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Abstract 
A mesoscale dynamics simulation using a Dissipative Particle Dynamics regime was 

developed to investigate the ability of small molecules to control phase structures in 

non-ionic surfactant-water systems. The ability to control phase structure has positive 

implications for potential templating applications which require ordered and stable 

phases with high surface curvature. The phases present in such systems were 

successfully modelled, the results of which compare well with experiment. 

Additives which decreased the surface curvature of the interfacial region included oils 

and long-chained alcohols. These molecules destabilised high-surface curvature 

phases, such as the bicontinuous cubic and mesh phases, in favour of the lamellar 

phase. 

However, the addition of anaesthetics and short-chained alcohols, which are small 

amphiphilic molecules, promote surface curvature, and there is an optimum chain 

length for maximum stability of the mesh phase. 

Coulombic interactions, although unsuccessfully modelled with the simulations, were 

found to be important through Langmuir trough investigations adding ionic and non-

ionic anaesthetics to non-ionic surfactant and ionic lipid monolayers, as ionic 

monolayer-anaesthetic combinations showed a larger increase in surface pressure 

compared to the non-ionic monolayer-anaesthetic combination. 

It is therefore very difficult to engineer phase structures for templating applications 

because the extreme chemical environment in the templating solution would serve to 

destabilise any high surface curvature these additives would stabilise. 
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1 Introduction 

1.1 Liquid Crystals 
The tenn liquid crystal is used to describe a fourth phase of matter, occurring 

between solids and liquids for certain compounds and mixtures of compounds. This 

phase has distinct crystalline features like a solid, but still flows like a liquid. Liquid 

crystals are able to exhibit optical birefringence and X-ray diffraction because their 

molecules possess long range orientational and sometimes positional order - properties 

usually associated with crystals. 

Liquid Crystals were first observed in the late 19 th  Century by Virchow, a 

biologist who noticed birefringence in certain nerve fibres in water. However, this 

birefringence was not attributed to a separate phase until Reinitzer, an Austrian 

Botanist, found two distinct melting points for cholesterol benzoate 
[1]  Although 

liquid crystals were observed before him, Reinitzer is regarded as the discoverer of 

liquid crystals. He sent his samples to Lehmann 
[2]  a German chemist who studied 

crystalline solids with a heating stage attached to his microscope. Lehmann was 

convinced that the fluids, observed as an amorphous form from which solids 

crystallised, were a different phase, and began to call them liquid crystals. Upon 

heating, the first melting point is when the solid changes to an opaque liquid, the 

liquid crystal. After further heating, the second melting temperature is reached where 

the liquid crystal melts into a transparent liquid. Research in the field of liquid crystals 

did not take off until Gray et al E31 studied their response to electric fields leading to 

the development of liquid crystal displays (LCD) in the 1960s. 

The fundamental property of a liquid crystal is that it possesses long range 

orientational order of its molecules. To fulfil this condition the molecules must be 

anisometric, i.e., they have an axis substantially longer than the other two axes. 

The orientational order that a liquid crystal possesses is described by the liquid crystal 

director A, which points in the same direction as the average direction of the 

molecular long axis (See Figure 1.1). The degree to which the liquid crystals align 

with this director is quantified by S, the orientational order parameter. The 

orientational order parameter is defined by the equation (2): 

S= 112(3cos2 9 -1) 
	

(1.1) 
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0 is the angle between each individual molecule's long axis and the director direction 

il, and S may take values from 0 (no order, isotropic phase) to 1 (perfect orientational 

order). 5> 0.4 for a typical liquid crystal phase. 

QOo• 

Figure 1.1 The average direction of the liquid crystals indicates the director 71 . The molecular long 

axis is denoted by a. 

There are two main types of liquid crystal, thermotropic and lyotropic. 

Lyotropic liquid crystals are the focus in this research, and will be considered in more 

detail. The basics of thermotropic liquid crystals are included for the sake of 

completeness. Thermotropic liquid crystals are those that change phase on changing 

temperature [2],  whereas lyotropic liquid crystals are formed upon dissolution of 

amphiphilic molecules in a solvent (normally water). Lyotropic phases are formed by 

changing the concentration of the amphiphile as well as the temperature. Lyotropics 

have a wide range of uses such as soaps, detergents, emulsifiers, cosmetics and 

agrochemicals. A large part of lyotropic research is devoted to biological systems, 

such as cell membranes. 

1.2 Therm otropics 
A compound that exhibits thermotropic properties changes from crystal, to 

liquid crystal to isotropic liquid upon heating, and the reverse upon cooling (See 

Figure 1.2). Thermotropic liquid crystals are made up of anisotropic molecules, where 

one axis is larger than others, facilitating long range orientational order. They may 

also have translational order in 1, 2 or 3 dimensions. Thermotropics studied to date 

have been either rod or disc shaped. These are known as calamitic or discotic liquid 

molecules, respectively. Thermotropics are widely used for display devices such as 

calculators and flat screen monitors. 

PI 
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Figure 1.2 Typical therinotropic phase sequence on heating (left to right) or reverse on cooling. 

1.3 Amphiphiles 
An amphiphile is a molecule consisting of two moieties, a hydrophilic head group and 

a hydrophobic tail group (see Figure 1.3). The head group may be charged (ionic), 

uncharged (non-ionic) or zwitterionic (having two opposite charges, such as lipids). 

The tail group is a non polar hydrocarbon or fluorocarbon chain. Amphiphiles are also 

known as surface active agents, or surfactants for short. These are molecules are 

wetting agents that reduce the surface tension of water by adsorbing onto the liquid-

gas interface. Because of this property, surfactants are widely used as detergents, 

emulsions, coatings, etc. 

Hydrophilic 
	

Polyoxyethylene 
Head Group 

Hydrophobic 
	

Hydrocarbons 
Tail Group 

Figure 1.3 An Amphiphile 
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1.3.1 The hydrophobic Effect 
Water is the most abundant molecule on the earth's surface. However, despite its 

abundance, it has some unusual properties, and in particular two special interactions 

can occur, namely hydrogen bonding, and the hydrophobic effect. For a liquid with a 

relatively low molecular weight, it has unexpectedly high melting and boiling points 

[41  The solid is an open structure of lower density than its liquid. The strong 

intermolecular bonds formed in ice must therefore persist into the water state, and they 

must have orientation dependence as water has a tetrahedral coordination, with four 

nearest neighbours per molecule. The intramolecular 0-H bond distance is about 

O.lOnm, but the intermolecular 0-H bond distance is 0.18nm, much less than 

summing the two van der Waals radii (0.26nm). This suggests the existence of an 

intermolecular 0-H bond, and is referred to as a hydrogen bond. Hydrogen bonds are 

also found in other compounds, between electronegative atoms such as 0, N, F and Cl 

and H atoms covalently bound to electronegative atoms themselves. 

The strong tendency of water molecules to form hydrogen bonds with each other 

influences interactions with non-polar molecules that are incapable of forming 

hydrogen bonds (alkanes, hydrocarbons, fluorocarbons and inert atoms). In this case, 

water molecules have at least one of their four charges pointing towards the solute 

molecule, and this will be lost to hydrogen bond formation. The best configuration is 

to have the least tetrahedral charges pointing towards the unaccommodating species. If 

the non-polar solute is not too large, it is possible for the water to pack around it 

without losing any hydrogen bonds [5j  Reorientation and restructuring of water around 

a non-polar solute or surface is entropically unfavourable, as it disrupts the existing 

water structure, imposing a new, more ordered structure. Therefore hydrocarbons are 

not very soluble in water, characterised by highly unfavourable free energy of 

solubilisation that is mainly entropic. This immiscibility of inert substances with water 

and mainly entropic nature of this incompatibility is known as the hydrophobic effect 

(61 Therefore, with an adequate concentration of amphiphiles dissolved in water, the 

amphiphiles are able to form supramolecular structures to reduce entropically 

unfavourable contact between tail groups and water. 

Related to the hydrophobic effect is the hydrophobic interaction. This describes the 

unusually strong interaction between hydrophobic molecules in water, often stronger 
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than in free space. There have been few direct measurements of the hydrophobic 

interaction, mainly because the non-polar molecules are so insoluble. 

Certain water soluble molecules repel each other strongly, in contrast to the attraction 

of hydrophobic groups, preferring contact with water than each other. The 

hydrophobic and hydrophilic interactions are not additive, and are interdependent. It is 

expected that they are interdependent as both rely on the structure of the water 

hydrogen bonding around the dissolved groups. 

1.3.2 Aggregation 
At low concentrations, surfactants dissolved in water are simply suspended in 

water, with some molecules located at the water/air interface, with the head groups on 

the water surface, and the tail groups pointing upwards, avoiding contact with the 

water. The interactions between head groups and water molecules are weaker than the 

inter water interactions, so the surface tension is reduced. - 

As the concentration of surfactant is increased, a certain concentration is 

reached where a sufficient number of surfactant molecules are present in water to 

facilitate self-assembly. This is where the molecules aggregate (normally as spherical 

molecules) with tail groups in the centre, and head groups surrounding the surface of 

the sphere, "shielding" the oily chains from contact with water (see Figure 1.4). 

Figure 1.4 A spherical ,nicelle, upon aggregation above the critical micelle concentration (CMC) 
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Equilibrium thermodynamics requires that in a system of molecules that form 

aggregated structures in solution, the chemical potential of all identical molecules in 

different aggregates is the same, so 

kT ( LN
P=Pw —P +log 	=constant 	 (1.2) 

where MN  is the mean chemical potential of a molecule in an aggregate of aggregation 

number N, JUN°  is the standard part of the chemical potential (the mean interaction free 

energy per molecule) in aggregates of aggregation number N and XN is the 

concentration of molecules in aggregates of aggregation number N. 

Aggregates only form when there is a difference between the cohesive energies of the 

molecules in the aggregated and the dispersed (monomer) states. Therefore the 

necessary condition for the formation of large aggregates is that MN°  is smaller than the 

chemical potential of an isolated molecule, 1uJ0  where ,UN decreases as N increases, or 

has a minimum at some finite aggregation number N. (If there is no minimum point, 

then very large aggregates are the result, causing phase separation.) The exact JUN v N 

relationship determines many physical properties of aggregates. Many molecules will 

have a peak at more than one N value. 

1.3.3 Critical Micelle Concentration 
At the critical micelle concentration (CMC), micelles form spontaneously. Micelles 

spontaneously and dynamically aggregate and disperse from amphiphiles, having a 

lifetime of approximately ims. The CMC is a conflict between two opposing forces. 

The hydrophilic chains try to minimise their contact with water, resulting in micelle 

formation, but as head groups are placed closer together, repulsive forces between the 

head groups oppose micelle formation. 

The CMC is temperature dependent, with its value increasing with increasing 

temperature. This is because of the solubility of the surfactant in a solvent, which also 

increases (at a much higher rate) with increasing temperature (see Figure 1.5). The 

temperature where the CMC and the solubility curve intersect is known as the Kraftt 

temperature. Below this, surfactants form hydrated crystals, but above it they form a 

variety of liquid crystal phases, given a supercritical micelle concentration. The 

formation of micelles occurs only when the temperature is above the Kraftt 

temperature and the concentration is above the CMC 17,8I 
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Concentration 
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Figure 1.5 Sketch showing how solubility and CMC affect ,nicellefor'nation 

1.4 Phases 

1.4.1 Geometry of Aggregates 
Lyotropic phases are identified by optical microscopy and x-ray scattering. They are 

characterised by the curvature of the interfacial region between hydrophilic and 

hydrophobic entities. The anisometric unit of lyotropic phases is a group of molecules, 

for example a micelle. A diagram showing the tail-head group and water interface in 

an aggregate of amphiphiles in solution is shown in Figure 1.6. The geometry of the 

aggregates depends on the dimensions of the surfactant (its headgroup surface area, 

chain length, etc), the curvature of the interface of the aggregate and the inter-

aggregate forces. 

7 
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Head Group 

Tail Group 

Figure 1.6 The interfacial region of an aggregation of amphiphiles 

A given amphiphile under certain conditions will have a certain head group area. This 

arises from a hydrophobic attraction of the chain molecules and a repulsive 

hydrophilic interaction between the headgroups. These opposing forces lead to an 

optimal headgroup area. Together with the length and volume of the hydrocarbon 

chain of the amphiphile, these three parameters can be used to define the surfactant 

parameter, N5 [91•  This is defined as: 

N5  = v/(Sale) 	 ( 1.3) 

Where v is the volume of the hydrocarbon chain, S. is the effective surface area per 

headgroup molecule, and I is a semiempirical parameter representing the maximum 

length above which the chain is no longer considered to be a fluid. These three 

parameters can be satisfied by a variety of different structures. It has been shown by 

[10] that the value of the surfactant parameter will determine the type of aggregate they 

will form: 

N5c1/3 	Spherical micelles 

113.cN5c112 Non-spherical micelles or cylinders 

112cN5c] 	Vesicles or bilayers 

N5 > I 	Inverted structures 
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These correspond to minimum-sized aggregates in which all lipids have minimum free 

energy. The surfactant parameter is also a measure of interfacial curvature. 

There are two additional contributions to the energy of the interface that will affect the 

curvature of the aggregate. One is a headgroup repulsion, acting at some distance 

above the interface. The nature of this force is described later. The second is the chain 

repulsion, which arises from a restriction in chain freedom in bilayers, and acts inside 

the chain region, a certain distance below the interface. (1 	l,, for spheres and 

cylinders, but for bilayers, l =0.71,,.) These effects result in an additional curvature 

dependence of uN°.  If head group repulsion dominates, curvature tends to increase, if 

chain repulsion dominates, curvature tends to decrease. 

Another approach to analysing aggregate structures uses the curvature of the surface. 

The mean curvature H at a point on the surface as: 

H 
	

(1.4) 
2R 1  1?2  

where R1 and R2 are the radii of curvature in two perpendicular directions. Figure 1.7 

shows how the radii of curvature are taken from a surface. For a sphere, Ri = R2, so H 

= hR. For a cylinder, R1 = R and R2 = oo so H = ½. For a planar bilayer, H=O. H can 

also be zero on a saddle surface, where R1 = -R2. 

Figure 1.7 Mean ctuvature is measured by taking the radius of curvature in two perpendicular 

directions. 
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There are numerous phase structures that may occur, but within one system only a few 

of these will occur. These may be categorised into classical phases, that occur 

frequently, and intermediate phases, that occur between the most common phases. 

Before the different phases are discussed, it is useful to introduce the different forces 

that occur between surfaces in liquids. Both intra and inter aggregate interactions 

affect the phase structure. In concentrated solutions, it is the interaggregate 

interactions that tend to dictate the structure of the phases. Increasing the 

concentration causes the amount of interface to decrease along with curvature and also 

minimises interfacial separation. Therefore increasing the concentration from 

spherical micelles, the aggregate surfaces are closer together, which is energetically 

unfavourable. If cylinders form, the surfaces are further away. If bilayers form, the 

surfaces are even further away. These phase transitions arise from the repulsive forces 

between inter-aggregate surfaces. The four main forces between surfaces in liquids are 

van der Waals, electrostatic, solvation (hydration) and steric forces. Attractive van der 

Waals forces between surfaces are weak. Electrostatic double layer repulsive forces 

arise if the headgroup has an ionic charge, and are sensitive to pH, concentration of 

electrolyte and potential changes. As hydrophilic surfaces approach one another, the 

water molecules bound to the surface dehydrate. Because of the energy required to 

dehydrate the surface, a repulsive force arises, known as the hydration force. The 

headgroups are considered to be 'rough' on the same scale as water, and the 

headgroups are thermally mobile so steric repulsion is also taking place. It is hard to 

distinguish between these two interactions, and the surfaces are not well defined. 

These hydration forces dominate the van der Waals and double layer forces at small 

separations. Finally, steric forces occur at surfaces. These are made up of protrusion, 

undulation, peristaltic and headgroup overlap forces. Of these, only the undulation 

force is expected to have a long range, which may exceed the length of the of the 

amphiphilic molecule, and the other forces will decay beyond the length of a 

molecule. Protrusion forces occur when the surfaces are so close that molecular-scale 

protrusions overlap. Undulation and peristaltic forces occur as a result of thermal 

fluctuations at a macroscopic level. Undulatory forces are associated with a bending 

of the surfaces, and peristaltic forces are associated with a squeezing of the surface, 

where the thickness of the membrane fluctuates locally about a mean thickness, with 

no bending. These are both repulsive forces, arising from the entropic confinement of 

their undulation and peristaltic waves as two surfaces approach each other. The head 

10 
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group overlap force is a type of steric interaction and occurs when two polymer-

covered surfaces approach each other, and the outer constituents begin to overlap. 

This interaction usually leads to a repulsive osmotic force due to the unfavourable 

entropy associated with compressing the chains between the surfaces. 

1.4.2 Classical Phases 
The three most common shapes that amphiphiles can aggregate into are 

spherical micelles, cylindrical rods or flat layers. These phases are known as micellar, 

hexagonal and lamellar respectively (Figure 1.8). 

Two phases may be constructed from micelles. The first is a micellar phase, 

which is isotropic, since it does not possess any long range order. The second is the 

micellar cubic phase which consists of slightly elongated micelles arranged in a body 

centred cubic fashion (Figure 1.9). This is also isotropic, but this is considered to be a 

colloid crystal phase as it has long-range order, because of the arrangement of the 

micelles. 

Figure 1.8 Fro,n left to rig/It, spherical micelles, the hexagonal and la,nellar phases. 

11 
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Figure 1.9 The mice/far cubic phase, with slightly elongated nilcelles packed in a body centred cubic 

arrangement. 

The hexagonal phase is made up of cylindrical rods of surfactant of indefinite 

length arranged hexagonally in a 2-D array, with water in between. This phase is 

birefringent due to its anisotropy, and is very viscous. 

The lamellar phase consists of stacked bilayers. (A bilayer is a region of 

surfactant that has a thickness of two alkyl chain groups.) The distance between 

consecutive bilayers depends on the concentration of surfactant and water. 

Reversed phases of isotropic and hexagonal phases are possible, where the 

spheres or rods are the water regions instead of the alkyl chain region (Figure 1.10). 

12 
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Figure 1.10 From left to rig/it, the inversed ,nicellar phase and inversed hexagonal phase. 

One final type of the standard phases is the bicontinuous cubic phase. This is a phase 

where both the surfactant and water regions exist as continuous parts, connected to 

infinity. There are three possible space groups for this phase, and these are pictured in 

Figure 1.11. Because of the interlocking nature of the structures, no shear movement 

can occur without disrupting the phase, making this phase highly viscous. This phase 

is isotropic. Space groups Ia3d and Pn3m [12]  are the most common, and act as 

models to biological membranes 113,141•  The Im3m [151  space group is quite rare. 

13 
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Figure 1.11 Bicontinuous Cubic phases, showing the 1a3d, Pnz3tn and lt13m space groups from left to 

rig/it 1161• 

1.4.3 Intermediate 
Intermediate phases are those that occur between the hexagonal and lamellar phase, 

where the bicontinuous cubic phase is expected (171  The intermediate phases can be 

categorised into 3 broad types, ribbon [18,19],  mesh [201  and bicontinuous (non-cubic). In 

some ways, these types may be considered to be related to the following standard 

phases respectively: hexagonal, lamellar and bicontinuous cubic. None of these three 

types have a constant interfacial curvature, unlike the standard phases. Bicontinuous 

non-cubic intermediate phases have only been hypothesised 1201 

The ribbon phases are very similar to the hexagonal phase, only with elliptical 

cylinders instead of circular ones. The ribbon phase has two possible space groups, 

pictured in Figure 1.12. The long dimension of the ellipsoid will decrease with 

decreasing temperature, forming the hexagonal phase [20]•  A typical phase sequence 

would be hexagonal to ribbon to lamellar. 

Figure 1.12 The Ribbon Phases, showing the c2mm and p2gg space groups from left to right 

There are three different mesh phases. One of them is the random mesh phase, 

which is the lamellar phase with water filled defects or pores 1211•  These pores have no 

14 
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correlation with each other. The other two types do have correlation. These are the 

rhombohedral and the tetragonal mesh phases [1922] The rhombohedral phase is a 

three connected mesh structure, stacked in an ABC manner. The tetragonal mesh 

structure is less common, but has been found by Kekicheff and Tiddy 
1231•  Figure 1.13 

shows a diagram of the intermediate mesh phase. 

Figure 1.13 The inesh phase. The rhoinbohedral mesh phase is a three connected structure with 

,nonodisperse pores stacked in an ABC fashion. The random mesh phase has pores with distribution in 

size and there is no correlation between layers. 

A sponge like phase is another bilayer-based phase, occurring most often next to a 

swollen lamellar phase at low surfactant concentrations E 5 '2427L as well as rich in oil. 

The sponge phase is a liquid-like disordered phase, consiting of 3D multiply 

connected bilayers, with negative monolayer curvature [28-30]  A sponge phase is 

shown in Figure 1.14. 

W4 

t 
Figure 1.14 Schematic representation of the sponge phase (281 

1.4.4 Nomenclature 
The notation of phases utilised is the same as in (20],  where a uniform system has been 

adopted. L, I, Fl, V and L. refer to the micellar isotropic, micellar cubic, hexagonal, 

bicontinuous cubic and lamellar phases respectively. The suffixes to these letters refer 

to the normal phase (1) and inversed phase (2). L3 refers to the sponge phase. Rb, Mh 

and Bc are used for the ribbon, mesh and bicontinuous cubic phases respectively, with 

space groups [31] appended in brackets, as in V 1  (Ia3d) for the bicontinuous cubic 

15 
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phase with an Ia3d space group. Space groups provide a mathematical description of 

the symmetry inherent in a structure. 

1.4.5 Diagrams 
Phase diagrams show the possible phases of a system under given conditions. 

For a surfactant-water system, the most important factors in determining the phase of 

a liquid crystal are the concentration and temperature. Therefore, two dimensional 

diagrams are required to show which areas belong to which phases, with the lines in 

between representing the phase boundaries. The abscissa of the phase diagram is 

concentration, whilst the ordinate is temperature. To help understand the constraints 

on phase diagrams, the Gibbs Phase Rule is introduced [91•  The equation of state for a 

one component system is F(V,n,p,T)=O An example of this is the ideal gas equation 

where (pV/nRT)-J=O. Three independent variables, from the temperature T, pressure 

p, volume V and number of moles n, give the equilibrium state. Therefore, p=f(n,p,T). 

As p=n/V, we can write p=f(n,p,T)=f(p,T), where one intensive quality of a system 

(in this case density) is a function of two intensive variables (pressure and temperature 

in this case). The intensive variables are independent of the size of the system. All 

intensive qualities in a one component system are a function of two intensive 

variables. 

F, the number of degrees of freedom, is the number of independent intensive variables 

that remain after possible constraints are taken into account. For a one component 

system with no other constraints, F=2. If there are two phases P, a and /3 and they are 

at equilibrium, F=1 as T and p are no longer independent. For a two component 

system, another intensive variable is added, the mole fraction of the second 

component. Therefore F=3 if there are no other constraints. These observations are 

generalised to enable them to be applied to systems with any number of components 

C, and the result is a relation known as the Gibbs Phase Rule: 

F+P=C+2 
	

(1.5) 

Figure 1.15 shows a typical phase diagram, showing standard and intermediate phases 

and boundaries, and in the location and shape that they are likely to occur, but for 

most surfactants not all of these phases would appear for one system. For ionic 

systems, the phases are largely insensitive to temperature, so the phase boundaries are 

16 
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mostly vertical, however for non-ionic systems, the phases are quite sensitive to 

temperature due to the dehydration of the ethylene oxide head groups at higher 

temperatures, so the phase boundaries are mostly horizontal 
7,I81 Some regions are 

biphasic, where two different liquid crystal phases coexist. If the mixture's 

concentration and temperature is such that it lies on a phase boundary, then both of the 

phases either side of the line are present in the sample. If the mixture lies on an 

intersection of three phases, then three phases will coexist. At a low concentration, a 

water rich phase will be present just above the CMC, shown as w in Figure 1.15. H 1 , 

H2 L1 and L. represent the hexagonal, inversed hexagonal, micellar and lamellar 

phases respectively. In between the hexagonal and lamellar phases, a cubic or 

intermediate mesh phase may form. At high surfactant concentration, a surfactant rich 

region occurs such as a liquid surfactant containing some water, or a solid gel phase 

for surfactants with longer chains. This region is labelled x. 

Temperature 

V10 

0% 	 Surfactant Concentration 	100% 

Figure 1.15 A (simplified) typical phase diagram (tiot all phases would be present for any one system). 

Water rich and surfactant rich regions are denoted by w and x respectively. 
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In general, all phases are thermodynamically stable, and the same phase sequence is 

observed upon heating and cooling for a sample of fixed concentration, but some 

systems have been noted to have a slightly different phase sequence depending on the 

thermodynamic history of the sample, giving rise to metastable phases. One such 

example of this is the rhombohedral mesh phase in the C 16E6/water system, which will 

be discussed later. 

1.5 Previous Work 

1.5.1 Binary Systems 
A detailed study on the C16E6/water  system was carried out by Fairhurst et al 

9,321 

This work produced a phase diagram of the system, and identified the phase sequences 

upon heating and cooling. Significantly, these phase sequences on heating and cooling 

differed. Upon cooling, the rhombohedral mesh phase formed from the random mesh 

phase, instead of the bicontinuous phase that formed in that region on heating from the 

hexagonal and gel biphasic region. Figure 1.16 shows phase diagrams of the 

C 1 6E6/water mixture upon cooling (left) and heating (right). It was concluded that the 

interlayer correlation in the rhombohedral mesh phase arose from the head group 

overlap forces between each bilayer (see section 1.4.1). This caused the mesh layers to 

stack in an ABC arrangement, allowing the furthest separation between head groups 

of different layers, which is most energetically favourable given the head-group 

overlap forces. 
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Figure 1.16 Phase diagram upon cooling (left) and heating (right) for C 16E6  from reference (19) 
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Figure 1.17 Phase diagran for C12E6  takenfroin reference [331, 

One of the first important works on non-ionic polyoxyethylene surfactants was by 

Mitchell et a] (24]•  This research identified the phase behaviour of a large range of 

these surfactants, including C 1 2E6, C14E5 and C16E6. A phase diagram of C 1 2E6 was 

shown, taken from [331,  and is reproduced in Figure 1.17. This phase diagram shows 
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that between 60% and 70% by weight of surfactant, the phase sequence is: hexagonal; 

cubic; lamellar. The paper also hypothesised that as the temperature of a mixture 

decreases for a non-ionic polyoxyethylene surfactant, the head-groups become more 

hydrated, and as a result each head group has a larger effective surface area. This is 

likely to be the phenomenon that drives phase changes. 

1.5.2 Intermediate Phases 
Some work has been carried out on ionic surfactants that exhibit the 

intermediate mesh phase. Luzzati et al were working on anhydrous soaps of divalent 

cations of group II when they discovered two novel phases [341•  Using data obtained 

from SAXS, they found sharp reflections corresponding to the space groups R3m and 

1422. These have rhombohedral and tetragonal symmetries respectively, and were 

given 3 and 4 connected mesh structures respectively. Another tetragonal phase was 

discovered by Kékicheff and Tiddy, working on LiPFO 1231•  A phase diagram was 

produced showing an intermediate phase occurring between 70-75% by weight LiPFO 

for temperatures between 20-30 °C. The intermediate phase was established by 

identifying reflections from SAXS data and optical microscopy, exhibiting a parabolic 

focal conic (PFC) texture. A model of the tetragonal mesh phase was made consisting 

of cylindrical rods connected with cuboids. The model made with the same volume 

fraction as experimentally showed a good correlation with the lengths of the alkyl 

chains, showing that the proposed structure fits well with the dimensions of the phase. 

It was suggested that as the tetragonal phase has both positive and negative surface 

curvature, the phase is more of an intermediate phase between the lamellar and 

bicontinuous cubic phases than the lamellar and hexagonal phases. It was also 

speculated that the low concentration boundary of the tetragonal phase is where the 

separation between the layers is too large to sustain the ordering of pores between 

layers, and the high concentration boundary of the phase is due to the area of the water 

filled defects being too small for the tetragonal phase to form. 

Puntambekar et al 1351  observed large regions of intermediate phase while studying an 

ionic fluorocarbon surfactantlwater system. This included an immense region of the 

random mesh phase and a large rhombohedral mesh phase region. The other phase 

present in this system is a lyotropic nematic phase, consisting of disc-shaped micelles, 

so therefore all of the phases present have non uniform curvature. The ratio of the 

lattice parameters for the rhombohedral phase is consistent with those obtained from 
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other rhombohedral phases in other systems, indicating that there may be some 

universality of the structure. Kékicheff and Cabane 
(361  reported four intermediate 

phases in between the hexagonal and lamellar phases in the SDS/water system. The 

phase sequence is: hexagonal; 2-D monoclinic; rhombohedral; bicontinuous cubic; 

tetragonal mesh; lamellar. The dimensions of the lattice parameters for each phase 

change in a reasonably continuous fashion. Blackmore and Tiddy (371  tried penetration 

scans for a variety of cationic surfactants, finding that increasing the alkyl chain 

length destabilises the bicontinuous cubic phase in favour of the intermediate phase. 

Lengthening the alkyl chain will increase the electrostatic forces in addition to 

decreasing the flexibility of the chain. Lengthening the chain moves the interfacial 

surface away from the surface of mean curvature and destabilises the system. Some 

ribbon intermediate phases were also found in some of the cationic surfactants 

studied. 

Henriksson et al (381  studied the intermediate phases present in the C 1 6TACl/water 

system, finding the phase sequence: hexagonal; ribbon; rhombohedral mesh; 

bicontinuous cubic; tetragonal mesh; lamellar. The 2H NMR Quadrupolar splitting is 

lower for the rhombohedral phase than that of the hexagonal phase, as expected for a 

rhombohedral structure. Holmes et al (391  carried out a study on CsPFO, finding that 

there is a random mesh phase present. It was suggested that this structure has ribbon 

like water filled defects in the lamellae, which are uncorrelated between the layers. 

The change between the discotic nematic phase and the random mesh phase is said to 

be driven by a decrease in surface curvature at lower temperatures, favouring the mesh 

phase. 

Much work has also been carried out on non-ionic surfactant systems. Funari et al 
[40] 

investigated C22E6, finding the random mesh phase. This acted as an intermediary 

phase between the lamellar and hexagonal phases with no other intermediary phases 

present. The presence of the random mesh phase over the cubic phase is attributed to 

decreased alkyl chain flexibility. The onset of the random mesh phase from the 

lamellar phase was marked by a first order transition. Three models were suggested 

for the structure of the water filled defects, ribbons, disks and holes, although all 

models fitted well with the experimental results. Burgoyne et al 
1141 carried out 

research on the long chain non-ionic surfactant C30E9. An intermediate phase was 

found which was suggested to be a rhombohedral phase. This paper addressed the 

question of whether its structure was either a three or six connected mesh structure. 
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The R 3 m space group allowed both structures. These structures are stacked in an 

ABC (three connected) and an ABAB (six connected) stacking fashion. Primitive rod 

and box models were designed for both rhombohedral structures in order to calculate 

geometrically structural dimensions. An incorrect SAXS indexing led to the belief that 

the six connected structure matched theoretical figures, despite the high surface 

curvature that the six connected structure possessed. Leaver et al [411  continued these 

experiments on both the C16E6 and C30E9 systems and carried out more thorough 

structural models for the R3m intermediate mesh phase. After re-indexing the 

scattering data from SAXS and calculating the appropriate cell dimensions, it was 

found that the three connected mesh structure was favoured over the six connected 

structure. It was also discussed in this study that the longer the alkyl chain, the more 

stable the intermediate phase over the cubic phase, as explained above. It was 

suggested in this study that as the rhombohedral mesh phase is not a minimal surface 

structure like the cubic phase is, then longer, stiffer chains will move the surfactant-

water interface further from the minimal surface to a point where a mesh phase 

becomes the more energetically stable phase. In a later study 
[13] 

 C30E9 was shear 

aligned and brought into the intermediate phase, where SAXS measurements were 

carried out. The structure was once again found to have a rhombohedral symmetry 

with a space group of R3m. The transition from the hexagonal to rhombohedral mesh 

phase was discussed, and it was suggested that the transition was due to the balance of 

the head group overlap forces and the decreasing surface area per head-group due to 

the dehydrating of the head-groups at higher temperatures. It was proposed that the 

transition from the hexagonal phase forms from the modulation of the cylinders equal 

to the node separation in the rhombohedral mesh phase, and subsequent connections 

between cylinders to form the mesh structure. Another polyoxyethylene non-ionic 

surfactant C15E6 has also been the subject of much research. This surfactant is 

different in that it has a meta-stable rhombohedral mesh phase. Funari et al 1421 

delineated a phase diagram showing a cubic phase on heating and an intermediate 

phase on cooling. This phase reverts back to the cubic phase if left at a constant 

temperature for a period of time, showing that the cubic phase is more stable here than 

the intermediate phase. Fairhurst et al [321  continued investigation upon the surfactant 

by producing a detailed phase diagram in the intermediate phase region. The cubic 

phase was attributed the space group Ia3d, and the intermediate phase was confirmed 
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to have a layered mesh structure due to its parabolic focal conic texture, and a 

rhombohedral structure sue to the nature of its SAXS results. The random mesh phase 

was assumed to consist of a flat bilayer with uncorrelated water filled defects. The 

formation of the rhombohedral phase from the random mesh phase takes place with 

little change in quadrupolar splitting or layer spacing, indicating that the phase 

transition is due to the onset of long range order of the defects. It is expected that the 

epitaxy of the mesh phases and the lamellar phase share the same (001) plane, but the 

epitaxy between the intermediate and cubic phases remains as yet unknown. Three 

models were suggested for the rhombohedral phase, rod-box, simple rod and minimal 

surface curvature models. All of these fitted well with the experimental results. A 

decrease in concentration in the intermediate phase did not affect the size of the nodes, 

it just served to lengthen the connecting rods, and increase the interlayer separation. 

Models were also formed for the bicontinuous cubic phase, and transitions between 

the two phases were discussed, and the hexagonal to rhombohedral mesh phase 

transition was also discussed, where it was found that the bicontinuous cubic and 

mesh phases differ little in their optimum structures. The head group overlap force is 

reported to cause a puckering between the layers in the rhombohedral mesh phase. 

Much work has also been carried out on diblock copolymers. Amphiphilic diblock 

copolymers can be amphiphilic, exhibiting surfactant like properties. These can be 

seen as surfactant molecules with longer chains. Diblock copolymers exhibit phase 

structures in aqueous solution or even in just a diblock copolymer melt. These phase 

structures are remarkably similar to those encountered in traditional surfactant 

systems, and much work has been done not only experimentally, but also 

theoretically, where models have helped the understanding of the phases and their 

transitions. Laradji et al 
[43]  considered the stability of the ordered phases in diblock 

copolymer systems using a theory of anisotropic fluctuations, within a mean field 

theory simulation. It was found that upon cooling from the lamellar phase to the 

hexagonal phase, an unstable intermediate phase forms. This begins as a lamellar 

phase with an undulated surface, which grows into a rhombohedral mesh phase, 

forming from a nucleation and growth mechanism. This is an unstable phase and upon 

heating from the hexagonal phase, the lamellar phase forms with no intermediary 

mesh phase. This is equivalent to the C16E6 system, where a cubic phase forms on 

heating instead of having no intermediary phase in the diblock copolymer system. 
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Chastek and Lodge 	studied the transition between the bicontinuous cubic phase 

from the mesh phase. This transition occurs after leaving the mesh phase at a constant 

temperature, showing that the bicontinuous cubic phase is more stable than the mesh 

phase for this diblock copolymer system. One transition took around 20 minutes, but 

this time varies depending on the temperature and concentration of the sample. The 

growth of the bicontinuous cubic phase from the mesh phase occurs isotropically from 

grains that grow at a constant velocity. A similar study by Hamley et al [45]  looked at 

the transition between the lamellar and the bicontinuous cubic phases. The average 

composition for the diblock copolymer used was CH30E2(dE)18B10. SAXS and SANS 

(small angle x-ray/neutron scattering) were performed, and the results showed that 

again, the intermediate mesh phase occurs. From the lamellar phase, defects appear 

first in a random fashion before packing in in a hexagonally closed pack way. On 

heating from the bicontinuous cubic phase to the lamellar phase, no mesh phase was 

observed. Also the mesh phase left at a constant temperature reverted back to the more 

stable bicontinuous cubic phase. The Self Consistent Field Theory [46]  was used to 

model the situation. This model showed the epitaxy of the lamellar mesh and 

bicontinuous cubic phases. Work using Monte Carlo simulations revealed that the 

mesh phase occurred first with randomly ordered defects that gradually order 

hexagonally. These findings were consistent with the results from SAXS and SANS. 

1.5.3 The addition of oil 
Oil may be added to the surfactantlwater binary system to form a ternary system. 

These ternary systems, although historically regarded as thermodynamically unstable, 

have shown to be thermodynamically stable 471  . The hydrocarbon chains of the oil 

will be subject to the hydrophobic effect, as will the alkyl tail group. Therefore, the oil 

molecules will aggregate within the tail group of the liquid crystal. It is possible to 

form most of the binary lyotropic phases in ternary systems with added oil, although 

the phases have a certain tolerance to the addition of oil. Ninham et cii showed that for 

ionic surfactants, microemulsions are formed at lower water content depending on the 

nature of the oil [481•  In this research, it was proposed that for oils with hydrocarbon 

chain lengths shorter than that of the surfactant, such as hexane, the oils would be able 

to reside in the region between the surfactant chains. These oils were named 

penetrating oils. In the lamellar phase, the addition of a penetrating oil does not 

greatly affect the thickness of the bilayer, but the oil increases the spaces between the 
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surfactant molecules, so the effective surface area per head group is increased 
(49]• 

Figure 1.18 shows a ternary system in the lamellar phase with a penetrating oil. Oils 

with chain lengths greater than that of the surfactant tail, cannot penetrate between the 

surfactant chains, reside in the inter layer region, thickening the bilayer. These oils are 

termed swelling oils. In the lamellar phase, swelling oils do not change the effective 

surface area per head group, but increase the height of each bilayer 
1491W Figure 1.19 

shows a ternary system in the lamellar phase with a swelling oil. 

Penetrating 

Surfactant I 	Oil 

Figure 1.18 A penetrating oil, shorter than the alkyl chain of the sulactant. 
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Surfactant 	Swelling Oil 

Figure 1.19 A swelling oil, longer than the alkyl chain of the surfactant. 

The addition of oil into surfactantlwater mixtures affects the formation of phases. 

Therefore, for a sample of a particular concentration, the phase sequence of a sample 

observed with oil upon heating will show phase transitions at temperatures lower than 

that of the equivalent binary system 1191 , This is because the addition of oil serves to 

increase the amount of alkyl chain region in relation to the head group region, 

reducing the mean curvature, inducing phases with a lower interfacial curvature 

Wang investigated the effect of adding polymers to the C15E6/water mixture. The 

behaviour of penetrating and swelling oils was investigated, and how it affected the 

phases 1491 	was found that with increasing concentrations of oil added, irrespective 

of type, phases were destabilised at increasingly lower temperatures. This is because 

adding oil at a fixed alkyl chain volume fraction serves to decrease the mean 

interfacial curvature, resulting in the loss of phases with a high mean curvature, in 

favour of the lamellar phase, which has no curvature. When sufficient amounts of oil 

are added, even the lamellar phase is destabilised, and the system phase separates. It 

was also found that the addition of hexane increases the effective surface area per 

head group, as shown by NMR analysis. 
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This shows that hexene acts as a good penetrating oil. There is no significant change 

in either the surface area or Mi, for the addition of octadecane, showing that it acts as a 

good swelling oil. Figure 1.20 shows a phase diagram for the addition of oil to a 

C 16E6-water mixture. 

Swelling and penetrating behaviour was also observed by Kunieda et al [28,50],  where 

decane, m-xylene or squalene was mixed with C12E, where n, the length of the head 

group, was varied. Decane acted as a swelling oil for both C12E3 and C12E7 

surfactants, where the transitions L1 -12 and H1-1 1  were observed for C 1 2E3 and C12E7 

respectively. 

50 

- octadecane 

T 	 - decane 

- heisne 

45 

p.40 
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Mh 1 (0) 
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25 

	

I.I  

Mole Fraction of oil 

Figure 1.20 Phase diagram for addition of oils to C16EOwater m&ture, taken from reference 

C16E61water/I-hexene (red), Cj6Edwater/n-decane (blue) and C 16E61water/n-octadecane (green), all on 

cooling. 

Experiments by Denhani [51]  continued work on ternary systems by looking at 

surfactants with shorter alkyl chain lengths C 1 2E6  and C 14E6  and adding appropriate 

amounts of oil to simulate the conditions (i.e. alkyl chain volume and head group to 

water ratio) of a 55% by wt C16E6/water  binary system. Optical microscopy and NMR 

results revealed that the introduction of the oil helped induce intermediate phases 
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where in the C12E4 system none had been observed before and in the C 14E6 system 

where the random mesh phase where the random mesh phase was only stable at lower 

temperatures. The quadrupolar splittings showed that behaviour of these ternary 

mixtures tended towards C15E6/water behaviour, although the splitting values were 

lower than those for the binary sample. This suggests that there is another second 

order affect that takes place upon adding the oil. This is the first time that an 

intermediate phase has been found for the C1E6 system, and the binary system shows 

that the random mesh phase is present over a large temperature range. It has not as yet 

been elucidated whether the rhombohedral mesh phase exists for the C 14E06/water 

binary mixture. 

1.5.4 The addition of anaesthetics 
Anaesthetics are agents that induce anaesthesia, where the sensations and/or pain are 

reduced. This includes general anaesthesia where a patient is unconscious, and cannot 

be woken by pain, and local anaesthesia, where the nerve impulses cannot transmit 

information. General anaesthetics are administered either by inhalation or 

intravenously. Inhalation anaesthetics are volatile amphiphilic compounds, whose 

potency is often linked to their hydrophobicity (52561  Local anaesthetics are injected at 

their site of action and are therefore not dependent on transport via blood to reach 

their site of action. It is believed that anaesthetics operate by binding to fast sodium 

channels in the cell membrane 1571•  However, the exact operation of anaesthetics is still 

a matter of investigation and how they bind to the sodium channels is not entirely 

known. They either act directly on the sodium channel, or indirectly, affecting the cell 

membrane in the region of the channel, causing the channel to close. This latter 

hypothesis is partly built on the fact that anaesthetic molecules are largely amphiphilic 

in nature, where there are both a polar moiety and a non-polar moiety. This implies 

that it may penetrate into the interfacial region of the cell membrane, affecting its 

structure. Some examples of anaesthetic molecules are given in Figure 1.21. 
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Figure 1.21 Typical Anaesthetic molecules (a) Halothane, (b) Sodium Thiopental, (c) Lidocaine (base 

form), (d) Keta,nine hydrochloride, (e) Prilocaine hydrochloride and (fi Lidocaine hydrochloride. 

(52.55,561 

Anaesthetics have been added to surfactant-water mixtures to investigate their affect 

on phase structures [581  This revealed that anaesthetics, as expected, bind to the 

interfacial region of the phases, affecting the surface curvature of the phases. Six 

different anaesthetic agents were added, and the effect of each divided the anaesthetics 

into two types. Type I anaesthetics decreased the surface curvature of phases, 

destabilizing phases such as the cubic and mesh phase in favour of the lamellar phase. 

However type H anaesthetics increased the surface curvature of the mixtures, inducing 

mesh and cubic phases. At a physiological pH however, both types of anaesthetics 

decreased the surface curvature of the phases. Figure 1.22 shows these results in the 

form of a diagram. 

It is hypothesised in [59]  that the mechanism for general anaesthesia is via anaesthetic-

induced alteration of the lipid bilayer lateral tension profile which gives rise to the 

monolayer spontaneous curvature. In the past, only a few anaesthetics have been 

tested for effects on membrane spontaneous curvature, but the behaviour of alkanols is 

promising, as they significantly alter the spontaneous curvature of model lipid 

systems. In this work, experiments were proposed to help test the validity of the 

proposed hypothesis. The action of anaesthetics is suggested to be prescribed by direct 

binding to the ion channels, or due to its effect on curvature. The latter option is 

attractive as the only common feature of most anaesthetics is the fact that they are 

amphiphilic. 
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1-leifrich (60]  has worked on the mathematics of bending of thin layers, calculating the 

energy required to bend a layer a given deviation from its spontaneous curvature, 

expressed as energy per unit area: 

 (

k~ 
ÔE = 

- 

2)R R0 ) 
(1.6). 

where R is the actual radius of curvature, R0 is the natural radius of curvature of the 

monolayer and k is a constant of rigidity for the material. The spontaneous radius of 

curvature is a measure of the frustrated elastic curvature energy locked into bilayers. 
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Figure 1.22 Effect of a type I anaesthetic (red) and type It anaesthetic (blue), taken from reference 1611 

It was surmised that anaesthetics may inhibit synaptic transmission by increasing 

synaptic membrane lateral pressure, therefore inhibiting phospholipid hydrolysis, 

membrane transduction and synaptic transmission [62]•  In this study, it was 

hypothesised that anaesthetics modulate the rate of phospholipase C hydrolysis of a 

lipid monolayer through effects on surface pressure. The experiments conclude that 

anaesthetics can reversibly inhibit synaptic transmission through their effects on 

synaptic membrane lateral pressure. This was found using surface pressure 

experiments performed with a monolayer, using a Wilhemy plate to determine surface 

pressure. 
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In [63],  local anaesthetic - phospholipid interactions of 2 different anaesthetics and two 

different phospholipids were investigated by a monolayer technique. A film expansion 

resulting from the addition of the anaesthetics had the effect of fluidising the 

monolayer. The different results for the different anaesthetics suggest different 

possible mechanisms for anaesthesia. 

Most local anaesthetics are tertiary amine compounds 	. They exist in either cationic 

or uncharged forms, depending on the pH, and the distribution of these forms depends 

on the pKa value of the anaesthetic and the pH of the aqueous solution . The 

uncharged form of the anaesthetic has greater permeability across the membrane 

compared to the charged form [6546]  Anaesthetics have a strong amphiphilic character 

due to their molecular structure, and therefore adsorption should take place at the 

interface 7-741 •  The positively charged form normally interacts electrostatically with 

any negatively charged sites at or in the membrane, and the distribution of molecules 

is influenced by the potential created at the membrane surface 1641 . Experiments 

increasing the concentration of local anaesthetics introduced to lipid monolayers 

showed that there was no change in surface pressure at a higher pH (10.5), but an 

increase in surface pressure with increasing concentration for lower pH (6.0) . This 

led to the conclusion that the adsorption of local anaesthetics is better explained by a 

non electrostatic adsorption than electrostatic site binding model. 

Volatile anaesthetics expanded a monolayer by 0.5% by area at constant pressure, and 

increased the surface pressure by 1 dyn/cm at constant area, after introducing 2.7x10 13  

anaesthetic molecules per square cm [751•  A discontinuity in a surface area-surface 

pressure plot indicated a phase transition from the liquid expanded to the liquid 

condensed phase. Anaesthetics decreased the latent heat and entropy change of the 

phase transition, implying that anaesthetics facilitate the melting of the membrane. 

The compressional modulus, a measure of the rigidity of the monolayer, was 

decreased by the anaesthetics. These findings support the theory of anaesthetics that 

the disordering and expansion of a membrane, with the release of structured water 

from the interface, is the basis of general anaesthesia. 

In [76]  the effect of volatile anaesthetics on the surface charge density in adsorbed 

monolayers was investigated by the electrocapillary method. It was found that the 

addition of anaesthetics decreased the surface charge density. Eyring et al [771  proposed 

that the entropy increase is caused by disruption of structure of water molecules in the 
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solvation shell around the protein. By high precision solution densimetry, volatile 

anaesthetics released water that was electrostricted at the surface charges of crystalline 

bovine serum albumin [781  and poly(L-lysine) 1791  in aqueous solutions. It was also 

found that anaesthetics released part of water molecules bound to DPPC by 

differential scanning calorimetry. Klemm [80]  proposed that the interfacial hydration is 

the cause of anaesthesia. 

Studies on the Meyer-Overton rule (81-841 show that the potency of anaesthetics is 

correlated to their solubility in olive oil. However, other studies have shown that this 

is not the case for all anaesthetics 1761  In previous molecular dynamics work, the 

distribution of anaesthetics in a bilayer was determined 8841  . Anaesthetics were found 

to increase S. and decrease d0, and also decrease the order parameter of the alkyl 

chain. In [761,  a nonimmobiliser pair of halothane, C2176, was introduced to DMIPC in a 

molecular dynamics simulation. It was found that it was distributed evenly along the 

hydrocarbon chain, with a small preference for the centre of the bilayer. There was a 

slight modification to the overall structure but no change in potential across the 

surface. This is compared to the results for the halothane mode!, where a large 

perturbation in the potential across the surface was observed. 

It is generally accepted that anaesthetics induce anaesthesia by reversible inhibition of 

synaptic transmission [62]  In 1851,  a coarse grained model of a fully hydrated DMPC 

bilayer was simulated, and halothane was introduced. This showed an increase in S .  

and a decrease in d0. 

A molecular dynamics simulation at constant pressure and temperature was performed 

of a lipid and halothane 1861  The results were compared to experimental data and 

simulations without the anaesthetic. This also showed an increase in S. and a decrease 

in do. The volume increase of the bilayer was comparable to the volume of the added 

anaesthetic. There was no significant change in alkyl chain conformation. 

1.6 Aim of the Study: Controlling the Phases 
Researching the phase structures, and finding out what stabilizes and destabilizes them 

can help us find out how to control the phases. The phases of surfactant-water 

mixtures have a great potential for applications such as templating mesoporous 

structures, which in turn can aid the manufacture of nano-scale devices. However, it is 

not as simple as it sounds as the conditions under which templating can be performed 

normally require very specific conditions, and the phase structure needs to be fine 
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tuned to optimize the process. Therefore by introducing an additional component to 

the mixture, we are effectively increasing the degrees of freedom for the system, so 

that it is not just temperature and concentration that affects the phase structure, but the 

concentration and type of this third component. The addition of an oil or an 

anaesthetic molecule can provide just that, and as previous research shows, the effect 

of each of these molecules has a subtle but important effect on the interfacial region 

and the phase structure. This thesis will study the effect of adding small molecules to 

surfactant-water mixtures by making use of a mesoscale simulation program, which 

will be able to uncover more subtle effects of these small molecules. 
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2 Computational Model 

2.1 Introduction 
In order to investigate the stability of various phases in surfactant-water systems, 

phase diagrams need to be established. Experimentally researching the phase diagrams 

of surfactants is both time consuming (because samples take a long time to prepare 

and analyse) and expensive (because high purities are required). An alternative to this 

is to employ a computer-based simulation to act as a model for surfactant-water 

systems. This model would enable a large region of phase space to be investigated 

quickly to determine genera! principles. In this chapter, the simulation method of our 

choice is introduced. The chosen method will then be further discussed and the 

necessary parameters will be chosen to set up a binary model. The aim of these 

simulations is to produce a reliable surfactant-water model that accurately produces a 

typical binary phase sequence. Then the model can be extended by adding further 

molecules such as oil and anaesthetic molecules. 

2.2 Computer Simulations 
Computer simulations use mathematical models for simulating the behaviour of 

complex systems, which cannot be solved analytically. There are many methods and 

we briefly mention only two of them before introducing the method we use in this 

work. 

2.2.1 Molecular Dynamics 
Molecular Dynamics (MD) simulation is a technique for computing the equilibrium 

and transport properties of a classical many-body system. The particles involved obey 

the laws of classical mechanics, which is a suitable approximation for many materials. 

The most important part of a molecular dynamics algorithm is the potential which 

determines the forces and therefore positions and momentum of the particles. This is 

also the most time consuming component of the algorithm. 

In 111, a  MID study of the surfactant C12E2 in a water solution was studied. A lamellar 

phase was produced, and the bilayer spacing and effective surface area per head group 

was found to be in agreement with x-ray scattering data. Much work has been done 

looking at micelles and the process of micellization, and [2]  is one example, using a 

surfactant consisting of 3 or 4 head sites and 3 or 4 tail sites. 

IN 
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In (31  triblock copolymers were simulated in a dynamic mean field density functional 

theory simulation. Micellar, hexagonal, bicontinuous and lamellar phases were 

observed which is in good agreement with experiment. 

Simulations have also been performed on bock copolymers on thin films. The 

constraint of the film changes the types of phases observed. In 
(4], dynamic density 

functional theory was used to simulate an asymmetric block copolymer both in the 

bulk and in a thin film. In addition to the lamellae, mesh and hexagonal phases 

orientated parallel to the film, a hexagonal phase was found orientated perpendicular 

to the film. This phase is preferred when neither blocks of the copolymer wet the film 

surface. A hexagonal phase forming triblock copolymer was simulated in thin films [5] 

The result was that it arranged itself into terraces of different heights, and each height 

corresponded to a different phase, including a mesh phase, and both parallel and 

perpendicular forms of the hexagonal phase. 

2.2.2 Monte Carlo 
Monte Carlo (MC) is a simulation method that uses probabilities and random 

movements rather than Newtonian time evolution to obtain an equilibrated simulation 

result. A simulation box is filled with particles in the same way as a molecular 

dynamics simulation, with a potential that is normally similar to a standard MID 

routine. However, instead of a particle potential calculation involving Newton's laws 

of motion, a completely different integration approach is implemented, as follows. 

There are many MC approaches but a common type, called Metropolis, will be 

considered for an example (61•  A particle is selected at random, and is moved to a new, 

test location. The energy of the system for the old and new location is compared, and 

the new location is accepted if the energy is lower than that of the old position. If the 

new energy is higher than the old location, the new position is accepted if and only if 

e_WJ'T is greater than random number between 0 and 1, generated for each prospective 

movement, where AE is the change in energy of the proposed position, k is 

Boltzmann's constant and Tis temperature. This means that the new configuration has 

a high probability of being accepted if the new energy is only slightly higher, but has a 

low probability of being accepted if the new energy is a lot higher. This will ensure 

that eventually an equilibrium will be established where the lowest energy is achieved. 

Although the route to equilibrium is unphysical (particles are effectively 
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instantaneously and arbitrarily transported from one position to another), but this has 

the advantage that the system is unlikely to get trapped in a local minima. 

A Monte Carlo simulation of a surfactant-cosurfactant-oil-water system was carried 

out in (7)•  The results here showed that for a certain system, there was an optimum 

chain length of surfactant for maximum emulsion stability. 

In , the transition between the lamellar and bicontinuous phase was investigated 

using a Monte Carlo simulation for a diblock copolymer, and was compared to an x-

ray scattering study. The transition was found to occur via a metastable mesh phase. 

The ordering of the pores was initially liquid like before developing a hexagonal 

order. The reverse transition occurs with no metastable mesh phase. The simulations 

reproduce the results of experiment. 

2.2.3 Finite-size effects 
The simulation box of any simulation is important. As the number of particles 

modelled is normally quite small, large scale behaviour is attempted to be induced by 

introducing periodic boundary conditions so that the box is effectively infinite. 

However, there are still some problems caused where bulk behaviour cannot be 

reproduced exactly. Below a critical size, these effects are significant and are known 

as finite-size effects. 

A study was done in 2006 (9) investigating the effect of finite size on stress anisotropy. 

An important but artificial finite-size effect of interfacial area on surface tension is 

found in simulations on the canonical ensemble. 

In a Monte Carlo study in 2002 (101, corrections of the pressure due to finite box-size 

effects were found. These corrections were inversely proportional to the thickness of 

the simulation box. A modification was proposed which allows the avoidance of these 

finite-size effects and to estimate the pressure for an infinite system when simulating 

in a finite box. 

2.3 Selection of Simulation Method 
The simulations that are required to be performed involve a large amount of molecules 

due to the supramolecular structures that they create, and also require long 

equilibration time scales due to nature of the formation of these structures. As the 

composition of the molecules involved is comparatively simple, it is suitable for this 

type of study to use coarse graining, as this will enable less simulation particles to 

model effectively more molecules. Having fewer particles implies that more time 
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steps can be iterated within a given time. Monte Carlo can be used for a coarse-

grained system, although for this study it was considered that a physical regime was 

more appropriate. Dissipative Particle Dynamics (DPD) is a method that was designed 

specifically for use for modelling coarse grained hydrodynamic systems, such as 

surfactant-water systems. 

DPD was introduced by Hoogerbrugge and Koelman in 	The forces due to 

molecules are given effective friction and fluctuating forces. This approach does not 

give a correct atomic description of the molecular motion, however it does have the 

advantage of producing correct hydrodynamic behaviour on large length and time 

scales. Therefore, DPD has been chosen for the modelling of surfactant-water systems 

and for the addition of small molecules. 

2.4 Simulations Literature Review 
The main algorithm of DPD was set up for simulating hydrodynamic phenomena. The 

physical basis was set up, which was shown both theoretically and in simulations that 

a quantitative description of isothermal Navier-Stokes flow is obtained with relatively 

few particles. However, in 1995, an important development in DPD was made 
(12]  The 

stochastic differential equations corresponding to the updating algorithm of DPD, and 

the corresponding Fokker-Planck equation were derived. It was shown that just a 

slight modification to the original algorithm is required before the Gibbs distribution 

is recovered as the stationary solution to the Fokker-Planck equation. Then, the 

temperature of the system is directly related to the noise amplitude via the fluctuation-

dissipation theorem. However, the correspondingly modified, discrete DPD algorithm 

is only found to obey these predictions if the time step is sufficiently small. The set up 

for most DPD simulations has remained largely unchanged since then. On the basis of 

this model, numerous parameters need to be assigned appropriately before the model 

can be used. In 1997, Groot and Warren 1131  critically reviewed DPD and established 

meaningful parameters, by creating an equation of state for DPD. Choice of an 

appropriate time step to reduce temperature variations was discussed, and choice of 

repulsion parameters was considered by comparing the fluid to water and mapping the 

compressibilities, and also comparing the Flory Huggins parameter to map the 

repulsive parameter. Additionally, they introduced the Euler integration scheme for 

the timestep, which allowed a larger timestep to be used with the same temperature 

rise. In 2000, Otter and Clarke (14]  critiqued the temperature in DPD, comparing the 
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Euler integration scheme with the original one proposed by Hoogebugge and 

Koelman. 

In 2001, Groot and Rabone (15]  mapped Flory-Huggins parameters for surfactant-water 

systems, and also did a length scaling considering the volume of the bead they were 

simulating. 

DPD was designed to model hydrodynamic behaviour of fluids, making it suitable for 

simulating surfactants in aqueous solution, and diblock copolymer melts. The most 

primitive type of DPD simulation of surfactants in aqueous solution has been using a 

dimeric model, where the surfactant has been modelled using two beads, connected in 

a chain. One of the beads represents the hydrophilic head, and the other the 

hydrophobic tail. In t 161, rigid dimers in a solution of monomers produced a phase 

diagram similar to the C12E6 experimental phase diagram. Using the same interaction 

parameters, 1171  studied the evolution of the surface between pure surfactant and 

solvent. In [IS]  another study with a dimeric model achieved the standard lyotropic 

phases, micellar, hexagonal and lamellar, and in U91,  the same phases were achieved, 

although a mesh phase and bicontinuous phase were also observed. 

Simulations have also been performed on block copolymers. In 1201,  diblock and 

triblock copolymers were simulated using DPD and both types were able to form 

spherical miceltes, cylindrical micelles and lamellar phases. In (21]  triblock 

copolymers were simulated using DPD and the standard phases were produced, and in 

addition, the mesh phase was also observed. The same phases were also shown to 

form using cyclic block copolymers in [221  In [231,  a star-diblock copolymer was 

modelled using DPD and gave the standard phases and also bicontinuous phases as 

well. In 1241,  a triblock copolymer was modelled giving micellar, hexagonal, lamellar 

and reverse micellar phases. In 	a diblock copolymer was modelled giving 

micellar, hexagonal, gyroid and lamellar phases. In [261,  a diblock copolymer system 

was simulated using both Monte Carlo and DPD methods. The work focussed on the 

bicontinuous phase, which was simulated successfully using the DPD method. The 

basic structure of this phase was similar in the different types of simulation used. 

In (271,  The surfactant C12E5 was modelled using 4 beads for the tail part, and 6 beads 

for the head part; one for each of the polyoxyethylene groups and a further one for the 

terminal 01-I group. Water was modelled using one bead. Results showed that the 

micellar and lamellar phases were obtained using this method. However, each bead 

represents an identical volume, so the assignment of the beads in the way that was 
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done was incorrect for the surfactant (see later for comparison of volumes of the 

hydrocarbon chain and the polyoxyethylene groups.) In [28) 
 C12E5 was modelled, 

using a dimeric model. Although the use of two beads meant the model was fairly 

primitive, the volumes of tail and head part for C2E6 are similar, so the volumes in 

this case are comparable to experiment, and are therefore the simulation represents 

experiment better. It was found that the lamellar, hexagonal and micellar structures are 

stabilised depending on the strength of the water-head repulsion parameter. The 

standard phases were also stabilised in (291,  using amphiphilic models A1B1 and A1133 

in two different solvents. A study has been done adding a third component to 

surfactant-water simulations, adding oil (decane) to the surfactant C10E4 
[30]•  The 

results were shown for a limited range of concentrations, and the components either 

phase separated, or the bicontinuous phase was observed. 

DPD has also been used to investigate model lipid layers. In 
[31),  the subtly different 

bilayer phases of double-tailed surfactants was investigated. A DPD model of a lipid 

bilayer has been compared to a full atomistic simulation, showing that the coarse 

grained simulation reproduces all of the basic features of lipids in water solution 
(32] 

Groot and Rabone also applied the DPD method to biological membranes. The 

membrane structure obtained matches quantitatively with full atomistic simulations 

and with experiments reported in the literature. Here, a phospholipid and the 

surfactant C12E6 were modelled using beads that represented roughly the same 

volume. On the volume scale they were mapping to, C12E6  consisted of 4 head and 4 

tail beads, with one water bead representing 3 water molecules. 

The aggregation of polymers and surfactant was studied in detail by Groot 
(331• 

Fluorinated surfactants have also been modelled in DPD 
(34]  The fluorinated 

surfactant induces the lamellar phase at a lower concentration than the hydrogenated 

surfactant. 

In most systems, the bilayer phase occurs when the tails of the surfactants do not 

interdigitate, however, in some instances, this interdigitation occurs. One DPD study 

(351 changed the temperature of the system and the head to head interaction parameter, 

and showed that in the low temperature range for high head to head interaction 

parameter, the interdigitated phase is favoured. Another study (361  considered under 

what conditions the interdigitated phase was induced. This also showed that 

interdigitation was favoured when the head to head interaction parameter was 

increased, and when the head group had an additional bead added. 
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2.5 Dissipative Particle Dynamics 
DPD is a relatively new method of mesoscale simulation. Standard Molecular 

Dynamics is too computationally costly for complex fluids, as the number of particles 

and the number of time steps involved would be too large. DPD is coarse grained and 

therefore more computationally efficient. The regime is like Brownian motion for 

fluids, but differs in that momentum is conserved in DPD. Energy however, is not 

conserved in DPD. 

The DPD model is proposed with N particles moving in a continuum domain of 

volume V. These particles or 'beads' represent a cluster or group of atoms or 

molecules. In a DPD simulation, one bead represents a specific volume. The system is 

completely defined by the positions r1 and momentap, for particles i = 1, 2..., N. The 

system is updated in discrete time steps At. The time evolution of the particles is 

governed by Newton's equations of motion: 

dr = v  dv, 

di 	di 
—m. =f.. 
	 (2.1) 

A demonstration of the DPD regime with a justification of its form follows. 

The total force on a given particle i is: 

F,T  = 	F,f + F,,? + 	 (2.2) 
p.,  

where F1f is a conservative force, E Lf is a dissipative force and E Lf is a random force. 

Pair additivity has been assumed. The conservative force is the force that will drive 

the separation between unlike components, and account for the hydrophobic effect in 

surfactant-water simulations. This force will be considered after the other two forces, 

which need to be considered in tandem. 

Galilean Invariance requires that the dissipative and random forces depend only on 

combinations of r,=r-r and v,=v,-vj. The requirement of Isotropy demands that the 

forces should transform under rotations as vectors. It is also required that the 

dissipative force is linear on the momentum and the random force is independent of 

the momentum. A simple form of these forces that satisfy these hypotheses is: 

F,f =—ywD(1J(eIJvU)eU 	 (2.3) 

F,7 =CWR(1J)edC,J 	 (2.4) 

Where r1 = Ir-cj I, e=(r,-rj)1r0, and 4j  is a Gaussian white noise term with (ij = 4), and 

<(/t)>=O. The brackets indicate that the value is of the time averaged value of C/i). 
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aID and OJR  are weight functions that ensure that FR  and  FD  vanish when r13 becomes 

greater than r, a cut off distance for the forces. The sum is over all particles within a 

cutoff radius r. The cutoff radius is implemented to reduce the computational time in 

summing negligible interactions, and mimics the nature of real intermolecular 

interactions, which in general only have noticeable effects within nearest neighbours. 

y and a are the friction coefficient and the amplitude of noise respectively, 

representing the amplitude of the forces. 

By substituting p?  and F" into Newton's Second Law, a set of Langevin equations is 

obtained, which are written in the mathematically well-defined form of stochastic 

differential equations: 

dr =-dt 
ini 
r 

	 I 	
(2.5) 

dPi=L
Ff(ru)+_rwD(rUXetJv&)eJdt+CWR(riJ)ezJczJ dt  

ji 	isi 	 j*i 

where rn1 is the mass of the particle. The Fokker-Planck equation that corresponds to 

this set of differential equations can be derived. This is detailed in 
[12], following 

standard methods from (37]  By considering the resulting Fokker-Planck equation and 

the conditions under which the steady state solution is the Gibbs canonical ensemble, 

the following two relations are found: 

WR(r)=WD (r ) 	 (2.6) 

= (2* 8 T)" 2 	 (2.7) 

where cis a noise term, Ic3 is Boltzmann's constant and T is the temperature of the 

system. This is the fluctuation dissipation theorem for the DPD method. 

From the above relation, and using a simple form for the weight function (OR = (I-rd), 

FD and  FR  can now be defined as: 

p0 
J_ y(1_ r )2 (P0.v1 )P (r4  <rJ 	

(2.8) 
{o 	 (i>ç) 

FIV 
	

k<rJ 	 (2.9) 10 	(rij 

Another function needs to be set up for Fc,  the conservative force. This will involve a 

repulsion parameter, a. This parameter will perform two functions in the simulation. It 

will provide the natural repulsion between all beads to account for the compressibility 
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of the system. A value for a that will ensure that the system behaves as a realistic fluid 

will be considered shortly. Also, this repulsion parameter will also provide the 

repulsion between unlike particles. The value for this part of the repulsion parameter 

will also be considered later. There will also be a weight function on this force as for 

the dissipative and random forces to ensure they only act within the cutoff distance r. 

There are no specific requirements for the form of the weight function as for F°  and 

pR  and the simple form (I-r,3) will be used. The conservative force is therefore a soft 

repulsion given by: 

U 	 (r.>ç) 

	 (2.10) 

where a,1 is the interaction parameter between particle i and j, and r,1 is the separation 

between particle i and j. a is a unitless parameter which gives a strength for the 

repulsion between particle i and j. This parameter is a measure of the compressibility 

of the fluid, and later this parameter will be mapped onto the compressibility of water 

to find suitable values of a for like components. Also, to mimic the hydrophobic effect 

between two moieties, a will be larger, giving a stronger repulsion. 

2.6 DPD Parameters 

2.6.1 Time evolution & Temperature Stability 
To advance the set of positions and velocities, a modified version of the velocity-

Verlet algorithm is used (38]  This was introduced by Groot and Warren [131,  to increase 

the efficiency of the DPD algorithm by enabling greater temperature stability for 

larger time steps, increasing the efficiency of the algorithm. 

At is the time step and 2 is a constant associated with the time integration, a factor that 

is said to account for some of the additional effects of the stochastic interactions. The 

unit of time, r, is set to 

The time step At should be chosen as large as possible without compromising the 

accuracy of the model. This is because the larger the time step, the more movement of 

the particles occur in one time step, allowing for a quicker simulation. However, if the 

timestep is too large, then the temperature of the system will not remain constant. This 

is because the temperature is only set at the initialisation stage of the simulation. This 

is done by ensuring that when the particles are randomly introduced into the box, they 

are given a random position, and a random velocity so that the average velocity of the 
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particles will ensure that the temperature T of the system overall is the desired T, 

given by k8T = cv 2 >/3. The fluctuation-dissipation relation will ensure that the 

temperature will remain at approximately this value within a certain error without the 

need for any direct temperature control. However, if the timestep is too large, then the 

error margin for temperature deviation becomes significant, so there is a limit to the 

timestep value. Using A = 0.65 the time step for a simulation at 1 ICBT can be up to 

0.06 with only a temperature rise of 1% Therefore, to optimise the model, the time 

step At will be chosen as 0.06 and A will be 0.65. 

The noise term a also affects the temperature stability and temperature relaxation time 

[ret]. When the noise amplitude a is reduced, the speed at which the system reacts on 

temperature variations is reduced. When it is increased, a slow increase in ICBT is 

found up to c=8, beyond which the temperature grows rapidly and the simulation itself 

may become unstable. As a compromise, o=3.67 was chosen to ensure relatively fast 

temperature responses whilst reducing the inherent temperature increases. With 

k8T=1, this meant that y=6.75. 

2.6.2 Units 
The DPD model is based on three fundamental dimensionless parameters, length, 

energy and mass. As these are dimensionless, they can be assigned for convenience, 

but they can be scaled to the real world for comparison. The unit of length, r, can be 

based on the cut off distance r, so re =]. The volumes of the beads are the same by 

definition, and the masses of the beads are therefore going to be similar. For simplicity 

the mass of all of the beads is 1, and the unit of energy, k8T = 1. DPD units of length, 

energy and time are denoted by a, e and r, respectively. 

2.6.3 The Repulsion Parameter 
As the DPD technique is based on soft sphere interactions the repulsion parameter a 

needs to be chosen while taking into account the compressibility of the system. An 

effective way of doing this is to map the compressibility of water onto the simulation 

beads. The definition of compressibility/I is: 

i av 	 (2.11) 

Where p is the pressure of the system and V is the Volume. 

To make the comparison between experiment and simulation, a number density p will 

be introduced representing the number of molecules in a volume V: 
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(2.12) 
av 

Substituting equation 2.12 into equation 2.11 and using the chain rule gives: 

(2.13) 
pap 

Rearranging and dividing by k8T on each side gives a relation between experimental 

values and simulation values: 

1 	- i a 
1
8pk 3 T - k 5T ap 

(2.14) 

Where the left hand side values represent the experimental values and the right hand 

side values represent the simulation values. To find dpIdp,  Groot and Warren [ref] 

simulated water using DPD beads and measured how the pressure of the system varied 

as a function of the bead density. They found that above a certain density, the 

following relation was found, and this is sometimes known as the equation of state for 

DPD, which is quadratic in density: 

p=pkBT+aap2  (a=O.1O1±i200I)('p>2) 	 (2.15) 

Differentiating equation 2.15 with respect top gives: 

ap  =kBT+2p 
ap 

(2.16) 

Substituting this into equation 2.14, with the compressibility of water being 4.5x10 10  

m2/N [391  and the number density of water molecules is 3.35x10 28m 3 , reduces the 

equation to: 

a=75kjjT/p 	 (2.17) 

For our model, we have already set kBT = 1. p  should be high enough so that equation 

2.12 holds, but should also be as low as possible to minimise the computational time. 

Therefore the lowest density that the relation holds well for is p=3. This means that 

for a simulation of bead density 3, the repulsion parameter for like beads should be 

chosen as 25 to model water. The interaction parameter that was chosen above models 

the compressibility of water. 
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2.6.4 Hydrophobic Repulsion 
To model the hydrophobic effect, an excess repulsion is added for the interactions 

between water and tail beads, and head and tail beads. This excess or hydrophobic 

repulsion parameter will be denoted by Aa. Since the simulation system is quite 

incompressible, as we have modelled water, this model should be quite close to the 

Flory-Huggins lattice model. The Flory-Huggins lattice model is a mathematical 

function describing the thermodynamics of polymer solutions and takes into account 

the dissimilarity in molecular sizes in adapting the usual expression of entropy of 

mixing. Groot and Warren 31  mapped the Flory-Huggins model onto Aa using the 

free energy per lattice site F: 

±_=d_lnØA  ±---lnØ3  1 ZØAØ8 
N 3  

(2.18) 

Where cOA and (pB are volume fractions of the A and B components and NA and N11 are 

the number of segments per A and B molecule, and x  is the dimensionless Flory 

Huggins parameter. X is positive for two components that do not favour contact with 

each other, and negative for components that do favour contact with each other. If x is 

positive and sufficiently large, the free energy develops two minima separated by a 

maximum. 

The free energy density that corresponds to the pressure of a single component is: 

f 	 c%ap2 	 (2.19) 
k 3T 	 k 3T 

For a two component system of chains: 

_L_ =&ln p +&lnp3 	 a(aP +ABPAPB +a38p) (2.20) 
k 8T NA 	

A  N 3 	N A  N 8 	 k 8T 

Choosing a,=a33=a, assuming pA+pa=p=constant, setting x=p,/p and aAfi=a+Aa, 

equation 2.20 can be simplified to: 

L =lnx+(14ln(l_x)__(19+ 2 x(i—x) (2.21) 
pk 3T N A 	N 3 	N A  N8 	k 3T 

By comparing equations 2.20 and 2.21 a correspondence between soft spheres and 

Flory-Huggins byfip  =F, where: 

2oMp 
z = I  

it 3T 
(2.22) 
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To test this correspondence, Groot and Warren [ret] simulated different models with 

different Aa values. It was found thatx is in fact linear in Au, but not in density. Forp 

=3, the following relation was found: 

x = (0.286±0.002)Aa 	 (2.23) 

Groot and Rabone [15)  used a water-hydrocarbon Flory Huggins parameter as 6, found 

where three water molecules are represented by one bead, and this is largely 

independent of temperature. Using this value gives Aa=21. This will be used as a 

rough guide for preliminary simulations, but different Au values will be investigated to 

find the optimum value. 

2.7 Model 

2.7.1 Length Scale 
As DPD is a coarse-grained approach, one particle or "bead" in the model represents a 

cluster of atoms. Each DPD bead represents a volume, and it is this volume that 

determines the length scale of the simulation. A bead volume needs to be chosen so 

that each bead is capable of representing water, hydrocarbons and oxyethylene. Table 

2.1 shows the density and volume for H20, CH3(CH2)11 and (OCH2CH2)60H. 

Density (kgm 3) Volume (nm3 ) 

H20 1000 0.030 

CH3(CH2)11 750 '° 0.380 

(OCH2CH2)60H 1123 0.420 

Table 2.1 Densities and volumes/br water, hydrocarbon and oxyethyiene groups. 

By choosing the DPD bead volume as 0.09nm 3, each DPD bead represents the volume 

of three water molecules, the volume of a (CH2)3 group and the volume of 1.5 

CH2CH20 groups. The non-ionic surfactant C12E6 can therefore be conveniently 

modelled using 4 tail beads and 4 head beads connected in a single chain with 

harmonic bonds. 

The simulated bead number density p was chosen as 3 as it is the lowest value (and 

hence computationally quickest) for which the DPD equation of state holds (see 

earlier). A diagram showing the excess pressure as a function of simulated density is 

shown in Figure 2.1. This is related to the volume of each bead by: 

1,] 
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1 	 (2.24) 
V8  

To relate this to a physical size, p can be redefined as the number of beads in a cube of 

size r. Therefore, the physical size of the interaction radius is given by: 

r? =V8p 

Using V8 = 0.09nm3  and p = 3, rr 	0.65nm. 

0.12 

C' 0.09 a 
cis 

0.08 

a 
' 
0 0.03 

0.00 
0 	2 	4 

(2.25) 

+ rn-iS 
o a -25 
o a-30 

6 	8 	10 

Figure 2.1 Excess pressure as a function ofsinru!ated density. The DPD equation of state holds above 

p=3, where the graph becomes linear. Taken from 1131• 

2.7.2 Bonds 
The beads in the surfactant are connected with bonds modelled using harmonic 

springs using a potential of type: 

UbOP4(r) = 2-k(r —  rJ 
2 

(2.26) 

Where r1, is the equilibrium bond length and k is the spring constant. The all trans 

length, where all of the carbon-carbon bonds are in their most stretched out form, of 

C12E6 is 3.57nm. Dividing this value by the number of beads representing a 

molecule (8) gives 0.46nm. This is approximately lrc (O.64633nm). 

Finally, the strength of the harmonic bonds should mimic the bond strength for carbon 

carbon bonds. For an accurate conversion, the vibrational frequencies of carbon 

carbon bonds can be used to calculate the spring constant for the harmonic bond 

equation. However, this would exceed the maximum force limit used to prevent any 

large forces disrupting the simulation, and a strength needs to be chosen that is just 

strong enough to constrain the bonds to 1% of their equilibrium length. To determine 
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this strength a series of test simulations were performed, the results of which are 

shown in the next chapter. 

2.8 Simulation Hardware & Software 
A coarse grained molecular dynamics program COGNAC vS was used to perform all 

of the simulations, and is part of OCTA 2006 1421.  See Appendix A for information on 

how OCTA and COGNAC were used to simulate and analyse the models. Input and 

output files were created and modified with Gourmet, the graphical user interface for 

OCTA. All simulations were performed using an SGI Altix 3700 server at the 

University of Central Lancashire's High Performance Computing Facility. 

Water beads and surfactant chains will be introduced arbitrarily into a simulation box 

with periodic boundary conditions. The physical size of the simulation box is 

determined by the number of beads. 
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3 DPD Binary System - Parameter Setting 

3.1 Introduction 
It is now necessary to elucidate some further parameters of the model, and in doing so, 

highlight some of the restrictions and limitations of the model. In the previous chapter, 

parameters were obtained by comparison with theory and experiment. In this chapter, 

parameters were chosen by performing simulations to elucidate the most appropriate 

values. The optimum bond strength was found by performing a series of simulations at 

different bond strengths. The optimum hydrophobic interaction parameter was found 

by investigating a range of values and selecting one which gives a phase sequence 

closest to what is found experimentally. This gave the basic model for a binary 

surfactant-water system. The effect of box size was also investigated to determine if 

there were any finite-box size effects. 

3.2 Experimental Results 
The aim of the binary simulations of C12E6 is to develop a model that produces results 

as close as possible to experiment. A C12E6 water system has been investigated by 

Clunie et al . A phase diagram was produced, and is shown in Figure 3.1. This phase 

diagram shows that the most dominant phases are L1, H1 and L, with a small region 

of V 1  lying in between the H1 and L. phases. At room temperature, the phase sequence 

upon increasing concentration is: 

L1 	40% 	H 	65% 70%  

90 - 

0 

I 
L1  

Hi 

I 

o 	 25 50 	 75 	 100 

Concentration (wt % C12E06) 

Figure 3.1 Phase diagram for C12E6, taken from reference In  
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3.3 Bond Strength k 
A set of simulations were performed to determine the optimum bond strength k for the 

harmonic bonds of the surfactants. This value could be mapped from the vibrational 

frequencies of carbon-carbon bonds from infra-red spectroscopy, and using the 

following equation that relates frequency of vibration with the spring constant: 

f = I 

 r
2r 

wheref is the frequency of oscillation, k is the spring constant and m is the mass of the 

two atoms that are connected by the bond. The vibrational frequencies for carbon-

carbon bonds are 5xlO 5Hz and 2x105Hz for the symmetric and asymmetric bond 

frequencies respectively [2]  However, for a coarse grained model, each DPD bond 

would consist of several bonds coupled together, so this coupling would need to be 

taken into account if the bond strength was mapped directly from the vibrational 

frequencies. As this coupling is a non-trivial problem, the choice of bond strength can 

be instead chosen from a phenomenological perspective. 

It was decided that an appropriate way to determine a suitable spring constant is to 

find the lowest value of k that yields a value equilibrium bond length of 1 r (0.646nm, 

see section 2.7.1) with a low standard deviation, in this case chosen to be 1%. 

A simulation of 3051 C12E6 molecules consisting of 4 tail beads and 4 head beads 

connected in a single chain were arbitrarily introduced into a simulation cube of side 

14.5nm. All of the parameters were as chosen in chapter 2, where Aa=15. Three 

different k values were chosen, 10, 100 and 200&f 2. The mean and standard deviation 

bond lengths were measured from 50 bonds, and the results are shown in Figure 3.2. 

It can be seen that at k=100 ea 2 , the equilibrium bond length is within 1% of 1r. The 

standard deviation also decreases significantly from k=10 ec 2  to k=100 ec 2 . The mean 

and error in bond lengths do not change significantly for spring constant values higher 

than 100 862 , so k=100 862  will be chosen. 
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Figure 3.2 Average bond length as a function of bond spring constant. Errors show the standard 
deviation of the bond length. Line is a guide to the eye. 

3.4 Phase Sequence & Phase Definitions 
A series of simulations has been performed at different concentrations to determine a 

preliminary phase sequence. Based on reference [3],  a theoretical excess repulsion 

parameter of Aa = 21 was chosen as a first approximation. This can be varied to 

optimise the model, but should give a good guide to the phases present. The numbers 

of waters and surfactants for each concentration were calculated using the molecular 

weight of C 1 2E5 and water molecules so that each concentration can be represented by 

an equivalent percentage by weight C12E6. A simulation box of side 14.5nm was 

chosen, as this should include six lamellar repeat distances from corner to corner at a 

surfactant concentration of 100%, giving a reasonably large simulation cell. The size 

of the simulation box will be considered in more detail in section 3.6. Simulations 

were first performed for 100,000 time steps, but further time steps were undertaken if 

necessary until equilibrium is established. 

To ascertain whether a simulation has reached equilibrium, the total energy as a 

function of time needs to be considered. The energy of the simulation decreases as the 

system gradually becomes more ordered, until equilibrium is established, where the 

phase structure is stable. 
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A typical Energy versus time plot is shown in Figure 3.3, showing a simulation for 

90% surfactant and water system at a box size of 14.5nm, for 100000 time steps. This 

plot shows the batch average energy of 5000 time steps at 5000 time step intervals. 

Batch average energy is used to reduce the random variation in energy at 

instantaneous points. After the gradient of the plot becomes sufficiently close to zero, 

it can be said that the simulation has reached equilibrium. The simulation in Figure 3.3 

becomes lamellar between 65 and 70 thousand time steps, so therefore, the simulation 

has reached equilibrium after this point, where the gradient of the plot is close to zero. 

The equilibration of the phases will be considered in this way, in order to ensure that 

they are fully equilibrated. 

232001 

231501 

'U 

231001 

a) 
C w 
Cd 

5 230501 
I- 

230004 

229501 
VVVV 

Simulation Time Steps 

Figure 3.3 A Total energy v time plot for a typical simulation. Line is a guide to the eye. 

After the simulations were performed, the phase structures were identified by 

observing a visualisation of the model using the graphical user interface of the OCTA 

program. There are two main types of visualisation available. One is a ball-stick 

model that represents each bead by a ball, with different types of beads (tail, head, 

water etc) as a different colour. Lines or "sticks" between these dots represent bonds. 

This gives the most information about the location of the molecules, but as the model 

contains thousands of molecules this visualisation is not clear, especially for three-

dimensional structures. However, a two-dimensional structure, when viewed 
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perpendicular to the plane, will appear reasonably clear. The other type of 

visualisation shows an iso-density surface where the local bead density of tail and 

head beads is 0.5, i.e., at the interfacial region. Although this gives no detail of the 

molecules, it conveniently shows the phase structure for even complex phases, and 

this visualisation method was used to identify phase structures. 

The results of these simulations from 50-95% by weight concentrations of surfactant 

in 5% graduations are shown as iso-density surfaces (showing the interface region) in 

Figure 3.4. Detailed structures of the two-dimensional phases, the hexagonal and 

lamellar phases, can be seen in Figure 3.5, showing a ball-stick model of the 

surfactants with the water beads. From these figures, it can be seen that the water 

beads pack within the head region, as expected. 

At 50 and 55%, there is aggregation of the surfactants into elongated micelles, and the 

phase is therefore defined to be a cylindrical type phase. However, as the cylinders 

have no particular orientation with respect to each other or show any inter-aggregate 

order, this phase will be referred to as a disordered hexagonal phase (dH1). Increasing 

the concentration to 60%, the cylinders elongate completely forming infinite 

cylinders. These cylinders are arranged in a hexagonal fashion, so this is the 

hexagonal phase (H1). On increasing the concentration to 65%, the structure changes 

into interconnected cylinders arranged in an irregular fashion. The interconnections 

are largely threefold, in the same way that most bicontinuous structures are, so this 

phase is defined to be a bicontinuous phase. Three-connected structures have the 

lowest interfacial curvature that allows three dimensional structures to form. This does 

not show any distinct order, unlike bicontinuous phases in literature, so this phase will 

be referred to as a disordered bicontinuous phase (dv i ). At 80% some layer-like 

patterns appear. However, this phase is also disordered, with pores and 

interconnections between the layers. The sponge-like phase studied experimentally [4] 

is loosely based on a lamellar phase with interconnections between the layers so this 

phase is defined to be a sponge phase (1-3). At 85%, there are layers that have water 

filled defects or pores, so this phase is the mesh phase (Mh). From 90-100%, the 

phase is lamellar (L a). 
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interface between the head and the tail region. 
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3.5 Sa Phase Diagram 
To determine which Ja value produces the best model (producing the best set of 

phases that compares well with experiment), a set of simulations was performed with 

different Aa values and The surfactant-water concentrations, resulting in a 2D phase 

diagram. For a simulation cube of side 14.5nm, concentrations between 50 and 100% 

by weight C12E5 were simulated for Act = 10, 15 and 20 (aj = 35, 40 and 45 

respectively). Simulations were performed until equilibrium was attained, and the 

results are shown in Figure 3.6. 
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.0 
0 
C 
a. 
0 
V 

I 
10 

o dH 1  

• H 1  

A dV 1  

• L3  

o Mh 1  

U 

0 	0 • A A 

. 

. 

50 	60 	70 	80 	90 	100 

Concentration by weight C 12E6  (%) 

Figure 3.6 Phase Diagram showing phase sequence with different hydrophobic interaction parameters. 
Lines are a guide to the eye. 

From Figure 3.6, it can be seen that the lamellar phase is most stable for Aa=15±5. For 

Aa=10, the excess repulsion is too low, so there is insufficient hydrophobic force for 

the lamellar phase to form until high concentrations. For Aa=20, the excess repulsion 

seems to be too strong, and a sponge-like phase L3 becomes stable where a lamellar 

phase should be found if the parameters were relaxed enough to allow it to form. The 

excess repulsion will therefore be chosen asAa =15 (a=40). 
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3.6 a88  Phase Diagram 
The above model represents a simplistic model for the interactions that drive the 

formation of the phases, where water beads interact with the head groups in exactly 

the same way as other water beads. Neglecting the fact that the head groups are part of 

a chain that makes the surfactant, the head and water beads are indistinguishable. In an 

effort to improve this by some degree, the head group to head group interaction 

parameter was considered. Polyoxyethylene chains readily form hydrogen bonds with 

water molecules [41•  This is so much the case that it is more energetically favourable 

for water molecules to mix in between oxyethylene molecules in a polyoxyethylene-

water mixture. This implies that the interaction parameter between head groups should 

be set slightly higher. A set of simulations were performed with varying 

concentrations using Ja = 15, changing aBB, the repulsion parameter for head to head 

interactions from 25 (current value) to 35 (close to the hydrophobic repulsion 

parameter). The results of these simulations are shown in Figure 3.7. 
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Figure 3.7 Phase Diagram s/towing phase sequences for different head to head interaction parameters. 
Lines are a guide to the eye. 
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Figure 3.7 shows that as the head to head interaction parameter is increased, phases 

with layer-like structure (sponge, mesh and lamellar) are destabilised in favour of 

phases that have positive surface curvature (e.g. bicontinuous). For example, with 

afifl=23, the lamellar phase is present at 90%, but on increasing aBB to 30, the lamellar 

phase is still not stable at 95%. It seems apparent that at these higher concentrations, 

where there are fewer water beads, there is a stronger repulsion between the head 

groups than the tail groups, which discourages the formation of layer like phases. As 

in experimental systems, the lamellar phase is quite stable, even at lower 

concentrations, it is appropriate to choose aBs where these layer-like phases are most 

stable, so a311=25 will be chosen. 

3.7 Box Sizes 
To investigate the effect of the box size on the phases produced, a set of simulations 

were performed from 50-100% varying size from 8.75nm to 25nm. Simulations were 

performed for at least 100,000 time steps, although for some of the larger simulations 

more time steps were required. Again, simulations were all checked to ensure they 

fulfil the equilibrium criteria described in section 3.4. Figure 3.8 shows the results 

from this set of simulations. 
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Figure 3.8 Phase Diagram showing phase sequence for different box sizes. 
Lines are a guide to the eye. 

ri 



Chapter 3 

Starting from small size (8.75nm), the phase sequence is very clear, and the structures 

show a high degree of inter-aggregate order. The phase sequence is H1 ±4? dV1 4? 
Mh1 82-5 

0% L. However, as the box size increases, the stability of these ordered phases 

decreases. The mesh phase region is not stable at box sizes larger than 1 mm, and the 

hexagonal phase is not stable at box sizes larger than l3nm. In place of the H 1  phase, a 

dH1 phase becomes dominant, and in place of the Mh1 phase, the L3 phase becomes 

dominant. Also the dV1 phase becomes dominant over a larger concentration range; at 

17nm it is stable from 60 to 80%. The stability range of the lamellar phase remains 

largely the same, 90% and higher, except for 25nm, where the lamellar phase is not 

stable until 100%. At 13 and 14.5nm there is a small region of a mesh phase between 

L. and L3. This phase has fewer pores than the main mesh phase region, and is more 

like the random mesh phase (Mh1(0)). 

From this phase diagram it can be seen that the size of the simulation cell has a 

significant effect on the results of the simulation. The changes seem to be reduced as 

the box size increases above 17nm, above which the phase sequence remains fairly 

constant, however this is after the majority of the ordered phases have been lost. The 

question that needs to be asked here is, whether the smaller box size induces the 

ordered phases, or whether the larger box size destabilises the ordered phases. 

Simulation box sizes are generally considered in relation to the cut off distance for 

interactions. If the box size is of the same order as the cut off distance, then one bead 

may have an interaction with itself, due to periodic boundary conditions. As an 

absolute minimum, a box size of at least three cut off distances is normally chosen. 

The cut off distance for these simulations is 0.65nm, and the smallest box size is 

8.75nm, more than an order of magnitude higher than the cut off distance. 

However, even at large box sizes compared to the cut off distances, finite box-size 

effects occur due to the periodic boundary conditions, as the phase structures have 

repeat distances much larger than the cut off distance. The box size should be at least 

twice the repeat distance for the phase structures. If both were of the same order, then 

the structure would be effectively interacting with the same part of the aggregate 

structure due to the boundary conditions. The repeat distance for the lamellar phase in 

these simulations is approximately 4nm, so the box size should be at least 8nm. One 

final consideration is that the boundary conditions limit the number of possible 

orientations of the phases, effectively quantizing the values for the repeat distances. 
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The sma!ler the box size is, the larger the quantization effect. This effect will be 

considered further in the next chapter. 

In order to choose an appropriate box size, a compromise must be made between a 

large box where ordered phases are less stable and a small box where there are too few 

repeat distances of phases inside the simulation cell. 14.5nm has been chosen here as 

the H1 phase is still stable and Mh1 phases are stable, but where there is still enough 

for approximately 5-6 repeat distances of the lamellar phase. 

3.8 Summary 
All of the necessary parameters have been selected appropriately for the model, and 

has been applied to a binary system, and has shown that a model surfactant-water 

system can replicate the phases of the experimental system for a non-ionic system. On 

increasing surfactant concentration, the hexagonal, bicontinuous cubic, sponge, mesh 

and lamellar phases were present. The effect of box size was investigated and found 

that the size of the box had an impact on the phase diagram. An optimum box size was 

chosen to ensure that the phases were not too restricted by the boundary conditions if 

the box was too small, or whether ordered phases became destabilised at large box 

sizes. 

The model can be extended by retaining these parameters and adding a third 

component to the model. In chapter 4, the ternary system with added oil will be 

investigated, and in chapter 5, the ternary system with added anaesthetics and alcohols 

will be considered. Table 3.1 shows a table summarising all of the parameters selected 

for the model from chapter 2 and 3. 
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Parameter Value 

At Time step 0.06r 

Rc cut off distance 0.65nm 

k8T Reduced energy scale 1 

a repulsion parameter for 

like beads 

25 

p number density of beads 3 

Volume per bead 0.09nm3  

Length of bond 0.65nm 

k spring constant for 

harmonic bonds 

100&f2  

Aa Excess repulsion for 

unlike beads 

15 

Box side length 14.5nm 

Table 3.1 Parameters and values selected for the model 
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4 Oil Addition 

4.1 Introduction 
In this chapter, the addition of small molecules to the surfactant water system is 

investigated. As established earlier in section 1.5.1, the addition of oil has one of two 

extreme behaviours [t,21  Short chain oils (shorter than the alkyl tail of the surfactant) 

can be penetrating, whereby the oil sits between the tails and increases the effective 

surface area per surfactant head group but has little effect on the lamellar spacing (see 

Figure 1.16). Oils that are longer than the alkyl tail of the surfactant are swelling, 

whereby the oil forms an interlayer between the terminal CH3 groups at the surfactant 

molecules of the bilayer. This increases the bilayer spacing while having no 

observable effect on the surface area per head group (See Figure 1.17). 

4.2 Modelling Oil 
The oils that were added are of a simple hydrocarbon nature, and possess the same 

qualities as the alkyl tail part of the surfactants modelled. Therefore it is convenient to 

model the oils in the same way as the tail beads of the surfactant, choosing exactly the 

same repulsion parameters, bond length and strength etc. For completeness sake, a 

penetrating oil (shorter than the surfactant tail), a swelling oil (longer than the 

surfactant tail), and finally an oil that has the same length as the surfactant tail were 

modelled. They were modelled in the same way as shown in the previous chapter, so 

that a chain of 3 hydrocarbons are represented by one DPD bead. Experimentally the 

addition of hexane, decane and octadecane has been studied in this laboratory [21  and 

these three oils were chosen as candidates to be modelled. Hexane (6 hydrocarbons), a 

penetrating oil, was modelled with two beads, octadecane (18 hydrocarbons), a 

swelling oil, was modelled with six beads and dodecane (12 hydrocarbons) was 

modelled with four beads. Schematics of these models are shown in Figure 4.1. 
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r, 
L 'Nj 

H3C 	
CH3 

H3C CH3  

Figure 4.1 Molecular structure and DPD bead representation of the three oils added in the simulations. 

4.3 Method 
Oil was added to surfactant-water mixtures with five different surfactant to water mole 

ratios in the range from 0.12 to 0.75. This corresponded to the binary surfactant 

concentration by weight range of 75% to 95%, which exhibits the phase sequence: 

dV1 	 _ L3 
82.5% Mh1 87.5%  La 

The number of surfactant molecules, oil molecules and water beads in each simulation 

were calculated from the molecular weights of each of the molecules and the mole 

ratio of surfactant to water and the mole fraction of oil. 

4.4 Oil Addition Results 

4.4.1 Hexane 
Hexane was added to 14.5nm and 8.75nm box sizes. This was to further test the 

impact of the box size investigated in the binary sequence by comparing the results of 

the addition of hexane for these box sizes. The phase diagrams showing the resultant 

phases from the addition of different mole fractions of hexane to different surfactant 

to water mole ratios are shown in Figure 4.2 (14.5nm simulation box) and Figure 4.3 

(8.75nm simulation box). 
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For the 14.5nm box size, at X5,,= 0.75 and 0.36, the addition of hexane has no effect 

on the phase structure, which remains as lamellar. At X 0.23, the mesh phase is 

stable until (O/jer0.03,  above which the lamellar phase becomes stable. This implies 

that the mesh phase is suppressed by the addition of hexane, and at sufficient hexane 

concentrations a lamellar phase is preferred. At X = 0.16, the sponge phase is stable 

until co,ier0.04 where the mesh phase becomes stable. Above this concentration the 

lamellar phase is stable. This implies that the sponge phase is also suppressed by the 

addition of oil, allowing phases with less curvature to become more stable. At X = 

0.12, the disordered bicontinuous phase is stable but adding oil destabilises the dV 1 , 

L3 and Mh1 phases in favour of the lamellar phase. This shows that overall, adding 

hexane at various binary concentrations destabilises phases with more surface 

curvature in favour of those phases with less or no surface curvature. 

For the 8.75nm box size, the same sequence of phases is observed on increasing 

hexane mole fraction. As the mesh phase is present in the binary phase sequence for 

the 8.75nm simulation box, the overall phase diagram is not the same, but comparing 

Figure 4.2 and Figure 4.3 shows that the phase boundaries are in similar positions. 

There are no qualitative differences in the phase diagrams for the different box sizes. 

4.4.2 Dodecane 
The phase diagram showing the resultant phases from the addition of dodecane to 

different surfactant to water mole ratios is shown in Figure 4.4. 

At X = 0.23, the mesh phase is destabilised by the lamellar phase at çj=0.02. At 

= 0.16, the mesh phases becomes stable over the sponge phase at codd =0.01, and 

the lamellar becomes stable at (pdd =0.03. At )(cw = 0.12, the disordered bicontinuous 

phase is stable but the addition of dodecane destabilises the dV 1 , L3 and Mh j  phases in 

favour of the L. phase. This shows that overall, as shown for hexane, that adding 

dodecane at various binary concentrations destabilises phases with more surface 

curvature in favour of those phases with less or no surface curvature. 
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4.4.3 Octadecane 
The phase diagram showing the resultant phases from the addition of octadecane to 

different surfactant to water mole ratios is shown in Figure 4.5. Like the addition of 

dodecane, at X,,= 0.23 the mesh phase is stable until ç9=0.02, where the L. phase 

becomes stable. However, the phase sequence for the addition of octadecane at X = 

0.16 and X5  = 0.12 are not as expected from experiment. At 0.16, the L3 phase is 

stable until Yoct=0.05,  where the L. phase is recovered (with no mesh phase found in 

between), and at X5  = 0.12, the dV1 phase remains stable even at cooe,—O.l. This does 

not correspond with the experimental findings (reference [2],  Figure 1.21) that the 

longer the molecule introduced, the lower the stability of phases with curvature. 
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4.4.4 Comparison of the Phase Diagrams 
Comparing the phase boundaries of the addition of dodecane (Figure 4.4) with those 

for hexane (Figure 4.2) shows that the phases are destabilised at lower mole fraction 

of oil for dodecane than that for hexane. The boundary lines are steeper, and less 

molecules of dodecane are required to destabilise a certain phase than hexane 

molecules. This is consistent with experiment that shows the larger the molecule, the 

lower the mole fraction required to destabilise a given phase 
[21  This is to some extent 

due to the fact that the larger molecules have a larger volume, and will give a larger 

contribution to the alkyl chain volume fraction of the phase, thus effectively inducing 

a "higher concentration", encouraging phases with lower surface curvature to form. 

To investigate this, the phase diagrams were drawn with oil volume fraction as the 

independent variable. These phase diagrams were overlaid on each other for ease of 

comparison and the result is shown in Figure 4.6. Isodensity images showing phase 

evolution upon the addition of hexane, dodecane and octadecane are shown in Figure 

4.7. 
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Figure 4.6 shows that the phase boundaries for the addition of hexane and dodecane 

are now much more similar, with no significant differences. The only discernible 

difference is that the mesh to lamellar transition for dodecane is at slightly higher oil 

concentrations than for hexane at X 5 =0.12. As the phase boundaries for hexane and 

dodecane are similar, it may be that the phase changes that occur upon adding hexane 

and dodecane are due to the increasing volume of the alkyl chain hulking up the 

bilayer, where phases with less surface curvature are favoured. 

However for octadecane, the phase transitions are at considerably higher oil 

concentrations than for hexane and dodecane. This is the case for all phase transitions. 

Therefore it is unlikely that the volume effect is driving the phase transitions for 

octadecane in the way it has for dodecane and hexane. 

4.5 Analysis 

4.5.1 d0  Spacing and Oil Behaviour in the Tail Region 
It is expected from experiment 121  that octadecane should behave as a swelling oil, 

whereas hexane should behave as a penetrating oil. 

The swelling and penetrating behaviour can be quantitatively investigated by 

measuring the repeat distances of the lamellar phase as a function of the mole fraction 

of the oil added. This repeat distance or d0 spacing (as adopted from x-ray scattering 

nomenclature) can be readily and conveniently measured from the simulation results. 

The most efficient way of doing this is by recording the orientation of the lamellar in 

relation to the box. This is done by counting how many repeat distances (do) are 

present with respect to each of the three dimensions of the simulation box. As periodic 

boundary conditions are in place, these numbers will all be integers. This limitation 

effectively quantizes the number of possible orientations, and therefore, the calculated 

d0 spacings are also quantized. Let's say a lamellar has n repeats in the x direction, n 

repeats in they direction and n repeats in the z direction (Figure 4.8a shows a lamellar 

phase with ,z.=3, iz,=2  and ;i=l.) The x component of d0, will be U n,  where L is the 

side length of the simulation box. From this, the angle the x direction makes with the 

normal of the lamellar plane needs to be found, and simple trigonometry will provide 

the d0 spacing. 

To do this, let alpha be the angle between the x axis and the normal of the lamellae in 

the xy plane (see Figure 4.8b), and let beta be the angle between the x' axis and the 

true normal of the lamellae. 
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a and/I can be calculated using the number of repeats in they and z directions with the 

x direction thus: 

In '\ 
a=arctan.1H 	 (4.1) 

n x  

/1 = arctan
(nx2Lcos(a)'1 	

(4.2) 

Therefore the bilayer repeat distance can be defined as: 

d0  = L —cos(cr)cos(/3) 	 (4.3) 
fl x 

Therefore d0 can be calculated if the size of the box is known and the number of 

repeat distances in each direction are recorded. This is a simple procedure, and 

averages out any undulations in the lamellar surface. Due to the finite size of L, and 

the discrete values n1, n, and n, d0 is quantized. The degree of quantization is related 

to the size of the box, and as the size of the box used for the simulations is relatively 

small, this quantization effect needs to be taken into account when analysing the 

results for d0. This calculation for d0 has been done for the addition of hexane, 

dodecane and octadecane in simulations at X= 0.75 and oil mole fractions from 0.02 

to 0.10 in 0.02 graduations. The results of these are shown in Figure 4.9. 

This shows that the addition of hexane to the lamellar phase has no effect on the 

bilayer spacing. From 0.02 to 0.1 mole fraction, the orientation of the lamellar phase 

remains the same, and so the spacing is constant. However, as d0 is quantized, the true 

d0 value may slightly increase or decrease on increasing concentration. The addition 

of dodecane yields the same results until 0.08 mole fraction is added, where the 

orientation changes, indicating an increase in d0 from 3.8 to 4.Onm. This shows that 

dodecane behaves as a swelling oil to some extent as after enough dodecane is added, 

d0 rises. 
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Ily  = 2 

plane 

Figure 4.8 (a) Schematic of a si,nulation box with a la,nellar phase orientated so that there are 3 

repeats in the x direction, 2 repeats in the y direction and I in the z direction. (b) Schematic diagram 

showing the angles aand fi used to calculate 4 n is a line normal to the lamellae plane residing in 

the xy plane. a is the angle between x and ni,, and flis the angle between n and n, a line nornal to the 

lamellae plane. 
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Figure 4.9 d0 spacing as a function of oil mole fraction. Lines are least squares fit. 
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The addition of octadecane shows the most swelling behaviour, where at 0.02 and 

0.04 mole fraction the spacing is increased to 4.Onm, and at 0.06 mole fraction it 

increases again to 4.3nm. 
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Figure 4.10 shows a composite graph of the d0 spacings for each of the oils as a 

function of the volume fraction of oil. The gradients of the lines are still different, 

indicating that the effect of increasing the spacing is not entirely due to the volume of 

the oil beads expanding the layer. This implies that dodecane and octadecane behave 

increasingly like swelling oils, while hexane has little or no effect on the bilayer 

spacing. Figure 4.11 shows isodensity images of the lamellar phase on the addition of 

octadecane showing the different orientations of the lamellae with respect to the 

simulation box because of the swelling behaviour of octadecane. 

Orientation changes as lamellae thicken because of swelling behaviour of octadecane. 

The effect of the oils on the bilayer can be investigated further by comparison to ideal 

penetrating and ideal swelling behaviour. Ideal penetrating behaviour assumes that the 

oil has no effect whatsoever on the hydrocarbon thickness of the bilayer, as the oils 

are situated in between surfactant tail chains. Ideal swelling behaviour assumes that 

the effective surface area per head group remains constant, as all of the oil is situated 

between the interlayer of the chain. 

To derive an equation that gives d0 as a function of oil concentration, the bilayer 

spacing do is related to the bilayer (tail) thickness, dhc  and the alkyl chain volume 

fraction, çojq (components that reside in the bilayer, including the tail and the oil). 

Firstly, derive an equation for çog,i: 
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v,N, + v0N0 	 (44) 
øalAy! = v,N, +v0N0  +vhNh  +vN 

Where v and N represent the volume and number of molecules of each constituent and 

the subscripts t, o, Ii, and w represent the tail, oil, head and water components 

respectively. 

As N, = Nh, and the oil to surfactant mole ratio X 05  = NJN, and the surfactant to water 

mole ratio X = N,'W, the equation can be modified to: 

v,N, +v0N,X 0  
øayI 

- 
- v,N, +v0N,f +vh N, +vN,X 5  

Nt  now be eliminated, leaving: 

V 1  +v0X0 	 (4.5) 
øaay' = v, +vOf+vh +VX5 

In the binary mixture, X0  is zero, so the equivalent binary equation is: 

ø0 	 t 	 (7.6) 
aI&yl = V

1  +Vh  V W X SW  

This derivation for d0 for a penetrating oil uses the fact that it is assumed that the 

bilayer thickness remains constant, so d,1 =d °  ,1 , where d, °  is the bilayer thickness for 

the binary mixture. 

d0 __!!_ 	 (7.7) 
øaIAyI 

For a binary mixture the equation becomes: 

do (7.8) 
0•0 

9alkyl 

Substituting equation 4.8 into equation 4.7 gives: 

0 

d = d 0 Y 1 	 (4.9) 
0 	0 

øaIkyl 

On increasing oil concentration, 	increases, thus decreasing d0. This indicates that 

the ideal penetrating behaviour of the oil encourages the head and water part of the 

bilayer to contract, as d,, is assumed to be constant. 

To derive the corresponding equation for ideal behaviour of a swelling oil, it is the 

effective surface area per head group S. that remains constant. This is related to the 

effective alkyl chain volume per surfactant (v,i-v 0X0 ) and half the length of the tail 

region by: 

[:1$] 
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Sa 
= 2(v +v0f) 	 (4.10) 

dhC  

Substituting d& = docaa,kyj into equation 4.10 gives: 

2(v,+v0 X 05
) 

a 	
daøaiicyi 

For ideal swelling behaviour, it is assumed that S. is constant, and will be the same as 

S. for the equivalent binary mixture, which is given by: 

so = 
2v 

a 
"0 Wany! 

(4.12) 

Thus as Sa=Sa°  for an ideal swelling oil, equations 4.11 and 4.12 can be combined to 

give: 

0 

d =d±"'°) 
0 	0 

øii!ky! 	V, 

(4.13) 

This ideal penetrating and swelling behaviour can now be compared to the simulation 

results to compare the d0 spacing for hexane and octadecane against predicted values 

for ideal penetrating and swelling behaviour. This is shown in Figure 4.12. 
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Figure 4.12 Ideal penetrating and swelling behaviour for hexane and octadecane respectively, 
conpa red to shnulation results. 

This figure shows that for hexane, there is no change in the d0 spacing which differs 

from theory, which shows that the bilayer spacing should decrease on increasing 
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hexane concentration, and hexane therefore doesn't act completely as a penetrating 

oil. Although the d0 values for hexane are quantized, the error bars for hexane, taken 

to be half the difference from one d0 value to the next, lie above the ideal penetrating 

line, indicating that there would have been an orientation change if hexane were to 

have been behaving as an ideal penetrating oil. Octadecane simulation points lie pretty 

much on the curve predicted for ideal swelling behaviour. 

Another comparison between theory and simulation results can be made for the 

surface area per head group (S0) as a function of oil mole fraction. For octadecane 

which ideally behaves as a swelling oil, should have no effect on S 0 , which in this case 

is assumed to be a constant. However, the penetrating hexane should increase Sa, and 

the amount it should increase ideally can be predicted. 

Substituting equation 4.9 for d0 for ideal penetrating oil into equation 4.10 for S. 

gives: 

- 2(v, + fvo 
S0 

- d$Ø 
(4.14) 

From this equation it is shown that ideal penetrating behaviour leads S. to increase on 

increasing oil concentration. 

S. values for hexane and octadecane were calculated from equation 4.10 and were 

compared to the theoretical values from equation 4.14 and are shown in Figure 4.13. 
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The Surface area for Octadecane addition remains constant, as expected from ideal 

swelling behaviour, so this shows that octadecane is a swelling oil. For hexane, there 

is a steady increase but not as high as ideal penetrating behaviour predicts. 

It is known from previous work that hexane behaves as a penetrating oil and that 

octadecane behaves as a swelling oil t 1 l. To elucidate whether dodecane behaves like a 

penetrating or swelling oil, d0 and S. values were calculated from simulation results 

and compared to ideal values for dodecane. Graphs showing d0 and S. are shown in 

Figure 4.14 and Figure 4.15 respectively. 

Both of these graphs show that the dodecane behaves in intermediate between ideal 

penetrating and swelling behaviour, indicating that some dodecane molecules lie in 

the interlayer region while some dodecane molecules or at least part of them lie 

between the tails. 
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Figure 4.14 Ideal penetrating and swelling behaviour for dodecane 
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Figure 4.15 Surface area per head group for ideal penetrating and swelling behaviour for dodecane 

4.5.2 Probability Density Functions of Lamellar Phases 
To investigate where the oils are located within the tail region, probability density 

functions of the lamellar phases were plotted for each of the three oils at differing 

concentrations of added oil. These were all taken at X=0.75. To investigate extreme 

penetrating behaviour, a fourth oil, butane was simulated at X=0.75, resulting in 

lamellar structures, so extreme penetrating and swelling behaviour can be 

investigated. These probability density function plots were created by taking the 

coordinates of every bead from the output file and using a program to read the 

coordinates and use them to create a density profile across the complete repeat 

distance for the tail, head, oil and water beads. A succinct description of the source 

code for the program, written in C++, appears in appendix B. 

Figure 4.16 shows an example of the probability density functions produced for all 

types of beads across a single lamellar layer. 

For all of the Probability density functions, the two largest peaks are for the tail and 

head beads. The oil bead peak is in the same position as the tail peak and the water 

peak is in the same position as the head peak. 
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Figure 4.16 Typical probability density function across lainellar phase showing tail, head, water and 

oil beads. Graph show,i is of 0.04 hexane mole fraction, X=0.75. Filled squares = tail, open circles = 

head, filled diamonds = water and open triangles = oil beads. 

To show how the addition of oil affects the probability distribution in the alkyl chain 

region, nested plots of the oil and tail probability density functions are presented in 

Figure 4.17. 

As the concentration of butane and hexane increases, the oil bead peak gets taller, and 

the tail peak gets correspondingly shorter. The tail peak also flattens slightly at large 

concentrations of hexane. On increasing the concentration of dodecane the oil gets 

larger, and the dodecane peaks are larger than the hexane peaks for the same oil mole 

fraction. The tail peak gets shorter on increasing concentration, and at high 

concentrations the tail peak starts to split into two peaks. On increasing concentration 

of octadecane the tail peak again gets taller, and the octadecane peaks are larger than 

the dodecane peaks for the same oil mole fraction. As for dodecane, the tail peak gets 

smaller and splits into two. 

A further set of nested plots have been plotted using the same data, plotting oil and tail 

probability density functions for a single oil concentration, showing the effect of the 

addition of different lengths of oil. These plots are shown in Figure 4.18. 

Increasing the length of oil increases the size of the peak for the oil probability 

density, as expected. For the tails, at low concentration the longer oils decrease the 
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peak, and for higher concentrations the longer oils cause the peak to separate into two 

distinct peaks, indicating swelling behaviour. Shifts in peak locations are due to a 

change in lamellar repeat distance. 

Using these probability density functions, the behaviour of the added oil can be 

analysed by considering the width of the oil and tail peaks, and how they change on 

increasing concentration for each of the three oils. This can be done by measuring the 

full width of the peak at half maximum height (FWHM), which was done using a 

curve fitting application on Origin, a scientific graphing and data analysis software 

package, fitting the curves to Gaussian curves. Peaks that were split into two were 

fitted using two individual Gaussian curves, and the overall width for these was 

considered to be the peak separation plus the average of the two FWHTvIs. Figure 4.19 

shows the results for the oil peak widths and Figure 4.20 shows the results for the tail 

peak widths. 
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At low 9011,  the hexane FWHM is relatively high, and higher than that of the dodecane 

or octadecane. High FWHM suggests that oil is more spread across the tail region, 

suggesting more penetrating behaviour. However, the oil FWHM for hexane decreases 

on increasing oil concentration, while the tail FWHIM remains constant, suggesting 

that hexane behaves less like a penetrating oil at high concentrations. Dodecane has a 

lower oil FHWM at low concentrations, and octadecane has the smallest oil FWHM at 

me 
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low concentrations. These low FWF[M values suggest that the oil is spread over a 

narrow part in the centre of the tail region, suggesting swelling behaviour. For both 

dodecane and octadecane, increasing the concentration of oil increases the oil FWHM, 

but the gradient for octadecane is higher. Correspondingly, the tail FWHPvI for 

dodecane and octadecane also increase with increasing concentration, where the 

highest gradient is for the tail for the octadecane simulations, showing that the 

swelling behaviour doesn't change significantly at high concentrations. 

4.5.3 Tail Bead Probability Density Functions 
The behaviour of the oils can be further elucidated if probability density functions of 

the individual tail beads are plotted. For this the four tail beads are labelled 1 to 4, 

where bead 1 is the bead that includes the terminal CH3 group, situated in the centre of 

the bilayer, bead 2 and bead 3 are the next beads up and bead 4 is closest to the 

interface region. These probability density functions were created using a modified 

version of the same program, and an example of these probability density functions is 

plotted in Figure 4.21, showing the probability density for each individual tail bead 

across a single lamellar layer. A succinct description of the source code for the 

modified program appears in appendix C. 
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Figure 4.21 Tail Bead Probability Density Function exanple 

In theory, the expected probability density functions for all of the beads should be two 

distinct Gaussian peaks, with a separation that increases from bead 1 to 4, as the 

distance between them across the layer increases. However, for all oils, beads 1 and 2 
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are single Gaussian peaks which cannot be resolved into two separate peaks. Beads 3 

and 4 are resolved into two peaks. This indicates that the distribution of the tails 

towards the centre of the tail region is not as simple as expected. 
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Figure 4.22 F WHM for beads 1 and 2for (a) butane, (b) hexane, (c) dodecane and (d) octadecane. 
Filled circles = bead 1 and open squares = bead 2. 

The distance between a bead on one tail and the same bead on the other side of the 

bilayer is related to the breadth of the peaks. For beads 1 and 2, the FWI-IM was 

measured, but for beads 3 and 4, which were considered as two separate peaks, the 

separation of the peaks was measured. The FWHtvI for beads 1 and 2 for the oils as a 

function of oil concentration is shown in Figure 4.22. The peak separation for beads 3 

and 4 for the oils as a function of oil concentration is shown in Figure 4.23. 
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Figure 4.23 Peak Seperation for beads 3 and 4for (a) butane, (b) hexane, (c) dodecane and (d) 
octadecane. Filled squares = bead 3 and open triangles = bead 4. 

Figure 4.22 shows that on increasing concentration beads 1 and 2 remain nearly 

constant for butane and hexane, but increase for dodecane and octadecane. This 

indicates that butane and hexane are not aggregating in the centre of the tail region, 

causing it to expand, white dodecane and octadecane must be aggregating in the centre 

of the tail region, causing the FWHtvI to increase for beads 1 and 2. This is further 

proof of the penetrating behaviour for shorter oils and swelling behaviour for longer 

oils. 

However, it is noted that the FWI-IM for bead 1 is higher than that for bead 2 at low 

oil concentrations. This is counter-intuitive as the separation for bead 2 should be 

higher, leading to a wider peak. This is likely to be caused by the beads at the centre 

of the tail region to be packed such that the FWHM for bead 1 is higher than for bead 

2. Two possible configurations are shown in Figure 4.24. The first configuration is 
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where the angle between beads 3, 2 and 1 is lower than 90 degrees, so that bead 2 

effectively becomes the bead closest to the centre. Another configuration is that the 

tails overlap with each other sufficiently so that bead 1 on one tail is beyond bead 2 on 

a tail of the opposite side of the tail region. This is known as interdigitation of the 

tails. 

(a) 	 (b) 
Surfactant head roups 

41 
	

Surfactant head groups 

urfactant head groups 	 Surfactant head groups 

Figure 4.24 Two possibilities leading to wider peak for bead I than bead 2 in probability density 
function. (a) Angle between beads 3, 2 and I is less than 90 °. (b) interdigitation of tails. 

On increasing concentration, the FWJi-llvI for beads 1 and 2 swap over for all oils 

except hexane. This indicates that the swelling oils, residing in the centre of the 

interlayer, may reduce this interdigitation effect. 

Figure 4.23 shows the separation between beads 3 and 4 on increasing the oil 

concentration. For butane and hexane, there is little or no increase in separation on 

increasing oil concentration, but there is an increase for dodecane and octadecane. For 

bead 4, the separation increases from 1.42nm (no oil) to 1.44nm (t'Pb ut=O.l), to 1.50nm 

(9jwx=01), to 1.62nm (ç=O.iO)  and 1.77nm ((poct=O.lO).  This further shows the 

swelling effect for long oils, and that there is more swelling behaviour for octadecane 

than for dodecane. 

4.6 Comparison with Experimental Results 
Having shown the results of the addition of different types of oil to the binary phase 

sequence, these results can now be compared to previous experimental work on the 

addition of oil to surfactant-water mixtures [2]  In the experimental work, hexane, 

decane and octadecane were added to the non-ionic surfactant C 1 6E5, which is very 

similar to the surfactant being modelled, C12E6. The oils are also equivalent except for 
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decane (experiment) and dodecane (simulation), but are quite close, and are both of 

similar length to the tail length of the surfactants they are added to. Hexene and 

hexane are equivalent in this case as the simulation of hexane uses just two beads 

separated by a single, straight bond. This means that the simulated hexane model is 

rigid, so it therefore behaves more like hexene. However, as the model does not 

consider the bond angles or torsion angles of the alkyl chains, it was considered more 

appropriate to label the molecules in their most simple form, so hexane is used to 

describe the molecules comprising of two beads, equivalent to six hydrocarbons. 

Firstly, in order to qualify the comparison, a discussion on the equivalence of the 

temperature variable in the experimental work with the concentration variable in the 

modelling work needs to be made. Then the main findings of the experimental work 

will be highlighted, before a comparison of the results of the different types of oil in 

the simulation work before finally comparing and contrasting the results of 

experiment and simulation. 

4.7 Temperature and Concentration Equivalence 
In all oil addition work, in both experiment and simulation, the effects of the addition 

of oil are compared to the equivalent binary phase sequence. The present simulation 

work will be compared to the work on adding oil to C16E6, so the binary phase 

diagram of C16E6 needs to be considered. This differs upon heating and cooling so 

both phase diagrams, upon heating and cooling (Figure 1.19) need to be considered. 

For the experimental work, the phase sequence upon cooling from 45-28 °C at 55% by 

weight C16E6 was used. (Phases were determined with the addition of oil upon 

cooling.) This phase sequence is L, Mh1(0), Mh1 (R3m), Mh1 (R3m)+V j  and V1. 

This phase sequence is exactly the same at 30 °C, decreasing concentration from 62-

52%. 

So as the phase sequences change little whether concentration or temperature is being 

varied, it was most convenient to vary temperature as this meant fewer samples were 

made, and this in turn decreases error. However, it already has been shown that in the 

model developed using DPD, the temperature of the system has little effect on the 

phases. However, the binary phase sequence established from the developed model on 

increasing concentration is equivalent to the binary phase sequence in experiment both 

in varying concentration and temperature. One can therefore make the equivalence 
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that the concentration parameter in the simulation is effectively the same as the 

temperature parameter for experiment. 

4.8 Experimental Findings 
According to experimental work (21,  the addition of oils to a surfactant and water 

mixture destabilised phases with surface curvature, and the longer the oil, the more 

pronounced the effect (figure 1.21). The simulation results also exhibit this for hexane 

and dodecane, where the phase transitions occur at lower mole fractions of dodecane 

than for hexane. However, the simulation results from octadecane show that phases 

with curvature remain stable at higher mole fractions of hexane instead of lower as 

expected from experimental work. 

Hexene is the most penetrating oil and is situated between the surfactant chains 

causing the surface area per molecule to increase, but the bilayer spacing remains 

constant. For octadecane, the surface area per head group remained constant, while the 

bilayer spacing increased. (See Figure 4.25 and Figure 4.26 for d0 values for hexane 

and octadecane respectively and Figure 4.27 shows S. values for all three oils added.) 

Irrespective of the type of oil added, there was a loss of phases in favour of the 

lamellar phase it sufficiently high concentration, and ultimately phase separation. The 

Mh1 (R3m) phase was destabilised at low concentrations and this was thought to be 

due to the fact that the interlayer interaction is destabilised by the swelling of the alkyl 

chain region and the changing water layer thickness. The Mh1(0) phase has a wider 

range than the Mh1 (R3m) phase but smaller than the L. phase, showing that the oils 

are affecting the rigidity of the interface, discouraging the formation of curved 

interfaces and water-filled defects. The L. phase, which has no interfacial curvature, is 

only destabilised by phase separation. 
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5 Modelling Anaesthetics & Alcohols 

5.1 Introduction 
Anaesthetics are small molecules with amphiphilic properties. The addition of these 

molecules to surfactant and water mixtures should therefore result in the anaesthetics 

residing in the interfacial region. In this chapter a model anaesthetic has been created 

and added to the binary phases of C12E6 to investigate the effect of the addition of 

anaesthetic molecules to the interfacial curvature. This anaesthetic has then been 

modified by changing the interaction parameters. These results can then be compared 

to experiment. 

5.2 Modelling Anaesthetics 
As anaesthetic molecules are amphiphilic, the anaesthetic model will comprise a 

hydrophobic part and a hydrophilic part, like the surfactant model. The numbers of 

beads for these parts should also equate to the volume of the anaesthetic molecule (as 

in section 2.7.1). The shape and hydrophilicty of components of different anaesthetics 

changes so it is not easy to accurately model an anaesthetic in the same way as it was 

to model a single chain non-ionic surfactant. The first, most primitive model that was 

used was a rudimentary, generic amphiphilic molecule comprising one head bead and 

one tail bead connected together with a bond of the same type as the surfactant model 

bond. Figure 5.1 shows a schematic of the model anaesthetic. 

.-. 

Figure 5.1 Schematic showing generic anaesthetic molecule with one hydrophobic bead (red) 'and one 
hydrophilic bead (blue) connected with a bond 

5.3 Results 
A phase diagram showing the phase structure upon addition of the anaesthetic to 

differing surfactant and water concentrations is shown in Figure 5.2. This shows that 

at X,0.36 and 0.75, L. is stable until the mole fraction of anaesthetic ((P,.,,) = 0.08 

and 0.10 respectively. At these concentrations, the mesh phase becomes stable. At X 

= 0.23, the mesh phase is stable until 0.14, when dV 1  becomes stable. AtX5 ' 0.16, 

L3 is stable until can = 0.02 and dV 1  becomes stable at can = 0.08. Overall, it is clear 
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that adding anaesthetic destabilises phases with lower interfacial curvature in favour 

of phases with higher interfacial curvature. Figure 5.3 shows isodensity images of 

phase evolution on the addition of anaesthetic. 
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Figure 5.2 Phase diagram showing phases on increasing mole fraction of anaesthetic (14. 5nm box) 

Filled squares = L. open circles = Mh 1, filled diamonds = L 3  and open triangles = dV1•  Lines are a 
guide to the eye. 
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5.3.1 doandSa  
d0 and S 8  values were calculated as in chapter 4, and graphs showing the lamellar 

repeat distance and the effective surface area per surfactant head group are shown in 

Figure 5.4 and Figure 5.5 respectively, compared to ideal penetrating and swelling 

behaviour. These graphs show that d0 decreases as the concentration of anaesthetic 

increases, and S 8  increases as the concentration of anaesthetic increases. The 

anaesthetic shows behaviour intermediate between ideal swelling and penetrating 

behaviour, and the form of these plots for the anaesthetic is very similar to that of 

hexane. 

4,6 

• Simulation 

- - - Ideal Penetration 

4.4 - Ideal Swelling 

E 
C 

• 	• • • . • 

g 42 

(4 

3.8 
0 
E 
5 

3.6 

3,4 

0 
	

0.01 	0.02 	0,03 	0.04 	0.05 	0.06 	0.07 	0.08 	0.09 	0.1 

Anaesthetic Mole Fraction 

Figure 5.4 d 0  spacing as a function of anaesthetic mole fraction. 

0.52 

• Simulation 

C 
	

Ideal Swelling 

0. 
	 Ideal Penetrating 

0 
0.48 

0 
C 
0 

C 
a 

0,44 
t 
a 

S. • 
0.4 

0.36 

0 	0,01 	0.02 	0.03 	0.04 	0.05 	0.06 	0.07 	0.08 	0.09 	0.1 

Anaesthetic Mole Fraction 

Figure 5.5 S. as a function of anaesthetic mole fraction. 

101 



°- 	 rTh\  
05 

07 

00 

05 

a2 \ 

:- 

0 

2 
a 

Chapter 5 

5.3.2 Probability Density Functions of Lamellar Phases 
Probability density functions were produced across the lamellar phase at X=0.75 and 

are shown in Figure 5.6. Figure 5.7 shows a composite of the probability distribution 

functions for the anaesthetic beads. The peaks of these distributions correspond with 

the interfacial region, showing that the anaesthetic molecules reside in the interfacial 

region as expected, because of their amphiphilic nature. 
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Figure 5.7 Composite probability density functions of lamellar phase for anaesthetic beads for 

a 02 (Filled triangles), 0.04 (open squares), 0.06 (filled diamonds) and 0.08 (open circles). 
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5.4 Modifying the Anaesthetic Parameters 
The model anaesthetic, although generic in nature, has produced some useful results. 

However, the parameters of the model can be adapted in an attempt to improve the 

model, and investigate whether such changes will allow productive comparison to be 

made with experiment. 

5.4.1 Modifying Anaesthetic Tail-Surfactant Tail Interaction 
Strength 

One difference between the modelled anaesthetic and the anaesthetics used in 

experiment is that the anaesthetic tails are in general lipophobic This means that 

the anaesthetic tails experience repulsive forces from hydrocarbon chains. To account 

for this behaviour, the repulsion parameter between the anaesthetic tail bead and the 

surfactant tail beads can be increased, mimicking this lipophobicity. Two more model 

anaesthetics have been used, identical to the first but with anaesthetic tail-surfactant 

tail interaction parameters of arsra=30 and 35 (instead of aTSTa=25 for the generic 

anaesthetic).The phase diagrams on increasing concentration of anaesthetic for 

anaesthetics with arm=25, 30 and 35 (showing the effect of the lipophobicity of the 

anaesthetic tail) at surfactant to water mole ratios of 0.16 to 0.36 are shown in Figure 

5.8 The mole fraction of anaesthetic for each of these phase transitions is tabulated in 

Table 5.1 for anaesthetics with arr=25, 30 and 35. 

The effect of increasing the lipophobicity of the anaesthetic tail (arr0 30 and 35) 

decreases phase transition concentrations, by considering that the X 5 =0.23 Mh - dV 1  

and X=0.36 L - Mh1 phase transition concentration decrease as lipophobicity is 

introduced. This implies that increasing the lipophobicity of the anaesthetic tail 

increases the surface curvature of the phases. 
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Surfactant 	tail 	
- X=0. 16 X=0. 16 X5 =0.23 X=0.36 

Anaesthetic 	tail L3 - Mhi Mh1 - dV 1  Mh1 - dV1 L - Mh1 
repulsion parameter 

25 0.015 0.065 0.115 0.075 

30 0.035 0.045 0.075 0.045 

35 0.015* - 0.075 0.045 

X 3 =U. Ib, L3 - dy1 transition 
Table 5.1 Phase transition concentrations on changing sutfactant tail-anaesthetic tail repulsion 

parameter 

5.4.2 Modifying Anaesthetic Head-Water Interaction Strength 
According to [21,  type I anaesthetics have polar moieties which displace water from 

between the ethylene oxide head groups, promoting their dehydration, inducing 

decreased surface curvature. This behaviour can be replicated in the model by 

increasing the repu!sion parameter between the anaesthetic head group and water 

(ajiaw). This interaction parameter has been raised from au0w =25 to 30 and 35. Also 

from 121,  type II anaesthetics carry a loca!ised charge in their molecules. The 

association of the charged part of the molecule with the base of the head group region 

may affect interfacia! curvature. This effect can be mimicked by decreasing aHUW. This 

interaction parameter has been lowered from amw=25 to 20 and 15. 

The phase diagrams for anaesthetics with aHaw—lS, 20, 25, 30 and 35 (showing the 

effect of the repulsion of the anaesthetic head with water) also at surfactant to water 

mole ratios of 0.16 to 0.36 are shown in Figure 5.9. It can be seen that the form of 

these phase diagrams are the same as for the generic anaesthetic (auaw=25). However 

the phase transitions occur at different anaesthetic concentrations, so the different 

types of anaesthetics can be compared by investigating the following four phase 

transitions: L3 to Mhi at X5 =0.16; Mh 1  to dV 1  at X0.16; Mh1 to dV 1  at X=0.23; 

L to Mh1 at X=0.36. The mole fraction of anaesthetic for each of these phase 

transitions is tabulated in Table 5.2 for anaesthetics with an 0w=15, 20, 25, 30 and 35. 
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Anaesthetic 	head 	- 
water 	repulsion 

parameter 

X=0.16 

L3 - Mh1 

X=0.16 

Mh1 - dV 

X=0.23 

Mh - dV1 

X=0.36 

L - Mh1 

15 0.005 0.045 0.095 0.035 

20 0.025 0.045 0.075 0.035 

25 0.015 0.065 0.115 0.075 

30 0.025 0.065 0.095 0.025 

35 0.045 0.075 0.105 0.035 

Table 5.2 Phase transition concentrations on changing anaesthetic head—waler repulsion paraneler 
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The effects of changing the anaesthetic head-water repulsion parameter were 

investigated further by plotting the concentrations for each phase transition for 

anaesthetics with auaw=15, 20, 25, 30 and 35. Plots are shown in Figure 5.10 and 

Figure 5.11 for the L3 to Mh1 and Mh1 to dV 1  at X=0.16 phase transitions 

respectively, and Figure 5.12 and Figure 5.13 for the Mh 1  to dV1 at X5 =0.23 and L. to 

Mh 1  at X=0.36 phase transitions respectively. These figures show that for the 

X3 =0.23 Mh1 - dV1 and the X=0.36 La - Mh1 phase transitions there is no 

discernible trend on changing the interaction parameter. The L. to Mh1 transition may 

have a peak at amy,-25, and decrease for parameters stronger or weaker than this, but 

as there is insufficient data, this is just conjecture. However for the L3 to Mh1 and Mh1 

to dV 1  phase transitions, both at a lower surfactant concentration of X 5 =0.16, there is 

a noticeable trend, where increasing the repulsion parameter increases the 

concentration for the phase transition. 

These results indicate that at high surfactant concentration, there is no discernible 

relationship between aHaw and the concentration of phase transition, while at lower 

surfactant concentration (X 5 =0.16), there is a relationship. The repulsion parameter 

aHaw therefore has an increased effect at lower surfactant concentrations where there is 

more water for the anaesthetics to repel from the interface. The stronger this repulsion 

is, the more water is repelled from the interface, decreasing the interfacial curvature, 

delaying the formation of phases with higher surface curvature, i.e. increasing the 

anaesthetic concentration required for the phase transitions to phases with higher 

surface curvature. 
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5.5 Comparison to Experiment 
The addition of several types of anaesthetic molecules to surfactant-water mixtures 

has been performed in experiments E21  The results of these experiments show that two 

types of behaviour are observed upon adding anaesthetics to surfactant water 

mixtures, known as type I and type II. Type I anaesthetics have a polar moiety and 

decreased the surface curvature of phases, destabilizing phases such as the cubic and 

mesh phase in favour of the lamellar phase. However type II anaesthetics carry a 

localized charge and increased the surface curvature of the mixtures, inducing mesh 

and cubic phases. At a physiological pH however, both types of anaesthetics 

decreased the surface curvature of the phases. 

The simulation results show that the addition of a generic anaesthetic molecule 

increases the interfacial curvature, so therefore this simulated anaesthetic behaves as a 

type II anaesthetic. 

Modifying this molecule so that its tail is lipophobic (by increasing the interaction 

parameter between the tail of the anaesthetic and the tail of the surfactant to aTaTS=30 

and 35) increases the anaesthetic's ability to induce higher surface curvature, 

enhancing type II behaviour. 

Experimentally, Type II anaesthetics carry a localised charge in their molecules. The 

associati?n of the charged part of the molecule with the base of the head group region 

may affect interfacial curvature. This effect was mimicked by reducing aH0w (the 

repulsion parameter between the anaesthetic head and water) from 25 to 20 and 15. 

Anaesthetics with QUaW  =20 and 25 also had a greater ability to induce higher surface 

curvature, showing that this enhances type H behaviour. 

Type I anaesthetics have polar moieties which displace water from between the 

ethylene oxide head groups, promoting their dehydration, inducing decreased surface 

curvature. This behaviour was replicated in the model by increasing the repulsion 

parameter between the anaesthetic head group and water (aHaw) from 25 to 30 and 35. 

These anaesthetics still overall served to increase the surface curvature of the phases, 

enhancing type II behaviour. However, at X=0.16 (lower surfactant concentration), 

where there was more water for the anaesthetic to repel, the effect of these 

anaesthetics was to decrease the ability to induce higher surface curvatures, 

diminishing type H behaviour. 
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Overall, all of the anaesthetics modelled represent type II anaesthetics, even for 

anaesthetics with aHaw = 30 and 35, which were adapted in an attempt to induce type I 

behaviour. Table 5.3 summarises the results of adding anaesthetics to bulk surfactant-

water systems in experiment and simulation for ease of comparison. 

Experiments were also attempted at pH 7.5, where type II anaesthetics displayed type 

I behaviour as well. To model this pH difference in a simulation, the charges of the 

anaesthetics with their associated counter ions would need to be modelled, and such a 

study lies outside the scope of this research. 

In comparison to the addition of oil, the addition of anaesthetics acts quite differently, 

increasing interfacial curvature instead of decreasing it. Therefore, the behaviour of 

these mixtures behaves differently depending on the nature of the small molecule 

being added. 

Type I Type II 
Lidocaine 

Hydrochloride 
Halothane Prilocaine 

Examples Sodium Thiopental Hydrochloride 
Lidocaine base form Ketamine 

Hydrochloride 
No Buffer Decrease Curvature Increase Curvature 

Experiment 
pH7.5 Buffer Decrease Curvature Decrease Curvature 

Distinguishing Have Polar Moiety 
Carry localised 

property  charge 
Association of 

How it may affect 
Displaces water from charged part with 

curvature 
head groups, base of head group 

 decreasing curvature may_affect curvature 
Generic Anaesthetic Behaves as type II 
Anaesthetic head - Increase (ana%y-30, Decrease (aH;v=20, 

water repulsion 35) 15) 
parameter  

No real change, 
behaves as type II. 

Simulation However at low 
surfactant No real change. Still 

Effect concentration it behaves as type II 
behaves less like type 

II, as more water 
present for 

anaesthetic to repel  
Table 5.3 Summary of the results of adding anaesthetics to bulk surfactant.water systems in experunent 

and simulation for ease of comparison. 
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5.6 Alcohol 
The addition of amphiphilic molecules to the surfactant-water system with tails of 

increasing lengths was modelled. These alcohol-like molecules consisted of one head 

bead like the anaesthetics and multiple tail beads, making the molecule have a bulkier 

chain region. Three alcohols were simulated, with 2, 3 and 4 tail beads, labelled as 

A213, A313 and A413. The parameters were the same as for the generic anaesthetic. The 

phase diagram on increasing A213 concentration to surfactant-water mixtures of 

different mole ratios is shown in Figure 5.15. Similar figures for A313 and A413 appear 

in Figure 5.16 and Figure 5.17 respectively. Considering the modelled anaesthetic A 

as a very short alcohol (AB), the phase diagram taken from Figure 5.2 is shown again 

in Figure 5.14 for comparison. 

Figure 5.14 shows that upon the addition of AB, L3 is destabilised in favour of Mh1, 

and dVl remains stable. 

Figure 5.15 shows that upon the addition of A213, the L3 and dV1 phases are 

destabilised in favour of the Mh1 phase. The Mh1 phase is the most widespread phase 

in the entire diagram, and at mole fractions above 0.05, the Mh1 even becomes stable 

over the L. phase at X5=0.36. 

Figure 5.16 Shows that A313 destabilises the Mesh phase at lower alcohol 

concentrations, favouring the mesh phase. While there is no change in the sponge 

phase, the dv, phase expands slightly, making the mesh phase smaller than for A213. 

Figure 5.17 shows the same trend, where the mesh phase is destabilised at even lower 

concentrations of alcohol for A413 than for A313. Again, there is no change in the 

sponge phase but the dV 1  phase expands slightly, making the mesh phase smaller still 

than in the A213 phase diagram. Figure 5.18 shows a composite figure of the alcohol 

additions. The stability of the mesh phase decreases as the length of the chain of the 

alcohol increases. It is shown that A213 phase diagram has the largest mesh region, 

showing that the mesh phase is most stabilised after the addition of this component. 

Therefore, the stability of the mesh phase in various ternary systems with amphiphilic 

additives depends on the length of the chain. The alcohol chain length critically affects 

the stability of the phases. Figure 5.19 illustrates the different effects of short and long 

chain alcohols by showing isodensity images of phase evolution of the addition of 

A213 and A413. 

A short chain alcohol (AB and A213, Figure 5.20 (left)) will encourage the growth of 

higher curvature structures, e.g. dV 1  and Mh1. As the alkyl chain length increases 
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(A3B and A4B, Figure 5.20 (right)), and with the alcohol anchored at the interface 

curvature will decrease and the interface will flatten. 

Curved interfaces are suppressed even at higher alcohol concentrations and dV 1  

retreats as does Mu 1 . 

The stabilisation of a phase such as Mh1 critically depends upon the alcohol chain 

length; too short and dV1 dominates (alcohol AB), too long and all high curvature 

phases are squeezed out (A3B and A4B). The optimum chain length for Mh1 stability 

for this model is 2 tail beads (A213). 

These findings are in agreement with experiments (31  that show longer chain alcohols 

behave as oils and shorter chain alcohols act as co-solvents and/or co-surfactants, 

depending on chain length. 
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Figure 5.20 Surface curvature promoted by short chain alcohol/anaesthetic molecules (left), Surface 
Curvature flattened by long chain alcohols (right). 
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5.7 Summary 
The generically modelled anaesthetic increases the curvature of the phases, like a type 

IT anaesthetic. Modifying the anaesthetic so that its tail is lipophobic (as anaesthetics 

typically are) increases the interfacial curvature, enhancing type II behaviour. 

Anaesthetics with 	=20 and 15 also had a greater ability to induce higher surface 

curvature, showing that this enhances type II behaviour. 

Anaesthetics with anaw =30 and 35 still overall served to increase the surface 

curvature of the phases, enhancing type II behaviour. However, at X=0.16 (lower 

surfactant concentration), where there was more water for the anaesthetic to repel, the 

effect of these anaesthetics was to decrease the ability to induce higher surface 

curvatures, diminishing type II behaviour. 

Overall, all of the anaesthetics modelled represent type II anaesthetics, even for 

anaesthetics with aHaw = 30 and 35, which were adapted in an attempt to induce, type I 

behaviour. As type I anaesthetics have polar moieties which displace water from 

between the ethylene oxide head groups, inducing decreased surface curvature, it is 

apparent that an increased repulsion parameter alone does not mimic the effect of an 

ionic charge. This may be why this model failed to model type I behaviour. 

Short chain ampiphiles (such as alcohols) promote curved surfaces, but the chain 

length critically affects the surface curvature, and therefore affects the stability of 

phases with curvature. If the chain is too short, dV1 dominates (alcohol AB), if it is 

too long, all high curvature phases are squeezed out (A3B and A413). There is an 

optimum chain length for Mh1 stability and for this model is 2 tail beads (A213). 
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6 Langmuir-Blodgett Trough 

6.1 Introduction 
Experimental work on monolayers was carried out to provide a comparison to the 

computational model. Two different anaesthetics - one type I and the other type II 

(refer to Table 5.3) - were added to monolayers of two surfactants and two different 

lipids to investigate their effect on monolayer surface pressure. 

6.2 Monolayers 
A monolayer is a single, closely packed layer of molecules. A Langmuir or insoluble 

monolayer is a single layer of insoluble, organic molecules spread onto an aqueous 

surface known as the subphase. Rayleigh first proposed that films on water were one 

molecule thick m, and it was Langmuir who developed the experimental and 

theoretical concepts which form the understanding of the behaviour of molecules in 

insoluble monolayers (2I 

Molecules in monolayer films can be categorised into different phases, in the same 

way that molecules in bulk systems can be categorised into different phases. The film 

can be changed from one phase to another by changing the temperature or surface 

pressure. There are three main phases that have distinct properties, and these states are 

known as gaseous, condensed and expanded [3-5]  The surface pressure of these phases, 

and how the surface pressure varies with surface area of the monolayer, characterises 

the phases. The equilibrium surface pressure, it, of a monolayer is equal to the 

reduction of the pure liquid-surface tension by the film: 

(6.1) 

Where yo  is the tension of the pure liquid and y is the tension of the film-covered 

surface. 

In the gaseous phase, the molecules on the surface are far enough apart to exert 

relatively little force on one another. Gaseous films are characterised experimentally 

by a surface pressure approaching zero asymptotically as surface area is increased. 

The surface viscosity is very low. Any monolayer forming substance will exist in the 

gaseous phase if the molecules are far enough apart. 

In condensed monolayers, the molecules are arranged with their closest possible 

packing, making it effectively a two dimensional crystal. Condensed monolayers of 

long chain fatty acids, alcohols and glycerides were studied by Langmuir L61  where it 
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was found that the molecules stood nearly perpendicular to the water surface, with 

terminal polar groups in the water, and the long chains closely packed. Pressure-area 

plots for condensed monolayers are almost straight and very steep, indicating the very 

low compressibility due to the strong chain-chain interactions. For molecules in the 

condensed phase, the surface area per molecule is approximately equal to the cross 

sectional area of the molecule in a bulk crystal [7]  Electron diffraction studies confirm 

that the molecules are nearly vertical, and optical measurements show that the 

thickness of the monolayer corresponds to the fully extended chain length. 

Expanded monolayers have a molecular area between that of condensed and gaseous 

films. Expanded monolayer films are characterised experimentally by a surface 

pressure approaching zero at a constant, steep angle as surface area is increased. The 

molecular area in the expanded phase is generally two to three times the cross 

sectional area, and the surface viscosity is also low. Many monolayers that are 

condensed at low temperature change to expanded at high temperature. Langmuir [8,91 

suggested that the expanded phase can be thought of as a very thin liquid phase where 

the hydrophobic parts of the molecules in the expanded film are in a random 

orientation, where only the polar groups are in contact with the subphase. 

Monolayers can be compressed to pressures considerably higher than their equilibrium 

pressures. Eventually, it is impossible to increase the surface pressure further, and the 

area decreases if the pressure remains constant or the pressure decreases if the area is 

held constant. This is known as the collapse point of a monolayer, where molecules 

are forced out of the monolayer and into the subphase. 

6.3 Materials 
The local anaesthetics prilocaine hydrochloride and lidocaine (base form) (both 98% 

purity) were supplied by Sigma (UK), and were used as recieved. The molecular 

structure of prilocaine hydrochloride and lidocaine are shown in Figure 6.1. The non-

ionic surfactants hexaethylene glycol n-dodecyl ether (C12E5) and hexaethylene glycol 

n-tetradecyl ether (C14E6) (both 98% purity) were synthesised by Nikkol Chemicals 

(Japan), and were used as received. The lipids DMPC (1,2-dimyristol-sn-glycero-3-

phosphocholine) and DMPS (1 ,2-dimyristol-sn-glycero-3-phospho-L-serine.sodium 

salt) were supplied by Avanti Polar Lipids (UK). The molecular structure of DMIPC 

and DMIPS are shown in Figure 6.2. Tris (tris{hydroxymethyl} aminomethane) was 

supplied by Melford (UK), Chloroform was supplied by VWR (UK) and HO was 
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supplied by Sigma (UK). Buffers and solutions for experiments were prepared using 

Milli-Q water (specific resistance 18MQ cm). 

Cl 

Figure 6.1 Molecular structure of the anaesthetics prilocaine hydrochloride (a) and lidocaine (base 

form) (b) 

0 	 0 

0 H 

0 

IP]i' IVI 

+ 
Na 

Figure 6.2 Molecular structure of the lipids DMPC and DMPS 

6.4 Experimental Apparatus 
Surface pressure was monitored by the Wilhelmy method using a 10mm wide paper 

plate (Whatman's Chri chromatography paper) in conjunction with a microbalance, as 

described by Demel (101  Changes in monolayer surface pressure/area were recorded as 

graphic output on a PC using NIMA software (0.16), which interfaced with the 

Langmuir-Blodgett microbalance. Figure 6.3 shows a schematic view of the 

Langmuir-Blodgett apparatus. All experiments were conducted at an operating 

temperature of 21.0 ± 0.1 °C and used a subphase of Tris (10mM, pH 7.5 (for 

prilocaine hydrochloride experiments) or pH 6.5 (for lidocaine experiments)) prepared 

using purified MilliQ water. The subphase was stirred continuously by a magnetic bar 

(10rpm). Contaminants were removed from the buffer subphase surface prior to 

injection by aspiration and a stable surface pressure taken to be that with fluctuations 

of less than 0.01mNm 1 . 
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Figure 6.3 Schematic Diagram of Langmuir-Blodgett Trough 

6.5 Compression Isotherms 
Compressional isotherms are experiments performed at constant temperature that plot 

the surface pressure of a monolayer as the surface area of the monolayer decreases by 

compression. They are obtained by compressing a known amount of monolayer 

forming molecules spread onto the subphase, giving a plot of surface pressure versus 

surface area per molecule. - 

Compression isotherm studies were conducted using a NIMA (UK) 601M Teflon 

Langmuir trough, which possessed surface area dimensions of 5cm x 16cm and held a 

volume of SOmI, mounted on a vibration-isolated table. The trough was equipped with 

two mechanically coupled Delrin barriers Compression isotherms investigated the 

anaesthetics' behaviour. Monolayers were formed by spreading 5l.11 of 0.004M 

chloroform solution of lidocaine on to a Tris buffer subphase giving a total of 

1.28x10 16  molecules present on the surface, or 6p1 of 0.004M solution of pi -ilocaine 

hydrochloride giving 1.38x10 16  molecules on the surface. Figure 6.4 shows a 

Langmuir-Blodgett trough set up for compressional isotherms. After spreading, the 

solvent was allowed to evaporate off the subphase surface over 30 minutes and then 

the monolayer was compressed using a barrier speed of 5cm 2  mm 4  until monolayer 

collapse was achieved. For all compression isotherms, changes in anaesthetic 

monolayer surface pressure with changes in monolayer area were recorded. Figure 6.5 

and Figure 6.6 show the isotherms obtained for lidocaine and prilocaine hydrochloride 

respectively. 
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Figure 6.4 Langmuir-Blodgett trough set up for compressional isotherms. Anaesthetics are spreaded 

dropwise onto subpl:ase with a syringe allowing a monolayer to form. 
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Figure 6.5 shows that as the barriers are compressed, the surface pressure increases, 

and the rate of increase also increases as the barriers get closer together. The curve 

meets the surface pressure = 0 axis at an angle, indicating that the lidocaine is in the 

expanded phase. When surface area per lidocaine molecule reaches 15.3 

nm2/molecule, the surface pressure reaches a plateau at 30 rnNm 1 . This is where 

monolayer collapse occurs, as the surface area per molecule is too small to support a 

stable monolayer. For Figure 6.6, the isotherm for prilocaine hydrochloride, shows 

that there is no collapse for this anaesthetic in the range investigated. The surface 

pressure - surface area curve appears in the same form, rising to 18.6 mNm 1  at a 

surface area per molecule of 6.8 nm 2/molecule, but at maximum compression there is 

no indication that monolayer collapse is achieved. The curve meets the surface 

pressure = 0 axis asymptotically, suggesting that the prilocaine hydrochloride is in the 

gaseous phase. Thermodynamic analysis of compression isotherms was used to 

investigate the dynamic behaviour of the anaesthetic monolayers. The compressibility 

modulus, C1 ', provides a measure of the compressional elasticity of a monolayer and 

can be used to characterise the phase state of the isotherm, thereby providing 

information about the compactness and packing of the model membrane [121  Values of 

C;' were computed according to: 

C;' = 
	 (6.2) 

where 7r is the surface pressure of the monolayer and A represents the area per 

molecule in the monolayer. 

Plots of the values for C' against area per anaesthetic molecule for lidocaine and 

prilocaine hydrochloride are shown in Figure 6.7 and Figure 6.8 respectively. Figure 

6.7 shows that c' increases from 20 to 30 during compression, and suddenly drops to 

nearly zero at 0.2nm 2/molecule, the point of monolayer collapse. A compressibility 

modulus of approximately 20 to 50 represents the liquid expanded phase 
[12],  therefore 

lidocaine exhibits a liquid expanded phase in a monolayer. 
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Figure 6.7 c,' as a function of surface area per molecule of lidocaine 
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Figure 6.8 shows that c; increases from 0 to 12 during the compression of prilocaine 

hydrochloride. If the C' values followed the surface pressure values, it would 

indicate that the phase is an ideal gaseous phase, following the simplified equation of 

state ATI=k8T. The standard equation of state for gaseous films includes a correction 

so that when H—*cc', A~O: Jr(A-A&=kBT where Ao is the surface area actually occupied 

by the molecules. This equation applies for ideal films, where there is no cohesion or 

repulsion between the molecules. If strong cohesion exists between molecules, where 

there is no electrical repulsion or hydrophobic interactions are present (e.g. long 
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chains), the cohesion is approximately constant over a range of area, and corresponds 

to the liquid expanded phase. For charged films, the equation of state is more 

complicated, including a strong repulsive term. 

Comparing Figure 6.6 and Figure 6.8, the compressibility modulus does not closely 

follow the same values as the surface pressure, indicating that prilocaine 

hydrochloride is not in the gaseous phase. prilocaine hydrochloride is a charged 

anaesthetic, with large repulsive forces between molecules, and this maybe why it is 

not either in the gaseous phase, or in the liquid expanded phase as lidocaine. 

These compression isotherms confirm that anaesthetics are monolayer forming, 

behaving like small surfactants. It also reveals a significant difference in the behaviour 

of lidocaine and prilocaine hydrochloride, because of prilocaine hydrochloride's 

charge. 

6.6 Surface Activity 
Surface activity experiments have been performed determining the surface pressure 

increase for a given concentration of anaesthetic added to the aqueous subphase. 

Surface pressure will increase with concentration until a certain point has been 

reached, where the surface pressure will remain constant. These studies enabled an 

appropriate anaesthetic concentration to be chosen for introducing into surfactant/lipid 

monolayers, to investigate the pressure increase for different anaesthetic-

surfactantllipid combinations. 

Surface activity studies were conducted using a Teflon trough, which possessed 

surface area dimensions of 6cm x 5cm and held a volume of 15m1, mounted on a 

vibration-isolated table. 

Anaesthetics in 10mM Iris were introduced into the subphase via an injection port 

with a Hamilton syringe to give desired final concentrations. The anaesthetic 

molecules dispersed to the top of the subphase and formed a monolayer. 

Concentration and volume of the injected sample were calculated using the formula 

M 5 V5  =MV 	 (6.3) 

where VT and Vs are the volumes of the trough and syringe respectively, and Mr and 

M5 are concentrations of the trough and syringe respectively. 

A schematic diagram of the Langmuir-Blodgett trough set up for surface activity 

experiments is shown in Figure 6.9. 
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Hamilton 

Trough\ 	 subphase 	 Anaesthetics 
in Iris 
solution 

Figure 6.9 Schematic diagram of the Lan grnuir—Blodgett trough set up for su,jàce activity experiments. 

Anaesthetics float up to surface after injection. 

Various trough concentrations of prilocaine hydrochloride and lidocaine were 

introduced to the subphase and the resultant surface pressure was recorded to 

determine the surface activity of the anaesthetics. Figure 6.10 shows a typical surface 

pressure versus time graph. Surface activity graphs are shown in Figure 6.11 and 

Figure 6.12 for prilocaine hydrochloride and lidocaine respectively. 
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Figure 6.10 Surface Pressure increase on the addition of 10mM prilocaine hydrochloride (after 120 

seconds) to a Tris subphase. 
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Figure 6.11 Surface Pressure increases of prilocaine hydrochloride added to a Tris Buffer. Line is a 

guide to the eye. 
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Figure 6.12 Surface Pressure increases of lidocaine added to a Tris Buffer. Line is a guide to the eye. 

Figure 6.11 and Figure 6.12 show that the anaesthetic concentration at which the 

surface pressure increase reaches a plateau is 10mM, for both anaesthetics. This 

anaesthetic concentration was used as a standard for the main experiments. 
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6.7 Amphiphile Anaesthetic Interactions 
The ability of the anaesthetics to penetrate surfactant and lipid monolayers at constant 

area was studied. These studies were also conducted using the same trough as surface 

activity experiments. Monolayers were formed by spreading chloroform solutions of 

C 1 2E6, C 14E6, DMPC or DMPS onto the Tris subphase until a surface pressure of 

30mNm' was achieved. After spreading, the solvent was allowed to evaporate off the 

surface of the subphase for 30 minutes. After the monolayer had stabilised, the 

anaesthetics were introduced into the subphase via the injection port, achieving a 

trough concentration of anaesthetic of 10mM. Anaesthetic molecules dispersed to the 

top of the subphase and spread out, interspersing with the existing monolayer. 

Interactions of the anaesthetics with monolayers were measured as changes in 

monolayer surface pressure versus time. Figure 6.13 shows the Langmuir-Blodgett set 

up for these experiments. Figure 6.14 shows a typical surface pressure versus time 

graph. Surface pressure increase for the two anaesthetics introduced to the surfactants 

and lipids are shown in Table 6.1. As results for the two surfactants and two lipids are 

all within experimental error, Table 6.2 combines these results to aid analysis for the 

differences in surface pressure increases for non-ionic and ionic lipids with both 

anaesthetics. 

Hamilton 
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subphase_/ 	 Anaesthetics 
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I 	 solution 

Figure 613 Lan g,nuir-Blodgett set up for amphiphi!e-wzaeasthetic interaction experinents. 

Anaesthetics float up to surface after injection, changing surface pressure of,nonolayer. 
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Figure 614 Typical surface pressure increase plot: The addition of 10mM lidocaine to a DMPC 

monolayer. 

Anaesthetic SurfactantlLipid 
Surface Pressure Increase 

(mNm5±0.1 mNm 

Prilocaine 

Hydrochloride 

1.2 

C14E6 1.3 

DMPC 1.9 

DMPS 1.7 

0.8 

Lidocaine  
0.9 

DMPC 2.3 

DMPS 2.1 

Table 61 Surface Pressure increases for different anaesthe:ic-surfactantllipid combinations 

Monolayer 

Anaestheti 

Surfactants 

(Nonionic) 

Lipids 

(Ionic) 

Lidocaine 0.9 2.2 

Prilocaine 1.3 1.8 

Table 6.2 Surface Pressure increases (mNni' 10.1 mNm") after averaging results from hot/i 
susfactants and both lipids. 
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Considering both surfactant monolayers, the addition of prilocaine hydrochloride 

induced a higher surface pressure increase than for lidocaine. However, for both 

lipids, the opposite trend was found, where it was lidocaine that induced the greatest 

surface pressure change. For both anaesthetics, the lipids induced a greater surface 

pressure increase than that for the surfactants. These results can be compared to the 

findings from [I3j  It was shown that the addition of lidocaine to surfactant water 

systems has the effect of displacing water from the head groups, decreasing interfacial 

curvature. The affect of adding prilocaine hydrochloride also decreases interfacial 

curvature (at pH 7.5), where the association of the charged part of the anaesthetic with 

the base of the head group may affect surface curvature. 

Before specific discussion of these results are considered, it is important to consider 

the degree of protonation of the anaesthetics at the pH of the buffer. This can be done 

by comparing the pK a  values of the anaesthetics with their relevant buffer pH. If the 

pH and pKa values are similar (within one unit of each other) then the molecule will 

exist in both protonated and deprotonated forms of similar quantities. If the pH of a 

solution is more than the pKa  of its molecule (differing by more than one unit) then 

the molecule's deprotonated form dominates. If the pH of a solution is less than the 

pKa of its molecule then the molecule's protonated form dominates. This is in 

accordance with the Henderson-Hasselbalch equation [141: 

([acid]'\ 
pH = pK 	

[base]J 
(6.4) 

Table 6.3 shows pK3  and pH values for the two anaesthetics, along with their 

[acid]/[base] ratios calculated from equation 6.4. 

Anaesthetic pKa  pH of buffer pKa - pH [acidJ/[ base] 

solution ratio 

Lidocaine 7.86 6.5 1.36 22.9 

Prilocaine 7.75 7.5 0.25 1.8 

hydrochloride 

Table 6.3 plC,, and pH values for the anaesthetics showing degree oJprotonat:on. 

Table 6.3 shows that lidocaine is mostly in its protonated form and prilocaine 

hydrochloride is in a mixed form. This mixed form will include some molecules that 
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are protonated and some that are deprotonated. Therefore, due to these conditions, the 

differences of behaviour of the two types of anaesthetics cannot be established. 

Despite this, Table 6.2 still shows the effect that charge plays on the surface pressure. 

The surface pressure increases for the anaesthetics added to the charged lipids 

(2.2mNm' and 1.8mNm' for lidocaine and prilocaine hydrochloride respectively) 

were higher than for those added to the non-ionic surfactants (0.9mNm 1  and 

1.3mNm' for lidocaine and prilocaine hydrochloride respectively). 

The ionic strength I of the subphase can be found using the formula [141: 

I =->ztn 
	 (6.5) 

where Zi  is the number of charges of an ion i, and mi is its molar concentration, and the 

sum is over all ions in solution. For lidocaine, predominantly in its protonated form, 

the molar concentration of ions is 10mM, so taking into account the anions and 

cations, along with the ions from the buffer solution, its ionic strength will be 

approximately 20mM. For prilocaine hydrochloride, with an [acid]/[base] ratio of 1.8, 

the concentration of prilocaine ions will be approximately 6.4mM. Summing over 

anions and cations for both amino groups of the molecule with the ions from the 

buffer solution, its ionic strength will be approximately 23mM. 

6.8 Conclusion 
Anaesthetics are small, surface active molecules, and this work shows that 

anaesthetics associate with the interface and increase surface pressure. Compression 

isotherms revealed that lidocaine, the non-ionic anaesthetic is in the liquid expanded 

phase while prilocaine hydrochloride's phase could not be elucidated, because of the 

increased repulsion between its charged molecules. 

The effect of adding the anaesthetics to both surfactant monolayers is the same, and 

the effect on both lipid monolayers is the same, indicating that size or small structural 

differences have a negligible affect on surface pressure. The cause of the differences 

in behaviour is that the lipids are ionic and the surfactants are non-ionic. Coulombic 

interactions give rise to an increase in surface pressure increase. 
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6.9 Summary 
Thermodynamic analysis on the lidocaine isotherm revealed that lidocaine is in the 

liquid expanded phase and monolayer collapse is achieved at 15.3 nm 2/molecule, 

where the surface pressure suddenly plateaus to 30 mNm 1 . There was no such 

collapse for prilocaine hydrochloride, whose phase could not be determined. 

The effect of adding the anaesthetics to both surfactant monolayers is the same, and 

the effect on both lipid monolayers is the same, indicating that size or small structural 

differences have a negligible affect on surface pressure. For both anaesthetics, the 

lipids induced a greater surface pressure increase than that for the surfactants. The 

cause of the differences in behaviour is that the lipids are ionic and the surfactants are 

non-ionic. Coulombic interactions give rise to an increase in surface pressure increase. 
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7 Conclusion and Further work 

7.1 Conclusion 
This piece of research attempted to address how the addition of small molecules can 

affect interfacial curvature, and hence, phase structures of surfactant-water systems. 

The understanding of these affects can be utilised to enable phase structures to be 

controlled by the small molecules, enabling potential applications making use of 

stabilised phases with significant surface curvature, such as the mesh phase, to be 

achieved. 

It has been shown that surfactant-water systems with added molecules can be 

successfully simulated using mesoscale dynamics. The results of these simulations 

agree with experiment. 

Small molecules generally decrease surface curvature, losing complex phase 

structures. Oil added to surfactant-water systems resides in the hydrophobic region, 

bulking the chain region either in a swelling or penetrating nature, depending on the 

length of the oil. This bulking effectively destroys any positive interfacial curvature, 

favouring the lamellar phase at high concentrations. This agrees with previous 

experimental work. 

Short chain ampiphiles (such as alcohols) promote curved surfaces, but the chain 

length critically affects the surface curvature, and therefore affects the stability of 

phases with curvature. If the chain is too short, dV1 dominates (alcohol AB), if it is 

too long, all high curvature phases are squeezed out (A3B and A413). There is an 

optimum chain length for Mh1 stability and for this model it is 2 tail beads (A213). 

Experiments on the addition of anaesthetics to monolayers have found that coulombic 

interactions are important where present, and these will inevitably dominate. 

However, these coulombic interactions have not been successfully modelled here. 

Both experimental and computational work has confirmed that anaesthetics/small 

surfactants are located at the surface, and can profoundly affect phase structure. The 

dimensions, structure and interactions of these small molecules critically affect the 

surface in which they reside, affecting surface curvature and hence phase structure. 

However, using such molecules to engineer phase structures for templating 

applications may be very difficult because of the extreme chemical environments 

involved in templating solutions, which may themselves destroy the phase structures 

that the amphiphilic molecules create. 
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7.2 Further work 
As it has been found that cou!ombic interactions critically affect the surface curvature, 

the model could be developed to include ionic interactions and to study the effects. 

More experiments could be performed on the langmuir trough studying molecular 

homologues, changing size and ionic state to understand how different structure and 

charge of the amphiphiles affect their interaction with the monolayer. 

In order to strengthen the conclusions found from the addition of the amphiphilic 

molecules, it would be useful to investigate the addition of different amphiphilic 

molecules to different surfactant models to elucidate whether the same pattern 

reoccurs. 

By performing experiments such as grazing incidence diffraction experiments such as 

Small Angle Neutron Scattering (SANS), the structure and orientation of the 

anaesthetic molecules within the monolayer could be elucidated. This would also give 

more clues as to how amphiphilic molecules affect the surface pressure and interfacial 

curvature. 
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Appendix A - About OCTA & COGNAC 
OCTA is an integrated simulation system for soft materials. It is a joint project of 

industry and academia, funded by the Ministry of Economy, Trade and Industry 

(METI), Japan. 

OCTA includes four simulation programs or "engines", including: 

COGNAC (molecular dynamics) 

PASTA (reptation dynamics) 

SUSHI (Edwards self consistent field theory) 

MUFFIN (Continuum dynamics) 

COGNAC is the engine that was used in this study, and can simulate both full 

atomistic and coarse-grained models. 

These four engines all use the same Graphical User Interface (GUI), called 

GOURMET. This is the editor and viewer of text files that the engines use. These text 

files are written in a user defined format (udt) for ease of manipulation. 

These udf files consist of a definition part and a data part. The definition part provides 

the names to all of the data, and the structure of the data. This can be seen, edited and 

processed using a script written in a programming language called python. The data 

part is read and rewritten by the engine during its execution. 

To perform a simulation using OCTA, first an input udf file needs to be created 

containing all of the relevant information about the parameters to be used (such as 

number of time steps, size of box etc), the number and structure of each type of 

molecule, and algorithm and engine to be used in the simulation itself (in our case 

Dissipative particle dynamics and COGNAC, respectively). This is done by writing a 

python script in a template udf file, that will create a given number of each type of 

molecule with a given number of beads and their associated bonds for the input udf 

file. 

The input udf file is read and executed by the engine, the output of which is either 

appended to the input file or put into a separate output udf file. This file not only gives 

the intermediary and final positions of each bead, but also the velocity and force 

applied to each bead and the total energy at given time intervals during the simulation, 

if required. The output file is read by GOURMET, and can be viewed using different 

visualisation methods (see section 3.4) and can be analysed using existing scripts or 

creating new scripts to perform specific, detailed analysis of the result. 
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The following is a succinct description of the C++ program written to create 

probability density functions for each type of bead in the lamellar phase. 

Step 1: Read coordinates of beads 

The coordinates of all of the beads from the simulation can be copied into a text file 

for the program to read. The numbers of each type of molecule are printed on the top 

line of this file, so that the program can identify how many of each type of bead to 

identify. The number of beads in an oil molecule is inputted (1 for butane, 2 for 

hexane, 4 for dodecane and 6 for octadecane). The number of beads in a surfactant 

molecule is set to 8, and 1 for water. Then the input file can be read, so that each bead 

is identifiable as a surfactant head, surfactant tail, water or oil. 

Step 2: Coordinate transformation 

This is done so that the new x axis is normal to the lamellae layers, making it possible 

to perform the density profile step. The number of repeat distances in each direction, 

11x, n and nz  are inputted, and the angles a and /9 are calculated according to the 

following equations (see section 4.5.1): 

( nX

fl

a = arctan

nz  /3 = arctan(
nx
--cos(a)J 

 

The lamellar spacing is calculated using the following equation: 

L 
= —cos(a)cos(fl) 

n x 

where L is the box length. Using a and /3, the coordinates can then be transformed to 

new coordinates. Only the new x coordinate is needed for the probability density 

calculation, so the set of equations used to get the new x coordinate, utilising an 

intermediary set of coordinates, are the following: 



Xint =xcosa+ysina 

z inc  = z 

X. =X,,t cos fi + z, sin  fi 

Step 3: The raw density profile 

The density profile can now be taken. First, the number of divisions to be taken within 

each lamellar layer (the higher the number the higher the resolution of the density 

profile), and the overall distance over which the density profile will be taken (quoted 

in number of lamellar spacing distances) are inputted. 

The total number of divisions for which bead density profile is taken is simply a 

multiple of divisions within lamellar spacing (32 was used for all data) and total 

number of spacing distances (10 was used for all data). The size of each division is 

simply the lamellar spacing divided by the number of divisions. 

Now, the density profile itself can be created. For each bead, for each division or slice, 

the number of that bead within that slice is summed. This gives the number of each 

bead across the x axis for the simulation in the total number of divisions (320 for these 

parameters). 

Step 4: The probability density function 

Now this density profile over several lamellar layers can be merged into one layer, 

giving a probability density function across the lamellar phase. 

This is done by summing up the number of each bead in the first division of each 

lamellar spacing, then the second division of each lamellar spacing, and so on until the 

numbers of each bead of all 32 divisions are summed over all 10 lamellar spacing 

distances. 

Each of these numbers can be divided by the total number of that bead to give a 

probability density function across a single lamellar layer for each type of bead. 



Appendix C 

The following is a succinct description of the C++ program written to create 

probability density functions for each surfactant tail bead in the lamellar phase to 

study structure of surfactant tails on the addition of oil. The program is essentially the 

same as the program in Appendix B, but the differences are noted. 

Step 1: Read coordinates of beads 

This step is the same as in Appendix B, however the input coordinates are read into 

the program so that each surfactant tail bead is identifiable as 1 (the terminal bead), 2, 

3 or 4 (interfacial bead). 

Step 2: Coordinate transformation 

This step is the same as in Appendix B. 

Step 3: The raw density profile 

This step is also the same as in Appendix B. 

Step 4: The probability density function 

This final step is also the same as in Appendix B, however the result is a probability 

density function across a single lamellar layer for each surfactant tail bead type. 



Afterword 

Afterword 

When Iflrst started this PhD on manipulating interfacial curvature, I naively thought 
that by the end, I would know everything there is to know about it. As it turns out, I've 

only really touched the surface. 
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