

Boolean Weightless Neural Network
Architectures

BY

James Robert Armstrong

A thesis submitted in partial fulfilment for the
requirements of the degree of

DOCTOR OF PHILOSOPHY

April 2011

The research work presented in this thesis was carried out in the
Applied Digital Signal and Image Processing (ADSIP) Centre,

School of Computing, Engineering and Physical Sciences,
University of Central Lancashire

in collaboration with
BAE SYSTEMS

Student Declaration

 Concurrent registration for two or more academic awards

Either *I declare that while registered as a candidate for the research degree, I have not

been a registered candidate or enrolled student for another award of the University or
other academic or professional institution

or *I declare that while registered for the research degree, I was with the University's

specific permission, a *registered candidate/*enrolled student for the following
award:

 __

 Material submitted for another award

Either *I declare that no material contained in the thesis has been used in any other

submission for an academic award and is solely my own work.

or *I declare that the following material contained in the thesis formed part of a

submission for the award of

 (state award and awarding body and list the material below):

 Collaboration

 Where a candidate’s research programme is part of a collaborative project, the thesis

must indicate in addition clearly the candidate’s individual contribution and the extent
of the collaboration. Please state below

Signature of Candidate __

Type of Award ___

School ___

Dedicated to my wife and family,
for their support and trust

Acknowledgements

I owe my deepest gratitude to my Director of Studies, Dr Simon Platt, and my Second

Supervisors, Dr Doug King and Ian MacDiarmid for their support, valuable advice and

encouragement. Special thanks to Doug King for the technical discussions which often

sparked new ideas.

I thank BAE SYSTEMS for supporting this collaborative venture with the University of

Central Lancashire. Special thanks are due to:-

 Mark Ford and Andrew Cassie for supporting this research.

 Nick Jaques, for laying out the printed circuit boards.

 William Barlow for his assistance producing some of the diagrams incorporated in

this work and proof reading.

 Martin MacLean for managing the patent process and liaising with the University of

Central Lancashire with respect to the Intellectual Property Rights.

 BAE SYSTEMS Technical Information Centre; especially Claire, Maureen and

Julie.

I thank William Newell, patent agent, for his contribution to the patent process.

I also thank my academic advisor, Professor Jim Austin, University of York, for

discussions, visits to his laboratory and constructive criticism.

Abstract

A collection of hardware weightless Boolean elements has been developed. These form

fundamental building blocks which have particular pertinence to the field of weightless

neural networks. They have also been shown to have merit in their own right for the

design of robust architectures.

A major element of this is a collection of weightless Boolean sum and threshold

techniques. These are fundamental building blocks which can be used in weightless

architectures particularly within the field of weightless neural networks. Included in

these is the implementation of L-max also known as N point thresholding. These

elements have been applied to design a Boolean weightless hardware version of

Austin’s ADAM neural network. ADAM is further enhanced by the addition of a new

learning paradigm, that of non-Hebbian Learning. This new method concentrates on the

association of ‘dis-similarity’, believing this is as important as areas of similarity.

Image processing using hardware weightless neural networks is investigated through

simulation of digital filters using a Type 1 Neuroram neuro-filter. Simulations have

been performed using MATLAB to compare the results to a conventional median filter.

Type 1 Neuroram has been tested on an extended collection of noise types. The

importance of the threshold has been examined and the effect of cascading both types of

filters was examined.

This research has led to the development of several novel weightless hardware elements

that can be applied to image processing. These patented elements include a weightless

thermocoder and two weightless median filters. These novel robust high speed

weightless filters have been compared with conventional median filters.

The robustness of these architectures has been investigated when subjected to

accelerated ground based generated neutron radiation simulating the atmospheric

radiation spectrum experienced at commercial avionic altitudes. A trial investigating

the resilience of weightless hardware Boolean elements in comparison to standard

weighted arithmetic logic is detailed, examining the effects on the operation of the

function when implemented on hardware experiencing high energy neutron

bombardment induced single event effects.

Further weightless Boolean elements are detailed which contribute to the development

of a weightless implementation of the traditionally weighted self ordered map.

vii

Contents

Chapter 1 ... 1

1 Introduction .. 1

1.1 Weighted Boolean Logic .. 1

1.2 Weightless Logic .. 1

1.3 Avionic Systems ... 2

1.4 Atmospheric Radiation ... 2

1.5 Cosmic Radiation Effects on Avionic Components ... 4

1.6 Research in this Field ... 6

1.7 Weightless Neural Networks .. 7

1.8 Areas for Development .. 8

1.8.1 ADAM .. 8

1.8.2 Neuroram... 8

1.8.3 Conversion of Weighted Neural Networks to Weightless Architectures 9

1.8.4 Robustness of Weightless Boolean Architectures....................................... 9

1.8.5 Implementation of Standard Architectures in Weightless Boolean Logic .. 9

1.9 Research Objectives ... 10

1.10 Overview of the Thesis ... 11

1.10.1 Chapter 2 A Chronological History of Weightless Neural Networks 11

1.10.2 Chapter 3 A New Weightless Boolean ADAM and Non - Hebbian

Learning 11

1.10.3 Chapter 4 Hardware Weightless Boolean Median Filters 12

1.10.4 Chapter 5 Performance of Weightless Neural Network Image Filters 13

1.10.5 Chapter 6 Boolean Weightless Self Ordered Map 13

1.10.6 Chapter 7 Summary and Conclusions .. 14

1.10.7 Chapter 8 Further Work ... 15

1.10.8 Appendices .. 15

Chapter 2 ... 17

viii

2 A Chronological History of Hardware Weightless Neural Networks 17

2.1 Overview .. 17

2.2 Boolean Logic .. 17

2.3 The McCulloch and Pitts Neuron Models .. 18

2.4 Inhibition of the Neuron ... 18

2.4.1 Absolute Inhibition ... 19

2.4.2 Relative Inhibition ... 19

2.4.3 The Common McCulloch and Pitts Model ... 20

2.4.4 A Mathematical Model for the McCulloch and Pitts Neuron. 20

2.5 Hebbian Learning ... 21

2.6 The First Hardware Weightless Neural Network ... 22

2.7 Correlation Matrix Memory ... 23

2.8 WISARD .. 26

2.9 ADAM .. 29

2.10 AURA ... 32

2.11 Cortex ... 34

2.12 Neuroram .. 34

Chapter 3 ... 37

3 A New Weightless Boolean ADAM and Non-Hebbian Learning 37

3.1 Introduction .. 37

3.2 Design and Test Philosophy ... 37

3.3 Neuromorph Board ... 38

3.4 Sum and Threshold ... 40

3.5 King’s Weightless Thermocoder .. 42

3.6 A Serial Weightless Thermocoder ... 42

3.7 CMM Learning ... 47

3.8 The Performance of CMM as Neural Memory .. 48

3.9 A New Learning Paradigm of Non-Hebbian Learning 48

3.9.1 Traditional Hebbian Learning ... 49

3.9.2 ‘NOR’ Gate Implementation ... 50

3.9.3 Difference Learning .. 50

3.10 A Weightless ADAM Architecture .. 51

ix

3.11 A Weightless Boolean Willshaw Threshold Element 52

3.12 A Weightless Boolean N Point Threshold Element ... 53

3.13 Implementation of a Weightless Boolean ADAM Architecture 54

3.13.1 Simulation of the ADAM Network ... 56

3.13.2 Simulation of the ADAM Network in Appendix D 60

3.13.3 Summary of Chapter 3 .. 60

Chapter 4 ... 61

4 Hardware Weightless Boolean Median Filters .. 61

4.1 Overview .. 61

4.2 Median Filtering ... 61

4.2.1 Operation of the Median Filter .. 61

4.3 Novel Techniques for Median Filtering ... 62

4.3.1 Weightless Ordering.. 63

4.3.1.1 Shortcomings of Weightless Ordering ... 64

4.3.1.2 Contributions of the Tagging Method ... 64

4.3.1.3 The Implementation of the Tagging Technique 65

4.4 A Novel Boolean Weightless Median Filter .. 69

4.5 A High Speed Weighted Binary to Thermocode Converter 73

4.5.1 A Parallel Weighted Binary to Thermocoder.. 74

4.6 Evaluation of a Weightless Swap Element in a High Neutron Flux

Environment .. 75

4.6.1 Initial Trials with the Median Filter .. 75

4.7 The Weightless and Weighted Swap Element Trial ... 77

4.8 Test Philosophy .. 77

4.8.1 Test Facilities .. 77

4.8.1.1 Theodor Svedberg Laboratory ... 77

4.8.1.2 Tri-University Meson Facility (TRIUMF) .. 80

4.8.1.3 The Architecture for Neutron Trials .. 83

4.9 Test Architecture Descriptions ... 84

4.9.1 Weightless architecture ... 84

4.10 Weighted architecture ... 87

4.11 Test Set and Test Program .. 88

x

4.12 Analysis of the Data ... 89

4.12.1 Establishing Neutron Fluence ... 89

4.13 Conclusions .. 92

4.14 Summary of Chapter 4 ... 92

Chapter 5 ... 94

5 Performance of Weightless Neural Network Image Filters 94

5.1 Overview .. 94

5.2 Reference Images ... 94

5.3 Noise Types .. 96

5.3.1 Additive Gaussian Noise ... 97

5.3.2 Additive Uniform Noise .. 97

5.3.3 Multiplicative Gaussian Noise .. 97

5.3.4 Multiplicative Uniform Noise ... 97

5.3.5 Salt and Pepper Noise ... 98

5.4 Evaluation Criteria ... 104

5.4.1 Additive Gaussian Noise Filter Results .. 106

5.4.2 Additive Uniform Noise Filter Results ... 109

5.4.3 Multiplicative Gaussian Noise Filter Results .. 112

5.4.4 Multiplicative Uniform Noise Filter Results... 115

5.4.5 Salt and Pepper Noise Filter Results ... 119

5.5 Cascade Filter ... 123

5.6 Threshold Assessment .. 132

Chapter 6 ... 142

6 Boolean Weightless Self Ordered Map ... 142

6.1 Overview .. 142

6.2 The History of the Self Ordered Map ... 142

6.3 Learning Types ... 142

6.4 Operation of the Self Ordered Map .. 143

6.5 Algorithmic Equations for the Implementation of the SOM 147

6.6 Applications of the Self Ordered Map ... 148

6.7 The Weightless Self Ordered Map ... 148

xi

6.8 Self Ordered Map Elements ... 155

6.9 Simulation Results .. 155

6.10 Summary of Chapter 6 ... 160

Chapter 7 ... 161

7 Summary and Conclusions .. 161

7.1 Overview .. 161

7.2 Objectives ... 161

7.3 Summary of Chapters ... 162

7.4 Original Contributions .. 166

7.4.1 Robustness to Corruption .. 166

7.4.2 Production of a Weightless Median Filter .. 166

7.4.3 Neuroram as an Image Filter ... 166

7.4.4 Sum and Threshold Elements.. 166

7.4.5 Non-Hebbian Learning.. 167

7.4.6 ADAM .. 167

7.4.7 Self Ordered Map .. 167

Chapter 8 ... 168

8 Further Work.. 168

8.1 Neuroram .. 168

8.2 Weightless Neural Element Properties ... 168

8.3 Non-Hebbian Techniques ... 168

8.4 ADAM .. 169

8.5 Weightless Self Ordered Map .. 169

8.6 Weightless Boolean Elements .. 169

References ... 170

Appendices .. 180

Appendix A ... A-1

Appendix B ... B-1

Appendix C ... C-1

Appendix D ... D-1

xii

List of Figures

Figure 1.1 A Diagram of the Primary Cosmic Rays Interacting with Air Molecules 3

Figure 1.2 A Graph of Neutron Flux with Relationship to Altitude 4

Figure 1.3 An Illustration of an Atmospheric Neutron Interacting with Silicon 5

Figure 2.1 McCulloch and Pitts Neuron .. 18

Figure 2.2 A McCulloch and Pitts Neuron with Absolute Inhibition 19

Figure 2.3 A McCulloch and Pitts Neuron with Relative Inhibition 20

Figure 2.4 The Common McCulloch and Pitts Model ... 20

Figure 2.5 Example of the Bledsoe and Browning Technique 22

Figure 2.6 Die Lernmatrix ... 24

Figure 2.7 A Fused Adaptive Element ... 26

Figure 2.8 A RAM Discriminator .. 27

Figure 2.9 A Multi-Discriminator with Associated Response 28

Figure 2.10 A Block Diagram of the ADAM Architecture ... 30

Figure 2.11 The First Correlation Matrix Memory with ADAM................................... 31

Figure 2.12 A Correlation Matrix Memory Containing Trained Data 32

Figure 2.13 A Block Diagram of AURA ... 33

Figure 2.14 A Block Diagram of Neuroram .. 35

Figure 3.1 The Neuromorph Board Designed by the Author... 39

Figure 3.2 An Overview of the Neuromorph Board .. 40

Figure 3.3 The Weightless Thermocoder ... 42

Figure 3.4 Initial Condition .. 43

Figure 3.5 Input of Logic High ‘1’ Being Input to the Thermocoder 44

Figure 3.6 Input of Logic High‘1’ Implemented and Input of Logic Low ‘0’ 44

Figure 3.7 A Logical Implementation of Weightless Thermocoder 45

Figure 3.8 Less Than or Equal to Comparator ... 46

Figure 3.9 Greater than or Equal to Comparator.. 47

Figure 3.10 The Logic at the Intersections of the Correlation Matrix Memory 47

Figure 3.11 Willshaw Thresholding ... 52

Figure 3.12 Weightless N Point Thresholding ... 53

Figure 3.13 A Block Diagram of ADAM .. 54

Figure 3.14 A Diagram of the Weightless Boolean Willshaw Threshold on a CMM ... 55

xiii

Figure 3.15 A Diagram of the Weightless Boolean N point Threshold on a CMM 56

Figure 3.16 A Weightless Example of the ADAM Network ... 57

Figure 3.17 A Weightless Example of N Point Thresholding 58

Figure 3.18 A Weightless Example of Willshaw Thresholding 59

Figure 4.1 Milk Drop Image with 2 Dimensional 3 by 3 Matrix Window 62

Figure 4.2 Typical Input Data .. 63

Figure 4.3 Weightless Data after Horizontal Thermocoding ... 63

Figure 4.4 Weightless Data after Horizontal and Vertical Thermocoding 64

Figure 4.5 An Example of Wrong Positional Assignment ... 65

Figure 4.6 New Result for the First Value ... 66

Figure 4.7 New Result for the Second Value ... 67

Figure 4.8 New Result for the Third Value.. 68

Figure 4.9 An Example of a Weightless Type 2 Median Filter Architecture 70

Figure 4.10 Logic Diagram of a Weightless Swap Block .. 71

Figure 4.11 Minimal Weightless Median Filter Architecture .. 72

Figure 4.12 TSL Blue Hall – Looking Down the Beam Line 78

Figure 4.13 One of the Counting Rooms at TSL ... 79

Figure 4.14 A Block Diagram of the TSL Test System Layout 79

Figure 4.15 TRIUMF at the University of British Columbia.. 80

Figure 4.16 TRIUMF NIF Buried in the Isotope Production Facility 80

Figure 4.17 TRIUMF NIF Slot and an Example Test Board on Slider Plate 81

Figure 4.18 The Test System for Mounting on the Assembly for TRIUMF 82

Figure 4.19 A Block Diagram of the TRIUMF Test System Layout............................. 83

Figure 4.20 Swap Block Architecture with the FPGA Device 84

Figure 4.21 Weightless Swap Block Architecture Usage Report 84

Figure 4.22 Weightless Swap Architecture .. 85

Figure 4.23 Thermocoder Structure .. 86

Figure 4.24 Weighted Swap Architecture ... 87

Figure 4.25 Shows the Weighted Swap Block Architecture Mapping 87

Figure 4.26 Weighted Swap Block Architecture Usage Report 88

Figure 4.27 Test Set Block Diagram .. 88

Figure 4.28 Occurrence versus Divergence of Error ... 92

Figure 5.1 Reference Image F-16... 95

Figure 5.2 Reference Image Milk Drop ... 95

Figure 5.3 Reference Image LAX .. 96

xiv

Figure 5.4 MATLAB Greyscale Image with Different Noise Types Added 99

Figure 5.5 (a) Shows a Histogram of MATLAB Greyscale Image, (b, c, d, e, f) Show

Histograms of the Greyscale Following the Corruption with the Stated Different Noise

Types ... 100

Figure 5.6 A Close Up View of the Multiplicative Uniform Histogram 101

Figure 5.7 A Close up View of the Multiplicative Gaussian Noise Histograms 101

Figure 5.8 Histogram of the F-16 Image with the Different Noise Types Added 102

Figure 5.9 Histogram of the LAX Image with the Different Noise Types Added....... 103

Figure 5.10 Histogram of the Milkdrop Image with the Different Noise Types Added

 ... 104

Figure 5.11 Images of F-16 Reference with 20% Additive Gaussian Noise and Filtered

Images ... 107

Figure 5.12 Graphs of MSE and PSNR for Median Filter and Neurofilter on Additive

Gaussian Noise .. 108

Figure 5.13 Images of Milk Drop reference with 20% additive uniform noise and

filtered images ... 110

Figure 5.14 Graphs of MSE and PSNR for Median Filter and Neurofilter on Additive

Uniform Noise ... 111

Figure 5.15 Images of LAX Reference with 20% Multiplicative Gaussian Noise and

Filtered Images .. 113

Figure 5.16 Graphs of MSE and PSNR for Median Filter and Neurofilter on

Multiplicative Gaussian Noise .. 114

Figure 5.17 Images of F-16 Reference with 20% Multiplicative Uniform Noise and

Filtered Images .. 116

Figure 5.18 Graphs of MSE and PSNR for Median Filter and Neurofilter on

Multiplicative Uniform Noise ... 118

Figure 5.19 Images of Milk Drop Reference with 20% Salt and Pepper Noise and

Filtered Images .. 120

Figure 5.20 Graphs of MSE and PSNR for Median Filter and Neurofilter on Salt and

Pepper Noise ... 121

Figure 5.21 MSE and PSNR Results for Cascade of Median Filters and Neurofilters on

Milk Drop with 20% Added Salt and Pepper Noise ... 126

Figure 5.22 Cascade of Median Filters on Milk Drop with 20% Added Salt and Pepper

Noise ... 127

5.23 Cascade of Neurofilters on Milk Drop with 20% Added Salt and Pepper Noise . 128

xv

Figure 5.24 MSE and PSNR results for Cascade of Median Filters and Neurofilters on

Milk Drop with 30% Added Salt and Pepper Noise ... 129

Figure 5.25 Cascade of Median Filters on Milk Drop with 30% Added Salt and Pepper

Noise ... 130

Figure 5.26 Cascade of Neurofilters on Milk Drop with 30% Added Salt and Pepper

Noise ... 131

Figure 5.27 MSE and PSNR for Filter Thresholds on LAX Image with 20% Additive

Gaussian Noise .. 134

Figure 5.28 Filtered LAX Image with 20% Additive Gaussian Noise with Different

Thresholds ... 134

Figure 5.29 MSE and PSNR for Filter Thresholds on Milk Drop Image with 20%

Multiplicative Uniform Noise ... 136

Figure 5.30 Filtered Milk Drop Image with 20% Multiplicative Uniform Noise using

Different Thresholds ... 136

Figure 5.31 MSE and PSNR for Filter Thresholds on Milk Drop Image with 40%

Multiplicative Uniform Noise ... 138

Figure 5.32 Filtered Milk Drop Image with 40% Multiplicative Uniform Noise using

Different Thresholds ... 138

Figure 5.33 MSE and PSNR for Filter Thresholds on Milk Drop Image with 20% Salt

and Pepper Noise... 140

Figure 5.34 Filtered Milk Drop Image with 20% Salt and Pepper Noise using Different

Thresholds ... 140

Figure 6.1 Initial Response to Input Pattern 0111.. 143

Figure 6.2 Initial Response to Input Pattern 1001.. 144

Figure 6.3 Training Neuron 8... 145

Figure 6.4 Response after Training on Pattern 0111.. 145

Figure 6.5 Training Neuron 1... 146

Figure 6.6 Training Neuron 2... 146

Figure 6.7 Weightless Boolean Selector .. 149

Figure 6.8 Weightless Boolean Selector with Offset .. 150

Figure 6.9 Weightless Boolean Expander .. 151

Figure 6.10 Weightless Boolean Multiple Bit Expander ... 152

Figure 6.11 Weightless Boolean Hamming Distance Reducer with Test Points 153

Figure 6.12 Basic Hamming Distance Reducer ... 154

Figure 6.13 The Multiple Bit Hamming Value Reducer ... 154

xvi

Figure 6.14 Weightless Self Ordered Map MATLAB Training Program 157

Figure 6.15 Weightless Self Ordered Map MATLAB Recall Program 158

Figure 6.16 Architecture of the Weightless Self Ordered Map 159

xvii

List of Tables

Table 3.1 Boolean Logic Acting as a Neuron .. 41

Table 3.2 Boolean Neural Logic .. 49

Table 4.1 Operation and Boolean Logic of the Binary to Thermcode Converter 74

Table 4.2 Collated Results from Trial .. 91

Table 4.3 Results following Chi Squared Analysis ... 91

xviii

Abbreviations

ADAM Advanced Distributed Associative Memory

ADSIP Applied Digital Signal and Image Processing

ANITA Atmospheric like Neutrons from Thick Target

AURA Advanced Uncertain Reasoning Architecture

BNC Bayonet Neill-Concelman Connector

CBV Compact Binary Vector

CCD Charge Coupled Device

CEPS School of Computing, Engineering and Physical Sciences

CMM Correlation Memory Matrix

CNNAP Cellular Neural Network Associative Processor

DAME Distributed Aircraft Maintenance Environment

DBIS Department of Business, Skills and Innovation

DC Direct Current

DTI Department of Trade and Industry

DVD Digital Versatile Disc

EDIF Electronic Data Interchange Format

EEPROM Electrically Erasable Programmable Read Only Memory

EX-OR Exclusive OR

EX-NOR Exclusive NOR

FAE Fused Adaptive Element

FDC Xilinx Symbol – a single ‘D’ type flip-flop

FIFO First In First Out

FPGA Field Programmable Gate Array

GB Gigabyte

IEE Institution of Electrical Engineers

IET Institution of Engineering and Technology

JTAG Joint Test Action Group

MATLAB Matrix Laboratory software tool

MHz Mega Hertz

MoD Ministry of Defense

xix

MSE Mean Square Error

NIF Neutron Irradiation Facility

PC Personal Computer

PCB Printed Circuit Board

PIC Programmable Interface Controller

PRESENCE Parallel Structured Neural Computing Engine

PSNR Peak SNR

PSU Power Supply Unit

RAM Random Access Memory

RTC Real Time Clock

SAT Sum and Threshold

SDRAM Synchronous Dynamic Random Access Memory

SEE Single Event Effect

SEU Signal Event Upset

SNR Signal-to-Noise Ratio

SOM Self Ordered Map

SPAESRANE Solutions for the Preservation of Aerospace Electronic Systems

Reliability in the Atmospheric Neutron Environment

TRIUMF Tri University Meson Facility

TSL Theodor Svedberg Laboratory

WISARD Wilkie, Stonham and Aleksander’s Recognition Device

WNNW Weightless Neural Networks Workshop

WSOM Weightless Self Ordered Map

1

Chapter 1

1 Introduction

1.1 Weighted Boolean Logic

Boolean logic was first described by Charles Boole in 1854, and since has been used in

everyday electronics and forms the basis of modern day computing [Boole 1854]. In

1936 Turing produced his paper on computable numbers; where he proposed the

fundamental operation of modern computing [Turing 1936]. The work of John Von

Neumann introduced the architecture of the modern day stored programme computer

[von Neumann 1958]. These architectures are based on weighted clocked logic

operating with arithmetic units and counters, processing data in sequence. Weighted

logic has advantages in that it is compact, allowing large numbers to be easily

implemented in binary systems. Unfortunately it suffers from the fact that minor errors

can cause massive data disruption. Therefore error detection and correction codes such

as Hamming correction have been developed to increase the robustness of the data and

resultant systems [Hamming 1950]. This approach does not remove the risk of

corruption but reduces the occurrence of corruption to an acceptable level.

1.2 Weightless Logic

Weightless logic forms the heart of the operation of weightless neural networks.

Weightless neural networks are sometimes referred to as Boolean neural networks due

to their properties and mode of operation [Picton 1994]. Weightless Boolean neural

networks were first described in the McCulloch and Pitts paper written in 1943

[McCulloch et al 1943]. McCulloch and Pitts proposed a simplified model for an

artificial neuron based on the limited understanding of a neuron at the time. The

original neuron model is a weightless neuron; however in the early implementations

using computers engineers were unable to get the model to work [Rochester et al 1956].

The model was then altered to add the addition of weights which could be varied at each

of the synapses feeding the neuron. This concept has now formed the main stream of

neural networks and consists of multiple neural network systems [Rumelhart et al 1986,

Hopfield 1982]. It was not until Bledsoe and Brownings’ work on pattern recognition

2

that weightless neural networks were rediscovered [Bledsoe et al 1959]. Weightless

neural networks lend themselves very well to implementation on modern electronics

due to only having two states, ‘on’ or ‘off’, or in neural terms ‘firing’ or not ‘firing’.

This is analogous to Boolean logic which also has two states of operation, ‘zero’ or

‘one’. Weightless neural networks although only having two states of operation, are

often implemented using weighted arithmetic counting units and weighted logic to

perform the required sum and thresholding functions [Austin 1986].

1.3 Avionic Systems

Avionic systems are subject to corruption caused by atmospheric radiation.

Atmospheric radiation is not a new phenomenon but has been known about since its

discovery in 1913 by Hess [Hess 1913]. Atmospheric radiation has not changed in

intensity since its discovery, however our understanding has become much greater and

we now understand some of the effects that influence the intensity [Dyer et al 2001].

The effects of atmospheric radiation are causing more detrimental effects to avionic

systems, due to the changes in electronic components used within them [Dyer et al

2000]. The avionics industry is moving away from bespoke parts to commercial off-

the-shelf parts due to their lower cost and lack of military suppliers. Therefore the

industry has to investigate ways of using commercial off-the-shelf parts, without

compromising the safety or reliability of the overall avionics systems.

Military avionics systems are also developing new technology to implement evermore

advanced systems, in order to give air superiority, these include things like voice

recognition and visual targeting. These systems require more processing power and

electronics than traditional hand controlled systems.

1.4 Atmospheric Radiation

Cosmic radiation originates from deep in space although its exact origins are not fully

understood. It is believed the particles are generated by supernova activity [Dyer et al

2000]. Atmospheric radiation is generated when primary cosmic rays consisting of

highly energetic particles which penetrate the earth’s magnetic field, which acts as a

shield against the majority of these particles [Dyer et al 2001]. These primary charged

particles mainly consist of protons (hydrogen nuclei) along with alpha particles, helium

nuclei and other nuclear fragments. They interact with air molecules to generate a

cascade of secondaries including neutrons as shown in Figure 1.1 from Chugg [Chugg

2003c]. It is the neutrons which have the most detrimental effect on electronic systems.

3

Figure 1.1 A Diagram of the Primary Cosmic Rays Interacting with Air Molecules

These reach a maximum flux at 60,000 feet, and reduce at lower altitudes. Figure 1.2

shows that the flux is 300 times less at sea level than at 60,000 feet. The flux of these

secondary particles also alters with latitude with a maximum at the earth’s poles, due to

the increased effect of the earth’s magnetic field. There are also anomalies such as the

‘South Atlantic Anomaly’ described by Dyer et al which makes the prediction of the

levels over the earth’s surface hard to determine [Dyer et al 2001]. With the lack of an

exact origin and the fact that some of the primary particles were generated thousands of

years ago, cosmic radiation level prediction is in its infancy. It is known that certain

factors such as the solar cycle have an effect on the levels but knowledge of other

factors is limited. The greatest effects on levels have been caused by events that were

not and could not be predicted based on our present knowledge. These include a factor

4

of 216 rise in cosmic fluxes back in 1956 and a factor of 31 rise in 1989 at

approximately 32,000 feet altitude [Dyer et al 2001].

Figure 1.2 A Graph of Neutron Flux with Relationship to Altitude

With the current lack of understanding and inability to predict cosmic fluxes accurately,

the tendency has been to rely on real time monitoring such as fitted to Concorde [Dyer

et al 2001]. Commercial aircraft operate within this environment as they typically

cruise at between 30,000 to 45,000 feet. From Figure 1.2 we see this gives an average

neutron flux of approximately 2 n/cm
2
/s. Until recently the main concern with

operating in this environment has been for humans who are exposed to this radiation for

long periods of time. This has resulted in legislation which now requires them to be

classified as radiation workers and hence their radiation dose needs to be monitored

[Schneur 1999]. This has resulted in a requirement for an accurate cosmic radiation

monitor, particularly for neutrons which are the main component of atmospheric

radiation. Until recently these detectors have been large and bulky and not suitable as

discrete personal monitors.

1.5 Cosmic Radiation Effects on Avionic Components

More recently there has been concern for the electronic systems operating in this

environment: the effects of single event upset, burnout and damage have been

understood for a long time in space applications [Dyer et al 2000].

Atmospheric Neutrons at ~55oN

0.001

0.01

0.1

1

10

0 10000 20000 30000 40000 50000 60000 70000 80000

Altitude (feet)

N
e

u
tr

o
n

 F
lu

x

(1
-1

0
M

e
V

 n
/c

m
2
/s

)

5

The problem of corruption or damage to semiconductor devices occurs when one of

these highly energetic neutrons interacts with atoms within the device. The illustration

in Figure 1.3 shows a typical interaction between an atmospheric neutron and a silicon

atom [Chugg 2006].

Figure 1.3 An Illustration of an Atmospheric Neutron Interacting with Silicon

It can be seen that the neutron interacts with the silicon atom leaving an intensely

ionised cylindrical track. It is this highly charged track that leaves charge within the

cells of the device that can cause the change of state for that cell. Due to the length of

the tracks produced it is quite common to upset several cells with one interaction,

meaning that single bit error detection and correction logic is insufficient.

It is important to note that these effects are not new but the severity of these effects is

increasing due to changing technology. The main causes are the reduction of supply

voltage levels, meaning the amount of charge required to flip data bits is less. The

geometry of parts is also reducing; meaning the number of cells affected by the track is

Sensitive volume of memory cell

Recoiling neutron

+

-

+
+

+ +

+

+ + +
+ +

+ -
- -

-

-
- -

+

+

Atmospheric neutron

Silicon atom

Light
secondary
particle

Intensely ionised cylindrical

track (10’s of m long)

Recoiling
silicon nucleus

6

increasing. To compound matters the amount of memory used in systems is also

increasing.

These atmospheric radiation effects have been widely observed at avionics altitudes due

to the significantly lower shielding effects of the earth’s magnetic field and the

atmosphere [Dyer et al 2000]. Technology trends in the semiconductor industry have

led to devices becoming more susceptible. These trends are improved speed, lower

power consumption and reduced production costs along with increased capabilities

within devices. These goals have been achieved by reducing device operating voltage,

die geometry size and increasing density of components. Lowering the operating

voltage of the device reduces the transition energy required to move from one logic state

to another. Reducing the die geometry reduces the power needed by the device and

subsequent heat produced. Smaller geometries also allow a greater gate count as the

area taken by each logic gate is less and the frequency of operation of the device can be

increased. Unfortunately all these characteristics are leading to devices that are more

susceptible to atmospheric radiation. In addition, the avionics industry is moving away

from high specification military parts toward commercial parts in an effort to reduce

cost. This is causing an increase in susceptibility of aircraft avionics to atmospheric

radiation effects.

1.6 Research in this Field

In order to counteract this worrying trend, more detail of these effects and a greater

knowledge of the environment, coupled with the ability to better predict flux levels, is

required before the problem impacts on aircraft safety. Therefore the need to design

robust, resilient, systems for operating in this environment is growing, in conjunction

with better capabilities for monitoring the environment. This will lead to better

understanding of the interaction process caused by the atmospheric radiation within

electronic devices.

The avionics industry is now aware of the need to study the potential issues caused by

atmospheric radiation on avionics systems and has funded research programmes in

conjunction with the Department for Business Enterprise and Regulatory Reform

(formally the Department of Trade and Industry) and the Ministry of Defence [Chugg

2003c].

7

A potential solution to this ever increasing problem is that of weightless logic and

weightless neural networks due to their ability to generalize which allows an element of

self correction.

1.7 Weightless Neural Networks

Weightless neural networks are a technology which come under the banner of ‘Artificial

Intelligence’ due to their ability to learn and adapt to presented information. A neural

network is a group of interconnected simple processing units which try to approximate

the operation of part of the human brain. They usually consist of a large number of

processors which operate in parallel, each having its own knowledge and local memory.

The way the processing units connect is usually fluid and it is these connections which

increase the networks ability to adapt to different stimuli. Although not programmed,

they may follow rules which allow them to successfully operate and are not constrained

to perform in an algorithmic manner. The description of their operation is their

structure and interconnects at any particular time given. This gives them the power to

solve complex non-linear problems which are mathematically challenging.

Boolean hardware weightless neural networks are the principal focus of this research.

Weightless neural networks differ from conventional neural networks such as the error

back-propagation network and the Hopfield networks in several ways [Rumelhart et al

1986, Hopfield 1982]. Weightless neural networks tend to be logic based using

Boolean operators instead of the mathematical floating point equations used in weighted

techniques. Unlike conventional weighted networks, weightless neural networks in

general have the unique property of being able to learn in one cycle, unlike weighted

systems that require multiple cycles in order to iteratively alter the weights in the

system. Hardware weightless neural networks also exhibit several other properties that

offer improvements over the conventional techniques particularly in the areas of

robustness and speed [Bedford et al 1996]. Improvements in robustness can be found in

weightless neural networks for several reasons. The reduction or removal of the

system’s dependence on a clock. The data propagates through the system just incurring

a small latency caused by the propagation delay of the logic. Hardware weightless

neural networks hence have a greater propensity to operate in a harsh environment such

as in a high electromagnetic environment due to lack of their reliance on a clock pulse

[King 2000]. Hardware weightless neural networks are parallel in their nature and

8

hence their speed of operation in comparison to an algorithmic approach based on a

conventional processor is vastly superior in complex tasks such as scene analysis

[Austin 1986].

1.8 Areas for Development

1.8.1 ADAM

The properties of weightless Boolean networks are ideally suited to the development of

robust architectures designed to overcome the effects of atmospheric radiation

experienced by modern avionics. In order to gain the full benefit of this technology

implementation of the networks it is vital to understand the robustness of the overall

system. Several weightless neural networks, although weightless in nature, are

implemented using standard weighted architectures. These include Austin's ADAM

network which is implemented with the use of arithmetic counter units to sum the rows

and columns of the matrices [Austin et al 1987]. King has demonstrated with his

Neuroram that it is possible to develop hardware which is also capable of sum and

thresholding necessary for the implementation of these weightless neural networks that

does not rely on arithmetic counter units [King 2000].

1.8.2 Neuroram

A promising technology which was researched under SPAESRANE is the use of

Charged Coupled Devices (CCD’s) as a radiation detector as patented and presented by

Chugg [Chugg et al 2002]. Studies of this technology at ground based neutron facilities

have supported the hypothesis that these CCD element devices hold great promise as

neutron detectors [Torok et al 2006]. The neutron radiation causes degradation of the

CCD pixel elements and causes the generation of unwanted noise on the data. Long-

term exposure of the sensors causes more severe damage to the CCD pixel elements.

Pixels can become stuck in a particular state usually a maximum or minimum. The

effect of this is to generate white and black spots on an image similar to Salt and Pepper

noise. It is known that the properties of the median filter make it suitable for removing

salt and pepper noise. Pixels can also be damaged by the radiation exposure causing

them to randomly oscillate in state even when not exposed to radiation; this effect is

known as random telegraph noise. [Chugg et al 2003b]. King's Neuroram filter is an

ideal technology for the removal of the salt-and-pepper noise. The Salt and Pepper

noise is similar in type to the effects which are caused by radiation damage to CCD

9

sensors. His research in this area has been limited to the analysis of his filter with salt-

and-pepper noise. It is proposed that the filter may be able to deal with other types of

noise, but these have yet to be investigated, but may hold significance in the removal of

further noise damage caused to the CCD by radiation effects. The author was part of

the SPAESRANE project organising and co-coordinating some of the earlier trials

particularly at the Theodor Svedberg Laboratory located at the University of Uppsala in

Sweden. This included working with Chugg and King on the set up of these early CCD

experiments, the results of these trials are available in the papers in Appendix A [Chugg

et al 2003a, Chugg et al 2003b].

1.8.3 Conversion of Weighted Neural Networks to Weightless Architectures

Neural networks tend to be robust by their nature; including weighted neural networks

as they all possess the property to generalise. This gives them an inherent ability to deal

with corrupt or incomplete data. If this technology is to be used the architecture in

which it is implemented needs to be carefully considered to reduce the effect of

corruption. An area of interest is the development of weightless neural networks based

on the principles of existing weighted neural networks using weightless Boolean

hardware technology.

1.8.4 Robustness of Weightless Boolean Architectures

Weightless technology by its very nature looks to offer a more graceful degradation in

its performance when subjected to corruption due to its verbose nature and limited

effect caused by any single corruption. The aim of this research is to investigate this

hypothesis and compare it with compatible weighted implementations. This will be

performed using ground-based neutron facilities as the use of flight trials is impractical

due to cost and timescales.

1.8.5 Implementation of Standard Architectures in Weightless Boolean Logic

In order for weightless Boolean hardware technology to be a viable alternative to

weighted binary implementations it is necessary to show that standard implementations

of conventional weighted binary functions can be implemented in a weightless manner.

10

1.9 Research Objectives

The research objectives for this thesis are all based around the development of

weightless Boolean hardware architectures and their associated elements which derive

from the field of weightless hardware neural networks. A detailed chronological history

of hardware weightless neural networks can be found in the next chapter which presents

the background for the thesis.

There are several aims of this research which are described below:

The main objective is to develop a group of weightless Boolean elements that could be

used to further improve existing weightless neural networks.

 A primary aim of this thesis is to investigate whether the transition from

weighted binary to weightless binary and Boolean architectures offers an

improved resilience with reduced effects of corruption particularly on systems

subjected to atmospheric radiation. King had previously postulated that earlier

weightless elements exhibited increased robustness [King 2000].

 The development of a group of weightless Boolean elements which could be

used to further improve existing weightless neural networks. A key driver is to

remove clocks and counters, often associated with weighted implementations of

these networks to improve their robustness for avionics applications.

 Key to this research was to demonstrate the flexibility of these proposed

weightless elements and show their applicability to existing weighted systems.

The robust nature of these elements was also important.

 Show how a traditional weighted neural network which relied on a weighted

algorithmic approach could be redesigned and implemented using weightless

Boolean hardware elements.

 Further investigate the properties of King’s Neuroram as a neurofilter on an

extended range of noise types, whilst understanding the importance of the

threshold criteria [King 2000].

11

1.10 Overview of the Thesis

The aim of the thesis is to develop a collection of weightless Boolean elements which

can be used to enhance existing weightless neural networks. The viability of

developing these weightless Boolean elements to implement an alternative to standard

binary implementations of traditionally based arithmetic and clock based logic is also

investigated. Furthermore it is proposed that these weightless Boolean elements could

be used to redesign standard weighted neural networks. A key reason for moving to

weightless Boolean elements is the removal of the clock and arithmetic units in

conjunction with the removal of the weighting associated with traditional binary. The

driver for this is to improve the robustness to corruption and generate a more

predictable, graceful degradation in performance when subjected to single event

failures. The necessity for this is driven by a new threat facing avionics, that of

atmospheric radiation [MacDiarmid et al 2005]. Trials are performed at several ground-

based neutron accelerator facilities comparing traditional implementations of the swap

block commonly found in the median filter. This is compared with the novel swap

block developed as part of a weightless Boolean median filter.

1.10.1 Chapter 2 A Chronological History of Weightless Neural Networks

This chapter is a continuation of the introduction and puts the thesis into context giving

a chronological history of weightless neural networks which form the backbone of the

research. The origins of hardware neural networks and some of the physiological

thoughts of early philosophers including James and Hebb which have led to some of the

learning paradigms still used today [James 1890, Hebb 1949]. This thesis and the

chronological history are bound to the field of hardware weightless neural networks and

do not cover algorithmic implementations of weightless neural networks. An overview

of Austin's ADAM network in conjunction with Willshaw and N point thresholding are

discussed [Willshaw et al 1969, Austin et al 1987]. The principles of King’s Neuroram

are also described [King 2000].

1.10.2 Chapter 3 A New Weightless Boolean ADAM and Non - Hebbian Learning

Chapter 3 proposes a collection of new weightless Boolean elements to implement

threshold techniques. The primary driver for the development of these weightless

Boolean elements is the implementation of a weightless hardware ADAM neural

network. Austin’s implementation although FPGA based is still implemented using

12

arithmetic weighted binary counters to sum the columns and rows of the matrices before

applying a threshold [Weeks et al 2005]. Novel weightless Boolean elements are

developed which implement the key thresholding criteria used in the ADAM network,

these being Willshaw and N point thresholding [Austin 1986]. These elements were

also trialled on the author’s custom-built FPGA circuit board. A description of the

hardware is presented along with the test criteria applied during this research. An

additional weightless Boolean thermocoding technique which is designed to operate on

serial weightless data is given. This technique has been patented by BAE SYSTEMS

and a copy of the author’s patents can be found in Appendix C.

The learning criteria for the correlation matrix memory are examined. Until now the

correlation matrix memory has always relied on Hebbian learning to train the neurons

located at the intersections. In weightless logic this is implemented with a traditional

‘AND’ gate. It is proposed that this ‘AND’ gate can be replaced by several other logic

operators to allow the development of further learning criteria. These additional

learning criteria are investigated to see if they offer a plausible alternative. The

application of these criteria were simulated to determine the effect on matrix saturation

in comparison to the traditional Hebbian learning criteria. The chapter concludes with a

schematic for a Boolean hardware weightless ADAM neural network which consists of

the sum and threshold techniques proposed earlier in the chapter.

1.10.3 Chapter 4 Hardware Weightless Boolean Median Filters

Chapter 5 presents two new methods of implementing weightless median filtering. The

first of these is a technique for ordering the data in which the author has contributed a

tagging method to the architecture. The second is the author’s novel weightless

Boolean median filter which is clockless and has been implemented in an FPGA. Both

these techniques have been patented, full details can be found in Appendix B. The

novel technique was then compared with a weighted implementation of an FPGA when

subjected to single event upsets caused by neutron radiation. Trials have been

performed at TRIUMF and TSL and the results from TRIUMF were submitted and

accepted for publication by the IET [King et al 2008].

13

1.10.4 Chapter 5 Performance of Weightless Neural Network Image Filters

Further examination of King’s Neuroram configured as a Type I Neuroram filter is

performed in Chapter 4 [King 2000]. The analysis is performed on standard two-

dimensional greyscale images and examines the capability of King’s Neuroram to

remove an extended range of noise types. This is a continuation from King's initial

research which trialled the filtering properties of Neuroram on similar images corrupted

with salt and pepper noise. The images are corrupted with several noise types and an

evaluation of both a conventional median filter and the neural filter are performed. The

additional noise types include: additive Gaussian, additive uniform, multiplicative

uniform and multiplicative Gaussian. A trial with salt and pepper noise is undertaken to

compare with King's original analysis. Evaluation of the two filters is further extended

with analysis of the performance when cascaded. The ability to alter the threshold on

Neuroram is examined with respect to the effect on the noise removal of the image.

King's hypothesis that the ideal threshold for the filter when operating on the removal of

salt and pepper is half the number of data samples is tested [King 2000].

1.10.5 Chapter 6 Boolean Weightless Self Ordered Map

Chapter 6 describes a weightless Boolean implementation of the self ordered map

[Aleksander et al 1995]. The chapter begins with a chronological history covering the

development of the self ordered map. This history is not covered in Chapter 2 as it is

traditionally a weighted neural network. The self ordered map differs from the

previously described neural networks in that it is capable of ‘unsupervised learning’

[Kohonen 1984]. A description of the self ordered map and its operation is presented,

in conjunction with the algorithms necessary to implement a simulation of the network

on a sequential computer.

In order to develop the weightless Boolean self ordered map a collection of weightless

elements was designed. Each of these individual elements is described in the chapter.

These elements include a selector, an expander, and a Hamming distance reducer.

Variations of these elements are also described. A simulation of the weightless self

ordered map is also described and the associated program is available in Appendix D.

A block diagram describing how these elements can be constructed to form a weightless

Boolean implementation concludes the chapter.

14

1.10.6 Chapter 7 Summary and Conclusions

Chapter 7 gives an overview of the research objectives and descriptions of all the

chapters and their contribution to the research.

The summary of chapter 1 describes the author’s contribution to the two published

papers, copies of which are attached in Appendix A [Chugg et al 2003a, Chugg et al

2003b]. These papers describe some of the effects observed when using CCD’s to

capture single event effects at trials performed at TSL.

Chapter 2 gives an overview of the field of hardware weightless neural networks

describing the prior art relating to this thesis.

Chapter 3 describes the development of a collection of sum and threshold elements,

including a serial thermocoder which has been patented and is attached in Appendix C

[Armstrong et al 2003, Armstrong 2003a, Armstrong 2003b].

Two new additional sum and threshold elements are described which complement

King’s original elements [King 2000] A collection of alternative learning techniques

for the correlation matrix memory are described which builds on the traditionally used

Hebbian learning technique. A weightless Boolean hardware implementation of L–Max

and Willshaw thresholding techniques are discussed for use in a novel weightless

Boolean hardware implementation of ADAM.

Chapter 4 discusses the properties of King’s Neuroram acting as an image filter on an

extended range of noise types [King 2000]. It is demonstrated that King’s Neuroram as

an image filter is capable of removing multiplicative uniform, salt-and-pepper and

multiplicative Gaussian noise. However it does not perform well with additive

Gaussian and additive uniform noise and demonstrates similar characteristics to that of

a standard median filter. King’s filter performs slightly worse at noise removal than the

conventional median filter however it does not cause as much blurring. An analysis of

the ability to adjust the threshold and hence alter the performance of the Neuroram filter

is also discussed. King originally suggested a threshold value equal to 50% of the

number of exemplars presented to his Neuroram was optimum when performing image

filtering on two dimensional greyscale images [King 2000]. This research shows a

threshold of 33% is the optimum.

An evaluation into the performance of both a conventional median filter and Neuroram

when cascaded is described which shows that the performance of the two filters differs.

The Neuroram filter showed improvement in cascades of up to five deep; however this

15

was only three for the median filter. Overall the performance with regard to noise

removal was better for the median filter even with less numbers of cascades.

Chapter 5 described a tagging technique and a weightless Boolean median filter both of

which have been patented, copies of which are included in Appendix C. The results

from comparing the performance of the swap block taken from the weightless median

filter and a conventional median filter when subjected to neutron radiation are

presented. The results show that when implemented on an FPGA susceptible to SEU

when subjected to neutron radiation the robustness and failure modes differ. The

weightless swap block suffers more upsets due to its architecture but the resultant

failures were more predictable. In contrast the weighted swap block failed less but the

consequences were more unpredictable due to the weighting of the data. These findings

were submitted and both presentations were accepted for publication at the IET

(formerly IEE). One of the presentations was made and copies of both can be found in

Appendix B.

Chapter 6 discusses the weightless Boolean hardware which was developed in order to

implement a Weightless Self-Ordered-Map. The weightless Boolean architectures

developed include: a selector, expander and a Hamming distance reducer. A block

diagram of a weightless self ordered map is presented.

1.10.7 Chapter 8 Further Work

Chapter 8 offers suggestions for further work in the field of weightless Boolean neural

elements as well as discussing further improvements to ADAM to reduce the effect of

saturation. A further hardware implementation of the weightless self ordered map in an

FPGA architecture is suggested. A possible extension to Neuroram and its filtering

properties is proposed using adaptive filtering; two methods are discussed.

1.10.8 Appendices

Appendix A has the two papers resulting from trials at TSL in using CCD’s to capture

single event effects.

 Analyses of CCD Images of Nucleon-Silicon Interaction Events.

16

 Single Particle Dark Current Spikes Induced in CCD’s by High Energy

Neutrons.

Appendix B contains the two presentations submitted and accepted by the IET for

publication.

 BAE SYSTEMS, Air Systems Approach to the Problem of Atmospheric

Radiation.

 System Level Prevention: Managing SEE Using Error Correction Techniques.

Appendix C contains three international patents, derived from the author’s BAE

SYSTEMS invention reports. These have been examined and published.

 Ordering by Hamming Value.

 Serial Weightless Data to Thermocode Coded Data Converter.

 Ordering Weightless Binary Tuples According to Hamming Value.

Appendix D consists of a DVD retained on the inside back cover of this thesis. It

contains MATLAB emulations, C code simulations, PIC C code, circuit diagrams and

FPGA projects. It represents an archive of electronic data generated during the course

of this research.

17

Chapter 2

2 A Chronological History of Hardware
Weightless Neural Networks

2.1 Overview

This chapter presents a brief chronological history of the development of artificial

hardware weightless neural networks.

The development of the field of artificial neural networks is driven by two factors. The

first of these is the quest to understand the human brain. This has led to many

biologically plausible models that demonstrate our growing understanding of the

operation of neurons and brain structures. The second driver is the ability to use this

technology to perform ‘intelligent’ operations, within specific boundaries, in order to

solve complex non-linear problems. Intelligent operations are those which require

‘thought’ or decisions based on prior knowledge or experience. Intelligence cannot

easily be achieved with traditional sequential computers as these require a defined

algorithm. Neural networks overcome this limitation by forming model free estimators.

2.2 Boolean Logic

Artificial hardware weightless neural networks are based on Boolean logic, which

derives from George Boole’s algebraic systems of logic published in 1854 [Boole

1854]. Claude Shannon proved in his Master’s thesis in 1937 that Boolean algebra and

binary arithmetic could be used to simplify the switching circuits based on

electromechanical relays used at the time in telephone routing switches [Shannon 1937].

His thesis took this concept further by showing that structures of electromechanical

relays could be used to solve Boolean algebraic problems. Although McCulloch and

Pitts are widely acknowledged as producing the first neuron model recent evidence

shows that Turing proposed several neuron elements and associated structures

[Copeland et al 1996]. Turing referred to these elements as ‘unorganised machines’ and

proposed three separate machines known as ‘A’ type, ‘B’ type and ‘P’ type. The most

relevant is the ‘B’ type machine which is described with two inputs and one output

which could be connected to each other; today we know this element as the two input

18

NAND gate. Turing goes on to describe how initially these elements are randomly

connected, and by appropriate interference these connections would alter and mimic

education. Turing stated that a ‘B’ type machine can be trained to ‘do any required job’

[Copeland et al 1996].

2.3 The McCulloch and Pitts Neuron Models

McCulloch and Pitts wrote the first of two papers which are now recognised as the first

model for a physiological neuron [McCulloch et al 1943, Pitts et al 1947]. Most

artificial neural networks are fundamentally based upon these early models. The

McCulloch and Pitts models are built up of several key elements. The inputs in to the

model are known as synapses. The synapses are the connections through which

information is fed to the neuron. Within the neuron there are two processing elements,

one for summation and another for thresholding. The output state of the neuron is

determined by the information received from the synapses combined with the neuron’s

threshold function. The output of the neuron is delivered by the axon. The axon of a

neuron can be connected to one or more neurons via their synapses. An example of the

basic McCulloch and Pitts neuron is given in Figure 2.1.

Figure 2.1 McCulloch and Pitts Neuron

The neuron ‘fires’ when the summed synaptic response overcomes the threshold,

otherwise it remains in it quiescent state.

2.4 Inhibition of the Neuron

McCulloch and Pitts describe multiple types of operation for their basic model, in

particular they examine inhibition of the neuron. Two models for inhibition are

presented using inhibitory synapses, which prevent or make the neuron less likely to fire

Sum

Synapse (Inputs)

Axon (Output)


Threshold

T

19

if they are triggered. These models are termed, absolute inhibition and relative

inhibition respectively.

2.4.1 Absolute Inhibition

In the case of absolute inhibition the inhibitory synapse has total control of the neuron.

If the inhibitory synapse fires then the neuron cannot ‘fire’ at all. If the inhibitory

synapse is not active then the neuron will ‘fire’ if the sum of the excitatory inputs

exceeds the threshold as shown in Figure 2.2.

Figure 2.2 A McCulloch and Pitts Neuron with Absolute Inhibition

2.4.2 Relative Inhibition

In the case of relative inhibition, firing of the neuron is determined by the sum of the

excitatory synapses minus the sum of the inhibitory synapses. If this result exceeds the

threshold then the neuron will fire, otherwise it remains in its quiescent state as shown

in Figure 2.3.

Inhibitory Synapse

Excitatory Synapses

Sum

Axon (Output)



Threshold

T

20

Figure 2.3 A McCulloch and Pitts Neuron with Relative Inhibition

2.4.3 The Common McCulloch and Pitts Model

Figure 2.4 shows the common McCulloch and Pitts model which forms the basis of

most artificial neural networks. The McCulloch and Pitts Model can be described by

equation 2.1 where wi represents the weighting value for the input xi with T being the

threshold function. The weights Wn can only be integers. The model that McCulloch

and Pitts present is weightless and hence the weights represent the number of weightless

connections from a given source to the neuron.

TxwOutput i

n

i

i 
1

2.1

2.4.4 A Mathematical Model for the McCulloch and Pitts Neuron.

Figure 2.4 The Common McCulloch and Pitts Model

Inhibitory Synapses

Excitatory Synapses

Sum

Axon (Output)


Threshold

T

Sum

Output



Threshold

T

W1

W2

W3

W4

Wn

x3
x4
xn

x2
x1

Inputs

0/1

0/1
0/1
0/1
0/1
0/1

21

2.5 Hebbian Learning

In 1949 Donald Hebb wrote a paper, which built on McCulloch and Pitts earlier papers,

and introduced several important advances in the field of neural networks [Hebb 1949].

Hebb’s paper discusses the link between psychology and physiology: this understanding

has not dated in the intervening years. The paper also introduces the term

connectionism, which is used to describe the connections of single neurons to form

neural structures containing multiple neurons.

One of Hebb’s most important contributions to the field is his model for Hebbian

learning: ‘When an axon of cell A is near enough to excite cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change takes place

in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.’

This is similar to the earlier thoughts of James. ‘When two brain processes are active

together or in immediate succession, one of them, on reoccurring tends to propagate its

excitement into the other’ [James 1890]. If we substitute the ‘brain processes’ with

‘neurons’ we have a connectionism rule that is almost identical to that of a Hebbian

neuron.

In 1956 Rochester et al at the IBM laboratories, in discussion with Hebb, implemented

the first computer simulation of Hebbian learning [Rochester et al 1956]. This first

simulation used neurons based on weightless binary devices and a threshold. This

simulation failed because the strength of the simulated synapse of the neurons grew

uncontrollably. In order to prevent this a normalisation rule was applied which meant

that synapse values grew in strength at the expense of others. As well as the

normalisation function the second simulation had several other differences. These are

that the synapse strength could range from –1 to +1 in real values instead of 0 to +1,

meaning the neurons were no longer weightless binary neurons. The output of these

simulated neurons was dependent upon frequency of firing; this was graded from 0 to

15. The Hebbian rule was also modified so a synapse value increased if it fired whilst

one that did not fire was decreased. The system that was simulated consisted of 512

neurons and showed signs of working. This resulted in the algorithmic weighted

implementation of the common McCulloch and Pitts Model which forms the basis of

the more prevalent weighted algorithm neural networks such as the Perceptron and

Hopfield networks [Rumelhart et al 1986, Hopfield 1982].

22

2.6 The First Hardware Weightless Neural Network

The first practical hardware use of a weightless neural network was a pattern

recognition system developed by Bledsoe and Browning [Bledsoe et al 1959a, Bledsoe

et al 1959b]. They tackled the problem of character recognition. The hardware they

implemented to perform this task was an array of photo-detectors in a 10 by 15

formation. These arrays were pseudo-randomly paired; they consisted of 150 photo-

detectors creating 75 photo-detector pairs. Each photo-detector pair allowed the

production of four possible states in memory. Figure 2.5 shows a smaller 8 by 8 matrix

to illustrate the operation of the system.

Figure 2.5 Example of the Bledsoe and Browning Technique

They introduced the term tuple to the forum. A tuple is a collection of weightless binary

elements, which in this case are taken from a data space using pseudo-random mapping.

Equation 2.2 is used to determine the number of storage sites in the memory matrix, L.

C
n

N
SL n  2.2

Where S is the number of operational states of the photocell. (S=2 for states 0 and 1)

n is the parameter for n-tupling

N is the number of photocells

C is the number of categories of patterns learned and read (for Bledsoe and Browning’s

example, C=36)

Address Group 1

Address Group 2

A1
A1

B1

B2

A2

B1

B2

A2

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

23

Bledsoe and Browning also studied the effects of changing tuple size n. They noted that

if the tuple size n =1, the system would behave as a standard template matcher.

However they showed that for small tuple sizes, the system had the ability to generalise.

Bledsoe and Browning also demonstrated that for small tuple sizes the memory could

easily saturate if too many exemplars were shown. Multiple exemplars are required for

noisy data or for data with variances such as positional inaccuracies. To compensate for

over saturation the memory size can be increased by increasing n. This was also

demonstrated by Ullmann [Ullman 1973]. In the early 1970’s memory was an

expensive commodity unlike today. Ullmann also performed a computer simulation

assessment to determine the sensitivity of the system to the pseudo-random mapping

process. This study concluded the memory was generally insensitive to this memory

mapping process [Ullman 1969]. Bledsoe and Browning also investigated non-

exclusive n-tuple mapping of the photocells in their system. They concluded that there

was no real advantage to be gained with this method. The main reasons for this were the

increased memory capacity required and the longer computation time [Bledsoe et al

1959b].

2.7 Correlation Matrix Memory

In 1961 Steinbuch developed a learning matrix, ‘Die Lernmatrix’ [Steinbuch 1961], as

shown in Figure 2.6. The key property of this matrix is its ability to associate one

pattern with another; the process of hetero-association. Steinbuch used this matrix as a

self-correcting translator circuit because of its properties in dealing with incomplete or

corrupt data [Steinbuch et al 1962, Steinbuch et al 1967].

24

Figure 2.6 Die Lernmatrix

A mathematical description for this matrix is given by Picton [Picton 1994]. An

example is now presented.

Matrices have been used to describe the inputs and outputs of the correlation memory.

Equation 2.3 shows the output matrix [Y] which is the product of the input matrix [X]

and the correlation matrix [W].

     WXY  2.3

Equation 2.4 shows Equation 2.3 re-arranged where [X]
t
 is the transpose of [X].

     YXW
t
 2.4

Picton gives the following example showing a system trained on two patterns

containing 4 inputs and 4 outputs so that n=4 and P=2.

Equation 2.5 shows that within the [X] matrix there are rows labelled X1 and X2.

Vectors have been created to describe the inputs 1010 and 0110.

  


















0110

1010

2

1

X

X
X

2.5

Equation 2.6 shows that within the [Y] matrix there are rows labelled Y1 and Y2. Vectors

have been created to describe the outputs 1000 and 0101.

Desired Output

Output Lines yi

Input Lines xi

Weights wij

25

  


















0101

1000

2

1

Y

Y
Y 2.6

Equation 2.7 shows the transposed [X] matrix for this example

 





















00

11

01

10

t
X

2.7

Equation 2.8 shows the trained correlation matrix for the given inputs and outputs.

 

















































0000

1101

0101

1000

0101

1000

00

11

01

10

W

2.8

Equation 2.9 shows the input vector multiplied by the correlation vector. The expected

outputs of [1000] and [0101] are not seen until an appropriate method of thresholding is

performed.






































1202

2101

0000

1101

0101

1000

0110

1010

2.9

Equation 2.10 demonstrates the capability of the matrix to deal with corrupt data. In the

example given, bit 1 is swapped giving [1011] instead of [0101]. If we examine the

output with this given input we notice the matrix still gives the correct output. It should

be noted that this example was carefully chosen to show this aspect of the matrix.

   2101

0000

1101

0101

1000

1011 





















2.10

In 1969 Willshaw, Buneman and Longuet-Higgins published a paper describing an

optical implementation of an associative memory [Willshaw et al 1969]. Their optical

correlation matrix memory is called a correlograph. They took the correlograph one

step further to develop a neural network model. In order to create this model they

assumed the input lines in the horizontal direction act as axons and the vertical lines act

as synapses. To this they applied Hebbian learning [Hebb 1949]. Because the system is

a digital implementation this meant the synapses were logically ‘ANDed’ to the axons.

26

The training of this type of network is performed by example in a similar method to the

learning matrix.

2.8 WISARD

WISARD is an acronym for Wilkie, Stonham and Aleksander’s Recognition Device.

The inspiration for WISARD came from the previous work of Bledsoe and Browning

and Aleksander [Bledsoe et al 1959a, 1959b, Aleksander et al 1984]. Initially

Aleksander demonstrated a fused adaptive element, which could be trained as shown in

Figure 2.7.

Figure 2.7 A Fused Adaptive Element

Aleksander proposed this circuit in 1965 [Aleksander 1965]. The fused adaptive

element is taught by example. Showing the element, or collection of elements, all the

required outputs for a given set of inputs performs the teaching of the network whilst

the network is in teaching mode. Once the training has been performed and the network

is set to recall mode the system will reproduce the trained association on the

presentation of the same given input. Aleksander also discusses the potential to

recognise patterns in the presence of noise and this can be clearly seen as a precursor to

WISARD.

2.2kΩ

T1

2.2kΩ

T2

2.2kΩ

TN

2.2kΩ

Output

-10V

TOUT

Fusebox

Teach Terminal

27

The development of WISARD did not come about until 1984 when Aleksander, Wilkie

and Stonham, studied the recognition of patterns in a noisy environment [Aleksander et

al 1984, Stonham 1985]. WISARD was inspired from the earlier work of Bledsoe and

Browning. It is similar to the hardware character recogniser in the way the data space is

randomly mapped into tuples stored in memory elements, in this case RAM blocks and

the result of all the memory elements summed. Unlike the earlier hardware of Bledsoe

and Browning, WISARD captures the image using a camera and digitising system

instead of photo detectors to make the matrix space [Aleksander et al 1984]. Matrix

elements are pseudo-randomly chosen to form tuples, the tuple size being determined by

the designer and limitation on address size of the RAMs. Figure 2.8 shows an example

of the mapping of the address space.

WISARD is trained by using a ‘teach’ methodology by showing exemplars to the data

matrix. Before training can commence all the RAM locations need to be initialised to

zero. Whilst set in the teach mode a pattern is input to the RAMs within a discriminator

and the decoded address location from the n-tuple is stored with a ‘1’.

Figure 2.8 A RAM Discriminator

Once the system has been fully trained the network is switched to recall mode where the

response for all the individual discriminators is monitored when a pattern is presented to

the network as shown in Figure 2.9. The highest response to the pattern is the match or

the closest match [Aleksander et al 1995].

RAM

RAM

RAM

RAM



28

Figure 2.9 A Multi-Discriminator with Associated Response

Picton’s analysis of WISARD is presented here:

Equation 2.11 is derived from the training of the network, where P is the number of

pixels, n is the tuple size and K is the number of RAMs per discriminator.

n

P
K  2.11

Equation 2.12 shows the probability  of selecting pixels from the same particular RAM

in the jth discriminator, where A is the area of overlap between the presented pattern and

the previously taught pattern, P is the number of pixels and n is the tuple size.

n

P

A








 2.12

If K is large then it is probable that p of the RAMs in the discriminator will fire.

Equation 2.13 shows the output of the jth discriminator rj if all the outputs of the RAMs

are summed.

n

j
P

A
Kr 








 2.13

It is worth noting that if the two patterns are identical rj =K and A=P. Equation 2.14

shows the normalisation of the output.

n

j
P

A
r 








 2.14

D

R%

DISCRIMINATOR 1

DISCRIMINATOR 2

DISCRIMINATOR 3

29

These equations have been derived for a simple example of one trained pattern and one

input, however the equation still applies for more complex situations [Picton 1994].

A further way of making a decision is to use a confidence measure C as shown in

Equation 2.15. The confidence in a result is determined by taking the highest response

from the strongest discriminator r1 and comparing it to the response from the strongest

incorrect discriminator r2.

1

2

1

21 1
r

r

r

rr
C 


 2.15

The highest confidence score for Equation 2.15 is 1 and this will only be gained if the

response for r1 = 1 and the response from r2 = 0. This is highly unlikely and will only

occur when a pattern totally matches a trained pattern and has no overlapping pixels

with any other exemplar in the memory.

Substituting Equation 2.14 into 2.15 gives:

n

A

A
C 










1

21
2.16

Equation 2.16 indicates that as n increases the discriminatory power of the network

increases, although there is a cost penalty in terms of increased memory requirement

and reduction in the ability to generalise.

2.9 ADAM

ADAM is a bi-directional hetero-associative network, meaning the network can

associate one set of data with another set of data in both directions [Austin et al 1987,

Austin 1997, Austin et al 1994, Bolt et al 1992, Kennedy et al 1994]. ADAM is the

acronym for Advanced Distributed Associative Memory and a block diagram of the

architecture is shown in Figure 2.10.

30

Figure 2.10 A Block Diagram of the ADAM Architecture

ADAM was created by Austin as part of his doctoral research in order to perform scene

analysis [Austin 1986, Austin et al 1994]. Since then Austin has become a Professor at

the University of York heading the Advanced Computer Architectures Group. This

position has allowed Austin and his students to closely examine and develop ADAM for

industrial applications [Austin 1993, Austin 1998]. A typical application of its use has

been the development of a hardware board for use in a computer for the Post Office to

allow data mining of postal addresses which contain inaccurate or missing information

[Austin et al 1998, Austin et al 1994, Kennedy et al 1995]. The performance of ADAM

has been closely studied. An assessment of ADAM’s fault tolerance and reliability has

been performed by Bolt. Bolt demonstrated that as the tuple size n increased so did the

operational fault tolerance [Bolt 1991].

ADAM is based on fundamental building blocks from some of the earlier neural

networks [Beale et al 1997]. The heart of ADAM is two weightless correlation matrix

Class Pattern

Memory response

Stage 1

Stage 2

Input Data

Tupling

Output

Separator

31

memories using a Hebbian learning rule [Willshaw et al 1969]. To reduce the problem

of saturation ADAM uses pseudo-randomly mapped tupling to expand the input data.

This random tuple mapping is similar to that used by Bledsoe and Browning in their

optical character recogniser [Austin 1994].

Austin’s major contribution in the formation of the ADAM architecture was to add a

class separator pattern between correlation matrix memories. The advantage of this is

that instead of associating A to B, the network associates A to C to B, where C is the

class pattern. It is this class separator that allows two different data types to be

associated to each other. Figure 2.11 shows an example of the first correlation matrix

with the class pattern 1 0 0 0 1 0 1 0 being presented and an input of 1 0 1 1 0 0 1.

Figure 2.11 The First Correlation Matrix Memory with ADAM

Due to the nature of the class separator pattern being designer specified the distribution

of the weightless code can be carefully controlled; this allows Austin to use his L-max

(also known as N point) thresholding technique [Willshaw et al 1970].

1 0 1 0 0 0 1 0

1

0

1

0

1

0

1

Class Pattern

Input

32

Figure 2.12 A Correlation Matrix Memory Containing Trained Data

Previously trained data input is shown to the correlation matrix memory containing all

the trained data. Figure 2.12 shows the response of the summed outputs with a standard

thresholding technique applied. The standard threshold value is determined by the

number of bits set in the input pattern, in this case the threshold is 4 [Kennedy et al

1995]. The L-Max threshold value is generated by taking the highest summed value

and making this the threshold, so in the example shown below the L-max threshold

value is 4 [Willshaw et al 1970].

2.10 AURA

AURA is a hardware weightless neural network developed by Austin and his team at

the University of York in 1997 [Austin et al 1998]. AURA is an acronym for Advanced

Uncertain Reasoning Architecture. AURA was developed in conjunction with industry,

one of the industrial sponsors was British Aerospace (now BAE SYSTEMS). British

Aerospace were interested in AURA for the development of mission systems control for

future aircraft. Other interested industrial parties included chemical companies and the

Post Office. Austin and his team developed products for both these parties based on

AURA. A system for the Post Office was developed to find the best matches for mis-

1

0

1

0

1

0

1

4 0 4 0 1 3 4 0

1 0 1 0 0 0 1 0

1 0 1 0 0 0 1 0

Input

Summed values

Standard Thresholded values

 L-Max Threholded values

33

spelt, incomplete or inaccurate addresses from its address database. AURA’s strength is

in searching large databases to match incomplete data a process known as ‘data mining’.

AURA was developed for rule based learning systems. The heart of AURA is still based

around the CMM as in ADAM. The main difference with AURA is its method of pre-

processing which gives the network its reasoning capability. In order to process the

data it first needs to be converted to a suitable form. To achieve this several stages of

processing are required. The CMM can only deal with weightless binary strings of k

bits, k being determined by the size of the CMM’s being used. The first stage of the

network converts lexical tokens into binary vector patterns of the appropriate k bits in

length. This is followed by the binding of the variable names to the values then the

superimposed coding of the sets of bound variables is performed. This pre-processed

data is then routed to each of the appropriate CMM networks. Arity is defined as the

number of antecedents in a rule. The outputs of the CMM’s are resolved by taking the

class separator pattern and identifying the matching rule. A diagram of this architecture

is given in Figure 2.13.

Figure 2.13 A Block Diagram of AURA

The key feature of AURA is its ability to match data which is incomplete given certain

rules and gives it ‘data mining’ properties.

Arity Check and

Select

Antecedents

(if P1 is A

and P2 is B)

Lexical

Token

Converter

Binding
Superimposed

Tokens

B

C D

Tokenised Symbols

Separator Identify

Separators

List of

Matching

Rules

Post Conditions

Correlation Matrix

Memories

Separator Output

A

CMM

1
CMM

2
CMM

3
CMM

4

34

2.11 Cortex

Austin and his team at the University of York developed a suitable hardware and

computing architecture for a neural computer called Cortex-1 [Weeks et al 2005].

Cortex-1 is an extension of AURA and is a scalable structure of multiple AURA’s. The

AURA systems are implemented on the PRESENCE cards developed earlier by the

University. PRESENCE stands for Parallel Structured Neural Computing Engine

[Kennedy et al 1995]. Cortex-1 consists of 7 Sun PC’s which are networked and

contain 4 PRESENCE cards [Moulds et al 1999]. Austin and his team are using this

approach to perform large scale data mining to develop a system to detect benefit fraud

using information from multiple databases. This project was sponsored by the

Department of Trade and Industry (now Department of Business, Skills and

Innovation). Other projects that Austin and his team are working on under his company

Cybula include DAME which is an acronym for Distributed Aircraft Maintenance

Environment. The company’s involvement in DAME is to develop a distributed data

mining and pattern matching engine based on AURA technology [Austin et al 1998].

This is a major multiple partner project including other universities and companies

including Rolls Royce. Austin is now working in the field of bio-metrics again using

AURA technology in the task of three dimensional facial recognition systems. Austin

has updated his Cortex computing and hardware which has been re-named Cortex-2.

Cortex-2 contains the new PRESENCE 2 hardware processing card, which has greater

processing power, storage capacity and interconnection speeds [Weeks et al 2005].

PRESENCE 2 is based around a Xilinx Virtex 2 six million gate FPGA and 4 GB of

SDRAM. Austin is investigating further improving the performance of his AURA

system with a compression technique for the data retrieved from the CMMs, this

technique is called Compact Binary Vector coding [Austin et al 1998].

2.12 Neuroram

Neuroram was designed by King in 1997, and constructed using hardware weightless

Boolean elements [King 2000, King 1999a, b, c, King et al 1999d]. King was trying to

create a vastly simplified version of some of the elements of the neo-cortical region of

the human brain. The weightless binary elements that are described in his thesis,

includes a Boolean method of performing a sum and threshold which is fundamental to

the construction of artificial neurons [King 1999a]. King uses weightless asynchronous

logic to perform this operation instead of using the standard clocked counters as found

35

in other weightless neural systems such as ADAM. In his thesis King presents a

philosophy of reducing clocked elements to improve the resilience and speed of his

networks.

Figure 2.14 A Block Diagram of Neuroram

The block diagram of Neuroram shows the structure of the system. The first block

contains a first-in first-out (FIFO) based memory where strings of data are loaded in

time sequence and shifted down. The second stage is the sum and threshold element

which sums and thresholds each of the columns to form the generic result, this is then

further summed and thresholded to give the output.

It is worth noting that although King used his Boolean sum and threshold elements,

conventional sum and threshold elements could be used without any change in

functionality [King 2000]. King also studies coding methods that could be used to

format the data into a suitable form for use within Neuroram [King 2000].

King then uses Neuroram as a simple digital filter to reduce the effects of white

Gaussian noise on signals. The coding and pre-processing of the data is essential in the

S

A

T

1

S

A

T

1

S

A

T

1

S

A

T

1

S

A

T

1

S

A

T

1

S

A

T

1

S

A

T

1

S A T2

Output

Generic Result

n

n-1

n-2

n-7

n-4

n-5

n-6

n-3

Data Plane

+ + + + + + + +

36

operation of Neuroram. King investigated the use of Gray code, K-code (which was his

own code), thermocode and weighted binary coding for pre-processing using a simple

test waveform with additive white Gaussian noise and correlating them to the original

waveforms without the additive noise [King 2000]. His results show the importance of

coding on Neuroram as demonstrated by the effects of K-coding which severely

corrupted data. The pre-processing method which yielded the highest correlation score

for this problem was a Gray code with a pseudo-random key. King also investigated the

effects of thresholding for the (SAT1) threshold elements. This investigation was

performed by training the network on 32 data sets of the same waveform in 8 bit Gray

code with 256 samples and additive white Gaussian noise on each waveform. Each

waveform had a signal to noise ratio of approximately 22 dB which was increased by 5

dB when filtered with a threshold between 12 and 17 [King et al 1998]. These

waveforms were then fed into a Neuroram architecture and summed and thresholded by

the sum and threshold elements (SAT1) to generate the generic template. The generic

template was then correlated to the original reference waveform. The threshold was

then varied from 0 to 32 to evaluate the signal to noise ratio. The results show a value

around the mid threshold value greatly increases the signal to noise ratio demonstrating

the suitability of Neuroram as a filter and ‘clean-up’ memory [King 2000].

King takes the filter investigation one stage further and adds the second sum and

threshold element (SAT2) to the architecture [King 2000]. This element allows the

generic result to be stored and used again or a new generic result to be used. This is

determined on whether the new generic result is a significant improvement on the

already stored generic result, if so, it is overwritten. The new architecture was then used

to filter two dimensional images. The images were 8 bit Gray encoded with salt and

pepper noise added. The aim of the network was to remove the noise. In order to do

this a 3 by 3 window was slid over the image. The 8 bit Gray code for each element of

the window was then fed into Neuroram and each of the elements summed and

thresholded with a mid value to produce the generic template. This generic template

was then correlated with the central pixel value; if the generic template is better than the

central pixel value the value is changed. King demonstrates that this methodology

provides an effective way of removing salt-and-pepper noise in images [King 2000].

King also repeats this process using thermocode instead of Gray code which yields a

further small improvement. King also compares the results with a standard median

filter, which performs slightly better than the weightless thermocode filter.

37

Chapter 3

3 A New Weightless Boolean ADAM and Non-
Hebbian Learning

3.1 Introduction

Austin’s ADAM network is traditionally implemented in a combination of hardware

and software, often using hardware to accelerate the processing and maximise the

parallel nature of the network [Weeks et al 2005]. Even though the principles of

ADAM are weightless, Austin uses conventional weighted binary counters to calculate

the sum and threshold values [Austin 1986]. This chapter proposes a fully Boolean

hardware implementation of ADAM using the novel Boolean elements proposed in this

thesis. The Correlation Matrix Memory CMM which forms the heart of ADAM is also

examined and a new learning paradigm is presented: non-Hebbian learning [Hebb

1949]. Methods of combining CMMs to increase network capacity are also

investigated. The chapter concludes with an architecture of a fully Boolean hardware

implementation of the ADAM network. This chapter also describes the hardware and

the test philosophy for all hardware weightless elements that have been developed

through this research. A novel serial sum and threshold technique which has been

patented is also described.

3.2 Design and Test Philosophy

This research is focused on the development of weightless Boolean hardware elements.

Therefore in order to develop these weightless elements and test them a suitable

platform and philosophy is required. There are two main approaches to this; the first of

these is to simulate the networks on a personal computer using a high-level language.

The disadvantage of this method is that a computer can only sequentially process single

step operations due to the limitation of its processor. Conversely, neural networks by

their very nature are parallel, updating multiple elements simultaneously. This means

that the simulations tend to be slow in comparison; however this is mitigated due to the

speed and multiple processor architecture of modern personal computers. Neural

38

networks although vastly parallel operate at much lower refresh rates. Modern higher-

level languages such as C and MATLAB are ideally suited to the simulation of

weightless neural networks and their associated weightless elements. MATLAB is a

matrix-based language which is compatible with the structure of weightless Boolean

elements, because these can easily be described in matrix form. MATLAB supports the

logical Boolean operators equivalent to the gate functions being implemented. The C

programming language offers a more flexible approach and has been used in this

research to simulate the weightless ADAM neural network. Therefore the software

implementation of these networks has used Borland C++ version 4.52 operating in ‘only

C compiler mode’ and MATLAB version 7.01 including the image processing toolbox

version 5.01 in conjunction with the signal processing toolbox version 6.21. All the

simulations and weightless toolboxes created within this research can be found in the

enclosed DVD in Appendix D.

In conjunction with the software simulation of the weightless neural elements this

research has also required suitable hardware in order to develop and verify the hardware

elements developed during this research. The aim of this research was to create and

develop a new weightless neural network followed by analysis of the network. A

custom designed board known as ‘Neuromorph’ was designed and built to aid the

evaluation of the hardware elements. The board was designed using the Innoveda 2

schematic capture tool (now Mentor Graphics) and the symbols manually created. The

layout was performed at BAE SYSTEMS and the production of the printed circuit board

was outsourced.

3.3 Neuromorph Board

An architecture which is much more suited to this task is that of a large field

programmable gate array (FPGA). This is due to the fact that most weightless neural

networks are constructed from multiple simple elements connected in parallel. FPGA’s

lend themselves to these architectures because they contain look up tables which can be

configured as logical functions. Therefore simple elements which are connected in

parallel are easy to implement on them.

39

Figure 3.1 The Neuromorph Board Designed by the Author

The board is designed around a 300,000 gate Xilinx Virtex I FPGA which is the heart of

the board [Xilinx 1998]. The board also contains two DC - DC power supplies which

provide the FPGA with 2.5 volts and 3.3 volts. The 3.3 volts supply also supplies the

on-board EEPROM which can store the FPGA programme. The FPGA can be

configured so that at power on the EEPROM automatically configures the FPGA. This

is required because the FPGA is static RAM based and needs programming as its

configuration is lost on power down. The board has 160 input / output pins brought out

to four connectors so that data can be easily interfaced to the FPGA. There are on-

board jumpers which allow different configuration modes; including parallel, serial,

JTAG and EEPROM. Initially implementations of weightless neural network designs

were performed by entering the designs into the Innoveda 2 schematic capture tool

using the Virtex symbol library. The design was then checked and compiled into an

EDIF file for use by the Xilinx Alliance software, which checks, builds and compiles

the code into a suitable format to program the FPGA. The resultant ‘.bit’ file was then

used to program the Neuromorph board using the Xilinx Multilinx system. Xilinx offer

several ways of programming the device and the jumper settings on the Neuromorph

board allow all of these. The most convenient way is using the JTAG port. The median

filter discussed in Chapter 5 was developed using a new version of the Xilinx Alliance

40

version 5.1 software which allows direct schematic entry and simulation. This negated

the need of the Innoveda toolset and the associated exporting of the EDIF.

Figure 3.2 An Overview of the Neuromorph Board

A block diagram of the main components of the Neuromorph board are given in Figure

3.2.

3.4 Sum and Threshold

A fundamental element of any neural network is the sum and threshold function which

forms the basic neuron; weightless neural networks are no exception. The difference in

a weightless implementation is rather than being algorithm based, the output is

determined by the number of active excitatory inputs minus the number of inhibitory

inputs. King in his thesis likened this to a see-saw balance [King 2000]. All inputs and

outputs in weightless neural networks only have two states ‘firing’ or ‘not firing’ and no

weighting function. This means that these neurons lend themselves to simple

implementation in conventional Boolean logic. A typical Boolean two input ‘AND’

gate could be also classed as a weightless neuron with a threshold of two and was

appreciated by Turing [Copeland et al 1996]. Similarly if a two input ‘OR’ gate was

EEPROM

3.3 Volt PSU

2.5 Volt PSU P
o
w

er
 C

o
n
n

Configuration Jumpers

FPGA

Connector

Connector

C
o
n
n
ec

to
r

C
o
n
n
ec

to
r

41

used this could be described as a weightless neuron with a threshold of one as shown in

Table 3.1.

Synaptic Input A Synaptic Input B ‘AND’ Gate

Threshold = 2

‘OR’ Gate

Threshold = 1

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Table 3.1 Boolean Logic Acting as a Neuron

In order to optimise the data for processing in a weightless neural network it is often

advantageous to separate the ‘firing’ inputs from the ‘non-firing’ inputs. ‘Firing’ inputs

are represented by ‘1’ and ‘non-firing’ inputs ‘0’ in conventional logic. An elegant

method of performing this simple separation of logic within a tuple is to thermocode the

data [King 2000]. This can be done in a number of ways; King has developed some

Boolean structures which can perform this operation on small tuples or form hierarchies

for larger tuples. The disadvantage of these structures is as the tuple data size grows so

does the number of layers. The propagation delay of the structure increases with each

additional layer.

42

3.5 King’s Weightless Thermocoder

Figure 3.3 shows a weightless thermocoder implemented to King’s design [King 2000].

Figure 3.3 The Weightless Thermocoder

The design consists of six 4 input thermocoder blocks arranged into a follow through

structure to ensure all bits are organised into thermocode. The structure allows 8 bits of

weightless data to be converted into a weightless thermcode. The structure is clockless

and parallel operating on Boolean logic, each layer adds < 1 ns propagation delay when

implemented in modern high performance FPGA’s such as the Xilinx Virtex II [Xilinx

2001]. Due to the parallel nature of the structure the maximum propagation delay is < 8

ns equating to a clock speed of greater than 125 MHz. The weightless thermocode is

used in weightless neural technology to perform the summation function, instead of

standard weighted binary counter technology.

3.6 A Serial Weightless Thermocoder

A novel Boolean serial weightless thermocoder has been developed that generates an ‘n’

length thermocode from a weightless data stream [Armstrong 2003a]. This technique

follows from the author’s earlier work on thermocoding [Armstrong 1999].

43

The technique converts a fast serial stream of weightless data into thermocode. The

weightless stream of data is commonly found in weightless neural network systems,

often in the sum and threshold areas of the network. This section of the weightless

neural network needs to be robust and fast and this technique offers both these

characteristics.

The operation of the thermocoder is based around the use of ‘D’ type flip-flops. As

long as the initial state is a thermocode value the system is guaranteed to provide the

correct thermocode after n clock cycles where n is the number of bits in the

thermocoder. The thermocoder operates by performing a shift left operation or a shift

right operation depending on whether the incoming data is ‘1’ or ‘0’. As the incoming

data is introduced into the chain a bit of data is lost at the other end of the chain.

Figure 3.4 Initial Condition

Figure 3.4 shows the thermocode with an initial condition of half the bits set and the

other half not set. The thermocoder can be initialised in any condition but it is

recommend that the data is preset as thermocode otherwise it can take a number of

cycles before the thermocode will give valid data.

If data is ‘1’

If data is ‘0’

New

data

1 1 1 1 0 0 0 0

44

Figure 3.5 Input of Logic High ‘1’ Being Input to the Thermocoder

Figure 3.5 shows the thermocode as a serial bit of data of ‘1’ is presented and

implemented in the thermocoder.

Figure 3.6 Input of Logic High‘1’ Implemented and Input of Logic Low ‘0’

Figure 3.6 shows the implementation of the next bit of data being presented to the

thermocoder a logic low ‘0’.

If data is ‘1’

If data is ‘0’

New

data

1 1 1 1 1 0 0 0

1

If data is ‘1’

If data is ‘0’

New

data

1 1 1 1 0 0 0 0

0

45

Figure 3.7 A Logical Implementation of Weightless Thermocoder

Figure 3.7 shows a four bit logical implementation of the weightless thermocoder. This

implementation was performed using schematic entry into the Innoveda schematic entry

tool using the Xilinx symbol library. The Xilinx symbol library often names the

symbols for instance FDC represents a single D type flip-flop. The implementation was

then checked and exported via an EDIF netlist to the Xilinx Alliance 4.2i toolbox where

the design was checked and compiled to produce a suitable bit map for downloading

into the Xilinx Virtex XCV300 FPGA on the Neuromorph card. The design was tested

using a clock, light emitting diodes and switches. The technique is most suited to neural

networks which generate the data in a stream such as ADAM [Austin 1986] and

Neuroram [King 2000].

The most widely used technique for the summation and thresholding is that of using

conventional arithmetic logic units and counters even in weightless neural networks.

46

Austin tends to use this approach in his ADAM and AURA architecture implementing

them in fast FPGA’s on bespoke acceleration hardware {Weeks et al 2005].

The thermocoder technique demonstrated can be used to make a sum and threshold

module which can be used in neural networks to implement a basic McCulloch and Pitts

neuron [McCulloch 1943]. This can be implemented by taking two of the thermocoder

units, one for the ‘sum’ part and the other for the ‘threshold’ part and comparing the

logic output of the two units used to determine the thermocode unit with the greatest

number of ‘1’s. If the ‘sum’ has the greatest Hamming value then the ‘sum’ is greater

than the ‘threshold’ and the threshold has been exceeded. If the ‘threshold’ has the

greatest Hamming value then the ‘sum’ is less than the ‘threshold’ and hence the

threshold has not been exceeded. This comparison can be made using either the ‘less

than or equal to comparator’ or alternatively the ‘greater than or equal to comparator’

shown in Figure 3.8 and Figure 3.9 respectively.

Figure 3.8 Less Than or Equal to Comparator

The greater than or equal functions are key elements to the implementation of a

weightless neuron. The greater than or equal to sum and threshold element can be used

to decide if the neuron should ‘fire’ or not. The greater than or equal to element takes a

weightless thermocoded threshold and evaluates it against a weightless data stream. If

the weightless data is not thermocoded then an additional weightless thermocoder will

be required as in Figure 3.3.

47

Figure 3.9 Greater than or Equal to Comparator

3.7 CMM Learning

The core of all of Austin’s networks is the correlation matrix memory originally

developed by Steinbuch to offer robustness and a form of error correction in telephone

exchanges where components were prone to failure [Steinbuch et al 1962, Steinbuch et

al 1967]. The 'learning' of the CMM in a weightless neural network is performed using

Hebbian learning.

The learning concentrates on the reinforcement of neurons which ‘fire’. Traditionally

the CMM ignores neurons which do not fire and hence the associated junctions remain

at a quiescent state. The matrix operates by performing an association between two

inputs at each intersection where the neuron is located as shown in Figure 3.10.

Figure 3.10 The Logic at the Intersections of the Correlation Matrix Memory

=

48

The neuron implements Hebbian learning using a two input 'AND' gate and a memory

cell. The training of the neuron at the intersection means the inputs are strengthened by

the storage of a ‘1’ at that intersection. This only occurs when both the inputs for a

given intersection are ‘1’. This effectively generates a content addressable memory

[Aleksander et al 1995]. Memory which is addressed by the data is equally known as

content addressable memory or associative memory and differs from conventional

memory as it does not require a prescribed address to where the information is located.

The information is located based on its content.

3.8 The Performance of CMM as Neural Memory

The performance of the correlation matrix memory is dependent upon the level of

saturation. Saturation is an issue when over 50% of the neurons in the matrix are

trained with a '1'. Over-saturation of the network can severely affect the ability of the

network to generalise. A more severe side effect of over-saturation is incorrect

associations which can occur. The greater the saturation of the matrices, the greater the

tendency of the network to produce incorrect associations [Bolt et al 1992]. Austin

introduces several techniques to reduce the occurrence of saturation including tupling

the incoming data. This ensures a pre-determined number of ‘1’s in a tuple for any

given data possibility. Austin further controls the network by introducing the addition

of a second correlation matrix memory [Austin 1986]. This addition of a second matrix

allows separation of the matrices with the class pattern. Although at first sight this adds

a greater level of complexity it allows a greater control of the matrices as the class

pattern is a user controlled parameter. A combination of the two techniques

significantly delays the onset of saturation with the network.

3.9 A New Learning Paradigm of Non-Hebbian Learning

This research has investigated whether different Boolean logic operators at the

intersection of the correlation matrix memory are plausible and offer any merit. These

techniques were proposed to improve the performance of an over-saturated network.

The rationale being that a non-association is equally important as an association.

Therefore the neurons in the matrices which are not responding are equally important

when evaluating a trained network against a given input for a response.

49

The first trial involved a new implementation of the correlation matrix memory, where

the importance of the non-association was given prime focus. This resulted in the

development of a correlation matrix memory which associated ‘0’s using a 2 input NOR

gate as shown in Table 3.2.

This demonstrated that the use of other Boolean logic operators were plausible and

functional such as the EXNOR gate.

Synaptic Input A Synaptic Input B Gate

Output

0 0 NOR 1

0 1 Ā . B 1

1 0 A . B̄ 1

1 1 AND 1

Table 3.2 Boolean Neural Logic

The new techniques add an extension in that other ‘learning elements’ are proposed to

that of Hebbian learning. The operation of the matrix remains unchanged, the

difference is the new elements of learning. Instead of using the Hebbian ‘AND’ gate

method new learning elements are given below.

3.9.1 Traditional Hebbian Learning

1010 taught with 1001 using the Hebbian learning method on the CMM.

 1 0 0 1

1 1 0 0 1

0 0 0 0 0

1 1 0 0 1

0 0 0 0 0

50

3.9.2 ‘NOR’ Gate Implementation

This method has been identified as the author’s ‘non-Hebbian’ technique. This method

logically inverts the inputs, so unlike the Hebbian method the learning is performed on

the ‘zeros’ instead of the ‘ones’. This can be implemented by inverting both inputs and

then passing this to an ‘AND’ gate or instead using a ‘NOR’ gate.

Example of Non-Hebbian learning: 1010 taught with 1001 using the Hebbian learning

method on the CMM.

 1 0 0 1

1 0 0 0 0

0 0 1 1 0

1 0 0 0 0

0 0 1 1 0

3.9.3 Difference Learning

This method has been identified the author’s ‘Difference’ technique. This method

logically inverts one input, so unlike the Hebbian method the learning is performed by

‘ANDing’ an inverted input with a non-inverted input – an A AND (NOT B) gate.

Example of Difference learning: 1010 taught with 1001 using the difference learning

method on the CMM.

Example 1

 1 0 0 1

1 0 0 0 0

0 1 0 0 1

1 0 0 0 0

0 1 0 0 1

51

Example 2

 1 0 0 1

1 0 1 1 0

0 0 0 0 0

1 0 1 1 0

0 0 0 0 0

This demonstrated that the use of other Boolean logic operators were plausible and

functional. It was immediately apparent that this approach was not practical as a

straightforward substitution for a conventional correlation matrix memory in the

ADAM network [Austin 1986]. As the ADAM network has been optimised to reduce

the number of ‘1’s hence increasing the ‘0’s within the matrices causing the immediate

over-saturation of the network when using this neural operator.

The network was redesigned to address this by reducing the number of ‘0’s stored

within the correlation matrix memory. This necessitated the redesign of several

elements of pre-processing to remove the bias to a low level of ‘1’s to a low level of

‘0’s.

The result was that an inverse tuple and inverse class pattern had been created.

Functionally it was only another ADAM network all be it focused on ‘0’ instead of ‘1’

but the ability to deal with saturation had not changed.

3.10 A Weightless ADAM Architecture

The key aim was to develop an alternative hardware architecture for Austin’s ADAM

which was Boolean logic based instead of the current counter based techniques. This

meant that logical implementations of the Willshaw and N point thresholding were

required [Willshaw et al 1969].

The following elements perform key functions required in neural networks. It is

common for the functions to be implemented using clocked counter based techniques in

Austin’s hardware implementations even in weightless neural networks. These

techniques are novel in that they allow a completely weightless Boolean implementation

of the hardware as well as the function.

52

3.11 A Weightless Boolean Willshaw Threshold Element

Figure 3.11 Willshaw Thresholding

The Willshaw threshold is a key element in weightless neural networks, often used to

select the data stream which most closely represents the desired request. Austin’s

ADAM is a typical example which can use the Willshaw thresholding technique: it can

be used in the class separator pattern to associate the two correlation matrix memories

[Austin et al 1987]. The operation of the logic is to take all the separate data streams

and bring them together to determine the maximum data response. This is then

compared with each of the separate data streams, any data streams which correspond

have their output (out n) set to ‘1’. There will be at least one output which is set to ‘1’

due to the way the Willshaw threshold is derived. In practice when used in a neural

network the user is unlikely to want to know the Willshaw value, hence the Willshaw

outputs (LMAX n) would not be brought out from the logical structure. They are only

present in this design to show where the Willshaw value can be found and for test and

evaluation purposes. The Willshaw threshold is used by Austin in his ADAM network

to determine the result from the matrix. It is used to select the rows which have the

highest response. Conventionally, Austin performs this function with an arithmetic

summation of the columns and storing the highest response which is then applied to all

the columns as the threshold.

53

3.12 A Weightless Boolean N Point Threshold Element

N point thresholding is often referred to as L-Max thresholding [Willshaw et al 1970].

N point thresholding is used in the class separator pattern to select the columns with

highest correlation score. The architecture in Figure 3.15 allows N point thresholding to

be implemented using Boolean weightless logic, instead of using conventional clocked

counters as in Austin’s implementations. ADAM uses N point thresholding to select the

columns of the second matrix using the class pattern as the comparison [Austin 1986].

Figure 3.12 Weightless N Point Thresholding

54

3.13 Implementation of a Weightless Boolean ADAM Architecture

The majority of ADAM is based on weightless Boolean logic including the tupling and

the correlation matrix memory. The areas highlighted in Figure 3.13 by the dotted lines

show the thresholding elements of ADAM which are not weightless. These elements

can be replaced with the elements shown in Figure 3.11 and Figure 3.12 in order to

implement a fully weightless hardware Boolean architecture.

Figure 3.13 A Block Diagram of ADAM

An example of how the Willshaw thresholding weightless Boolean element can be

implemented and added to the correlation matrix memory is shown in Figure 3.13. To

implement this function within ADAM using the correlation matrix memory each of the

rows within the matrices are individually thermocoded. The Willshaw threshold is

generated by the logic shown in Figure 3.11, each of the thermocoders is then compared

with the Willshaw results using a greater than or equal to function and this determines

the output for each row of the matrix.

Class Pattern

Correlation Matrix

Memory

N Point Threshold

Correlation Matrix

Memory

T
u
p

le

W
il

ls
h

aw

T
h

re
sh

o
ld

T
u

p
le

55

Figure 3.14 A Diagram of the Weightless Boolean Willshaw Threshold on a CMM

Similarly the implementation of the N Point threshold is shown in Figure 3.15. This

technique is usually used on the class pattern rather than the input data in the

implementation of ADAM however it can be used on the input data as well. The

summation is performed by the thermocoder and the threshold applied by the greater

than or equal to logic function. A full description of the logic is given in Figure 3.11.

Each of the rows in the matrices are also separately thermocoded and individually

compared with the thermocode input data each producing a one bit result for the output

of either zero or one dependent on the data.

Thermocoder

Willshaw

Threshold

Thermocoder

Thermocoder

Thermocoder

Correlation Matrix

Memory

>=

>=

>=

>=

Thermocoded Data

from CMM

Output

Data

Threshold

56

Figure 3.15 A Diagram of the Weightless Boolean N point Threshold on a CMM

3.13.1 Simulation of the ADAM Network

An example of the operation of the weightless Boolean ADAM network is presented in

Figure 3.16. The example is based on a pre-trained ADAM network which does not

have tupling applied to the inputs. Figure 3.16 shows a pre-trained data pattern being

shown to the trained network and the operation of the network in recalling the

associated pattern. The weightless thresholding techniques used in the network are

shown in more detail in Figure 3.17 and Figure 3.18.

Thermocoder

N – Point

Threshold

Thermocoder

Thermocoder

Thermocoder

Correlation Matrix

Memory

Thermocoded Data

from CMM

Output

Data

Thermocoder

Input Data

57

Figure 3.16 A Weightless Example of the ADAM Network

1 0 1 0 1

0 1 0 1 0

0 0 1 0 1

0 1 1 0 1

Correlation Matrix

Memory 1
Input Data

1 0 0 1 0

1

0

1

1

0

1 1 3 0 3

0 0 1 0 1

1 0 1 0

0 1 0 0

1 1 1 1

0 0 0 0

0 1 1 0

1

0

1

1

0

2

0

2

1

1

1

0

1

0

0

Correlation Matrix

Memory 2

Weightless N

point

Thresholding

Weightless

Willshaw

Thresholding

Output

Data

58

Figure 3.17 A Weightless Example of N Point Thresholding

The implementation of weightless N point thresholding is shown in more detail in

Figure 3.17. N point thresholding is used to determine the class pattern from the input

data on a trained network. N point thresholding is implemented by thermocoding the

input data and comparing this with the thermocoded response from the columns of the

correlation matrix memory neurons which have fired as shown in the thermocoded data

in Figure 3.17. The greater than or equal to logic is then used to compare the

thermocoded columns with the thermocoded input data. In this example this produces

the class pattern 00101 for the given input of 10110.

1 0 1 0 1

0 1 0 1 0

0 0 1 0 1

0 1 1 0 1

Correlation Matrix

Memory 1
Input Data

1 0 0 1 0

1

0

1

1

0

1 1 1 1 1

0 0 1 1 1

0 0 1 0 1

0 0 0 0 0

0 0 0 0 0

1

1

1

0

0

≥ ≥

≥

≥

≥

Thermocoded Data

0 0 1 0 1

N point Threshold

Recall Class

Pattern

59

Figure 3.18 A Weightless Example of Willshaw Thresholding

Willshaw thresholding is used on the second correlation matrix memory to determine

the output from the presented class pattern as shown in Figure 3.18. The class pattern in

this example is 00101 which is presented to the second trained correlation matrix

memory. Each of the neurons which respond are then thermocoded horizontally as

shown in thermocoded data. The thermocoded data is then Willshaw thresholded by

vertically ‘OR’ gating the columns to determine the threshold to be applied which is

equal to the maximum response in this case 11000. The threshold value is then used to

compare with each of the thermocoded rows using the greater than or equal to logic this

produces the Recall Data in this example 10100.

The operation of the non-Hebbian ADAM network is identical apart from the fact that

instead of the neuron in the matrices firing and producing a ‘1’ when two inputs fire a

‘1’ is only produced when the two inputs do not fire and both input conditions are ‘0’.

1 0 1 0

0 1 0 0

1 1 1 1

0 0 0 0

0 1 1 0

1

0

1

1

0

0 0 1 0 1

1 1 0 0

0 0 0 0

1 1 0 0

1 0 0 0

1 0 0 0

0

0

0

0

0

OR

OR

OR

OR

OR

1

0

1

0

0

Thermocoded Data

Recall Class Pattern

L - Max Threshold

Recall Data

1 1 0

0
0 0

≥

≥

≥

≥

≥

60

3.13.2 Simulation of the ADAM Network in Appendix D

Attached in Appendix D is a simulation of the new learning elements. Multiple

simulations were developed during the research. The simulation program demonstrates

the ability of the Hebbian and novel non-Hebbian techniques to implement the ADAM

neural network. The simulation produces random matched data words, which are taught

into the matrix. Then a random trained word is picked and presented to the trained

matrix and its recall word and the output is then scored and thresholded against the

trained data. The simulation showed that using both Hebbian learning and non-Hebbian

learning the matrices had the same performance. In summary a collection of non-

Hebbian learning elements has been proposed. These are based on other logical

functions which will operate as the neural function at the intersections within the

matrix.

3.13.3 Summary of Chapter 3

A new hardware Boolean weightless implementation of Austin’s ADAM neural

network has been proposed using a collection of weightless Boolean sum and threshold

architectures developed by the author. The main consistuent of these are weightless

implementations of decision logic including a Willshaw thresholding element

[Willshaw et al 1969]. A novel method for thermocoding weightless serial data which

has been patented is demonstrated. The test philosophy used to trial these new elements

is presented including a description of hardware used. A novel method for

thermocoding weightless serial data which has been patented is demonstrated. This

chapter demonstrates how weighted neural networks can be converted in Boolean

weightless hardware using a collection of Boolean weightless architectures.

61

Chapter 4

4 Hardware Weightless Boolean Median Filters

4.1 Overview

This chapter presents a collection of novel weightless Boolean median filters. A

description of the operation of each of the filters is presented. The robustness of a

weightless Boolean logic structure used in the weightless median is examined when

subjected to a high neutron flux environment, typically experienced at avionics

altitudes. The performance of the novel weightless Boolean swap element which is part

of the weightless median filter is compared and evaluated with a conventional median

filter swap element. Both elements are examined when implemented on a standard

FPGA which is subjected to a high neutron flux environment at ground based

accelerator facilities. The results from these trials are analysed and discussed.

4.2 Median Filtering

Median filtering is a technique that is used to remove certain types of noise from an

image. It is particularly effective at removing outlier noise such as Salt-and-Pepper

noise. Salt-and-pepper noise occurs when pixels within the image is corrupted resulting

in them becoming either a minimum value or a maximum value. In greyscale images

these pixels become either black or white hence the term salt-and-pepper noise.

4.2.1 Operation of the Median Filter

The median filter is implemented by passing a window in which the filter operates over

the whole image in sequence as shown in Figure 4.1.

62

Figure 4.1 Milk Drop Image with 2 Dimensional 3 by 3 Matrix Window

As the filter window is passed over the image, adjacent pixel values are used to

calculate a replacement pixel value for the centre pixel. This operation forms the basis

of many filtering techniques. The type of filtering executed is dependent upon the

replacement algorithm. Median filtering is performed by ordering all the pixel values in

magnitude and replacing the centre pixel value with the middle value. A conventional

median filter implementation would use an arithmetic logic unit found in a processor to

sequentially compare and order the values.

4.3 Novel Techniques for Median Filtering

Two novel weightless means of performing this median filtering using weightless

Boolean hardware are described below.

The first technique allows weightless data to be ordered according to magnitude. This

technique was developed by King with the addition of a tagging technique proposed by

the author. The tagging technique allowed weightless non-thermocode data to be

maintained during the ordering technique.

The second technique is a novel weightless Boolean median filter which utilises a

weightless Boolean swap block. This technique was developed as part of this research

following on from the initial work investigating King’s Type 1 Neuroram as an image

filter.

Both these techniques have been patented by BAE SYSTEMS. Copies of the original

patent can be found in Appendix C.

198 195 197

201 198 195

196 194 199

63

4.3.1 Weightless Ordering

King and the author jointly hold a patent on weightless ordering and tagging

[Armstrong et al 2003]. King's contribution was the ordering method and the author’s

contribution was the tagging method. The filter is implemented by first taking the pixel

values from the window function and converting them into a weightless binary string.

This can be implemented relatively easily in hardware again without the need for a

clock or processor. The implementation is simply a case of thermocoding the data

horizontally and then thermocoding all the data vertically. Figure 4.2 show three values

of weightless data each four bits in length which represent typical input data from a

function window.

0101

0100

1101

Figure 4.2 Typical Input Data

The first stage is to thermocode each string of weightless binary data which represents a

pixel value from the window function. This operation is performed using King's tuple

ordering method [King 1999a]. The thermocoding is then performed on all the pixel

values from the processing window this then gives the data as shown in Figure 4.3.

1100

1000

1110

Figure 4.3 Weightless Data after Horizontal Thermocoding

64

The second stage is to order the thermocode values into magnitude order. This

operation can be performed by thermocoding the data in the vertical direction as shown

in Figure 4.4.

1000

1100

1110

Figure 4.4 Weightless Data after Horizontal and Vertical Thermocoding

Once all the vertical lines have been thermocoded the data is now in magnitude order.

To perform the median function is now a case of taking the middle value and using this

to replace the central value in the window after converting the thermocode value back to

binary. This technique is a weightless hardware method which can be further enhanced

using the parallel thermocode described later in this chapter.

4.3.1.1 Shortcomings of Weightless Ordering

The disadvantage with this technique is that the correspondence to the original data is

lost. The original data is lost as although the Hamming value of the original data is

maintained the original order and bit positions are lost through the process.

4.3.1.2 Contributions of the Tagging Method

The tagging method addresses these shortcomings by associating the original data with

a tag. These tags were formed from the original data. Once the vertical thermocoding

has been performed the resultant ordered thermocodes are compared with tags and

where the thermocodes are the same length the original data replaces the thermocode;

hence the original data is ordered. The technique does have a drawback that if several

numbers have the same thermocode length the original data position for the same string

may be lost as shown in

Figure 4.5.

65

1011

0101

1010

0100

May yield

1011

1010

0101

0100

Figure 4.5 An Example of Wrong Positional Assignment

4.3.1.3 The Implementation of the Tagging Technique

The logic for performing the comparison and tagging is given in Figure 4.6, Figure 4.7

and Figure 4.8. The comparison for the tagging technique is made using ‘EXNOR’

gates to compare the thermocode data from all the vertical and horizontal thermocoders

to each of the original dataset. The graphical description of this is given at the bottom

of the circuit diagram in Figure 4.6, this also gives a description of the labels used

within the circuit diagrams below.

66 66

Figure 4.6 New Result for the First Value

67 67

Figure 4.7 New Result for the Second Value

68 68

Figure 4.8 New Result for the Third Value

69

4.4 A Novel Boolean Weightless Median Filter

This technique is based on a more conventional implementation of median filtering.

It is also designed to overcome some of the disadvantages faced by the previous

ordering and tagging technique. The previous technique requires two stages of

thermocoding which with large datasets can be timely. This technique in comparison

only requires the data to be thermocoded initially; the only subsequent delay within

the system is caused by the swap block. These blocks however are designed to

operate in parallel. Although the structure to implement a median filter is still

sequential the delays incurred would be less than when a large dataset is used with the

previous technique. The operation of this filter also works by the ordering of the

original data so the median, highest or lowest values can be found. This is performed

without any loss of positional data unlike the previous method. Again the

implementation is fully Boolean logic based so the system is totally asynchronous.

This weightless median filter operates on similar principles to the previous filter, in

that the weightless data is thermocoded and compared. The difference is that the

original data is preserved throughout the process. This is achieved by comparing the

two weightless values and then thermocoding them whilst still preserving the original

values. If the second value has a greater thermocode value than the first of the two

original weightless values then they are swapped over. If the first value has a greater

thermocode value then the original data it is passed on to the next stage as shown in

Figure 4.10. This process deals with the comparison of two weightless codes. If

greater numbers of codes need ordering it is the cascade architecture which is

important to the operation of the median filter. Figure 4.10 also shows the logical

implementation of this method which includes a thermocoder in the structure.

However if the data is already thermocoded, from either a previous stage or the input

data is thermocoded, this is not necessary. The thermocoder shown in Figure 4.10 is

King’s thermocoder. The next section discusses the use of an alternative thermocoder

which would result in a lower propagation delay. Figure 4.11 gives a typical structure

with minimal swap elements to implement a nine input median filter, unnecessary

data is removed to reduce the number of elements required. The structure is to be

designed so there are enough stages to ensure that the data is completely organised.

Figure 4.9 gives an example of a suitable structure given three weightless input

strings where all data is retained.

70

Figure 4.9 An Example of a Weightless Type 2 Median Filter Architecture

7
1

Figure 4.10 Logic Diagram of a Weightless Swap Block

7
2

Figure 4.11 Minimal Weightless Median Filter Architecture

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

B

1

A

1 A

2

B

2

73

4.5 A High Speed Weighted Binary to Thermocode Converter

In order for the weightless median filter to be a practical replacement for a standard

median filter it is necessary for it to operate at high speed as many applications which

will benefit from its robust properties also require high speed processing such as

medical imaging [Hazra et al 2004]. The nature of the median filter prevents it from

taking advantage of parallel methods of operation. Therefore it is necessary to reduce

the propagation delay of each stage of the filter to a minimum. Modern FPGA’s such as

the Xilinx Virtex II range have a gate propagation delay of approximately 1 ns. The

example in Figure 4.10 shows an implementation of King’s weightless thermocoder

[King 2000]. This is presented with two 4 bit weightless binary values. These are

operated on by two input thermocoders arranged in the necessary structure as defined by

King to ensure that all bits are thermocoded [King 2000]. Using two bit thermocoders

the logic structure needs the same number of layers as inputs. In this case there are four

inputs and hence four layers of logic equating to a total propagation delay for the

thermocoder of 4 ns. The subsequent Hamming value comparator and swap block

elements would comprise four layers of logic hence another 4 ns propagation delay.

The total propagation delay for this weightless Boolean swap block would be 8 ns,

subsequent swap blocks do not need thermocoding and hence will only have a

propagation delay of 4 ns. If this is applied to the structure shown in Figure 4.10 this

would give the overall filter using two sets of four inputs as shown a total propagation

delay of 40 ns. This equates to an equivalent clock speed of 25 MHz. This could

further be improved by the Xilinx software which would compile the logic reducing the

number of logic layers. A similar weighted version of the median filter used in medical

imaging is capable of a clock speed of 48 MHz [Bates et al 1997]. The element

presented is very basic and a more realistic median filter would be expected to operate

with nine inputs all consisting of 8 bit weighted data which requires a 256 bit weightless

tuple. If the data is presented in weightless binary format, in order to be thermocoded

using an equivalent architecture each input would take 256 ns. This is because each

additional weightless input bit increases the number of layers of logic proportionally.

All the inputs could be dealt with in parallel. The subsequent swap elements would take

approximately 4 ns each, using the architecture in Figure 4.11. The propagation delay

of all the swap elements would be 36 ns as there are nine elements in series. The

overall propagation delay of the weightless median filter would be 392 ns, equivalent to

a clock speed of approximately 2.5 MHz. This is not suitable for the more demanding

74

applications such as medical imaging [Hazra et al 2004]. The main constituent of the

delay is the pre-processing, as the original data is likely to be standard weighted binary.

4.5.1 A Parallel Weighted Binary to Thermocoder

Therefore a replacement to King's thermocoder is proposed, that of a simpler parallel

conversion method. This method creates a logic array for every bit in the weightless

thermocode string. Although the number of layers of logic would increase with larger

data widths the rate of growth is significantly less than that proposed by King [King

2000]. This is demonstrated in Table 4.1 below where using King's implementation this

would require seven layers of logic in this method only requires one layer.

Value Inputs Outputs

Logic A B C A.B.C A.B (A.C+A.B) A (A+B.C) (A+B) (A+B+C)

0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 1

2 0 1 0 0 0 0 0 0 1 1

3 0 1 1 0 0 0 0 1 1 1

4 1 0 0 0 0 0 1 1 1 1

5 1 0 1 0 0 1 1 1 1 1

6 1 1 0 0 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1

Table 4.1 Operation and Boolean Logic of the Binary to Thermcode Converter

A thermocoder operating on a weightless tuple of 256 bits where the logic gates can

cope with 8 inputs would equate to 3 layers of logic with an overall propagation delay

of approximately 3 ns. Additionally the swap element logic can be optimised using the

FPGA manufacture’s software reducing the swap element propagation delay time to

approximately 2 ns per layer. Thus giving the median filter an overall propagation

delay of only 21 ns. This would equate to a clock speed of approximately 47 MHz

which would be suitable for high speed operations. As new faster FPGA’s are produced

this operational speed can increase as device propagation delays through logic gates fall.

75

4.6 Evaluation of a Weightless Swap Element in a High Neutron Flux

Environment

The aim of the testing was to investigate the hypothesis that different Boolean logic

implementations of standard elements will have improved abilities to withstand

corruption. The logical elements chosen for this trial were a subset of the patented

weightless median filter and a compatible weighted element taken from an FPGA

implementation of a weighted median filter [Xilinx 1998]. The author understood that

the underlying logic implementation is static random access memory based look-up

tables.

4.6.1 Initial Trials with the Median Filter

Initial investigations into the performance of the two architectures were focused on the

complete median filters. A brief summary of the testing performed on these filters and

the information gained which led to the final trial of the sub elements of these filters is

presented in this section.

The median filters used were designed with 5 inputs each, 4 of which were fixed values

within the FPGA all with a decimal value between 0 and 11. The range of values was

limited by the number of inputs and outputs available on the test equipment which was

22. Therefore with the weightless architecture requiring one input and output this

limited the maximum number of values to 11. In order to make it a comparative test the

values of the weighted architecture were also limited to a maximum value of 11 which

translates into 4 weighted binary inputs and outputs.

The values used were carefully chosen to give a selection of results given the input

value, so that the filters could be cascaded and the result would ripple down through to

the final output. Therefore the filter values were set to 2, 3, 5, 7 this then corresponded

to an output of 0-3 for any input value up to 3, 4 for 4 and an output of 5 for any input

value from 5 to 11.

The median filters were initially implemented in a Xilinx Virtex IV device on a Xilinx

test board but this proved to be more resilient to corruption by neutrons than previous

Virtex devices. Therefore no real results were gained at this initial trial.

76

Following an investigation it was determined by Xilinx that the Virtex II part was

nearly twice as susceptible to corruption compared with the Virtex IV part and was the

most susceptible device in the Virtex range. Because the experiment was investigating

the robustness of the architecture, it required the least robust device in order to increase

the data for better statistics. Additionally the new device was filled with as many filters

as would fit in, to increase the number of errors and again improve statistics.

The code was recompiled for the Virtex 2 device. The Rutherford Appleton Laboratory

offered SPAESRANE the opportunity to evaluate their facility in Harwell to compare it

to the other atmospheric neutron simulation facilities. This allowed the new Virtex II

architecture to be trialled and acted as a proving ground before the TSL trial.

This immediately exposed one flaw in the test system design, in that once the Virtex IV

device became so corrupted that it produced a constant error there was no method of

detecting this and reprogramming the device. As the test set was designed to be

autonomous the hardware and software were updated with an additional signal to

reprogram the device with its configuration, when so many instances of the same error

in succession were detected. This latest version of hardware and software was taken to

TSL where three median architectures were trialled: weightless, weighted unclocked

and weighted clocked. On evaluation of the results it was decided to concentrate on the

weightless unclocked architecture versus the weighted architecture.

Median filters have the property to remove outlier noise. In this case this would include

spurious results which we would want to capture. This was only compounded by the

fact the architecture was made up of a chain of median filters.

77

4.7 The Weightless and Weighted Swap Element Trial

Therefore for the next trial at TRIUMF it was decided to pick a smaller element of the

median filter which would not exhibit the outlier removal properties of the median

filter; notably the swap block. This element was also the main part of the median filters

responsible for their functionality.

4.8 Test Philosophy

In order to test the architecture it was necessary to cause single event upsets in the

FPGA that the architecture was being implemented in. In order to achieve a single

event upset suitable ground-based neutron facilities were identified, these being the

Theodor Svedberg Laboratory (TSL) in Sweden and the Tri-University Meson Facility

(TRIUMF) facility in Canada.

4.8.1 Test Facilities

4.8.1.1 Theodor Svedberg Laboratory

TSL is located in Sweden at the University of Uppsala. It was built in 1947 and is one

of the earliest facilities of its kind. A synchrocyclotron is used to generate high-energy

protons which are directed onto a tungsten target. This results in a simulated

atmospheric spectrum with a maximum energy of 180 MeV. This is also known as a

white spectrum beam and is named as the ANITA beam which stands for Atmospheric-

like Neutrons from thIck TArget [Prokofiev et al 2009]. The beam has been

characterised by Torok and Platt and compared to similar facilities [Torok et al 2006].

This beam is available in the Blue Hall and locked to prevent exposure to staff and

researchers whilst the beam is on.

78

Figure 4.12 TSL Blue Hall – Looking Down the Beam Line

There are two “counting rooms” where experiments can be remotely monitored. The

main connections between the two are via BNC connections to the Blue Hall. One

counting room is shown in Figure 4.13. The set up of the experiment for this facility is

shown in the block diagram in Figure 4.14.

79

Figure 4.13 One of the Counting Rooms at TSL

Figure 4.14 A Block Diagram of the TSL Test System Layout

Data Logging

Computer

RS232

 PSU

FPGA

Xilinx

Programmer

Test

Set

Xilinx

Programming

Computer

USB

80

4.8.1.2 Tri-University Meson Facility (TRIUMF)

TRIUMF is located at the University of British Columbia, Vancouver, Canada as shown

in Figure 4.15.

Figure 4.15 TRIUMF at the University of British Columbia

The synchrocyclotron is capable of producing, on average, 10
15

 protons every second

with energies ranging from 450 to 500 MeV.

Figure 4.16 TRIUMF NIF Buried in the Isotope Production Facility

A well defined neutron beam of approximately 8 by 12 cm is provided in the Neutron

Irradiation Facility (NIF) with a similar spectrum to that of the atmosphere. [Blackmore

et al 2003]. The neutron flux is one million times that at 39,000 feet for flux >10 MeV

and consists of many thermal neutrons. These can easily be removed with cadmium

plates; this trial used the thermal neutrons so no cadmium shield was required. This

81

beam is characterised from thermal energy to 500 MeV. The fluence is determined by

integrated proton beam current calibrated against activation foil measurements. The

beam is located beneath a counting room and accessed using a slider plate via wire and

guide rails. The test system having to be lowered on a plate as shown in Figure 4.17.

The test set was modified as shown in Figure 4.18. A block diagram for the set up is

shown in Figure 4.19.

Figure 4.17 TRIUMF NIF Slot and an Example Test Board on Slider Plate

8
2

Figure 4.18 The Test System for Mounting on the Assembly for TRIUMF

83

Figure 4.19 A Block Diagram of the TRIUMF Test System Layout

4.8.1.3 The Architecture for Neutron Trials

The device was filled with a chain of swap blocks which constantly swapped all 11 bits

as they passed through each unit using decimal values between 0 and 11 as shown in

Figure 4.20. The architecture chosen ensured the value present, between 0 and 11

would also be the value returned under correct operation. Therefore any corruption

would be immediately apparent and would be passed through the architecture. This trial

concentrated on two architectures; that of a weightless swap block and a weighted swap

block, and was carried out at TRIUMF. Due to the high flux produced at this facility

along with the carefully selected part a good number of results were collected which

contradicted the hypothesis that the weightless architectures would be less susceptible.

This is due to the fact more signals were needed, as each bit was represented in

hardware.

 USB Repeater

Data Logging

Computer RS232

 PSU

FPGA

Xilinx

Programmer

PIC

Xilinx

Programming

Computer USB

84

Figure 4.20 Swap Block Architecture with the FPGA Device

4.9 Test Architecture Descriptions

4.9.1 Weightless architecture

The weightless architecture consists of simple Boolean gate structures which

manipulate the bits as they propagate through the architecture. The swap block consists

of two main elements; a thermocode block followed by the weightless swap block. An

example of the swap block structure of this element is shown in Figure 4.22. The

thermocoder element is formed by a hierarchical structure of ‘AND’ and ‘OR’ gates

[King 2000]. Figure 4.23 shows the overall thermocode structure. The complete test

architecture is the maximum number of these elements which can be fitted into a Xilinx

Virtex II 1000 device, which in this case was 100. Figure 4.21 show the full Xilinx

usage report.

Elements Used Total Percentage (%)

Look-up Table 4 input 10,074 10,240 98

Slices (related logic) 5,118 5,120 99

Slices (unrelated Logic 4,891 5,118 95

Total Number OF LUTs 227 5,118 4

Number of bonded IOBs 22 172

Total Equivalent Gate Count 60,444

Figure 4.21 Weightless Swap Block Architecture Usage Report

Swap

Block

Test Set Swap

Block

Swap

Block

Swap

Block

Swap

Block

Swap

Block

FPGA

85

Figure 4.22 Weightless Swap Architecture

8
6

Figure 4.23 Thermocoder Structure

87

4.10 Weighted architecture

The weighted architecture is much simpler and a more conventional architecture. The

swap block consists of a conventional 4 bit input comparator which controls two, four

bit multiplexers as shown in Figure 4.24. Figure 4.25 shows an example of the

connection architecture clearly showing the crossover between swap blocks.

MB(3:0)

O(3:0)

MA(3:0)

S(0:0)

OUTPUT A

OUTPUT B

INPUT A

INPUT B

SELECTOR4

MB(3:0)

O(3:0)

MA(3:0)

S(0:0)

SELECTOR4

A(3:0)

B(3:0)

COMPARATOR4

A_GE_B

Figure 4.24 Weighted Swap Architecture

With this architecture using less single lines, 4, opposed to the 11 used in the weightless

system, more elements could be fitted into a Xilinx Virtex II XCV 1000 device. In this

experiment this was 504. Figure 4.26 shows the full Xilinx usage report.

Both architectures were replicated and chained together to utilise the maximum amount

of the device in order to maximise the number of errors that would be detected.

Figure 4.25 Shows the Weighted Swap Block Architecture Mapping

Ain(3:0)

Bin(3:0)

Aout(3:0)

Bout(3:0)

Weighted_swap

Ain(3:0)

Bin(3:0)

Aout(3:0)

Bout(3:0)

Weighted_swap

88

Elements Used Total Percentage (%)

Look-up Table 4 input 6,048 10,240 59

Slices (related logic) 5,040 5,120 98

Slices (unrelated Logic 0 5,040 0

Total Number OF LUTs 6,048 10,240 59

Number of bonded IOBs 12 172 6

Total Equivalent Gate Count 42,336

Figure 4.26 Weighted Swap Block Architecture Usage Report

4.11 Test Set and Test Program

 A test set using a PIC device and a standard laptop was used to stimulate the

architecture under test and record the results. The test set was capable of driving and

monitoring either 11 weightless bits when running the weightless monitoring code, or 4

weighted binary bits when running the weighted code. The test set was designed to

constantly cycle through values 0 to 11. A block diagram of the test set is shown in

Figure 4.27 including the board under test with the FPGA in which the architectures are

implemented.

Figure 4.27 Test Set Block Diagram

 RTC

 RS232

 Converter

PIC

Port A

Port D

Port C

Port E

Clock
8

Board Under Test

8

3

3

FPGA

 PSU

5V

89

The Xilinx device was reprogrammed with each architecture in turn using the Xilinx

download cable, this was to eliminate the effects of any batch differences between

Xilinx devices.

A commercial Xilinx test board was used with a Virtex II 1000 to host the architecture;

this was then connected to the test set. Due to the method of access to the beam the

whole test system was then strapped to a metal plate which was then lowered into the

beam. The results were passed back to the computer for logging via an RS232 cable. A

power cable was also sent down to the test set which had two on-board dc-dc

converters, one to power the test set and the other to power the board under test. This

allowed a higher voltage to power the device to be sent down the cable, and hence

negate any effects of voltage drop due to the cable length. A USB cable was sent down

via boosters to the Xilinx programmer which was also attached to the plate, so the

device could be reprogrammed.

The PIC device within the test set was programmed using PIC C. A copy of the

program can be found in Appendix D.

4.12 Analysis of the Data

The raw data collected on the computer was in text format and was saved to disk

through hyper terminal. This raw data is manually summarised in Table 4.2. The

results were then analysed using chi squared statistics to determine a cross-section rate.

A confidence level of 90% was used. An add-in program to Excel was used and is

included in Appendix D [Buchan 2004].

4.12.1 Establishing Neutron Fluence

The neutron counter used at the TRIUMF facility is mounted after the test sample.

Therefore to calibrate the fluence in neutrons per cm
2
 from the neutron monitor counter

a correction factor has to be applied to take into account the attenuation of the neutrons

caused by the board under test. The correction factor is established by dividing the

count of neutrons over a period of time t1 with no sample, by a similar run with the

experiment in the beam line for a period of time t2. Once these two values and times

have been recorded, Equation 4.1 can be used to calculate the number of neutrons/cm
2
.

90





















InBeamtime

InNmCountDUT

OutBeamtime

OutNmCountDUT

NmCountFluence

_

_

_

_

109.3 3

4.1

NmCount is the TRIUMF facility neutron monitor count value during the trial

NmCount DUT_Out is the Device Under Test out of the neutron beam, for calibration

purposes

NmCount DUT_In represents the Device Under Test in the neutron Beam

Beamtime_Out is the time out of the beam, for calibration purposes

Beamtime_In is the time the Device under Test was in the neutron beam

Calculation from counts to neutrons/cm
2
/s

Calibration flux = (70,649 neutrons over 60 seconds)

This is approximately 1,177 neutrons/cm
2
/s without any obstructions or attenuation

between the facility counter and the source. A presentation was accepted for

publication by the IET [King et al 2008].

91 91

Table 4.2 Collated Results from Trial

X-SECTION 100

CONFIDENCE 90 ALPHA 0.05

FLUENCE EVENTS LOWER LIMIT BEST ESTIMATE UPPER LIMIT

ICM Errors

weightless 910606 13 7.60148E-06 1.42762E-05 2.44127E-05

weightless 923051 18 1.15573E-05 1.95005E-05 3.08193E-05

weightless 2600035 45 1.26242E-05 1.73075E-05 2.31587E-05

weightless 1424339 18 7.48975E-06 1.26374E-05 1.99726E-05

weighted 643035 3 9.62113E-07 4.66538E-06 1.36342E-05

weighted 668110 4 1.63127E-06 5.98704E-06 1.53292E-05
weighted 3606409 18 2.95805E-06 4.99111E-06 7.88811E-06
weighted 2830877 9 1.45374E-06 3.17923E-06 6.03516E-06

Table 4.3 Results following Chi Squared Analysis

Filename Date Start In Beam End Counts Number of Errors Bit 1 (1) Bit 2 (2) Bit 3 (4) Bit 4 (8)

Wless 1 22/06/2006 13:33:14 13:33:51 13:48:51 910606 13 13

Wless 2 22/06/2006 14:20:03 14:20:35 14:35:21 923051 18 18

Wless 3 22/06/2006 15:01:28 15:02:17 15:51:44 2600035 45 45

Wless 4 22/06/2006 17:28:59 17:29:44 17:53:15 1424339 18 18

5858031 94 94

Weight 1 22/06/2006 13:55:37 13:56:46 14:11:07 643035 3 1 1 1

Weight 2 22/06/2006 14:41:04 14:42:03 14:53:05 668110 4 1 1 1 1

Weight 3 22/06/2006 16:00:37 16:01:20 17:23:42 3606409 18 6 4 5 3

Weight 4 22/06/2006 17:57:47 17:58:33 18:47:10 2830877 9 3 4 2

7748431 34 11 9 9 5

92

Figure 4.28 Occurrence versus Divergence of Error

4.13 Conclusions

The results show that although the weightless architecture experienced more errors, the

magnitude of these errors was much less and entirely deterministic in value. This could

have advantages in high reliability systems. Conversely, although the weighted

implementation had three times less corruptions the effects of the corruption were much

more significant and less deterministic. This was due to the fact each bit represented a

weighting meaning the corruption could range from one to the value of the most

significant bit. Therefore the percentage error could be up to 50%, but in this

experiment all bits were not fully utilized. This increased the maximum potential error

to 72% of the maximum value. Whereas the maximum error for the weightless

architecture was only 9% of the maximum value. The weighted architecture is more

compact due to the reduced number of signal lines meaning that just over five times

more gate elements could be fitted into the device under test.

4.14 Summary of Chapter 4

A novel weightless Boolean median filter has been developed which has been patented,

this filter has been implemented within an FPGA. The main element of this filter, the

swap block, has been compared with a standard median filter swap block. Both filter

93

elements have been implemented in an FPGA and the performance and resilience is

determined when subjected to man-made ground based neutron radiation. Trials have

shown that weightless architectures experience more errors although the magnitude of

these errors is much less and more deterministic. Chapter 5 investigates the

performance characteristics of a standard median filter against that of King’s Neuroram.

94

Chapter 5

5 Performance of Weightless Neural Network
Image Filters

5.1 Overview

This chapter describes the simulation work performed to evaluate the performance of a

neurofilter in comparison to a conventional median filter. Reference images are used

with different types of added noise to perform this assessment. The neurofilter used in

these simulations was based upon King’s Neuroram network [King 2000]. King uses

the Neuroram network to filter images with added salt and pepper noise and compares

the results to a standard median filter. The work in this chapter is a continuation of

King’s analysis evaluating the Type 1 Neuroram against a selection of further noise

types. The effects of using different thresholds in the neurofilter are also examined.

King’s thesis showed that a mid point threshold gave the best filtering performance.

This hypothesis was tested in particular with the different types of noise. In conjunction

with the noise test the effects of filtering multiple times known as ‘cascade filtering’

was trialed. The results for cascaded neurofilters and the median filters are presented.

Testing the filters with the reference images below evaluates their performance with

particular respect to the removal of noise.

5.2 Reference Images

Three reference images were taken for this work from the University of Cape Town,

Digital Image Processing standard image library [University of Cape Town 2004]. The

three images comprise an image of an F16 aeroplane, a Milk Drop and Los Angeles

airport. These images will be referred to as F-16, Milk Drop and LAX and are shown in

Figure 5.1, Figure 5.2 and Figure 5.3 respectively. All the images are black and white

512 by 512 pixels 8 bit greyscale.

95

Figure 5.1 Reference Image F-16

Figure 5.2 Reference Image Milk Drop

96

Figure 5.3 Reference Image LAX

5.3 Noise Types

In order to evaluate the performance of the neurofilter and the median filter various

noise types were added to the reference images which ranged from 10% to 90% noise in

10% increments. Each of the resultant noisy images were then independently filtered

using a simulation of a conventional median filter and a simulation of a Neuroram filter.

The resultant performance data was then stored in a MATLAB matrix to aid the

graphical presentation. The noise types used to evaluate the performance of the filters

were salt and pepper noise, additive Gaussian, additive uniform, multiplicative Gaussian

and multiplicative uniform. The noise types were generated using a MATLAB program

from the Internet given in Appendix D. This program was secured from the MATLAB

exchange as part of a larger Nonlinear Diffusion Toolbox written for MATLAB and

produced by Frederico D'Almeida [D'Almeida 2003]. A description of each of the noise

types and its effect on the images are described below. The noise was applied to a test

image, this image consisted of a 512 by 512 pixels, 8 bit greyscale image generated

using MATLAB [The Math Works Inc 1995]. The image was a uniform mid range

grey as all pixels were set to 127 except for the first two pixels which were 255 and 0

respectively. This was necessary as the noise generation program used the maximum

and minimum values in the image to select the range of noise. Figure 5.4 shows the

97

greyscale image along with the image with the different types of noise added. The

accompanying histogram for each of the images given in Figure 5.5.

5.3.1 Additive Gaussian Noise

The first noise type used to distort the image was additive Gaussian. The additive

Gaussian noise corruption is implemented by summing a random Gaussian value to the

value of each pixel. The size of the Gaussian curve is given by the variance which in

this case is the default for the program of 1. The percentage value used in the program

represents the percentage of the pixels within the image affected. The histogram Figure

5.5 (b) clearly shows the effects of the additive Gaussian noise and shows the Gaussian

curve centred about mid-point.

5.3.2 Additive Uniform Noise

Summing a uniformly distributed random value to each pixel generates the additive

uniform noise. The percentage determines the amplitude of the noise added and is

based on the percentage between the minimum and maximum pixel values in the image.

The histogram in Figure 5.4 (c) clearly shows the additive noise on the original image.

5.3.3 Multiplicative Gaussian Noise

The multiplicative Gaussian noise is generated in a similar way to the multiplicative

uniform noise. The noise is added to a percentage of image pixels and follows a

standard Gaussian distribution.

5.3.4 Multiplicative Uniform Noise

The multiplicative uniform noise is generated by multiplying a random uniformly

distributed value to each pixel, the percentage represents the amplitude of noise added

to the pixels and is based on the percentage between the minimum and maximum pixel

values in the image. The histogram Figure 5.5 (e) clearly shows the uniform

distribution of the noise on the image.

98

5.3.5 Salt and Pepper Noise

The salt and pepper noise is generated by taking a percentage of pixels in an image and

randomly setting them to the minimum or maximum pixel value in this case, either 0 or

255. The histogram in Figure 5.4 (f) clearly shows the generation of black and white

pixels.

99

a) Grey Level Image (d) 10% Multiplicative Gaussian Noise

(b) 10% Additive Gaussian Noise (e) 10% Multiplicative Uniform Noise

(c)10% Additive Uniform Noise (f) 10% Salt and Pepper Noise

Figure 5.4 MATLAB Greyscale Image with Different Noise Types Added

100

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3
x 10

5 Histogram of 127 Level Grey Scale Image

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5
x 10

5Histogram of Grey Scale Image with 10% added Multiplicative Gaussian Noise

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(a) (d)

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Histogram of Grey Scale Image with 10% added Additive Gaussian Noise

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5
x 10

5Histogram of Grey Scale Image with 10% added Multiplicative Uniform Noise

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(b) (e)

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000
Histogram of Grey Scale Image with 10% added Additive Uniform Noise

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5
x 10

5Histogram of Grey Scale Image with 10% added Salt and Pepper Noise

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(c) (f)

Figure 5.5 (a) Shows a Histogram of MATLAB Greyscale Image, (b, c, d, e, f)

Show Histograms of the Greyscale Following the Corruption with the Stated

Different Noise Types

101

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

1000
Histogram of Grey Scale Image with 10% added Multiplicative Uniform Noise (Zoom)

Grey level value

N
u
m

b
e
r

o
f

o
c
c
u
re

n
c
e
s

Figure 5.6 A Close Up View of the Multiplicative Uniform Histogram

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

1000
Histogram of Grey Scale Image with 10% added Multiplicative Gaussian Noise (Zoom)

Grey level value

N
u
m

b
e
r

o
f

o
c
c
u
re

n
c
e
s

Figure 5.7 A Close up View of the Multiplicative Gaussian Noise Histograms

Figure 5.6 and Figure 5.7 shows a close up view of the two histograms for the corrupted

images. The multiplicative uniform histogram shows a relatively even level of noise

across the bins. The characteristics of the multiplicative Gaussian display a peak of

noise at the zero bin level representing all the negative values which are out of range

and hence are classed at the minimum level of zero.

102

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000
Histogram of F-16 Image

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

2000

4000

6000

8000

10000

12000

14000
Histogram of F-16 Image with 10% Multiplicative Gaussian

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(a) (d)

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500
Histogram of F-16 Image with 10% Additive Gaussian

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

1000

2000

3000

4000

5000

6000

7000

8000
Histogram of F-16 Image with 10% Multiplicative Uniform

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(b) (e)

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000
Histogram of F-16 Image with 10% Additive Uniform

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

2000

4000

6000

8000

10000

12000

14000
Histogram of F-16 Image with 10% Salt and Pepper

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(c) (f)

Figure 5.8 Histogram of the F-16 Image with the Different Noise Types Added

Figure 5.8 (a) shows the histogram of the reference image of the F16. It can seen that

the majority of the pixels in the image are around the 200 bin level. Figure 5.8

(b,c,d,e,f) shows the resultant histograms following the addition of the different types of

noise. The distortion caused when additive Gaussian is added to the image has severely

damaged the image properties as the noise places the pixel values outside the maximum

pixel value, thus the majority of picture information is loss.

103

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000
Histogram of LAX Image

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

2000

4000

6000

8000

10000

12000

14000
Histogram of LAX Image with 10% Multiplicative Gaussian

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(a) (d)

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000
Histogram of LAX Image with 10% Additive Gaussian

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

1000

2000

3000

4000

5000

6000
Histogram of LAX Image with 10% Multiplicative Uniform

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(b) (e)

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Histogram of LAX Image with 10% Additive Uniform

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

2000

4000

6000

8000

10000

12000

14000
Histogram of LAX Image with 10% Salt and Pepper

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(c) (f)

Figure 5.9 Histogram of the LAX Image with the Different Noise Types Added

Figure 5.9 (a) gives the histogram for the reference LAX image. Figure 5.9 (b, c, d, e, f)

the histogram shows that the majority of pixels in the image are around the 50 to 150

bin region. This means again the severity of the damage caused by the additive

Gaussian noise is significantly more than the other noise types.

104

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000
Histogram of Milkdrop Image

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

2000

4000

6000

8000

10000

12000

14000
Histogram of Milkdrop Image with 10% Multiplicative Gaussian

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(a) (d)

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000
Histogram of Milkdrop Image with 10% Additive Gaussian

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

1000

2000

3000

4000

5000

6000
Histogram of Milkdrop Image with 10% Multiplicative Uniform

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(b) (e)

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000
Histogram of Milkdrop Image with 10% Additive Uniform

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

0 50 100 150 200 250 300

0

2000

4000

6000

8000

10000

12000

14000
Histogram of Milkdrop Image with 10% Salt and Pepper

Grey level value

N
u

m
b

e
r

o
f
o

c
c
u

re
n

c
e

s

(c) (f)

Figure 5.10 Histogram of the Milkdrop Image with the Different Noise Types

Added

5.4 Evaluation Criteria

Several measurement criteria have been used to evaluate the quality of the filtered

images. These include the standard measurement techniques of mean squared error,

peak signal to noise ratio and finally the more subjective but important criteria of visual

inspection. Mean Squared Error (MSE) is used as it measures the differences between

105

two images, in this case the filtered image and the reference image. MSE is used

instead of the pure difference because using the difference would yield both positive

and negative numbers whereas the squared element of MSE always ensures the result is

positive. The equation for MSE is given in equation 3.2.

    
21

0

1

0

,,
1










M

x

N

y

r yxfyxf
MN

MSE
3.2

Where M and N define the pixels in the given image and fr(x,y) represents the reference

image and f(x,y) the filtered image.

The lower the MSE the greater the similarity of the two images. Therefore it is

commonly used to evaluate the performance of any image restoration algorithm or filter.

A reference image is used and compared to the processed image. The processed image

has had damage introduced and has subsequently been processed to remove the

corruption. The effectiveness of the process to remove the noise can then be quantified;

the lower the MSE the better the filter or algorithm has restored the image. Another

standard measurement used to measure the similarity of images is the Peak Signal to

Noise Ratio. This measurement technique is based on the MSE result and hence does

not generate negative values. The equation for PSNR is given in equation 3.3. Unlike

the MSE the higher the PSNR the better the performance of the filter.











MSE
LogPSNR

2

10

255
10

3.3

In equation 3.3 the value of 255 is used because it is the peak signal numerical value

since the pixel width is eight bits.

The final form of evaluation of the images is probably the most important and yet the

most subjective. As this method is visual inspection, this method is important as images

are visual representations and the removal of noise is often performed to aid the ability

to understand the image.

106

5.4.1 Additive Gaussian Noise Filter Results

(a) F-16 with 20% Additive Gaussian noise

(b) Median Filtered

107

(c) Neurofiltered

Figure 5.11 Images of F-16 Reference with 20% Additive Gaussian Noise and

Filtered Images

This simulation uses additive Gaussian noise. Figure 5.11 (a), shows the F-16 reference

image with 20% additive Gaussian noise, images Figure 5.11 (b) and Figure 5.11 (c)

show the results after median filtering and neurofiltering respectively. On visual

inspection the performance of the median filter and the neurofilter on this image are

poor with very little noise removal. It can be seen that the performance of the median

filter is better than the neurofilter which causes larger noise clusters causing more

distortion to the image. It is clear that both the median filter and the neurofilter are not

effective for the removal of additive Gaussian noise. The poor operation of the filters is

reflected in both the MSE results and the PSNR results as shown in Figure 5.12.

1
0
8

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Additive Gaussian MSE F-16

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

Median

Neuroram

Reference

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4 Additive Gaussian MSE Milk Drop

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4 Additive Gaussian MSE LAX

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

Additive Gaussian PSNR F-16

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

0 5 10 15 20 25

0

5

10

15

20

25

30

Additive Gaussian PSNR Milk Drop

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

0 5 10 15 20 25
0

5

10

15

20

25

Additive Gaussian PSNR LAX

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

Figure 5.12 Graphs of MSE and PSNR for Median Filter and Neurofilter on Additive Gaussian Noise

109

5.4.2 Additive Uniform Noise Filter Results

(a) Milk Drop with 20% Additive Uniform Noise

(b) Median Filtered

110

(c) Neurofiltered

Figure 5.13 Images of Milk Drop reference with 20% additive uniform noise and

filtered images

Following the additive Gaussian noise simulation the filters were further evaluated

using additive uniform noise.

Figure 5.13 (a), shows the Milk Drop reference image with 20% additive uniform noise,

images Figure 5.13 (b) and Figure 5.13 (c) show the results after median filtering and

neuro-filtering respectively. The results from the additive uniform simulation confirm

both the median filter and neuro-filters inability to deal with the removal of additive

noise. Visual inspection of the images shows little or no improvement in image quality

in comparison to the noise images. It can be seen that the median filter has the effect of

causing slight blurring to the image. The neurofilter does not cause blurring and hence

has a sharper contrast but causes slight pixelisation, particularly on edges. The poor

performance of the filters is further reflected in both the MSE and PSNR results shown

in Figure 5.14 which show little or no improvement with respect to the noisy unfiltered

reference image.

1
1
1

0 2000 4000 6000 8000 10000 12000 14000
0

2000

4000

6000

8000

10000

12000

14000

Additive Uniform MSE F-16

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

Median

Neuroram

Reference

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2000

4000

6000

8000

10000

12000

14000

16000

Additive Uniform MSE Milk Drop

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2000

4000

6000

8000

10000

12000

14000

16000

Additive Uniform MSE LAX

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

5 10 15 20 25 30
5

10

15

20

25

30

Additive Uniform PSNR F-16

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

6 8 10 12 14 16 18 20 22 24 26

6

8

10

12

14

16

18

20

22

24

26

Additive Uniform PSNR Milk Drop

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

6 8 10 12 14 16 18 20 22 24 26

6

8

10

12

14

16

18

20

22

24

26

Additive Uniform PSNR LAX

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

Figure 5.14 Graphs of MSE and PSNR for Median Filter and Neurofilter on Additive Uniform Noise

112

5.4.3 Multiplicative Gaussian Noise Filter Results

(a) LAX with 20% Multiplicative Gaussian Noise

(b) Median Filtered

113

(c) Neurofiltered

Figure 5.15 Images of LAX Reference with 20% Multiplicative Gaussian Noise and

Filtered Images

A simulation using multiplicative Gaussian noise was performed. Figure 5.15 (a),

shows the LAX reference image with 20% multiplicative Gaussian noise, images in

Figure 5.15 (b) and Figure 5.15 (c) show the results after median filtering and

neurofiltering respectively. Visual inspection of the noisy image shows lots of pixel

noise which destroys the detail of the original image. It can be seen that from the

images in Figure 5.15 (b) and Figure 5.15 (c) that the median filter and the neurofilter

perform well at removing this type of noise, however both have introduced distortion.

The median filter causes slight blurring causing loss of detail, sharpness and contrast.

The neurofilter does not cause blurring but causes slight pixelation but does not affect

the contrast and sharpness, if anything it improves them. The effects of damage caused

by the filters can be more clearly seen on the writing on the F-16 images. It is

noticeable that the damage is worst on the neurofiltered image. This is confirmed with

the MSE and PSNR results shown in Figure 5.16 which show improvements in image

quality after filtering of the noisy images.

1
1
4

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

7
x 10

4 Multiplicative Gaussian MSE F-16

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

Median

Neuroram

Reference

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

7
x 10

4 Multiplicative Gaussian MSE Milk Drop

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6
x 10

4 Multiplicative Gaussian MSE LAX

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

-2 0 2 4 6 8 10
-5

0

5

10

15

20

25

30

Multiplicative Gaussian PSNR F-16

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

Multiplicative Gaussian PSNR Milk Drop

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

Median

Neuroram

Reference

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

Multiplicative Gaussian PSNR LAX

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

Figure 5.16 Graphs of MSE and PSNR for Median Filter and Neurofilter on Multiplicative Gaussian Noise

115

5.4.4 Multiplicative Uniform Noise Filter Results

(a) F-16 with 20% Multiplicative Uniform Noise

(b) Median Filtered

116

(c) Neurofiltered

Figure 5.17 Images of F-16 Reference with 20% Multiplicative Uniform Noise and

Filtered Images

Following the multiplicative Gaussian noise tests the filters were further examined

using multiplicative uniform noise to assess their performance. Figure 5.17 (a), shows

the F-16 reference image with 20% multiplicative uniform noise. Images in Figure 5.17

(b) and Figure 5.17 (c) show the results after median filtering and neurofiltering

respectively. Visual inspection of the noisy images shows lots of pixel noise similar to

the ‘pepper’ component of ‘salt and pepper’ noise, which cause a loss of detail in the

original image. This simulation confirmed the abilities of both these filters to remove

this type of noise effectively. The damaging effects that both filters caused in the

multiplicative Gaussian trials are again present. In this simulation the presence of the

black pixels (pepper noise) after filtering was more noticeable on the neurofiltered

image. It should be noted that the threshold used on all the simulations for the

neurofilter was King’s suggested 50%, and later simulations show the ideal value to be

less. Probably due to the optimum threshold being dependent on the average greyscale

of the image. It is expected that this will improve the performance of the neurofilter.

The MSE results in Figure 5.18 show that both filters work but it is clear that the

117

performance of the neurofilter is not as good as the median filter particularly as the

noise percentage increases. This is confirmed by the PSNR results.

1
1
8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Multiplicative Uniform MSE F-16

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

Median

Neuroram

Reference

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

Multiplicative Uniform MSE Milk Drop

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

5000

6000

7000

Multiplicative Uniform MSE LAX

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

9 10 11 12 13 14 15 16 17 18 19
5

10

15

20

25

30

35

Multiplicative Uniform PSNR F-16

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

8 10 12 14 16 18 20

5

10

15

20

25

30

35

40

Multiplicative Uniform PSNR Milk Drop

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

8 10 12 14 16 18 20

8

10

12

14

16

18

20

22

24

26

Multiplicative Uniform PSNR LAX

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

Figure 5.18 Graphs of MSE and PSNR for Median Filter and Neurofilter on Multiplicative Uniform Noise

119

5.4.5 Salt and Pepper Noise Filter Results

(a) Milk Drop with 20% Salt and Pepper Noise

(b) Median Filtered

120

(c) Neurofiltered

Figure 5.19 Images of Milk Drop Reference with 20% Salt and Pepper Noise and

Filtered Images

The salt and pepper noise image processing was repeated in order to evaluate the

techniques used with those used by King to demonstrate consistency. Figure 5.19 (a),

shows the Milk Drop reference image with 20% salt and pepper noise. Images in

Figure 5.19 (b) and Figure 5.19 (c) show the results after median filtering and

neurofiltering respectively. It can be seen that both of the filters perform well on the

salt and pepper images and the results concur with the findings reported by King.

Visually the performance of the median filter gives an improved image with greater

noise removal of the salt and pepper noise in comparison to the neurofilter. The

neurofilter does have the advantage of maintaining contrast and does not cause blurring

which is important in certain applications. The MSE and PSNR shown in Figure 5.20

confirm the visual results showing the performance of the median filter is better.

1
2
1

0 2000 4000 6000 8000 10000 12000 14000 16000
0

2000

4000

6000

8000

10000

12000

14000

16000

Salt and Pepper MSE F-16

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

Median

Neuroram

Reference

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2000

4000

6000

8000

10000

12000

14000

16000

Salt and Pepper MSE Milk Drop

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2000

4000

6000

8000

10000

12000

14000

16000

Salt and Pepper MSE LAX

Unfiltered MSE

F
ilt

e
re

d
 M

S
E

6 7 8 9 10 11 12 13 14 15 16
5

10

15

20

25

30

35

Salt and Pepper PSNR F-16

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

6 7 8 9 10 11 12 13 14 15 16

5

10

15

20

25

30

35

Salt and Pepper PSNR Milk Drop

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

6 7 8 9 10 11 12 13 14 15 16

6

8

10

12

14

16

18

20

22

24

26

Salt and Pepper PSNR LAX

Unfiltered PSNR (dB)

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

Figure 5.20 Graphs of MSE and PSNR for Median Filter and Neurofilter on Salt and Pepper Noise

122

It is clear that both the median filter and neurofilter are well suited to the removal of

the salt and pepper, multiplicative Gaussian and multiplicative uniform noise. They

are not well suited to the removal of additive noise types such as additive Gaussian

and additive uniform noise. The MSE and PSNR results show that the median filter

outperforms the neurofilter with the exception of lower percentage multiplicative

Gaussian noise where the results show the neurofilter performs slightly better.

Changing the threshold could further increase this. A visual inspection of the images

reflects that the median filter performs better than the neurofilter. Although the

distortion caused by filtering could be considered to be less with the neurofilter. The

neurofilter causes pixelisation but also improves the edge definition and contrast

whereas the median filter just causes blurring.

123

5.5 Cascade Filter

This novel cascade filter trial was performed to establish the optimal number of

filters in line to gain best performance and to identify a balance between

performance and real estate. Real estate is the amount of logic required in a

semiconductor device. Cascade filtering is implemented by performing multiple

sequential filtering on the same image. The image is taken and filtered the resultant

filtered image is then taken and filtered again this process is repeated in this case up

to 20 times. Both the median filter and neurofilter were tested to establish the

difference in their characteristics when cascaded. Both filters used the reference

Milk Drop image. Both median filtering and neurofiltering were performed on the

reference image using a 3 by 3 filter applied to the whole image. For the neurofilter

the threshold level was set to four.

The Milk Drop reference image was used initially with 20% salt and pepper noise

and then increased to 30%. This was in order to prove the characteristics of the

filters were not noise level related. The simulation was performed using MATLAB

simulations. The appropriate level of noise was added to each of the reference

images. Each of the noisy images was then processed using either a median filter or

the neurofilter. After each level of filtering the measurement criteria of MSE and

PSNR were calculated. This iterative filtering was performed using both types of

filter, up to twenty times. Each image after filtering was stored along with the

measurement criteria data.

Figure 5.21 shows the results of the median filter and neurofilter on the reference

Milk Drop image with 20% added salt and pepper noise. From the graphs shown in

Figure 5.21 it is clear that the optimum number of filters in cascade for the median

filter is three. Although if real estate was a real constraint then two filters would

offer a good compromise, with only a slight loss of performance. The optimum level

of cascading for the neurofilter is four stages as shown in the figures given in Figure

5.21.

From the median filtered images shown in

124

Figure 5.22 there is a clear visible improvement in the quality of the images after the

second level of filtering. It can be seen that there is no level of improvement from

the 20
th

 level of filtering compared to the 3
rd

 level of filtering. The quality of the

image after the 20
th

 level of filtering is actually poorer due to the distortion effects

caused by the filter. The median filter causes blurring which damages the quality of

the image.

The neurofilter shown in Figure 5.21 shows improvements in the image after a

greater number of cascade levels in comparison to the median filter. The optimum

number of cascaded filters is four, but the damage caused by repeated filtering is less

than in the standard median filter. The images in Figure 5.22 show little

improvement in the latter images due to the low amount of noise in the images. The

neurofilter does not have as profound an effect on the degrading of the image quality

as the median filter but does cause pixelisation on the edges. The images in

Figure 5.26 show that unlike the median filter where the effect of multiple filtering

yields very little improvement in noise removal, after the initial few stages the

neurofilter still offers a noticeable difference in noise removal. Although the latter

stages of filtering introduce a greater level of inaccuracies which counteract the

improvements in noise removal and hence there is little or no improvement in the

measurement criteria.

The evaluation of the data shown in Figure 5.21 and Figure 5.24 demonstrates that

the performance results of the filters is not noise level related. Although the

improvement of noise removal after multiple stages of neuro-filtering is clearer in

the latter data set. This is due to the increased distortion in the reference image.

A clear characteristic which is apparent throughout all the trials is that the median

filter performs significantly better than the neurofilter. The performance of the two

filters differs and the way the filters operate in a cascade formation yields some

distinct differences. The main difference being in the optimum number of cascades

of filter which yields best effect. Ideally three median filters in cascade offers the

most improvement; further increasing the number of filters has a detrimental effect,

as this causes blurring of the images and loss of high frequency detail. The optimum

number of cascades for the neurofilter is four. Although further increasing the

125

number of filters in cascade removes more noise unlike the median filter where there

is little or no improvement after the third stage of filtering. The other difference is

the amount and type of damage caused by multiple stages of filtering. The median

filter unlike the neurofilter does not cause blurring, although it does cause

pixelisation particularly on image edges. In contrast the neurofilter does not cause as

much high frequency loss as the median filter.

1
2
6

2 4 6 8 10 12 14 16 18 20
40

60

80

100

120

140

160

180

200

220

240

Cascade Median Filter MSE

Cascade Number

F
ilt

e
re

d
 M

S
E

2 4 6 8 10 12 14 16 18 20

40

60

80

100

120

140

160

180

200

220

240

Cascade Neuro Filter MSE

Cascade Number

F
ilt

e
re

d
 M

S
E

2 4 6 8 10 12 14 16 18 20
24

25

26

27

28

29

30

31

32
Cascade Median Filter PSNR

Cascade Number

F
il
te

re
d

 P
S

N
R

 (
d

B
)

2 4 6 8 10 12 14 16 18 20
24

25

26

27

28

29

30

31

32

Cascade Neuro Filter PSNR

Cascade Number

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

Figure 5.21 MSE and PSNR Results for Cascade of Median Filters and Neurofilters on Milk Drop with 20% Added Salt and Pepper Noise

1
2
7

No filter Cascade level 1 Cascade level 2

Cascade level 3 Cascade level 4 Cascade level 20

Figure 5.22 Cascade of Median Filters on Milk Drop with 20% Added Salt and Pepper Noise

1
2
8

No filter Cascade level 1 Cascade level 2

Cascade level 3 Cascade level 4 Cascade level 20

5.23 Cascade of Neurofilters on Milk Drop with 20% Added Salt and Pepper Noise

1
2
9

2 4 6 8 10 12 14 16 18 20

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Cascade Median Filter MSE

Cascade Number

F
ilt

e
re

d
 M

S
E

2 4 6 8 10 12 14 16 18 20

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Cascade Neuro Filter MSE

Cascade Number

F
ilt

e
re

d
 M

S
E

2 4 6 8 10 12 14 16 18 20
10

12

14

16

18

20

22

24

26

28

30
Cascade Median Filter PSNR

Cascade Number

F
il
te

re
d

 P
S

N
R

 (
d

B
)

2 4 6 8 10 12 14 16 18 20

10

12

14

16

18

20

22

24

26

28

30

Cascade Neuro Filter PSNR

Cascade Number

F
ilt

e
re

d
 P

S
N

R
 (

d
B

)

Figure 5.24 MSE and PSNR results for Cascade of Median Filters and Neurofilters on Milk Drop with 30% Added Salt and Pepper Noise

1
3
0

No filter Cascade level 1 Cascade level 2

Cascade level 3 Cascade level 4 Cascade level 20

Figure 5.25 Cascade of Median Filters on Milk Drop with 30% Added Salt and Pepper Noise

1
3
1

No filter Cascade level 1 Cascade level 2

Cascade level 3 Cascade level 4 Cascade level 20

Figure 5.26 Cascade of Neurofilters on Milk Drop with 30% Added Salt and Pepper Noise

132

5.6 Threshold Assessment

The threshold component was examined to King’s prediction, which states the ideal

threshold value for optimum performance of Neuroram is approximately half the

number of exemplars used, although he qualifies this accepting that this is data

dependent [King 2000]. In this case the exemplar size is nine, because the filter is being

implemented using a 3 by 3 window on the image. Therefore with this exemplar size

we would expect the optimum threshold would be either 4 or 5. The trial was

performed again using the standard reference images referred to at the beginning of this

chapter. The standard MATLAB implementation of Neuroram was used. In order to

prove this hypothesis several different reference images were taken to ensure the results

were not image dependent. The uniform multiplicative image was repeated with two

noise levels to ensure that the noise value did not affect the results.

The threshold on the images was set between 1 and 8 and the value of the filtered image

compared with the reference image using the measurement criteria of MSE and PSNR.

The results for each threshold for a given image were plotted for the MSE and PSNR

values. The filtered images were also stored for visual comparison.

The first trial was performed on the LAX reference image with 20% additive Gaussian

noise. The image was filtered with the neurofilter using thresholds ranging from 1 to 8

and the subsequent PSNR and MSE then plotted as shown in Figure 5.27. The diagrams

in Figure 5.28 show the effects of the filter with different threshold. It can be seen that

at lower thresholds the definition of the image is low, the contrast is poor only having

two levels of grey. As the threshold is increased more detail is shown with an optimum

threshold being about three or four. This is reflected in the MSE and PSNR graphs

shown in Figure 5.27. It is hard to judge the ideal because the performance of the filter

on this type of noise is poor as demonstrated by the results given earlier in this chapter.

The second trial was performed on the Milk Drop reference image with 20% added

multiplicative uniform noise. Figure 5.30 shows the filtered images, it can be seen at

the low threshold values that the images still contain a lot of white noise. Whereas at

the high threshold values the images contain a lot of black noise. The image with the

least noise is that which has been filtered with the neurofilter with a threshold value of

133

three. This is confirmed with the results of the MSE and PSNR values given in Figure

5.29.

The third trial performs the same test as the second one but this time with a noise level

of 40%. The effect of the neurofilter on the images is the same as the second test as

expected and is shown in Figure 5.32. Again the results show the threshold value for

optimum filtering of the neurofilter is three. This is confirmed by the MSE and PSNR

results given in Figure 5.31. This trial was performed to demonstrate that the filter’s

operation with respect to its threshold was not noise level dependent.

The final trial was performed on the Milk Drop reference image with 20% added salt

and pepper noise. The results for this trial with respect to threshold concur with those

of the previous two trials again confirming that the filter operation is fixed and are not

noise type or level dependent. Again the low threshold values leave a lot of white noise

and the high threshold values leave a lot of black noise. The images and the graphs in

Figure 5.33 and Figure 5.34 confirm that the optimum threshold for this neurofilter for

this task is three.

Therefore this study demonstrates that the optimum threshold for Neuroram when

configured as an image filter operating on a 3 by 3 matrix giving nine data exemplars is

three. This gives a threshold percentage of 33%, this differs from the value of

approximately 50% claimed by King [King 2000].

The reason for this difference in results from King’s original prediction of

approximately 50% is due to the limited amount of data that the prediction was made

on. The threshold level is only determined by one graph with one dataset. On closer

examination of this graph in King’s thesis, it shows that the 50% value was not the

highest response, however the threshold around 40% gave the highest response. The

graph shows how values in the region of between 35% and 55% all give a response

significantly higher. The difference between responses is relatively small though. The

conclusion from this is that the original prediction was done on a limited data set as well

as the prediction is only a rough one rather than an absolute value. In order to

determine the true optimum threshold value further research is required on larger data

set sizes as this initial research would suggest the value is data dependent.

134

1
3
4

1 2 3 4 5 6 7 8
1000

2000

3000

4000

5000

6000

7000

8000
Additive Gaussian Threshold MSE LAX

Threshold Value

F
il
te

re
d

 M
S

E

1 2 3 4 5 6 7 8

9

10

11

12

13

14

15

16

17

18
Additive Gaussian Threshold PSNR LAX

Threshold Value

F
il
te

re
d

 P
S

N
R

 (
d

B
)

Figure 5.27 MSE and PSNR for Filter Thresholds on LAX Image with 20% Additive Gaussian Noise

No filter Filtered threshold 1 Filtered threshold 2

Figure 5.28 Filtered LAX Image with 20% Additive Gaussian Noise with Different Thresholds

1
3
5

Filtered threshold 3 Filtered threshold 4 Filtered threshold 5

Filtered threshold 6 Filtered threshold 7 Filtered threshold 8

Figure 5.28 Filtered LAX Image with 20% Additive Gaussian Noise with Different Thresholds

1
3
6

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

12000
Multiplicative Uniform Threshold MSE Milk Drop

Threshold Value

F
il
te

re
d

 M
S

E

1 2 3 4 5 6 7 8

5

10

15

20

25

30
Multiplicative Uniform Threshold PSNR Milk Drop

Threshold Value

F
il
te

re
d

 P
S

N
R

 (
d

B
)

Figure 5.29 MSE and PSNR for Filter Thresholds on Milk Drop Image with 20% Multiplicative Uniform Noise

No filter Filtered threshold 1 Filtered threshold 2

Figure 5.30 Filtered Milk Drop Image with 20% Multiplicative Uniform Noise using Different Thresholds

1
3
7

Filtered threshold 3 Filtered threshold 4 Filtered threshold 5

Filtered threshold 6 Filtered threshold 7 Filtered threshold 8

Figure 5.30 Filtered Milk Drop Image with 20% Multiplicative Uniform Noise using Different Thresholds

1
3
8

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

12000

14000
Multiplicative Uniform Threshold MSE Milk Drop

Threshold Value

F
il
te

re
d

 M
S

E

1 2 3 4 5 6 7 8
6

8

10

12

14

16

18

20

22
Multiplicative Uniform Threshold PSNR Milk Drop

Threshold Value

F
il
te

re
d

 P
S

N
R

 (
d

B
)

Figure 5.31 MSE and PSNR for Filter Thresholds on Milk Drop Image with 40% Multiplicative Uniform Noise

No filter Filtered threshold 1 Filtered threshold 2

Figure 5.32 Filtered Milk Drop Image with 40% Multiplicative Uniform Noise using Different Thresholds

1
3
9

Filtered threshold 3 Filtered threshold 4 Filtered threshold 5

Filtered threshold 6 Filtered threshold 7 Filtered threshold 8

Figure 5.32 Filtered Milk Drop Image with 40% Multiplicative Uniform Noise using Different Thresholds

1
4
0

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Salt and Pepper Threshold MSE Milk Drop

Threshold Value

F
il
te

re
d

 M
S

E

1 2 3 4 5 6 7 8

8

10

12

14

16

18

20

22

24

26
Salt and Pepper Threshold PSNR Milk Drop

Threshold Value

F
il
te

re
d

 P
S

N
R

 (
d

B
)

Figure 5.33 MSE and PSNR for Filter Thresholds on Milk Drop Image with 20% Salt and Pepper Noise

No filter Filtered threshold 1 Filtered threshold 2

Figure 5.34 Filtered Milk Drop Image with 20% Salt and Pepper Noise using Different Thresholds

1
4
1

Filtered threshold 3 Filtered threshold 4 Filtered threshold 5

Filtered threshold 6 Filtered threshold 7 Filtered threshold 8

Figure 5.34 Filtered Milk Drop Image with 20% Salt and Pepper Noise using Different Threshold

142

Chapter 6

6 Boolean Weightless Self Ordered Map

6.1 Overview

This chapter describes a weightless Boolean implementation of Kohonen’s self ordered

map. A brief description of a conventional self ordered map and its associated

algorithms is given. This has not been covered in the earlier chapters because the self

ordered map is traditionally a weighted neural network, often implemented using an

algorithmic approach. An overview of the novel weightless Boolean elements used is

given proceded by the structures that can be formed to implement the Weightless Self

Ordered Map (WSOM). Finally an overall architecture of the WSOM is presented

including discussion of the MATLAB simulation.

6.2 The History of the Self Ordered Map

Although the idea of self organisation was proposed in 1973 by Von der Malsburg, it

was not until the mid 1970’s that Willshaw and Von der Malsburg produced computer

models [von der Malsburg 1973, Willshaw et al 1970]. Their inspiration was to

produce a biologically plausible visual system that could determine edge orientation and

light intensity similar to that found in the visual cortex. The Self Ordered Map (SOM)

was finally developed by Teuvo Kohonen a Finnish scientist in 1988 [Kohonen 1984,

Kohonen 1988]. He used the earlier concepts of self organisation proposed by

Willshaw and Von der Malsburg.

6.3 Learning Types

The SOM is an ’unsupervised learning’ neural network meaning the network learns

from the frequency of the experienced data rather than having a teacher. This differs

from the other neural networks featured so far, as these require input and output data to

be trained into the network.

143

6.4 Operation of the Self Ordered Map

The basic function of the SOM comes from the collection of differing neurons within

the network ‘firing’ in response to different stimuli. A highly simplified example of

Kohonen’s map, based on Aleksander’s description is given [Aleksander et al 1995].

The basic example uses a structure of 12 neurons or nodes each of which consist of 4

bits. The graphical representation shows a ‘1’ state as a black square, conversely a

white square represents a ‘0’ state. The input data or input stimuli are presented to all

the nodes in the network. The two patterns which the network is going to learn are

0111 and 1001 and are graphically represented in a box, and filled top left to bottom

right. Each of the 12 neurons in the network has weights; in this case they are either ‘1’

or ‘0’ also represented by black and white squares. The weights are arranged in a

similar manner to the input data. Each of the element’s weights correspond to a similar

bit in the input pattern and correspond to one of the bits in the input pattern. Initially

the weights of the neuron are randomly set. The system ‘learns’ by allocating areas of

the network, known as a neighbourhood which correspond to certain input stimuli. The

first input 0111 is presented to the untrained network to assess which node gives the

maximum response; in this case it is neuron 1 or node 1 as shown in Figure 6.1.

Figure 6.1 Initial Response to Input Pattern 0111

Similarly when the input 1001 is shown to the untrained network, the maximum

response is from neuron 8 or node 8 as shown in Figure 6.2.

4

3

2

1

Initial Weights

0 1 2 3 4 5 6 7 8 9 10 11 Neuron Number

Input Pattern

144

Figure 6.2 Initial Response to Input Pattern 1001

The next step is to identify a suitable neighbourhood around that neuron; this will be the

neighbourhood size. In this example the criteria being applied are to strengthen the two

neurons either side of the maximum responding neuron; these being 6, 7, 9 and 10.

Now the neighbourhood has been identified the next stage is to apply a learning rule,

this is usually a strengthening rule. However to apply the standard ‘Mexican hat’

learning parameter the neurons on the periphery will be weakened [Beale et al 1997].

Here we are just applying the strengthening rule to the identified neurons to increase

their response to the input stimuli. This is achieved by changing the weights to improve

the correlation by reducing the number of bits difference between the identified neurons

and the input pattern; in this case the reduction is by one bit. This action is performed

on all the identified neurons in the associated neighbourhood as shown in Figure 6.3;

this shows the effects of training around neuron 8.

4

3

2

1

Initial Weights

0 1 2 3 4 5 6 7 8 9 10 11 Neuron Number

Input Pattern

145

Figure 6.3 Training Neuron 8

The next input 0111 is then tested on the network, where results in a maximum response

from neuron 1 as shown in Figure 6.4.

Figure 6.4 Response after Training on Pattern 0111

The same neighbourhood criterion is applied; however this exceeds the edge of the

network. Therefore we wrap the data around the edge of the network to avoid creating

edge effects, and the necessary special rules which need to be applied to negate them.

Therefore the neurons which form the neighbourhood are 0, 1, 2, 3 and 11. The

strengthening rule is then re-applied on the identified neighbourhood, the results of

which can be seen in Figure 6.5.

4

3

2

1

New Weights

0 1 2 3 4 5 6 7 8 9 10 11 Neuron Number

Input Pattern

4

3

2

1

New Weights

0 1 2 3 4 5 6 7 8 9 10 11 Neuron Number

Input Pattern

146

Figure 6.5 Training Neuron 1

The result of the training on the basic network is that two distinct areas of the network

respond to the differing inputs, this is the principle of the SOM. This is demonstrated in

Figure 6.6 below where the initially trained value 1001 is presented back to the network

and the higher numbered node region of the network responds well; conversely when

0111 is presented the lower numbered region of the network responds well.

Figure 6.6 Training Neuron 2

4

3

2

1

New Weights

0 1 2 3 4 5 6 7 8 9 10 11 Neuron Number

Input Pattern

4

3

2

1

New Weights

0 1 2 3 4 5 6 7 8 9 10 11 Neuron Number

Input Pattern

147

6.5 Algorithmic Equations for the Implementation of the SOM

The SOM learning process is often implemented algorithmically using the following

equations as described by Beale [Beale et al 1997]. The equations are a list of learning

rules applied in stages.

Step 1

This describes the initialisation of the network and is given by Equation 6.1.

  10  nitWij 6.1

Equation 6.1 represents the weight from input i to node j at time t. The weights from

the n nodes are initially set to small random values. The initial radius of the

neighbourhood around node j should be large Nj(0).

Step 2

Equation 6.2 shows the next stage where an input xi(t) is presented to node i at time t.

       txtxtxtx n)1(210,,  6.2

Step 3

Equation 6.3 is applied to calculate the distance dj between the input i and each output

node j.

    





1

0

2
n

i

ijij twtxd

6.3

Step 4

The node with the minimum dj is selected and designated as j*.

148

Step 5

Equation 6.4 shows for the new weights within the defined neighbourhood Nj*(t)

surrounding node j*.

          twtxttwtw ijiijij  1 6.4

 (t) describes the learning rate or gain, where  (t) is a value between 0 and 1. It is

common to have a large learning rate which diminishes in time, hence slowing the

weight changes as the network becomes more stable. Similarly the neighbourhood

Nj*(t) will also be reduced as time increases.

Step 6

Repeat the process from step 2.

6.6 Applications of the Self Ordered Map

The SOM has been used to address practical problems ranging from image

compression, to FPGA routing [Barbalho et al 2002, Maniatakos et al 2008]. Kohonen

initially implemented a speech recognition system for his native language, Finnish,

producing a phonetic typewriter [Kohonen 2001].

6.7 The Weightless Self Ordered Map

The WSOM works on the same principles as the conventional SOM. Both SOMs

require the nodes to be configured with small random values. In the case of the

weighted SOM this is the production of a random weighting function for each node in

the network. The WSOM consists of a pattern of weightless bits. This random

assignment in the WSOM can be achieved by loading the nodes with random strings, in

practice pseudo random binary strings. It may be advantageous to initialise the map

with graded initial conditions dependent on the data. An example of this would be

increasing thermocode. The SOM operates by taking some input stimuli and comparing

them with responses from the individual nodes within the network. This evaluation is

carried out with an array of EX-NOR gates; the resultant weightless data is the level of

correlation between the node and the input data. The XNOR gate has been used in

weightless logic as a fast parallel method of correlating weightless data. If two

149

positionally equivalent data bits within a given data stream match then it produces an

output ‘1’, but if the outputs don’t match then a ‘0’ is produced at the output.

Because the resultant correlated data is weightless it can be re-ordered because the bit

positions hold no significance. In order to aid the subsequent stages of processing the

data is thermocoded. King’s weightless thermocoder described in Chapter 3 is a

suitable weightless Boolean element to perform this function. Each of the nodes within

the network is designed to contain a resultant weightless thermocoder which represents

a correlation score of that node in relation to the input. The SOM operates on a

‘winner-takes-all’ principle which means the strongest response is selected for further

processing. The weightless Boolean L-Max element was originally designed for the

replacement of Austin’s arithmetic implementation used with the ADAM network in

Chapter 3. However it is a simple and elegant method of selecting the highest

responding nodes. The L-Max function simultaneously compares all the weightless

correlation scores for each of the nodes and sets a threshold equal to the greatest

response. Every node within the network is then compared to this response and a

weightless bit for each node is set to either ‘1’ if it meets the L-max criteria or ‘0’ if not.

This results in the highest responding node being identified; however there may be

occasions when more than one node will have the maximum response. To overcome

this problem a simple Boolean logic selector was developed to yield only one response.

Figure 6.7 Weightless Boolean Selector

The selector is a simple element which is designed to be used on thresholded weightless

data. The thresholded data should result with sparsely populated points of interest

represented by ‘1’ in the data stream. The function of the selector is to pick out an

individual point of interest, when there are several points. The purpose of this is so that

150

in a network an operation can be performed on this one point or region of interest, such

as reinforcing or weakening of this element. The selector is used to detect the first bit in

the weightless data stream. The selector operates by setting the output (OUTn) to ‘1’ of

the corresponding first input (An) that is set ‘1’ all other outputs are subsequently set to

‘0’. When implemented in the WSOM it was noticed that an offset was needed as the

wrap-around effect of the offset skews the data therefore an offset in the selector is

needed. Figure 6.8 shows a selector with a fixed offset of one bit. This is a variant of

the selector circuit with an offset. This function is equivalent to the standard selector

with one minor difference: instead of setting the equivalent bit to ‘1’ it sets each of the

adjoining bits to ‘1’ and all other outputs to’0’.

Figure 6.8 Weightless Boolean Selector with Offset

The selector is designed to select the first highest response and discard all the other

responses. It is used to identify a point of interest and form a neighbourhood which will

be enhanced to respond to the given stimuli which resulted in its selection. Therefore

the next stage is to identify the surrounding nodes which will be used to form the

neighbourhood. These will also be strengthened to an equal or lesser extent depending

on the learning criteria. Figure 6.9 shows a diagram for a fixed ‘expander’. This uses

the information from the selector to broaden the field of selected nodes to be operated

on.

151

Figure 6.9 Weightless Boolean Expander

The weightless Boolean expander element is designed to be used within a single area of

interest such as found in a self learning network like the WSOM. The expander’s role is

to select a defined surrounding region around the point of interest. Two variations of

the expander are shown, the first in Figure 6.9 is a simple Boolean logic implementation

which only selects the adjoining bits. Figure 6.10 showing a further variation allows a

more adaptive expansion of the surrounding bits. The example given in Figure 6.10

shows where up to an additional two adjoining bits on either side can be strengthened.

However the architecture is scalable to allow as many adjoining bits to be set, it could

also be designed so it only strengthens one side, or any combination of bits either side.

152

Figure 6.10 shows a more useful extension to the ‘expander’ offering variable

expanding, this allows the region of interest size to be set and easily varied. This

technique is more in-line with the conventional Kohonen topology where the learning

rate controls the amount of change as the network evolves giving the network learning

true adaptability.

Figure 6.10 Weightless Boolean Multiple Bit Expander

The final stage is to take the nodes which have been highlighted for strengthening and

to alter their response to input stimuli. This function is performed by the Hamming

distance reducer; the basic variant only reduces the difference between the stimuli and

node by one bit, or a set number of bits as shown in Figure 6.12.

153

Figure 6.11 Weightless Boolean Hamming Distance Reducer with Test Points

The Hamming distance is the number of bits which differ between two data sets, in this

case two data streams (A1-An) and (B1-Bn). The Hamming distance reducer is designed

to alter the status of bits in one weightless data stream to reduce the Hamming distance

between the two data streams. Figure 6.11 shows a basic Hamming distance reducer

which is a set architecture that only reduces the Hamming distance between the two

data streams, by one bit, that being the first different bit in the data stream. Note that

outputs (REF1 - 4) and (OLD1 - 4) would not be used in a real system but are only

present for testing. Figure 6.12 shows a large version of the single bit Hamming

distance reducer with no test outputs.

154

Figure 6.12 Basic Hamming Distance Reducer

Figure 6.13 The Multiple Bit Hamming Value Reducer

Figure 6.13 shows a multiple bit Hamming distance reducer comprising several earlier

elements, these being King’s weightless thermocoder and the greater-than-or-equal-to

weightless Boolean comparator. The logic shown allows all eight bits to be swapped if

155

required; however in practice this would be unlikely and is only used to demonstrate the

flexibility of the element. The multiple Hamming distance reducer has been designed

so that the amount by which the Hamming distance is reduced can be varied. This

allows another method of controlling the learning rate.

6.8 Self Ordered Map Elements

These elements have all been derived from the quest to design a weightless self ordered

map. Although these elements have been designed with this purpose, some have been

enhanced, and the intention is that these add to the collection of weightless Boolean

building blocks that can be used to further develop existing and new weightless neural

networks.

Figure 6.16 shows the overall architecture of the WSOM using the Boolean weightless

logic elements described previously within this chapter. All the weightless elements

described above have been individually tested using the ‘Neuromorph’ development

board and an array of switches and light emitting diodes to confirm operation.

6.9 Simulation Results

The overall operation of the network has been simulated in MATLAB with two

programmes; the first for training the network and the second for evaluating the network

once trained. Each of these programmes can be found in Appendix D along with more

generic examples where the size of the network can be altered. The logic elements were

described as logical functions in MATLAB in order to simulate the network.

The example at the beginning of the chapter is simulated using the two MATLAB

programmes which have been pre-loaded with the initial conditions shown in Figure

6.16 and Figure 6.15 The MATLAB Weightless Self Ordered Map is trained via a text

file ‘data.txt’, for this example this file contains the two values 0111 and 1001.

Following training the recall can be performed by a second programme shown in Figure

6.15 and a text file ‘data2.txt’. This text file allows the user to present data to the

network, the network will respond with closest match. If the network has been

sufficiently trained and a training data set is given the network will return this as the

closest match.

156

% function Neuron =

somtrain(Elements,NumberofNeurons,FieldofStrength,LearningRate)

% This program performs a weightless

% self ordered map

% James Armstrong 23/02/05

% Filename somtrain.m

% Issue 1

Elements=4;

NumberofNeurons=12;

FieldofStrength=2;

LearningRate=1;

%initalise (NumberofNeurons) with (Elements)

Neuron = [1 0 1 1 0 1 0 1 1 1 1 1;1 1 1 1 0 0 0 0 0 1 0 1;0 1 1 1 0 1

1 1 0 1 0 0;1 1 0 0 0 0 0 0 1 1 0 0];

fid=fopen('C:\data.txt','r');

while(~feof(fid))

 data=(fgetl(fid));

 for Elenum=1:Elements

 Input(Elenum,1)=str2num(data(Elenum));

 end;

 % Xnor the input with all neurons

 for val=1:NumberofNeurons

 Xnored(:,val)=logical(xnor(Input,Neuron(:,val)));

XnorNeurons(:,val)=logical(wtothermo(xnor(Input,Neuron(:,val))));

 end;

 % Determine the Lmax thermocode

 for Elenum=1:Elements

 L_max(Elenum,1)=logical(sum(XnorNeurons(Elenum,:)));

 end;

 % Select the neurons which match the L-max

 for val=1:NumberofNeurons

MatchNeurons(1,val)=logical(greaterequal(XnorNeurons(:,val),L_max(:,1)

));

 end;

 % Selects the first neuron which matches the L-max value

 SelectorPosition=0;

 test=0;

 for val=1:NumberofNeurons

 if(MatchNeurons(1,val)==1&&test==0);

 test=1;

 SelectorPosition=val;

 end;

 end;

 % This takes the selected Neuron and strengths the reponse of the

Neuron

 % surrounding dependant on the value of FieldofStrength

 StrengthenNeurons=logical(zeros(NumberofNeurons,1));

 FieldofStrengthSize=((2*FieldofStrength)+1);

 for Field = 1:FieldofStrengthSize

 StrengthenNeurons(Field,1)=1;

157

 end;

 StrengthenNeurons=circshift(StrengthenNeurons,-FieldofStrength);

 ShiftNumber=(SelectorPosition-1);

 StrengthenNeuronsShifted=circshift(StrengthenNeurons,ShiftNumber);

StrengthenNeuronsShifted=reshape(StrengthenNeuronsShifted,1,NumberofNe

urons);

 % Teaching the map this function takes the SOM Map and strengthen

the

 % map in the region selected to best match the input

 for val=1:NumberofNeurons

 LearningRateCount=LearningRate;

 if(StrengthenNeuronsShifted(1,val)==1)

 for bit=1:Elements

 if(Xnored(bit,val)==0&&LearningRateCount>0)

 Neuron(bit,val)=Input(bit,1);

 LearningRateCount=(LearningRateCount-1);

 end;

 end;

 end;

 end;

end;

fclose(fid);

save('C:\Weightless Toolbox\matlab_som.mat')

Figure 6.14 Weightless Self Ordered Map MATLAB Training Program

function [result,position] = Readtrain()
% This program performs a weightless
% self ordered map
% James Armstrong 25/02/05
% Filename somread.m
% Issue 1

Elements=4;
NumberofNeurons=12;

load('C:\Weightless Toolbox\matlab_som.mat')

fid=fopen('C:\data2.txt','r');
while(~feof(fid))

 data=(fgetl(fid));
 for Elenum=1:Elements
 Input(Elenum,1)=str2num(data(Elenum));
 end;

 % Xnor the input with all neurons
 for val=1:NumberofNeurons
 Xnored(:,val)=logical(xnor(Input,Neuron(:,val)));

XnorNeurons(:,val)=logical(wtothermo(xnor(Input,Neuron(:,val))));
 end;

 % Determine the Lmax thermocode
 for Elenum=1:Elements

158

 L_max(Elenum,1)=logical(sum(XnorNeurons(Elenum,:)));
 end;

 % Select the neurons which match the L-max
 for val=1:NumberofNeurons

MatchNeurons(1,val)=logical(greaterequal(XnorNeurons(:,val),L_max(:,1)

));
 end;

 % Selects the first neuron which matches the L-max value
 test=0;
 for val=1:NumberofNeurons
 if(MatchNeurons(1,val)==1&&test==0);
 test=1;
 result=Neuron(:,val);
 position=val;
 end;
 end;
end;
 fclose(fid);

Figure 6.15 Weightless Self Ordered Map MATLAB Recall Program

The simulation has shown that it is possible to implement the originally algorithmic

SOM in weightless Boolean elements. The implementation of the weightless SOM has

led to the development of further weightless Boolean elements. These include the

selector and expander including variants. The Hamming distance reducer is also useful

for other weightless neural functions where controlled reduction of Hamming distance

is required as part of learning. It is envisaged that these elements will be added to the

collection of weightless Boolean elements which will allow further non-weightless

systems to be implemented weightlessly, particularly neural networks where areas of

the network need to be selected for processing or regions defined.

1
5
9

Figure 6.16 Architecture of the Weightless Self Ordered Map

Input

Neuron 1

Thermocode

Neuron 2

Thermocode

Neuron 3

Thermocode

Neuron 4

Thermocode

L-Max

Selector

Expander

Hamming

Distance Reducer

Hamming

Distance Reducer

Hamming

Distance Reducer

Hamming

Distance Reducer

Learning Rate

160

6.10 Summary of Chapter 6

Further weightless Boolean hardware elements are presented which build on the sum and

threshold logic described in the earlier chapters. These additional weightless Boolean

elements are each described and used to form a weightless Boolean hardware self ordered

map. The weightless self ordered map has been simulated in MATLAB using the example in

the chapter. It is demonstrated how conventional weighted neural networks can be converted

into weightless neural networks using Boolean weightless architectures.

161

Chapter 7

7 Summary and Conclusions

7.1 Overview

This thesis describes a collection of weightless Boolean elements which are being used

to improve both weightless and weighted neural networks and implement novel filters.

The robustness of weightless elements has also been demonstrated by trials carried out

at ground-based neutron test facilities.

7.2 Objectives

All the objectives described in the introduction were achieved; these are as follows:

 To examine the robustness of weightless elements versus weighted elements

when subjected to high-energy neutron radiation mimicking that of the

atmosphere through accelerated testing at a ground-based facility.

 To develop a collection of weightless Boolean elements to add to the existing

body of elements to further improve weightless neural networks by replacing

weighted arithmetic counter units with sum and threshold techniques.

 To further examine King’s Type 1 Neuroram filter as an image filter when

subjected to an extended range of noise types in conjunction with evaluating

threshold properties of the filter.

 To demonstrate how weightless Boolean elements can be developed to

implement weightless Boolean hardware implementations of existing weighted

neural networks; notably the self ordered map.

162

 The final objective was to show how weightless Boolean elements could be

developed to replace weighted binary counters in the implementation of robust

avionic designs.

7.3 Summary of Chapters

The author now briefly summarises the chapters in this thesis focusing on their

contribution to the field.

Chapter 1 introduces the research describing the problems faced by the avionics

industry caused by atmospheric radiation as well as techniques to understand the

interactions between neutrons and semiconductor electronics. Two papers in which the

author contributed at the test facility are presented in the appendices. These describe

some of the effects observed when using CCD elements to understand semiconductor

neutron interaction processes. An overview of the history of Boolean logic and the

differences between weighted and weightless Boolean logic is discussed.

Chapter 2 gives a chronological history of weightless hardware neural networks

discussing the McCulloch and Pitts model for a neuron through to the modern day

approach to weightless neural networks such as ADAM and Neuroram [McCulloch et al

1943, Austin 1986, King 2000]. The history of the division of the McCulloch and Pitts

model into both weighted and weightless neural networks is described [Pitts et al 1947].

The operation of ADAM and the correlation matrix memory and associated threshold

techniques are discussed [Austin 1986].

Chapter 3 develops a collection of weightless sum and threshold architectures which are

formed from simple Boolean logic. Several variations of logic architectures are

described; including a serial method generating thermocode which has been patented by

BAE SYSTEMS. The patent is included in Appendix C. In addition new weightless

Boolean sum and threshold elements are presented which complements the elements

proposed by King [King 2000]. These are the greater-than-and-equal and the less-than-

and-equal functions given in Figure 3.8 and Figure 3.9 respectively. The advantages of

these new architectures are they allow the greater-than-or-equals or less-than-or-equals

to be performed in a single stage. Previously King described three elements, greater

163

than, equals to, and less than. In order to implement the combination of these

architectures two elements were required, this meant there would be two stages of logic.

The method proposed here reduced this to a single stage of logic and hence reduces the

propagation delay.

This chapter also describes a new method of learning for the correlation matrix memory.

The plausibility of using different logic to implement the learning at the intersections of

the correlation matrix memory which have conventionally been formed from ‘AND’

gates derived from Hebbian learning has been examined [Hebb 1949]. Table 3.2 shows

a collection of alternative Boolean logic gates that can be used to implement different

learning criteria, these include the ‘NOR’ gate and half the structure of the ‘EXOR’

gate. The effects of different learning criteria have been simulated using ADAM

network [Austin et al 1987].

In order to design the weightless Boolean hardware architecture of ADAM two new

weightless Boolean threshold elements are described which perform the L – Max (N

Point) threshold and the Willshaw threshold [Austin et al 1987]. Figure 3.14 and Figure

3.15 show the new weightless Boolean architectures used to form a weightless ADAM.

Chapter 4 describes and evaluates a weightless Boolean hardware median filter when

implemented on an FPGA and subjected to single event affects caused by neutron

radiation. The weightless Boolean hardware median filter has been patented by BAE

SYSTEMS to protect intellectual property rights. Section 5.4 describes the

asynchronous weightless Boolean filter and analyses the operational speed in

conjunction with conventional weighted median filter implemented in a similar FPGA

[Xilinx 1998]. Section 5.5.1 describes a new technique with greater parallelism for

converting weighted binary data into thermocode. This is then compared with King’s

thermocoding technique assessing the speed of operation of both filters when converting

8-bit binary into thermocode. The parallel technique reduces the layers of gates in

comparison to King's method drastically reducing the propagation delay of the overall

median filter and making the performance comparable to that of a weighted binary

median filter implemented in an FPGA.

A study of both filters is made when subjected to neutron radiation using an FPGA

which is prone to single event upsets. The results show that the weightless architecture

is more prone to upset. However these upsets have a limited affect on the overall result

due to the inherent nature of the architecture meaning the failure mode is more graceful

and predictable. The increase in upsets within this architecture is due to the number of

164

data channels as each data channel can only carry one bit. Conversely the weighted

median filter suffers less upsets but the outcome of these is much less predictable as

each of the bits could be affected varying the amount by which the data is changed. The

worst-case is that the data could halve or double in magnitude with a single bit failure.

This is demonstrated in Figure 4.28 which shows the results of the testing undertaken.

Chapter 5 evaluates of King’s type 1 Neuroram filter using three standard images and a

collection of further noise types to better characterises the performance of the filter.

The noise types that have been applied to the three standard images are additive

Gaussian, additive uniform, multiplicative uniform and multiplicative Gaussian as well

as Salt and Pepper noise as originally tested by King [2000]. The effects on the images

are shown in Figure 5.5 through to Figure 5.10. This analysis was presented in the form

of histogram plots of the original image and the resultant images following corruption

by the different noise types. The effect of the filter on removing these noise types has

been assessed using the evaluation criteria of PSNR and MSE as described in section

4.4. It is clear that the additive Gaussian noise causes severe corruption to the image,

this is shown in Figure 5.11(c). The results shown in Figure 5.12, Figure 5.14, Figure

5.16, Figure 5.18 and Figure 5.20 clearly demonstrates the median filter is better for

certain noise types. Most types of filter performed well on the original salt-and-pepper

noise trials by King, including multiplicative Gaussian noise and multiplicative uniform

noise. The filter is not well-suited to the removal of additive noise types such as

additive Gaussian and additive uniform noise. It is clear from the images in Figure

5.15, Figure 5.17 and Figure 5.19 the weightless median filter causes less blurring and

has improved definition in contrast to the standard median filter.

A novel trial was performed on both the median filter and the neural filter to identify the

ideal number of filters in cascade. The images used for these were corrupted with the

salt-and-pepper noise as this was the noise type the filters perform the best with. Figure

5.21 shows the optimum number of filters for the median filter was two. However the

neural filter continued to show improvement up to five filters with the compromise of

performance against number of filters being three. The overall performance of the

median filter was better than that of the neural filter.

A final evaluation of the weightless filter examining its properties with various

thresholds was performed in section 4.6. King in his thesis describes the optimum

threshold being half the number of samples, in this case this would equate to a threshold

of either 4 or 5 [King 2000]. King did qualify this statement saying that the threshold

165

would have some data dependency. This research was conducted on two separate

images as shown in Figure 5.28 and Figure 5.30. Figure 5.28 shows the effects of the

filter with different thresholds and demonstrates that at lower thresholds the definition

of the images is poor. However as the threshold increases more detail is revealed

showing an optimum threshold of three or four demonstrated by the graph shown in

Figure 5.27. The trial was then repeated on the Milk Drop image using multiplicative

uniform noise which was added at 20%. This had similar characteristics showing a lot

of white noise at the lower thresholds and a lot of dark noise at the higher thresholds as

shown in Figure 5.30. This trial was repeated with 40% added noise and the results

were the same. This showed the ideal threshold for the filter to be three, against King's

original prediction this shows a threshold of 33% performs better in a nine sample

window than the originally suggested 50%.

Chapter 6 describes a novel weightless implementation of the self ordered map. This

implementation follows the principles of the conventional self ordered map originally

developed by Kohonen [Kohonen 1984]. As part of the implementation of the self

ordered map several novel weightless elements had been developed. These extend the

collection of weightless elements for the development of both weightless neural

networks as standard weightless architectures. These include a selector circuit shown in

Figure 6.7 which is designed to select the first responding output in a parallel line of

weightless data. An expander circuit shown in Figure 6.9 which is primarily designed

to take the output of the selector circuit. The operation of this element is to ensure a

wider number of outputs responses adjacent to the stimulated input or inputs. This

circuit can be used in conjunction with the selector circuit to enhance a region of

interest within a weightless network. The final weightless Boolean element developed

is the Hamming distance reducer shown in Figure 6.12. This is designed to take two

weightless Boolean streams of data and reduce the Hamming distance between the

streams of data. Two versions of this are given, one which reduces one of the data

streams by one bit and the other which allows multiple bits to be altered in order to

reduce the Hamming distance as shown in Figure 6.13.

The culmination of these elements is the implementation of a weightless self ordered

map. This demonstrates that a weighted neural network such as the self ordered map

can be implemented in weightless Boolean hardware.

166

7.4 Original Contributions

7.4.1 Robustness to Corruption

It has been demonstrated through ground based accelerator testing in a high flux neutron

environment that weightless Boolean implementations respond differently to data

corruption compared to standard weighted binary implementations. Although the

incidence of corruption is increased in comparison to an equivalent weighted

implementation, due to the increased size of the data bus, the resultant effect is less

significant. This is due to the removal of the binary weighting function which

contributes to a random data corruption. Therefore weightless logic has advantages in

avionic hardware which is subjected to atmospheric radiation effects; it has applicability

to voting systems and high integrity systems.

7.4.2 Production of a Weightless Median Filter

An aim of the research was to demonstrate that standard functions and elements could

be re-designed and implemented in weightless Boolean logic. A novel median filter

was produced which does not require any clocked arithmetic elements. The parallel

nature of the weightless logic ensures that high speed operation of the filter could be

achieved. Coupled with its increased robustness, this makes it an ideal target for

medical and avionic applications.

7.4.3 Neuroram as an Image Filter

The research has further defined the properties of Neuroram when configured as an

image filter. It has characterised the properties of Neuroram and its ability to filter

noise on a greater range of adjustment of the threshold of Neuroram. It has shown its

effects are similar to those of a standard median filter although it has some distinct

differences. The corruption to the image caused by applying the filter is different, the

fact it does not damage the edges of the images. Another distinct difference is the effect

of cascading Neurorams.

7.4.4 Sum and Threshold Elements

A further selection of sum and threshold weightless Boolean elements have been

designed which contribute to the prior art for use in weightless neural networks. These

include Willshaw and N point sum and threshold elements which form an integral part

of the ADAM network and new techniques for thermocoding weightless data. A logic

167

element capable of producing combined ‘greater-than-or-equal-to’ and ‘less-than-or-

equal-to’ results has been produced.

7.4.5 Non-Hebbian Learning

Conventionally correlation matrix memories have been based on Hebbian learning. A

new selection of learning criteria has been suggested, the main example being that of

non-Hebbian learning.

7.4.6 ADAM

A completely Boolean implementation of ADAM has been designed and simulated. It is

based on the novel weightless Boolean sum and threshold elements. This has resulted

in an ADAM network that no longer relies on counters or arithmetic logic, improving its

robustness and ensuring the network is not only weightless in operation but also in

implementation.

7.4.7 Self Ordered Map

A collection of weightless Boolean elements have been designed which have allowed a

weightless implementation of Kohonen’s self ordered map [Kohonen 1984]. These

elements include a weightless Boolean expander, selector, and Hamming distance

reducer.

168

Chapter 8

8 Further Work

8.1 Neuroram

A further extension to Type 1 Neuroram particularly with regard to image filtering is to make

use of the ability to alter its threshold is suggested. This research has shown the threshold

needs to be altered dependent on the data, in this case the greyscale of the image. Two

possible extensions are; a filter which sets the threshold for the whole data set in this example

the overall average greyscale of the image. A more flexible alternative is a dynamic

threshold which is based on the local regional greyscale. It is expected this will have

improved characteristics over the fixed threshold models described in this thesis. Closer

examination of this property using frequency analysis may define the level of improvement in

comparison to traditional techniques. This further work may yield areas where these filters

are more applicable; such as medical imaging. It is suggested that an evaluation using a

cascade of Neurorams acting as image filters each with differing thresholds may yield some

interesting properties.

8.2 Weightless Neural Element Properties

This research has investigated the robust nature and design of weightless Boolean logic

elements, and has shown the architectures to be larger, however it is believed that the

removal of the high speed clocked elements should also reduce their power consumption and

thermal dissipation when implemented in hardware. The reduction of clock speed will also

reduce the incidence of atmospheric radiation induced transient single event upsets which are

more likely to lead to metastability when high clock speeds are used. A study into these

hypotheses may further support the applicability of this technology in avionic systems.

8.3 Non-Hebbian Techniques

The author’s new learning criteria proposed for the Correlation Matrix Memory in this

research may offer improvements in other existing weightless neural networks, particularly

169

those based on the CMM such as AURA [Austin et al 1998]. Further analysis of these

networks using these new learning criteria is required to study the operation and

implementation of them and further characterise their performance.

8.4 ADAM

A further evaluation of ADAM using a combination of non-Hebbian learning and Hebbian

learning is required. It is proposed that the addition of non-Hebbian learning in parallel with

Hebbian learning may be beneficial on a network that is becoming saturated. This regime

would use the same tupling but the final result would be a combination of both learning

techniques. The philosophy behind this is that the network would have less ‘zeros’ and these

would hold valuable information which is presently being lost with the current method.

8.5 Weightless Self Ordered Map

The weightless self ordered map has only been simulated so far using MATLAB with a

restricted data set. Simulations using larger and varied data sets would further confirm the

operation of the weightless implementation. A full hardware implementation of the

weightless self ordered map on a typical FPGA architecture would demonstrate a physical

implementation.

8.6 Weightless Boolean Elements

The weightless Boolean elements developed during this research are generic. Further

investigation into applying them to other weighted and weightless neural networks is

suggested to examine if any benefit could be gained. The weightless elements generated also

may have merit in the field of robust voting systems for high reliability systems operating in

harsh environments; these include space, high altitude, medical and industrial applications

where they are subjected to high electro-magnetic fields.

Further research into the robust nature of these elements should be performed in high electro-

magnetic fields to evaluate if this technology is more robust due to the removal or reduction

of the clock systems. Examination of the Electro-Magnetic Compatibility (EMC) of

weightless Boolean logic in comparison to standard implementations may show reduced

EMC emissions due to the removal or reduction of the clock frequency.

170

References

Aleksander, I. and Morton, H., 1995, ‘An introduction to neural computing’, Thomson

Computer Press, second edition, chapters 2, 5 and 10, 1995

Aleksander, I., Thomas, W. V. and Bowden, P. A., 1984, ‘WISARD – a radical step forward

in image recognition’, Sensor Review, pp. 120-124, July 1984

Aleksander, I. and Stonham, T. J., 1979, ‘Guide to pattern recognition using random access

memories’, Computer and Digital techniques, vol. 2, no. 1, pp. 29-40, February 1979

Aleksander, I., 1965, ‘Fused logic element which learns by example’, Electronics Letters,

vol. 1, no. 6, pp.173-174, August 1965

Armstrong, J. R., 1999, ‘A RAM based methodology for the implementation of fuzzy

thermocode’, Proceedings of the Third International Workshop on Weightless Neural

Networks, WNNW99, University of York, paper no. 8, March 30
th

 to 31
st
, 1999

Armstrong, J. R., 2003a, ‘Serial weightless data to thermocoder coded data converter’, World

Intellectual Property Organization, international patent publication WO 03/071684,

international application PCT/GB03/00732, filed February 21
st
, published August 28

th
, 2003

Armstrong, J. R., and King, D. B. S., 2003, ‘Ordering by Hamming value’, World Intellectual

Property Organization, international patent publication WO 03/071683, international

application PCT/GB03/00756, filed February 21
st
, published August 28

th
, 2003

Armstrong, J. R., 2003b, ‘Ordering weightless binary tuples according to Hamming value’,

World Intellectual Property Organization, international patent publication WO 03/071685,

international application PCT/GB03/00780, filed February 21
st
, published August 28

th
, 2003

171

Austin, J., 1986, ‘The design and application of associative memories for scene analysis’, Ph.

D. Thesis, Department of Electrical Engineering, Brunel University, U.K., pp. 58-88, August

1986

Austin, J. and Stonham, T. J., 1987, ‘Distributed associative memory for use in scene

analysis’, Image and Vision Computing, vol. 5, no 4., pp. 251-260, 1987

Austin, J., 1987, ‘ADAM: a distributed associative memory for scene analysis’, Proceedings

First Annual Conference on Neural Networks, San Diego, CA, U.S.A, pp. IV-285 to IV-292,

1987

Austin, J., 1993, ‘Rapid learning with a hybrid neural network’, Neural Network World, no.

5, IDG Communications, U.S.A., pp. 531-549, 1993

Austin, J., 1994, ‘A review of R.A.M. based neural networks’ in the Proceedings of the

Fourth International Conference on Microelectronics for Neural Networks and Fuzzy

Systems, Turin, Italy, pp. 58-66, September 26
th

 to 28
th

, 1994

Austin, J. and Buckle, S., 1994, ‘The practical application of binary neural networks’,

Proceedings of the UNICOM Seminar on Adaptive Computing and Information, Brunel

University, U.K., pp. 643-660, 1994

Austin, J., 1997, ‘Associative memory’, in ‘Handbook of neural computation’, release 97/1,

Institute of Physics Publishing Ltd. and Oxford University Press, UK, pp. F1.4:1-F1.4:7,1997

Austin, J., 1998, ‘Grey scale n-tuple processing’, Proceedings of the Fourth International

conference on Pattern Recognition, Cambridge, pp. 110-119, 1998

Austin, J., Kennedy, J. and Lees, K., 1998, ‘The advanced uncertain reasoning architecture,

AURA’, in ‘RAM-based neural networks’, (J. Austin ed.), World Scientific Publishing Co.,

pp. 43-50, 1998

Barbalho, J.M., Duarte, A.,Neto, D., Costa, J. A. F. And Netto, M. L. A., ‘Hierarchical SOM

applied to image compression’, International Joint Conference on Neural Networks, vol. 1,

pp. 442-447, July 15
th

 to July 19
th

 2001, published August 7
th

, 2002

172

Bates, G. L. and Nooshabadi, S., ‘FPGA implementation of a median filter’, TENCON '97,

IEEE Region 10 Annual Conference, Proceedings of IEEE Speech and Image Technologies

for Computing and Telecommunications, vol. 2, pp. 437-440, December 2
nd

 to 4
th

, 1997

Bedford, D. F., Morgan G. and Austin J., 1996, ‘A draft standard for the certification of

neural networks used in safety critical systems’, Artificial Neural Networks in Engineering,

pp. 1057-1062, November 1996

Beale, R. and Jackson, T., 1997, ‘Neural computing, an introduction’, Institute of Physics

Publishing Ltd., Bristol, U.K., pp. 212-215, 1997

Blackmore, E. W., Dodd, P. E. and Shaneyfelt, M. R., 2003, ‘Improved capabilities for

proton and neutron irradiations at TRIUMF’, IEEE Radiation Effects Data Workshop, pp.

149 155, July 21
st
 to 25

th
, 2003

Bledsoe, W. W., Bomba J. S., Browning, I., Evey, R. J., Kirsch, R. A., Mattson, R. L.,

Minksy, M., Neisser, U. and Selfridge, O. G., 1959a, ‘Discussion of problems in pattern

recognition’, Proceedings of the Eastern Joint Computer Conference, Boston, Massachusetts,

U.S.A., pp. 233-237, 1959

Bledsoe, W. W. and Browning, I., 1959b, ‘Pattern recognition and reading by machine’,

Proceedings of the Eastern Joint Computer Conference, Boston, Massachusetts, U.S.A., pp.

225-232, 1959

Bolt, G., Austin, J. and Morgan, G., 1992, ‘Uniform tuple storage in ADAM’, Pattern

Recognition Letters, no. 13, Elsevier Science Publishers, B.V., pp. 339-344, May 1992

Bolt, G., 1991, ‘Operational fault tolerance of the ADAM neural network systems’, IEEE

International Joint Conference on Neural Networks, vol. 1, pp. 1-6, November 18
th

 to 21
st
,

1991

Boole, G., 1854, ‘An investigation of the laws of thought on which are founded the

mathematical theories of logic and probabilities’, Macmillan and Co., Cambridge, 1854

173

Buchan, I., 2004, ‘Calculating Poisson confidence Intervals in Excel’, Public Health

Informatics at the University of Manchester, January 27
th

, 2004

Chugg, A. M., Jones, R., Jones, P., Nieminen, P., Mohammadzadeh, A., Robbins, S., and

Lovell, K., 2002, ‘A CCD Miniature Radiation Monitor’, IEEE Transactions on Nuclear

Science, vol. 49 no. 3, pp.1327-32, June 2002

Chugg, A. M., Jones, R., Moutrie, M. J. Dyer, C. S., Ryden, K. A., Truscott, P. R.,

Armstrong, J. R., and King, D. B. S., 2003a ‘Analyses of CCD images of Nucleon-Silicon

Interaction Events’, Proceedings of RADECS 2003 Conf., European Space Agency,

Noordwijk, Holland, September 15
th

 to 19
th

, 2003

Chugg, A. M., Jones, R., Moutrie, M. J., Armstrong. J. R., King, D. B. S., and Moreau, N.,

2003b, ‘Single particle dark current spikes induced in CCD’s by high energy neutrons’, IEEE

NSREC Conference, Monterey, California, July 2003

Chugg A. M., 2003c, ‘SPAESRANE, Solution for the preservation of aerospace electronic

systems reliability in the atmospheric neutron environment’, An aeronautics research

programme proposal to the Department of Trade and Industry, MBDA UK Limted, Filton,

ED2003-00192, Issue 1, July 2003

Chugg, A. M., 2006, ‘Solutions for the Preservation of Aerospace Electronic Systems

Reliability in the Atmospheric Neutron Environment’, SPAESRANE final report, MBDA

Filton, DR33269, September 2006, Issue 1

Copeland, B. J. and Proudfoot, D., 1996, ‘On Alan Turing’s Anticipation of Connectionism’,

Synthese, Springer Netherlands, vol. 108, no. 3, pp. 361-377, September 1996

D’Almeida, F., ‘Nonlinear diffusion toolbox’, 2003, URL

http://www.mathworks.co.uk/matlabcentral/fileexchange/3710-nonlinear-diffusion-toolbox

http://www.mathworks.co.uk/matlabcentral/fileexchange/3710-nonlinear-diffusion-toolbox

174

Dyer, C. S., Truscott, P. R., Sanderson, C., Colwell, B., Chugg, A., Jones, R., MacDiarmid, I.

and Johansson K., 2000, ‘Cosmic radiation effects on avionics, an increasing hazard in the

new millennium?’, ICAS 2000, Harrogate, August 2000

Dyer, C. and Lei, F., 2001, ‘Monte-carlo calculations of the influence on aircraft radiation

environments of structures and solar particle events’, IEEE Transactions on Nuclear Science,

December 2001

Dyer, C. S., Sims, A. J., Truscott, P. R., Farren, J. and Underwood, C., 1992, ‘Radiation

environment measurements on Shuttle missions using the CREAM experiment’, IEEE

Transactions on Nuclear Science, vol. 39 issue. 6, pp. 1809 – 1816, December 1992

Hamming, R. W., 1950, ‘Error detecting and error correcting codes’, The Bell System

Technical Journal, vol. 26, no. 2, U.S.A., pp. 147-160, April 1950

Hazra, A., Bhattacharyya, J. and Banerjee, S., 2004, ‘Real time noise cleaning of ultrasound

images’, Proceedings 17
th

 IEEE Symposium on Computer-Based Medical Systems, pp. 379-

384, June 24
th

 to 25
th

, 2004

Hebb, D. O., 1949, ‘The organization of behaviour, a neuropsychological theory’, John Wiley

and Sons Incorporated., New York, U.S.A., pp. 60-78, 1949

Hess, V. F., 1913, ‘Uber den Ursprung der durchdringenden Strahling’, Physikalische

Zeitschrift, vol. 14, no. 14, 1913

Hopfield, J. J., 1982, ‘Neural networks and physical systems with emergent collective

properties’, Proceedings of the National Academia of Science, U.S.A., 79, pp. 2554-2558,

1982

James, W., 1890, ‘Psychology (briefer course)’, Holt, New York, U.S.A., pp.253-279, 1890

Kennedy, J. V., Austin, J. and Cass, B., 1995, ‘A hardware implementation of a binary neural

image processor’, Image Processing and its Applications, IEE Conference publication

number 410, pp. 465-469, July 4
th

 to 6
th

, 1995

175

Kennedy, J. V. and Austin, J., 1994, ‘A hardware implementation of a binary neural

associative memory’ in the Proceedings of the Fourth International Conference on

Microelectronics for Neural Networks and Fuzzy Systems, Turin, Italy, pp.178-185,

September 26
th

 to 28
th

, 1994

Kennedy, J. V. and Austin, J., Pack, R. and Cass, B., 1995, ‘C-NNAP – a parallel processing

architecture for binary neural networks’, Proceedings of the IEEE International Conference

on Neural Networks (ICNN 95), University of Western Australia, Perth, Australia, pp. 1037-

1041, November 27
th

 to December 1
st
, 1995

King, D. and Armstrong, J., 2008, ‘System level prevention: managing SEE using error

correction techniques’, IET Seminar on Cosmic Radiation, November 18
th

, 2008

King, D. B. S., Simpson, R. J., Moore, C. and MacDiarmid, I. P., 1998, ‘Digital n-tuple

Hamming comparator for weightless systems’, Electronics Letters, vol. 34, no. 22, pp. 2103-

2104, 1998

King, D. B. S., MacDiarmid, I. P. and Moore, C., 1999d, ‘Weightless binary n-tuple

thresholding hierarchies’, World Intellectual Property Organization, international patent

publication WO 99/32962, international application PCT/GB98/03837, filed 18
th

 December

1998, published July 1
st
, 1999

King, D. B. S., 1999c, ‘Boolean lattice for implementing sum-and-threshold binary neurons’,

Proceedings of the Third International Workshop on Weightless Neural Networks,

WNNW99, University of York, paper no. 7, March 30
th

 to 31
st
, 1999

King, D. B. S., 1999b, ‘Hamming value comparison for unweighted bit arrays’, World

Intellectual Property Organization, international patent publication WO 99/32961,

international application PCT/GB98/03835, filed December 18
th

, published July 1
st
, 1999

King, D. B. S., 1999a, ‘Binary code converters and comparators’, World Intellectual Property

Organization, international patent publication WO 99/33184, international application

PCT/GB98/03834, filed December 18
th

, published July 1
st
, 1999

176

King, D. B. S., 2000, ‘Robust hardware elements for weightless artificial neural networks’,

Ph. D. Thesis, Department of Engineering and Product Design, University of Central

Lancashire, U.K., pp. 41-151, January 2000

Kohonen, T., 1984, ‘Self-organization and associative memory’, Springer-Verlag, 1984

Kohonen, T., 1988, ‘Associative memories and representations of knowledge as internal

states in distributed systems’, Proc. European Seminar on Neural Computing, London, UK,

pp. 4/1-4/9, 1988

Kohonen, T., 2001, ‘Self-organising maps’, Springer-Verlag, third edition, 2001

MacDiarmid, I., King, D. and Armstrong, J., 2005, ‘BAE SYSTEMS, Air Systems approach

to the problem of atmospheric radiation’, IET Seminar on Cosmic Radiation, Savoy Place,

London, December 6
th

, 2005

Maniatakos, M., Xu, S. and Miranker, W. L., 2008, ‘Constraint-based placement and routing

for FPGAs using self-organizing maps’, IEEE International Conference on Tools with

Artificial Intelligence, vol. 2, pp. 465-469, 20
th

 IEEE International Conference on Tools with

Artificial Intelligence, 2008

Moulds, A., Pack, R., Ulanowski, Z. and Austin, J., 1999, ‘A high performance binary neural

processor for PCI and VME bus-based systems’, Proceedings of the Third International

Workshop on Weightless Neural Networks, WNNW99, University of York, March 30
th

 to

31
st
, 1999

McCulloch, W. S. and Pitts, W., 1943, ‘A logical calculus of the ideas immanent in nervous

activity’, Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, December, 1943

Picton, P., 1994, ‘Introduction to neural networks’, Macmillan Press, London, pp. 46-60,

1994

Pitts, W. and McCulloch, W. S., 1947, ‘How we know universals: the perception of auditory

and visual forms’, Bulletin of Mathematical Biophysics, vol. 9, pp. 127-147, 1947

177

Prokofiev, A. V., Blomgren, J., Majerle, M., Nolte, R., Rottger, S., Platt, S. P., Cai Xiao Xiao

and Smirnov, A. N., 2009, ‘Characterization of the ANITA neutron source for accelerated

SEE testing at the Svedberg Laboratory,’ IEEE Radiation Effects Data Workshop, Quebec,

Canada, pp. 166-173, July 20
th

 to 24
th

, 2009

Rochester, N., Holland, J. H., Haibt, L. H. and Duda, W. L., 1956, ‘Test on a cell assembly

theory of the action of the brain, using a large digital computer’, IRE Transactions on

Information Theory, pp. IT-2:80-IT-2:93, 1956

Rumelhart, D. E., Hinton, G. E. and Williams, R. J., 1986, ‘Learning internal representations

by error propagations in parallel distributed processing’, vols. 1 and 2, eds Rumelhart, D. E.

and McClelland, J. L., MIT Press, Massachusetts, 1986

Shannon, C. E., 1937, 'A symbolic analysis of relay and switching circuits', Masters Thesis,

Massachusetts Institute of Technology, 1937

Steinbuch, K., 1961, ‘Die Lernmatrix’, Kybernetik 1, pp. 36-45, January, 1961

Steinbuch, K. and Zendeh, F., 1962, ‘Self-correcting translator circuits’, Proceedings of the

International Federation for Information Processing Congress 62, North-Holland Publishing

Company, Munich, pp. 359-366, August 27
th

 to September 1
st
, 1962

Steinbuch, K. and Schmitt, E., 1967, ‘Adaptive systems and learning matrices’,

Biocybernetics in Avionics, (H. L. Oestericicher and D. R. Moore eds.), Gordon and Breach,

New York, U.S.A., pp. 751-768, 1967

Stonham, T. J., 1985, ‘Practical pattern recognition’, in ‘Advanced digital information

systems’, (I. Aleksander ed.), Prentice-Hall International Inc., Englewood Cliffs, New Jersey,

U.S.A., pp.231-272, 1985

Schneur, K. E., 1999, ‘Cosmic radiation and aircrew exposure’, Proceedings of Radiation

Protection and Dosimetry Workshop, Dublin, July 1998, Nuclear Technology Publishing,

December 15
th

, 1999

178

The MathWorks Inc., 1995, ‘The student edition of MATLAB, version 4 user’s guide’,

Prentice-Hall International Inc., Englewood Cliffs, New Jerseu, U.S.A., pp. 39-237, 1995

Torok, Z. and Platt, S., 2006, ‘Application of Imaging Systems to Characterization of Single-

Event Effects in High-Energy Neutron Environments,’ Nuclear Science, IEEE Transactions

on Nuclear Science, vol. 53, no. 6, pp. 3718-3725, December 2006

Turing, A. M., 1936, ‘On computable numbers with an application to the

Entscheidungsproblem’, Proceedings of the London Mathematical Society, series 2, vol. 42,

pp. 230-265, 1936

Ullman, J. R., 1969, ‘Experiments with the n-tuple method of pattern recognition’, IEE

Transactions on Computers, pp. 1135-1137, December, 1969

Ullman, J. R., 1973, ‘Pattern recognition techniques’, Butterworth and Co., U.K., pp. 115-

120, 1973

von der Malsburg, C., 1973, ‘Self-organization of orientation sensitive cells in the striate

cortex’, Kybernetik, vol. 14, pp. 85-100, 1973

von Neumann, J., 1958, ‘The computer and the brain’, Yale University Press, New Haven,

Connecticut, U.S.A., pp. 66-82, 1958

Weeks, M., Freeman, M., Moulds, A. and Austin, J., 2005, ‘Developing hardware-based

applications using PRESENCE-2’, Perspectives in Pervasive Computing, IEE London,

October 25
th

, 2005

Willshaw, D. J., Buneman, O. P. and Longuet-Higgins, H. C., 1969, ‘Non-holographic

associative memory’, Nature 222, pp. 960-962, June 1969

Willshaw, D. J. and Longuet-Higgins, H. C., 1970, ‘Associative memory models’ in

‘Machine intelligence’, (Meltzer, B. and Michie, D. eds.), vol. 5, Edinburgh University Press,

pp. 351-359, 1970

179

Willshaw, D. J. and von der Malsburg, C., 1976, ‘How patterned neural connections can be

set up by self-organisation’, Proceedings of the Royal Society of London, Biological Sciences

194, pp. 431-435, 1976

University of Cape Town, 2004, ‘Digital image processing’, 2004,

URL http://www.dip.ee.uct.ac.za/imageproc/stdimages

Xilinx Corporation, 1998, ‘The programmable logic data book 1998’, part number 0010323,

1998

Xilinx, 2001, ‘Virtex 2.5 V Field Programmable Gate Arrays’, Xilinx Incorporated, DS003-1

(v2.5), April 2
nd

, 2001

http://www.dip.ee.uct.ac.za/imageproc/stdimages

180

Appendices

Appendix A has the two papers resulting from trials at TSL in using CCD’s to capture

single event effects.

 Analyses of CCD Images of Nucleon-Silicon Interaction Events.

 Single Particle Dark Current Spikes Induced in CCD’s by High Energy

Neutrons.

Appendix B contains the two presentations submitted and accepted by the IET for

publication.

 BAE SYSTEMS, Air Systems Approach to the Problem of Atmospheric

Radiation.

 System Level Prevention: Managing SEE Using Error Correction Techniques.

Appendix C contains three international patents, derived from the author’s BAE

SYSTEMS invention reports. These have been examined and published.

 Ordering by Hamming Value.

 Serial Weightless Data to Thermocode Coded Data Converter.

 Ordering Weightless Binary Tuples According to Hamming Value.

Appendix D consists of a DVD retained on the inside back cover of this thesis. It

contains MATLAB emulations, C code simulations, PIC C code, circuit diagrams and

FPGA projects. It represents an archive of electronic data generated during the course

of the research.

A-1

Appendix A

B-1

Appendix B

C-1

Appendix C

D-1

Appendix D

Contents

Chapter 3 ADAM and Non - Hebbian

ADAM C Programs

Chapter 4 Weightless Neural Network Image Filters

MATLAB Simulations and Code

Reference Images

Chapter 5 Hardware Weightless Boolean Median Filters

FPGA Test Architecture

 Median

 Median Version 2

 Word Diagrams of Key Elements

PIC C

 TSL 2004

 TSL 2005

 Los Alamos 2005

 TRIUMF 2006

Test Data

 TSL 2006

 TRIUMF 2006

Results

D-2

 TRIUMF 2006 CHI Squared Graphs

CHI Squared Statistics

Chapter 6 Self Ordered Map

 MATLAB Simulations

EDA Weightless Boolean Elements

MATLAB Weightless Toolbox

