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Methods for Speeding Up the
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Department of Mathematics
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Salford, United Kingdom

D. J. Henwood

Department of Mathematical Sciences,
Brighton Polytechnic,

Moulsecoomb,

Brighton, United Kingdom

Boundary Element Solution of
Acoustic Radiation Problems

Methods for speeding up the boundary element solution of acoustic radiation prob-
lems are considered, The methods are based on solving the integral equation for-
mulation of Burton and Miller for the exterior Helmholtz equation over a range of
[frequencies simultaneously. Methods for speeding up the computation of the discrete
forms of the integral operators and the solution of the linear systems that arise in
the boundary element method are considered. A particular implementation of speed-

up methods is described, Results from the application of this to test problems are

given.

1 Introduction

A set of vibrating objects in an acoustic medium such as air
or water produces an acoustic field. The problem of deter-
mining the properties of the three-dimensional acoustic field
from a description of the vibration of the objects, whatever
their shape and the nature of their vibration, is the acoustic
radiation problem (ARP) we consider in this paper. The overall
problem is that of developing a computer program which ac-
cepts a description of the surfaces and their vibration and,
from that, is able to compute satisfactory approximations to
the acoustic properties.

The ARP is modelled by a set of closed vibrating bodies
surrounded by an infinite acoustic medium, as illustrated in
Fig. 1; this is known as the acoustic radiation model (ARM).
The symbol D is used to represent the points in the interior
regions, S to represent the points on the boundaries, and E to
represent the points in the exterior region.

Acoustic problems are governed by the wave equation. The
decomposition of the time variables into Fourier components
reduces the ARM to a sequence of three-dimensional exterior
Helmholtz problems with Neumann boundary conditions
(HE3N problems) of the form

Vie(p)+ke(p)=0 (pek) (la)
3
ﬁ (p)=v(p) (peS); (v(p) given) (1b)
P
3
l}T;lr{a—q:—ikgc} -0 (1c)
for k (the wavenumber) taking the values k|, &5, ..., k. In the

majority of practical situations the time-dependent variables
can only be described approximately by a finite linear sum of
Fourier components and in order to achieve a salisfactory
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approximation a large number of distinct wavenumbers are
often used [see, for example, Skudrzyk (1971) pp. 390-391].

The ARM can be formulated in terms of a boundary integral
equation (BIE). Numerical methods based on the BIE are
known as boundary element methods (BEMs). The use of the
BEM as a means of obtaining a numerical solution of acoustic
radiation and scattering problems has been investigated by
researchers over the past two or three decades. Difficulties in
the achievement of a robust method and in its implementation
have hindered its use. However, with the introduction of the
method of Schenck (1968), with the improved integral equation
formulations introduced by Kussmaul (1969) and Burton and
Miller (1971) and with the development of a wide range of
methods for the discretization of the integral operators in the
BIE, progress has been made in resolving these difficulties.
Further useful information on these formulations and methods
can be found in Burton (1973), Kleinmann and Roach (1974),
Burton (1976), Kirkup (1989), and Harris (1990). Important
results from the application of BEMs te acoustic problems
have been described in Meyer et al. (1978), Terai (1980), Sayhi
et al. (1981), Seybert et al. (1985), Amini and Wilton (1986),
Kirkup (1989), and Harris (1990).

The usual way of solving the problem (1) is to apply the
BEM for each value of k individually. This requires the con-
struction of the discrete forms of the integral operators using
numerical integration and the solution of a linear system of
equations. Clearly, for a surface divided into a large number
of elements the use of the BEM in this way is a major com-

E D E
D
S
S

Fig. 1 The acoustic radiation model
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putational task. In this paper the ARM as it is posed by (1)—
that is the complete problem of solving a large sequence of
HE3N problems with different wavenumbers and different
boundary conditions corresponding to each wavenumber—is
considered in order to obtain a computationally more efficient
solution. The techniques that are described are for use in the
computation of the discrete form of the BIE and in the solution
of the linear systems of equations that arise in BEMs derived
via collocation. The methods considered in this paper are not
applicable to the solution of the Helmholtz equation at one
single wavenumber.

The BIE formulation of the HE3N problem (1) that is con-
sidered in this paper is the one introduced by Burton and Miller
(1971). The use of this underlying formulation ensures a robust
BEM at all wavenumbers. The formulation is stated in Section
3 and the corresponding BEM is stated in Section 4. In Section
5 the various ways of speeding up the evaluation of the discrete
forms are considered and in Section 6 a method for speeding
up the solution to the linear system of equations is described.

Methods from sections 5 and 6 are implemented in a Fortran
subroutine in Section 7. The capabilities of the subroutine for
the calculation of sound powers and radiation ratios are dem-
onstrated by applying it to appropriate test problems in Section
8.

2 Formulae for the Acoustic Properties

From the solution ¢ to (1) at each wavenumber k the (time-
harmonic) sound pressure is given by

P(p)=ipwg(p) (peSUE), (2)

where p is the density of the acoustic medium, w= k¢ and ¢ is
the speed of sound in the medium. The acoustic intensity on
the surface is

1
f{P)=£RE‘iP* (mulp)] (pes) (3)

where * denotes the complex conjugate. The sound power is

given by
= 1oy as, @
5

The radiation ratio (or radiation efficiency) is given by

W
A= » ——————— (5)

5905 v*(qv(q) dS,
Js

3 Boundary Integral Equation Formulation

The BIE on which we base the BEM is the one introduced
in Burton and Miller (1971)

DtiMwI{p)*M(P)sa(m+ﬁiNkwf(p)=a{Lk;f}(.0)
d a
+B{Mk'a—”’] (P)+Bc(p) S5 (p) (peS)  (6a)
n an

a
p(p) = (Mye] (D) — [L,.—“’} (pEE) (6b)

an

The Ly, My, M,', Ny in (6) denote integral operators and are
defined as follows:

1L‘-mp}=fci-(p,qmw)afsq (PeDUSUE), (Ta)
{Mkmp%!—(pq)uw)ds (pEDUSUE), (7b)
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i
{Mk.ui(p)_‘"j Gulp.gulq)ds, (peS), (7o)
__0 [ 3G,
!le(p)=anpusanq (D.q)u(g)dS, (peS) (7d)

Where in (7) Rg, My are the unit outward normals to the surface

Sat g,p,u(q) is a bounded function defined for geS, G, (p, q)

is the free space Green’s function for the Helmholtz equation,
ikr

Gi(p.q) = nr

The function ¢(p) is defined as follows
0 when peD,

solid angle/4x subtended by
c(p)= ;
the exterior at g when g€8,

1 gekE.

The « and § in (6a) are complex numbers with a0, 80,
fm(a/B)#0. The conditions on « and 5 ensure that the integral
equation (6) has a unique solution for all k

4 Derivation of the Boundary Element Method
Through Collocation

The boundary element method is derived by replacing the
surface § by an approximate surface and the boundary func-
tions by a linear combination of basis functions. The symbol
Sis used to represent the approximate surface, the symbols
D and E are used to represent the approximate interior and
exterior regions. The approximate boundary S can be written
as the sum of boundary elements,

s‘:Z a8

Having replaced S by S, the boundary function u(q) isreplaced
by fi{g) where g¢S, and the function e(g) is replaced by
c(g).

Similarly, the integral operators L, M;, M}/, and Ny defined
by Egs. (7) can be replaced by their analogues £, M;,, M,
and N, with respect to the approximate boundary §. For ex-
ample, the L, operator is defined as follows

(Liit) (p)zjﬁ?a(p,f?) A(g) dSg, (8}
5

The purpose of the collocation method is to provide a mech-
anism for describing an approximation to the boundary func-
tions in discrete form. Collocation of the boundary function
alq) (g€S) allows the construction of the discrete form of
L) (p), (M) (p), (M) (p),and (N ) (p). Letp]- P2

.. Da€S be the n collocation points and let Xis X2 ey Xn DE
basis functions with the usual properties
' Silipd 1 wheni=j ©
e 2
A XiAB 0 when iz, )
n
(i) D] %(q) =1 (g€S). (9b)

i=1
The boundary function j(g) is approximated as follows

()= )% (q) (q€S)

i=1

(10)
The substitution of the approximation (10) into the definitions
of the integral operators allows their expression in discrete

form. For example the substitution of (10) into (7a) gives

(L) (2) =D L (p)). an
=1
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The following notation is adopted

[Lady= {Leks) (2, (12a)
IMyly= EMx) 1 (p2), {12b)
M= EM%3 (o), (12¢)
NG = [N (p2)s (12d)
w=[E0p)s @&(P2), woer ()] (13)

L., My, M/, and N, are # x n matrices and # is an n-vector.
The BEM for the solution of the ARP takes the following
form.

Primary Stage. An approximation ¢ to ¢ is obtained by
solving the following linear system of equations

[e(M; — C) + BN)& = [aly + BM,' + O)]v. (14)
where
C=diag(c(p)), €(p), ..., €)1,
e=le(p1), e(p2), coos (2],
v=[v(p1), v(p2), .y (D],
Secondary Stage. An approximation (p) to ¢(p)

(peEUS) is obtained from the summation

1 o 8
a = 5 (Khs
#(p) c‘i(p)(; [&1M:;) (p)]
- [vjifki,-l(p)]) (peEUS).  (15)
J=1
Equations (14) and (15) follow straightforwardly from (6a)
and (6b).

5 The Evaluation of the Discrete Forms

In this section methods for speeding up the evaluation of
the discrete forms of the integral operators (12) are considered.
Three different approaches are outlined, two based on series
approximation and the third based on interpolation. Of the
three the one based on interpolation seems the most promising
although it requires more storage of values than the other
methods. The method based on interpolation is the one im-
plemented in the subroutine in Section 7.

Taylor Expansion of the exp(ikr) Term. The exp(ikr)

(r=Irl, r=p—gq) term may be expanded in a Taylor series
exp (ikr) = 1 +ikr+% kYt + .- (16)

The substitution of a truncated form of the series (16) into the
definition of the integral operators allows the calculation of
discrete form of the integral operators by the summation of a
finite series. However, the ikr term may not be small and hence
a large number of terms may be required to ensure a satis-
factory approximation. An example of this type of approxi-
mation is given by Koopman and Benner (1982),

An alternative approach is derived by expanding the exp (ikr)
term as

exp(ikr) =exp (ikr" )1 +ik(r—r")
+% (672 0 Lyt TR, T § )

where r’'=Ip—¢q’| and g’ is a point near to where the basis
function is non-zero. For nonaxisymmetric problems it is en-
sured that the (r—r’) term is small. However, for large values
of k the k(r—r’) term may not be small and hence a fairly
large number of terms may be required to ensure a satisfactory
approximation. This approach will therefore be applicable only
to non-axisymmetric problems and only if the values of k of
interest are small relative to the size of the elements.
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Interpolation of the Discrete Forms. By evaluating the
discrete forms [£x1(p), (Mix}(p), [M/%](p), and
{Nex ) (p) or any linear combination of the discrete forms at
some prescribed values of wavenumber k, the values at other
wavenumbers can be approximated using interpolation. The
success of such a method depends on the number of inter-
polation points and their position, the nature of the discrete
forms as functions of k, the method of interpolation and the
range of values over which the interpolant is active. The use
of interpolation implies that values of the discrete forms must
be stored and hence if this method is used in the primary stage
of the boundary element method then several matrices will
have to be stored.

The full range of values of wavenumber of interest may be
divided into subranges. Interpolation followed by the solution
of the HE3N problem is then carried out for the values of
wavenumber in each subrange individually. In this way the
requirement on computer memory is much less than it would
be if interpolation is used over the full range directly.

Straightforward polynomial interpolation could be used.
Since, in such a case, the interpolation points may be selected
by the user, the Chebyshev points should perhaps be chosen,
thereby seeking to minimize the maximum error. For example,
the discrete form {L,%) (p) may be approximated for k€[4,
k»] by using the quadratic interpolant

5 = 1 - =
L oy =1LX) () + o (k= y) (LR (P) - (LX) (p))

+F(k—mk—m({L}iz(p)—ziim (2) b+ LX) ()
(18)
where
1 i
y=ki+ Q-3 k),
1

=7 (ki + ko),

)\=k.+i(2+x/3)(k27k1) (18a)

are the Chebyshev quadratic interpolation points for the in-
terval [k, k] and
d:n—“r:?\—n:iﬂ(kz—kl)- (18b)
A similar interpolation can be used on the discrete forms of
the other integral operators, or a linear combination of the
discrete forms of the integral operators.
The behavior of the discrete forms {L:%) (p), (Mx](p),
[ M%) (p), and [N:x](p), as functions of k, is dominated
by the exp(ikr) term in the integrand, which is common to
the definition of the discrete form of all the integral operators.
For nonaxisymmetric problems, and when each ¥ is non-zero
on a localized set of elements the general success of the inter-
polation method can be improved by writing the exp (/kr) term
in the form of the product of exp(ikr’) and exp(ik(r—r'))
where r’ is the distance from p to a point ¢’ near the elements
over which ¥ takes non-zero values. If % is non-zero on a single
element then ¢’ may be chosen to be at the middle of that
element. The situation is illustrated in Fig. 2. This technique

Fig. 2 Anillustration of the geometry
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is not applicable to axisymmetric problems since r—r’ could
not then be regarded as small.

For example, the discrete form (L%} (p) may be approx-
imated for k€[ky, k;] by using the interpolant

_ , 1
(L) (p)=e™ [A (p) +37 (k—y)}B(p)

ng(k ) (k- ﬂ)C(P)]

where

Apy=e "' [Lx1(p)

Bipy=e P {LX1(p)—e " (L5 (p)

Cpy=e """ {L,x1(p) =2 " (LR} (p)+e ™ [ Lk (p)
where vy, 4, A, and ¢ are as defined by (18a,b). Techniques of

this latter type have been applied to the Schenck method in
Schenck and Benthien (1989).

Estimating the Values of the Discrete Forms from Previously
Obtained Values. We seek methods for calculatmg approx-
imations to (L&) (p), IM&I(p), (MJ%)(p), and
[Nex](p) for k= v +4é from their values when k =+, where §
may be regarded as being small. Here we consider only a
particular example of this approach.

The exp (ikr) term is regarded as a function of k and r, Let
r' be the distance between p and a point ¢’ near the elements
over which x is non-zero. Refer back to Fig. 2. We may write
exp (i(y+8)ry =exp(iyr)exp (i6r' Yexp(ib(r—r’))

=exp(iyr)exp(br’)  (19)
where in this approximation the O((r—r')) terms are ig-
nored, hence the methods considered here are applicable only
to nonaxisymmetric problems and when ¥ is non-zero on a
localized set of elements.

Using this approximation allows us to derive the following
approximations:

i 5
@ L) = L‘i’i"('f"'—:”—hds

exp (iyr)exp (idr’
”j Xp (iyr)exp (ibr }gds,,
§ 4ar

=exp(iér'}{L.x}(p), (20a)
Gy (M, %1(p)
j exp(:('y+6)r)
5

- (i +5)rfl)

xa’S

_ [ exp(iyrexp(ibr') . i
B Ss 4mr? (i = l)anqxds"’

_ _ ' a
=exp(ier' ) (M%) (p) + S (——cxp(‘Zr’ B idSL,)
s\ dar dn,

:exp(far')(lmfl(p)+a‘6|£ﬁ<}(p)%), (20b)
(i) similarly {M,57) (p)

:exp(iar')(z ”i}(p)HGELTpr) ) (20¢)
(iv) [N, X1 (p)
:Lip(%ﬂ(z 2ily+8)r— (y+8)%r )a“':qa%xdsq

ge""'“("*‘””(( +or-n; -5 XS,

q

Journal of Vibration and Acoustics

—exp(fér')({NTif(p)+5 &xﬁ”’)( 2ibr— 2yér%)
Or ar 5 exp (iyr) ¥ro
XdS, + Bz
anp qx e lrt?n,,i‘}nqx 7

explivr) &r
4zr an,,anq"ds"

_ = ) = a
-_-exp(:cﬁr‘)(INTil(p)-Hﬁ(ZL «,xl(p)ér—
n.ﬂ

an, anq) )

The approximation (20) suggest methods for the calculation
of the approximations to the discrete forms at one wavenumber
from their values at another wavenumber,

=exp{idr’) ((NT;} Hp) +2i6§
§

+1Lx1(p) (20d)

6 The Solution of the Linear System

In this section an iterative method for the solution of the
linear systems of equations that arise is considered. The use
of this type of method on the boundary element solution to
acoustic radiation problems was originally considered in Amini
(1987).

Inan nx nmatrix A has known inverse A~ ' then the solution
to the linear system
(A+E)x=5 (P2})
can be found by using the iterative process
Xi =A—‘§
Xa=A""9-A"'Ex, Jj=1,32, (22)

Alternatively, equivalent information such as the factorization
A =LU may be known, where L is lower triangular and U is
upper triangular. The solution to the linear system (21) can
then be found by using the iterative process
LUx =b
LUx.=b-Ex; j=1,2, (23)
Each iteration in methods (22, 23) has an O(n*) computational
cost. Convergcnce in the methods (22, 23) is assured if
IA 'Ell <1 and, in general, the smaller 1A~ 'Ell the faster the
convergence. The method described is the most elementary
iterative method for solving a linear system of equations.
The method develops as follows. The assumption that the
respective components of the matrices do not vary strongly
with k in the range k€[k), k3] is made. The « and 8 parameters
are kept constant in the range [k, k:]. After calculating the
inverse (or equivalent) of the matrix that occurs on the left
side of the linear system of equations in the primary stage of
the BEM for a particular value of k€[k,, ], this can then be
used as an approximate inverse for the iterative solution of
the linear systems that arise for any & in the range [k;, k]
using methods (22, 23).

solve for x|

solve for x;,

7 Implementation of the Boundary Element Method

In this section the Fortran subroutine for the solution of the
ARP is described. The subroutine is based on the BEM derived
from the BIE of Burton and Miller via collocation. The sub-
routine also employs methods for speeding up the evaluation
of the discrete forms and the solution of the linear system.
The surfaces S, which may take any shape, are described as
the sum of a set of n planar triangles AS), AS,, ..., AS,. The
normal velocity distribution on the surfaces is described by its
value at the collocation points p|, ps, ..., p,, which are the
centroids of the triangles.

The basis functions %, %, ..., X» are the functions

JULY 1992, Vol. 114 | 377



Fig- 3 lllustration of the test problem

-1
e
10
EXACT SOLUTION
8
i
4 o
g
a 7
o
é 8}
0 Bl
A
3,
2
4
o
-] 1o 18 20 28 80 38 a0
WAVENUMBER

Fig.4 Comparison of computed and exact sound powers for the cube
test probiem

[1 if peAS; )
x(p)= . = o fopisd g
0 if peS—AS;
As input, the subroutine accepts a description of the geometry
of the surface (made up of triangles), the wavenumbers under
consideration, a description of the normal velocity distribution
at each wavenumber, and the coordinates of the exterior points
of interest. As output, the subroutine gives, for each wave-
number, the acoustic intensity at the centroid of each triangle,
the sound power, the radiation ratio, and the sound pressure
at the prescribed exterior points.

Methods for speeding up the boundary element solution to
the acoustic radiation problem are employed as follows.

(i) The range of wavenumbers is divided into a set of sub-
ranges of approximately equal width. The width of each sub-
range is chosen to be approximately proportional to the
reciprocal of the size of the largest element received by the
subroutine, although the ratio of the subrange width to the
reciprocal of the element size was arrived at only through
practical experience with the subroutine.

(i) Foreach subrange [k, &;] the weighting parameters are
calculated by obtaining approximations to the norms of the
matrices M, — 1/2 and Ny, so that = IN,ll, and 3=/IM, -1/
2l for k= (k,+k;)/2. This is consistent with the method
advocated in Kirkup (1991).

(iffy In each subrange [k,, &,], the matrices with #j'" com-
ponents

[Ady=exp(—ikr(p, p)) (aiMi} (p)

+BIN N (p))  (24a)
[Buliy=exp(— ikr(p, p)) (el L% (p)
+BIM{% ) (p))  (24b)

378 / Vol. 114, JULY 1992

RADIATION RATIO

[) () 2 ] 4 8 ] 7 8 [ lo
WAVENUMBER X RADIUS

Fig. 5(a) Comparison of the computed and exact sound powers for the

pulsating sphere test problem

RADIATION RATIO
e

o T 2 3 £ B £ i 3 ) ) 1o
WAVENUMBER X RADIUS

Fig. 5(b) Comparison of the computed and exact sound powers for the
oscillating sphere test problem

for k=v, n, A, where v, 5, A, are as defined by (18a). This
gives the matrices A, A,, A,, B,, B,, By.

(iv) The inverse of the matrix (aM, —al/2 + 5N,) is eval-
uated.

(¢) Now, for each k in the range [k, k;] approximations
to the matrices in (14) can be calculated using

1 sy
[aMk‘£Q1+ﬁNk—‘ =i ([Av]u

dif

1
+E (k—7) (lAn]u'_ [A-yia_i)

1 1
= (k=) (k—n) ([A]; - 2[A, )i+ [A)\]ij)) —Eﬂﬁu (25a)

1 - 1
[uLﬁ.@MA’JrEBI] =g ([Bn,l;,--ra(k—'y)([B,,]r (B,]:)

e

1 |
Er: (k=) (k—n) ([B,];— 2[B,li;+ [Bk]ii)) +Eﬁﬁu (25b)
where d=n—vy=A—n=v3(ky—k)/4.
(vi) The iterative process (22) is used to solve the linear

system (14),
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SHIELDED CUBE
——————— UNSHIELDED CUBE

RADTATION RATIO

! WAVENUMBER
4 6 B 1D 12 14 16

T8 20

Fig. 6{a) Radiation ratio curves for the cubes distance 0.5 apart and
the cube alone

A more complete description of the method employed is
given in Kirkup and Henwood (1989).

8 Results from Test Problems

In this section we test the method by implementing it on
three exterior acoustic problems. Test problems are set up to
compuie the sound powers and radiation ratios using the sub-
routine and, where appropriate, comparing the results with
exact values.

(1) Sound Powers for a Cube. In the first test problem the
surface under consideration is a cube with sides of length 0.2.
The test problem is set up by constructing a substitute problem:
the surface normal velocity is prescribed to be the values ob-
tained from the point source at the center of the cube, as
illustrated in Fig. 3. A point source of unit strength produces
a sound power of k*sc/8x where k is the wavenumber. Hence
a point source of strength 8w/(4"pc) has unit power and it is
used as the substitute source in the test. The wavenumbers
considered are k=2.0, 2.5, 3.0, . . . , 40.0. The cube is divided
into 96 uniform elements. The comparison between the results
obtained from the subroutine and the exact values is given in
Fig. 4.

(2) Radiation Ratio Curves for a Pulsating and Oscillating
Sphere. In the second test problem the surface under con.
sideration is a sphere of radius a=0.5. Two tests are set up in
order to compare radiation ratios obtained from the subroutine
with the exact radiation ratios. The first test is that of a pul-
sating sphere, the second test is that of an oscillating sphere.
The exact radiation ratio for a pulsating sphere (uniform radial

motion} is given by the formula
(ka)*
Fip St
RADTY ¥ Cha)?

Journal of Vibration and Acoustics

SHIELDED CUBE
——————— UNSHIELDED CUBE

RADTATION RATIO

ai WAVENUMBER
© 2 ¥ 6 8 1o 12 14 18

1B 20

Fig. 6(b) Radiation ratio curves for the cubes distance 5.0 apart and
the cube alone

and the radiation ratio for an oscillating sphere (uniform mo-
tion in one direction) is given by the formula

(ka)*
4+ (ka)*

where & is the wavenumber and a the radius of the sphere, see
Morse and Ingard (1968) (pp. 332-336) or Skudrzyk (1971)
(pp. 390-391),

The sphere is approximated using 96 triangles of approxi-
mately equal size—the approximation to the surface thereby
being fairly crude. Figures 5(e¢) and 5(b) compare results
obtained from the subroutine with exact results for the pul-
sating and oscillating sphere at the wavenumbers given by
ka=0.1,0.2,0.3, ..., 9.9, 10.0.

ORAD =

(3) Radiation Ratio Curves for a Cube with One Vibrating
Side Shielded by Another Cube. This test problem consists
of two cubes with sides of length 0.5. The first cube having a
side with uniform vibration, the other faces are rigid. The
second cube is totally rigid, it stands with ane side facing the
vibrating side of the first cube. Figures 6(a) and 6(b) show
the radiation ratio curves for the two positions of the cube
with vibrating face and shielding face ar distances of 0.5 and
5.0 and compare it with the radiation ratio for the situation
when there is no second cube. The curves are generated through
computing the radiation ratio at wavenumbers £ =0.1, 0 2vens
20.0.

Figures 6 show the effect of a shield on the radiation ratio
of a vibrating panel on a cube. They show that when the second
cube is placed at a distance which is of the same order as the
wavelengths under consideration acoustic near-resonances can
occur. Figure 6(b) shows that if the distance is much greater
than the wavelength then the effect of the radiation ratio is
small (although weak resonances are evident in the figure).
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9 Concluding Discussion

In this paper we have described speed-up methods and have
shown how they may be employed in the BEM based on col-
location of the Burton & Miller formulation. The methods
have been tested and results given for systems of both one and
two separate surfaces. For acoustic problems with general pe-
riodic solutions, the speed-up methods will generally be very
beneficial. For example, using quadratic interpolation, as im-
plemented in the subroutine, the discrete forms need be ex-
plicitly evaluated at three separate frequencies in each band.
The use of the iterative method will generally be much less
costly than Gaussian elimination-type methods.

Of the methods for speeding up the computation of the
discrete form the interpolation method is probably the most
useful. Jumps between neighboring interpolation intervals are
apparent only in Fig. 5(b). This indicates that the error from
the interpolation is small in comparison with the error from
other sources such as the effect of approximating the boundary
functions and approximating the boundary. From the evidence
of the test problems, the iterative method for solving the linear
system seemed to work well.

There are many added difficulties with implementing speed-
up methods. The variation of the matrix elements with wave-
number is dependent on the size of the elements. Hence, since
the effectiveness of the interpolation rule and the iterative
method are dependent on this, the size of the bands should
also be closely related to the size of the elements, as they are
in the subroutine. The use of the speed-up method in Section
6 also demands that the choice of parameters o« and § used
remains constant (or is otherwise carefully controlled) through-
out each band of wavenumbers. Otherwise one of the as-
sumptions on which the iterative method is based would not
hold and the method would not work. Generally it is found
that the iterative method works well near the center of the
band, whereas convergence is slow near the edges of the band.
An analysis of the effectiveness of the iterative method would
be useful. It may be possible to construct more successful
variants on the iterative method.
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