
Central Lancashire Online Knowledge (CLoK)

Title Symmetric image registration with directly calculated inverse deformation 
field

Type Article
URL https://clok.uclan.ac.uk/id/eprint/6878/
DOI
Date 2012
Citation Papiez, Bartek and Matuszewski, Bogdan (2012) Symmetric image 

registration with directly calculated inverse deformation field. Annals of the 
BMVA, 2012 (6). pp. 1-14. 

Creators Papiez, Bartek and Matuszewski, Bogdan

It is advisable to refer to the publisher’s version if you intend to cite from the work. 

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.  
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors 
and/or other copyright owners. Terms and conditions for use of this material are defined in the 
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/
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Abstract

This paper presents a novel technique for a symmetric deformable image registration
based on a new method for fast and accurate direct inversion of a large motion model
deformation field. The proposed image registration algorithm maintain a one-to-one
mapping between registered images by symmetrically warping them to each other, and
by ensuring the inverse consistency criterion at each iteration. This makes the final esti-
mation of forward and backward deformation fields anatomically plausible. The quan-
titative validation of the method has been performed on magnetic resonance data ob-
tained for a pelvis area demonstrating applicability of the method to adaptive prostate
radiotherapy. The experiments demonstrate the improved robustness in terms of inverse
consistency error when compared to previously proposed methods for symmetric image
registration.

1 Introduction

Image registration is a fundamental task in medical image processing aiming at an estima-
tion of spatial transformation aligning two or more images that is in some sense optimal.
As the image registration is an ill-posed problem it needs to be regularised by introduc-
ing additional a priori information to the estimation process [Matuszewski et al., 2006]. In
the classical formulation of a non-parametric image registration, methods based on elas-
tic, fluid, diffusive deformable models [Modersitzki, 2009] are commonly used to enforce
a globally smooth dense deformation field. Although those methods have been shown to
be fast and accurate, they have a drawback when used in clinical applications as they do
not explicitly preserve organs’ topology. To maintain the neighbourhood relationship and
avoid anatomically incorrect deformations, the inverse consistency criterion has been intro-
duced. In the early work on minimising the inverse consistency error (ICE), Christensen and
Johnson [2001] proposed an algorithm jointly estimating a forward and a backward transfor-
mation. A similar idea of simultaneously reducing the ambiguous correspondence between
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the forward and the backward transformation established via a variational framework and
not limited to mono-modal images was presented in [Zhang et al., 2006].

Recently a diffeomorphic formulation of the image registration was proposed via flow
in a suitable infinite-dimensional group of smooth, invertible transformations [Chefd’hotel
et al., 2002], or via an approximation of a Lie group by a time-independent flow (stationary
velocity field) [Arsigny et al., 2006]. The practical advances of this exponential mapping
were incorporated into image registration frameworks e.g. for exponential updates of the
deformation field [Vercauteren et al., 2009], by a single flow estimation [Ashburner, 2007],
or a fully consistent Log-Domain approach [Vercauteren et al., 2008] as an efficient way of
preventing transformation folding. All of these methods have been validated on MRI or CT
images of a brain with relatively small deformations. Meanwhile the adaptive radiotherapy
(ART) of prostate cancer must cope with significant changes of bladder and rectum shape
and size. To overcome the problems related to effective and accurate large motion recovery,
a symmetric warping between two images was introduced by registering these images to
an intermediate image [Beg and Khan, 2007, Yang et al., 2008, Han et al., 2010, Papież and
Matuszewski, 2011].

The main contributions of this paper are as follow. First, a new algorithm for estimation
of the inverse deformation field is proposed, which can be seen as an extended version of
the algorithm presented in [Christensen and Johnson, 2001]. Secondly, a novel method of
image registration is proposed, utilising the previously mentioned method of inverse defor-
mation field estimation for the symmetric image registration. The proposed method extends
the approach presented in [Yang et al., 2008] by directly inverting the deformation field in
each iteration. This allows the alleviation of constraints imposed on the maximum magni-
tude of the deformation field update in every iteration of the algorithm. Finally, an extensive
comparison of the proposed registration scheme is conducted against two methods, namely:
small-step multiple pass approach [Yang et al., 2008], which inspired this work, and the cur-
rently popular Log-Domain parameterised image registration with the implementation that
was originally designed for the pelvic area data sets [Han et al., 2010]. All the aforemen-
tioned image registration methods take the advantage of the symmetric warping, so the
results are comparable.

2 Symmetric image registration

The symmetric image registration is defined here for two input mono-modal images denoted
by A and B. Corresponding deformation (displacement) fields at any spatial position are
defined as: ~x: ~TAC = ~x + ~u f (~x) and ~TBC = ~x + ~ub(~x) warping respectively image A and
image B to an intermediate image C. Mathematically this can be stated as an optimisation
problem:

arg min
~u f ,~ub

(Sim(A ◦ ~u f , B ◦ ~ub) + αu f Reg(~u f ) + αub Reg(~ub)) (1)

where: Sim is a chosen similarity measure between images (e.g. the sum of squared dif-
ferences [Modersitzki, 2009]), Reg is a regularisation term, and αu f , αub are regularisation
weights. The proposed method solves this problem by using the Demon-like force [Ver-
cauteren et al., 2009] that is established in an iterative optimisation framework within the
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Figure 1: Symmetric image registration scheme

symmetric warping scheme [Yang et al., 2008]:

d~u i =
(Ai − Bi)(∇Ai +∇Bi)

‖∇Ai +∇Bi‖2 + (Ai − Bi)2 (2)

where: Ai and Bi represent warped images A and B, obtained by applying estimated defor-
mation fields ~ui

f and ~ui
b respectively; ∇Ai and ∇Bi are gradients of images Ai and Bi; i is a

current iteration index. In the Demon method the Gaussian smoothing is applied to the de-
formation and/or the update of the deformation field to regularise the solution rather than
explicitly minimise Reg terms included in Equation 1.

The results of the symmetric registration towards the intermediate image C: ~TAC and ~TBC
have to be inverted and the final transformations ~TAB and ~TBA are the compositions of ~TAC
and ~TBC and their inverses ~T−1

AC and ~T−1
BC : ~TAB = ~T−1

BC ◦ ~TAC and ~TBA = ~T−1
AC ◦ ~TBC. The overall

scheme of the symmetric image registration process is illustrated in Figure 1.

2.1 Small-step multiple pass approach

In the small-step multiple pass approach originally proposed in [Yang et al., 2008], it is assumed
that:

~u i+1
f = Ge ∗

(
~u i

f ◦
(

G f ∗
(

d~u i
)))

~u i+1
b = Ge ∗

(
~u i

b ◦
(

G f ∗
(
−d~u i

)))
(3)

where: Ge∗ and G f ∗ represent Gaussian kernel convolutions which operate on updated dis-
placement fields ~u f and ~ub, and the update of the displacement field ~du respectively. This
assumption simplifies significantly the estimation of the deformation fields but it holds only
for small updates [Ashburner, 2007].

The Demon-like force does not guarantee the small-step update and therefore the explicit
procedure of limiting the deformation magnitude is applied when the estimated update is
greater than 0.4 voxel size (this limit was chosen ad hoc by Yang et al. [2008] following
the limits that were determined for B-Spline deformable image registration [Rueckert et al.,
2006]). However, image registration in the adaptive radiotherapy (ART) requires not only
to be accurate but also fast and the update magnitude limiting procedure contradicts these
requirements. Additionally, the quality of the approximation of the inverse update needs to
be checked in practice.

2.2 Direct inverse deformation field approach

The direct inverse deformation field approach [Papież and Matuszewski, 2011] is built on
the previous approach by directly inverting the update of the deformation field after each
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iteration. The proposed update scheme is defined as follows:

~u f
i+1 = Ge ∗

(
~u i

f ◦
(

G f ∗
(

d~u i
)))

~u i+1
b = Ge ∗

(
~u i

b ◦
(

G f ∗
(

d~u i
)−1

))
(4)

The scheme in Equation 4 in contrast to Equation 3 (compare formula for updating ~ui+1
b ) uses

the direct inverse update of the deformation which does not suffer from the limitations of
the small-step multiple pass approach (that is because of d~u i ◦ (d~u i)−1(~x) = ~x).

In the small-step multiple pass approach and the direct inverse approach, there is a need
to estimate the inverse deformation fields TAC and TBC. This has to be done accurately and
fast especially for the direct inverse approach, where the inverse is also calculated in each
iteration. In small-step multiple pass approach, the inverse transformations of ~TAC and ~TBC
are calculated using the method proposed by Ashburner et al. [2000]. A new method is
presented in this paper that is based on the method proposed by Christensen and Johnson
[2001] but is more accurate and robust then previously reported methods.

2.2.1 Christensen’s method

The procedure used to compute the inverse transformation proposed in [Christensen and
Johnson, 2001] assumes that an input transformation ~Tf is a continuously differentiable map-
ping from Ω → Ω with a positive Jacobian determinant for all ~x ∈ Ω. An inverse deforma-
tion field can be found by selecting a point ~y ∈ Ω and carrying out an iterative process to
search for a point ~x which makes the distance ‖~y− ~Tf (~x)‖ smaller than a desired threshold
ξ. The iterations defining the inverse transformation are given by:

~xk+1 = ~xk +
~y− ~Tf (~xk)

2
(5)

The initially selected point ~x0 should not be far from the final estimate ~x. The drawback
of this method is that the method is not established via a formal mathematical scheme. Al-
though the method has been shown to converge to good results when the minimum value of
the Jacobian determinant is greater than zero, the method has been validated for relatively
small deformations fields (i.e. the CT and MRI brain scans [Christensen and Johnson, 2001],
[Johnson and Christensen, 2002]).

2.2.2 Proposed deformation field inversion model

In the proposed method the inversion of the deformation field is achieved by using a Newton-
Raphson like method. Let us define a point misalignment function ~f (~x):

~f (~x) = ~y− ~Tf (~x) (6)

For each ~y ∈ Ω, the aim is to find corresponding ~x which will make ~f (~x) as close to zero as
possible. This is achieved in an iterative fashion:

~x k+1 = ~x k + d~x k (7)

Approximating the misalignment function using first order Taylor series expansion:

~f (~x + d~x) ≈ ~f (~x) + J(~f (~x))d~x (8)
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where J(~f (~x)) denotes the Jacobian matrix, assuming ~f (~x + d~x) = 0 and introducing regu-
larisation, the updates d~x k can be calculated from a set of linear equations:

(J(~f (~x)) + βI)d~x = −~f (~x) (9)

where I is an n-dimensional diagonal matrix, and β is a position dependent regularisation
parameter. The regularisation is introduced only for the areas where the determinant of
J(~f (~x)) is close to zero.

2.3 Log-Domain parameterisation approach

Recently, a Log-Euclidean framework was proposed by Arsigny et al. [2006] to represent
diffeomorphic transformation ~T using a stationary velocity field~v. Based on this framework
the inverse consistent symmetric image registration has been proposed by Han et al. [2010],
where the displacement fields ~u f and ~ub are calculated via corresponding velocity fields ~v f
and ~vb, that are parameterised using stationary velocity field ~v:

~v i+1
f = log(exp(~v i) ◦ exp(d~v i)) ~v i+1

b = log(exp(−~v i) ◦ exp(−d~v i)) (10)

where ~dv
i

is defined in the same way as ~du
i

in Equation 2. To maintain the inverse consis-
tency criterion the velocity field ~vi+1 is calculated based on the average of the forward and
backward update of transformations in Log-domain space as follows:

~v i+1 =
1
2

log(exp(~v f
i+1) ◦ exp(~vb

i+1)) (11)

The principal logarithm of exponential mappings for Equation 10 and Equation 11 is approx-
imated using the Baker-Campbell-Hausdorff (BCH) formula [Bossa et al., 2007, Vercauteren
et al., 2008]. The advantage of this approach is that the final transformations ~TAB and ~TBA
can be obtained by the composition of exponentiation of the velocity field ~v:

~TAB = ~x + exp(~v) ◦ (exp(−~v))−1 = ~x + exp(2~v)
~TBA = ~x + exp(−~v) ◦ (exp(~v))−1 = ~x + exp(−2~v) (12)

Although the results presented in [Han et al., 2010, Vercauteren et al., 2008] show good per-
formance, it has been shown also that computing the exponential mapping has some limita-
tions for large deformations [Bossa et al., 2008].

3 Experimental results

The experimental section consists of two types of validation. First, the methods for inverting
the deformation field are evaluated (in section 3.3). Then, in section 3.4 the quantitative
evaluation of the introduced image registration algorithms namely the small-step multi-pass
approach, direct inverse approach, and Log-Domain approach, is conducted to assess their
accuracy and robustness.
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6 PAPIEŻ AND MATUSZEWSKI: SYMMETRIC IMAGE REGISTRATION
Annals of the BMVA Vol. 2012, No. 6, pp 1–14 (2012)

3.1 Evaluation criteria

The algorithms for inverting the deformation field are compared with respect to the inverse
consistency error (ICE) (see [Song et al., 2010] for the detailed description). The ICE is de-
fined here as an average distance between the original point in one image and its position in
this image after mapping to the another image and subsequent mapping back to the original
image:

ICE =
1
2
(‖(~x− (~TAC ◦ ~T−1

AC)(~x))‖+ ‖(~x− (~T−1
AC ◦ ~TAC)(~x))‖) (13)

The maximal ICE (maxICE) is also calculated:

maxICE = max(‖(~x− (~TAC ◦ ~T−1
AC)(~x))‖, ‖(~x− (~T−1

AC ◦ ~TAC)(~x))‖) (14)

The image registration quality is assessed by the commonly used criteria: the sum of
squared differences (SSD) of the image intensities before and after registration, and the
harmonic energy (HE) [Vercauteren et al., 2009] of the estimated deformation fields which
reflects the smoothness of the deformation field. The ICE and the maxICE as defined in
Equations 13 and 14 are also used but this time with transformation ~TAC replaced by ~TAB
and transformation ~T−1

AC replaced respectively by ~TBA. The ICE criteria measure only the
consistency between the forward and the backward transformation, while the accuracy of
the transformation is not assessed. As the symmetric image registration is a case of group-
wise registration when two images are registered the transitivity error (TE) and maximal TE
(maxTE) [Song et al., 2010] are also calculated. The transitivity error measures the difference
between the composition of deformation fields ~TAC ◦ ~TCB ( ~TBC ◦ ~TCA) and the corresponding
target deformation field ~TAB (~TBA). The TE is defined as follows:

TE =
1
2
(‖(~TAC ◦ ~TCB)(~x)− ~TAB(~x)‖+ ‖(~TBC ◦ ~TCA)(~x)− ~TBA(~x)‖) (15)

and maximal TE (maxTE):

maxTE = max(‖(~TAC ◦ ~TCB)(~x)− ~TAB(~x)‖, ‖(~TBC ◦ ~TCA)(~x)− ~TBA(~x)‖). (16)

The TE reflects the consistency of the composed deformation fields.
Moreover, the average of the relative overlap (RO) (also called the Tanimoto coefficient

or the Jaccard index) between prostate PA (PB) segmented in the image A (B) and prostate
PAwarp (PBwarp ) segmented in the warped image A ◦ ~TAB (B ◦ ~TBA), was used to evaluate the
registration performance in terms of the prostate position. The RO has been defined as:

RO =
1
2

(
numberO f Voxels(PA ∩ PBwarp)

numberO f Voxels(PA ∪ PBwarp)
+

numberO f Voxels(PB ∩ PAwarp)

numberO f Voxels(PB ∪ PAwarp)

)
(17)

Calculating the RO in the respective native spaces (space of image A (or image B)) rather
than half space (space of image C) has been done in a spirit of a typical time-sequence anal-
ysis of pre- and per- treatment images [Castadot et al., 2008].
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Figure 2: Synthetic images A (on the left) and B (on the right) used to generate a deformation
field with large value of the Jacobian determinant.

3.2 Data sets description

3.2.1 Synthetic example

The synthetic data set consists of two 2D images (so-called c to circle test example) of size
256 × 256 pixels each shown in Figure 2. The significant deformation in terms of the de-
terminant of J(~T(~x)) has to be estimated to achieve correct image registration results. The
estimated deformation fields TAC and TBC are used to assess the accuracy of the methods for
inverting the deformation field. The dispersion of 0.25 and 1.0 was used respectively for Ge
and G f smoothing Gaussian kernels; the image registration terminated when it reached the
maximum of 50 iteration or the difference between estimated deformation fields in the cur-
rent and previous iteration fell below a selected value [Chefd’hotel et al., 2002]. The bilinear
interpolation method was implemented to calculate image and deformation field values on
non-grid positions.

3.2.2 Real data example

The data set used in these experiments consists of 5 MRI volumes of 320× 240× 30 voxels
with voxel size of 1.0 × 1.0 × 3.0mm3. In each scan, the data exhibit significant changes
of bladder size and shape. A sample of the data is shown in Figure 3. Since in symmetric
image registration both input images are warped and therefore there is no so-called reference
image, all images are used to support full fold-over cross validation. Registration described
as Set 1-5 means that Image 1 and Image 5 were used for evaluation. The dispersion of 0.5 and
1.0 was used for Ge and G f smoothing Gaussian kernels respectively for all tested methods,
the trilinear interpolation, and the same termination criterion as used for the synthetic data.

3.3 Validation of the inverse deformation field estimation

Validation of the inverse deformation field estimation methods is conducted using the spa-
tial deformation field calculated during the symmetric image registration. The results of this
registration towards the intermediate image C: TAC and TBC are used as input deformation
fields for the methods that are inverting deformation field. Example of this input deforma-
tion is shown in Figure 4a. In the experiments, the Christensen’s (section 2.2.1, [Christensen
and Johnson, 2001]), the proposed (section 2.2.2), and Ashburner’s [Ashburner et al., 2000]
method were tested. For the Christensen’s and the proposed method the iterations are termi-
nated when they reach either the maximum iterations number of 1000 or the desired distance

http://www.bmva.org/annals/2012/2011-0006.pdf
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Figure 3: Example of the real data used in the experiments: volume labelled as Image 1 (left)
and volume labelled as Image 5 (right). Segmented bladder, rectum and prostate are shown
in red, green and blue respectively.

threshold value of 0.001. For the proposed method, parameter β (in Equation 9) was chosen
to make the minimum value of det(J(~f (~x))) greater than 0.1. For the Ashburner’s method
[Ashburner et al., 2000], the implementation from the SPM library [Friston et al., 2007] was
used in the experiments.

Inverse consistency error
TAC and T−1

AC max
Christensen Ashburner proposed method det(J)

(2D) Fig. 2 0.210 (38.5) - 0.158 (28.9) 2.1
(3D) Set 2 0.015 (0.65) 0.134 (4.67) 0.015 (0.65) 4.9
(3D) Set 3 0.016 (0.52) 0.150 (3.75) 0.015 (0.51) 5.9
(3D) Set 4 0.017 (2.56) 0.186 (5.45) 0.016 (0.76) 8.4
(3D) Set 5 0.021 (6.64) 0.261 (12.0) 0.020 (1.11) 12.0

TBC and T−1
BC max

Christensen Ashburner proposed method det(J)
(2D) Fig. 2 0.736 (49.0) - 0.004 (0.89) 14.9
(3D) Set 2 0.015 (0.49) 0.131 (4.76) 0.015 (0.49) 4.7
(3D) Set 3 0.016 (0.83) 0.147 (5.78) 0.016 (0.83) 4.3
(3D) Set 4 0.017 (1.10) 0.197 (10.3) 0.017 (1.09) 5.5
(3D) Set 5 0.021 (3.62) 0.296 (16.4) 0.021 (1.67) 8.0

Table 1: Comparison results for inverse deformation field estimation algorithms. The mean
of ICE, maximum of maxICE (in brackets), and maximum of det(J) are shown for each
algorithm and each test data. Both 2D synthetic data and real 3D MRI data, showing pelvic
region, were used in the experiments.

For the synthetic data, Figure 4 shows that the inverse deformation field produced by
the proposed method (Figure 4f) is much smoother than that produced by the Christensen’s
method (Figure 4b), especially in the area where the Jacobian determinant has large values
(Figure 4e). In terms of the ICE values shown in Figure 4c-d,g-h, although both methods
have the maximum ICE value around the middle of the image, the ICE maximum value
produced by the Christensen’s method is significantly higher. Furthermore, the mean value

http://www.bmva.org/annals/2012/2011-0006.pdf
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Results for the synthetic data shown in Figure 2: (a) input deformation field TBC,
(b) inverse deformation field estimated using [Christensen and Johnson, 2001], (c) ICE~TBC ,~T−1

BC
and (d) ICE~T−1

BC ,~TBC
using [Christensen and Johnson, 2001], (e) point wise calculated Jacobian

determinant of the input transformation TBC, (f) inverse deformation field estimated using
the proposed method, (g) ICE~TBC ,~T−1

BC
and (h) ICE~T−1

BC ,~TBC
using the proposed method, where

e.g. ICE~TBC ,~T−1
BC

represents one sided inverse consistency error defined as: ICE~TBC ,~T−1
BC

= ‖(~x−
(~TBC ◦ ~T−1

BC )(~x))‖

of ICE and the maximum value of maxICE, both calculated from all the pixel locations,
computed based on ~TAC/~T−1

AC, and on ~TBC/~T−1
BC are also listed in the corresponding first rows

of Table 1, where both the mean ICE and maximum maxICE values for the Christensen’s
method are seen to be higher.

For the MRI volumetric images, the data set consist of five volumes, and image registra-
tion was performed with respect to the first volume. The mean ICE and the maximum of
maxICE values produced by the two commonly used methods [Christensen and Johnson,
2001, Ashburner et al., 2000] and the proposed method are given in Table 1. From Table 1,
it can be seen that the maximum value of the Jacobian determinant is increasing from set 2
to set 5 which correspond to increasing organ shape changes between the images. In terms
of performance, Ashburner’s method is seen to be the worst with highest mean ICE and
maximum maxICE values. The proposed method can be seen to be the best. Whereas it has
comparable mean ICE and maximum maxICE values to those obtained from Christensen’s
method for small organ shape deformation, it performs better than Christensen’s method for
the larger organ shape deformations.

One iteration of the proposed method of inverting the deformation field is computation-
ally more expensive when compared to the Christensen’s method due to additional calcula-
tion for solving system of linear equations (Equation 9). However, an additional cost can be
justified in general either by more accurate results achieved using this method, or in some
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cases by a fewer number of executed iterations to reach a similar solution.

3.4 Comparison of symmetric image registration algorithms

The results presented in Table 2 show that all the registration methods presented in the pre-
vious section perform similarly in terms of the sum of squared differences. The proposed
method as well as small-step multiple pass approach produce higher values of the harmonic
energy of transformations than the Log-Domain approach. This confirms the results for
smoothness assessment of deformation field for the Log-domain parametrisation from [Ver-
cauteren et al., 2008].

The results presented in Table 3 show that the small-step approach produce the highest
ICE and maxICE especially when a significant deformation needs to estimated (e.g. Set 1-4
and Set 1-5), while for the Log-domain and the proposed method the corresponding ICE are
significantly lower. When the maxICE is compared, the proposed method produces slightly
lower errors. This shows that both method the Log-domain approach and the proposed
method enforce the inverse consistency criterion during the registration. Although the tran-
sitivity error for all methods is similar, the proposed method is the most accurate, and less
sensitive to the magnitude of the deformations as seen in Table 4.

Finally, all compared methods produce similar results in terms of the prostate relative
overlap (RO) as presented in Table 5. This suggests that the numerical improvements in
terms of ICE (maxICE) and TE (maxTE) have a minor impact on the prostate RO. This can
be explained by the fact that the image registration for that particular region is driven mostly
by the adjacent organs with the higher intensity contrast (such as bladder and rectum). Al-
though all methods show a similar RO values, it is noteworthy that transformations with
lower ICE can indicate physically more plausible deformations, which make a difference in
treatment planning (e.g. during dose painting).

Quality of registration
before small step Log-Domain proposed method
SSD SSD HE SSD HE SSD HE

(3D) Set 1-2 6.0 0.6 0.07 0.6 0.05 0.6 0.10
(3D) Set 1-3 7.5 0.8 0.07 0.8 0.06 0.8 0.11
(3D) Set 1-4 9.4 1.0 0.09 1.1 0.08 0.9 0.11
(3D) Set 1-5 9.1 1.2 0.15 1.3 0.13 1.2 0.15
(3D) Set 2-3 2.2 0.6 0.06 0.6 0.05 0.6 0.07
(3D) Set 2-4 4.5 0.8 0.08 0.8 0.06 0.8 0.08
(3D) Set 2-5 6.2 1.3 0.17 1.4 0.14 1.3 0.20
(3D) Set 3-4 2.5 0.5 0.06 0.5 0.05 0.5 0.07
(3D) Set 3-5 4.5 1.0 0.12 1.0 0.09 1.0 0.11
(3D) Set 4-5 2.7 0.9 0.11 0.9 0.09 0.9 0.11
Average 5.46 0.87 0.098 0.90 0.080 0.86 0.111

Table 2: Comparison results for image registration algorithms using sum of squared differ-
ences (SSD) before and after registration, and the harmonic energy (HE). The results have
been obtained for the real MRI volume data set of pelvic region (corresponding data samples
are shown in Figure 3).
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Inverse consistency error for TAB and T−1
AB

small step Log-Domain proposed method
(3D) Set 1-2 0.26 (3.82) 0.05 (3.57) 0.04 (3.17)
(3D) Set 1-3 0.29 (5.54) 0.05 (4.87) 0.05 (3.57)
(3D) Set 1-4 0.40 (10.4) 0.07 (6.59) 0.06 (4.72)
(3D) Set 1-5 0.58 (16.6) 0.09 (8.17) 0.08 (8.15)
(3D) Set 2-3 0.14 (4.60) 0.05 (3.93) 0.04 (3.57)
(3D) Set 2-4 0.22 (7.25) 0.06 (5.42) 0.05 (3.55)
(3D) Set 2-5 0.49 (13.2) 0.09 (5.65) 0.09 (4.18)
(3D) Set 3-4 0.17 (4.81) 0.04 (3.13) 0.04 (2.81)
(3D) Set 3-5 0.35 (10.2) 0.07 (5.28) 0.07 (4.77)
(3D) Set 4-5 0.30 (9.08) 0.07 (5.15) 0.06 (5.91)
Average 0.32 (8.55) 0.064 (5.18) 0.057 (4.44)

Table 3: Comparison results for image registration algorithms using the mean of ICE, and
the maximum of maxICE (in brackets).

4 Conclusions

Registration of pelvic area images is challenging due to possible significant shape and size
changes of bladder and rectum. To provide an accurate method for estimation of the prostate
position, the symmetric image registration framework based on the direct inversion of the
deformation field has been proposed in this paper. Additionally a new method for estima-
tion of the inverse deformation field has also been suggested.

The proposed method for inverting deformation field can be seen as an extension of the
method proposed by Christensen and Johnson [2001]. Using the maximum value of the Ja-
cobian determinant, max(det(J)), as an indicator of the level of the deformation, the perfor-
mance of the Christensen’s method is seen to deteriorate strongly with max(det(J)) exceed-
ing 6, whereas the proposed method is able to handle large deformation with max(det(J))
significantly greater than 6 as shown in Tab. 1.

Furthermore, in the symmetric deformable image registration framework, the proposed
method can replace the small-step multiple pass approach in each iteration step and offer the
advantage of higher accuracy by removing the magnitude limiting procedure. The quantita-
tive validation performed on real MRI and synthetic data shows that the proposed modifica-
tions results in the reduction of the inverse consistency and transitivity error measures when
compared with the small-step multiple pass algorithm with the Wilcoxon rank test p value of
0.0002 (0.0072) and 0.002 (0.001) for the mean ICE (maximum maxICE) and mean TE (max-
imum maxTE) respectively. When compared with the Log-domain approach the proposed
method produces similar results in terms of inverse consistency error measure and is lower
in terms of transitivity error measures with the Wilcoxon rank test p value of 0.0007 for
meanTE and 0.06 for maximum maxTE.
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Transitivity error for TAB and T−1
AB

small step Log-Domain proposed method
(3D) Set 1-2 0.003 (1.76) 0.003 (0.86) 10−4 (0.84)
(3D) Set 1-3 0.004 (2.16) 0.004 (1.22) 0.001 (1.16)
(3D) Set 1-4 0.005 (1.96) 0.005 (2.19) 0.001 (1.01)
(3D) Set 1-5 0.008 (2.76) 0.011 (4.22) 0.002 (1.03)
(3D) Set 2-3 0.003 (1.46) 0.002 (1.24) 10−4 (1.27)
(3D) Set 2-4 0.004 (1.84) 0.004 (1.62) 10−4 (0.77)
(3D) Set 2-5 0.011 (2.61) 0.011 (4.21) 0.003 (1.53)
(3D) Set 3-4 0.003 (1.32) 0.002 (0.79) 10−4 (0.86)
(3D) Set 3-5 0.007 (3.42) 0.007 (3.29) 0.002 (1.51)
(3D) Set 4-5 0.005 (2.54) 0.005 (1.73) 0.002 (1.61)
Average 0.005 (2.18) 0.005 (2.13) 0.001 (1.16)

Table 4: Comparison results for image registration algorithms using the mean of TE, and the
maximum maxTE (in brackets).
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PAPIEŻ AND MATUSZEWSKI: SYMMETRIC IMAGE REGISTRATION 13
Annals of the BMVA Vol. 2012, No. 6, pp 1–14 (2012)

Prostate relative overlap
before small step Log-Domain proposed method

(3D) Set 1-2 0.80 0.82 0.82 0.82
(3D) Set 1-3 0.81 0.82 0.83 0.82
(3D) Set 1-4 0.62 0.77 0.77 0.77
(3D) Set 1-5 0.54 0.74 0.75 0.75
(3D) Set 2-3 0.85 0.86 0.87 0.86
(3D) Set 2-4 0.66 0.80 0.80 0.80
(3D) Set 2-5 0.57 0.80 0.79 0.79
(3D) Set 3-4 0.69 0.82 0.82 0.82
(3D) Set 3-5 0.60 0.82 0.82 0.82
(3D) Set 4-5 0.77 0.79 0.79 0.80
Average 0.69 0.80 0.80 0.80

Table 5: Comparison results for image registration algorithms using prostate relative overlap
criterion.

K.J. Friston, J. Ashburner, S.J. Kiebel, T.E. Nichols, and W.D. Penny. Statistical Parametric
Mapping: The Analysis of Functional Brain Images. Academic Press, 2007.

X. Han, L.S. Hibbard, and V. Willcut. An efficient inverse-consistent diffeomorphic image
registration method for prostate adaptive radiotherapy. In Proc. MICCAI Int. Workshop on
Prostate Cancer Imaging. Computer-Aided Diagnosis, Prognosis, and Intervention, pages 34–41.
Springer, 2010.

H. J. Johnson and G. E. Christensen. Consistent landmark and intensity-based image regis-
tration. IEEE Trans. on Medical Imaging, 21(5):450–461, 2002.

B.J. Matuszewski, J.K. Shen, L.K. Shark, and Moore C.J. Estimation of internal body deforma-
tions using an elastic registration technique. In Proc. Int. Conference on Medical Information
Visualisation - BioMedical Visualisation, pages 15–20, 2006.

J. Modersitzki. FAIR: Flexible Algorithms for Image Registration. SIAM, Philadelphia, 2009.

B.W. Papież and B.J. Matuszewski. Direct inverse deformation field approach to pelvic-
area symmetric image registration. In Proc. Conference on Medical Image Understanding and
Analysis, pages 193–197, 2011.

D. Rueckert, P. Aljabar, R.A. Heckemann, J.V. Hajnal, and A. Hammers. Diffeomorphic
registration using B-splines. In Proc. 9th Int. Conference on Medical Image Computing and
Computer-Assisted Intervention - Part II, pages 702–709. Springer, 2006.

J.H. Song, G.E. Christensen, J.A. Hawley, Y.W., and J.G. Kuhl. Evaluating image registration
using nirep. In Proc. 4th Int. Workshop on Biomedical Image Registration, pages 140–150.
Springer, 2010.

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Symmetric log-domain diffeomor-
phic registration: A demons-based approach. In Proc. 11th Int. Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 754–761. Springer, 2008.

http://www.bmva.org/annals/2012/2011-0006.pdf
http://www.bmva.org/w/doku.php?id=annals_of_the_bmva
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