises were used</td>
<td>Upper limb function: ARAT</td>
<td>No likely intervention-related reasons for withdrawal, although two patients refused the splint control treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion criteria: Primary first ever stroke in the territory of the middle cerebral artery, confirmed by CT or MRI, aged 30–80, impaired motor function of the arm and leg, inability to walk at first assessment</td>
<td>Intervention was additional to basic rehabilitation of 15 minutes each arm and leg rehabilitation and 1.5 hours per week of ADL training by an occupational therapist</td>
<td>Global ADL: BI</td>
<td>Compliance with delivery of intended amounts of training was monitored and achieved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria: Complicating medical history or severe deficits in communication, memory or understanding</td>
<td>Sessions were 30 minutes, 5 days a week for 20 weeks = 45 hours. Sessions were delivered individually by a physiotherapist</td>
<td>Health status/quality of life: NHP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean age: Arm training group 69 years (SD 9.8), leg training group 64.5 years (SD 9.7), control group 64.1 years (SD 15)</td>
<td>Comparison groups: Control group: immobilisation of the paretic arm and leg by means of an inflatable pressure splint</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>43% male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke details: First ever stroke (TACI 61%, PACI 33%, LACI 6%), 41% right hemiparesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time since stroke: Arm training group 7.2 days (SD 2.8), leg training group 7.0 days (SD 2.5), control group 7.5 days (SD 2.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preintervention functional ability level: BI of 9 or lower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Langhammer, 2006</td>
<td>Stratified, single-centre RCT</td>
<td>Norway 61 participants: 33 experimental, 28 control</td>
<td>Experimental group: Motor Relearning Programme as per Carr and Shepherd, 1987. Functional task training in ordinary settings, with ordinary tasks, using the principles of maximal repetition, task and setting variation</td>
<td>Outcomes recorded at baseline, and at 2 weeks, 3 months, 1 year and 4 years post-stroke</td>
<td>Control group slightly more dependent at entry (baseline), but no significant difference in MAS, SMES or BI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subjects recruited from patients attending hospital in Norway, 1996–1997</td>
<td>Experimental intervention was instead of usual care</td>
<td>Limb-specific function: MAS, SMES – subscale for trunk/balance/gait, Berg Balance Scale (1 year only)</td>
<td>Data available for 87% at 3 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion criteria: First ever stroke with hemiparesis verified clinically and by CT</td>
<td>Sessions were 40 minutes minimum per session, 5 days a week for as long as hospitalised, and continuing into the community, although receipt of physiotherapy in community settings was variable</td>
<td>Motor performance: SMES – subscales for leg function and arm function</td>
<td>Blinding stated, but no description given</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria: More than one stroke incident, subarachnoid bleeding, tumours of the brain, other severe medical conditions in combination with stroke, 5 or more points on each of the scores on the MAS</td>
<td>Sessions were delivered by hospital and outpatient physiotherapists. After discharge, some subjects received therapy in their own homes, at rehabilitation centres or private outpatient departments, dependent on need</td>
<td>Global function: BI, NHP</td>
<td>No intervention-related reasons for withdrawal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean age: 78 years (SD 9) (range 49–75) 59% male</td>
<td>Comparison group: Bobath programme, as per Bobath, 1990</td>
<td>Other measures: Length of stay, use of wheelchair, discharge destination</td>
<td>Does not state monitoring of time spent in therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke details: First stroke, 56% right hemiparesis</td>
<td>Time since stroke: Baseline measures taken within 3 days of admission</td>
<td>Preintervention functional ability level: BI mean 51</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time since stroke: Baseline measures taken within 3 days of admission</td>
<td>Preintervention functional ability level: BI mean 51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>McClellan, 2004</td>
<td>Double-blind RCT</td>
<td>Australia</td>
<td>Experimental group: Home-based exercise programme aimed at improving mobility in standing balance and walking, based on a list of 23 activities arranged hierarchically on their challenge to balance. The home programme used video self-modelling prepared on a baseline visit to the clinic to prescribe the exercise programme, telephone monitoring to encourage compliance, and two clinic visits for programme review. Sessions were prescribed 60 minutes per day over 6 weeks = 42 hours. Subjects were required to keep a record of practice.</td>
<td>Outcomes recorded at baseline, post-treatment (6 weeks) and at 14 weeks</td>
<td>No baseline comparisons reported. 19% lost to follow-up by end of treatment phase. Assessors and subjects blind to group allocation. No likely intervention-related reasons for withdrawal. Subjects self-reported 75% compliance with prescribed exercises.</td>
</tr>
<tr>
<td></td>
<td>Randomisation by numbered, sealed, opaque envelopes</td>
<td>26 participants: 15 experimental, 11 control</td>
<td>Subjects recruited on discharge from physiotherapy services in six hospitals in one region.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inclusion criteria: Stroke within the past 18 months, 45 years and older, living in the community, score >0 and <6 on MAS, score <6 on item 7 or 8 of the MAS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exclusion criteria: Unable to consent, uncontrolled cardiac symptoms or other medical conditions that limited exercise, or with a pacemaker.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean age: Experimental group 69 years (SD 13), control group 72 years (SD 9), 50% male.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stroke details: Unclear whether first or recurrent stroke, 50% right hemiparesis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time since stroke: Experimental group median 6.5 months (IQR 5.5), control group median 4.5 months (IQR 3).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Preintervention functional ability level: All subjects could walk, but with difficulty.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salbach, 2004; Higgins, 2006</td>
<td>Stratified, multicentre RCT</td>
</tr>
</tbody>
</table>

Participants stratified into three groups based on comfortable walking speed. Sequence of random assignments computer generated in randomly ordered blocks of 2 and 4 for each stratum. Allocation maintained in sealed, opaque envelopes, prepared before recruitment by persons not involved in the study, and unveiled after baseline assessment and stratification.

<table>
<thead>
<tr>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Mobility intervention: Ten walking-related tasks designed to strengthen the lower extremities and enhance walking balance, speed and distance in a progressive manner. Upper extremity intervention: Functional tasks such as manipulating cards, using a keyboard and writing while seated. Intervention was after discharge from physical rehabilitation. Sessions were 60 minutes, three times a week for 6 weeks = 18 hours. Sessions were delivered individually by a physical or occupational therapist in a hospital outpatient or rehabilitation setting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 participants: 44 mobility, 47 arm training group</td>
<td>Outcomes recorded at baseline and at 6 weeks Limb-specific function: 6MWT, 5-m walk at comfortable and maximum speed, TUG, Berg Balance Scale, Activities Specific Balance Confidence Scale. Global ADL: BI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects were recruited from nine hospitals and two rehabilitation centres in Montreal or Quebec.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria: First or recurrent stroke, under 1 year post-stroke at recruitment, able to walk 10 m but with residual walking deficit from most recent stroke, mental competency and ability to comprehend instructions, discharged from physical rehabilitation and resident in the community.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria: Resident in permanent care facility, co-morbidity precluding participation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age: 72 years, (range 38–91) 61.5% male.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke details: First or recurrent stroke, 83% ischaemic, 56% right hemiparesis, 43% left hemiparesis, 1% bilateral.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time since stroke: mean 228 days (SD 78). Preintervention functional ability level: 6MWT mean 207 m (SD 128).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparison group: Salbach, 2004; upper extremity training, Higgins, 2006; lower extremity training.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No report of significant differences at baseline. Intervention-related reasons for withdrawal: one unwilling to travel, one experienced the onset of groin pain; two wanted the other intervention. Full intention-to-treat analysis used, with post-intervention values for subjects imputed. Assessors were blind to group allocation. Unblinding occurred for 18/42 in the mobility group and 16/43 of the upper extremity training group, but did not bias the estimated effect as evaluated by multiple linear regression model.

86% of mobility group subjects attended 17 or more sessions out of 18. 72% of upper extremity attended 17 or more sessions.

344 people were evaluated for participation but 73% refused because they could not tolerate the travel required for attendance.
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turton, 1990</td>
<td>Single-centre, quasi-randomised trial</td>
<td>UK</td>
<td>Experimental group: Usual outpatient care plus home-based exercise programme for the upper limb, based on motor relearning principles. Exercises included movement and task-related reach, grasp and grip. Subjects were visited by an occupational therapist at home, and given exercises and repetitions. Exercises were detailed in a booklet. Subjects were visited every 2–4 weeks for review. Carers were involved if able and willing. Subjects were assigned two to three practice sessions per day (approx. 1 hour), 7 days a week for 8–11 weeks = 63 hours approx. Sessions were self-managed by the subject and their carers at home, with two to three home visits by an occupational therapist for programme review. Comparison group: Usual outpatient care (some had therapy, but others did not).</td>
<td>Outcomes recorded at baseline and post-treatment (8–11 weeks)</td>
<td>Limb-specific motor performance: Sitting part of the upper limb activity assessment – Southern Motor Group Assessment, 10HPT</td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Van Vliet, 2005</td>
<td>Single-centre RCT</td>
<td>UK</td>
<td>Movement science therapy: Based on the principle that skill in performance is a direct function of the amount of practice. Programme involved use of everyday objects for functional training, and practice outside delivered sessions</td>
<td>Outcomes recorded at baseline, 4 weeks, 3 months and 6 months</td>
<td>At baseline, control group had higher median scores for Rivermead gross function, and leg and trunk subcales, and for supine to side lying, supine to sitting, balanced sitting, and sit-to-stand sections of the MAS. Experimental group had higher median scores for the upper arm section of the MAS.</td>
</tr>
<tr>
<td></td>
<td>Randomisation was by computer-generated random sequence provided by an independent person. Blocked randomisation was used. Allocations were provided in envelopes and opened after initial assessment</td>
<td>120 participants: 60 experimental, 60 control</td>
<td>Subjects were recruited from people admitted to a stroke rehabilitation ward over a period of 21 months</td>
<td>Limb-specific function: RMA Scale, MAS, 6MWS, 10HPT</td>
<td>Data available for 71% at 3 months</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: Diagnosis of stroke, referral to physiotherapy</td>
<td></td>
<td></td>
<td>Global function: BI, Extended Activities of Daily Living</td>
<td>Outcome assessors blind to treatment allocation. Blinding assessed as successful</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: More than 2 weeks post-stroke, unconscious on admission, unable to toilet independently prior to stroke, living more than 25 km from hospital, unable to tolerate more than 30 minutes of physical tasks required in initial assessment</td>
<td></td>
<td></td>
<td></td>
<td>Intervention-related reasons for withdrawal: seven subjects refused outcome measurement at 3 months, 5 in the experimental group and two in the control group, but reasons are not known</td>
</tr>
<tr>
<td></td>
<td>Mean age: Experimental group 75 years (SD 9.1), control group 73.3 years (SD 10.4) 50% male</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stroke details: Unclear whether first or recurrent stroke. 51% right hemiparesis, 46% left hemiparesis, 3% bilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time since stroke: Within 14 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preintervention functional ability level: Rivermead Motor Assessment gross function subscale: median (IQR) experimental group 2 (1–6), control group 1 (1–4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weinstein, 2004 (only FTP and usual-care control group data included)</td>
<td>Stratified, single-centre pilot RCT</td>
<td>USA</td>
<td>64 participants: 22 functional task practice (FTP), 21 strength training, 21 usual care (UK)</td>
<td>Outcomes recorded at baseline, post-treatment (4–6 weeks) and 9 months after stroke</td>
<td>No significant differences reported at baseline 7% loss to follow-up at end of treatment phase Outcome assessors not blinded to group allocation Intervention-related reasons for withdrawal: one participant in the experimental group lost interest Compliance reported as near perfect, except for one person in the experimental group who, after discharge, and because of travel distance, completed only 15 of the 20 hours' training</td>
</tr>
<tr>
<td></td>
<td>Subjects were randomised to groups within severity strata, using Orpington Prognostic Scale (1.6–4.1 = more severe, 4.2–6.8 = less severe), using a blocking factor not identified to study personnel. Sealed envelopes delivered by independent person, and opened on enrolment of next eligible subject</td>
<td></td>
<td>Functional task practice group: Usual care plus task-specific functional training based on the principles of motor relearning, focusing on systematic and repetitive practice of tasks. Tasks were randomly ordered, and progressed in difficulty</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: Aged 29–76, first time stroke. Stroke onset 2–35 days before study entry, FIM score of 40–80, widened to include a broader range early in recruitment phase</td>
<td></td>
<td>Sessions were 1 hour per day, 5 days per week, for 4 weeks = 20 hours additional to usual care</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: Conditions that interfered with arm movements, cardiac disease limiting function, brain injury, severe aphasia, neglect, agitation or depression that could limit participation</td>
<td></td>
<td>Sessions were delivered by a physical therapist in hospital, and in an outpatient setting when discharged</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean age: Experimental group <35 years = 2, 35–75 years = 18, control group <35 years = 0, 35–75 years = 19, >75 years = 1</td>
<td></td>
<td>Comparison group: Usual care, delivered primarily by occupational therapists, which could include muscle facilitation exercises emphasising the neurodevelopmental treatment approach, neuromuscular electrical stimulation, stretching exercises and ADLs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stroke details: First stroke, 85% ischaemic stroke, 62% right hemiparesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time since stroke: Experimental group 15.5 days (SD 6), control group 15.4 days (SD 5.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preintervention disability level: Orpington Score 1.6–4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Yen, 2005 72</td>
<td>Single-centre RCT</td>
<td>Taiwan</td>
<td>Experimental intervention: Practice of 15–20 tasks selected from a battery of 50 tasks, with task shaping, consisting of verbal feedback for small improvements, task selection based on needs of individual, and performance assistance in the initial stages if unable to perform independently. Intervention was instead of usual care.</td>
<td>Outcomes recorded at baseline and post-treatment (2 weeks)</td>
<td>No baseline differences reported</td>
</tr>
<tr>
<td></td>
<td>No details of randomisation method</td>
<td>30 participants: 13 experimental, 17 control</td>
<td>46% male</td>
<td></td>
<td>No loss to follow-up at end of treatment phase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean age 68 years (range 47–80)</td>
<td></td>
<td>Blinding stated, but no description given</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stroke details: First stroke, 60% right hemiparesis</td>
<td></td>
<td>No intervention-related reasons for withdrawal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time since stroke: Experimental group 8.4 months (SD 8), control group 6.2 months (SD 7.9)</td>
<td></td>
<td>No report of attendance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Preintervention functional ability level: baseline mean 3.28 seconds per item on the WMFT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CT, computed tomography; FM, Fugl–Meyer; FTP, functional task practice; LACI, lacunar infarction; MI, myocardial infarction; NHP, Nottingham Health Profile; PACI, partial anterior circulation infarction; TACI, total anterior circulation infarction; UC, usual care.
Appendix 2

Included studies: constraint-induced movement therapy
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberts, 2004</td>
<td>RCT</td>
<td>USA</td>
<td>Experimental group: constraint-induced movement therapy in which less affected hand was placed in a mitten. Mitten worn for approx. 90% of waking hours. Constraint-induced movement therapy training sessions attended 5 days per week for up to 6 hours per day for 2 consecutive weeks. Shaping, or adaptive task practice and repetitive task practice techniques used during training sessions. All training was one-on-one with rehabilitation specialist.</td>
<td>Outcomes recorded pre- and post-intervention. Limb-specific function: WMFT Motor impairment: FM (arm and hand section)</td>
<td>Allocation concealment stated, but method unclear. Blinded outcome assessment. No loss to follow-up at end of treatment phase.</td>
</tr>
<tr>
<td></td>
<td>Randomisation procedure not described</td>
<td>Ten participants: five intervention, five control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Participants recruited from subacute stroke patients (3–9 months post-stroke) who were participating in EXCITE trial.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion criteria: Only one stroke, at least 20 degrees active wrist extension, 10-degree active finger extension, minimum passive range of motion of 90 degrees for shoulder flexion and abduction, score of at least 24 on MMSE and not receiving any other therapy at time of study.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria: None stated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean age: 64.1 years (range 41–84) 50% male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke details: First stroke only, 20% right hemiparesis, 0% ischaemic stroke not stated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean time since stroke: 6 months, (range 3–9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean FM score pre-intervention: Overall 39.9 (SD 12.5), intervention 34.4 (SD 7.6), control 45.4 (SD 14.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparison group: Delayed group scheduled to receive constraint-induced movement therapy 1 year later. During intervention period did not participate in formal rehabilitation programmes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Atteya, 2004⁷⁹</td>
<td>RCT</td>
<td>Saudi Arabia</td>
<td>Experimental intervention: constraint-induced movement therapy with restraint of lower arm and hand every weekday for 5 hours using a cotton Bobath sling. Patients participated in 30 minutes of physical therapy and 30 minutes of occupational therapy on an outpatient basis three times per week for 10 weeks. Interventions included ‘shaping’, operant conditioning method in which a behavioural objective is approached in small steps of progressively increasing difficulty.</td>
<td>Outcomes recorded pre- and post-intervention</td>
<td>Allocation concealment unclear No loss to follow-up at end of treatment phase</td>
</tr>
<tr>
<td></td>
<td>Randomisation procedure not described</td>
<td>Six participants: two intervention, two traditional therapy, two control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion criteria: Stroke 4 weeks to 6 months ago, age 18–75, discharged from rehabilitation, 10-degree active extension in fingers, motivated, willing to follow intervention guidelines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria: Significant cognitive impairment haemorrhagic or bilateral lesions, lesions in the primary sensory or motor cortical areas, significant spasticity, significant pain in the affected upper limb, involvement in any other experimental rehabilitation or drug studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean age: 54.3 years (range 45–67) 50% male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke details: Unclear whether first or subsequent stroke, 50% right hemiparesis, % ischaemic stroke not stated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean time since stroke: 4.7 months (range 2.3–5.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean amount of use of affected arm at baseline (measured by MAL): constraint-induced movement therapy group 2, traditional therapy group 1, control group 3 (5 is highest rating)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting: Outpatient clinic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparison group: traditional therapy: as above, but without restraint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control group received no therapy during 10-week period</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boake, 2006³⁴</td>
<td>RCT</td>
<td>USA</td>
<td>CIMT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method of randomisation not stated</td>
<td>23 participants: ten intervention, 13 control</td>
<td>Experimental intervention: CIMT for up to 3 hours per day, for 14–15 days at a frequency of 6 days per week, excluding Sundays. Interventions included performing tasks with the affected upper extremity including reaching, grasping, lifting and placing. Task difficulty progressively increased using behavioural techniques of shaping and successive approximation. Participants wore mitten on unaffected hand for 90% of waking hours</td>
<td>Outcomes recorded post-treatment and 3–4 months after stroke</td>
<td>States random allocation, but no description of procedure given</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Limb-specific function: Grooved Pegboard Test, MAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Motor impairment: FM</td>
<td>Motor impairment: FM</td>
<td></td>
</tr>
</tbody>
</table>

Inclusion criteria: Ischaemic or haemorrhagic stroke within 14 days of entering trial, score 1–3 on item 5 (arm motor) of the NIHSS, 10 degrees of active movement in thumb and two fingers of the affected hand, total NIHSS score ≤ 14 if right-sided and ≤19 if left-sided stroke, ability to provide informed consent, no previous stroke, no neglect or speech comprehension that would prevent participation in study

Exclusion criteria: NIHSS arm motor score criterion excluded patients with no arm movement at all, or no detectable shoulder weakness

Mean age: 60.7 years, (range not stated) 65% male

Stroke details: Unclear whether first or subsequent stroke, 48% right hemiparesis, 78% ischaemic stroke

Mean time since stroke: within 14 days

Mean NIHSS total score at baseline: CIMT group 4.9 (SD 1.8), traditional group 5.3 (SD 3.4)
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Dromerick, 2008 | Pilot RCT | USA | Experimental intervention: CIMT involving wearing padded mitten for at least 6 hours per day during 14-day treatment period, with 20 hours’ training. Interventions included occupational therapy treatment focused on ADLs, upper extremity training and CIMT circuit training. Treatment supervised by occupational therapist in both groups. Group size not stated. Setting: Inpatient.
Comparison group: Standard occupational therapy treatment including compensatory techniques for ADLs, upper extremity strength, range of motion and positioning. Participants received equivalent time and intensity of treatment directly supervised by occupational therapist.
Outcomes recorded pre- and post-intervention.
Limb-specific function: ARAT
Global ADL: BI, FIM. | Outcomes recorded pre- and post-intervention.
Limb-specific function: ARAT
Global ADL: BI, FIM. | Attempt at concealment, but real chance of disclosure of assignment before formal entry. Blinded outcome assessment. Loss to follow-up: 13% (n = 3). |
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page, 2001<sup>®</sup></td>
<td>RCT</td>
<td>USA</td>
<td>Six participants: two intervention, two traditional rehabilitation, two control</td>
<td>Experimental intervention: mCIMT comprising 30 minutes of physical therapy and 30 minutes of occupational therapy three times per week for 10 weeks. 80% of each physical and occupation therapy session focused on neuromuscular facilitation techniques, with emphasis on ADL tasks whenever possible, and 20% focused on compensatory techniques using the unaffected side (i.e. reaching and performing tasks with unaffected arm). Lower arms and hands restrained for 5 hours initially using cotton Bobath sling</td>
<td>Outcomes recorded pre- and post-intervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Limb-specific function: ARAT, WMFT, MAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Motor impairment: FM</td>
</tr>
</tbody>
</table>

Inclusion criteria: Stroke experienced between 4 weeks and 6 months before study enrolment, score of 70 or higher on Modified MMSE, no haemorrhagic or bilateral lesions or lesions in the primary sensory or motor cortical areas, age 18–95, no excessive spasticity, no excessive pain in the affected upper limb, completely discharged from all forms of physical rehabilitation, not participating in any experimental rehabilitation or drug studies

Exclusion criteria: None stated

Mean age: 55.8 years (range 44–77)

50% male

Stroke details: Unclear whether first or subsequent stroke, 66.7% right hemiparesis, % ischaemic stroke not stated

Mean time since stroke: 4.6 months (range 2–5.5)

Mean FM scores pre-intervention: Intervention 40 (SD 7), traditional rehabilitation 56.5 (SD 3.5), control 58.5 (SD 3.5)
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page, 2002<sup>61</sup></td>
<td>RCT Randomisation procedure not described</td>
<td>USA</td>
<td>14 participants: four intervention, five traditional rehabilitation, five control</td>
<td>Experimental intervention: mCIMT consisting of participation in 30 minutes of physiotherapy and 30 minutes of occupational therapy three times per week for 10 weeks. Intervention included PT concentration on affected upper limb stretching, dynamic stand/balance activities and gait training. 'Shaping' techniques applied. Less affected limb restrained every weekday for 5-hour period</td>
<td>Outcomes recorded pre- and post-intervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blinded outcome assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No loss to follow-up</td>
</tr>
</tbody>
</table>

Page details and study details continued.
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page, 2004<sup>12</sup></td>
<td>RCT</td>
<td>USA</td>
<td>17 participants: seven intervention, four traditional rehabilitation, six control</td>
<td>Experimental intervention: mCIMT consisting of participation in 30 minutes of physiotherapy and 30 minutes of occupational therapy three times per week for 10 weeks. Intervention included physical therapy concentration on lower limb activities (e.g., dynamic stand and balance activities, gait training) with some time spent on upper limb stretching to facilitate ADLs. Less affected limb restrained every weekday for a 5-hour period</td>
<td>Outcomes recorded pre- and post-intervention</td>
</tr>
<tr>
<td></td>
<td>Computer-generated random numbers table</td>
<td></td>
<td></td>
<td></td>
<td>Blinded outcome assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No loss to follow-up</td>
</tr>
</tbody>
</table>

Inclusion criteria: Ability to extend at least 10 degrees at the metacarpophalangeal and interphalangeal joints and 20 degrees at the wrist, stroke more than 1 year before study, score of 70 or higher on Modified MMSE, no hemispheric lesions, age 18–95, no excessive spasticity, no excessive pain in more affected upper limb, discharged from all forms of rehabilitation, not participating in any experimental rehabilitation or drug studies

Exclusion criteria: None stated

Mean age: 59.2 years (range 37–76) 82% male

Stroke details: Unclear whether first or subsequent stroke, 58.8% right-hemiparesis, % ischaemic stroke not stated

Mean time since stroke: 32.3 months (range 14–74)

Mean FM score at baseline: mCIMT 31.3, traditional rehabilitation 29.3, control 31.8

Limb-specific function: ARAT, MAL

Motor impairment: FM

<table>
<thead>
<tr>
<th>Comparison groups:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Traditional rehabilitation participants received the same amount of occupational and physical therapy sessions, treated according to neuromuscular facilitation principles with some compensatory techniques taught</td>
</tr>
<tr>
<td>(2) Control participants did not participate in any interventions for the 10-week period</td>
</tr>
</tbody>
</table>

Setting: Outpatient clinic

Group size not stated

Comparison groups:

- (1) Traditional rehabilitation participants received the same amount of occupational and physical therapy sessions, treated according to neuromuscular facilitation principles with some compensatory techniques taught
- (2) Control participants did not participate in any interventions for the 10-week period

Blinded outcome assessment

No loss to follow-up
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page, 2005</td>
<td>RCT</td>
<td>USA</td>
<td>Experimental intervention: mCIMT consisting of participation in 30 minutes of physiotherapy and 30 minutes of occupational therapy three times per week for 10 weeks.</td>
<td>Limb-specific function: ARAT, MAL</td>
<td>Group size not stated. Setting: Rehabilitation hospital. Mean age: 60.4 years (range 46–72). Male: 80%. Stroke details: Unilateral whether first or subsequent stroke. Mean time since stroke: 4.4 days. Mean FIM score at baseline: mCIMT 33.6, traditional rehabilitation 34.8.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparison group: Traditional rehabilitation group received standard therapy for 30 minutes 3 days a week for 10 weeks. Sessions included stretching of the affected limb, weight bearing with affected limb and manual dexterity exercises.</td>
<td>Attempt at concealment, but real chance of disclosure of assignment before formal entry.</td>
<td>No loss to follow-up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inclusion criteria: 10-degree finger extension, and 20 degrees at the wrist, ischaemic stroke fewer than 14 days before study enrolment, score of 70 or higher on Modified Medical Research Council Motor Score (MMRSE), age 18–95, no excessive pain in more affected limb, no excessive upper limb spasticity (amount of use score of ≥15 on MAL), discharged from all forms of rehabilitation, not participating in any experimental rehabilitation or drug studies. Exclusion criteria: None stated.</td>
<td>Mean FM score at baseline: mCIMT 33.6, traditional rehabilitation 34.8.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean age: 60.4 years (range 46–72). Male: 80%. Stroke details: Unilateral whether first or subsequent stroke. Mean time since stroke: 4.4 days. Mean FIM score at baseline: mCIMT 33.6, traditional rehabilitation 34.8.</td>
<td>Attempt at concealment, but real chance of disclosure of assignment before formal entry.</td>
<td>No loss to follow-up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Suputtitada, 2004<sup>44</sup></td>
<td>RCT</td>
<td>Thailand 69 participants: 33 intervention, 36 control</td>
<td>Experimental intervention: Participants received treatment for 2 consecutive weeks, 5 days a week for 6 hours a day. Healthy hand covered by a glove Participants treated in groups of three or four Setting: Outpatient clinic Comparison group: Participants treated according to neurodevelopmental therapy method. All activities performed bimanually</td>
<td>Outcomes recorded pre- and post-intervention Limb-specific function: ARAT</td>
<td>Attempt at concealment, but real chance of disclosure of assignment before formal entry Blinded outcome assessment No loss to follow-up</td>
</tr>
<tr>
<td>Inclusion criteria:</td>
<td></td>
<td>Age 18–80 years, history of a single stroke, duration of stroke before start of study between 1 and 10 years, minimum of 20 degrees active wrist extension and 10 degrees of finger extension, ARAT score <51, able to walk indoors without a stick indicating no major balance problems, no severe aphasia, no sensory disorder, no severe cognitive impairments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria:</td>
<td></td>
<td>None stated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age:</td>
<td></td>
<td>59.4 years (range not stated) 68% male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke details:</td>
<td></td>
<td>First stroke only, 92.8% right hemiparesis, 66.7% ischaemic stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean time since stroke:</td>
<td></td>
<td>Not possible to calculate, but mostly (81.2%) within 1–3 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total ARAT at baseline:</td>
<td></td>
<td>Intervention median 41.0 (range 26–51), control median 43.5 (range 10–51)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taub, 1993⁷³</td>
<td>RCT</td>
<td>USA</td>
<td>Experimental intervention: Unaffected arm secured in resting hand splint and sling; restraint device worn for 14 days for well over 90% of waking hours. One each weekday, patients spent 7 hours at rehabilitation centre and were given a variety of tasks, e.g. throwing a ball, playing dominoes, pushing a broom</td>
<td>Outcomes recorded pre- and post-intervention</td>
<td>No details given of intervention providers</td>
</tr>
<tr>
<td></td>
<td>Randomisation procedure not described</td>
<td>Nine participants: four intervention, five control</td>
<td>Inclusion criteria (expressed as exclusion criteria by authors): Stroke experienced more than 1 year ago, 10-degree finger extension and 20 degrees at the wrist, no balance problems, inability to make extensive use of involved upper extremity so that significant further improvement could not be expected, no serious cognitive deficits, no excessive spasticity, no serious uncontrolled medical problems, less than 75 years of age, no left arm dominance or left hemiplegia</td>
<td>Limb-specific function: Emory Motor Function Test, Arm Motor Activity Test, MAL</td>
<td>Group size not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USA</td>
<td>Age: intervention median 65 years, comparison median 63 years 22% male</td>
<td>No mention of blinded outcome assessment</td>
<td>Setting: Rehabilitation centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USA</td>
<td>Stroke details: Unclear whether first or subsequent stroke, 100% right hemiparesis, % ischaemic stroke not stated</td>
<td>No loss to follow-up</td>
<td>Comparison group: Attention control: procedures designed to focus attention on the involved extremity, but involved limb not given any experience of or training for active movement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USA</td>
<td>Mean time since stroke: Not stated (range 1.2–18 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USA</td>
<td>Mean functional ability on Emory test at baseline: Intervention 3.2 (estimated), control 3.3 (estimated)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Wittenberg, 2003</td>
<td>RCT</td>
<td>USA</td>
<td>16 participants: nine intervention, seven control</td>
<td>Experimental intervention: Restraint of the upper extremity during waking hours and task-oriented therapy of the affected upper extremity on 10 continuous inpatient days for 6 hours a day (4 hours a day on weekends). Therapy involved progressively improving motor task performance by a successive approximation procedure during combined physical, occupational and recreational therapy</td>
<td>Outcomes recorded pre- and post-intervention and at 6 months post-intervention</td>
</tr>
<tr>
<td></td>
<td>Random numbers table. Randomisation performed in pairs, if possible, or in individuals, but never more than two subjects receiving intervention. Both members of pair assigned to same arm to avoid subjects observing therapy in other arm</td>
<td>16 participants: nine intervention, seven control</td>
<td>Inclusion criteria: Single, subcortical infarction more than 12 months before entry to the study, significant functional impairment of the affected side (indicated by a score of <2.7 on the MAL), voluntary extension of at least 10 degrees of the affected fingers and 20 degrees of the wrist</td>
<td>Limp-specific function: WMFT, MAL</td>
<td>Blinded outcome assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USA</td>
<td>16 participants: nine intervention, seven control</td>
<td>Exclusion criteria: Patients without voluntary extension of at least 10 degrees of the affected fingers or 20 degrees of the wrist</td>
<td>Motor impairment: Assessment of Motor and Process Skills</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81% male</td>
<td>Mean age: 64 years (range 41–81)</td>
<td>Mean time since stroke: 33 months (range 12–86)</td>
<td>WMFT at baseline: intervention 6.7 (SD 2.0), control 5.5 (SD 2.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke details: First stroke only, % right hemiparesis not stated, 12.5% had infarcts affecting non-dominant side, % ischaemic stroke not stated</td>
<td>Stroke details: First stroke only, % right hemiparesis not stated, 12.5% had infarcts affecting non-dominant side, % ischaemic stroke not stated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MMSE, Mini-Mental State Examination; NIHSS, National Institutes of Health Stroke Scale.
Appendix 3

Included studies: treadmill training
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada, 2003</td>
<td>Randomised, placebo-controlled clinical trial</td>
<td>Australia</td>
<td>Participants ranked in descending order according to walking speed and organised into consecutive pairs. Participants randomly allocated by coin toss</td>
<td>Experimental intervention: Treadmill walking (without bodyweight support) and overground whole-task practice of walking of various types. The proportion of treadmill walking decreased by 10% each week from 80% in week 1 to 50% in week 4. Participants were treated as outpatients in a community setting for three 30-minute sessions per week for 4 weeks = 6 hours. Two subjects trained concurrently, with training provided by a physiotherapist.</td>
<td>Outcomes recorded pre- and post-intervention and at 3 months after the cessation of intervention. Limb-specific function: 10MW, 6MW. Motor impairment: Step length of both the affected and unaffected leg, cadence, step width over 10 m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 participants: 14 intervention, 15 control</td>
<td>Australia</td>
<td>Mean age: 66 years (SD 11) 70% male</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volunteer sample recruited via advertisement and stroke clubs</td>
<td></td>
<td>Stroke details: First stroke</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion criteria: >6 months post-stroke, <5 years post-stroke, first stroke, presented with hemiparesis, aged 50–85, can walk 10 m independently with a speed of <1.2 m/s</td>
<td></td>
<td>Exclusion criteria: Cardiovascular problems that would preclude participation in training, severe cognitive deficits such that participants could not follow instructions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria: Cardiovascular problems that would preclude participation in training, severe cognitive deficits such that participants could not follow instructions</td>
<td></td>
<td>Mean age: 66 years (SD 11) 70% male</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke details: First stroke</td>
<td></td>
<td>Stroke details: First stroke</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time since stroke: Experimental 28 months (SD 17), control 26 months (SD 20)</td>
<td></td>
<td>Time since stroke: Experimental 28 months (SD 17), control 26 months (SD 20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preintervention functional ability: Mean walking speed (m/s) experimental 0.62 (SD 0.24), control 0.53 (SD 0.30)</td>
<td></td>
<td>Preintervention functional ability: Mean walking speed (m/s) experimental 0.62 (SD 0.24), control 0.53 (SD 0.30)</td>
<td></td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Da Cuhna, 2002</td>
<td>RCT pilot study</td>
<td>USA</td>
<td>Experimental intervention: Participants received regular rehabilitation but without the usual gait training. In place of usual gait training was treadmill training with bodyweight support. Participants walked on a treadmill with support using a harness of up to 30% bodyweight. Support was progressively decreased as participants acquired greater self-support. Participants were treated as inpatients for five 20-minute sessions per week for 3 weeks = 5 hours. Training was delivered individually by a physiotherapist.</td>
<td>Outcomes recorded pre- and post-intervention
Limb-specific function: FAC, fast walking speed over 5 m, 5MWT
Motor impairment: Gait energy expenditure, gait energy cost</td>
<td>Allocation concealment unclear
No significant differences in baseline characteristics
Blinding of outcome assessors not stated
Intervention-related withdrawals: one subject dropped from the study because he did not complete at least nine sessions
Loss to follow-up at end of treatment phase: 13%
No details given of attendance</td>
</tr>
</tbody>
</table>

Participants were randomised to groups using random numbers to preassign participants based on recruitment order.

Inclusion criteria: Within 6 weeks of stroke, gait speed of 0.6 m/s or less and score 0–2 on the Functional Ambulation category, sufficient cognition to participate, able to stand and to take at least one step with assistance, stable medical condition.

Exclusion criteria: Co-morbidity or disability that would preclude gait training, cardiac illness, hypertension, lower extremity joint disease, bodyweight over 110 kg, cognitive impairment, history of bilateral cerebrovascular accident.

Mean age: 57.80 years (SD 5.50) intervention, 58.90 (SD 12.90) control (not including dropouts) 100% male.

Stroke details: 92% ischaemic stroke

Time since stroke: Experimental 15.7 days (SD 7.7), control 19 days (SD 12.7)

Prevention functional ability: Mean walking speed (m/s): intervention 0.36 (SD 0.25), control 0.12 (SD 0.15) (not including drop-outs).
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eich, 2004⁸⁹</td>
<td>RCT</td>
<td>Germany</td>
<td>Experimental intervention: Aerobic treadmill training with bodyweight either not supported or supported to a maximum of 15% using a harness. Intervention also included other individual physical therapy. Treadmill training was graded to a defined training heart rate. If necessary, one or two therapists provided help with setting the paretic limb, assisting weight shifting and hip extension. Treated as inpatients for five 60-minute sessions consisting of 30 minutes' treadmill training and 30 minutes' individual physical therapy per week for 6 weeks. Comparison group: Bobath-orientated individual physiotherapy exclusively concentrated on walking rehabilitation. Included tone-inhibiting and gait preparatory manoeuvres and walking practice on the floor and stairs.</td>
<td>Outcomes recorded pre- and post-intervention and at 12 weeks after the cessation of the treatment. Limb-specific function: 10MWS, 6MWT gross motor function including walking ability using the RMA score, walking quality assessed with a customised score, adapted from the Los Ranchos Los Amigos Gait Analysis Handbook.</td>
<td>Allocation concealment adequate. No significant differences in baseline characteristics. Outcome observers may not have been totally blind in the given clinical setting. No loss to follow-up at end of treatment phase. No intervention-related withdrawals. No adverse events.</td>
</tr>
</tbody>
</table>

Randomisation by independent person using sealed envelopes.

Inclusion criteria: Age range from 50–75 years, first-time supratentorial stroke, less than 6 weeks post-stroke, able to walk a minimum distance of 12 m with either intermittent help or standby while walking, BI ranging from 50–80, participation in a 12-week comprehensive rehabilitation programme, cardiovascularly stable, no other neurological or orthopaedic disease impairing walking, able to understand the purpose and content of the study.

Mean age: 62.4 years (SD 4.8) intervention, 64.0 years (SD 6.0) control. 66% male.

Stroke details: First stroke. 100% ischaemic stroke.

Time since stroke: Experimental 6.1 weeks (SD 2.2), control 6.32 weeks (SD 6).

Preintervention functional ability: Mean walking speed (m/s): intervention 0.40 (SD 0.17), control 0.44 (SD 0.22).
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macko, 2005</td>
<td>RCT</td>
<td>USA</td>
<td>Participants were randomised to groups using a computer-based system that was stratified by deficit severity and age</td>
<td>Experimental intervention: Treadmill training at target aerobic intensity of 60–70% heart-rate reserve. Training started at low intensity (40–50%) for 10–20 minutes and increased every 2 weeks as tolerated. Task-orientated training administered according to a progressive aerobic exercise formula. No bodyweight support was provided.</td>
<td>Outcomes recorded pre- and post-intervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Limb-specific function: Walking speed over 30 feet (9.1 m), 6MWT, Rivermead Mobility Index</td>
<td>Impairment: Walking Impairment Questionnaire. Economy of gait</td>
<td>No significant differences in baseline characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VO2 peak</td>
<td></td>
<td>Blinding of outcome assessors to group allocation for ambulatory measures and functional mobility. Treadmill exercise testing not blinded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Loss to follow-up at end of treatment phase: 27%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intervention-related withdrawals: three out of 25 subjects were lost from both the experimental and control groups for compliance reasons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No adverse events stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61 participants: 32 intervention, 29 control</td>
<td>Participants recruited from chronic stroke participants with hemiparetic gait (>6 months)</td>
<td>Treated as outpatients for three 40-minute sessions per week for 6 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inclusion criteria: Chronic hemiparetic stroke (more than 6 months), aged 45 years or more, residual mild to moderate hemiplegic gait deficits, achievement of adequate exercise intensity without signs of myocardial ischaemia or other contraindications to training</td>
<td>Training was delivered by exercise physiologists under the supervision of a physician</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exclusion criteria: Heart failure, unstable angina, peripheral arterial occlusive disease, aphasia, dementia, untreated major depression and other medical conditions precluding participation in exercise</td>
<td>Comparison group: Matched duration exposure to staff implementing common components of conventional therapy. Participants completed supervised stretching movements and 5 minutes of low-intensity treadmill walking at 30–40% heart-rate reserve without bodyweight support</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean age: 63 years (SD 10) intervention, 64 years (SD 8) control 71% male</td>
<td>Mean walking speed (m/s): intervention 0.82 (SD 0.08), control 0.9 (SD 0.10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>61 participants: 32 intervention, 29 control</td>
<td>Participants recruited from chronic stroke participants with hemiparetic gait (>6 months)</td>
<td>Mean age: 63 years (SD 10) intervention, 64 years (SD 8) control 71% male</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time since stroke: Experimental group 35 months (SD 29), control 39 months (SD 59)</td>
<td>Mean walking speed (m/s): intervention 0.82 (SD 0.08), control 0.9 (SD 0.10)</td>
<td></td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Author and year</th>
<th>Study details</th>
<th>Country and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pohl, 2002<sup>85</sup></td>
<td>RCT</td>
<td>Germany</td>
<td>Mean age: Group 1: 58.2 years (SD 10.5), group 2: 57.1 years (SD 13.9), group 3: 61.6 years (SD 10.6) 71.6% male</td>
<td>Experimental intervention: Trial included two intervention–control pairs: speed-dependent, and limited progressive treadmill training. The limited progressive intervention–control comparison was used</td>
<td>Outcomes recorded pre- and post-intervention</td>
</tr>
<tr>
<td></td>
<td>Participants randomised to groups by block randomisation stratified by walking speed over 10 m without assistance</td>
<td>69 participants: 25 group 1, 22 group 2, 22 control (from Moseley, 2005<sup>20</sup>)</td>
<td>Intervention group 2 consisted of limited progressive treadmill training. Participants walked on a treadmill with the training speed increased by no more than 5% of the maximum initial walking speed each week. Physical therapists directly assisted participants in the walking cycle. Bodyweight support allowed only in the first three training sessions</td>
<td>Limb-specific function: Fastest comfortable walking speed over 10 m using gait aids if required, FAC</td>
<td>No significant differences in baseline characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Participants recruited from inpatient rehabilitation</td>
<td></td>
<td>Motor impairment: Cadence, stride length</td>
<td>Blinded outcome assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion criteria: Hemiparesis caused by ischaemic stroke or intracerebral haemorrhage, impaired gait, duration of hemiparesis > 4 weeks, no or slight spasticity, able to walk without personal assistance, time required to walk 10 m >5 seconds and <60 seconds</td>
<td>Treated as inpatients for three 30-minute sessions per week for 4 weeks. Intervention was additional to conventional physiotherapy received by all groups</td>
<td>Loss to follow-up at end of treatment period: 10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria: Previous treadmill training, class C/D exercise risk (American College of Sports Medicine criteria), cognitive deficits, movement disorders, orthopaedic and other gait influencing disease</td>
<td>Comparison group: Conventional gait training: physiotherapeutic gait therapy based on neurophysiological techniques. Three 45-minute sessions per week for 4 weeks. Additional to conventional physiotherapy received</td>
<td>No intervention-related withdrawals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strok details: 70% ischaemic stroke</td>
<td></td>
<td>No adverse events reported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time since stroke: Experimental 16.8 weeks (SD 20.5), control 16.1 weeks (SD 18.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author and year</td>
<td>Study details</td>
<td>Country and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Scheidtmann, 1999</td>
<td>Cross-over group design</td>
<td>Germany</td>
<td>Experimental intervention: Treadmill training combined with physiotherapy with bodyweight support. Participants walked on a treadmill with partial bodyweight support provided by a harness for 30 minutes and completed 30 minutes of usual physiotherapy per day. Treated as in-participants for five 1-hour sessions per week for 3 weeks.</td>
<td>Outcomes assessed at baseline, at cross-over (3 weeks) and after treatment phase (at 6 weeks). Limb-specific function: RMA Scale, walking speed over 10 m (item 6 of the RMA), comfortable or maximum. Personal assistance, supervision and gait aid use were not reported. Motor impairment: Self-developed gait scale based on clinical assessment.</td>
<td>Allocation concealment unclear. Blinding of outcome assessors to group allocation not reported. No dropouts at end of first treatment phase. No intervention-related withdrawals. Adverse events not stated.</td>
</tr>
<tr>
<td>(Description taken from translation and supplemented by details given in Moseley, 2005)</td>
<td>Participants randomised to groups (method of randomisation and concealment not stated)</td>
<td>15 participants allocated to experimental then control group, and 15 participants allocated to control then experimental group. Inclusion criteria: Hemiparesis, stroke (infarct or haemorrhage), at least 4 weeks post-stroke, not able to walk, able to stand for 20 seconds. Exclusion criteria: Cardiovascular problems or infections with a decrease in general health. Age: 57.7 (SD 11), 52% male. Stroke details: 69% ischaemic stroke. Time since stroke: 58.2 days (SD 28.6). Preintervention ability level: Able to stand for up to 20 seconds.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>52% male.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke details: 69% ischaemic stroke.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time since stroke: 58.2 days (SD 28.6).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preintervention ability level: Able to stand for up to 20 seconds.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Allocation concealment unclear.
- Blinding of outcome assessors to group allocation not reported.
- No dropouts at end of first treatment phase.
- No intervention-related withdrawals.
- Adverse events not stated.
Appendix 4

Characteristics of excluded studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Characteristics</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagley, 2005</td>
<td>Not functional, or no functional outcome</td>
<td></td>
</tr>
<tr>
<td>Brown, 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carey, 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chan, 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chang, 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirstea, 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desrosiers, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duncan, 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng, 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feys, 1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelber, 1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanlon, 1996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Husemann, 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inaba, 1973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katz-Leurer, 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kayhan, 1996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khanna, 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilbrough, 1997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krutulyte, 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li, 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liao, 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mudie, 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nelles, 2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pang, 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platz, 2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollock, 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunderland, 1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theilman, 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wellmon, 1997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiao, 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIMT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ploughman, 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ro, 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterr, 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van der Lee, 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixed intervention, or main focus on exercise rather than function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not repetition, or unable to determine amount of practice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passive movement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compared against another repetitive functional intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method or reporting reasons</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not functional, or no functional outcome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixed intervention, or main focus on exercise rather than function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not repetition, or unable to determine amount of practice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passive movement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compared against another repetitive functional intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method or reporting reasons</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Not functional, or no functional outcome</td>
<td>Mixed intervention, or main focus on exercise rather than function</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Jaffe, 2004<sup>180</sup></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Kosak, 2000<sup>181</sup></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Nilsson, 2001<sup>182</sup></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Laufer, 2001<sup>183</sup></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Liston, 2000<sup>184</sup></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Richards, 1993<sup>185</sup></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Richards, 2004<sup>186</sup></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Visintin, 1998<sup>187</sup></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Werner, 2002<sup>188</sup></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 5

Characteristics of ongoing studies
<table>
<thead>
<tr>
<th>Study</th>
<th>Trial name</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Starting date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTT Allison, 2005<sup>90</sup></td>
<td>Pilot randomised control trial to assess the impact of additional supported standing practice on functional ability post-stroke</td>
<td>0–3 months post-stroke</td>
<td>Standing practice plus usual care</td>
<td>RMA, Trunk Control Test, Berg Balance Scale</td>
<td>2001</td>
<td>Trial complete and being submitted for publication</td>
</tr>
<tr>
<td>Askim, 2005<sup>91</sup></td>
<td>Does intensive task specific training improve balance after acute stroke?</td>
<td>0–3 months post-stroke</td>
<td>Balance training plus usual care</td>
<td>Balance, sit-to-stand, walking speed, ADL, falls, lower limb function</td>
<td>2012</td>
<td>Trial due to complete</td>
</tr>
<tr>
<td>English, 2005<sup>93</sup></td>
<td>Is task-related circuit training an effective means of providing rehabilitation to acute stroke patients?</td>
<td>0–3 months post-stroke</td>
<td>Task-related circuit training</td>
<td>Balance, MAS, gait speed and endurance, NHP, patient satisfaction</td>
<td>2003</td>
<td>Trial complete and being submitted for publication</td>
</tr>
<tr>
<td>Harris, 2006<sup>92</sup></td>
<td>Evaluation of a repetitive practice scheme to improve sit-to-stand performance following stroke</td>
<td>0–3 months post-stroke</td>
<td>Repetitive sit-to-stand training</td>
<td>Sit-to-stand</td>
<td>2005</td>
<td>Trial due to complete 2006</td>
</tr>
<tr>
<td>Langhammer, Stroke: reduction of physical performance post-stroke: inactivity or secondary complications?</td>
<td>0–3 months post-stroke</td>
<td>Post-acute rehabilitation</td>
<td>Motor relearning</td>
<td>Physical endurance, strength, balance</td>
<td>2003</td>
<td>Trial closed intake autumn 2005</td>
</tr>
<tr>
<td>Miller, 2002<sup>95</sup></td>
<td>Early intensive task-specific sensory and motor training of the upper limb after acute stroke: a pilot study</td>
<td>0–3 months post-stroke</td>
<td>Task-specific training of the upper limb, emphasising unimanual and bimanual functional activities</td>
<td>MAS, Chedoke McMaster Impairment Inventory, Sickness Impact Profile, hand dexterity</td>
<td>2002</td>
<td>PhD due to complete in 2007</td>
</tr>
<tr>
<td>Sherrington, 2005<sup>94</sup></td>
<td>A randomised controlled trial to evaluate task-related exercise classes for older people with impaired mobility</td>
<td>173 older people, 90 with neurological problems</td>
<td>Circuit designed to provide repetitive, functional, task-related exercise</td>
<td>Balance, gait, sit-to-stand, walking endurance</td>
<td>2005</td>
<td>Publication submitted. Subgroup data available 2008</td>
</tr>
<tr>
<td>CIMT Noser, 2004<sup>96</sup></td>
<td>Constraint-induced movement therapy after subacute stroke</td>
<td>4–10 days post-stroke</td>
<td>CIMT</td>
<td>Arm and hand function</td>
<td>2000</td>
<td>Trial due to complete June 2007</td>
</tr>
</tbody>
</table>
Appendix 6
Criteria for subgroup analyses
<table>
<thead>
<tr>
<th>Study</th>
<th>Task practice amount</th>
<th>Time since stroke</th>
<th>Intervention delivery</th>
<th>Allocation concealment</th>
<th>Comparison group</th>
<th>Therapy time</th>
<th>Trial size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blennerhassett, 2004<sup>50</sup></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>A</td>
<td>AC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Dean, 1997<sup>56</sup></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>B</td>
<td>AC</td>
<td>EQ</td>
<td>1</td>
</tr>
<tr>
<td>Dean, 2000<sup>73</sup></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>A</td>
<td>AC</td>
<td>EQ</td>
<td>1</td>
</tr>
<tr>
<td>de Séze, 2001<sup>76</sup></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>B</td>
<td>UC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Howe, 2005<sup>77</sup></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>A</td>
<td>UC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Blennerhassett, 2004<sup>50</sup></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>A</td>
<td>AC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Dean, 1997<sup>56</sup></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>B</td>
<td>AC</td>
<td>EQ</td>
<td>1</td>
</tr>
<tr>
<td>Dean, 2000<sup>73</sup></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>A</td>
<td>AC</td>
<td>EQ</td>
<td>1</td>
</tr>
<tr>
<td>de Séze, 2001<sup>76</sup></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>B</td>
<td>UC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Howe, 2005<sup>77</sup></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>A</td>
<td>UC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Langhammer, 2000<sup>68</sup></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>B</td>
<td>AC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>McClellan, 2004<sup>78</sup></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>A</td>
<td>AC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Salbach, 2004<sup>51</sup></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>A</td>
<td>AC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Turton, 1990<sup>69</sup></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>B</td>
<td>UC</td>
<td>ADD</td>
<td>1</td>
</tr>
<tr>
<td>Van Vliet, 2005<sup>70</sup></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A</td>
<td>UC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Weinstein, 2004<sup>71</sup></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A</td>
<td>UC</td>
<td>ADD</td>
<td>2</td>
</tr>
<tr>
<td>Yen, 2005<sup>72</sup></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>B</td>
<td>UC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Ada, 2003<sup>57</sup></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>A</td>
<td>AC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>da Cunha, 2002<sup>86</sup></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>B</td>
<td>UC</td>
<td>EQ</td>
<td>1</td>
</tr>
<tr>
<td>Eich, 2004<sup>85</sup></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>A</td>
<td>ALT</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Macko, 2005<sup>68</sup></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>B</td>
<td>ALT</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Pohl, 2002<sup>85</sup></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>B</td>
<td>UC</td>
<td>EQ</td>
<td>2</td>
</tr>
<tr>
<td>Alberts, 2004<sup>63</sup></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>B</td>
<td>NT</td>
<td>ADD</td>
<td>1</td>
</tr>
<tr>
<td>Atteya, 2004<sup>79</sup></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>B</td>
<td>NT</td>
<td>ADD</td>
<td>1</td>
</tr>
<tr>
<td>Boake, 2006<sup>84</sup></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>B</td>
<td>UC</td>
<td>EQ</td>
<td>1</td>
</tr>
<tr>
<td>Dromerick, 2000<sup>81</sup></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>B</td>
<td>UC</td>
<td>EQ</td>
<td>1</td>
</tr>
<tr>
<td>Page, 2001<sup>90</sup></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>B</td>
<td>NT</td>
<td>ADD</td>
<td>1</td>
</tr>
<tr>
<td>Page, 2005<sup>92</sup></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>B</td>
<td>UC</td>
<td>ADD</td>
<td>1</td>
</tr>
<tr>
<td>Taub, 1993<sup>73</sup></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>B</td>
<td>AC</td>
<td>EQ</td>
<td>1</td>
</tr>
<tr>
<td>Wittenberg, 2003<sup>74</sup></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>B</td>
<td>AC</td>
<td>ADD</td>
<td>1</td>
</tr>
</tbody>
</table>

^a I = <=20 hours, 2 = >20 hours.
^b I = 1–14 days, 2 = 15 days to 6 months, 3 = >6 months.
^c I = individual therapy, 2 = group, 3 = self – home.
^d A = adequate, B = inadequate/unclear.
^e AC = attention control, UC = usual care, ALT = alternative treatment, NT = no treatment.
^f EQ = equal time, ADD = additional time.
^g 1 = <25 participants, 2 = ≥25 participants.
Appendix 7

Summary of baseline characteristics of patients from the cohort in the patient data set who survived to 3 years

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) median (IQR)</td>
<td>69.5 (64 to 77)</td>
</tr>
<tr>
<td>Gender female, n (%)</td>
<td>58 (39)</td>
</tr>
<tr>
<td>Lesion type, n (%)</td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>108 (72)</td>
</tr>
<tr>
<td>Primary intracerebral haemorrhage</td>
<td>17 (11)</td>
</tr>
<tr>
<td>Haemorrhagic transformation of IC</td>
<td>4 (3)</td>
</tr>
<tr>
<td>No scan</td>
<td>21 (14)</td>
</tr>
<tr>
<td>Side, n (%)</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>52 (35)</td>
</tr>
<tr>
<td>Right</td>
<td>64 (42)</td>
</tr>
<tr>
<td>No bilateral signs</td>
<td>34 (23)</td>
</tr>
</tbody>
</table>

IC, ischaemic infarction.
Appendix 8

Numbers of patients and costs in the baseline and new groups

<table>
<thead>
<tr>
<th>Barthel category</th>
<th>Average cost</th>
<th>n</th>
<th>Total cost</th>
<th>n¹</th>
<th>Total cost</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤10</td>
<td>£4,398</td>
<td>28</td>
<td>£123,154</td>
<td>25.5</td>
<td>£111,958</td>
<td></td>
</tr>
<tr>
<td>11–14</td>
<td>£6,874</td>
<td>34</td>
<td>£233,727</td>
<td>28.0</td>
<td>£192,793</td>
<td></td>
</tr>
<tr>
<td>15–17</td>
<td>£4,914</td>
<td>33</td>
<td>£162,169</td>
<td>30.5</td>
<td>£149,883</td>
<td></td>
</tr>
<tr>
<td>18 or 19</td>
<td>£2,153</td>
<td>25</td>
<td>£53,819</td>
<td>23.5</td>
<td>£50,589</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>£1,610</td>
<td>30</td>
<td>£48,291</td>
<td>42.5</td>
<td>£68,412</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>150</td>
<td>£621,159</td>
<td>150</td>
<td>£573,636</td>
<td>£47,523</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>150</td>
<td>£4,141</td>
<td></td>
<td>£3,824</td>
<td>£317</td>
</tr>
</tbody>
</table>

¹ Approximate.
Appendix 9

Cost-effectiveness at 3 years per QALY gained for RFTP on outcome measures that were significant in the systematic review

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Outcome</th>
<th>Overall</th>
<th>Arm function</th>
<th>ADL</th>
<th>Walking distance</th>
<th>Functional ambulation</th>
<th>Sit-to-stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SMD</td>
<td>£10,870</td>
<td>£15,185</td>
<td>£11,009</td>
<td>£4,187</td>
<td>£10,187</td>
<td>£5,708</td>
</tr>
<tr>
<td></td>
<td>SMD lower limit CI</td>
<td>£23,947</td>
<td>£77,821</td>
<td>£49,983</td>
<td>£16,539</td>
<td>£83,239</td>
<td>£19,010</td>
</tr>
<tr>
<td></td>
<td>SMD upper limit CI</td>
<td>£6,039</td>
<td>£6,237</td>
<td>£3,942</td>
<td>£658</td>
<td>£3,025</td>
<td>£1,596</td>
</tr>
<tr>
<td>2</td>
<td>SMD: BI; 0.2:1.0</td>
<td>£10,870</td>
<td>£15,185</td>
<td>£11,009</td>
<td>£4,187</td>
<td>£10,187</td>
<td>£5,708</td>
</tr>
<tr>
<td></td>
<td>SMD: BI; 0.2:0.8</td>
<td>£15,011</td>
<td>£20,405</td>
<td>£15,185</td>
<td>£6,658</td>
<td>£14,157</td>
<td>£8,558</td>
</tr>
<tr>
<td></td>
<td>SMD: BI; 0.2:0.6</td>
<td>£21,913</td>
<td>£29,104</td>
<td>£22,144</td>
<td>£10,775</td>
<td>£20,774</td>
<td>£13,309</td>
</tr>
<tr>
<td></td>
<td>SMD: BI; 0.2:0.4</td>
<td>£35,716</td>
<td>£46,503</td>
<td>£36,064</td>
<td>£19,010</td>
<td>£34,008</td>
<td>£22,810</td>
</tr>
<tr>
<td></td>
<td>SMD: BI; 0.2:0.2</td>
<td>£77,126</td>
<td>£98,700</td>
<td>£77,821</td>
<td>£43,713</td>
<td>£73,111</td>
<td>£51,315</td>
</tr>
<tr>
<td>3</td>
<td>BI: EQ-5D; 1:0.05</td>
<td>£10,870</td>
<td>£15,185</td>
<td>£11,009</td>
<td>£4,187</td>
<td>£10,187</td>
<td>£5,708</td>
</tr>
<tr>
<td></td>
<td>BI: EQ-5D; 1:0.04</td>
<td>£13,587</td>
<td>£18,981</td>
<td>£13,761</td>
<td>£5,234</td>
<td>£12,734</td>
<td>£7,135</td>
</tr>
<tr>
<td></td>
<td>BI: EQ-5D; 1:0.03</td>
<td>£18,116</td>
<td>£25,308</td>
<td>£18,348</td>
<td>£6,979</td>
<td>£16,978</td>
<td>£9,513</td>
</tr>
<tr>
<td></td>
<td>BI: EQ-5D; 1:0.02</td>
<td>£27,175</td>
<td>£37,962</td>
<td>£27,523</td>
<td>£10,469</td>
<td>£25,467</td>
<td>£14,269</td>
</tr>
<tr>
<td></td>
<td>BI: EQ-5D; 1:0.01</td>
<td>£54,349</td>
<td>£75,924</td>
<td>£55,045</td>
<td>£20,937</td>
<td>£50,935</td>
<td>£28,538</td>
</tr>
<tr>
<td>4</td>
<td>£35 per hour</td>
<td>£9,143</td>
<td>£12,712</td>
<td>£9,031</td>
<td>£3,283</td>
<td>£8,734</td>
<td>£4,664</td>
</tr>
<tr>
<td></td>
<td>£40 per hour</td>
<td>£10,870</td>
<td>£15,185</td>
<td>£11,009</td>
<td>£4,187</td>
<td>£10,187</td>
<td>£5,708</td>
</tr>
<tr>
<td></td>
<td>£45 per hour</td>
<td>£12,597</td>
<td>£17,657</td>
<td>£12,987</td>
<td>£5,092</td>
<td>£11,640</td>
<td>£6,751</td>
</tr>
<tr>
<td></td>
<td>£50 per hour</td>
<td>£14,323</td>
<td>£20,129</td>
<td>£14,965</td>
<td>£5,996</td>
<td>£13,093</td>
<td>£7,794</td>
</tr>
<tr>
<td></td>
<td>£55 per hour</td>
<td>£16,050</td>
<td>£22,602</td>
<td>£16,943</td>
<td>£6,900</td>
<td>£14,546</td>
<td>£8,837</td>
</tr>
<tr>
<td></td>
<td>£60 per hour</td>
<td>£17,777</td>
<td>£25,074</td>
<td>£18,921</td>
<td>£7,804</td>
<td>£15,999</td>
<td>£9,880</td>
</tr>
<tr>
<td>5</td>
<td>Discount = 0%</td>
<td>£10,228</td>
<td>£14,543</td>
<td>£10,367</td>
<td>£3,545</td>
<td>£9,545</td>
<td>£5,065</td>
</tr>
<tr>
<td></td>
<td>Discount = 3.5%</td>
<td>£10,870</td>
<td>£15,185</td>
<td>£11,009</td>
<td>£4,187</td>
<td>£10,187</td>
<td>£5,708</td>
</tr>
<tr>
<td></td>
<td>Discount = 6.0%</td>
<td>£11,301</td>
<td>£15,616</td>
<td>£11,440</td>
<td>£4,619</td>
<td>£10,618</td>
<td>£6,139</td>
</tr>
<tr>
<td>6</td>
<td>Discount = 0%</td>
<td>£9,191</td>
<td>£13,068</td>
<td>£9,316</td>
<td>£3,186</td>
<td>£8,577</td>
<td>£4,552</td>
</tr>
<tr>
<td></td>
<td>Discount = 3.5%</td>
<td>£10,870</td>
<td>£15,185</td>
<td>£11,009</td>
<td>£4,187</td>
<td>£10,187</td>
<td>£5,708</td>
</tr>
<tr>
<td></td>
<td>Discount = 6.0%</td>
<td>£12,227</td>
<td>£16,895</td>
<td>£12,377</td>
<td>£4,997</td>
<td>£11,488</td>
<td>£6,642</td>
</tr>
</tbody>
</table>

Note: 1. Base case; 2. varying the association between the SMD and the BI (shaded cells are base case); 3. varying the association between the BI and the EQ-5D (shaded cells are base case); 4. varying the cost per hour of client contact with therapist (shaded cells are base case); 5. varying the discount rate on cost (shaded cells are base case); 6. varying the discount rate on outcome (shaded cells are base case).

Cost per QALY gained, where the cost of the intervention is £1265 (based on the average cost of RTT, CIMT and TM).

Cost per QALY gained, where the cost of the intervention is £1126 (based on the average cost of RTT and CIMT).

Cost per QALY gained, where the cost of the intervention is £999 (based on the average cost of RTT and TM).
Health Technology Assessment reports published to date

Volume 1, 1997

No. 1
Home parenteral nutrition: a systematic review.
By Richards DM, Deeks JJ, Sheldon TA, Shaffer JL.

No. 2
Diagnosis, management and screening of early localised prostate cancer.
A review by Selley S, Donovan J, Faulkner A, Coast J, Gillatt D.

No. 3
The diagnosis, management, treatment and costs of prostate cancer in England and Wales.
A review by Chamberlain J, Melia J, Moss S, Brown J.

No. 4
Screening for fragile X syndrome.
A review by Murray J, Cuckle H, Taylor G, Hewison J.

No. 5
A review of near patient testing in primary care.

No. 6
Routine preoperative testing: a systematic review of the evidence.
By McQuay HJ, Moore RA, Eccleston C, Morley S, de C Williams AC.

No. 7
Neonatal screening for inborn errors of metabolism: cost, yield and outcome.

No. 8
Preschool vision screening.
A review by Snowdon SK, Stewart-Brown SL.

No. 9
Implications of socio-cultural contexts for the ethics of clinical trials.
A review by Ashcroft RE, Chadwick DW, Clark SRL, Edwards RHT, Frith L, Hutton JL.

No. 10
A critical review of the role of neonatal hearing screening in the detection of congenital hearing impairment.
By Davis A, Bamford J, Wilson I, Ramkalawan T, Forshaw M, Wright S.

No. 11
Newborn screening for inborn errors of metabolism: a systematic review.

No. 12
Routine preoperative testing: a systematic review of the evidence.
By Munro J, Booth A, Nicholl J.

No. 13
Systematic review of the effectiveness of laxatives in the elderly.
By Petticrew M, Watt I, Sheldon T.

No. 14
When and how to assess fast-changing technologies: a comparative study of medical applications of four generic technologies.
A review by Mowatt G, Bower DJ, Brebner JA, Cairns JA, Grant AM, McKee L.

Volume 2, 1998

No. 1
Antenatal screening for Down’s syndrome.
A review by Wald NJ, Kennard A, Hackshaw A, McGuire A.

No. 2
Screening for ovarian cancer: a systematic review.
By Bell R, Petticrew M, Luengo S, Sheldon TA.

No. 3
Consensus development methods, and their use in clinical guideline development.

No. 4

No. 5
Effectiveness and efficiency of methods of dialysis therapy for end-stage renal disease: systematic reviews.
By MacLeod A, Grant A, Donaldson C, Khan I, Campbell M, Daly C, et al.

No. 6
Effectiveness of hip prostheses in primary total hip replacement: a critical review of evidence and an economic model.

No. 7
Antimicrobial prophylaxis in colorectal surgery: a systematic review of randomised controlled trials.
By Song F, Glenny AM.

No. 8
Bone marrow and peripheral blood stem cell transplantation for malignancy.
A review by Johnson PWM, Simnett SJ, Sweetenham JW, Morgan GJ, Stewart LA.

No. 9
Screening for speech and language delay: a systematic review of the literature.
By Law J, Boyle J, Harris F, Harkness A, Nye C.

No. 10
By Sculpher MJ, Petticrew M, Kelland JL, Elliott RA, Holdright DR, Buxton MJ.

No. 11
Detection, adherence and control of hypertension for the prevention of stroke: a systematic review.
By Ebrahim S.

No. 12
Postoperative analgesia and vomiting, with special reference to day-case surgery: a systematic review.
By McQuay HJ, Moore RA.

No. 13
Choosing between randomised and nonrandomised studies: a systematic review.
By Britton A, McKee M, Black N, McPherson K, Sanderson C, Bain C.

No. 14
Evaluating patient-based outcome measures for use in clinical trials.
A review by Fitzpatrick R, Davey C, Buxton MJ, Jones DR.
Health Technology Assessment reports published to date

No. 15
Ethical issues in the design and conduct of randomised controlled trials.
A review by Edwards SJL, Lilford RJ, Braunholtz DA, Jackson JC, Hewison J, Thornton J.

No. 16
Qualitative research methods in health technology assessment: a review of the literature.
By Murphy E, Dingwall R, Greatbatch D, Parker S, Watson P.

No. 17
The costs and benefits of paramedic skills in pre-hospital trauma care.
By Nicholl J, Hughes S, Dixon S, Turner J, Yates D.

No. 18
Systematic review of endoscopic ultrasound in gastro-oesophageal cancer.

No. 19
Systematic reviews of trials and other studies.
By Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F.

No. 20
Primary total hip replacement surgery: a systematic review of outcomes and modelling of cost-effectiveness associated with different prostheses.

Volume 3, 1999

No. 1
Informed decision making: an annotated bibliography and systematic review.

No. 2
Handling uncertainty when performing economic evaluation of healthcare interventions.
A review by Briggs AH, Gray AM.

No. 3
The role of expectancies in the placebo effect and their use in the delivery of health care: a systematic review.

No. 4

No. 5
Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review.
By Ukoumunne OC, Lilford MC, Chinn S, Sterne JAC, Burney PGJ.

No. 6
Assessing the costs of healthcare technologies in clinical trials.
A review by Johnston K, Buxton MJ, Jones DR, Fitzpatrick R.

No. 7
Cooperatives and their primary care emergency centres: organisation and impact.
By Hallam L, Henthorne K.

No. 8
Screening for cystic fibrosis.
A review by Murray J, Cuckle H, Taylor G, Littlewood J, Hewison J.

No. 9
A review of the use of health status measures in economic evaluation.
By Brazier J, Deverill M, Green C, Harper R, Booth A.

No. 10
A review by Billingham LJ, Abrams KR, Jones DR.

No. 11
Antenatal and neonatal haemoglobinopathy screening in the UK: review and economic analysis.
By Zeuner D, Ades AE, Karnon J, Brown J, Dezateux C, Anionwu EN.

No. 12
Assessing the quality of reports of randomised trials: implications for the conduct of meta-analyses.

No. 13
‘Early warning systems’ for identifying new healthcare technologies.
By Robert G, Stevens A, Gabbay J.

No. 14
A systematic review of the role of human papillomavirus testing within a cervical screening programme.

No. 15
Near patient testing in diabetes clinics: appraising the costs and outcomes.
By Grieve R, Beech R, Vincent J, Mazurkiewicz J.

No. 16
Positron emission tomography: establishing priorities for health technology assessment.
A review by Robert G, Milne R.

No. 17 (Pt 1)
The debridement of chronic wounds: a systematic review.
By Bradley M, Cullum N, Sheldon T.

No. 17 (Pt 2)
Systematic reviews of wound care management: (2) Dressings and topical agents used in the healing of chronic wounds.
By Bradley M, Cullum N, Nelson EA, Petticrew M, Sheldon T, Torgerson D.

No. 18
A systematic literature review of spiral and electron beam computed tomography: with particular reference to clinical applications in hepatic lesions, pulmonary embolus and coronary artery disease.

No. 19
What role for statins? A review and economic model.

No. 20
Factors that limit the quality, number and progress of randomised controlled trials.
A review by Prescott RJ, Counsell CE, Gillespie WJ, Grant AM, Russell IT, Kianka S, et al.

No. 21
Antimicrobial prophylaxis in total hip replacement: a systematic review.
By Glenn AM, Song F.

No. 22
Health promoting schools and health promotion in schools: two systematic reviews.
By Lister-Sharp D, Chapman S, Stewart-Brown S, Sovden A.

No. 23
Economic evaluation of a primary care-based education programme for patients with osteoarthritis of the knee.

Volume 4, 2000

No. 1
The estimation of marginal time preference in a UK-wide sample (TEMPUS) project.
A review by Cairns JA, van der Pol MM.

No. 2
Geriatric rehabilitation following fractures in older people: a systematic review.
No. 3 Screening for sickle cell disease and thalassaemia: a systematic review with supplementary research.
 By Davies SC, Cronin E, Gill M, Greengross P, Hickman M, Normand C.

No. 4 Community provision of hearing aids and related audiology services.
 A review by Reeves DJ, Altazor A, Hickson FS, Bamford JM.

No. 5 False-negative results in screening programmes: systematic review of impact and implications.
 By Petticrew MP, Sowden AJ, Lister-Sharp D, Wright K.

No. 6 Costs and benefits of community postnatal support workers: a randomised controlled trial.
 By Morrell CJ, Spilhy H, Stewart P, Walters S, Morgan A.

No. 7 Implantable contraceptives (subdermal implants and hormonally impregnated intrauterine systems) versus other forms of reversible contraceptives: two systematic reviews to assess relative effectiveness, acceptability, tolerability and cost-effectiveness.

No. 8 An introduction to statistical methods for health technology assessment.
 A review by White SJ, Ashby D, Brown PJ.

No. 9 Disease-modifying drugs for multiple sclerosis: a rapid and systematic review.
 By Clegg A, Bryant J, Milne R.

No. 10 Publication and related biases.
 A review by Song F, Eastwood AJ, Gilbody S, Dudley L, Sutton AJ.

No. 11 Cost and outcome implications of the organisation of vascular services.
 By Michaels J, Brazier J, Palfreyman S, Shackley P, Slack R.

No. 12 Monitoring blood glucose control in diabetes mellitus: a systematic review.
 By Coster S, Guillford MC, Seed PT, Powrie JK, Swaminathan R.

No. 13 The effectiveness of domiciliary health visiting: a systematic review of international studies and a selective review of the British literature.

No. 14 The determinants of screening uptake and interventions for increasing uptake: a systematic review.

No. 15 The effectiveness and cost-effectiveness of prophylactic removal of wisdom teeth.
 A rapid review by Song F, O’Meara S, Wilson P, Golder S, Kleijnen J.

No. 16 Ultrasound screening in pregnancy: a systematic review of the clinical effectiveness, cost-effectiveness and women’s views.

No. 17 A rapid and systematic review of the effectiveness and cost-effectiveness of the taxanes used in the treatment of advanced breast and ovarian cancer.
 By Lister-Sharp D, McDonagh MS, Khan KS, Kleijnen J.

No. 18 Liquid-based cytology in cervical screening: a rapid and systematic review.
 By Payne N, Chilcott J, McGooagan E.

No. 19 Randomised controlled trial of non-directive counselling, cognitive–behaviour therapy and usual general practitioner care in the management of depression as well as mixed anxiety and depression in primary care.

No. 20 Routine referral for radiography of patients presenting with low back pain: is patients’ outcome influenced by GPs’ referral for plain radiography?
 By Kerry S, Hilton S, Patel S, Dumbas D, Rink E, Lord J.

No. 21 Systematic reviews of wound care management. (3) antimicrobial agents for chronic wounds; (4) diabetic foot ulceration.
 By O’Meara S, Cullum N, Majid M, Sheldon T.

No. 22 Using routine data to complement and enhance the results of randomised controlled trials.
 By Lewsey JD, Leyland AH, Murray GD, Boddy FA.

No. 23 Coronary artery stents in the treatment of ischaemic heart disease: a rapid and systematic review.
 By Meads C, Cummins C, Jolly K, Stevens A, Burlis A, Hyde C.

No. 24 Outcome measures for adult critical care: a systematic review.
 By Hayes JA, Black NA, Jenkinson C, Young JD, Rowan KM, Daly K, et al.

No. 25 A systematic review to evaluate the effectiveness of interventions to promote the initiation of breastfeeding.
 By Fairbairn L, O’Meara S, Renfrew MJ, Woolridge M, Sowden AJ, Lister-Sharp D.

No. 26 Implantable cardioverter defibrillators: arrhythmias. A rapid and systematic review.
 By Parkes J, Bryant J, Milne R.

No. 27 Treatments for fatigue in multiple sclerosis: a rapid and systematic review.
 By Brañas P, Jordan R, Fry-Smith A, Burlis A, Hyde C.

No. 28 Early asthma prophylaxis, natural history, skeletal development and economy (EASE): a pilot randomised controlled trial.

No. 29 Screening for hypercholesterolaemia versus case finding for familial hypercholesterolaemia: a systematic review and cost-effectiveness analysis.
 By Marks D, Wonderling D, Thorogood M, Lambert H, Humphries SE, Neil HAW.

No. 30 A rapid and systematic review of the clinical effectiveness and cost-effectiveness of glycoprotein IIb/IIIa antagonists in the medical management of unstable angina.
 By McDonagh MS, Bachmann LM, Golder S, Kleijnen J, ter Riet G.

No. 31 A randomised controlled trial of prehospital intravenous fluid replacement therapy in serious trauma.
 By Turner J, Nicholl J, Webbber L, Cox H, Dixon S, Yates D.

No. 32 Intrathecal pumps for giving opioids in chronic pain: a systematic review.
 By Williams JE, Louw G, Towlerton G.

No. 33 Combination therapy (interferon alfa and ribavirin) in the treatment of chronic hepatitis C: a rapid and systematic review.
 By Shepherd J, Waugh N, Hewitson P.
No. 34
A systematic review of comparisons of effect sizes derived from randomised and non-randomised studies.
By MacLhose RR, Reeves BC, Harvey IM, Sheldon TA, Russell IT, Black AMS.

No. 35
Intravascular ultrasound-guided interventions in coronary artery disease: a systematic literature review, with decision-analytic modelling, of outcomes and cost-effectiveness.
By Berry E, Kelly S, Hutton J, Lindsay HJS, Blaxill JM, Evans JA, et al.

No. 36
A randomised controlled trial to evaluate the effectiveness and cost-effectiveness of counselling patients with chronic depression.
By Simpson S, Corney R, Fitzgerald P, Beecham J.

No. 37
Systematic review of treatments for atopic eczema.
By Hoare C, Li Wan Po A, Williams H.

Bayesian methods in health technology assessment: a review.
By Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR.

No. 39
The management of dyspepsia: a systematic review.

No. 40
A systematic review of treatments for severe psoriasis.
By Griffiths CEM, Clark CM, Chalmers RG, Li Wan Po A, Williams HC.

Volume 5, 2001

No. 1
Clinical and cost-effectiveness of donepezil, rivastigmine and galantamine for Alzheimer’s disease: a rapid and systematic review.

No. 2
The clinical effectiveness and cost-effectiveness of riluzole for motor neurone disease: a rapid and systematic review.

No. 3
Equity and the economic evaluation of healthcare.
By Sassi F, Archard L, Le Grand J.

No. 4
Quality-of-life measures in chronic diseases of childhood.
By Eiser C, Morse R.

No. 5
Eliciting public preferences for healthcare: a systematic review of techniques.

No. 6
General health status measures for people with cognitive impairment: learning disability and acquired brain injury.
By Riemsma RP, Forbes CA, Glanville JM, Eastwood AJ, Kleijnen J.

No. 7
An assessment of screening strategies for fragile X syndrome in the UK.
By Pembrey ME, Barnicoat AJ, Carmichael B, Bobrow M, Turner G.

No. 8
Issues in methodological research: perspectives from researchers and commissioners.

No. 9
Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy.
By Cullum N, Nelson EA, Flemming K, Sheldon T.

No. 10
Effects of educational and psychosocial interventions for adolescents with diabetes mellitus: a systematic review.
By Hampson SE, Skinner TC, Hart J, Storey L, Gage H, Poxcroft D, et al.

No. 11
Effectiveness of autologous chondrocyte transplantation for hyaline cartilage defects in knees: a rapid and systematic review.
By Johanputra P, Parry D, Fry-Smith A, Burls A.

No. 12
Statistical assessment of the learning curves of health technologies.
By Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT.

No. 13
The effectiveness and cost-effectiveness of temozolomide for the treatment of recurrent malignant glioma: a rapid and systematic review.
By Dinnes J, Cave C, Huang S, Major K, Milne R.

No. 14
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of debriding agents in treating surgical wounds healing by secondary intention.
By Lewis R, Whiting P, ter Riet G, O’Meara S, Glanville J.

No. 15
Home treatment for mental health problems: a systematic review.

No. 16
How to develop cost-conscious guidelines.
By Eccles M, Mason J.

No. 17
The role of specialist nurses in multiple sclerosis: a rapid and systematic review.
By De Broe S, Christopher F, Waugh N.

No. 18
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of orlistat in the management of obesity.
By O’Meara S, Riemsma R, Shurran L, Mather L, ter Riet G.

No. 19
The clinical effectiveness and cost-effectiveness of pioglitazone for type 2 diabetes mellitus: a rapid and systematic review.
By Chilcott J, Wight J, Lloyd Jones M, Tappenden P.

No. 20
Extended scope of nursing practice: a multicentre randomised controlled trial of appropriately trained nurses and preregistration house officers in preoperative assessment in elective general surgery.

No. 21
Systematic reviews of the effectiveness of day care for people with severe mental disorders: (1) Acute day hospital versus admission; (2) Vocational rehabilitation; (3) Day hospital versus outpatient care.

No. 22
The measurement and monitoring of surgical adverse events.
By Bruce J, Russell EM, Mollison J, Krukowski ZH.

No. 23
Action research: a systematic review and guidance for assessment.
By Waterman H, Tillen D, Dickson R, de Koning R.

No. 24
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of gemcitabine for the treatment of pancreatic cancer.
No. 28 Clinical effectiveness and cost – consequences of selective serotonin reuptake inhibitors in the treatment of sex offenders.
 By Adi Y, Ashcroft D, Browne K, Beech A, Fry-Smith A, Hyde C.

No. 29 Treatment of established osteoporosis: a systematic review and cost-utility analysis.
 By Kanis JA, Brazier JE, Stevenson M, Calvert NW, Lloyd Jones M.

No. 30 Which anaesthetic agents are cost-effective in day surgery? Literature review, national survey of practice and randomised controlled trial.

No. 31 Screening for hepatitis C among injecting drug users and in genitourinary medicine clinics: systematic reviews of effectiveness, modelling study and national survey of current practice.

No. 32 The measurement of satisfaction with healthcare: implications for practice from a systematic review of the literature.

No. 33 The effectiveness and cost-effectiveness of imatinib in chronic myeloid leukaemia: a systematic review.
 By Garside R, Round A, Dalziel K, Stein K, Royle R.

No. 34 A comparative study of hypertonic saline, daily and alternate-day rhDNase in children with cystic fibrosis.

No. 35 A systematic review of the costs and effectiveness of different models of paediatric home care.

Volume 7, 2003

No. 1 How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study.
 By Egger M, Juni P, Bartlett C, Holfenstein F, Sterne J.

No. 2 Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of home versus hospital or satellite unit haemodialysis for people with end-stage renal failure.

No. 3 Systematic review and economic evaluation of the effectiveness of infliximab for the treatment of Crohn’s disease.
 By Clark W, Raftery J, Barton P, Song F, Fry-Smith A, Burfs A.

No. 4 A review of the clinical effectiveness and cost-effectiveness of routine anti-D prophylaxis for pregnant women who are rhesus negative.

No. 5 Systematic review and evaluation of the use of tumour markers in paediatric oncology: Ewing’s sarcoma and neuroblastoma.

No. 6 The cost-effectiveness of screening for Helicobacter pylori to reduce mortality and morbidity from gastric cancer and peptic ulcer disease: a discrete-event simulation model.

No. 7 The clinical effectiveness and cost-effectiveness of routine dental checks: a systematic review and economic evaluation.

No. 8 A multicentre randomised controlled trial assessing the costs and benefits of using structured information and analysis of women’s preferences in the management of menorrhagia.

No. 9 Clinical effectiveness and cost-utility of photodynamic therapy for wet age-related macular degeneration: a systematic review and economic evaluation.
 By Meads C, Salas C, Roberts T, Moore D, Fry-Smith A, Hyde C.

No. 10 Evaluation of molecular tests for prenatal diagnosis of chromosome abnormalities.
No. 11 First and second trimester antenatal screening for Down’s syndrome: the results of the Serum, Urine and Ultrasound Screening Study (SURUSS).
 By Wald NJ, Rodeck C, Hackshaw AK, Walters J, Chitty L, Mackinson AM.

No. 12 The effectiveness and cost-effectiveness of ultrasound locating devices for central venous access: a systematic review and economic evaluation.
 By Calvert N, Hind D, McWilliams RG, Thomas SM, Beverley C, Davidson A.

No. 13 A systematic review of atypical antipsychotics in schizophrenia.

No. 14 Prostate Testing for Cancer and Treatment (ProtecT) feasibility study.
 By Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, et al.

No. 15 Early thrombolysis for the treatment of acute myocardial infarction: a systematic review and economic evaluation.

No. 16 Screening for fragile X syndrome: a literature review and modelling.
 By Song FJ, Barton P, Sleightholme V, Yao GL, Fry-Smith A.

No. 17 Systematic review of endoscopic sinus surgery for nasal polyps.
 By Dalziel K, Stein K, Round A, Garside R, Royle P.

No. 18 Towards efficient guidelines: how to monitor guideline use in primary care.
 By Hutchinson A, McIntosh A, Cox S, Gilbert C.

No. 19 Effectiveness and cost-effectiveness of acute hospital-based spinal cord injuries services: systematic review.
 By Bagallur A-M, Jones L, Richardson G, Duffy S, Riemsma R.

No. 20 Prioritisation of health technology assessment. The PATHS model: methods and case studies.
 By Townsend J, Buxton M, Harper G.

No. 22 The clinical and cost-effectiveness of patient education models for diabetes: a systematic review and economic evaluation.
 By Loveman E, Cave C, Green C, Royle P, Dunn N, Waugh N.

No. 23 The role of modelling in prioritising and planning clinical trials.
 By Chilcott J, Brennan A, Booth A, Karnon J, Tappenden P.

No. 24 Cost-benefit evaluation of routine influenza immunisation in people 65–74 years of age.
 By Allsup S, Gosney M, Haycox A, Regan M.

No. 25 The clinical and cost-effectiveness of pulsatil machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors.
 By Wight J, Chilcott J, Holmes M, Brewer N.

No. 26 Can randomised trials rely on existing electronic data? A feasibility study to explore the value of routine data in health technology assessment.
 By Williams JG, Cheung WY, Cohen DR, Hutchings HA, Longo MF, Russell IT.

No. 27 Evaluating non-randomised intervention studies.

No. 28 A randomised controlled trial to assess the impact of a package comprising a patient-orientated, evidence-based self-help guidebook and patient-centred consultations on disease management and satisfaction in inflammatory bowel disease.

No. 29 The effectiveness of diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a systematic review.
 By Dinnes J, Loveman E, McIntyre L, Waugh N.

No. 30 The value of digital imaging in diabetic retinopathy.

No. 31 Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy.
 By Law M, Wald N, Morris J.

No. 32 Clinical and cost-effectiveness of capetaxibe and tegafrar with uracil for the treatment of metastatic colorectal cancer: systematic review and economic evaluation.
 By Ward S, Kaltenthaler E, Cowan J, Brewer N.

 By Hummel S, Paisley S, Morgan A, Currie E, Brewer N.

No. 34 Literature searching for clinical and cost-effectiveness studies used in health technology assessment reports carried out for the National Institute for Clinical Excellence appraisal system.
 By Royle P, Waugh N.

No. 35 Systematic review and economic decision modelling for the prevention and treatment of influenza A and B.

No. 36 A randomised controlled trial to evaluate the clinical and cost-effectiveness of Hickman line insertions in adult cancer patients by nurses.
 By Boland A, Haycox A, Bagust A, Fitzsimmons L.

No. 37 Redesigning postnatal care: a randomised controlled trial of protocol-based midwifery-led care focused on individual women’s physical and psychological health needs.

No. 38 Estimating implied rates of discount in healthcare decision-making.
 By West RR, McNab R, Thompson AGH, Sheldon TA, Grimley Evans J.
 By Cooper BS, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Medley GF, et al.

No. 40 Treatments for spasticity and pain in multiple sclerosis: a systematic review.
 By Beard S, Hunn A, Wight J.

No. 41 The inclusion of reports of randomised trials published in languages other than English in systematic reviews.
 By Moher D, Pham B, Lawson ML, Klassen TP.

No. 42 The impact of screening on future health-promoting behaviours and health beliefs: a systematic review.

Volume 8, 2004

No. 1 What is the best imaging strategy for acute stroke?
 By Wardlaw JM, Keir SL, Seymour J, Lewis S, Sanderson PAG, Dennis MS, et al.

No. 2 Systematic review and modelling of the investigation of acute and chronic chest pain presenting in primary care.
 By Mant J, McManus RJ, Oakes RAL, Delaney BC, Barton PM, Deeks JJ, et al.

No. 3 The effectiveness and cost-effectiveness of microwave and thermal balloon endometrial ablation for heavy menstrual bleeding: a systematic review and economic modelling.

No. 4 A systematic review of the role of bisphosphonates in metastatic disease.

No. 5 Systematic review of the clinical effectiveness and cost-effectiveness of capcitabine (Xeloda®) for locally advanced and/or metastatic breast cancer.
 By Jones L, Hawkins N, Westwood M, Wright K, Richardson G, Riemsma R.

No. 6 Effectiveness and efficiency of guideline dissemination and implementation strategies.

No. 7 Clinical effectiveness and costs of the Sugarbaker procedure for the treatment of pseudomyxoma peritonei.
 By Bryant J, Clegg AJ, Sidhu MK, Brodin H, Royle P, Davidson P.

No. 8 Psychological treatment for insomnia in the regulation of long-term hypnotic drug use.
 By Morgan K, Dixon S, Mathers N, Thompson J, Tomeny M.

No. 9 Improving the evaluation of therapeutic interventions in multiple sclerosis: development of a patient-based measure of outcome.
 By Hobart JC, Riazi A, Lamping DL, Fitzpatrick R, Thompson AJ.

No. 10 A systematic review and economic evaluation of magnetic resonance cholangiopancreatography compared with diagnostic endoscopic retrograde cholangiopancreatography.

No. 11 The use of modelling to evaluate new drugs for patients with a chronic condition: the case of antibodies against tumour necrosis factor in rheumatoid arthritis.
 By Barton P, Johansen P, Wilson J, Bryant S, Burlis A.

 By Pandor A, Eastham J, Beverley C, Chilcott J, Paisley S.

 By Czoski-Murray C, Warren E, Chilcott J, Beverley C, Pyllaki MA, Cowan J.

No. 14 Routine examination of the newborn: the EMREN study. Evaluation of an extension of the midwife role including a randomised controlled trial of appropriately trained midwives and paediatric senior house officers.

No. 15 Involving consumers in research and development agenda setting for the NHS: developing an evidence-based approach.

No. 16 A multi-centre randomised controlled trial of minimally invasive direct coronary bypass grafting versus percutaneous transluminal coronary angioplasty with stenting for proximal stenosis of the left anterior descending coronary artery.

No. 17 Does early magnetic resonance imaging influence management or improve outcome in patients referred to secondary care with low back pain? A pragmatic randomised controlled trial.
 By Gilbert FJ, Grant AM, Gillan MGC, Vale L, Scott NW, Campbell MK, et al.

No. 18 The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis.
 By Clark W, Johansen P, Barton P, Burlis A.

No. 19 A rapid and systematic review and economic evaluation of the clinical and cost-effectiveness of newer drugs for treatment of mania associated with bipolar affective disorder.

No. 20 Liquid-based cytology in cervical screening: an updated rapid and systematic review and economic analysis.

No. 21 Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement.

No. 22 Autoantibody testing in children with newly diagnosed type 1 diabetes mellitus.
 By Dretzke J, Cummins C, Sanderson J, Fry-Smith A, Barrett T, Burlis A.
No. 23
Clinical effectiveness and cost-effectiveness of prehospital intravenous fluids in trauma patients.
By Dretzke J, Sandercock J, Bayliss S, Burts A.

No. 24
Newer hypnotic drugs for the short-term management of insomnia: a systematic review and economic evaluation.

No. 25
Development and validation of methods for assessing the quality of diagnostic accuracy studies.
By Whiting P, Rutjes AWS, Dennes J, Reitsma JB, Bossuyt PMM, Kleijnen J.

No. 26
EVALUATE hysterectomy trial: a multicentre randomised trial comparing abdominal, vaginal and laparoscopic methods of hysterectomy.

No. 27
By Tappenden P, Chilcott JB, Eggington S, Oakley J, McCabe C.

No. 28
By Dalziel K, Round A, Stein K, Garside R, Price A.

No. 29
VenUS I: a randomised controlled trial of two types of bandage for treating venous leg ulcers.
By Igelias C, Nelson EA, Culum NA, Torgerson DJ on behalf of the VenUS Team.

No. 30
Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction.

No. 31
A pilot study on the use of decision theory and value of information analysis as part of the NHS Health Technology Assessment programme.
By Claxton K, Ginnelly L, Sculpter M, Philips Z, Palmer S.

No. 32
The Social Support and Family Health Study: a randomised controlled trial and economic evaluation of two alternative forms of postnatal support for mothers living in disadvantaged inner-city areas.

No. 33
Psychosocial aspects of genetic screening of pregnant women and newborns: a systematic review.
By Green JM, Hewison J, Bekker HL, Bryant, Cackle HS.

No. 34
Evaluation of abnormal uterine bleeding: comparison of three outpatient procedures within cohorts defined by age and menopausal status.

No. 35
Coronary artery stents: a rapid systematic review and economic evaluation.

No. 36
Review of guidelines for good practice in decision-analytic modelling in health technology assessment.

No. 37
Rituximab (MabThera®) for aggressive non-Hodgkin’s lymphoma: systematic review and economic evaluation.
By Knight C, Hind D, Brewer N, Abbott V.

No. 38
Clinical effectiveness and cost-effectiveness of clopidogrel and modified-release dipyridamole in the secondary prevention of occult vascular events: a systematic review and economic evaluation.
By Jones L, Griffin S, Palmer S, Main C, Orton V, Sculpter M, et al.

No. 39
Pegylated interferon α-2a and -2b in combination with ribavirin in the treatment of chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Brodin H, Cave C, Waugh N, Price A, Gabbyl J.

No. 40
Clopidogrel used in combination with aspirin compared with aspirin alone in the treatment of non-ST-segment-elevation acute coronary syndromes: a systematic review and economic evaluation.
By Main C, Palmer S, Griffin S, Jones L, Orton V, Sculpter M, et al.

No. 41
Provision, uptake and cost of cardiac rehabilitation programmes: improving services to under-represented groups.
By Beswick AD, Rees K, Griebsch I, Taylor FC, Burke M, West RR, et al.

No. 42
Involving South Asian patients in clinical trials.
By Hussain-Gambles M, Leese B, Atkin K, Brown J, Mason S, Tovey P.

No. 43
Clinical and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes.
By Colquitt JL, Green C, Sidhu MK, Hartwell D, Waugh N.

No. 44
Identification and assessment of ongoing trials in health technology assessment reviews.

No. 45
Systematic review and economic evaluation of a long-acting insulin analogue, insulin glargine.
By Warren E, Weatherley-Jones E, Chilcott J, Beverley C.

No. 46
Supplementation of a home-based exercise programme with a class-based programme for people with osteoarthritis of the knees: a randomised controlled trial and health economic analysis.

No. 47
Clinical and cost-effectiveness of once-daily versus more frequent use of same potency topical corticosteroids for atopic eczema: a systematic review and economic evaluation.
By Green C, Colquitt JL, Kirby J, Davidson P, Payne E.

No. 48
Acupuncture of chronic headache disorders in primary care: randomised controlled trial and economic analysis.

No. 49
Generalisability in economic evaluation of the knees: a randomised controlled trial and economic analysis.
By Shepherd J, Brodin H, Cave C, Waugh N, Price A, Gabbyl J.

No. 50
Virtual outreach: a randomised controlled trial and economic evaluation of joint teleconferenced medical consultations.

© Queen’s Printer and Controller of HMSO 2008. All rights reserved.
No. 1
Randomised controlled multiple-treatment comparison to provide a cost-effectiveness rationale for the selection of antimicrobial therapy in acne.

No. 2
Do the findings of case series studies vary significantly according to methodological characteristics?
By Dalziel K, Round A, Stein K, Garside R, Castelnuovo E, Payne L.

No. 3
Improving the referral process for familial breast cancer genetic counselling: findings of three randomised controlled trials of two interventions.

No. 4
Randomised evaluation of alternative oesophageal modalities to treat bladder outflow obstruction in men with benign prostatic hyperplasia.
By Fowler C, McAllister W, Plail R, Karim O, Yang Q.

No. 5
A pragmatic randomised controlled trial of the cost-effectiveness of palliative therapies for patients with inoperable oesophageal cancer.
By Shenfine J, McNamee P, Steen N, Bond J, Griffin SM.

No. 6
Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography.
By Taylor BE, Champness J, Given-Wilson R, Johnston K, Potts H.

No. 7
Issues in data monitoring and interim analysis of trials.

No. 8
Lay public’s understanding of equipoise and randomisation in randomised controlled trials.

No. 9
Clinical and cost-effectiveness of electroconvulsive therapy for depressive illness, schizophrenia, catatonia and mania: systematic reviews and economic modelling studies.
By Greenhalgh J, Knight C, Hind D, Beverley C, Walters S.

No. 10
Measurement of health-related quality of life for people with dementia: development of a new instrument (DEMQOL) and an evaluation of current methodology.

No. 11
Clinical effectiveness and cost-effectiveness of drotrecogin alfa (activated) (Xigris®) for the treatment of severe sepsis in adults: a systematic review and economic evaluation.

No. 12
A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy.
By Dinnes J, Deeks J, Kirby J, Roderick P.

No. 13
Cervical screening programmes: can automation help? Evidence from systematic reviews, an economic analysis and a simulation modelling exercise applied to the UK.
By Willis BH, Barton P, Pearmain P, Bryan S, Hyde C.

No. 14
Laparoscopic surgery for inguinal hernia repair: systematic review of effectiveness and economic evaluation.

No. 15
Clinical effectiveness, tolerability and cost-effectiveness of newer drugs for epilepsy in adults: a systematic review and economic evaluation.

No. 16
A randomised controlled trial to compare the cost-effectiveness of tricyclic antidepressants, selective serotonin reuptake inhibitors and lofepramine.

No. 17
Clinical effectiveness and cost-effectiveness of immediate angioplasty for acute myocardial infarction: systematic review and economic evaluation.

No. 18
A randomised controlled comparison of alternative strategies in stroke care.
By Kalra L, Evans A, Perez I, Knapp M, Swift C, Donaldson N.

No. 19
The investigation and analysis of critical incidents and adverse events in healthcare.
By Woolshopws M, Rogers S, Taylor-Adams S, Vincent C.

No. 20
Potential use of routine databases in health technology assessment.
By Raftery J, Roderick P, Stevens A.

No. 21

No. 22
A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis.
By Stevenson M, Lloyd Jones M, De Nigris E, Brewer N, Davis S, Oakley J.

No. 23
A systematic review to examine the impact of psycho-educational interventions on health outcomes and costs in adults and children with difficult asthma.

No. 24
An evaluation of the costs, effectiveness and quality of renal replacement therapy provision in renal satellite units in England and Wales.

No. 25
Imatinib for the treatment of patients with unresectable and/or metastatic gastrointestinal stromal tumours: systematic review and economic evaluation.

No. 26
Indirect comparisons of competing interventions.

No. 27
Cost-effectiveness of alternative strategies for the initial medical management of non-ST elevation acute coronary syndrome: systematic review and decision-analytical modelling.
No. 28 Outcomes of electrically stimulated gracilis neosaphenous surgery.
By Tillin T, Chambers M, Feldman R.

No. 29 The effectiveness and cost-effectiveness of pimecrolimus and tacrolimus for atopic eczema: a systematic review and economic evaluation.

No. 30 Systematic review on urine albumin testing for early detection of diabetic complications.

No. 31 Randomised controlled trial of the cost-effectiveness of water-based therapy for lower limb osteoarthritis.
By Cochrane T, Davey RC, Matthes Edwards SM.

No. 32 Longer term clinical and economic benefits of offering acupuncture care to patients with chronic low back pain.

No. 33 Cost-effectiveness and safety of epidural steroids in the management of sciatica.
By Price C, Arden N, Coglan L, Rogers P.

No. 34 The British Rheumatoid Outcome Study Group (BROSG) randomised controlled trial to compare the effectiveness and cost-effectiveness of aggressive versus symptomatic therapy in established rheumatoid arthritis.
By Symmons D, Tricker K, Roberts C, Davies L, Dawes P, Scott DL.

No. 35 Conceptual framework and systematic review of the effects of participants' and professionals' preferences in randomised controlled trials.

No. 36 The clinical and cost-effectiveness of implantable cardioverter defibrillators: a systematic review.
By Bryant J, Brodin H, Loveman E, Payne E, Clegg A.

No. 37 A trial of problem-solving by community mental health nurses for anxiety, depression and life difficulties among general practice patients. The CPN-GP study.

No. 38 The causes and effects of socio-demographic exclusions from clinical trials.

No. 39 Is hydrotherapy cost-effective? A randomised controlled trial of combined hydrotherapy programmes compared with physiotherapy land techniques in children with juvenile idiopathic arthritis.

No. 40 A randomised controlled trial and cost-effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in people aged 65 and over. The SAFE study.

No. 41 Displaced intracapsular hip fractures in fit, older people: a randomised comparison of reduction and fixation, bipolar hemiarthroplasty and total hip arthroplasty.
By Keating JF, Grant A, Masson M, Scott NW, Forbes JF.

No. 42 Long-term outcome of cognitive behaviour therapy clinical trials in central Scotland.

No. 43 The effectiveness and cost-effectiveness of dual-chamber pacemakers compared with single-chamber pacemakers for bradycardia due to atrioventricular block or sick sinus syndrome: systematic review and economic evaluation.
By Castelnuovo E, Stein K, Pitt M, Garside R, Payne E.

No. 44 Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis.

No. 45 The clinical and cost-effectiveness of left ventricular assist devices for end-stage heart failure: a systematic review and economic evaluation.

No. 46 The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma.
By Kwartz AJ, Henson DB, Harper RA, Spencer AF, McLeod D.

No. 47 Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation.

No. 48 Systematic review of effectiveness of different treatments for childhood retinoblastoma.

No. 49 Towards evidence-based guidelines for the prevention of venous thromboembolism: systematic reviews of mechanical methods, oral anticoagulation, dextran and regional anaesthesia as thromboprophylaxis.

No. 50 The effectiveness and cost-effectiveness of parent training/education programmes for the treatment of conduct disorder, including oppositional defiant disorder, in children.

Volume 10, 2006

No. 1 The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer's disease.

No. 2 FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke.
By Dennis M, Lewis S, Cranswick G, Forbes J.

No. 3 The clinical effectiveness and cost-effectiveness of computed tomography screening for lung cancer: systematic reviews.
No. 4
A systematic review of the effectiveness and cost-effectiveness of neuroimaging assessments used to visualise the seizure focus in people with refractory epilepsy being considered for surgery.

No. 5
Comparison of conference abstracts and presentations with full-text articles in the health technology assessments of rapidly evolving technologies.

By Dundar Y, Dodd S, Dickson R, Valley T, Haycox A, Williamson PR.

No. 6
Systematic review and evaluation of methods of assessing urinary incontinence.

No. 7

No. 8
Surveillance of Barrett’s oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling.

By Garside R, Pit M, Somerville M, Stein K, Price A, Gilbert N.

No. 9
Topotecan, pegylated liposomal doxorubicin hydrochloride and paclitaxel for second-line or subsequent treatment of advanced ovarian cancer: a systematic review and economic evaluation.

No. 10
Evaluation of molecular techniques in prediction and diagnosis of cytomegalovirus disease in immunocompromised patients.

By Szczepura A, Westmoreland D, Vinogradova Y, Fox J, Clark M.

No. 11

No. 12
A series of systematic reviews to inform a decision analysis for sampling and treating infected diabetic foot ulcers.

No. 13
Randomised clinical trial, observational study and assessment of cost-effectiveness of the treatment of varicose veins (REACTIV trial).

No. 14
The cost-effectiveness of screening for oral cancer in primary care.

By Speight PM, Palmer S, Moles DR, Downer MC, Smith DH, Henriksson M, et al.

No. 15

No. 16

No. 17
Randomised controlled trials of conventional antipsychotic versus new atypical drugs, and new atypical drugs versus clozapine, in people with schizophrenia responding poorly to, or intolerant of, current drug treatment.

By Lewis SW, Davies L, Jones PB, Barnes TRE, Murray RM, Kerwin R, et al.

No. 18
Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation.

No. 19
Cognitive behavioural therapy in addition to antipsychotic medication for borderline personality disorder in primary care: randomised controlled trial.

No. 20
A systematic review of the clinical effectiveness and cost-effectiveness of enzyme replacement therapies for Fabry’s disease and mucopolysaccharidosis type 1.

No. 21
Health benefits of antiarrhythmic therapy for mild chronic hepatitis C: randomised controlled trial and economic evaluation.

By Wright M, Grieve R, Roberts J, Main J, Thomas HC on behalf of the UK Mild Hepatitis C Trial Investigators.

No. 22
Pressure relieving support surfaces: a randomised evaluation.

No. 23
A systematic review and economic model of the effectiveness and cost-effectiveness of methylphenidate, dexamphetamine and atomoxetine for the treatment of attention deficit hyperactivity disorder in children and adolescents.

No. 24
The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher’s disease: a systematic review.

No. 25
Effectiveness and cost-effectiveness of salicylic acid and cryotherapy for cutaneous warts. An economic decision model.

No. 26
A systematic literature review of the effectiveness of non-pharmacological interventions to prevent wandering in people with dementia and evaluation of the ethical implications and acceptability of their use.

No. 27
A review of the evidence on the effects and costs of implantable cardioverter-defibrillator therapy in different patient groups, and modelling of cost-effectiveness and cost-utility for these groups in a UK context.

No. 28 Adenovirus dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.
 By Shepherd J, Jones J, Takeda A, Davidson P, Price A.

No. 29 An evaluation of the clinical and cost-effectiveness of pulmonary artery catheters in patient management in intensive care: a systematic review and a randomised controlled trial.
 By Harvey S, Stevens K, Harrison D, Young D, Brampton W, McCabe C, et al.

No. 30 Accurate, practical and cost-effective assessment of carotid stenosis in the UK.
 By Wardlaw JM, Chappell FM, Stevenson M, De Nigris E, Thomas S, Gillard J, et al.

No. 31 Etanercept and infliximab for the treatment of psoriatic arthritis: a systematic review and economic evaluation.

No. 32 The cost-effectiveness of testing for hepatitis C in former injecting drug users.

No. 33 Computerised cognitive behaviour therapy for depression and anxiety update: a systematic review and economic evaluation.

No. 34 Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

No. 35 Psychological therapies including dialectical behaviour therapy for borderline personality disorder: a systematic review and preliminary economic evaluation.

No. 36 Clinical effectiveness and cost-effectiveness of tests for the diagnosis and investigation of urinary tract infection in children: a systematic review and economic model.

No. 37 Cognitive behavioural therapy in chronic fatigue syndrome: a randomised controlled trial of an outpatient group programme.
 By O’Dowd H, Gladwell P, Rogers CA, Hollinghurst S, Gregory A.

No. 39 The effectiveness and cost-effectiveness of computed tomography screening for coronary artery disease: systematic review.
 By Waugh N, Black C, Walker S, McIntyre L, Cummins E, Hills G.

No. 40 What are the clinical outcome and cost-effectiveness of endoscopy undertaken by nurses when compared with doctors? A Multi-Institution Nurse Endoscopy Trial (MiNuET).

No. 41 The clinical and cost-effectiveness of oxaliplatin and capecitabine for the adjuvant treatment of colon cancer: systematic review and economic evaluation.
 By Pandor A, Eggington S, Paisley S, Tappenden P, Sutcliffe P.

No. 42 A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness.

No. 43 Telemedicine in dermatology: a randomised controlled trial.
 By Bows IR, Collins K, Walters SJ, McDonagh AJG.

No. 44 Cost-effectiveness of cell salvage and alternative methods of minimising perioperative alloimmune blood transfusion: a systematic review and economic model.

No. 45 Clinical effectiveness and cost-effectiveness of laparoscopic surgery for colorectal cancer: systematic reviews and economic evaluation.

No. 46 Etanercept and efalizumab for the treatment of psoriasis: a systematic review.

No. 47 Systematic reviews of clinical decision tools for acute abdominal pain.

No. 48 Evaluation of the ventricular assist device programme in the UK.

No. 50 Amniocentesis results: investigation of anxiety. The ARIA trial.

Volume 11, 2007

No. 1 Pemetrexed disodium for the treatment of malignant pleural mesothelioma: a systematic review and economic evaluation.

No. 2 A systematic review and economic model of the clinical effectiveness and cost-effectiveness of docetaxel in combination with prednisone or prednisolone for the treatment of hormone-refractory metastatic prostate cancer.

No. 3 A systematic review of rapid diagnostic tests for the detection of tuberculosis infection.

No. 4 The clinical effectiveness and cost-effectiveness of strontium ranelate for the prevention of osteoporotic fragility fractures in postmenopausal women.
 By Stevenson M, Davis S, Lloyd-Jones M, Beverley C.
No. 5
A systematic review of quantitative and qualitative research on the role and effectiveness of written information available to patients about individual medicines.

No. 6
Oral naltrexone as a treatment for relapse prevention in formerly opioid-dependent drug users: a systematic review and economic evaluation.

No. 7
Glucocorticoid-induced osteoporosis: a systematic review and cost-utility analysis.
By Kanis JA, Stevenson M, McCloskey EV, Davis S, Lloyd-Jones M.

No. 8
Epidemiological, social, diagnostic and economic evaluation of population screening for genital chlamydial infection.

No. 9
Methadone and buprenorphine for the management of opioid dependence: a systematic review and economic evaluation.

No. 10
Exercise Evaluation Randomised Trial (EXERT): a randomised trial comparing GP referral for leisure centre-based exercise, community-based walking and advice only.

No. 11
Interferon alfa (pegylated and non-pegylated) and ribavirin for the treatment of mild chronic hepatitis C: a systematic review and economic evaluation.
By Shepherd J, Jones J, Hartwell D, Davidson P, Price A, Waugh N.

No. 12
Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer.
By Tappenden P, Jones R, Paisley S, Carroll C.

No. 13
A systematic review and economic evaluation of epoetin alfa, epoetin beta and darbepoetin alfa in anaemia associated with cancer, especially that attributable to cancer treatment.

No. 14
A systematic review and economic evaluation of statins for the prevention of coronary events.

No. 15
A systematic review of the effectiveness and cost-effectiveness of different models of community-based respite care for frail older people and their carers.

No. 16
Additional therapy for young children with spastic cerebral palsy: a randomised controlled trial.
By Weindling AM, Cunningham CC, Glenn SM, Edwards RT, Reeves DJ.

No. 17
Screening for type 2 diabetes: literature review and economic modelling.

No. 18
The effectiveness and cost-effectiveness of cinacalcet for secondary hyperparathyroidism in end-stage renal disease patients on dialysis: a systematic review and economic evaluation.

No. 19
The clinical effectiveness and cost-effectiveness of gemcitabine for metastatic breast cancer: a systematic review and economic evaluation.
By Takeda AL, Jones J, Loveman E, Tan SC, Clegg AJ.

No. 20
A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease.

No. 21
The clinical effectiveness and cost-effectiveness of treatments for children with idiopathic steroid-resistant nephrotic syndrome: a systematic review.
By Colquitt JL, Kirby J, Green C, Cooper K, Trompeter RS.

No. 22
A systematic review of the routine monitoring of growth in children of primary school age to identify growth-related conditions.

No. 23
Systematic review of the effectiveness of preventing and treating Staphylococcus aureus carriage in reducing peritoneal catheter-related infections.

No. 24
The clinical effectiveness and cost of repetitive transcranial magnetic stimulation versus electroconvulsive therapy in severe depression: a multicentre pragmatic randomised controlled trial and economic analysis.

No. 25
A randomised controlled trial and economic evaluation of direct versus indirect and individual versus group modes of speech and language therapy for children with primary language impairment.
By Boyle J, McCartney E, Forbes J, O’Hare A.

No. 26
Hormonal therapies for early breast cancer: systematic review and economic evaluation.
By Hind D, Ward S, De Nigris E, Simpson E, Carroll C, Wyld L.

No. 27
Cardioprotection against the toxic effects of anthracyclines given to children with cancer: a systematic review.
By Bryant J, Picot J, Levitt G, Sullivan I, Baxter L, Clegg A.

No. 28
Adalimumab, etanercept and infliximab for the treatment of ankylosing spondylitis: a systematic review and economic evaluation.
No. 29
Prenatal screening and treatment strategies to prevent group B streptococcal and other bacterial infections in early infancy: cost-effectiveness and expected value of information analyses.

No. 30
Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review.

No. 31
A randomised controlled trial of postoperative radiotherapy following breast-conserving surgery in a minimum-risk older population: The PRIME trial.

No. 32
Current practice, accuracy, effectiveness and cost-effectiveness of the school entry hearing screen.

No. 33
The clinical effectiveness and cost-effectiveness of inhaled insulin in diabetes mellitus: a systematic review and economic evaluation.
By Black C, Cummins E, Royle P, Philip S, Waugh N.

No. 34
Surveillance of cirrhosis for hepatocellular carcinoma: systematic review and economic analysis.

No. 35
The Birmingham Rehabilitation Uptake Maximisation Study (BRUM): Home-based compared with hospital-based cardiac rehabilitation in a multi-ethnic population: cost-effectiveness and patient adherence.

No. 36
A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food.

No. 37
A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial.

No. 38
Clinical effectiveness and cost-effectiveness of different models of managing long-term oral anticoagulation therapy: a systematic review and economic modelling.

No. 39
A systematic review and economic model of the clinical effectiveness and cost-effectiveness of interventions for preventing relapse in people with bipolar disorder.

No. 40
Taxanes for the adjuvant treatment of early breast cancer: systematic review and economic evaluation.
By Ward S, Simpson E, Davis S, Hind D, Rees A, Wilkinson A.

No. 41
The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation.

No. 42
Acceptability, benefit and costs of early screening for hearing disability: a study of potential screening tests and models.
By Davis A, Smith P, Ferguson M, Stephens D, Gianopoulos I.

No. 43
Contamination in trials of educational interventions.

No. 44
Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers.
By Facey K, Bradbury I, Laking G, Payne E.

No. 45
The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

No. 46
Drug-eluting stents: a systematic review and economic evaluation.

No. 47
The clinical effectiveness and cost-effectiveness of cardiac resynchronisation (biventricular pacing) for heart failure: systematic review and economic model.

No. 48
Recruitment to randomised trials: strategies for trial enrolment and participation study. The STEPS study.
By Campbell MK, Snowdon C, Francis D, Elbourne D, McDonald AM, Knight R, et al.

No. 49
Cost-effectiveness of functional cardiac testing in the diagnosis and management of coronary artery disease: a randomised controlled trial. The CECA'T trial.

No. 50
Evaluation of diagnostic tests when there is no gold standard. A review of methods.
By Rutjes AWS, Reitsma JB, Coomarasamy A, Khan KS, Bossuyt PPM.

No. 51
Systematic reviews of the clinical effectiveness and cost-effectiveness of proton pump inhibitors in acute upper gastrointestinal bleeding.

No. 52
A review and critique of modelling in prioritising and designing screening programmes.

No. 53
An assessment of the impact of the NHS Health Technology Assessment Programme.
By Hanney S, Buxton M, Green C, Coulson D, Raftery J.

Volume 12, 2008

No. 1
A systematic review and economic model of switching from non-glycopeptide to glycopeptide antibiotic prophylaxis for surgery.
No. 2 'Cut down to quit' with nicotine replacement therapies in smoking cessation: a systematic review of effectiveness and economic analysis.

By Wang D, Connock M, Barton P, Fry-Smith A, Aveyard P, Moore D.

No. 3 A systematic review of the effectiveness of strategies for reducing fracture risk in children with juvenile idiopathic arthritis with additional data on long-term risk of fracture and cost of disease management.

No. 4 Does befriending by trained lay workers improve psychological well-being and quality of life for carers of people with dementia, and at what cost? A randomised controlled trial.

By Charlesworth G, Shepstone L, Wilson E, Thalanany M, Mugford M, Poland F.

No. 5 A multi-centre retrospective cohort study comparing the efficacy, safety and cost-effectiveness of hysterectomy and uterine artery embolisation for the treatment of symptomatic uterine fibroids. The HOPEFUL study.

No. 6 Methods of prediction and prevention of pre-eclampsia: systematic reviews of accuracy and effectiveness literature with economic modelling.

No. 7 The use of economic evaluations in NHS decision-making: a review and empirical investigation.

By Williams I, McIver S, Moore D, Bryan S.

No. 8 Stapled haemorrhoidectomy (haemorrhoidopexy) for the treatment of haemorrhoids: a systematic review and economic evaluation.

No. 9 The clinical effectiveness of diabetes education models for Type 2 diabetes: a systematic review.

By Loveman E, Frampton GK, Clegg AJ.

No. 10 Payment to healthcare professionals for patient recruitment to trials: systematic review and qualitative study.

By Raifery J, Bryant J, Powell J, Kerr C, Hawker S.

No. 11 Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation.

No. 12 The clinical effectiveness and cost-effectiveness of central venous catheters treated with anti-infective agents in preventing bloodstream infections: a systematic review and economic evaluation.

No. 13 Stepped treatment of older adults on laxatives. The STOOL trial.

No. 14 A randomised controlled trial of cognitive behaviour therapy in adolescents with major depression treated by selective serotonin reuptake inhibitors. The ADAPT trial.

No. 15 The use of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer: systematic review and economic evaluation.

By Hind D, Tappenden P, Tumur I, Eggington E, Sutchiffe P, Ryan A.

No. 16 Ranibizumab and pegaptanib for the treatment of age-related macular degeneration: a systematic review and economic evaluation.

No. 17 Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease.

No. 18 Structural neuroimaging in psychosis: a systematic review and economic evaluation.

No. 19 Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta(2) agonists for the treatment of chronic asthma in adults and children aged 12 years and over.

No. 20 Systematic review and economic analysis of the comparative effectiveness of different inhaled corticosteroids and their usage with long-acting beta(2) agonists for the treatment of chronic asthma in children under the age of 12 years.

No. 21 Ezetimibe for the treatment of hypercholesterolaemia: a systematic review and economic evaluation.

No. 22 Topical or oral ibuprofen for chronic knee pain in older people. The TOB study.

No. 23 A prospective randomised comparison of minor surgery in primary and secondary care. The MiSTIC trial.

No. 24 A review and critical appraisal of measures of therapist-patient interactions in mental health settings.

No. 25 The clinical effectiveness and cost-effectiveness of screening programmes for ambylopia and strabismus in children up to the age of 4–5 years: a systematic review and economic evaluation.

By Carlton J, Karm J, Czoski-Murray C, Smith KJ, Marr J.
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
Prioritisation Strategy Group

<table>
<thead>
<tr>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair, Professor Tom Walley, Director, NHS HTA Programme,</td>
</tr>
<tr>
<td>Department of Pharmacology & Therapeutics, University of Liverpool</td>
</tr>
<tr>
<td>Professor Bruce Campbell, Consultant Vascular & General Surgeon, Royal</td>
</tr>
<tr>
<td>Devon & Exeter Hospital</td>
</tr>
<tr>
<td>Professor Robin E. Ferner, Consultant Physician and Director, West</td>
</tr>
<tr>
<td>Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust,</td>
</tr>
<tr>
<td>Birmingham</td>
</tr>
<tr>
<td>Dr Edmund Jessop, Medical Adviser, National Specialist, Commissioning</td>
</tr>
<tr>
<td>Advisory Group (NSCAG), Department of Health, London</td>
</tr>
<tr>
<td>Professor Jon Nicholl, Director, Medical Care Research Unit,</td>
</tr>
<tr>
<td>University of Sheffield, School of Health and Related Research</td>
</tr>
<tr>
<td>Dr Ron Zimmern, Director, Public Health Genetics Unit, Strangeways</td>
</tr>
<tr>
<td>Research Laboratories, Cambridge</td>
</tr>
</tbody>
</table>

HTA Commissioning Board

<table>
<thead>
<tr>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme Director, Professor Tom Walley, Director, NHS HTA</td>
</tr>
<tr>
<td>Programme, Department of Pharmacology & Therapeutics, University of</td>
</tr>
<tr>
<td>Liverpool</td>
</tr>
<tr>
<td>Professor Deborah Ashby, Professor of Medical Statistics, Department</td>
</tr>
<tr>
<td>of Environmental and Preventative Medicine, Queen Mary University of</td>
</tr>
<tr>
<td>London</td>
</tr>
<tr>
<td>Professor Ann Bowling, Professor of Health Services Research, Primary</td>
</tr>
<tr>
<td>Care and Population Studies, University College London</td>
</tr>
<tr>
<td>Professor John Cairns, Professor of Health Economics, Public Health</td>
</tr>
<tr>
<td>Policy, London School of Hygiene and Tropical Medicine, London</td>
</tr>
<tr>
<td>Professor Nicky Callum, Director of Centre for Evidence Based Nursing,</td>
</tr>
<tr>
<td>Department of Health Sciences, University of York</td>
</tr>
<tr>
<td>Professor Jon Deeks, Professor of Health Statistics, University of</td>
</tr>
<tr>
<td>Birmingham</td>
</tr>
<tr>
<td>Professor Jenny Donovan, Professor of Social Medicine, Department of</td>
</tr>
<tr>
<td>Social Medicine, University of Bristol</td>
</tr>
<tr>
<td>Professor Freddie Hamdy, Professor of Urology, University of Sheffield</td>
</tr>
<tr>
<td>Professor Allan House, Professor of Liaison Psychiatry, University of</td>
</tr>
<tr>
<td>Leeds</td>
</tr>
<tr>
<td>Professor Sallie Lamb, Director, Warwick Clinical Trials Unit,</td>
</tr>
<tr>
<td>University of Warwick</td>
</tr>
<tr>
<td>Professor Stuart Logan, Director of Health & Social Care Research, The</td>
</tr>
<tr>
<td>Peninsula Medical School, Universities of Exeter & Plymouth</td>
</tr>
<tr>
<td>Professor Miranda Mugford, Professor of Health Economics, University of</td>
</tr>
<tr>
<td>East Anglia</td>
</tr>
<tr>
<td>Dr Linda Patterson, Consultant Physician, Department of Medicine,</td>
</tr>
<tr>
<td>Barnsley General Hospital</td>
</tr>
<tr>
<td>Professor Ian Roberts, Professor of Epidemiology & Public Health</td>
</tr>
<tr>
<td>Intervention Research Unit, London School of Hygiene and Tropical</td>
</tr>
<tr>
<td>Medicine</td>
</tr>
<tr>
<td>Professor Mark Sculpher, Professor of Health Economics, Centre for</td>
</tr>
<tr>
<td>Health Economics, Institute for Research in the Social Services,</td>
</tr>
<tr>
<td>University of York</td>
</tr>
<tr>
<td>Professor Kate Thomas, Professor of Complementary and Alternative</td>
</tr>
<tr>
<td>Medicine, University of Leeds</td>
</tr>
<tr>
<td>Professor David John Torgerson, Director of York Trial Unit,</td>
</tr>
<tr>
<td>Department of Health Sciences, University of York</td>
</tr>
<tr>
<td>Professor Hywel Williams, Professor of Dermato-Epidemiology, University</td>
</tr>
<tr>
<td>of Nottingham</td>
</tr>
</tbody>
</table>

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)

© Queen’s Printer and Controller of HMSO 2008. All rights reserved.
Diagnostic Technologies & Screening Panel

Members

Chair, Dr Ron Zimmern, Director of the Public Health Genetics Unit, Strangeways Research Laboratories, Cambridge

Ms Norma Armston, Freelance Consumer Advocate, Bolton

Professor Max Bachmann, Professor of Health Care Interfaces, Department of Health Policy and Practice, University of East Anglia

Professor Rudy Bilous, Professor of Clinical Medicine & Consultant Physician, The Academic Centre, South Tees Hospitals NHS Trust

Ms Dea Birkett, Service User Representative, London

Dr Paul Cockcroft, Consultant Medical Microbiologist and Clinical Director of Pathology, Department of Clinical Microbiology, St Mary's Hospital, Portsmouth

Professor Adrian K Dixon, Professor of Radiology, University Department of Radiology, University of Cambridge Clinical School

Dr David Elliman, Consultant in Community Child Health, Islington PCT & Great Ormond Street Hospital, London

Professor Glyn Eynon, Research Chair, Centre for Health Sciences Research, Cardiff University, Department of General Practice, Cardiff

Professor Paul Glasziou, Director, Centre for Evidence-Based Practice, University of Oxford

Ms Una Rennard, Service User Representative, Oxford

Dr Jennifer J Kurinczuk, Consultant Clinical Epidemiologist, National Perinatal Epidemiology Unit, Oxford

Dr Susanne M Ludgate, Clinical Director, Medicines & Healthcare Products Regulatory Agency, London

Mr Stephen Pilling, Director, Centre for Outcomes, Research & Effectiveness, Joint Director, National Collaborating Centre for Mental Health, University College London

Mrs Yoon Loke, Senior Lecturer in Clinical Pharmacology, University of East Anglia

Professor Adrian K Dixon, Professor of Radiology, University Department of Radiology, University of Cambridge Clinical School

Mrs Barbara Meredith, Lay Member, Epsom

Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician & Gynaecologist, Department of Obstetrics & Gynaecology, University of Cambridge

Dr Frances Rothblat, CPMP Delegate, Medicines & Healthcare Products Regulatory Agency, London

Dr Margaret Somerville, Director of Public Health Learning, Peninsula Medical School, University of Plymouth

Dr Graham Taylor, Scientific Director & Senior Lecturer, Regional DNA Laboratory, The Leeds Teaching Hospitals

Professor Lindsay Wilson Turnbull, Scientific Director, Centre for MR Investigations & YCR Professor of Radiology, University of Hull

Professor Martin J Whittle, Clinical Co-director, National Co-ordinating Centre for Women’s and Child Health

Dr Dennis Wright, Consultant Biochemist & Clinical Director, The North West London Hospitals NHS Trust, Middlesex

Pharmaceuticals Panel

Members

Chair, Professor Robin Ferner, Consultant Physician and Director, West Midlands Centre for Adverse Drug Reactions, City Hospital NHS Trust, Birmingham

Ms Anne Baileff, Consultant Nurse in First Contact Care, Southampton City Primary Care Trust, University of Southampton

Professor Imti Choonara, Professor in Child Health, Academic Division of Child Health, University of Nottingham

Professor John Geddes, Professor of Epidemiological Psychiatry, University of Oxford

Mrs Barbara Greggains, Non-Executive Director, Greggains Management Ltd

Dr Bill Gutteridge, Medical Adviser, National Specialist Commissioning Advisory Group (NSCAG), London

Dr Jonathan Karnon, Senior Research Fellow, Health Economics and Decision Science, University of Sheffield

Ms Barbara Meredith, Lay Member, Epsom

Dr Andrew Prentice, Senior Lecturer and Consultant Obstetrician & Gynaecologist, Department of Obstetrics & Gynaecology, University of Cambridge

Dr Frances Rothblat, CPMP Delegate, Medicines & Healthcare Products Regulatory Agency, London

Dr Martin Shelly, General Practitioner, Leeds

Mrs Katrina Simister, Assistant Director New Medicines, National Prescribing Centre, Liverpool

Dr Richard Tiner, Medical Director, Medical Department, Association of the British Pharmaceutical Industry, London

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)
Therapeutic Procedures Panel

Members

Chair,
Professor Bruce Campbell, Consultant Vascular and General Surgeon, Department of Surgery, Royal Devon & Exeter Hospital

Professor Matthew Cooke, Professor of Emergency Medicine, Warwick Emergency Care and Rehabilitation, University of Warwick

Mr Mark Emberton, Senior Lecturer in Oncological Urology, Institute of Urology, University College Hospital

Professor Paul Gregg, Professor of Orthopaedic Surgical Science, Department of General Practice and Primary Care, South Tees Hospital NHS Trust, Middlesbrough

Ms Maryann L Hardy, Lecturer, Division of Radiography, University of Bradford

Dr Simon de Lusignan, Senior Lecturer, Primary Care Informatics, Department of Community Health Sciences, St George’s Hospital Medical School, London

Dr Peter Martin, Consultant Neurologist, Addenbrooke’s Hospital, Cambridge

Professor Neil McIntosh, Edward Clark Professor of Child Life & Health, Department of Child Life & Health, University of Edinburgh

Professor Jim Neilson, Professor of Obstetrics and Gynaecology, Department of Obstetrics and Gynaecology, University of Liverpool

Dr John C Bunsford, Consultant Physician, Directorate of Medical Services, North Bristol NHS Trust

Dr Karen Roberts, Nurse Consultant, Queen Elizabeth Hospital, Gateshead

Dr Vimal Sharma, Consultant Psychiatrist/Hon. Senior Lecturer, Mental Health Resource Centre, Cheshire and Wirral Partnership NHS Trust, Wallasey

Professor Scott Weich, Professor of Psychiatry, Division of Health in the Community, University of Warwick

Dr Mahmood Adil, Deputy Regional Director of Public Health, Department of Health, Manchester

Dr Aileen Clarke, Consultant in Public Health, Public Health Resource Unit, Oxford

Mrs Sheila Clark, Chief Executive, St James's Hospital, Portsmouth

Mr Richard Copeland, Lead Pharmacist: Clinical Economy/Interface, Wansbeck General Hospital, Northumberland

Dr Edmund Jessop, Medical Adviser, National Specialist Commissioning Advisory Group (NSCAG), London

Dr Elizabeth Fellow-Smith, Medical Director, West London Mental Health Trust, Middlesx

Mr Ian Flack, Director PPI Forum Support, Council of Ethnic Minority Voluntary Sector Organisations, Stratford

Dr John Jackson, General Practitioner, Newcastle upon Tyne

Mrs Veronica James, Chief Officer, Horsham District Age Concern, Horsham

Professor Mike Kelly, Director, Centre for Public Health Excellence, National Institute for Health and Clinical Excellence, London

Professor Yi Mien Koh, Director of Public Health and Medical Director, London NHS (North West London Strategic Health Authority), London

Ms Jeanett Martin, Director of Clinical Leadership & Quality, Lewisham PCT, London

Dr Chris McCall, General Practitioner, Dorset

Dr David Pencheon, Director, Eastern Region Public Health Observatory, Cambridge

Dr Ken Stein, Senior Clinical Lecturer in Public Health, Director, Peninsula Technology Assessment Group, University of Exeter, Exeter

Dr Carol Tamahill, Director, Glasgow Centre for Population Health, Glasgow

Professor Margaret Thorogood, Professor of Epidemiology, University of Warwick, Coventry

Dr Ewan Wilkinson, Consultant in Public Health, Royal Liverpool University Hospital, Liverpool

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)
Expert Advisory Network

Members

Professor Douglas Altman,
Professor of Statistics in Medicine, Centre for Statistics in Medicine, University of Oxford

Professor John Bond,
Director, Centre for Health Services Research, University of Newcastle upon Tyne, School of Population & Health Sciences, Newcastle upon Tyne

Professor Andrew Bradbury,
Professor of Vascular Surgery, Solihull Hospital, Birmingham

Mr Shaun Brogan,
Chief Executive, Ridgeway Primary Care Group, Aylesbury

Mrs Stella Burnside OBE,
Chief Executive, Regulation and Improvement Authority, Belfast

Ms Tracy Bury,
Project Manager, World Confederation for Physical Therapy, London

Professor Iain T Cameron,
Professor of Obstetrics and Gynaecology and Head of the School of Medicine, University of Southampton

Dr Christine Clark,
Medical Writer & Consultant Pharmacist, Rossendale

Professor Collette Clifford,
Professor of Nursing & Head of Research, School of Health Sciences, University of Birmingham, Edgbaston, Birmingham

Professor Barry Cookson,
Director, Laboratory of Healthcare Associated Infection, Health Protection Agency, London

Dr Carl Counsell,
Clinical Senior Lecturer in Neurology, Department of Medicine & Therapeutics, University of Aberdeen

Professor Howard Cuckle,
Professor of Reproductive Epidemiology, Department of Paediatrics, Obstetrics & Gynaecology, University of Leeds

Dr Katherine Darton,
Information Unit, MIND – The Mental Health Charity, London

Professor Carol Dezateux,
Professor of Paediatric Epidemiology, London

Dr Keith Dodd, Consultant Paediatrician, Derby

Mr John Dunning,
Consultant Cardiothoracic Surgeon, Cardiothoracic Surgical Unit, Papworth Hospital NHS Trust, Cambridge

Mr Jonathan Earnshaw,
Consultant Vascular Surgeon, Gloucestershire Royal Hospital, Gloucester

Professor Martin Eccles,
Professor of Clinical Effectiveness, Centre for Health Services Research, University of Newcastle upon Tyne

Professor Pam Enderby,
Professor of Community Rehabilitation, Institute of General Practice and Primary Care, University of Sheffield

Professor Gene Feder, Professor of Primary Care Research & Development, Centre for Health Sciences, Barts & The London

Queen Mary’s School of Medicine & Dentistry, London

Mr Leonard R Fenwick,
Chief Executive, Newcastle upon Tyne Hospitals NHS Trust

Mrs Gillian Fletcher,
Antenatal Teacher & Tutor and President, National Childbirth Trust, Henfield

Professor Jayne Franklyn,
Professor of Medicine, Department of Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, Birmingham

Dr Neville Goodman,
Consultant Anaesthetist, Southmead Hospital, Bristol

Professor Robert E Hawkins,
CRC Professor and Director of Medical Oncology, Christie CRC Research Centre, Christie Hospital NHS Trust, Manchester

Professor Allen Hutchinson,
Director of Public Health & Deputy Dean of SchHARR, Department of Public Health, University of Sheffield

Professor Peter Jones, Professor of Psychiatry, University of Cambridge, Cambridge

Professor Stan Kaye, Cancer Research UK Professor of Medical Oncology, Section of Medicine, Royal Marsden Hospital & Institute of Cancer Research, Surrey

Dr Duncan Keeley,
General Practitioner (Dr Burch & Pinn), The Health Centre, Thame

Dr Donna Lamping,
Research Degrees Programme Director & Reader in Psychology, Health Services Research Unit, London School of Hygiene and Tropical Medicine, London

Mr George Levy,
Chief Executive, Motor Neurone Disease Association, Northampton

Professor James Lindesay,
Professor of Psychiatry for the Elderly, University of Leicester, Leicester General Hospital

Professor Julian Little,
Professor of Human Genome Epidemiology, Department of Epidemiology & Community Medicine, University of Ottawa

Professor Rajan Madhok,
Consultant in Public Health, South Manchester Primary Care Trust, Manchester

Professor Alexander Markham,
Director, Molecular Medicine Unit, St James’s University Hospital, Leeds

Professor Alistaire McGuire,
Professor of Health Economics, London School of Economics

Dr Peter Moore,
Freelance Science Writer, Ashtead

Dr Andrew Mortimore, Public Health Director, Southampton City Primary Care Trust, Southampton

Dr Sue Moss, Associate Director, Cancer Screening Evaluation Unit, Institute of Cancer Research, Sutton

Mrs Julietta Patnick,
Director, NHS Cancer Screening Programmes, Sheffield

Professor Robert Peveler,
Professor of Liaison Psychiatry, Royal South Hants Hospital, Southampton

Professor Chris Price,
Visiting Professor in Clinical Biochemistry, University of Oxford

Professor William Rosenberg,
Professor of Hepatology and Consultant Physician, University of Southampton, Southampton

Professor Peter Sanderson,
Professor of Medical Neurology, Department of Clinical Neurosciences, University of Edinburgh

Dr Susan Schonfeld, Consultant in Public Health, Hillingdon PCT, Middlesex

Dr Eamonn Sheridan,
Consultant in Clinical Genetics, Genetics Department, St James’s University Hospital, Leeds

Professor Sarah Stewart-Brown,
Professor of Public Health, University of Warwick, Division of Health in the Community Warwick Medical School, IWMW, Coventry

Professor Ala Szczepura,
Professor of Health Service Research, Centre for Health Services Studies, University of Warwick

Dr Ross Taylor,
Senior Lecturer, Department of General Practice and Primary Care, University of Aberdeen

Mrs Joan Webster,
Consumer member, HTA – Expert Advisory Network

Current and past membership details of all HTA ‘committees’ are available from the HTA website (www.hta.ac.uk)
How to obtain copies of this and other HTA Programme reports.

An electronic version of this publication, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (http://www.hta.ac.uk). A fully searchable CD-ROM is also available (see below).

Printed copies of HTA monographs cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our Despatch Agents.

Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per monograph and for the rest of the world £3 per monograph.

You can order HTA monographs from our Despatch Agents:

- fax (with credit card or official purchase order)
- post (with credit card or official purchase order or cheque)
- phone during office hours (credit card only).

Additionally the HTA website allows you either to pay securely by credit card or to print out your order and then post or fax it.

Contact details are as follows:

HTA Despatch
c/o Direct Mail Works Ltd
4 Oakwood Business Centre
Downley, HAVANT PO9 2NP, UK
Tel: 02392 492 000
Fax: 02392 478 555
Email: orders@hta.ac.uk
Fax from outside the UK: +44 2392 478 555

NHS libraries can subscribe free of charge. Public libraries can subscribe at a very reduced cost of £100 for each volume (normally comprising 30–40 titles). The commercial subscription rate is £300 per volume. Please see our website for details. Subscriptions can only be purchased for the current or forthcoming volume.

Payment methods

Paying by cheque
If you pay by cheque, the cheque must be in pounds sterling, made payable to Direct Mail Works Ltd and drawn on a bank with a UK address.

Paying by credit card
The following cards are accepted by phone, fax, post or via the website ordering pages: Delta, Eurocard, Mastercard, Solo, Switch and Visa. We advise against sending credit card details in a plain email.

Paying by official purchase order
You can post or fax these, but they must be from public bodies (i.e. NHS or universities) within the UK. We cannot at present accept purchase orders from commercial companies or from outside the UK.

How do I get a copy of HTA on CD?

Please use the form on the HTA website (www.hta.ac.uk/htacd.htm). Or contact Direct Mail Works (see contact details above) by email, post, fax or phone. HTA on CD is currently free of charge worldwide.

The website also provides information about the HTA Programme and lists the membership of the various committees.
A preliminary model-based assessment of the cost–utility of a screening programme for early age-related macular degeneration

J Karnon, C Czoski-Murray, K Smith, C Brand, U Chakravarthy, S Davis, N Bansback, C Beverley, A Bird, S Harding, I Chisholm and YC Yang

June 2008