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ABSTRACT

Observations and modeling suggest that the fluctuations in magnetized plasmas exhibit scale-dependent anisotropy,
with more energy in the fluctuations perpendicular to the mean magnetic field than in the parallel fluctuations and
the anisotropy increasing at smaller scales. The scale dependence of the anisotropy has not been studied in full-orbit
simulations of particle transport in turbulent plasmas so far. In this paper, we construct a model of critically balanced
turbulence, as suggested by Goldreich & Sridhar, and calculate energetic particle spatial diffusion coefficients using
full-orbit simulations. The model uses an enveloped turbulence approach, where each two-dimensional wave mode
with wavenumber k⊥ is packed into envelopes of length L following the critical balance condition, L ∝ k

−2/3
⊥ , with

the wave mode parameters changing between envelopes. Using full-orbit particle simulations, we find that both
the parallel and perpendicular diffusion coefficients increase by a factor of two, compared to previous models with
scale-independent anisotropy.
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1. INTRODUCTION

The origin of solar energetic particles (SEPs) is one of the
unsolved problems in heliospheric physics. Both flares and
coronal mass ejections are capable of accelerating particles,
and studies analyzing SEP events give differing conclusions
on the main particle accelerators (see, e.g., Cane et al. 2010;
Gopalswamy et al. 2012; Aschwanden 2012). The interpretation
of SEP events is complicated due to the particle propagation
effects caused by the turbulent interplanetary magnetic field.
SEP events are observed at a large range of latitudes and
longitudes (e.g., Dalla et al. 2003; Liu et al. 2011; Dresing et al.
2012), suggesting possible cross-field transport of the SEPs.
Thus, in order to understand the SEP acceleration in the solar
eruptions, we must first understand the nature of SEP transport
in the heliosphere.

Cosmic-ray research is typically based on two theoretical ap-
proaches: the diffusion-convection equation (Parker 1965) and
the quasilinear approach (QLT; Jokipii 1966). The original de-
scription of the cross-field transport of a charged particle as
propagation in random-walking magnetic field lines (Jokipii
1966) has been improved to take into account the interplay be-
tween parallel and perpendicular propagation effects (Matthaeus
et al. 2003; Shalchi 2010). The spread of the particles observed
in the SEP events, however, remains difficult to explain, as they
require larger ratios of the perpendicular-to-parallel diffusion
coefficients than what can be expected from the theoretical ap-
proaches (Dresing et al. 2012).

Recently, particle transport research has benefited from nu-
merical simulations utilizing particle full-orbit simulations,
which have the advantage of needing no a priori assump-
tions for the particle propagation. Beresnyak et al. (2011) and
Wisniewski et al. (2012) have recently studied particle propaga-
tion using MHD-simulated turbulence. However, as MHD sim-
ulations are limited to a small range of scales, most full-orbit
particle simulations describe the fluctuating fields as a super-
position of Fourier modes on a constant magnetic field (e.g.,
Giacalone & Jokipii 1999; Qin 2002; Qin et al. 2002; Zimbardo
et al. 2006; Ruffolo et al. 2008).

Observations and modeling suggest that the fluctuations in
magnetized plasmas are anisotropic, with more energy in the
fluctuations perpendicular to the mean magnetic field than in
the parallel fluctuations (e.g., Shebalin et al. 1983; Bieber et al.
1996). The anisotropy is also scale dependent, with structures at
smaller scales being more anisotropic than the larger scales. The
scale dependence of the anisotropy was predicted by Goldreich
& Sridhar (1995, hereafter GS95), who noted that as the
turbulence amplitudes increase at small scales, they introduce
variation along the mean field direction. This is due to the fact
that when interacting, the wave packets propagate through each
other, along the mean magnetic field. When the changes in the
interacting wave packets reach nonlinear amplitudes, both of the
interacting waves change, and for this reason also the outcome of
the interaction changes. This takes place on nonlinear timescales
τNL, when the wave packet’s front has propagated a distance
∝ VA τNL, where VA is the Alfvén velocity. Using the nonlinear
timescale from Kolmogorov scaling, GS95 obtained a critical
balance, k‖ ∝ k

2/3
⊥ , between the parallel and perpendicular

wavenumbers. The critical balance between structure scales
has been found in MHD turbulence simulations (e.g., Cho
et al. 2002) and observed in the solar wind turbulence (e.g.,
Horbury et al. 2008; Podesta 2009). In order to understand
the propagation of particles in heliospheric plasmas, the scale
dependence of the turbulence anisotropy should thus be taken
into account.

In this work, we study the particle propagation in the
critically balanced turbulence of GS95. To model the turbulence,
we use the enveloping approach of Laitinen et al. (2012).
The enveloping approach improves the earlier models that
use infinite, linear plane waves by breaking the phase coherence
of the waves in the direction of the mean magnetic field. Such a
loss of coherence is expected in the plasma in the heliosphere, as
the waves evolve in a nonlinear manner (see, e.g., Tu & Marsch
1995, for a review). Laitinen et al. (2012) studied the effect
of structures on the transport and used a fixed envelope length
of the order of turbulence correlation length. In the present
paper, we study the particle propagation in turbulence with scale-
dependent anisotropy, and the enveloping is done separately for
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Figure 1. Green and white packets represent the envelopes along the mean field direction, for four different perpendicular scales, shown by the thick horizontal lines.
The steepness parameter is σ = 10 in this figure.

(A color version of this figure is available in the online journal.)

each wave mode, with the envelope length following the critical
balance scaling, L ∝ k

−2/3
⊥ , where L is the envelope length

and k⊥ is the wavenumber of the enveloped Fourier mode. The
Fourier modes are chosen to be two-dimensional modes, with
their wave vector perpendicular to the mean magnetic field.
Thus, the variation of the magnetic field along the mean field is
purely due to the enveloping of the modes. We use particle full-
orbit simulations in the modeled turbulence and calculate the
diffusion coefficients for energetic particles, comparing them
to results given in previous work. In Section 2, we describe
the critically balanced turbulence model and the method used
for obtaining the energetic particle diffusion coefficients. In
Section 3, we study the scale dependence of the turbulence in
the developed model and report changes in the energetic particle
diffusion coefficients, compared to the traditional composite
model. We discuss the results and draw our conclusions in
Section 4.

2. MODEL

2.1. Turbulence Model

In our model, the magnetic field consists of a uniform and
constant background field, B0, overlaid with a turbulent field,
δB(x, y, z), with the total magnetic field given as

B = B0êz + δB(x, y, z).

For the background field, we use B0 = 5 nT, consistent with the
magnetic field magnitude at 1 AU.

We model the scale-dependent turbulence by using the
turbulence envelope approach, introduced by Laitinen et al.
(2012). In the approach, the turbulence is enveloped into packets
along the mean field direction (see Figure 1). From one envelope
to the next, the parameters of the wave modes (random phase,
wave vector direction) change. Thus, a particle propagating from

an envelope to another interacts with a coherent Fourier mode
only within one envelope, and the linear coherence is broken
when it enters a different envelope.

The scale dependence of the turbulence in our model is
achieved through the selection of the envelope lengths, which in
the study of Laitinen et al. (2012) were constant. Here, the
enveloping is done separately for each wave mode, with
the wave scale λ⊥n = 2π/k⊥n, where k⊥n is the wavenumber
of the two-dimensional mode. The envelope length, Ln, follows
the critical balance scaling, Ln = L

1/3
C λ

2/3
⊥n , where Lc is the

scale where parallel and perpendicular scales are in balance.
As a result, for wave scales λ⊥n < LC the perpendicular wave
scales decrease faster than the parallel envelope scales, result-
ing in scale-dependent anisotropy. This process is depicted in
Figure 1, where we show the wave scale (thick horizontal line)
compared to the envelope length scales, for four different wave
scales.

The amplitude of mode n for envelope i is modulated by the
function

An,i(z) = 1

2

[
F

{
z − zi

2Sn

}
− F

{
z − Ln − zi

2Sn

}]
,

where zi marks the beginning of the envelope and z is the
distance along the direction of the constant magnetic field. The
profile of the envelope is given by the function

F {z} =

⎧⎪⎨
⎪⎩

−1 z < −1
3
2z − 1

2z3 −1 � z � 1

1 z > 1.

(1)

This approximates the often-used tanh profile, which enables
analyzing differentiable profiles that can have steep edges,
approaching a step-function shape. The polynomial description
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Figure 2. Green and white packets represent the envelopes along the mean field direction, for σ = 10 (top panel) and σ = 1 (bottom panel). The envelope length
Ln,i = 1 for these profiles.

(A color version of this figure is available in the online journal.)

was chosen for numerical efficiency. The steepness of the
envelope profile is given by the parameter Sn = Ln/σ , and
σ is a dimensionless parameter relating the envelope length to
the rise profile length.

In the modeling, we consider that a wave mode with a given
wave vector direction and random phase gives its energy to
another mode with the same modulus of kn, without losses,
thus keeping the sum of the amplitudes of the modes constant,∑

i An,i(z) = 1. This is achieved by selecting zi+1 = zi + Ln.
The steepness of the envelope is related to the transfer rate of

energy from one mode to another, due to the critical balancing
of the turbulence. The rate of change depends on the relative
wavenumber directions of the interacting modes (e.g., Luo &
Melrose 2006), which results in some interactions transferring
the energy faster than others. In our model, however, we describe
phenomenologically only the result of the critically balanced 3-
wave interactions, and thus an accurate description of the rise
profile is not possible on this level. Instead, we consider in
this study two different profiles, a gradual change with σ = 1
and a rapid change with σ = 10. As shown in Figure 2, for
σ = 10, the energy is transferred from one mode to another in
an intermittent manner, whereas for σ = 1, the interaction is
more gradual between multiple modes. The distance along the
mean field direction over which one mode dominates over the
others remains the same, the envelope length, Ln, for both values
of σ .

The turbulence field is given as a sum of Mn envelopes and N
Fourier modes, as

δB(x, y, z) =
N∑

n=1

Mn∑
i=1

An,i(z) A(kn)ξ̂n,ie
i(k⊥nz

′
n,i+βn,i ).

In this study, the Fourier modes in the envelopes are two-
dimensional modes, with the wave vector k⊥n perpendicular to

the mean magnetic field. Thus, the variation on parallel scales in
the model is due to the enveloping only. The polarization vector
ξ̂n,i lies in the xy-plane and is perpendicular to both the mean
magnetic field and kn, in order to satisfy ∇ · B = 0. Thus,

ξ̂n,i = iŷ′
n,

where the coordinate system r′ is obtained from r with a rotation
matrix (Giacalone & Jokipii 1999). The wave propagation
directions in the xy-plane, as well as the random phases βn,i ,
are chosen from a uniform random distribution.

The fluctuation amplitude A(kn) is given by a power-law
spectrum

A2(kn) = B2
1

Gn∑N
n=1 Gn

, G(kn) = ΔVn

1 + (knLc)γ
, (2)

where B2
1 is the variance of the magnetic field, Lc is the

spectrum’s turnover scale, γ is the spectral index, and ΔVn

specifies the volume element in k-space that the discrete mode
k⊥n represents. For the turnover scale, we use Lc = 2.15 r�,
where r� is the solar radius. For two-dimensional turbulence,
the spectral index is 8/3 and the factor ΔVn = 2πknΔkn. In the
simulations, we use logarithmically spaced wave modes with
the wavenumber running from 2π/1 AU to 2π/10−4 AU.

To compare the turbulent fields and their effects on SEP
propagation, we scale the fluctuation amplitudes so that the
average energy density in the fluctuating field is independent
of the enveloping parameters. The scaling factor is obtained
through numerical integration.

2.2. Energetic Particle Simulations

We study particle propagation in the modeled turbulent
magnetic fields by integrating the fully relativistic equation
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of motion of energetic protons using the simulation code by
Dalla & Browning (2005). The code uses the Bulirsh–Stoer
method (Press et al. 1993), with adaptive timestepping to control
the accuracy by limiting the error between consecutive steps
to a given tolerance. We simulate 2048 particles in 10 field
realizations, with different wave mode random phases and wave
vector directions in each realization, thus giving a total of
20,480 particles. Each realization has N = 128 Fourier modes,
whereas the number of envelopes depends on the energy of the
particle. The particles are simulated for ∼100 parallel diffusion
times. The particle diffusion coefficient is obtained with

κζζ = 〈Δζ 2〉
2t

, ζ = x, y, z (3)

(e.g., Giacalone & Jokipii 1999), with κ‖ equal to κzz, whereas
κ⊥ is obtained as the mean of κxx and κyy . For further details
of the simulation scheme and verification against the results of
Giacalone & Jokipii (1999), see Laitinen et al. (2012).

3. RESULTS

3.1. Scale dependence of the Turbulence

The goal of this work is to study particle motion in a turbulent
field that has a scale-dependent anisotropy that corresponds to
the critically balanced scaling suggested by GS95. As the first
step, we compare the composite turbulence model of Giacalone
& Jokipii (1999) to the one presented in this study. We do this
by calculating the two-point correlation function,

Cxx(s) = 〈δBx(r)δBx(r + s)〉 , (4)

where s is the scale vector that the correlation is calculated for
and the angle brackets denote ensemble average. We calculate
the correlation function as a function of s⊥ and s‖, that is, across
and along the mean field direction. The correlation function is
calculated from the dissipation scales to the turnover scale Lc of
the spectrum and presented in Figure 3, where the contours are
selected to represent correlations at equidistant scales, s, rather
than values of the correlation function, Cxx. The correlation
contours for the GS95 model are ellipses (appearing rectangular
in the log–log presentation of Figure 3), with the aspect ratio
increasing at smaller scales. A similar trend cannot be seen in
the composite model.

To quantify the scale dependence of the anisotropy, we
calculate the axis ratio of the contours. This is done by finding
values of the parallel and perpendicular scales, s‖ and s⊥, that
satisfy Cxx(s⊥, 0) = Cxx(0, s‖). We present the axis ratio s‖/s⊥
as a function of s⊥, for the turbulence models, in Figure 4.
The dash-dotted straight line represents the GS95 scaling, the
solid and the dotted curves (green and red in the online version)
represent the phenomenological model of this work, with two
different values of the steepness parameter σ , and the dashed
curve (blue in the online version) represents the composite
model of Giacalone & Jokipii (1999). As can be seen, the
axis ratio in the model presented in this work is clearly scale
dependent and follows the trend of the GS95 scaling. There is
a significant dependence of the level of anisotropy on the
steepness parameter, with the steep profile for the energy change
between the wave modes, represented by σ = 10, producing
values closer to isotropy when the axis scales approach the
isotropy scale Lc.

At large scales, the phenomenological model deviates from
the GS95 model. This is due to the different form of the

Figure 3. Two-point correlation functions for the composite model (top panel)
and for the GS95 turbulence model (bottom panel).

(A color version of this figure is available in the online journal.)

turbulence spectrum used in the derivation of the critical
balance by GS95 and the one used in this study. The GS95
scaling is obtained by using a continuous power-law spectrum,
k

5/3
⊥ , representing the Kolmogorov turbulence inertial range

spectrum, while in the heliosphere the inertial range is limited in
extent to only a few orders of magnitude, as the spectrum flattens
at large scales into the energy-containing range. This results in
flattening of the correlation function at scales of the order of Lc

and larger. Thus, when λ⊥ < L‖ � Lc, with L‖ = L
1/3
c λ

2/3
⊥ ,

the parallel scale L‖ reaches the flattening of the correlation
function before the perpendicular scale λ⊥, and the ratio L‖/λ⊥
remains anisotropic. This range is shown by gray shading in
Figure 4. As the spectrum defined by Equation (3) rolls gradually
to the inertial range, it is expected to see the deviation from
the GS95 form to start already at somewhat smaller scales.
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Figure 4. Scale dependence of the two models with the axis ratio s‖/s⊥. In the

gray area, L
1/3
c s

2/3
⊥ exceeds the turnover scale Lc.

(A color version of this figure is available in the online journal.)

Solar wind turbulence observations show a somewhat smaller,
but still anisotropic axis ratio of 1.5 for scales of ∼r� for slow
solar wind (Dasso et al. 2005).

Thus, we conclude that our model with σ = 10 displays the
required scale dependence of anisotropy, with the large-scale
anisotropy being consistent with the solar wind observations of
Dasso et al. (2005). The gradual energy transfer model, σ = 1,
produces a higher level of anisotropy, exceeding the Dasso et al.
(2005) result.

3.2. Turbulence Spectrum

In the previous section, we described the scale-dependent
behavior of the two-point correlation function for different
turbulence models. When studying turbulence, it is often more
common to present a power spectrum, which quantifies the
energy deposited in the turbulence at different scales. We present
such spectra in Figure 5. The spectra are obtained from one-
dimensional two-point correlation functions, with the parallel
spectrum defined as

Pxx(k‖) =
∫

Cxx(0, s‖) eik‖s‖ds‖,

and the Pxx(k⊥) similarly from Cxx(s⊥, 0). The one-dimensional
spectrum can be compared to the three-dimensional spectral
form given by GS95 as

P (k) = C
V 2

A

k
10/3
⊥ L1/3

g

(
k‖L1/3

k
2/3
⊥

)
,

where C is a dimensionless constant, L is the isotropic excitation
scale, and g(x) is a function that vanishes at large x. From this
form, the one-dimensional spectrum can be obtained using the
Taylor hypothesis (Taylor 1938),

P (f ) =
∫

d3k P (k)δ(2πf − k · V).

Figure 5. Parallel (black curve) and perpendicular (gray curve, green in the
online version) power spectra of the GS95 turbulence model with σ = 1 (top
panel) and σ = 10 (bottom panel). The dash-dotted and dashed curves depict
the theoretical spectra given by Equations (5) and (6), respectively. The vertical
bars at the top of the panels depict the inverse of the Larmor radii of protons of
energies 100, 10, 1, and 0.1 MeV, respectively, from left to right.

(A color version of this figure is available in the online journal.)

It is straightforward to show that the one-dimensional spectrum
along the field line is proportional to k−2 and the perpendicular
spectrum to k−5/3. Furthermore, we find that when using the
simpler form suggested by Cho et al. (2002), g(x) = exp(−x),
the spectra are given in the form

Pxx(k‖) = 3

2
C

(
1

k‖L

)2

V 2
A L (5)
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Pxx(k⊥) = C

(
1

k‖L

)5/3

V 2
A L. (6)

We plot these spectra in Figure 5, using Lc for the isotropic
excitation scale L and fitting the perpendicular spectrum,
Equation (6), to the perpendicular spectrum of the simulated
turbulence. It should be noted that the parallel spectrum repre-
sents a continuum instead of being composed of discrete modes,
as it results from the enveloping rather than begin generated with
a sum of parallel Fourier modes.

As seen in the figures, the envelope shape affects the parallel
spectrum shape. For the gradual envelope profile, with σ = 1
(Figure 5, top panel), the parallel spectrum has a spectral index
of −2.5, steeper and an order of magnitude below the spectrum
given by Equation (5). For the steep profile, with σ = 10
(Figure 5, bottom panel), the parallel spectrum has a spectral
index of −2, consistent with Equation (5), with the relative
power in the parallel and perpendicular spectra consistent
with Equations (5) and (6). The perpendicular spectrum is not
affected by the enveloping, with the spectral index remaining at
the Kolmogorov value of −5/3, the input of the model for both
values of σ . The spectral indices of −2 for the parallel direction
and −5/3 for the perpendicular direction were recently observed
in the solar wind by Horbury et al. (2008) and Podesta (2009).
The ratio P⊥/P‖ in our model is 2 at k = 10 r−1

� and 5.7 at
100 r−1

� , which is similar to the results of Horbury et al. (2008)
and Podesta (2009), who find values of 1.5–5 for the range
k = 10–1000 r−1

� .

3.3. Energetic Particle Propagation

In order to understand how the scale dependence of turbulence
anisotropy affects the energetic particle propagation, we have
simulated energetic protons at energies 0.1, 1, 10, and 100 MeV,
with the particles Larmor radius scale, kL = r−1

L , shown as
vertical bars in Figure 5. To study the collective behavior of the
particles, we have calculated the particle diffusion coefficients
along and across the mean magnetic field, as described in
Section 2.2, shown in Figure 6, with statistical error limits. For
comparison, we have also followed particles in the composite
model turbulence of Giacalone & Jokipii (1999). The parallel
diffusion coefficients for the GS95 model and the composite
model are presented in the top panel of Figure 6. In the figure,
the solid curve represents the composite model, whereas the
dashed and dash-dotted curves (green and red in the online
version) represent the GS95 model, for two values of the
steepness parameter. As can be seen, the parallel diffusion
coefficient is larger for the GS95 model and depends strongly
on the steepness parameter of the scale-dependent enveloping.
This can be understood on the basis of lower energy in
parallel fluctuations to scatter the particles in the σ = 1
case compared to the σ = 10 case. The dependence of the
parallel diffusion coefficient on particle energy in the GS95
model also differs from the composite model, with the diffusion
coefficient decreasing slower at decreasing energies. This can be
understood as the effect of the steeper spectrum, which results
in a smaller relative energy in the small-scale fluctuations that
scatter the lower energy particles.

We also present theoretical estimations of the parallel diffu-
sion coefficient in Figure 6. The dotted line represents the QLT
κ‖, as given by Giacalone & Jokipii (1999) presented in their
work for comparison with the composite and isotropic turbu-
lence models. Their estimation is based on an equation that is

Figure 6. Parallel (top panel) and perpendicular (bottom panel) energetic particle
diffusion coefficients in composite turbulence (solid curve), and in the GS95
turbulence (dashed and dash-dotted curves, green and red in the online version),
as a function of proton energy, for turbulence amplitude B1/B0 = 1. In the top
panel, the dashed curve depicts the QLT diffusion coefficient for the composite
model, as given by Giacalone & Jokipii (1999), and the tripledot-dash line
Equation (7) for the σ = 10 case.

(A color version of this figure is available in the online journal.)

valid only for parallel Alfvén waves (the slab waves). It should
be noted that in a composite turbulence, the two-dimensional
component does not have a significant contribution to paral-
lel scattering (e.g., Bieber et al. 1994). If we assume that only
the slab component contributes to the parallel scattering, then
the 80%:20% mix of two-dimensional and slab modes implies
a factor five rise of the dotted curve in the upper panel of
Figure 6, which fits the simulated composite model
results well.
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Comparison of the theoretical parallel diffusion coefficient
with our results for the GS95 turbulence is not straightforward,
as the QLT for magnetostatic turbulence results in an infinite
diffusion coefficient for parallel spectrum ∝ k−2

‖ and steeper.
This resonance gap problem, due to the lack of scattering at low
particle pitch angle cosines, μ = v‖/v, has been studied in the
scientific literature, and several mechanisms for its closure have
been suggested (e.g., Schlickeiser & Achatz 1993; Bieber et al.
1994; Ng & Reames 1995; Vainio 2000). As shown by, e.g.,
Vainio (2000), if scattering at low pitch angles after the closure
of the resonance gap is weak, then the diffusion coefficient is
dominated by this low rate of scattering, and thus by the closure
mechanism. If, however, the resonance gap is efficiently closed,
then the pitch angle diffusion coefficient can be estimated by

κ‖ ∝ vrL

B2
0

r−1
L P

(
r−1
L

)h(μg), (7)

where rL is the particle’s Larmor radius and h(μg) is a dimen-
sionless function that depends on the spectral index of the paral-
lel turbulence and the pitch angle μg below which the resonance
gap closure mechanisms overcome the QLT result. This form
is valid only for a power-law spectrum of the turbulence, and
thus the higher energies in this study are expected to have larger
diffusion coefficients, compared to the estimation. In addition, it
should be noted that the above considerations are valid for slab
turbulence. As our model contains a wealth of oblique wave
modes, implied by the correlation function, the QLT would give
a wealth of harmonic resonances in addition to the resonance at
inverse Larmor radius.

We present the theoretical parallel diffusion coefficient, as
given by Equation (7), in Figure 6, with a tripledot-dash line,
for our model with steepness parameter σ = 10. The power
spectrum in Equation (7) is obtained as a power-law fit to
the parallel spectrum (Figure 5). The exact scaling, given by
h(μg), is not known, and thus we can only compare the trends
of the diffusion coefficients. As can be seen, the QLT trend
tracks the GS95 model only at low energies. This suggests that
the resonance gap effects must be taken into account when
estimating the mean free path at steep spectra.

The perpendicular diffusion coefficients are shown in the
bottom panel of Figure 6. The perpendicular diffusion is stronger
in the GS95 turbulence, by a factor of two, as compared to the
composite model. The dependence on the enveloping shape is
small except for the highest energies used in the study. Thus,
the perpendicular and parallel diffusion coefficients behave
differently with respect to the exact description of the critically
balanced turbulence.

4. DISCUSSION AND CONCLUSIONS

In this work, we study how energetic particles propagate in
critically balanced turbulence. We build turbulence with scale-
dependent anisotropy resulting from critical balance by using
envelopes of a length that follows the required scaling be-
tween the perpendicular wavenumber and the parallel variation
scale. Analysis of the 2-point correlation function and the spec-
tra shows that for the envelope steepness parameter σ = 10,
our model is consistent with the GS95 critical balance scal-
ing and the observations of solar wind turbulence (Dasso et al.
2005; Horbury et al. 2008; Podesta 2009). The gradual shape,
σ = 1 (see Figure 2), results in more pronounced anisotropy.
The case of σ = 10, however, can be considered more real-
istic, as the nonlinear interactions between the waves depend

on their relative phases (e.g., Luo & Melrose 2006), result-
ing in an uneven evolution of the wave packets. The structure
of rapid change after an extended period of unchanged turbu-
lence can also be viewed as intermittent turbulence. We note,
however, that in our model, the probability distribution of mag-
netic field increments ΔBx(s⊥, s‖) = Bx(r⊥ + s⊥, r‖ + s‖) −
Bx(r⊥, r‖) does not significantly deviate from Gaussian, unlike
for the observed and modeled turbulence (e.g., Greco et al.
2009).

The scale dependence of the turbulence results in a notable
difference in the power spectra along and across the mean
magnetic field, as shown by Figure 5. Thus, it is expected
that the energetic particle transport differs from the composite
model of Giacalone & Jokipii (1999), where the spectral
indices are both equal to 5/3. Our simulations show that the
effect for the parallel diffusion coefficient is significant, with
a 1.5–2.5-fold increase, depending on the particle energy, for
σ = 10 (top panel of Figure 6). An increase of the diffusion
coefficient with a steepening parallel spectrum is consistent
with the standard quasilinear theory (e.g., Dung & Schlickeiser
1990). Our analysis shows, however, that the simple estimate
based on QLT, for the parallel wave modes (Equation (7)),
fails to describe the parallel diffusion coefficient at higher
energies.

The perpendicular propagation is also affected by the scale
dependence of the turbulence, with the perpendicular diffusion
coefficient being larger by a factor of two compared to the one
obtained with the composite model. This can be understood
on the basis of the work of Matthaeus et al. (2003). In their
formulation, the perpendicular diffusion coefficient depends on
the parallel diffusion coefficient. Thus, a different form for the
parallel component spectrum would influence the cross-field
transport of the energetic particles. Shalchi et al. (2010) used
the further-developed model by Shalchi (2010) to calculate the
perpendicular diffusion coefficient in a GS95-type spectrum.
Their κ⊥/κ‖ decreases ∼5-fold compared to the composite
model, and deviates from our result, where the ratio does not
change for σ = 10. However, in their work, they did not
estimate the parallel diffusion coefficient consistently using the
GS95-spectrum, but used standard quasilinear theory (Jokipii
1966) with the Kolmogorov spectrum and a model based on
Galactic cosmic-ray observations. Thus, their results are not
comparable to κ⊥/κ‖ in our model. The insensitivity of κ⊥ to
the parallel diffusion coefficient in their model is in line with
our results of insensitivity of κ⊥ to the changes in the turbulence
caused by the change of the envelope shape. This insensitivity
can also be implied from the theoretical work by Matthaeus
et al. (2003, their Equation (7)), where the rapidly decreasing
power spectrum may diminish the link between the parallel and
perpendicular diffusion.

Determining the correct scattering parameters in the inter-
planetary space is very important for the analysis of SEP events.
Studies have shown that the scattering along the interplanetary
magnetic field can significantly affect the accuracy of the SEP
event onset analysis at 1 AU (Lintunen & Vainio 2004; Sáiz
et al. 2005; Laitinen et al. 2010). Recently, Giacalone & Jokipii
(2012) have shown that varying the diffusion coefficients and
the ratio of the perpendicular and parallel diffusion coefficients
in the simulations can result in a wide variety of intensity pro-
files at 1 AU for an impulsive SEP event. Therefore, the two-fold
increase in the parallel and perpendicular transport coefficients
reported in this paper will significantly influence the character-
istics of SEP events.
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