The relationship between zinc intake and serum/plasma zinc concentration in adults: a systematic review and dose-response meta-analysis by the EURRECA Network

Available at http://clok.uclan.ac.uk/5753/

It is advisable to refer to the publisher’s version if you intend to cite from the work.
http://dx.doi.org/10.1017/S0007114512004382

For more information about UCLan’s research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the policies page.
The relationship between zinc intake and serum/plasma zinc concentration in adults. A systematic review and dose-response meta-analysis by the EURRECA Network

Nicola M Lowe1*, Marisol Warthon Medina1 Anna-Louise Stammers1, Sujata Patel1, Olga W Souverein2, Carla Dullemeijer2, Lluis Serra-Majem3, Mariela Nissensohn3, Victoria Hall Moran4

1 International Institute of Nutritional Sciences and Food Safety Studies, University of Central Lancashire, Preston PR1 2HE, UK (NMLowe@uclan.ac.uk; ASkinner@uclan.ac.uk; MWathonmedina1@uclan.ac.uk; SPatel26@uclan.ac.uk)
2 Division of Human Nutrition, Wageningen University, P.O. Box 8129, 6700 EV, Wageningen, the Netherlands (olga.souverein@wur.nl; Carla.Dullemeijer@wur.nl)
3 Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Spain (lserra@dcc.ulpgc.es; mnissensohn@acciones.ulpge.es)
4 Maternal & Infant Nutrition & Nurture Unit, University of Central Lancashire, Preston PR1 2HE, UK. (vlmoran@uclan.ac.uk)

Short title: Zinc intake and plasma zinc concentration

*Corresponding Author:
Nicola Lowe, Reader in Nutritional Science. International Institute of Nutritional Sciences and Applied Food Safety Studies, Darwin Building, University of Central Lancashire, Preston PR1 2HE, UK
phone: 01772 893599
fax 01772 892925

Key words
EURRECA, zinc, dose-response, systematic review, meta-analysis.
Abstract

Dietary zinc recommendations vary widely across Europe due to the heterogeneity of approaches used by expert panels. Under the EURRECA consortium a protocol was designed to systematically review and undertake meta-analyses of research data to create a database that includes “best practice” guidelines which can be used as a resource by future panels when setting micronutrient recommendations. As part of this process, the objective of the present study was to undertake a systematic review and meta-analysis of previously published data describing the relationship between zinc intake and status in adults. Searches were performed of literature published up to February 2010 using MEDLINE, Embase, and Cochrane Library. Data extracted included population characteristics, dose of zinc, duration of study, dietary intake of zinc, and mean concentration of zinc in plasma or serum at the end of the intervention period. An intake-status regression coefficient (β) was estimated for each individual study, and pooled meta-analysis undertaken. The overall pooled β for zinc supplementation on serum/plasma zinc concentrations from RCTs and observational studies was 0.08 (95% CI 0.05, 0.11; $p<0.0001$; I^2 84.5%). An overall β of 0.08 means that for every doubling in zinc intake, the difference in zinc serum or plasma concentration is 2^β ($2^{0.08} = 1.06$), which is 6%. Whether the dose-response relationship, as provided in this paper, could be used as either qualitative or quantitative evidence to substantiate the daily zinc intake dose necessary to achieve normal or optimal levels of biomarkers for zinc status, remains a matter of discussion.
Introduction

Dietary zinc recommendations vary widely across Europe due to the heterogeneity of approaches used by expert panels (1). There is a need for a harmonised approach that is transparent and based on the best quality data and methods available. Traditionally, the factorial approach is used in the determination of zinc requirements. This method seeks to estimate the zinc intake required to meet physiological requirements for growth, metabolism and tissue repair while replacing obligatory losses. An alternative approach is to examine the dose-response relationship between intake and biomarkers of status and also between intake and health outcomes. This information could then be integrated using a mathematical model to provide an insight into the level of zinc intake required for optimal health based on a range of parameters and indices of health that are known to be dependent upon dietary zinc intake (2). To this end, the members of the European Micronutrient Recommendations Aligned (EURRECA) Network of Excellence have undertaken a series of systematic reviews of zinc-intake-status relationships, according to rigorous protocols defined by consortium members and external experts (2). This paper presents the results of the systematic review and meta-analysis of the dose response relationship between dietary zinc intake and zinc status using novel methodology developed by members the EURRECA consortium.

The assessment of zinc status is notoriously problematic for zinc, as a sensitive, specific biomarker for zinc has not yet been identified (3). A systematic review and meta-analysis of biomarkers of zinc status was undertaken in 2009 (4). For many putative biomarkers (such as the zinc concentrations found in the cellular components of whole blood) there were insufficient data to arrive at a definitive conclusion regarding their efficacy as a biomarker of zinc status, however plasma (or serum) zinc concentration was responsive to both zinc supplementation and zinc depletion and is the most widely reported biomarker for zinc. Hair and urine zinc concentrations were also considered to be potentially useful biomarkers in response to zinc supplementation.

The purpose of this study was to systematically and quantitatively assess the dose response relationships relevant to deriving zinc recommendations based on intervention studies, cohort (nested case control) studies and cross-sectional studies. The specific questions to be addressed were; what is the effect of intake on indicators of exposure or body stores (i.e. biomarkers)? What factors affect this relationship?
The data used in this meta-analysis were extracted from published studies (RCTs, prospective cohort studies, nested case-control studies and cross-sectional), performed in healthy adult and elderly populations, reporting the relationship between zinc status (plasma or serum zinc, hair or urine zinc concentration) and intake from supplements, fortified diets or natural food diets.

Methods

Search strategy

This research was conducted within the framework of the European Micronutrient Recommendations Aligned (EURRECA) Network of Excellence that aims to identify the micronutrient requirements for optimal health in European populations (www.eurreca.org). This research was part of a wider review process to identify studies assessing the effect of zinc intake on different outcomes (biomarkers of zinc status and health outcomes). The wider searches were performed of literature published up to and including February 2010 using Ovid MEDLINE, Embase (Ovid), and the Cochrane Library (CENTRAL) using search terms for (‘study designs in humans’) AND (zinc) AND (intake OR status). Both indexing and text terms were used and languages included were restricted to those spoken in the EURRECA Network (English, Dutch, French, German, Hungarian, Italian, Norwegian, Polish, Spanish, Greek, and Serbian.). The full Ovid MEDLINE search strategy can be found in Table 1. Reference lists of retrieved articles and published literature reviews were also checked for relevant studies. Authors were contacted to request missing data or clarify methods or results. The search process is illustrated in Figure 1.

Criteria for the consideration of studies for this review

Included studies were RCTs, prospective cohort studies, nested case-control studies and cross-sectional studies in healthy human populations that supplied zinc supplementation (RCTs) or measured dietary zinc intake with either a validated food frequency questionnaire, a dietary history method, a 24-hour recall method for at least 3 days, or a food record/diary for at least 3 days (observational studies). Studies had to be conducted in apparently healthy adult and elderly (human) populations aged ≥18 years and supplied zinc supplementation either as capsules or part of a fortified meal. If supplemental zinc was provided as a component of a fortified meal, studies were only considered acceptable if zinc was the only
constituent that was different between treatment groups. Biomarkers of zinc status included plasma/serum, urine and hair zinc concentrations. Only studies that reported sufficient data or had sufficient data obtainable from the authors to estimate β and $\text{SE}(\beta)$ for the assumed linear relation on the $\log_{e}\log_{e}$ scale were included. Studies were excluded if they were a group RCT (community trial), or were commentaries, reviews, or duplicate publications from the same study. Studies were excluded if adults were hospitalised, had a chronic disease or if supplemental zinc was provided for less than 2 weeks.

Selection of articles
Of 4719 identified articles in the wider search on zinc intake, status and priority health outcomes in all populations, 2557 were excluded based upon screening of the title and abstract. Two independent reviewers screened 10% of the abstracts in duplicate and any discrepancies were discussed before screening the remaining references. Following subdivision into appropriate population groups the full texts of the 1231 manuscripts were assessed to determine inclusion and exclusion by two independent reviewers and disagreements rectified through discussion. 1147 studies were excluded because they did not meet the inclusion criteria. Of the remaining 84 studies, 54 studies were excluded as they related either zinc intake or status directly to a health endpoint, but they had not investigated the relationship between zinc intake and zinc related to biomarkers. A further 17 studies were excluded from the meta-analysis because study participants were not healthy, insufficient data was reported, data was duplicated, or the dosage and duration was unclear. For the purpose of this meta-analysis, 10 RCTs and 3 observational studies remained. The characteristics of the included studies are presented in Table 2 and Table 3 respectively.

Data extraction
For each of the identified manuscripts, data was extracted independently by two reviewers into a standardized database. Extracted data included population characteristics, dose of zinc in intervention and placebo supplements, duration of the study, dietary intake of zinc, and mean concentration of zinc in plasma or serum at the end of the intervention period. Serum/plasma zinc concentrations were converted to μmol/L when applicable.

Data synthesis
Two RCTs that reported data for two zinc-treated groups and two control groups were treated as two independent estimates in the analysis (5; 6). Where RCTs provided outcome data for two or more zinc-treated group, they were included as separate estimates in the meta-analysis (7; 8; 9; 10; 11). Where zinc status was measured at different time points within the same population only the final measure was used in the analysis (12; 13). One observational study reported data from males and females and these were treated as two estimates in the meta-analysis (14). If dietary intake of zinc (in addition to the intervention) was not reported in the RCTs, a value of 9.7 mg/day was imputed, which was the mean dietary intake level of the RCTs that did report dietary zinc intake. As mean baseline serum/plasma zinc concentrations were infrequently reported in the RCTs, the serum/plasma zinc concentrations in the control group were used as a proxy of the baseline serum/plasma zinc concentrations for our analyses.

Statistical analyses

A stratified random effects meta-analysis was conducted using STATA version 11 (College Station, TX), with one subgroup combining the evidence from RCTs and the other subgroup combining the evidence from observational studies. As serum/plasma zinc levels have been reported to decline with age (15), a separate stratified random effects meta-analysis compared zinc intake and status according to age in RCTs (< 55 years and ≥ 55 years). In addition, stratified meta-analyses were also conducted on dose of zinc (<35 mg/day and ≥35 mg/day) and trial duration (in weeks). It was not possible to perform a stratified meta-analysis for gender, because most studies included both men and women and data were not available at the individual level.

The transformations used to derive coherent single-study estimates from the available summary statistics per study have been described elsewhere (16). In short, an intake-status regression coefficient (β) for each individual study was estimated from the mean serum/plasma zinc concentrations, based on the assumption of a linear relation on the loge-loge-scale (natural logarithm of intake versus natural logarithm of status). Algebraically deriving an estimate from each study of the regression coefficient ($\hat{\beta}$) and its standard error ($SE(\hat{\beta})$) enabled a comparison of the results from studies with heterogeneously reported associations and effects. The overall pooled $\hat{\beta}$ and $SE(\hat{\beta})$ was calculated using random effects meta-analysis, which estimates the between-study variance using the method of DerSimonian and Laird (17). This was then used to modify the weights used to calculate the summary
estimate. Residual heterogeneity between studies was evaluated using the I^2 statistic. To evaluate potential sources of heterogeneity, the variables study duration, age, gender and zinc dose were added simultaneously to a meta-regression model as continuous variables. The statistical transformations to obtain $\hat{\beta}$’s and $\text{SE}(\hat{\beta})$’s were performed using GenStat version 13-SP2 (VSN International Ltd. Hemel Hempstead, UK) and the meta-analysis was performed using STATA version 11.0, with statistical significance defined as $P<0.05$.

Assessment of risk of bias in included studies

In order to assess the quality of the included studies and the risk of bias, indicators of internal validity were collected during data extraction (Table 3). Based on the indicators two independent reviewers assessed the overall risk of bias and disagreements resolved by discussion. The criteria for judging these indicators were adapted from the Cochrane Handbook for Systematic Reviews (18).

Results

Twenty estimates of zinc intake and serum/plasma zinc status in 10 RCTs and four estimates in 3 observational studies were eligible for meta-analysis. All studies were published between 1979 and 2010. Although plasma/serum, urine and hair zinc concentrations were included as markers of status in the systematic review protocol, only plasma/serum zinc concentration was reported universally and sufficiently frequently to be used in the meta-analysis. Most studies included, but did not differentiate between, males and females, but three studies included only females (19; 9; 20), two included only males (13; 8) and one provided both male and female data (14). Studies were conducted in Europe (n=7), North America (n=3), South Asia (n=1), East Asia (n=1) and Australasia (n=1) and ages of participants ranged from 18 to 106 years.

All but one RCTs used a parallel design. Boukaïba and colleagues employed a cross-over RCT design (6). The RCTs included 1285 participants in total with sample sizes ranging from 5-201. The median duration of the trials was 25 weeks (range 2-52 weeks). In 9 studies zinc was supplemented alone at doses ranging from 15-135.3 mg/day and in 1 study zinc was provided within a multi-micronutrient supplement (12). Most studies (n=7) provided the zinc supplements in the form of zinc gluconate, but others used zinc sulphate (21), zinc acetate (7), or zinc carnosine (11). Habitual zinc intakes ranged from 5.4-10.8 mg/day (where data was provided).
The observational studies included 1184 participants in total with sample sizes ranging from 170-500. Zinc intake was measured using a combination of FFQ and 24 hour recall, or 24 hour recall alone and values ranged from 8.6-12.2 mg/day. The meta-analysis of available studies suggested that zinc supplementation was associated with increased serum/plasma zinc concentrations. The estimated effect for zinc supplementation on serum/plasma zinc concentrations from RCTs and observational studies was 0.08 (95% CI 0.05, 0.11; p<0.0001; I^2 84.5%) (Fig 2). When data sets were grouped according to study design, only the RCTs showed a significant effect size (0.09 95% CI 0.07, 0.120; p<0.0001; I^2 79.1%).

Since a base-e logarithmic transformation was applied to the zinc intake and serum/plasma zinc concentration before calculation of the study-specific β’s, the overall β represents the difference in the log$_e$-transformed predicted value of serum/plasma zinc status for each one-unit difference in the log$_e$-transformed value in zinc intake. Therefore, an overall β of 0.08 means that for every doubling in zinc intake, the difference in zinc serum or plasma concentration is $2^{0.08} (2^{0.08} = 1.06)$, which is 6%. This means that a person with a zinc intake of 14 mg/day has a zinc serum/plasma concentration that is 6% higher than a person who has a zinc intake of 7 mg/day (Fig 3).

As plasma/serum zinc concentrations have been reported to decline with age (15), a separate subgroup analysis compared zinc intake and status according to age in RCTs (< 55 years and ≥ 55 years). Two studies for which mean serum/plasma zinc values were given for adults whose ages spanned both age groups were excluded from this analysis (12; 11). A stronger effect size was found in adults aged under 55 years (0.14 95% CI 0.04, 0.24; p<0.005; I^2 92.1%) compared to adults aged 55 years and over (0.09 95% CI 0.07, 0.11; p<0.0001; I^2 32.8%), although care should be taken with interpreting this finding as the younger age group analysis is based on only three estimates in two studies. Stratifying the analysis for dose of zinc (<35 mg/day and ≥ 35 mg/day) revealed a stronger effect size for a zinc dose ≥ 35mg/d (0.14 95% CI 0.08, 0.21; p<0.0001; I^2 85.2%) compared to <35mg/d (0.09 95% CI 0.07, 0.10; p<0.005; I^2 27.6%). Similar effect sizes were demonstrated for study duration (0-12 weeks 0.13 CI 0.05, 0.20 I^2 92.4% and > 12 weeks 0.10 CI 0.07, 0.12 I^2 75.8%).

To evaluate potential sources of heterogeneity, the variables duration, age, gender and dose were added simultaneously to a meta-regression model as continuous variables. The analysis revealed that only zinc dose was a statistically significant determinant of the overall
beta. The model explained 50% of between-study variance and the residual variation due to heterogeneity was reduced to 48.2%.

Table 4 summarises the internal validity of the included studies, assessed as described in the methods section. The risk of bias was high in 5 out of the 10 papers \((21; 6; 22; 23; 11)\). Papers were given a high risk of bias rating due to insufficient information provided on sequence generation and/or allocation, drop-outs and funding bodies.

Discussion

The current study is unique in providing an estimate of the dose-response relationship of zinc intake and serum/plasma zinc concentrations in adults. A meta-analysis of 20 estimates in 10 RCTs and 4 estimates in 3 observational studies found that zinc supplementation produced a statistically significant increase in serum/plasma zinc concentrations and provided an estimate of the dose-response relationship between zinc intake and serum/plasma concentrations. An overall \(\beta\) of 0.08 means that for every doubling in zinc intake, the difference in zinc serum or plasma concentration is 6%. In other words, an adult with a zinc intake of 14 mg/day has a zinc serum/plasma concentration that is 6% higher than a person who has a zinc intake of 7 mg/day. This association was slightly stronger when considering only the RCTs, as no observational studies found a significant association between zinc intake and plasma zinc concentrations. The intake-status regression coefficient for the observational studies is likely to be attenuated by random and intake-related errors in assessing dietary zinc intake \((24)\), whereas in RCTs zinc intake can be considered as fixed at each level of dosage and random errors arise only through assessment of biomarkers.

The studies included in this meta-analysis were different in a number of aspects, such as using various designs, follow-up times, zinc doses, and populations. Therefore, it is no surprise that, when combining these studies in a meta-analysis, a large heterogeneity is observed between the studies \((I^2 = 84.5\% p=0.0001)\). This between-study heterogeneity may be caused by methodological factors, such as differences in study population characteristics (age, socio-economic status) or differences in doses of provided zinc (amount, one or more doses per day, study duration). When considering some key variables (study duration, zinc dose, age, and gender) in a meta-regression model, only dose explained some between-study heterogeneity. An individual participant data meta-analysis may have provided a more conclusive explanation of the between-study heterogeneity in this meta-analysis. However,
this type of analysis would involve the input of raw individual participant data provided by
the original study investigators for re-analysis and combination in a pooled analysis and as
such would be a major undertaking in terms of time, costs, and collaboration. Moreover, an
inability to include individual participant data from all relevant studies could introduce
selection bias. The meta-analytic approach used in this paper is not an attempt to accurately
describe the biological relation between actual zinc intake and zinc concentrations in blood
under strict experimental conditions and on an individual level, but rather to simulate a dose-
response relationship between zinc intake and status that is useful for surveillance studies
with a public health point of view and, as such, deliberately incorporates the differences
between dietary assessment methods, laboratory assessment methods and participant
characteristics to ensure a broad external validity. Thus, the heterogeneity reflects the lack of
standardization of methods and the true heterogeneity between study populations and
necessarily enters as uncertainty into the application of such data for public health purposes

To conduct this meta-analysis some assumptions related to the availability of the
required data or related to statistical issues had to be made. First, when two or more
intervention groups were compared to the same control group (5 RCTs), independence of
estimates was assumed. As a consequence bias may have been introduced, by either
increasing the estimates of the intervention effect (if the control group values were in fact
lower), or decreasing the estimates of the intervention effect (if the control group values were
higher). Second, the meta-analysis required transformations of the intake and biomarker data
to a common scale, as the studies included in this meta-analyses had different ways of
reporting the relation between zinc and serum/plasma zinc concentration. The different ways
of reporting by transformation of both the intake and biomarker data were standardized to
double loge-scale, which allowed the derivation of a standardized estimate from each study of
the regression coefficient and its standard error as a basis for comparing these
heterogeneously reported results. A linear relationship on the double loge-scale was also
assumed. This transformation allowed the pooling of beta values and enable these to be
reported as a dose-response relationship between zinc intake and serum/plasma zinc
concentrations.

The meta-analyses were conducted within the context of the EURRECA project as a
means to provide additional evidence for underpinning reference values for zinc intake of
populations. This dose-response relationship methodology may be used as either qualitative
or quantitative evidence to substantiate the daily zinc intake dose necessary to achieve normal
or optimal levels of biomarkers for zinc status. The dose-response relationship between zinc intake and plasma zinc concentration is of course subject to the debate around the usefulness of plasma/serum zinc concentration as a biomarker of zinc status, and the it’s predictive value for relevant functional health outcomes, such as markers of immune function.

The relationship observed between serum/plasma zinc concentration and zinc intake may have been weakened by the limitation of this particular biomarker for zinc status. It is well established that plasma zinc concentration can fall in response to factors unrelated to zinc status or dietary zinc intake, such as infection, inflammation, exercise, stress or trauma (26). Conversely, tissue catabolism during starvation can release zinc into the circulation, causing a transient increase in circulating zinc levels. Six studies used non-fasted blood samples in their analyses (5; 7; 27; 20; 11; 14). As postprandial plasma zinc concentrations have been reported to fall up to 19% (28), the inclusion of these studies may have weakened the observed relationship between zinc intake and status. Whilst all studies included in the analysis were undertaken in individuals without chronic disease or severe protein-energy malnutrition, other factors such as stress, infection and inflammation may also have gone unreported. In addition, serum zinc concentration has been reported to decrease with age (15). Clearly such confounders have a strong influence on the interpretation of plasma zinc concentrations. However, as more sensitive indices of zinc status have yet to be identified, plasma serum zinc remains by far the most commonly used biomarker of zinc status (4).

In conclusion, the current study presents the application of a novel technique to analyse data from 10 RCT’s and 3 observational studies reporting the relationship between zinc intake and serum/plasma zinc concentration. This meta-analysis has provided an estimate of the dose-response relationship between zinc intake and serum/plasma zinc concentration in adults and elderly populations. Based on 24 estimates among 2469 participants, the results indicate that a doubling of zinc intake increases plasma/serum levels by 6%. There is a high level of heterogeneity in the data obtained from the studies included in this meta-analysis. Analysis of the factors that may contribute to this, namely study duration, zinc dose, age, and gender, indicated that zinc dose was able to explain 50% of this heterogeneity. This novel method of analyzing intake/biomarker relationships may be useful for the setting of future dietary zinc recommendations.

Acknowledgements
The work reported herein has been carried out within the EURRECA Network of Excellence (www.eurreca.org) which is financially supported by the Commission of the European
Communities, specific Research, Technology and Development (RTD) Programme Quality of Life and Management of Living Resources, within the Sixth Framework Programme, contract no. 036196. This report does not necessarily reflect the Commission’s views or its future policy in this area. There are no conflicts of interest for any of the authors of the present study. NL, MWM, S-LS, VM, MN collected and analysed the data, SP and LSM were also involved in the data analysis. OS and CD developed the statistical techniques and advised on their application to the present study. All authors were involved in writing the manuscript.

The original conception of the systematic review was undertaken by the EURRECA Network and coordinated by partners based at Wageningen University (WU), the Netherlands and the University of East Anglia (UEA), United Kingdom. Susan Fairweather-Tait (UEA), Lisette de Groot (WU), Pieter van’t Veer (WU), Kate Ashton (UEA), Amélie Casgrain (UEA), Adriënne Cavelaars (WU), Rachel Collings (UEA), Rosalie Dhonukshe-Rutten (WU), Esmée Doets (WU), Linda Harvey (UEA) and Lee Hooper (UEA) designed and developed the review protocol and search strategy.

The authors would also like to thank Joseph Saavedra, Nick Kenworthy, Sarah Richardson-Owen, Hannah Eichmann and Christine Cockburn for assistance with data extraction and Fiona Dykes for helpful discussions.

References

25. Dullemijer C, Souverein O, Doets E et al. (Under review) Systematic review with dose-response meta-analyses between vitamin B12 intake and EURRECA's prioritized biomarkers of vitamin B12 including randomized controlled trials and observational studies in adults and elderly.

Figure Legends

Figure 1 Study selection process for systematic review

Figure 2 Random effects meta-analyses of RCTs and observational studies evaluating the pooled effect of dietary zinc on serum/plasma zinc in adults. Beta values (♦) represent the regression coefficients for the linear association between loge transformed zinc intake and loge transformed serum/plasma zinc status.

Figure 3 Serum/plasma zinc concentration (µmol/L) as a function of dietary zinc intake (mg/day), estimated by random-effects meta-analyses of RCTs of adults
Table 1. Ovid MEDLINE search strategy.

<table>
<thead>
<tr>
<th>No.</th>
<th>Search term</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>randomized controlled trial.pt.</td>
<td>280821</td>
</tr>
<tr>
<td>2</td>
<td>controlled clinical trial.pt.</td>
<td>79998</td>
</tr>
<tr>
<td>3</td>
<td>randomized.ab.</td>
<td>196604</td>
</tr>
<tr>
<td>4</td>
<td>placebo.ab.</td>
<td>117891</td>
</tr>
<tr>
<td>5</td>
<td>clinical trials as topic.sh.</td>
<td>146242</td>
</tr>
<tr>
<td>6</td>
<td>randomly.ab.</td>
<td>145491</td>
</tr>
<tr>
<td>7</td>
<td>trial.ab.</td>
<td>203467</td>
</tr>
<tr>
<td>8</td>
<td>randomised.ab.</td>
<td>38423</td>
</tr>
<tr>
<td>9</td>
<td>6 or 3 or 7 or 2 or 8 or 1 or 4 or 5</td>
<td>734511</td>
</tr>
<tr>
<td>10</td>
<td>(animals not (human and animals)).sh.</td>
<td>4482479</td>
</tr>
<tr>
<td>11</td>
<td>9 not 10</td>
<td>642665</td>
</tr>
<tr>
<td>12</td>
<td>(cohort* or "case control*" or cross-sectional* or "cross sectional" or case-control* or prospective or "systematic review*").mp.</td>
<td>768885</td>
</tr>
<tr>
<td>13</td>
<td>exp meta-analysis/ or exp multicenter study/ or follow-up studies/ or prospective studies/ or intervention studies/ or epidemiologic studies/ or case-control studies/ or exp cohort studies/ or longitudinal studies/ or cross-sectional studies/</td>
<td>1013635</td>
</tr>
<tr>
<td>14</td>
<td>13 or 12</td>
<td>1203767</td>
</tr>
<tr>
<td>15</td>
<td>14 not 10</td>
<td>1154385</td>
</tr>
<tr>
<td>16</td>
<td>11 or 15</td>
<td>1599094</td>
</tr>
<tr>
<td>17</td>
<td>((zinc or zn or zinc sulphate or zinc gluconate or zinc acetate or methionine or zinc isotope*) adj3 (intake* or diet* or supplement* or deplet* or status or serum or plasma or leukocyte or concentration* or expos* or fortif* or urine or hair)).ti,ab.</td>
<td>16681</td>
</tr>
<tr>
<td>18</td>
<td>Nutritional Support/ or Dietary Supplements/ or nutritional requirements/ or Breast feeding/ or exp infant food/ or bottle feeding/ or infant formula/</td>
<td>63098</td>
</tr>
<tr>
<td>19</td>
<td>exp Nutritional Status/ or exp Deficiency Diseases/ or supplementation/ or diet supplementation/ or dietary intake/ or exp diet restriction/ or exp mineral intake/ or Diet/ or Food, Fortified/ or nutrition assessment/ or Nutritive Value/</td>
<td>176014</td>
</tr>
<tr>
<td>20</td>
<td>(intake* or diet* or supplement* or deplet* or status or serum or plasma or leukocyte or concentration* or expos* or fortif* or urine or hair).ti,ab.</td>
<td>3166092</td>
</tr>
<tr>
<td>21</td>
<td>18 or 19 or 20</td>
<td>3263114</td>
</tr>
<tr>
<td>22</td>
<td>zinc/</td>
<td>41027</td>
</tr>
<tr>
<td>23</td>
<td>22 and 21</td>
<td>20745</td>
</tr>
<tr>
<td>24</td>
<td>23 or 17</td>
<td>26943</td>
</tr>
<tr>
<td>25</td>
<td>24 and 16</td>
<td>2410</td>
</tr>
</tbody>
</table>
Table 2: Randomised controlled trials (n=10) reporting the effect of dietary zinc intake on serum/plasma zinc status in adults.

<table>
<thead>
<tr>
<th>First author, year, country</th>
<th>Gender, age</th>
<th>Treatment groups</th>
<th>Micronutrient type</th>
<th>Duration</th>
<th>Status marker reported [analytic method]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdulla, 1979 Sweden (5)</td>
<td>Mean age 25 y. SD, age range, gender not reported</td>
<td>Study 1 Placebo (n=5) 135.3mg/d Zn (n=7) Study 2 Placebo (n=8) 45mg/d Zn (n=7)</td>
<td>Zinc sulphate</td>
<td>12 wk</td>
<td>Plasma Zn [AAS]</td>
</tr>
<tr>
<td>Bodgen, 1988 USA (6)</td>
<td>Males and females aged 60-89 y</td>
<td>Placebo (n=36) 15 mg/d Zn (n=36) 100 mg/d Zn (n=31)</td>
<td>Zinc acetate</td>
<td>3 mo</td>
<td>Plasma Zn [AAS]</td>
</tr>
<tr>
<td>Boukaïba, 1993</td>
<td>Males and females aged 73-106 y BMI ≤ 21</td>
<td>Placebo (n=21)</td>
<td>Zinc gluconate</td>
<td>8 wk</td>
<td>Serum Zn [AAS]</td>
</tr>
<tr>
<td>Country</td>
<td>Study Details</td>
<td>Group 1</td>
<td>Group 2</td>
<td>Treatment</td>
<td>Duration</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>France (4)</td>
<td>Preziosi, 1998</td>
<td>20mg/d Zn (n=21)</td>
<td>Placebo (n=23)</td>
<td>20mg/d Zn (n=23)</td>
<td></td>
</tr>
<tr>
<td>France (12)</td>
<td>Males and females aged 35-60 y</td>
<td>Placebo (n=200)</td>
<td>Multi-micronutrient supplement (20mg/d Zn) (n=201)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA (11)</td>
<td>Sullivan, 1998</td>
<td>Placebo (n=13)</td>
<td>Placebo (n=13)</td>
<td>50mg/d Zn (n=13)</td>
<td></td>
</tr>
<tr>
<td>France (8)</td>
<td>Feillet-Coudray, 2005</td>
<td>Placebo (n=16)</td>
<td>Placebo (n=16)</td>
<td>15 mg/d Zn (n=16)</td>
<td>30 mg/d Zn (n=16)</td>
</tr>
<tr>
<td>France (7)</td>
<td>Feillet-Coudray, 2006</td>
<td>Placebo (n=16)</td>
<td>Placebo (n=16)</td>
<td>15 mg/d Zn (n=16)</td>
<td>30 mg/d Zn (n=15)</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Age Range</td>
<td>Treatment Details</td>
<td>Duration</td>
<td>Endpoint</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Hininger-Favier, 2007</td>
<td>France, UK, Italy</td>
<td>55-85 y</td>
<td>Placebo (n=63), 15mg/d Zn (n=60), 30mg/d Zn (n=65)</td>
<td>6 mo</td>
<td>Serum Zn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age >70 y</td>
<td>Placebo (n=67), 15 mg/d Zn (n=66), 30 mg/d Zn (n=66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prasad, 2007</td>
<td>USA</td>
<td>55-87 y</td>
<td>Placebo (n=25), 45 mg/d Zn (n=24)</td>
<td>12 mo</td>
<td>Plasma Zn</td>
</tr>
<tr>
<td>Sakagami, 2009</td>
<td>Japan</td>
<td>21-77 y</td>
<td>Placebo (n=28), 17 mg/d Zn (n=27), 34 mg/d Zn (n=26), 68 mg/d Zn (n=28)</td>
<td>12 wk</td>
<td>Serum Zn</td>
</tr>
</tbody>
</table>
AAS atomic absorption spectroscopy; ICP-MS inductively coupled plasma mass spectrometry

Table 3: Observational studies (n=3) reporting the association between dietary zinc intake and serum/plasma zinc status in adults.

<table>
<thead>
<tr>
<th>First author, year, country</th>
<th>N</th>
<th>Mean (SD) zinc intake (mg/day)</th>
<th>Mean (SD) plasma/serum zinc (µmol/L)</th>
<th>Zinc intake (source)</th>
<th>Zinc intake (assessment)</th>
<th>Zinc status biomarker [analytical method]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibson 2001 (New Zealand) (17)</td>
<td>330 females aged 18-40 y</td>
<td>10.44 (3.51)</td>
<td>12.00 (1.36)</td>
<td>Diet</td>
<td>FFQ & 24 hr recall</td>
<td>Serum zinc [AAS]</td>
</tr>
<tr>
<td>Chandyo, 2009 (Nepal) (16)</td>
<td>500 females aged 13-35 y</td>
<td>8.6 (3.3)</td>
<td>8.5 (2.4)</td>
<td>Diet</td>
<td>FFQ & 24 hr recall (2 days)</td>
<td>Plasma zinc [ICP-AES]</td>
</tr>
<tr>
<td>Sánchez 2009 (Spain) (13)</td>
<td>170 males aged</td>
<td>12.24 (7.16)</td>
<td>17.48 (6.68)</td>
<td>Diet</td>
<td>24 hr recall (2)</td>
<td>Plasma zinc [AAS]</td>
</tr>
<tr>
<td>25-60 y</td>
<td>days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184 females aged</td>
<td>9.07 (4.40)</td>
<td>16.32 (6.21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AAS atomic absorption spectroscopy; ICP-MS inductively coupled plasma mass spectrometry
Table 4 Assessment of validity of included RCTs reporting zinc intake and serum/plasma zinc in adults

<table>
<thead>
<tr>
<th>Study</th>
<th>Adequate sequence generation</th>
<th>Adequate Blinding</th>
<th>Dropout adequate and outcome data complete</th>
<th>Funder adequate</th>
<th>Compliance check & results</th>
<th>Dose check & results</th>
<th>Dietary intake data reported & results</th>
<th>Status reproducibility reported</th>
<th>Similarity of most & least exposed groups at baseline</th>
<th>Lack of other potential threats to validity</th>
<th>Overall risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdulla 1979</td>
<td>no</td>
<td>no</td>
<td>unclear</td>
<td>no</td>
<td>unclear</td>
<td>unclear</td>
<td>nr</td>
<td>No</td>
<td>yes</td>
<td>no</td>
<td>High</td>
</tr>
<tr>
<td>Bodgen 1988</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>nr</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>Low</td>
</tr>
<tr>
<td>Boukaiba 1993</td>
<td>unclear</td>
<td>yes</td>
<td>yes</td>
<td>unclear</td>
<td>yes</td>
<td>nr</td>
<td>yes</td>
<td>nr</td>
<td>yes</td>
<td>yes</td>
<td>High</td>
</tr>
<tr>
<td>Preziosi 1998</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>unclear</td>
<td>yes</td>
<td>yes</td>
<td>nr</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>High</td>
</tr>
<tr>
<td>Sullivan 1998</td>
<td>unclear</td>
<td>unclear</td>
<td>yes</td>
<td>yes</td>
<td>nr</td>
<td>nr</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>High</td>
</tr>
<tr>
<td>Feillet-Coudray 2005</td>
<td>unclear</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>unclear</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>Low</td>
</tr>
<tr>
<td>Feillet-Coudray</td>
<td>unclear</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>Low</td>
</tr>
<tr>
<td>Year</td>
<td>Author(s)</td>
<td>Year</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Grade</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>2006</td>
<td>Hininger-Favier 2007</td>
<td>unclear</td>
<td>yes</td>
<td>unclear</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>Low</td>
</tr>
<tr>
<td>2007</td>
<td>Prasad 2007</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>nr</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>Low</td>
</tr>
<tr>
<td>2009</td>
<td>Sakagami 2009</td>
<td>unclear</td>
<td>yes</td>
<td>yes</td>
<td>unclear</td>
<td>nr</td>
<td>yes</td>
<td>nr</td>
<td>yes</td>
<td>yes</td>
<td>unclear</td>
</tr>
</tbody>
</table>

nr: not reported
7154 abstracts identified by database search

5 abstracts added by hand from review articles

2440 Duplicates removed

4719 Abstracts screened

2557 excluded

931 infant, child, pregnant, lactating populations

1231 adult populations

1147 Excluded
Not relevant design, not healthy populations, not relevant status measure, not relevant intake measure, not relevant study population, no baseline measures for outcome of interest, no adequate control group, not relevant intervention, not reported amount of zinc provided, no values provided for outcome of interest, companion paper, only abstract available

84 Intake-status-health final library

35 Status-Health relationships (some papers reported both S-H & I-H relationships)

15 Intake -Health relationships (some papers reported both S-H & I-H relationships)

Intake-Status relationships: 30 RCTs 7 Observational

Excluded from the meta-analysis: 20 RCTs & 4 Observational: Participants not healthy, insufficient data reported, duplicate data, dose unclear, duration unclear

Included in the meta-analysis 10 RCTs 3 Observational
Figure 2 Random effects meta-analyses of RCTs and observational studies evaluating the pooled effect of dietary zinc on serum/plasma zinc in adults. Beta values (♦) represent the regression coefficients for the linear association between loge transformed zinc intake and loge transformed serum/plasma zinc status.

<table>
<thead>
<tr>
<th>Study</th>
<th>Beta (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Abdulla, 1979 (45 mg/d)</td>
<td>0.15 (0.07, 0.23)</td>
</tr>
<tr>
<td>Abdulla, 1979 (135.3 mg/d)</td>
<td>0.20 (0.18, 0.22)</td>
</tr>
<tr>
<td>Bodgen, 1988 (15 mg/d)</td>
<td>0.04 (-0.02, 0.11)</td>
</tr>
<tr>
<td>Bodgen, 1988 (100 mg/d)</td>
<td>0.11 (0.08, 0.14)</td>
</tr>
<tr>
<td>Boukaiba, 1993 (20 mg/d) BMI ? 21</td>
<td>0.13 (0.08, 0.17)</td>
</tr>
<tr>
<td>Boukaiba, 1993 (20 mg/d) BMI ? 24</td>
<td>0.11 (-0.01, 0.22)</td>
</tr>
<tr>
<td>Feillet-Coudray, 2005 (15 mg/d) Males</td>
<td>0.05 (-0.04, 0.14)</td>
</tr>
<tr>
<td>Feillet-Coudray, 2005 (30 mg/d) Males</td>
<td>0.11 (0.04, 0.19)</td>
</tr>
<tr>
<td>Feillet-Coudray, 2006 (15 mg/d) Females</td>
<td>0.11 (-0.01, 0.23)</td>
</tr>
<tr>
<td>Feillet-Coudray, 2006 (30 mg/d) Females</td>
<td>0.10 (0.03, 0.17)</td>
</tr>
<tr>
<td>Hininger-Favier, 2007 (15 mg/d) Age 55-70y</td>
<td>0.07 (0.03, 0.11)</td>
</tr>
<tr>
<td>Hininger-Favier, 2007 (15 mg/d) Age >70 y</td>
<td>0.06 (0.01, 0.11)</td>
</tr>
<tr>
<td>Hininger-Favier, 2007 (30 mg/d) Age 55-70y</td>
<td>0.03 (-0.04, 0.09)</td>
</tr>
<tr>
<td>Hininger-Favier, 2007 (30 mg/d) Age >70 y</td>
<td>0.06 (0.00, 0.13)</td>
</tr>
<tr>
<td>Prasad, 2007 (15 mg/d)</td>
<td>0.17 (0.08, 0.25)</td>
</tr>
<tr>
<td>Preziosi, 1998 (20 mg/d)</td>
<td>0.09 (0.06, 0.12)</td>
</tr>
<tr>
<td>Sakagami, 2009 (17 mg/d)</td>
<td>0.02 (-0.08, 0.12)</td>
</tr>
<tr>
<td>Sakagami, 2009 (34 mg/d)</td>
<td>0.09 (0.03, 0.15)</td>
</tr>
<tr>
<td>Sakagami, 2009 (68 mg/d)</td>
<td>0.09 (0.03, 0.15)</td>
</tr>
<tr>
<td>Sullivan, 1998 (50 mg/d)</td>
<td>0.06 (0.01, 0.11)</td>
</tr>
<tr>
<td>Subtotal (I-squared = 75.1%, p = 0.000)</td>
<td>0.09 (0.07, 0.12)</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chandyo, 2009</td>
<td>-0.00 (-0.15, 0.14)</td>
</tr>
<tr>
<td>Gibson, 2001</td>
<td>-0.03 (-0.07, 0.00)</td>
</tr>
<tr>
<td>Sanchez, 2009</td>
<td>0.10 (-0.04, 0.23)</td>
</tr>
<tr>
<td>Sanchez, 2009</td>
<td>0.09 (-0.03, 0.22)</td>
</tr>
<tr>
<td>Subtotal (I-squared = 54.1%, p = 0.088)</td>
<td>0.02 (-0.05, 0.16)</td>
</tr>
<tr>
<td>Overall (I-squared = 84.5%, p = 0.000)</td>
<td>0.08 (0.05, 0.11)</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis

1: RCTs; 2: Observational studies
Figure 3 Serum/plasma zinc concentration (µmol/L) as a function of dietary zinc intake (mg/day), estimated by random-effects meta-analyses of RCTs of adults