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Abstract 

The aim of this study was to investigate the cellular mechanism(s) that underpins 

contractile dysfunction in the streptozotocin (STZ)-induced diabetic rat heart compared to 

age-matched control heart. In some experiments, a clinically relevant concentration of the 

volatile anaesthetic halothane (0.6 mM) was used examine its effect on contractile 

properties of STZ-induced diabetic heart. Diabetes was induced in male Wistar rats by a 

single i.p. injection of STZ (60 nig Kg', body weight) which, resulted in an experimental 

model of type I diabetes that was characterised by hypoinsulinaemia, hyperglycaemia, 

increases in osmolarity and decreases in body and heart weights. Total cation contents 

2+ 	2+ 	2+ 	 2+ 
(Ca , Cu , Zn and Fe ) were significantly (P<0.05) increased in the STZ-induced 

diabetic heart compared to age-matched controls. The majority of experiments were carried 

out on ventricular myocytes following 8-12 weeks of STZ treatment. L-type calcium 

(Ca 2 ) current (JCa,L)  was measured in patch clamped ventricular myocytes in whole cell 

mode, using a cesium-based pipette solution and a holding potential of-40 my and test 

potentials between —30 and 50 my. The amplitude of 'Cal. was significantly (P<0.05) 

decreased in the STZ-induced diabetic myocytes compared to age-matched control. 

Furthermore, halothane further reduced the peak 'Cal,  to levels in both age-matched 

control STZ-induced diabetic myocytes. Contraction was measured in electrically-

stimulated myocytes via a video-edge detector and results showed that the amplitude of 

contraction as a percentage of resting cell length (% RCL) was significantly (P<0.01) 

greater in STZ-induced diabetic myocytes (6.8 ± 0.5 %, n32) compared to that of age-

matched control (4.1 ± 1.04 %, n27). Moreover, the i,,A of contraction was found to be 

significantly (P<0.01) longer in diabetic myocytes (164.1 ± 7.4 ms, n'30 Vs. 132.3 ± 5.9 

ms, n=27) compared to control, respectively. Halothane evoked significant (P<0.05) 

reductions in the amplitude of contraction in control myocytes. The amplitude of 

ix 



contraction was significantly (P<0.01) reduced further in STZ-induced myocytes compared 

to the response in the absence of halothane. In voltage clamped myocytes however, 

contraction was peak amplitude of contraction was greater in control compared to STZ-

induced myocytes. Since contraction is ultimately dependent on cytosolic Ca 24, it was 

relevant to measured free intracellular Ca 2  concentrations ([Ca 24]) using the fluorescent 

dye fura-2. Basal resting Ca 2+ 
 (measure by fluorescence ratio units) was significantly 

(P<0.01) increased in STZ-induced diabetic myocytes following 8 weeks of treatment 

compared to age-matched control (0.599 ± 0.009 ratio units, nr23 f<s. 0.521 ± 0.012 ratio 

units, n=23) , respectively. Electrically stimulated cardiac myocytes (I Hz) induced Ca 2  

transients that had a longer time from the peak (tk) of Ca24  transient to half decay 
(1 decrn). 

Moreover, in the presence of halothane. the amplitude of electrically stimulated Ca 24  

transient release was significantly (P<0.05) decreased in control and STZ-induced 

myocytes but was not significantly altered between control and STZ-induced myocytes. 

Following a caffeine-induced Ca 2+ 
 release, / 

2+ 
of Ca decay was significantly 

(P<0.01) longer (43%) in myocytes obtained from STZ-induced compared to age-matched 

controls. However, in the presence of 10 mM nickel chloride (NiCl 2), the rate of Ca 2  

efflux out of the cell was similar in both control and diabetic myocyte. Myofilament 

sensitivity was studied by plotting the relationship between contraction and Ca 24  in control 

and STZ-induced diabetic myocytes. The results show that myofilament sensitivity for 

Ca2* is increased in the STZ-induced myocytes but is significantly (P<0.05) reduced 

following the application of halothane. 

In conclusion, the results have shown that in electrically stimulated STZ-induced diabetic 

myocytes, the increase in contraction is primarily caused by an increase in myofilament 

Ca24  sensitivity, and not through an increase in Ca 2  release from the SR. Moreover, in the 

STZ-induced diabetic myocytes an alteration in NatfCa 2texchanger may contribute to a 
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prolonged Ca2  transient. It is suggested that prolonged Ap duration in the diabetic heart 

leads to increased Ca 2  influx albeit a reduced 'CLI.  which may overcompensate for a 

decrease in SERCA function (that has been reported in the diabetic heart. Misra el at 

1999) and may lead to similar SR Ca 2  load and release in both diabetic and control 

myocytes. Following. SR Ca 2  release it is suggested that the increased myofilament Ca 24  

sensitivity in STZ-induced myocytes leads to an increase in contraction that has been 

reported in this study. 

In voltage clamped STZ-induced diabetic myocytes, a decrease in 'Cal.  was mirrored by a 

decrease in the peak amplitude of contraction. It is suggested that in voltage clamped 

myocytes from STZ-induced hearts, that are not influenced by the Ap. decreased 'CaL, may 

lead to a reduced Ca 24  influx and subsequent SR Ca 2  release. Reduced Ca 2  release from 

the SR, may not be compensated for by the increase in myofilament Ca 2  sensitivity in the 

diabetic heart, and may ultimately lead to a reduction in the amplitude of contraction that 

has been reported in this study. 

It has also been shown that, following the application of halothane. the 'CO.!., Ca2* transient 

and amplitude of contraction were significantly more decreased in STZ-induced myocytes 

compared to that of control. It is suggested that reduced myofilament Ca 2  sensitivity in the 

presence of halothane contributes to the changes in contraction. However, it is also likely 

that another mechanism such as fractional Ca 2  release and/or SR Ca 2  load may also be 

affected by the actions of halothane in the diabetic heart. 
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Chapter 1 

General introduction 



I. I 	History of diabetes 

Diabetes has been recognised as a disease state since ancient times. The Ebers papyrus 

discovered by a German Egyptologist in 1862, dates from 1550 BC and describes a state of 

polyuria resembling diabetes. For thousands of years, no one knew how to live with, let 

alone correct diabetes. Children with the disease died quickly, often within days of onset, 

and older people struggled with devastating complications (Williams & Pickup, 1999). 

In 1869, Paul Langerhans, a German medical student in his doctoral thesis, was the first to 

describe a small cluster of cells in teased preparation of the pancreas, but he was not able 

to explain their function, and it was Edouard Larguesse in 1893 who named the cells the 

'Islets of Langerhans' and suggested the function of the cells to be endocrine in origin. In 

1889 twenty years after Paul Langerhans discovery, Oscar Minkowski and Josef von 

Mering, using dog experiments showed that if the pancreas was removed from the body, 

the animal displayed typical signs of diabetes, with polydipsia, polyuria and muscle 

wasting, which were associated with glycosuria and hyperglycaemia (Williams & Pickup, 

1999). 

1.1.1 The search for all extract 

The link between the pancreas and diabetes had now been recognised. This led to research 

focusing on treating the disease with pancreatic extracts. It was the discovery of insulin in 

1921 at the University of Toronto, Canada through collaboration of Frederick Banting and 

his assistant Charles Best, the biochemist James Collip and physiologist John Macleod that 

would prove to be one of the greatest breakthroughs in the understanding of diabetes. 

Banting and Best made chilled extracts of dog pancreas (called isletin by Banting and Best 
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but later changed to insulin by the request of Macleod, the name given to the hormone in 

1909 by Belgium researcher Jean de Meyer) and injected them in pancreactectomised, 

diabetic dogs. Following the administration of the pancreas the blood sugar of the dogs 

declined. Macleod and Banting were awarded the Nobel Prize in 1923, which they later 

shared with Best, and Collip (Joslin, 1948). Collip (1922) later developed an improved 

extraction procedure, and the first diabetic patient was treated on 1st  January 1922. A 

commercially viable extraction method was then developed in collaboration with chemists 

at Eli Lilly and Co. and insulin then became widely available in North America and Europe 

from around 1923 (Williams & Pickup, 1999). 

Later developments in insulin research came with the discovery of the primary structure of 

insulin by Frederick Sanger in 1955 and in 1969 when Dorothy Hodgkin and colleagues 

described its three dimensional structure (Williams & Pickup, 1999). 

1.2 	Diabetes Mel/kits 

Diabetes Mellitus, once considered of minor significance to world health is now ranked 

amongst the main targets of human health in the 21 s'  century (Zimmet, 2000). The 

increased attention to diabetes stems from the rising number of people who are diagnosed 

With the disease (King et al. 1998). The disease is recognised as a group of heterogeneous 

population disorders characterised by fasting hyperglycaemia and glucose intolerance, due 

to insulin deficiency, impaired effectiveness of insulin action or both (Harris & Zimmet, 

1997). It is classified on the basis of aetiology, natural history and clinical presentation of 

the disease. In 1997 the American Diabetes Association (ADA) classified diabetes in terms 

of aetiology and not by treatment, and to date, diabetes is classified into two main types; 

type I diabetes mellitus (previously known as insulin-dependent diabetes mellitus (IDDM) 
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orjuvenile onset) and type 2 diabetes mellitus (previously known as non-insulin-dependent 

diabetes mellitus (NIDDM) and maturity onset) (Williams & Pickup, 1999). 

1.21 A worldwide disease 

Diabetes is a major global health problem. in 1997, an estimated 124 million people 

worldwide had diabetes, 97% of these having type 2 diabetes (Amos ci oL 1997). This 

figure has now increased to an estimated 160 million today, and is expected to reach a level 

of 221 million in 2010 (Amos ci aL 1997) and 300 million world-wide by 2025 (King c-

aL 1998). Within the U.K. alone, type 2 diabetes affects in excess of I million people. 

1.2.2 Type I diabetes meffitus 

Type I diabetes can occur at all ages but is predominant in children and young adults, with 

a peak incidence before school age (Williams & Pickup, 1999). The exact cause of the 

disease is multiple in nature and still imperfectively understood, but is thought to be a 

consequence of the cellular mediated autoimmune degeneration of pancreatic islet-beta (j3) 

cells and/or environmental factors (Schaffer. 1991). Much evidence suggests that type I 

diabetes has geographical, ethnic or seasonal differences. The highest world incidence of 

type I diabetes is found in Finland where there is reported to be 35 cases per 100,000 

people (Tuomilehto ci aL 1992a), however, in other Baltic states such as Estonia, the 

incidence is only one third that of Finland, although the country is made up of people of 

similar linguistic and ethnic background (Tuomilehto ci aL 1992b). This would suggest 

that environmental agents have a strong control in the induction of type I diabetes. 

However, despite strong epidemiological evidence it has been difficult to trace particular 

environmental factors that trigger the disease in genetically susceptible individuals 
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(Zimmet etal. 2001). Comparable with other disease states, a growing number of factors 

have reported to be involved in triggering diabetes, which includes exposure of viruses 

(mumps, rubella). Weaning on cows milk and ingestion of smoked meat products have also 

been reported as induction agents (Williams & Pickup, 1999). The difficulty in identifying 

environmental factors comes about because of the time difference between being exposed 

to the triggering agent and the initial onset of hyperglycaemia (Zimmet ci at 2001). One 

new report targets a macrolide antibiotic bafilomycin Al (bafAl) derived form the 

Streptornyces species as an agent that disrupts pancreatic insulin secretion in mice (Myers 

ci at 2001). Streptornyces species are found in soil and some vegetables including, 

potatoes and sugar beet (Myers ci at 2001). Therefore, it has been suggested that everyday 

common food sources or soil derivatives may be the trigger for the disease (Myers ci at 

2001). The interesting thing is that a Sirepionzyces species is also the source of STZ, the 

agent that is widely used to induce pancreatic n-cell necrosis in many experimental rodent 

models of type I diabetes. 

The commonest cause of type I diabetes is the autoimmune destruction of the pancreatic 3-

cells in the islets of Langerhans. The exact aetiology is complex and not thoroughly 

understood. As has been suggested, it is thought that environmental factors may trigger the 

response in people who have an inherent genetic susceptibility for the disease. Inherited 

susceptibility to type I diabetes depends on several genes at different loci. A major 

component of the genetic predisposition is encoded within the human leukocyte antigen 

(HLA) genes lying within the region of the short arm chromosome 6 (Newly called the 

'type I diabetes locus'). HLA antigens are cell surface glycoproteins and certain HLA-DR 

(3 and 4) and DQ alleles encoding antigen-presenting molecules have been established to 

be involved in the susceptibility of type I diabetes (Thorsby ciot 1998). 
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Type I diabetes is characterised by the loss of insulin production, resulting in a decrease in 

circulating plasma insulin. This insulin deficiency in the presence of catabolic counter-

regulatory hormones such as catecholamines, cortisol, glucagon and growth hormones 

increase lipolysis within the adipose tissue. The consequence of this is the release of non-

esterified fatty acids (NEFA) into the circulation. Within the liver the fatty acids (FA) are 

partially oxidised to produce ketone bodies, acetoacetic acid and 3-hydroxybutyric acid. 

All of these contribute to the state of acidosis (Williams & Pickup, 1999). The symptoms 

of ketoacidosis include polydipsia, polyuria, weight loss, leg cramps and weakness and if 

not dealt with, can soon lead to diabetic coma and eventual death (Amos et aL 1997). 

Therefore, type I diabetic patients have an absolute requirement for insulin, to prevent the 

life threatening consequences of hyperglycaemia and ketoacidosis (Schaffer, 1991). 

1.3 Animal model of diabetes 

Most of the experimental data regarding the pathogenesis of diabetic complications have 

been accumulated using animal models of diabetes, which can be characterised into two 

main types: experimentally-induced diabetes and spontaneously, genetically determined 

diabetes (Dhalla et aL 1985). 

1.3.1 Chemically-induced type I model of diabetes mellitus. 

Experimental-induction of diabetes frequently involves the administration of an agent, 

which will induce p-cell necrosis of the pancreas. Two widely used diabetogenic agents are 

alloxan and STZ (2-deoxy-2-[ [(methylnitrosamino)carbonyl]amino]-D-lucopyranose). 

STZ appears to be highly specific to 3-cells whereas alloxan has been shown to elicit non- 



specific necrotic effects. STZ is synthesized by the bacterium Sircp;onyces achrornogencs 

(Szkudelski, 2001). Doses of STZ between 40-60 mg Kg' are used to induce an 

experimental model of type I diabetes (Szkudelski 2001). Following administration, STZ 

is taken up by the pancreatic 13-cells via the glucose transporter GLLJT2. STZ then causes 

alkylation (Eisner et at 2000) of deoxyribonucleic acid (DNA), which in turn leads to the 

activation of poly adenosine 5' diphosphate (ADP)-ribosylation (Sandier & Swenne. 

1983). The consequence of this is the cellular depletion of nicotinamide adenine 

dinucleotide phosphate (NADP) and adenosine tn-phosphate (ATP) (Helier ci at 1994). 

Increased ATP de-phosphorylation following STZ-treatment offers a substrate for xanthine 

oxide and in doing so results in the formation of super oxide radicals, hydrogen peroxide 

and hydroxyl radicals (Nukatsuka ci at 1988). STZ induction also raises nitric oxide (NO), 

an inhibiter of aconitase activity, which also participates in DNA damage (Kroncke ci at 

1995) The outcome of STZ derangement in the 3-cells of the pancreas, is the inhibition of 

insulin synthesis (Nukatsuka ci at 1990), which leads to severe insulinopaenia, 

hyperglycaemia, glycosuria, polydipsia and muscle wasting (features associated with type 

I diabetes) (Bracken ci at 2003). 
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Figure 1.1. Whole blood glucose concentrations in response to an intraperitoneal (i.p.) 

glucose challenge test (2 g glucose (Kg body weight) ') in six-month-old STZ type 2 

treated and control (n6) Wistar rats following a 16 hour fast. Values represent the mean ± 

SEM (** PC 0.01) (unpublished work). 

1.4 	The normal heart 

The mammalian heart is situated in the thoracic cavity, and is a muscular structure 

encapsulated by a fibrous pericardium layer. It contains four muscular compartments that 

include the right and left atria and ventricles, which are built upon a fibrotendinous, ring 

containing four apertures each with valves (Levick, 1995; Vander ci at 1999). The 

papillary muscles within the heart (see Figure 1.3) anchor the bi and tricuspid valves via 

the chordae tendinae. The purpose of the heart is to deliver oxygenated blood to the cells of 

the body and to pump the waste products of metabolism away from the cells. 
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1.4.1 The mechanical events of the cardiac cycle 

The continuous pumping action of the heart's cardiac cycle is divided into systole 

(contraction) and diastole (relaxation), and these two processes are called the cardiac cycle. 

Ventricular diastole lasts for around 2 thirds of the cardiac cycle at rest. This enables the 

time period needed for ample ventricular filling. At first, the atria are in diastole too. 

Therefore, blood flows passively from the superior and inferior vena cava through the atria, 

atrio-ventricular (AV) valve and into the ventricles. As the ventricles begin to fill up, the 

rate of flow slows down and ventricular pressure begins to rise. The final part of filling is 

associated with atrial contraction, which adds only a small amount of additional blood to 

the ventricles. The volume of blood (130 ml) in the ventricles at the end of ventricular 

filling is called the end diastolic volume (EDV). At this point ventricular systole begins. At 

the beginning of systole, the pressure within the ventricles quickly exceeds that within the 

atria. This causes the closure of the AV valves. At this stage the aortic and pulmonary 

valves are not open and therefore no ejection of blood occurs out of the ventricle. This 

phase is therefore known as isovolumetric ventricular contraction. Ventricular pressure 

then continues to rise until ventricular pressures exceed aortic and pulmonary trunk 

pressures, this causes the opening of the aortic and pulmonary valves, and the rapid 

ejection of blood out of the ventricles (stroke volume (SV) = 70 ml). The ventricles then 

begin to relax at the beginning of diastole, which in turn causes a significant fall in 

ventricular pressure, below those in the aorta and pulmonary trunk. which coincides with 

the closure of the aortic and pulmonary valves. At this stage the AV valves are also still 

closed, therefore no change in ventricular volume occurs. When the pressure within the 

ventricles fall below that of the atrias, the AV valves open and blood enters the ventricles 

again to begin another cycle (Litwin ci al. 1998; Vander ci ol. 1994; Katz, 1977). 
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Figure 1.2. A schematic overview of the mechanical events and the direction of blood flow 

involved in a cardiac cycle of a normal mammalian heart (Taken from Vander et al. 1999). 

1.4.2 Ultra structure of the heart 

The heart wall consists of three distinct layers; the epicardium, endocardium and 

myocardium. The epicardium makes up the outer layer of the heart wall and contains 

mainly connective tissue and forms the inner membrane portion of the pericardium. The 

endocardium, which is the inner most layer of the wall consists of a simple squamous 

epithelial layer overlying a thinner areola tissue. The middle portion, and the thickest 

section of the heart wall, the myocardium contains several types of specialised cells, which 

include ventricular, and atrial cells or myocytes, nodal cells and Purkinje fibres (Litwin ci 

aL 1998). 
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The myocytes form one of the largest portions of cells within the heart. These individual 

contractile cells have a single central nucleus (although some are hi-nucleated). Myocytes 

are attached to other myocytes by end junctions called intercalated discs, which contain 

three different regions known as; I) gap junctions, which provide a low resistance pathway 

for the rapid conductance through, which ionic current can pass from one cell to the next 

(Levick, 1995), 2) intermediate junctions and 3) desmosomes (Sjostrand & Anderson-

Cedergren, 1958), that hold the adjacent myocytes together by means of a proteoglycan 

matrix (Levick, 1995). Myocytes contract when stimulated, however, nodal cells are 

spontaneously active and are located in the sino-atrial (SA) node and AV node regions of 

the heart. These pacemaker cells initiate the contractile response for the working myocytes. 

The spontaneous activity of these cells can be modified by nerve impulses. The Purkinje 

fibres are a set of conducting cells enabling rapid penetration of electrical impulses through 

the heart. They appear very similar to nodal cells but contain only a few contractile 

filaments compared to a myocyte (Litwin ci al. 1998; Vander ci al. 1994; Katz, 1977). 
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Figure 1.3. Electron microscope images of papillary muscle (top) and 

ventricular muscle (bottom), taken from STZ-induced type I diabetic and 

age-matched control rat hearts (Taken from Howarth et at 2001). 
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1.4.3 The working niyocyte 

The working myocyte is full of long contractile bundles called myofibrils. Each myofibril 

is made up of smaller sarcomeres that are orientated across the cell giving a striated 

appearance. The sarcomere contains myofilaments that occupy between 45-60% of the cell 

volume (Bers, 2002a). The myofilaments are made of the thick myosin and thin actin 

filaments, along with other contractile and cytoskeletal components (Bers, 2002a). The 

myofilaments are responsible for contractility and changes in chemical energy to 

mechanical energy in the cardiac myocyte (Bers, 2002a). During contraction, the thin and 

thick filaments slide past each other, causing a change in muscle length. This movement is 

a consequence of cross bridge formation between the thin and thick filaments and is 

historically known as the sliding filament theory (Huxley, 2000). 

The backbone of the thin filament consists of two chains of globular actin molecules (0-

actin) to form a right-handed double stranded helical polymer (F-actin). Each turn of the 

actin molecule incorporates a molecule of tropomyosin that sits in the groove created by 

the double helices. At every seventh actin molecule, tropomyosin is attached to troponin. 

Troponin is a complex of three unidentical subunits; troponin—C, a Ca 2  binding unit, 

troponin-T, a tropomyosin binding unit and troponin-1, an inhibitory unit. Every thick 

filament is made up of around 300 myosin molecules along with other proteins including 

titin and C-protein. The tails of the myosin heavy chain (MUC) form the main core of the 

thick filament and the head region forms two light chains with binding sites for ATP and 

actin. 
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Ca2t regulates the process of contraction brought about by the sliding of thin and thick 

filaments. In the resting state, with low [Ca2t], troponin-1 binds to actin preventing the 

interaction of actin and myosin. Following a Ca 2  transient. [Ca2*]j is raised, which causes 

the interaction of free Ca 2  with the troponin-C complex. Troponin-C then binds to 

troponin-1 and causes the dissociation of it from actin. The change in troponin-C and 

troponin-i interaction instigate troponin-T, which causes positional change of the adjacent 

tropomyosin molecule, and in doing so exposes a myosin-binding site on the actin 

molecule. The head region of the myosin then attaches to the actin, which is followed by a 

change in the angle of the head. This causes the sliding of the actin and myosin over each 

other. The head is then disengaged and reattached at a different actin site. The requisite 

energy needed in the reaction comes from the hydrolysis ofa molecule of ATP to ADP and 

a phosphate (Pi) (Huxley, 2000). Therefore the number of cross bridges formed is directly 

related to the Ca 2  content and causes a greater or lesser contraction in the presence of 

ATP. 

1.4.4 Cardiac action potential 

An Ap is a recording of the electrical membrane potential (E,) of a cell (Katz, 1977). In a 

resting cardiac cell permeability favours potassium ion (K) entry and is relatively 

impermeable to sodium ions (Na). chloride ions (C1) and Ca 2t . The Na t/KtATPase 

pumps 3 Na out and 2 K into the cell and is responsible for the ionic concentration 

gradients for Na and for Kt but it is the K channels themselves that are responsible for 

the negative Em in cardiac myocytes (Bers, 2002a). This results in a highly negative resting 

Em nearing —90 my. The cardiac action potential is characterised by four phases: 
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Phase (0) initial cardiac myocyte depolarisation is initiated by the spread of current from 

adjacent sarcolemmal membrane regions (Bers, 2002a) which, is associated with a rapid 

transient opening of fast Na channels and slow Ca 2  channels so that inward Na current 

('Na) exceeds outward K current (JK). This results in a large influx of Na into the cell 

through voltage activated 'Na,  driving the E. nearer to that of the Na*  equilibrium (+70 

my). At the peak Of 'Na the E. lies around +35 to 50 rnV in ventricular myocytes, because 

of a small permeability of K to the cell. The early repolarisation phase, Phase (I) 

coincides with the inactivation and activation of outward I0 and Ca2  activated chloride 

current (ICI(ca))and the slower influx of Ca 2  thus creating a plateau effect (phase 2). Ca 2  

channels then close at this point and K permeability increases resulting in the 

repolarisation of the cell (phase 3). Ionic balance is restored by a number of Na*/K+ 

ATPase pumps. This is also a refractory period, which lasts from phase 0 until about 

halfway into phase 3. Between these points the heart muscle cannot be excited again and is 

absolutely refractory to stimulation. However, for a short period after this (during the 

relative refractory period) a critically timed stimulus may result in ventricular fibrillation 

and death (Litwin et al. 1998; Vander ci aL 1994; Katz, 1977). 

1.4.5 Rat ventricular action potentials 

Action potentials profiles differ greatly according to differences in species and also 

regional variation within species (Oudit ci al. 2001)(see Figure 1.4). In the ventricle of the 

rat, the amplitude of the action potential is shorter and is distinguishable by its "spike like" 

appearance, compared to other species including human (Li ci aL 1998) and rabbits (Linz 

& Meyer, 2000), that have a longer and pronounced plateau phases of action potential. 

The rat ventricular action potential is characterised by a pronounced phase I repolarisation 

that precedes a very transient late plateau phase at E. more negative than —20mV (Linz & 
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Meyer, 2000). The changes in action potential profiles are reflected in changes in 

variations in the types, kinetics and amplitudes of inward and outward currents although it 

appears that there are little differences in the 'Na  and 'CaL  (Sah ci at 2003). in contrast 

however, repolarisation is primarily controlled by a number of K-channel properties, and 

differences in these channels appears to the primary reason for the variation in Ap between 

species (Varro et at 1993; Nerbonne ci at 2001; Oudit ci at 2001; Rosati ci at 2001). in 

particular the transient outward current (/), encoded by Kv4.2/4.3 genes, which is present 

in the rat has been reported to effect the duration and shape of the Ap (Josephson ci at 

1984). It has been reported that the large I current densities in rat myocytes in comparison 

with other mammals is the major determinant to reduce the depolarising effects of the 

'CaL, and in doing so reduce the plateau of the Ap in these species (Greenstein ci at 2000). 

However, in human and rabbit myocytes, where 'to  is less prominent, homeostatic balance 

favours 'CaL,  which results in a clear plateau phase (Greenstein ci at 2000). Studies in 

rodents were the 4,, is removed have resulted in a long plateau phase of the Ap that is 

similar to that of the guinea-pig, which lacks I entirely (Wickenden ci at 1997; Gaughan 

ci at 1998). Differences in the Ap at the apex/base of the heart in the rat were first shown 

by Watanabe ci at (1983). More recent reports, have utilised isolate myocytes from sub-

endocardium and sub-endocardial portions of the heart, and have reported that the Ap 

duration to be prolonged in the in sub-endocardial myocytes compared to that of sub-

epicardial myocytes in normal rats (Clark ci at 1993; Shipsey ci at 1997; Natali ci at 

2002). Moreover, it has also been shown that isolated myocytes from the mid-myocardium 

have Ap durations that lie between those of the sub-epi and sub-endocardium (Shipsey cI 

at 1997). A increase in expression of I (Antzelevitch ci al., 1991) and density of 4, 

(Clark ci at 1993; Shimoni ci at 1995) in sub-epicardial myocytes compared to sub-

endocardial myocytes may well reflect the increase of Ap duration that has been reported 

in sub-endocardial myocytes compared to that of sub-epicardial myocytes (Clark ci at 
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1993; Shipsey ci al. 1997; Natali ci at 2002). Changes in the duration and amplitude of the 

Ap, are mirrored by changes in the open probability of the L-type Ca 2  and 'CO.L  (Sah ci 

at 2003). Because of this Ca 2  influx can be increased within the heart leading to 

increased trigger Ca 2t  and SR load (Bouchard ci at 1995). Moreover, it has been reported 

that cell shortening is significantly greater in rat myocytes obtained from the sub-

endocrinal compared to sub-epicardial portion of the heart (Clark ci at 1993; Natali ci 

at 2002). It is likely that a change in the expression of I is responsible for these changes 

in contractility. 

1.4.6 Electrical conductance within the heart 

The electrical stimulus needed for a heartbeat is initiated by the pacemaker conduction 

system. The dominant pacemaker region within the heart is the SA node. Spontaneous 

electrical activity generated in these cells causes the spread of electrical impulses through 

the gap junctions of the myocytes. The speed of the electrical input is fast enough to 

simultaneously initiate the contraction of the right and left atria. This wave of electrical 

conductance is responsible for the depolarisation of the AV node, which is positioned at 

the base of the right atrium. Depolarisation in this node is slower than other nodal cells, 

which results in a slight delay in electrical propagation and conductance through these cells 

in the heart. The mechanical consequences of this action are important, because this delay 

coincides with late atrial contraction and in doing so adds extra blood to the ventricle 

before they contract. The impulse then passes into the bundles of His, which divide into 

left and right branches that run down the entire ventricular septum into the network of 

Purkinje fibres. The conductance is finally passed on to the myocytes within the ventricle 

to initiate ventricular contraction. One of the important features of the heart is that the AV 
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node and the bundles of His are the only means by which electrical conductance can be 

carried from the atria through to the ventricles (Litwin c/ a/i 1998; Vander a at 1994; 

Katz, 1977). 
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Figure 1.4. Representative recordings of differential sites of action potentials taken from 

specific regions within the heart (Taken from Bers, 2002a). 



Figure 1.5.a Schematic model of E-C coupling in a normal ventricular 

cell, showing mechanisms that underpin Ca2  transport following 

membrane depolarisation and contraction. 'CaL (L-type calcium 

current), NCX (NaVCa 2 -exchanger), SR (sarcoplasmic reticulum), 

RyR (ryanodine receptor). 
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Figure 1.5.b Schematic model of E-C coupling in a normal 

ventricular cell, showing mechanisms that underpin Ca 2  transport 

following membrane repolarisation and relaxation. NCX (Na/Ca 2 -

exchanger), SR (sarcoplasmic reticulum). PMCA (plasma membrane 

Ca2 -ATPase pump) 

20 



1.4.7 Excitation-contraction coupling in the normal heart 

Cardiac E-C coupling is the process of electrical excitation ofa cardiac myocyte that elicits 

contraction and enables the propulsion of blood out of the heart (Bers, 2002a). The initial 

rapid depolarisation of the cell membrane by an action potential triggers the signalling 

events of E-C coupling. This leads to a small entry of Ca 2  via the voltage-gated L-type 

channels (Barry & Bridge, 1993). There may also be a small entry of Ca 2  via the 

Na7Ca2 -exchanger operating in reverse mode (Nuss & Houser, 1992; Barry & Bridge, 

1993; Kohmoto ci at 1994; Vornanen ci at 1994) although the magnitude and potency of 

this mechanism are still controversial (Levi ci at I 993a; Lipp & Niggli, 1994; Litwin ci at 

1996; Wright c/aL 1997). This small influx of Ca2  triggers a much larger release of Ca 2 ' 

from the SR. When the SR is activated to release Ca 2t there is a transient rise in [Ca 2 i 

typically from a basal level of 100 nM to a peak between I and 2 ptvl within a period of 20 

to 40 msec after depolarisation (Beuckelmann & Wier, 1988; Cannell ci at 1987a). This 

rise in [Ca2 ]1 is commonly referred to as the Ca 2  transient. This process is referred to as 

"Ca2 '-induced C a2t re l ease" (OCR) and is generally accepted as the main mechanism of 

Ca2  release from the SR (Fabiato, 1983; Litwin ci at 1998; Muller, 1965). The process of 

contraction is initiated when Ca 2  binds to troponin-C. The decay of the Ca 2  transient is 

initiated by the re-uptake of Ca 2  into the SR by a SR Ca 2 -ATPase- dependent pump 

(SERCA)(Bers, 1991; Balke ci at 1994) and the extrusion of Ca 2  from the cell by the 

NaVCa2texchanger (Barry & Bridge, 1993; Barcenas-Ruiz ci at 1987; Jorgensen ci al. 

1982). Recent studies have proposed that, as well as CICR, a voltage-activated Ca 2  release 

(VACR) mechanism (similar to that seen in skeletal muscle) may exist in cardiac muscle 

(Levi ci at 1997; Ferrier & Howlett, 1995). 
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1.4.8 Calcium sparks underlying local control in heart cells 

The global Ca2t  transient within a cardiac myocyte is believed to be made up of the spatial 

and temporal summation ofa number of individual Ca 2  sparks (Cannell cial. (1994). Ca 2  

sparks were first described in single isolated cardiac myocytes by Cheng ci at (1993) as 

the spontaneous release of Ca 2  from a number(s) of RyR's on the SR. Subsequent work 

showed how Ca2t  sparks could be initiated through the activation of electrical stimulation, 

and synchronically regulated with the aid of Ap's and the 'CaL  (Cannell ci al. 1994; Lopez-

Lopez ci at 1994). Therefore, Ca 2  sparks can be described as an event(s) in the process of 

E-C coupling, which, when activated by Ca2t  efflux through 'Cal, and the Na 1iCa2t-

exchanger underlies the process of contraction. The relationship between 'CaL 
and Ca2t 

sparks has been described, to support the hypothesis that a single L-type C a2tchanne l 

opening can lead to the initiation of a single Ca2* spark (Lopez-Lopez ci at 1995; Cannell 

& Soeller, 1997; Collier ci at 1999). This phenomenon is however, favourable at more 

negative potentials (- 40mV), whereas a larger number of L-type C a2tchanne l s  may be 

required to be open at more positive potentials (+ 60mV) (Guatimosim ci at 2002). The 

number of Ca ions that are required to bind to a RyR to initiate a Ca2t  spark remains 

controversial. It has been reported that the localised Ca 2  signal, produced by the opening 

of one L-type C a2tchanne l (known as "Ca 2  sparklef') is enough to trigger a Ca2t  spark 

(Wang ci at 2001; Wang ci at 2002). Moreover, Fan & Palade, (1999) reported that a 

single Ca2t  was sufficient to activate RyR's and incur Ca2t a transient release. The number 

of RyR's that is needed to be activated to initiate a Ca spark is unresolved. Original 

theory suggested that a single RyR would be sufficient to initiate a release ofa Ca2t  spark,, 

but more recent data have shown, that flux through a single RyR's is approx 4 pA whereas 

a single 'Ca,L Ca 2  is approx 0.6 pA (Mejia-Alvarez ci at 1999).This suggests that the Ca 2t  

spark is due to a number or cluster of release channels on the SR. The termination of the 

Ca2t spark is abrupt and is necessary for the relaxation of the cardiac muscle. The exact 
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process that underpins the termination of a Ca 2  are poorly understood, but it has been 

shown that the process cannot be explained by the depletion of the SR or the stochastic 

closure of the RyR's (Sham ci al. 1998; Lukyaneko ci al. 1999). One recent report using 

sarponin-permeabilisd myocytes has shown that intra-SR Ca 2  buffering increased the 

amplitude and time course of Ca 2  sparks, which suggested that the termination of the Ca 2  

spark is brought about by the control of local intra-SR Ca 2  regulated RyR openings 

(Terentyev ci al. 2002). 

1.5 	Diabetic cardiomyopathy and cardiovascular disease 

There is clear evidence of the negative influence of type I diabetes on the prevalence, 

severity and prognosis of cardiovascular disease (coronary head disease (CHD), stroke, 

peripheral vascular disease) (Julien, 1997). Cardiovascular disease represents the 

commonest cause of morbidity and mortality within diabetic patients (Schaffer, 1991; 

Schernthaner, 1996; Mahgoub & Abd-Elfattah. 1998; Rarnan & Nesto, 1996; Laakso, 

1999). Human and animal studies have shown that the excess risk of cardiovascular 

complications cannot be explained by conventional cardiovascular risk factors alone and 

therefore the diabetic state itself is likely to account for this alteration in cardiac function 

(Laakso, 1999; Albanna ci at 1998). This developing disease in the absence of any 

cardiovascular complications is termed diabetic cardiomyopathy (Kiss ci at 1988) and is 

defined as a decrease in cardiac contractile performance, which results in an abnormality 

in systolic function leading to a defect in expulsion of the blood ( systolic heart failure ), or 

by an abnormality in diastolic function leading to a defect in ventricular filling ( diastolic 

heart failure ) and resulting in congestive heart failure (Cl-IF) (Schaffer. 1991). Many 

invasive and non-invasive clinical studies on human diabetic patients have reported 

alterations in cardiac performance. Studies in type I diabetes patients have reported an 
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increase in atrial contraction, impaired diastolic function of left ventricle and reduced rapid 

filling rate (Albanna ci at 1998; Kiss ci at 1988; Astorri cial. 1997; Nicolino cial. 1995). 

It is thought to be the diastolic dysfunction in the diabetic heart that is responsible for 

increased morbidity and mortality (Fein c/at 1980; Tahiliani ci at 1983). 

1.5.1 Contractile dysfunction in the diabetic heart 

Several mechanisms of contractile dysfunctions have been reported in experimentally-

induced diabetic heart muscle. Depressed SV, aortic output (AO), positive (+dPldt) and 

negative (-dP/dt) left ventricular developed pressure have all been reported in various type 

I diabetic heart preparations (Regan ci at 1974; Fein ci at 1985; Litwin ci at 1990; Miller 

1979; Vadlamudi ci at 1982). 

1.6 	Cardiac myocyte in the resting state 

In resting cells, [Ca 2+ ]i is determined by a Ca 2  leak that is compensated for by the 

sarcolemmal plasma membrane C a2tATPase  (PMCA) pump and the sarcolemmal 

Na/Ca2texchanger (Barry ci at 1986). In cultured cardiac myocytes the rate of Ca 2  

extrusion by the myocardial membrane bound ATPase is around 1/10 that of the Na/Ca 2 -

exchanger (Barry ci at 1986). Cannel (1991) reported that the Na/Ca 2texchanger 

accounts for as much as 75 % of the resting Ca 2  efflux within the cardiac cell. Therefore, 

the primary role of maintaining the basal [Ca 2+ 
 ]i level is the responsibility of the NaVCa 2 '-

exchanger (Cannell, 1991). 
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1.7 Mediators of calcium influx 

Stimulated Ca 2  influx results in the release of Ca 2  from the SR, which in turn leads to 

contraction of the cardiac myocyte that contributes to E-C coupling in the heart. The 

underlying mechanisms associated with the transport of Ca2t  within the cell including the 

'CaL, Na/Ca 2texchanger and adrenergic receptor mediated events will be discussed: 

1.7.1 Sarcolemmal calcium channels 

There are two types of Ca 2 ' channels in cardiac tissue. The L (large conductance) and T 

(tiny conductance) type Ca 2+ 
 channels. T-type Ca 2+

channels are present in various cardiac 

regions but are small or absent in ventricular myocytes, whereas L-type Ca 2  channels are 

very prominent in all regions of the heart (Bers, 2002a). L-type Ca2t  channels are highly 

sensitive to the dihydropyridines (DHP's) and most act as antagonists (e.g. nifedipine) to 

reduce L-type Ca2t  channel opening. Initial depolarisation of the cell membrane leads to 

the rapid activation of 'CaL  around —40 mV Em and activates the opening of voltage-

sensitive L-type channels (Bers, 1991). Ca 2  influx through L-type channels has been 

shown to be 13.8imol/l cytosol in rat ventricular myocytes (Yuan c/at 1996). However, 

during normal physiological conditions SR Ca2t  release inactivates Ca2t influx by around 

50% in rabbit (Bers, 2002a) and rat (Shame! at 1995). 

In type I diabetic myocytes a few reports have suggested that L-type Ca 2t  channel opening 

is impaired. Bergh c/at (1988) have reported that Ca 2t  influx was significantly reduced in 

both acute and chronic diabetes compared to age-matched controls, while, Yu c/at (1995) 

proposed that the L-type Ca 2  channel in type I diabetes showed enhanced activity and 

was qualitatively and quantitatively altered. With regards to 'CaL,  it has been suggested 
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that 'Ca,L  density-voltage relationships and steady-state inactivation curves Of 'CaL are not 

significantly altered in type I STZ-diabetic ventricular cells (Schneider & Sperelakis, 

1975; Tamada et at 1998; Jourdon & Feuvray, 1993). Moreover, Choi ci at (2002) 

reported that 'Ca,L was not significantly different in 8 week treated STZ-induced 

ventricular myocytes at voltages from —40 to +60 my. However, it has been reported that 

the 'Ca,!.  was significantly decreased in 24-30 wk STZ-induced diabetic myocytes (Wang 

et al. 1995). The differences in reports may be attributable to the changes in treatment 

time, methods of acquiring 'CaL recordings and changes in solutions used to perfuse and 

equilibrate cells. Any change in 'CaL  would alter the trigger Ca2t  on the SR and may also 

affect the reversal potential of the Na'JCa 2texchanger. Changes in these mechanisms may 

alter the amount of Ca2t  released from the SR and would therefore modify contraction. 

The response of Ca 2  channel activation and opening, is dependent on its phosphorylated 

state (Sperelakis 1988), which in turn regulates the length of time it is opened for and 

consequently the regulation of 'Ca.L . Phosphoprotein phosphatases I, 2A, 2B and 2C, 

within the sarcolemmal regulate the life span of the opening time of the L-type C a2t 

channel, which, in the normal heart is likely to be around a few milli seconds (Allo & 

Schaffer, 1990). If the phosphorylation rate is altered, then the time span of opening may 

be affected in the diabetic heart and therefore contribute to changes in Ca 2  influx. 

1.7.2 Sarcolemmal sodium/calcium exchanger 

The Na+ 2+ /Ca -exchanger on the sarcolemmal membrane is a reversible pump that generates 

the transportation of three Na to one Ca 2 ' (3:1) (Philipson & Nicoll, 2000). However, 

recent data suggest a higher ratio rate (>3:1)(Fujioka etaL 2000). The isoforni of the gene, 

which generates the Na7Ca 2texchanger in the heart is the NCXI and consists of 970 

amino acids with a molecular mass of 110 kDa (Nicoll ci aL 1990). Ca2  extrusion is 
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recognised as inward Na/Ca 2texchanger current ('Na/ca)  as one Ca2E  extruded being 

replaced by three Nat so therefore Na extrusion is named outward 'Na/C.  (Bers. 2002b). 

The Na'7Ca 2texchanger is sensitive to current changes and therefore, has been implicated 

in the contribution ofCa2  influx and SR Ca 2  release during cell membrane depolarisation 

(Litwin et al. 1998). High [Ca 2+ ] 2+ favours Ca efflux while a positive E 11, and high [Na
+ 

 ] 

favour Ca 2  influx (Bers, 2002b). Therefore, in normal physiological conditions the 

Nat'Ca2texchanger works to decrease [Ca 2 ] by an inward 'Na/Ca.  However, if the Ap 

duration is increased through changes in either 'CaL , SR Ca2  release or if [Na +]i is 

elevated, Ca 2  influx will occur (Bers, 2002b). 

1.7.3 Adrenergic response and calcium mobilisation in the heart 

Agonist occupation of 13-adrenoceptors leads to the activation of GTP binding protein (Ga) 

and the dissociation of the a subunit (Gsa) to activate adenylate cyclase, increasing the 

production of adenosine 3',5'-cyclic-monophosphate (cAMP). Elevated levels of cAMP 

leads to the dissociation of the regulatory and catalytic sub units of cAMP-dependent 

protein kinase A (PKA), which, phosphorylates a number, and variety of regulatory 

proteins. These include the phosphorylation of the L-type Ca 2  channel, ryanodine receptor 

(RyR), phospholamban (PLB) and troponin-1 (Trautwein & Hescheler, 1990). The 

phosphorylation of the L-type Ca 2  channel results in the increased probability of its 

opening within normal activation volatges. This in turn increases the Ca 2  availability for 

CICR. Similarly, phosphorylation of PLB (Kranias & Solaro, 1982), results in an increase 

in Ca 2  uptake by SERCA (Tada & Katz, 1982). Elevated SR Ca 2  increases the 

availability of Ca 2  for release by phosphorylated, RyR (Philbin ci all 2000) therefore 

increasing the speed of SR Ca 2  release. Phosphorylation of troponin-1 (Okazaki ci all 

1990) results in decreased sensitivity of the myofilarnents to Ca 2 . The net result of 
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myocardial f3-adrenoceptor stimulation is a systolic increase in cytoplasmic [Ca 2 ]1 and an 

increase in contractility (Tamada etal. 1998). 

The mechanism associated with increased sympathetic drive represents an important factor 

in maintaining cardiac output (CO) in the malfunctioning heart (Ha a at 1999). A number 

of reports have documented impaired cardiac responsiveness to 13-adrenoceptor stimulation 

in experimental-induced diabetic hearts. Reports using STZ-induced type I diabetic hearts 

suggested that stimulation with isoprenaline resulted in a decrease in the force of 

contraction in whole heart preparations (Atkins ci at 1985), in 4-6 week (Gando ci at 

1997) and 8 week (Heyliger ci a/i 1982) STZ-treated papillary muscles and in isolated 

cardiomyocytes following 8-10 weeks of STZ treatment compared to control preparations 

(Horackova & Murphy, 1988). The rate at which, isoprenaline induced SR Ca 2  uptake was 

depressed in 180-day STZ-induced whole hearts when compared to age-matched controls 

(Vadlamudi & Mcneill, 1984). Therefore. -adrenergic sensitivity seems to be defective in 

the STZ-induced type I diabetic heart. The inotropic responses to dibutyryl-adenosine 

3',5'-cyclic-monophosphate (DBcAMP) and forskolin (an activator of the adenylate 

cyclase supply) were also prominently reduced in the type I diabetic heart compared to 

control (Gando 1994; Tamada ci at 1998). Competitive binding studies have shown that 

0-adrenergic receptor number are significantly decreased in the myocardial membrane 

(Gando. 1994; Caterson ci at 1982; Savarese & Berkowitz, 1979; Nishio c/ at 1988) 

taken from type I diabetic hearts, although it appears that f3-adrenergic receptor affinity for 

agonists is not compromised (Nishio c/at 1988). Competitive binding studies have shown 

(Gando, 1994) that the interaction between -adrenoceptor and Gs-protein is not altered in 

type I diabetic hearts. This observation implies that the dysfunctional responsiveness 

associated with type I diabetic hearts may not necessarily be caused by an alteration in 
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cAMP or changes in G- proteins but is more likely to be caused by a defect, distal to the 

adenylate cyclase system. This would seem to implicate an alteration in Ca 2t  homeostasis 

in the cardiac cell during diabetes. Gando ci al. (1994) have also postulated that this 

dysfunctional response may be associated with impaired phosphorylation of 

phosphoproteins including PLB. 

1.8 	Mediators of systolic calcium 

The trigger and release of Ca 2  from the SR into the cytosol contributes to myofilament 

activation, which leads to contraction in the heart. The mechanisms associated with this 

process will be discussed: 

1.8.1 Ryanodine receptor activation and sarcoplasniic reticulum release 

Ryanodine is a neutral plant alkaloid, which is a specific and selective ligand for the Ca 2  

release-channel, RyR within the SR (Yu c/ at I 994a). Ryanodine produces a progressive 

decline in cardiac muscle contraction (Yu cicit 1994a). At low concentrations (1-30 nM), 

ryanodine is thought to bind to high affinity sites resulting in the release of Ca 2  from the 

SR. [i-l] ryanodine has been employed previously to show that the number of high 

affinity binding sites in type I diabetic heart is reduced compared to control (Yu c/ al. 

1994a). This observation suggests that the density of RyR's is lowered in type I diabetic 

hearts. Ca2t  influx accumulates around the RyR at the SR. where it binds to RyR's to 

trigger the SR Ca 2 ' release. Reduced density of RyR's may lead to an impairment of Ca2t 

release from the SR, although it has yet to be reported if the decrease in numbers of RyR's 

(reported in type I diabetic hearts) is indicative of the sensitivity of Ca 24  release from the 

SR. 
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Fabiato (1983), carried out preliminary studies using caffeine to assess SR Ca2t  content in 

skinned cardiac muscle fibres and more recently caffeine-induced Ca2t response has been 

used to assess SR Ca2t  content in single cardiomyocytes. Caffeine increases SR Ca2t 

channel opening, thus promoting Ca 2  leakage into the cytoplasm. The permanent opening 

of Ca2t  channels prevents accumulation of Ca2t  into the SR (Rousseau & Meissner, 1987). 

The peak [Ca2t] induced by caffeine can be used as a measurement of an index of 

releasable Ca2t  from the SR, although it should be noted that caffeine also effects 

myofilaments sensitisation as well as inhibiting phosphodiesterase (which can increase 

cAMP and in turn activate of cAMP dependent PKA) (Yu ci at 1995). Several studies 

have demonstrated that the amplitude of the caffeine-induced Ca2t transient is depressed in 

type I diabetic cardiomyocytes (Tamada ci at 1998; Lagadic-Gossmann ci at 1996; 

Woodbury & Hecht, 1952). Yu etal. (1994) reported that caffeine-induced contracture and 

subsequent Ca2t  transient in diabetic myocytes to be 75% that of control cells. Rapid 

cooling contracture (RCC) are another established method of assessing SR Ca2t  release in 

the contracted cell. Rapid cooling (from 30 °C - 1 °C) of the SR (in situ) results in the rapid 

release of Ca 2  from the SR, this is followed by a contracture. Bouchard & Bose (1991) 

showed a 50 % reduction of RCC in diabetic cells, while Yu ci at (1994a) observed a 

reduction in the amplitude of RCC in the diabetic heart that was 68% that of control cells. 

This evidence suggests that a reduction in caffeine and RCC seen in type I diabetic cardiac 

cells may be indicative ofa diminished Ca2t  storage mechanism in the SR. 

1. & 2 My oft/amen! interaction 

A rise in Ca 
2+ 

 transient raises the probability of free Ca 2+ 
 interacting with the troponin-C 

complex and initiating the sliding action of the actin and myosin, culminating in 
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contraction. This process may be greatly altered by a change in the pharmacological 

environment and an alteration in the pathological state (Morgan et of, 2000). Therefore, 

changes in myofilament sensitivity may contribute to cardiac contractile abnormalities in 

the diabetic heart. Myosin, the thick filament associated with contraction is comprised of 

two heavy chains molecules, MI-IC and four light chain molecules (MLC). In cardiac 

myocytes there are two isoforms of MI-IC (ct-MI-IC and I3-MHC) that are distinguished by 

their heavy chain composition and Ca 2tdependent ATPase activity (Schaffer, 1991). a-

MI-IC or VI has around four times the activity of the r3-MI -IC or V3 isoform. In the adult 

rat heart over 90% of the adult isoform is made up of a-MI-IC and it is this isoform that 

predominantly contributes to contraction in normal conditions (Depre ci al. 2000a). It has 

been reported that in the type I diabetic state, expression of the MHC is switched from the 

active a-MI-IC to the less active -M1-1C isoform. (Golfman etaf 1999; Depre ci at 2000a; 

Pierce & Dhalla, 1981) which has been reported as a factor in cardiac dysfunction (Brouty-

Boye et of 1995). It has been suggested that a change in isoform expression may 

contribute to disturbances in ventricular dysfunction and ultimately lead to a specific 

diabetic cardiomyopathy (Schaffer, 1991). A change in [Ca 2 ] i  may be indicative of this 

change (from (x-MHC to 13-MHC), which is seen in diabetic cells (Malhotra & Sanghi, 

1997). 

1.9 	Mediators of relaxation 

During the relaxation phase of contraction, there is intracellular competition to decrease the 

2+- 	 + 	2+ 
[Ca ] between the SERCA pump, the Na /Ca -exchanger, PMCA and mitochondrial 

uptake. The role each has to play in lowering [Ca 2 ]1 is discussed below. 
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1.9.1 Sarcoplasmic reticulum uptake 

The SR possesses a pump (SERCA), which is distinct from the sarcolemmal PMCA 

pump. The SERCA pump is a member of the P-type ion transporting ATPase family that 

includes the Na/KtATPase, PMCA and the H/K-ATPase (Bers. 2002a). The only isoform 

of SERCA in the cardiac muscle is SERCA2a. The decay of the Ca 2t  transient is initiated 

by the re-uptake of Ca 2t  into the SR by SERCA (Bers. 1991; Balke c/at 1994) and the 

extrusion of Ca2t  from the cell by the Na 4iCa2texchanger (Barcenas-Ruiz et at 1987; 

Jorgensen c/aL 1982; Barry & Bridge, 1993). In rat ventricular myocytes re-uptake of Ca2t 

into the SR accounts for between 87 and 92 % of the total removal of Ca 2  from the 

cytosol, while the Na 4iCa2texchanger accounts for approximately 9-7 % (Negretti ci at 

1993; Bassani dat 1994). 

Defects in the activity of SERCA are likely to impair accumulation of Ca 2  into the SR 

leading to a steady-state decline in SR Ca 24  load. Several studies have observed decreased 

activity of the SERCA pump of the SR in STZ-induced type I diabetic cells (Ganguly et 

at 1983; Lopaschuk c/aL 1983b; Takeda c/at 1996; Misra ci at 1999). Zarain-Herzberg 

ci at (1994) reported that 3 and 5 week STZ- induced diabetic rat heads exhibited a 

decrease of SERCA activity although Northern blot analyses failed to significantly show a 

reduction in the relative level of SERCA mRNA expression in either diabetic or insulin-

treated rat hearts. Moreover, quantification of SERCA protein by Western blot did not 

reveal any change between diabetic and insulin treated animals. These results would 

therefore suggest that any defect within the SERCA pump may not be attributed to 

alterations at transcriptional or translational levels within the diabetic heart (Zarain-

I-lerzberg ci at 1994). Although the SERCA pump is important in decreasing the beat-to-

beat [Ca2t]1  levels, it is incapable of extruding Ca 2t  from the cell. Therefore, steady-state 
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increases of [Ca 2+ ] 
in diabetic myocytes cannot be explained by a defective SR Ca 2+ 

 

transport system alone (Schaffer, 1991). 

1.9.1.1 P/s ospiwlaniban 

Ca2  uptake into the SR is regulated by PLB. PLB is an endogenous protein that inhibits 

SERCA pump activity and therefore decreases Ca 2  transport in the cardiac myocyte. 

When phosphorylated, PLB reverses its inhibitory effects on the SERCA pump and 

therefore, potentiates the uptake of Ca 2  from the cytoplasm into the SR (Tada & Katz, 

1982). PLB can be phosphorylated by cAMP dependent PKA at the serine-16 residue 

(Tada ci at 1974). 

It has been reported that isoprenaline enhanced the rise of [Ca 2 ]1 in response to a rapid 

caffeine induction in control myocytes more markedly than in type I diabetic cells 

(Tamada ci at 1998). In agreement with this. Gando cial. (1997) showed that stimulation 

with isoprenaline resulted in a 3-fold increase in PLB phosphorylation in control myocytes. 

Moreover, the same workers also demonstrated that type I diabetic hearts were less 

responsive to forskolin (Gando ci at 1997). This would suggest that the SR Ca 2  uptake 

through the SERCA pump might be impaired in the type I diabetic heart. 

1.9.2 Sodium calcium exchanger 

Although the Na/Ca 2 -exchanger has been suggested to be a mechanism of Ca 2  influx 

and a trigger for SR Ca 2  release, its main role is to reduce Ca 2  during diastole and 

therefore increasing [Na]1 (Bridge ci a/i 1990). A few workers have demonstrated 

depressions in the activity of the NaVCa 2texchanger pump in type I diabetic ventricular 
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cells (Takeda ci al. 1996; Pierce ci at 1990). Chattou ci al. (1999) have reported that the 

'Na-Ca is significantly decreased in the 3-4 week treated STZ-induced diabetic myocytes 

similarly Elattori ci at (2000) have also observed that the 'NaCa  was reduced in ventricular 

myocytes taken from the diabetic head when compared to control. Activity of the 

Nat'Ca 2 -exchanger is partly regulated by the intracellular sodium concentration ([Na4]) 

showed that the level of [Na]1 was significantly lower in diabetic myocytes (9.2 mM) than 

that in normal myocytes (12.0 mM) and it has been suggested (Katoh cial. 1995) that the 

decrease in [Na*]j  in diabetic myocytes may be due to an attenuation of the activity in the 

Na/Ef exchanger system. Pierce ci at (1990) have demonstrated a depression in Na/H 

exchanger isolated from chronically diabetic rats, suggesting an imbalance of pH and Na 

concentration within the cell. A reduction in [Na4]1 would favour operation of the 

exchanger in forward mode (influx ofNa* etilux ofCa 2 ) and may explain the decreases in 

cytoplasmic Ca2  concentration (Pierce c/ at 1990), which have been demonstrated in 

diabetic cells (Lagadic-Gossmann ctat 1996). Other reports however, suggest an increase 

in [Ca2 ]1(Allo c/at 1991). Increased [Na]1 would result in the increase of [Ca 2 ]1 through 

the Na/Ca 2 -exchanger. ADo c/at (1991) have suggested that a significant decrease in the 

ability of the Na/KtATPase activity would lead to increased levels [Na +] i.  

1.9.3 PMCI4 pump 

The PMCA is a P-type ATPase that uses energy ATP to drive Ca 2  out of the cell during 

relaxation. The pump is coupled to a proton counter flux that transports I proton in and I 

Ca2  out of the cell (Kuwayama, 1988). In the rat heart, the PMCA is likely to account for 

approximately 10% of the total Ca 2  efflux and contribute around 1% to overall Ca 2  

decrease in diastole (Bassani ci at 1994). In the STZ-induced type I diabetic heart, the 

PMCA pump has been reported to be significantly depressed following 18 and 24 days of 
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treatment (Takeda ci al. 1996) and in 8 week (Heyliger ci al. 1987; Makino ci at 1987) 

diabetic preparations. This alteration in the sarcolemmal (1-leyliger ci al. 1987) PMCA 

pump would contribute to a small defect in the Ca 2  efflux across the myocardial 

membrane in the diabetic heart. 

In conclusion, there is clear evidence of the negative influence of type I diabetes on the 

severity of cardiovascular disease. Several mechanisms of contractile dysfunctions have 

been reported in experimentally-induced diabetic heart muscle and current evidence 

reviewed in the introduction suggests that an altered process that underpins the 

mechanism(s) of E-C coupling are responsible for the contractile dysfunction seen in 

diabetic heart cells. In particular, it has been suggested that abnormal Ca 2  movement is 

responsible for the impairment seen in diabetic hearts. 

1.10 The story so far 

To date, several studies have utilised the STZ-induced model of diabetes to look at the 

effects of diabetes in the heart. Unfortunately many studies appear to contradict each other 

in their reports and it appear that the degree and variety of experimental procedures may 

underpin, to some extent the apparent changes that have been observed. It is therefore 

worth while tabulated a number of reports to educate the reader in recent publications that 

have arisen from this model ofdiabetes. 
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Table I.I. A comparison of studies looking at the effect of STZ-induced diabetes 

on the isolated cardiac myocytes from the rat heart 

Study Findings Treatment A uihor(1s) 
time 

Contraction Reduced 8 weeks Choi ci aL (2002) 
8 weeks Ren & Davidoff, (1997) 

5 months Okayama ci at (1994) 
6 weeks Yu ci at (1994a) 

No change 4-6 weeks Tamada ci at (1998) 
4-6 weeks Ishitani cial. (2001) 

Increased 8-12 weeks Howarth c/a! 2001 

Calcium Reduced 8 weeks Chol ci at (2002) 
transient 8 weeks Noda ci at (1992) 

6 weeks Lagadic-gossman ci at (1996) 
No change 4-6 weeks Tamada ci at (1998) 

4-6 weeks 1-lattori ci at (2000) 

Ap duration Prolonged 4-6 days Shimoni ci at (1994) 
8 weeks Magyar ci at (1992) 
3-4 weeks Jourdan & Feuvray, (1993) 

ICa,L Reduced 24-30 weeks Wang ciat (1995) 
3-4 weeks Chattou c/at (1999) 

No change 8 weeks Choi ci at (2002) 
4-6 weeks Tamada ci at (1998) 
3-4 weeks Jourdan & Feuvray, (1993) 

Ito 	 Reduced 	4-6 days Shimoni ci at (1994) 
24-30 weeks Wang ciat (1995) 
3-4 weeks Jourdan & Feuvray, (1993) 
8 weeks Magyar c/at (1992) 

JNaJCa 	 Reduced 	4-6 weeks Hattori ci at (2000) 
3-4 weeks Chattou c/at (1999) 

1.11 Changes in Cation distribution wit/tin the diabetic heart 

It has been reported that a change in specific cations within the body can result in a 

disruption of the contractile machinery of the heart (Elamin & Tuvemo, 1990). If this is 
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the case then it is reasonable to presume that changes in specific cations brought on by a 

diabetic state may synergistically lead to alteration in contraction that has been reported in 

the diabetic heart. One of the most abundant cations within the body is magnesium (Mg 2 ) 

(Sasaki ci at 1999). In the heart. Mg2t  plays a pivitol role in myocardial functioning 

(Topalov ci al. 2000). It has been reported changes in Mg 2  can, induce changes in 

membrane integrity and in doing so alter Ca 2  homeostasis (Altura & Altura, 1996), change 

the resting membrane and alter Ap duration (Altura & Altura, 1985). Moreover. [Mg 2t I 

has been reported to be important in the regulation of the Na/Ca 2texchanger. Therefore, 

any changes in Mg 2+ 
 levels may contribute to changes in the Na+ 2+ /Ca -exchanger and 

cause a reduced or increased concentration of Ca 2 ' within the cell (Howarth & Levi, 1998). 

Therefore, any perturbation of Mg2t  within the heart may lead increased cardiac failure 

(Altura & Altura. 1985; Chakraborti ci at 2002). 

It has been reported that Fe2t  when increased within the heart can result in heart failure. It 

has been reported that Fe2t  overload can result in heart failure and diabetes mellitus 

(Phatak & Cappuccio, 1994; Vonherbay ci at 1996). 

Copper (Cu 2 ) can act as a specific co-fator for over 20 enzymes that contribute to the 

normal function of the heart (Prohaska ci at 1990). Deficiency of this important cation has 

been implicated in a variety of cardiovascular complications including, IHD (Klevay, 

2000), cardiac hypertrophy, cardiac fibrosis and changes in cardiac myofibrils (Saari ci at 

1999). Copper deficiency has also been implicated in reducing cardiac action by altering 

Nat and K transport through changes in NatKtATPase isoform expression (Huang ci at 

1995). In the whole heart, it has been reported that reducing [Cu 2 ] resulted in reduced 

contractile function (Allen ci at 1993; Prohaska ci at 1982). However, it has also been 

reported that isolated cardiac myocytes from Cu 2  deficient rats exhibit enhanced 
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contraction and speed of contraction (Wold c/al. 2001). This implies that a change in Cu 2  

content within the diabetic heart may contribute to changes in contractile function. 

Zinc (Zn 2 ) also acts as an important co-factor that is involved in numerous important 

physiological processes (Pras ci at 1983). It has been reported that changes in Zn 2  

metabolism may be important in the induction of athroscelrosis (Paolisso ci at 1999). 

Whether or not changes in Zn 2  metabolism occur in diabetes, it is clear that changes in 

dietary Zn 2  can bring about changes in cardiac behaviour. One study reported that 

isoprenaline induced stimulation of the adenylate-cyclase activity, was significantly lower 

in diabetic rats that were given a low Zn 2  diet comparable to age-matched controls 

(Mooradian ci at 1988). This report would indicate that alterations in Zn 2  may directly 

effect the working of the cell through the 3- adrenergic responsiveness of the diabetic heart 

(Mooradian ci cii. 1988) and therefore, any changes in Zn 2  metabolism in diabetes may 

contribute to changes at the cellular level. 

Therefore, it can be seen that a changes in the total amount and variety of cations can have 

a profound effect on the normal functioning of the heart. Changes in the contractile 

dysfunction that has been reported in the diabetic heart may in pan be brought about by 

altered cation metabolism 

1.12 The effect of IaIot/iane on the heart 

In patients that are attending elective surgical procedures under general anaesthesia, the 

commonest cause of significant morbidity and mortality corresponds to cardiovascular 

complications (Mangano & Goldman, 1995). Many volatile anaesthetics have been used in 
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the clinical environment to promote unconsciousness in patients undergoing surgical 

operations on the heart (Davies a at 2000). It is well established that volatile anaesthetics 

have a potent negative inotropic effect on the heart, not only in clinical situations (Eger ci 

at 1970) and in animal, in situ hearts (Mahaffrey ci at 1961), but also in isolated heart 

muscle preparations (Housmans & Murat, 1988; Bosnjak ci at 1992), isolated cardiac 

myocytes (Harrrison ci at 1999; Davies ci at 1999) and regionally isolated cardiac 

myocytes (Ritahlia et at 2001). Halothane is one such volatile anaesthetic that is widely 

used in a clinical and research environment and is reported to have a potent negative 

inotropic effect on the heart (Harrrison ci at 1999; Davies ci at 1999). The negative 

inotropic effects of halothane on the heart are brought about by either a reduction in the 

Ca2  transient, through altered Ca 2  homeostasis or by a change in myofilament sensitivity 

for Ca2  (Davies ci at 2000). Moreover, it has been reported that myofilament sensitivity 

for Ca2  is reduced in isolated rat cardiac myocytes in the presence of halothane (Harrison 

ci at 1999; Davies). It is well established that volatile anaesthetics such as halothane have 

a depressive effect on the 'Ca,L (Ikemoto et at 1985; Terrar ci at 1988; Bosnjak ci at 1991; 

Kanaya ci at 1998). Reductions in 'Ca,L  in the presence of halothane may contribute to a 

decrease in Ca2  influx, SR Ca2  content (Connelly ci at 1994), fractional Ca 2  release 

(Han ci at 1994), and Ca 2  transients (Wheeler ci at 1988), that have been reported in the 

heart preparations in the presence ofhalothane. As well as 'CaL,  it has also been shown that 

halothane also affects other current, such as 'CaL (Eskinder ci at 1991 ), 'Na (Weigt ci at 

1997) and the 4, (Davies ci at 2000). Changes in current status in the presence of 

halothane are likely to account for changes in Ap characteristics that have been reported in 

the heart (Harrison ci at 1999). Moreover, it has recently been shown that halothane 

shortens the Ap duration to a greater extent in the sub-endocardial myocytes compared to 

sub-epicardial myocytes of the ventricle (Rithali ci at 2001). Any halothane-induced 

changes in Ap may contribute to the negative inotropic response that has been described 
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in the heart. Overall it has been shown that halothane-induced changes in current activity, 

Ca2* mobilisation and Ca2  myofilament sensitivity synergistically contribute to the 

negative inotropic effect in the heart. 

It has been shown that changes in pathological disease states such as myocardial ischemia 

(Kissin et at 1983;) and congestive heart failure have altered the negative inotropic effects 

of volatile anaesthetics. It is noteworthy that little is known about the effect of volatile 

anaesthetic on the diabetic heart. It has however been reported that halothane, isoflurane 

and enflurane did not significantly effect the papillary muscles 0fSTZ-induced diabetic rat 

heart but increased the time course of contraction (1-lattori etal. 1989). 

1.13 Aims of the study 

It has been reported in human patients and animal models with diabetes that contractility 

and Ca2  homeostasis are compromised in the heart. A chemically induced model of type I 

diabetes will be employed by using the antibiotic STZ in the rat. To test the hypothesis that 

the underlying mechanisms of E-C are corrupt in the diabetic heart we will utilise cardiac 

myocytes that will be enzymically isolated from the ventricle of the heart. To date, there 

appears to be a great deal of contradiction surrounding changes in contractile dysfunction 

within the STZ-induced type I diabetic rat. We will therefore set up a time-course study to 

compare the effects of STZ-induced type I diabetes following, acute (4 week and 8-12 

week) mid (4 and 5 month) and chronic (10 months) treatment on the mechanism of 

contraction in isolated ventricular myocytes. A cation imbalance is associated with cardiac 

dysfunction. This study will therefore test the hypothesis that the STZ-induced model of 

diabetes in the rat causes a specific cation imbalance. To test the hypothesis that there is a 

derangement in contractile function and Ca 
2-3- 

 mobilisation within the heart of the STZ- 
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induced diabetic rat, a video-edge detection system and a fluorescence system will be set 

up to measure contraction and Ca 2  simultaneously. The simultaneous recording of 

contraction and Ca 2 ' will allow the myofilament sensitivity Ca 2  to measured and test the 

hypothesis that these may be affected in the STZ-induced diabetic heart. Pharmacological 

tools such as caffeine. NiCl2 will then be employed to pin point changes in Ca 2+  

homeostasis, in particular to changes in Ca 2  efflux out of the cell within the STZ-induced 

diabetic heart. In some experiments isolated ventricular myocytes will be patched in whole 

cell mode and the voltage dependence of contraction will be measured to test the 

hypothesis that changes in membrane voltage are associated with differences in contractile 

function in the STZ-induced diabetic heart compared to age matched control. Throughout 

the series of experiments, the volatile anaesthetic halothane will be employed to test the 

hypothesis that the STZ-induced diabetic heart is more vulnerable to the inotropic effect of 

halothane compared to that seen in the normal heart. 

II 



Chapter 2 

Materials and Methods 
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2.! 	Materials 

Streptozotocin; Sigma, S-0130, Collagenase; Worthington, LS004 196, Protease, Sigma, P-

5147, Insulin; Actrapid, 2-Bromo-2-chloro-1. 1,1 -trifluoroethane (halothane); Sigma, 

134388: stock 99%), Fura-2 AM; (Molecular probes. Leider, The Netherlands), Nickel 

chloride; Sigma, N-5756. 

2.2 	Induction of diabetes 

Diabetes was induced in male Wistar rats (200-250 g) by a single i.p. injection of STZ (60 

mg kg - '; Sigma, 5-0130). STZ was dissolved in a citrate acid buffer solution (0.1 M citric 

acid; Sigma. C-0759 and 0.1 M sodium citrate; Sigma, S-4641 pH 4.5) (Ren & Davidoff, 

1997; Tamada et cii. 1998; Yu c/ al. 1994a; Noda ci al. 1993). Age-matched control rats 

received an equivalent volume of citrate acid buffer solution alone. Control and diabetic 

animals were caged separately but housed under similar conditions. Both groups were fed 

the same diet and water ad/iN/un, until they were used I. 1 4, 5 and 10 months later. All 

experiments had relevant ethical clearance from the Ethics Committees at the University of 

Central Lancashire and United Arab Emirates University. 

2.2.1 Measurement of blood glucose, plasma osnwlarity and plasma insulin 

Glucose was measured in whole blood with a glucose meter (One Touch II glucose meter, 

Lifescan Inc) prior to administration of STZ, 3-5 days following administration of STZ to 

confirm diabetic state and immediately after humanely killing of the animal, prior to 

experiments. Blood plasma osmolarity was measured with a vapour pressure osmometer 

(Westcor Inc, Model 5500XR). Plasma insulin analysis was measured with a standard 1251 

radioimmunoassy kit (Coat-A-Count Insulin, Diagnostic Products Corp, CA). 

43 



2.3 	Preparation of heart ti&cue for cation analysis 

At 2 and 4 month intervals diabetic and control animals were anaesthetised by an i.p. 

administration of pentobarbitone (60 mg kg' body weight) and also received 200 j.xl 

heparin (Leo Pharmaceutical Products, 5000 i.u. mY'). Hearts were rapidly excised, before 

being blot dried and weighed. These hearts were then used for the analysis of cardiac 

cation contents. 

24 	Cardiac myocyte isolation for contractility study and calcium measurement 

Rats were humanely killed by a blow to the head followed by cervical dislocation and the 

hearts rapidly removed. Samples of blood were taken at this stage for subsequent 

measurement of whole blood glucose, osmolarity and plasma insulin. Cardiac myocytes 

were isolated according to previously described techniques (Frampton et aL 199 Ia). In 

brief, hearts were perfused retrogradially at a constant flow rate by Langendorffs method 

(Langendorff, 1895) with a physiological solution (Appendix) containing Ca 2t  (0.75 mM) 

at 37 °C. Perfusion flow rates were adjusted to 8 ml g heart 1  mm 'to allow for differences 

in heart weight between the diabetic and control animals. When the preparation appeared 

stable (regular contractions 300 beats mm _5, perfusion was switched to a nominally Ca 2  - 

free physiological salt solution (Appendix) containing ethylene glycol-bis(2-

aminoethylether)-N,N,N',N'-tetraacetic acid (ECTA, 0.1 mM; Sigma, E-0396) for 4 mm. 

The heart was then perfused with a physiological salt solution (Appendix) containing Ca 2  

(0.05 mM), collagenase (0.75 mg ml '; Worthington. LS004 196) and protease (0.075 mg 

ml '; Sigma, P-S 147). This solution was then re-circulated to give a total enzyme exposure 

of6 mm (see Figure 2.1.) 



24.1 Isolation of ventricular myocytes 

Following enzyme perfusion, the heart was cut down free from the perfusion apparatus and 

ventricles excised and cut into small pieces (I-S mm). The ventricular tissues were then 

shaken (300 osc/min) in S ml enzyme solution (Appendix) containing 1% bovine serum 

albumin (BSA; Sigma, A-4503) for 4 min at 37°C. The mixture was then filtered through 

gauze (300 jim aperture, Cadish precision meshes, Finchley, London) and suspended in a 

physiological salt solution (Appendix) containing 0.75 mM Ca 2 . The filtrate was then 

centrifuged (400 rpm, I mm), the supernatant was removed and the cell pellet was re-

suspended in physiological salt solution (Appendix) containing 0.75 mM Ca 2 . The process 

was repeated a total of four times. Myocytes from shakes 2 and 3 were accumulated and 

stored at 4°C prior to use. Cells were used during a period of 1-8 hr after the isolation. Rod 

cell viability was measured (viability of the ratio of living cells (rods) to dead cells 

(rounds)) with an improved Neubauer haemocytometer within 1 hr after completion of the 

cell isolation (see Figure 2.2), 

2.4.2 Isolation of sub-endocardial and sub-epicardial myocpte.s 

In a number of experiments sub-endocardial (endo) and sub-epicardial (epi) myocytes 

were isolated in preference to ventricular myocytes. Following enzyme perfusion, the heart 

was removed from the perfusion apparatus and the ventricle excised. The outer and inner 

layers of the left ventricle were dissected free and cut into small pieces. Endo and epi 

portions were then isolated (as total ventricular myocytes) separately to give two cohorts of 

cells (Rithalia ci al. 2001). 
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Figure 2.2. Close up of isolated heart (top), isolated ventricular myocyte (middle) and 

isolated ventricular myocyte attached to a patch pipette in whole cell mode (bottom). 
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25 Measurement of total cardiac calcium, copper, iron, magnesium and zinc 

Heart tissue was placed in 10 ml of Analar grade nitric acid (10 g tissue 100 mr' nitric 

acid; VWR, 45004) and left to digest overnight at room temperature. Appropriate dilutions 

were made with Milli-Q grade water prior to measurement of cations. Total cardiac Ca 2t 

Mg2t Fe2 ; Cu2  and Zn2  concentrations were measured by atomic absorption 

spectrophotometery (PYE Unlearn, Model SP9) using air/acetylene and nitrous 

oxide/acetylene flames, respectively. Calibration standards (Ca 2 , Mg2 , Fe2 , Cu2  and 

Zn 2) were obtained from VWR Laboratory Suppliers. Values for cation contents were 

expressed as mg (100mg of heart tissue'. 

2.6 Measurement of contraction in cardiac myocytes 

Cardiac (either epi, endo or total ventricular) myocytes were allowed to settle on the glass 

bottom of a chamber mounted on the stage of an inverted microscope (Nikon Diaphot-

TMD, Japan) with X40 (Nikon, Japan) objective lens. Myocytes were superfused (3-5 ml 

mm 1 ) with a normal Tyrode (NT) solution (Appendix) containing 1 mM Ca 2t  using a 

power driven magnetic micro pump (Cole-Parmer instrument Co.Ltd, London) system, 

maintained at 35-37°C with a heating system coupled to a temperature controller (Medical 

systems corp., USA) and field stimulated (S88 stimulator, G rass-Te le factor, USA) via two 

platinum electrodes located on either side of the chamber. Contraction was measured with 

a video edge detection system (Crystal Biotech. VED-1 14) (Howarth & Levi, 1996). 

SIGNAL software (Cambridge Electronic Design, England) was used to acquire and 

analyse data (see Figure 2.3.). 
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26.1 Effects of insulin and STZ on contraction 

Ventricular myocytes isolated from diabetic and age-matched control hearts were 

incubated with either STZ (10 pM) or with insulin (I MM; Actrapid) for 2-3 hr at room 

temperature prior to experiments. Contraction was measured with a video edge detection 

system (Crystal Biotech. VED-! 14) (Howarth & Levi, 1996). SIGNAL software 

(Cambridge Electronic Design, England) was used to acquire and analyse data. 

2.6.2 Effect of halothane, glucose and perturbation of external calcium on contraction 

In separate experiments a rapid solution changer (Levi cial. 1996) was used to apply either 

2-Bromo-2-chloro-1,I,I-triuluoroethane (0.6 mM, halothane; Sigma, B4388. stock 99%) 

(Appendix) or different concentrations of either glucose (25 mM; VWR, 1011747) or Ca 2  

(0.25, I and 5 mM; VWR, 100703-H) to perfused ventricular myocytes. Contraction was 

measured with a video edge detection system (Crystal Biotech, VED-1 14) (Howarth & 

Levi, 1996). SIGNAL software (Cambridge Electronic Design, England) was used to 

acquire and analyse data. Osmolarity of the NT solution and NT (25mM) glucose was 

measured using a calibrated Burnett osmometer. 

2.7 Measurement of intracellular calcium transients in cardiac myocytes 

In order to measure the [Ca 2 ]1 transients, cardiac myocytes were firstly loaded with the 

fluorescent indicator fura-2-AM (Molecular probes, Leider, The Netherlands) using an 

established method (I-4owarth ci all 1999). Briefly, a volume of 6.25 itI of a 1.0mM stock 

solution of fura-2-AM (dissolved in dimethylsulphoxide, (DMSO; Sigma, D-5879)) was 

added to 2.5 ml of cells to give a final fura-2-AM concentration of 2.5 pM. Myocytes were 

50 



shaken gently for 10 min at room temperature. Following loading, the cells were 

centrifuged at 400 rpm for I mm, the supernatant was removed and cells were resuspended 

in NT (1 mM Ca 2 ) (Appendix). Cells were then incubated for at least 30 min at room 

temperature to ensure complete hydrolysis of the intracellular ester. 

[Ca24]1 transients were measured by alternately illuminating the loaded myocytes with 

light at 340 and 380 nm using a dichromatic mirror (Cairn Research Ltd., Faversham, 

Kent, UK) and an inverted microscope with X40 (fluo) oil objective lens. The resultant 

fluorescence emission at 510 nm was recorded by a photomultiplier tube (PMT; Cairn 

research Ltd., Faversham, Kent, UK). The ratio of emitted fluorescence at the two-

excitation wavelengths (340/380 ratio) was calculated to provide an index of [Ca 2 ']1 (see 

Figure 2.3.). A time course of Ca 2  analysis was measured by taking the time taken from 

stimulation to the peak of the Ca 24 . The decay of the Ca 2  transient was measured as either 

the time taken from the peak amplitude of Ca2*  transient to half its decay or the rate of 

decay measured by plotting a gradient of at least 8 points on the decay of the Ca 2  

transient. 

2. 7.1 Effect of halothane and calcium on cardiac calcium transients 

In separate experiments a rapid solution changer (Levi ci al. 1996) was used to apply either 

halothane (0.6 mM) or different concentrations of extracellular Ca 2  (0.25, I and 5 mM) 

throughout the experiments. 

2.8 	Sin,ulta,,eoug measurement of contraction and calcium in cardiac myocytes 

In some experiments it was possible to measure contraction and Ca 2  transient 

simultaneously using a long pass illumination filter (1`8 10 .Cairn Research Ltd., 
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Faversham. Kent, UK) fitted in the path of the microscope light source, therefore 

transmitting infra-red light whilst block light of shorter wavelength. This enabled viewing 

of myocytes via a CCD camera, which is sensitive to infrared light. 

2.9 Effect of caffeine on fractional calcium release in cardiac myocytes 

Following a train of steady-state Ca 24  transients, stimulation was abbreviated for 10 sec 

and a rapid application of caffeine (10 mM; Sigma C-l778) was applied to myocytes (10 

sec) to assess fractional Ca2t release from the SR. Following the application of caffeine, 

cells were switched to a NT (I mM Ca 2 ') solution (Appendix) re-stimulated (I Hz) and 

allowed to recover prior limits. The decay of the caffeine induced Ca 24  transient was 

measured as either the time taken from the peak amplitude of caffeine-induced Ca 2  

transient to half its decay or the rate of decay measured by plotting a gradient of at least S 

points on the decay of the Ca 2  transient. 

2.10 Effects of nickel chloride on caffeine-induced calcium release 

In some experiments, following the recovery of myocytes from a caffeine-induced Ca 24  

release, stimulation was abbreviated for 10-20 sec while. Nickel chloride (NiCl 2 , 10 mM; 

Sigma, N-5756 ) was rapidly applied to cells before a 10 sec re-application of caffeine (10 

mM). Myocytes were then re-perfused with a NT (I mM Ca 2) solution (Appendix) and re-

stimulated (I Hz) to allow recovery to prior steady state. 
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2.11 Voltage dependence of contraction and calciu,n current in cardiac niyocytes 

Voltage dependence of contraction was measured in patch-clamped ventricular myocytes 

in whole cell mode. Patch pipettes (Harvard patch glass capillaries PGI-50T-10) were 

pulled (Narishege, Japan PP-83) and fire polished (Narishege. Japan MF-79 microfuge) to 

between 2 and 5 U. Patch pipettes were filled with a cesium based pipette solution 

(Appendix). Patch-clamp recordings were made in whole cell, voltage clamp mode using 

an EPC-7 patch amplifier and headstage (HEKA, Germany). The "pipette to bath"junction 

potential was corrected before negative pressure was applied to cells which were then 

subjected to a holding potential of-40 mV to inactivate the sodium current ('Na)  and 1-

type Ca2  current ('Car)  (Brown ciaL 1981). Test pulses (200 msec duration) were applied 

at potentials between —30 and + 60 mV in 10 mV increments. Membrane capacitance 

(compensated for differences in cell size using c-slow/c-fast with a slow range of 100 pF), 

series resistance (g-series compensation) (c15M0) and capacitance compensation (30-

40%) were corrected before recordings were taken. A train of four conditioning pulses 

were applied before each test pulse to standardise SR Ca 2  load (Howarth & Levi, 1998). 

'CaL was measured using WINWCP (version 3.2) electrophysiological software (John 

Dempster, Strathclyde University, Glasgow, UK) at the same time as measuring the 

voltage dependence of contraction using a video edge detection system. The time to peak 

of the 'Ca.L  was measured from the start of the test pulse to the time at the peak of 'CaL 

The amplitude of the 'Ca.. was measured as the difference between 'Cal. at peak and 'Ca,I, 

at the end of the depolarising pulse. 
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2.11.1 Effects of halothane on calcium current (lild i'oltage dependence of contraction 

In another series of experiments 'CaL  and contraction was measured in ventricular 

myocytes prior and during incubation with 0.6 mM halothane. 

2.12 Data analysis and stat istics 

All data are expressed as mean ± S.E.M. of(n) preparations/cells. Statistical comparisons 

were made (SPSS software) using independent samples Student's t-test, paired t-test or 

ANOVA followed by Bonferroni post hoc analysis. P-values of less than 0.05 were 

considered significant, while P-values of less than 0.01 were considered very significant. 
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Chapter 3 

General characteristics of the 

streptozotocin-in duced diabetic rat 
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3.1 	General characteristics of the streptozotocin-induced diabetic rat heart and 

ventricular myocytes at djffering treatment times 

3.1.1 Introduction 

A single dose of STZ (between 40 and 60 mg Kg) administered to young adult rats is 

sufficient to initiate a stable model of type I diabetes (Szkudelski 2001). STZ acts to 

disrupt and destroy pancreatic 3-cells, which leads to alterations in glucose and insulin 

(Szkudelski 2001). It has been reported that two hours, post injection of STZ, there is a fall 

in plasma insulin level leading to a rise in blood glucose, which is should be followed, 

around 6 hours later by a transient decrease in blood glucose and concurrent elevation in 

levels of circulating insulin. Finally, blood chemistry stabilises to a state of 

hyperglycaemia and hypoinsulinaemia (West el ciL 1996). Therefore, induction of diabetes 

results in a state of 3-cell necrosis that is manifested by a temporary return of 

responsiveness, which appears to be followed by a permanent disruption and/or destruction 

of the -celIs (West ci cii 1996). Following a short incubation of up to 3 days, STZ-

induced rats present symptoms, which include severe hyperglycaemia and polydipsia. 

Within the next two wceks, rats start to show symptoms of muscle wastage increased food 

consumption, decrease in muscle mass and after a number of weeks some rats appear to 

acquire a cataract like condition (some features associated with type-I diabetes) (Bracken 

et al. 2003). Data, which follow show the general characteristics associated with the 

induction of STZ-induced diabetes. These include glucose, insulin and plasma osmolarity 

and there differences according to the different treatment times (4 and 8-12 weeks, 4 and 

10 months) comparing age-matched with STZ-induced diabetic rat. 
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3.1.2 Methods 

See chapter 2 for details. 

3.1.3 Results 

The general characteristics of age-matched controls and diabetic rats and ventricular 

myocytes following 4 and 8-12 weeks, 4 and 10 months of treatment are shown in table 

3.l.a, b, c and d. All rats within each group were supplied or bred together and weighed the 

same weight (±15g) at the start of treatment. Figure 3.1. shows the typical weight gained 

over a period of 8 weeks of treatment. It can be seen that STZ-induced rats gained 

significantly (P<0.01) less body weight at each week (week 3-8) of treatment compared to 

age-matched control rats. Moreover, table 3.1. a, b. c and d shows that diabetic animals 

had reduced body weights and had smaller hearts in all treatment time periods (not 

significantly (P>0.05) different in 4 weeks of treatment), compared to age-matched 

controls. Whole blood glucose was significantly (Pc0.05) elevated in all treatment times 

compared to controls. Plasma osmolarity measured in 8-12 weeks and 10 month STZ-

treated rats was significantly (P<0.05) higher than in age-matched controls. Cell viability 

measured by the percentage (%) of viable myocytes was significantly decreased (P<0.01) 

in 4 week (43.3% Vs. 66.0 %) and 8-12 week (25.3% Vs. 49.4 %) STZ-treated hearts 

compared to controls. This trend was decreased in the 10 month treatment to 32.2% in 

control and 23.8% viability in diabetic cells, although no significant (P>0.05) difference 

was reported. Plasma insulin was significantly (P<0.05) decreased following 8-12 weeks 

and 4 months of treatment, but was unchanged after 10-month STZ treatment compared to 

age-matched controls. 
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Figure 3.1. Typical, time dependent effects of STZ-induced (n16) diabetes on mean body 

weight of Wistar rats compared to age-matched controls (n=16). Data shown are mean ± 

SEM. Statistical significance showing control Vs. STZ using independent samples t-test is 

represented by ttP<0.01. 
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Table 3.1.a General characteristics of control and STZ-treated rat heart and 

ventricular myocytes following 4 weeks of treatment. 

Control STZ-treated 

Body Wt. (g) 371.0 +/-5.72 (4) 267.5 +1-6.55 (4)* 
Heart Wt. (g) 1.2 +/- 0.01 	(4) 1.2+1-0.04(4) 

Blood glucose (mgldl) 87.7 +1- 5.4 (4) 441.4 +1-51.3 (4)** 

Cell viability (% rod cells) 66.0 +1-5.7 (5) 43.3 +1-6.5 (4)* 

Table 3.I.b General characteristics of control and STZ-treated rat heart and 

ventricular myocytes following 8-12 weeks of treatment. 

Control STZ-treated 

Body Wt. (g) 381.4 +1-12.5 (5) 232.8 +1-7.2 (6)** 

Heart Wi. (g) 1.1 +1- 0.04 	(5) 1.0 +1- 0.03 (6)** 

Blood glucose (mg/dl) 92.4 +1- 2.42 (5) 407.5 +/39.9(6)** 

Cell viability (% rod cells) 49.4+1-3.5 (5) 25.3+1-1.2 (6)** 

Plasma Osmolarity (osmol kg 	) 3083 +1- 3.6 (4) 330.0 +1- 3.5 (4)** 

Plasma Insulin (ng mr') 20.63 +1- 7.52 (7) 4.80 +1- 1.28 (4)* 

In table 3.l.a and 3.l.b, data are means ± S.E.M. Number in parenthesis indicates 

number of rats or ventricular myocytes. All data were obtained at the end of the 

treatment period. Control Vs. STZ compared using Student's independent samples I 

test. * P<0.05. **p<ØØJ 
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Table 3.1.c General characteristics of control and STZ-treated rat heart and ventricular 

myocytes following 4 months of treatment. 

Control 	 STZ-treated 

Body Wt. (g) 	 420.3 +1-8.6 (6) 	 285. 5+7- 9.4 (6)** 
Heart Wt. (g) 	 1.0 +7- 0.03 (6) 	 0.9 +7- 0.03 (6)** 

Blood glucose (mg/dl) 	 120.0+1-3.8(6) 	 381.0 +1-1 8 . 7(6)** 

Plasma Insulin (ng mr') 	 11.86+1- 1.09(6) 	 7.25 +7- 0.87 (6)** 

Table 3.1.d General characteristics of control and STZ-treated rat heart and ventricular 

myocytes following 10 months of treatment. 

Control 
Body Wt. (g) 414.6 +7-21.2 (5) 
Heart Wt. (g) 13 +1- 0.02 (5) 
Blood glucose (mgldl) 81.2 +7- 3.1 (5) 
Cell viability (% rod cells) 32.2+/-4.8 (5) 
Plasma Osmolarity (osmol kg 	

) 311.6±1.3 (5) 
Plasma Insulin (na mr') 10.67 +7- 336 (7) 

In table 3.1.c and 3.1.d, data are means ± S.E.M 

STZ-treated 
270.0 +/-12.6 (5)** 

1.0 +7- 0.02 (5)** 

415.0 +1-52.8 (5)** 
23.8+/-6.2 (5) 
332.0 ± 7.3(5)* 
8.300 +7- 2.92 (8) 

Number in parenthesis indicates 

number of rats or ventricular myocytes. All data were obtained at the end of the 

treatment period. Control Vs. STZ compared using Student's independent samples (test. 

* p<0.05, p<0.01. 
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3.1.4 Discussion 

STZ-induced diabetic rats displayed typical characteristic features, which have been 

previously reported in STZ-treated animals (Yu c/at I 994b; Howarth ciat 2001; Howarth 

c/at 2002). The results of this study have shown that there is a reduction in body and heart 

weights in the STZ-induced diabetic rats after 8-12 weeks and 4 and 10 months following 

treatment compared to healthy age-matched controls. Other workers have also reported 

decreases in heart and body weights at I and 2 weeks. (Gordon & Guppy, 1999) 4-6 weeks, 

(Tamada c/at 1998) 8-12 weeks (Howarth c/at 2001) and 7 months (Satoh c/al. 2001) 

following STZ-treatment. An increase in blood glucose and a reduction in serum insulin 

levels are indicative of a diabetic state (Choi ci at 2002). It has been reported that blood 

glucose levels are 3-times as high in STZ-induced diabetic rats compared to control (Choi 

ciat 2002), which, is in agreement with this study, that has shown elevated blood glucose 

in all treatment times. Insulin levels were significantly depressed at 8-12 weeks and 4 

months in agreement with other reports who have also shown hypoinsulinaemia in this 

model of diabetes (Shimoni c/at 1998; F-Iowarth c/at 2001; Choi c/at 2002). Although 

there was a reduction of insulin at 10 months of treatment, it was not significant. This 

could be a result of some adaptive mechanism associated with the regenerative action of 

the pancreas, similar to that which has been reported in the STZ-induced type 2 model of 

diabetes (Schaffer, 1991). The viability of cardiac myocytes, when comparing good (rod) 

cells with dead (round) cells has shown to be significantly decreased at 4 and 8-12 weeks, 

in agreement with Yu c/at (1994) who also reported a reduction in rod cell viability. Any 

changes in cell viability may be a consequence of the fragility of the diabetic state. Hence, 

the cell becomes more disrupted and sensitive to any enzymic and mechanical disruption 

within the isolation process itself. Some reports (Okayama c/ at 1994; Tamada c/ at 1998) 

have suggested that though viability was altered from experiment to experiment, no 

significant changes were seen between control and diabetic cells, which mirrors what we 



have seen in 10 months of STZ-treatment. The normalised insulin levels that were noted in 

10 month treated rats may act to protect the heart in some way, and in doing so decrease its 

vulnerability in the isolation process and hence increase cell viability to levels similar to 

that of control myocytes. 

3.1.5 Conclusion 

The STZ-induced diabetic rat undergoes severe changes in body mass, muscle tone and 

eating/drinking habits that are underpinned by the destruction of the insulin producing 

pancreatic n-cells. Decreased circulating insulin gives rise to massively high amounts of 

unutilised blood glucose, which is transported around the body and some of which is 

excreted in the urine. The combination of changes in blood chemistry synergistically leads 

to altered physiological properties in the body's infrastructure and most importantly, 

notable changes in the heart functioning. 
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3.2 	Distribution of specific diva/ent cation wit/tin the streptozotocin-induced diabetic 

- rat heart 

3.2.1 In! roduction 

It is known that an imbalance in specific cations can cause disruption to the contractile 

mechanisms of the heart (Elamin & Tuvemo, 1990). It is therefore reasonable to presume 

that any alteration in specific cations within diabetes may contribute to the alteration in 

contraction that has been reported in the diabetic heart. 

3.2.1.1 Magnesium 

Mg 21  is the fourth most abundant total cation in the human body and the second most 

abundant intracellular cation (Sasaki ci at 1999). Mg 2  regulates over 300 enzyme systems 

directly or indirectly (via Mg-ATP transport) (Neinesanszky & Gerencser, 1992; Altura & 

Altura, 1996). Mg2  is predominantly found in three forms; bound to protein complexes, 

complexed to anion ligands and in its free ionised form. The concentration of intracellular 

magnesium ([Mg 2 1 ) in whole blood is on average around 0.5-0.7 mmol f' and 

approximately 65-72% of total Mg 2  being free or biologically-active Mg 2+ (Altura & 

Altura, 1996). In the heart, Mg 24  plays a key role in myocardial functioning (Topalov ci al. 

2000). Perturbation of Mg 2  can effect contractility in cardiac cells by; inducing 

alterations in membrane and intracellular organelle binding, changes in Ca 24  transport, 

including actions of Ca 2  release from the SR (Altura & Altura, 1996), changes in resting 

membrane and Ap's and disrupting E-C coupling cascades (Altura & Altura, 1985). 

Therefore, any changes in Mg 2  can act to, or contribute to the aetiology of cardiac and 

vascular disorders (Altura & Altura, 1985; Chakraborti ci al. 2002). Moreover, a dietary 

deficiency of Mg 24  can result in a loss of intracellular K ([K 4J) and concurrent gain in 



cellular Na 4  and Ca 2  (Chakraborti et at 2002), which can induce electrolyte imbalance 

leading to changes in membrane integrity (Chakraborti et at 2002). Mg24  deficiency has 

been implicated in many cardiovascular-related disorders including; IFID, CITIF, sudden 

cardiac death, hypertension, eclampsia, athroscelrosis, cardiac arrhythmias and ventricular 

complications in diabetes mellitus (Altura et at 1981; Chakraborti ci at 2002). 

Measurement of total cardiac Mg 2  will indicate whether this cation contributes to the 

changes in contractility that has been reported in the diabetic heart. 

3.2.1.2 Calcium 

Ca 2+ 	
i 2+  i represents perhaps the most important on within the heart. Ca 	s crucial to the 

normal process of heart chamber, contraction and relaxation (Bers, 2002b). Consequently, 

perturbation of Ca2  within the heart can contribute to alterations in contractile kinetics. In 

the normal heart Ca 2  levels are controlled bya number of transport systems including L-

type Ca2  channel (through 'CaL  activity), PMCA channels, NaVCa 24-exchanger and 

SERCA pump on the SR. Therefore, in a normal heart beat, Ca 24  homeostasis is controlled 

by any or all of these system. Any alteration or modulation to any of these Ca 24  transport 

systems may contribute to both contractile dysfunction and arrhythmic pathological 

conditions (Pogwizd ci at 2001). This study will evaluate the total cardiac Ca 24  in STZ-

treated rats after 2 and 4 months treatment. A change in total Ca 24  may be indicative of an 

underlying diseased state. 

3.2.1.3 Copper 

A deficiency in dietary Cu 24  can lead to cardiac disorder such as hypertrophy, fibrosis, 

derangement of myofibrils, and impaired contractile and electrophysiological function 

(Wold ci ci. 2001). It has been suggested that such disorders are directly related to the 

decrease in a specific a Cu2tdependent enzyme reaction (Saari, 2000). 
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3.21.4 Iron 

Fe2  is an important trace element in the body. However, changes in Fe 2  metabolism can 

lead to clinical problems. Haemochromatosis is an autosomal-recessive hereditary disorder, 

which is characterised by excessive increases in amounts of absorbed dietary Fe 2 . This 

induces a state of Fe 2  overload, which, over a period of time manifests increased deposits 

of Fe 2  in tissue. This can result in skin discoloration, arthropathy, hepatic cirrhosis, heart 

failure, diabetes mellitus and impotence (Phatak & Cappuccio, 1994; Vonherbay c/ at 

1996). It is not clear in the literature if diabetes mellitus is a true cause or consequence of 

increases in heart Fe 2  content. We have therefore determined total cardiac Fe 2  content in 

STZ-induced diabetic rats at 2 and 4 month treatment. 

3.2.1.5 Zinc 

Zn2  acts as an important co-factor that is involved in numerous important physiological 

processes (Pras et al. 1983). Although little data are available to suggest any direct 

evidence of diabetes-induced cardiomyopathy with cardiac Zn 2 content, it has been 

observed that Zn 2  metabolism may be important in the induction of athroscelrosis 

(Paolisso et at 1999). 

3.2.2 Method 

See chapter 2 for details. 
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3.2.3 Results 

Figure 3.2.a shows the time dependent changes in total concentration of total Cu 24  at 2 and 

4 months following diabetes induction with STZ. The results show that diabetic heart 

tissue has a significantly (Pc 0.01) elevated level of Cu 2  in 2 (0.0056 ± 0.0002 mg (100 

mg tissue') and 4 months (0.0049 ± 0.0008 mg (100 mg tissue)') compared to control 

heart tissue at 2 (0.0021 ± 0.0001 mg 100 mg (100 mg tissue') and 4 months (0.0030 ± 

0.00009 mg (100 mg tissue)- , respectively. Figure 3.2.b shows a significantly (P< 0.01) 

elevated level, of Fe 2  at 2 months (0.011 mg ± 0.0005(100mg tissue') and 4 months 

(0.013 ± 0.0004 mg (100 mg tissue') in STZ-treated heart tissue compared to age-

matched controls at the same treatment time. Figure 3.2.c shows a significant (Pc 0.01) 

increase in total Ca 2  in 2 month STZ treated hearts (0.0 15 ± 0.001 mg (100 mg tissue') 

compared to age-matched controls ( 0.0076 ± 0.0007 mg (100 mg tissue'). Similarly, 

significant increases were obtained in 4 month STZ treated hearts (0.016 ± 0.001 mg (100 

mg tissue') compared to age-matched controls (0.0089 ± 0.0008 mg (100 mg tissue'). 

Figure 3.3.a shows that Mg24  levels remain similar at both 2 months and 4 months. At 2 

months treatment, the total Mg 2  content in control and STZ-treated heart tissues was 

0.010 ± 0.0003 mg (100 mg tissue' and 0.010 ± 0.0005 mg (100 mg tissue)', respectively 

but in 4 month control heart tissues it was 0.012 ± 0.0002 mg (100 mg tissue 1  compared 

to 0.011 ± 0.0002 mg (100mg tissue' in the diabetic tissue. Figure 3.3.b shows total Zn 2  

content and reports a significant (Pc 0.05) rise in Zn 2  content from 0.0 15 ± 0.0007 mg 

(100 mg tissue' in control to 0.019 ± 0.001 mg (100 rng tissue' in the 2-month treated 

diabetic heart. At 4 months no significance was seen between Zn 2  content in control 

(0.019 ± 0.0007 mg (100 mg tissue') and diabetic (0.020 ± 0.001 mg (100 mg tissue') 

tissue. 
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3.24 Discussion 

3.24.1 Magnesium content 

Total cardiac Mg2  levels within this study were not significantly different between control 

and STZ-treated rats after 2 and 4 months of treatment. The data in this study would 

suggest that cardiac Mg 2  is not affected in STZ-induced diabetes. l-lypomagnesaemia, 

characterised by reduced serum Mg 2  has been reported in a number of human patients 

with diabetes (Saito, 1996; Sasaki et at 2000; Nagase. 1996) as well as experimental-

induced models of diabetes (Altura & Altura. 1995). Reports in experimental-induced 

diabetes have shown a significant decrease in cardiac Mg2t  levels from STZ (Bhimji ci at 

1986) and alloxan (Bhimji ci at 1985) treated animals compared to controls. However, in 

another study it has been shown (Ewis & AbdelRahman. 1995) that there were no 

significant changes in heart Mg2t  in STZ-induced and controls. These later findings are in 

agreement with the results obtained in the present study. 

[Mg2t]1 and extracellular Mg 2  ([Mg2t]0) concentrations play an important role on a variety 

of cellular events and are also an important co-factor for ATP in many cellular enzyme 

systems (Howarth & Levi, 1998). [Mg 2+ 
 ]i has been reported to be important in the 

regulation of the Na/Ca 2texchanger. Therefore, any changes in Mg 2  levels may 

contribute to changes in the Na t/Ca2t-exchanger and consequently cause a reduced or 

increased concentration of Ca 2  within the cell (Howarth & Levi, 1998). It has also been 

reported that Mg2*  deficiency can induce thç rise of [Ca2t]. changes in cell membrane 

permeability and transport processes in cardiac cells. It has been suggested that the reason 

for the opposing effect of Ca2t  and Mg2t  is that there is competitive for the same site of 

action proteins such as troponin-C (Chakraborti c/ at 2002). 
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3.24.2 Calcium content 

The total Ca2*  concentration following 2 and 4 months of diabetes was significantly 

elevated after STZ treatment. Total tissue Ca 2  transient has also been reported in type 2 

diabetic hearts were a 35 % increase in Ca 2  was reported (Schaffer et at 1989). Moreover, 

ventricular muscle stiffness (Schaffer ci al. 1989), as measured by changes in left 

ventricular pressure, is more rigid in diabetic hearts. Brady & Farnsworth (1986) have 

suggested that the increase in muscle stiffness may be caused by an elevation in basal 

[Ca 2 '] i and partial activation of myosin. Because this experiment has reported an elevated 

Ca2  content in both treatment times, it is tempting to suggest that Ca 2  influx through leak 

channels and reductions in the Na 47Ca2 -exchanger working to shunt Ca 2  out of the cell is 

compromised in the diabetic heart and may contribute to the results reported in our 

experiments. 

3.2.4.3 Copper content 

Total cardiac Cu 2  concentrations in this study were significantly elevated versus age-

matched control after 2 and 4 months STZ-treatment. It has been shown that a decrease in 

Cu2  within the diet and subsequent Cu 2 ' deficiency leads to Il-ID (Klevay, 2000). As a 

result of decreased Cu 2  intake, hearts would also appear to have lesser amounts of Cu 2 . 

We, however, have shown an increase in Cu2F  in the diabetic heart. Moreover, It has been 

shown (Ford, 2000) that elevated levels serum Cu 2  concentrations may be associated with 

higher incidence of cardiovascular disease. There is little data available to directly link 

'-3- experimental diabetes with elevated levels of cardiac Cif however, it has been shown 

that Cu 2  is elevated in the liver of diabetic animals (Halimans & Lithner. 1980). From the 

literature and results presented in this study it seems unclear if there is a direct link with 

alterations in Cu 23-  and an increase in diabetic-induced cardiomyopathy. 
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3.2.4.4 Iron content 

This experiment would suggest that Fe 2  metabolism is changed in the diabetic state but if 

or how these changes affect the diabetic state or contractility within the cardiac cell need 

further investigation. Previous reports suggest that an alteration in Fe 24  levels is not 

implicated in the pathophysiology of diabetes (Tuvemo & Gebre-Medhin, 1983). 

3.24.5 Zinc content 

The direct implication of changes in Zn2*  metabolism and diabetes is unclear. The present 

study has demonstrated that total Zn 2  content in the heart is shown to be significantly 

elevated in 2 months, while, Zn 24  content was similar in 4 months following STZ-induced 

diabetes compared to control. 

Though little data are available to compare cardiac Zn 24  content, it has reported that serum 

Zn 21  levels are unchanged in diabetic patients (Golik cIa.t. 1993; Pras ci at 1983), wheras 

plasma Zn 24  concentrations have been reported to be significantly reduced in diabetic 

patients (Williams ci at 1995; Chen ci at 1995). l-Iowever, other reports that showed no 

significant differences in plasma Zn 24  from with patients who had type 2 diabetes. It is 

widely accepted that during diabetes significantly high amounts of Zn 24  are lost through 

the urine (Tuvemo & Gebre-Medhin. 1983; Chen ciat 1995; Golik ci at 1993). 

3.2.5 Conclusion 

In conclusion, this study has demonstrated that STZ-induced diabetes elicits a state of 

hyperglycaemia and hypoinsulinaemia in the rat and also alters specific metabolic cations 

within the heart compared to healthy age-matched controls. It is proposed that these 
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metabolic disturbances may alter the mechanical functioning, that has been reported in the 

diabetic hearts. This study has reported differences in cation content in the diabetic heart. It 

is also clear that any perturbation of cardiac cation content can influence the cells ability to 

function "normally". It is suggested that specific alterations in cation imbalance may lead 

to changes in cardiac heart function that has been reported in the STZ-induced diabetic rat 

heart. 
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Chapter 4 

Effects of streptozotocin-induced 

diabetes on contraction in rat 

cardiomyocytes 
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4.1 	Time dependent effects of streptozotocin-induced diabetes on the kinetics of 

contraction in ventricular myocytes icolated front rat heart 

4.1.1 Introduction 

Derangement of cardiac functionality is a common feature associated with experimentally-

induced diabetes. Contractile responses have been measured in many different animal 

models of diabetes with varying methods, different treatment times and consequently 

different results. In the STZ-induced diabetic rat model of diabetes alone there are many 

contradictory results, but most are consistent to agree that there is underlying contractile 

dysfunction or alteration in the diabetic model, to serve as a valid tool to investigate 

diabetic-induced cardiomyopathy. Contractile defects have been reported in a wide range 

of STZ-induced diabetic tissues. These include the intact animal (Al Shafei ci at 2002), 

isolated perfused heart (Choi et at 2002), papillary muscle preparations (Hattori et at 

2000; Marshall, 2000) and single isolated cardiac myocytes (Tamada ci at 1998; Yu ci at 

I 994a; Hattori c/at 2000; Choi c/at 2002). By using single isolated cardiac myocytes it is 

possible to investigate and study contraction consistently without possible problems e.g. 

extrinsic factors such as, changes in circulating hormones and metabolites in the in vivo 

preparation and changes in perfusion rates associated with intact hearts (Choi ci at 2002). 

Isolated cardiac myocytes from STZ-induced diabetic hearts have been reported as having 

depressed shortening (44% decrease compared with controls), reduced maximum rates of 

shortening and re-lengthening (58 and 56% decrease, respectively) and prolonged 'pk 

shortening (47% increase)(Yu el at 1994a). Decreased shortening and a reduction in rates 

of contraction and relaxation have also been demonstrated by (Okayama ci at 1994) while, 

Ren & Davidoff(1997) showed that diabetes markedly prolonged both the contraction and 

relaxation phases of isolated ventricular myocytes. However, other groups (Tamada et at 

1998; Ishitani ci at 2001) have reported that STZ-induced diabetic hearts have no 
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significant differences in cell shortening. A significant increase in the amplitude of 

contraction has also been reported in conjunction with an increase in the fpk of contraction 

(Howarth et at 2000; Howarth et at 2001). Importantly, it has been reported that STZ-

induced diabetic rats treated with daily doses of insulin (to normalise blood glucose) have 

attained normal contractile function, thus indicating that defects associated with STZ-

induced diabetes are specific to the disease state itself(Yu eat 1994a). 

This study investigated contractile characteristics associated with short (4 and 8-12 weeks), 

mid (5 months) and long-term (10 months) STZ-induced diabetes. 

4.1.2 Met/tad 

See Chapter 2 for details. 

4.1.3 Results 

The amplitude of contraction (compared as a % of resting cell length-RCL) was increased 

in all STZ-treated myocytes following each period of treatment (see Figure 4.1.a). 

Following 4 weeks treatment, the amplitude of contraction was significantly (P<0.01) 

increased (9.72 ± 1.04% Vs. 5.01 ± 0.53 %) compared to control, respectively. After 8-12 

weeks of treatment the amplitude of contraction was markedly, reduced in diabetic 

myocytes compared to 4 weeks of treatment, but was still significantly (P<0.01) increased 

in diabetic myocytes (6.8 ± 0.5 %) compared to that of age-matched controls (4.1 ± 1.04 

%) over the 8-12 weeks of diabetes. Following 5 months of treatment, the amplitude of 

contraction was similar to that after 8-12 weeks, with a significant (P<0.01) increase in the 

diabetic cells versus control (6.4 ± 0.6 % Vs. 3.2 ± 0.4 %), and although reduced slightly 

after 10 months treatment. This was also significantly (P<0.01) increased in diabetic 
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myocytes compared to age-matched controls, respectively (4.7 ± 0.3 % Vs. 3.3 ± 0.3 %). 

The 1p4 of contraction was significantly (Pc0.01) increased in diabetic myocytes (207.2 ± 

8.0 ms) following 4 weeks of treatment compared to control (167.2 ± 8.1 ms) (see Figure 

4.1.b). This trend, although blunted was seen after 8-12 weeks of treatment as well, in 

diabetic and control myocytes (164.1 ± 7.4 ms Vs. 132.3 ± 5.9 ms), respectively. Following 

5 months of treatment, 'p4 of contraction was significantly (P<0.05) longer in diabetic 

myocytes (134.7 ± 6.6 ms) compared to control myocytes (110.3 ± 6.2 ins). Following 10 

months of treatment no significance (P>0.05) difference was observed between diabetic 

and control myocytes. 

The t relax  was not significantly (P>0.05) altered after 4 weeks (95.8 ± 7.1 nis Vs. 

106.4±8.7 ms) , 8-12 weeks (60.6 ± 4.1 ms Vs. 70.6 ± 5.6 ms) and 5 months (53.8 ± 1.6 

ms Vs. 55.4 ± 4.3 ms) following induction of diabetes in myocytes from diabetic and 

control hearts, respectively (see Figure 4.1.c). However, following 10 months of treatment 

the t relax  was significantly (P<0.01) shorter in diabetic (55.32 ± 2.7 ins) myocytes 

compared to control (85.1 ± 7.1 ms). 
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Figure 4.1. Time-dependent effects of STZ-induced diabetes after 4, 8-12 weeks and 5 and 

10 months of treatment on amplitude of contraction (a) and 'pk  of contraction (b) in 

electrically stimulated myocytes (I Hz) perfused at 35-37 °C with a NT solution containing 

1 mM Ca2 . Age-matched control myocytes are also shown in the figure for comparison. 

Data are mean ± SEM. Numbers of cells are shown in bars. * Pc 0.05, Pc 0.01 
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4.1.4 Discussion 

Contraction was measured as a % of RCL in isolated ventricular myocytes and was 

increased in each treatment time of STZ-induced diabetes. This is in agreement with 

previous studies (Howarth ci at 2001), which demonstrated an increase in contraction 

following 2 and 10 months of treatment. The increase in contraction in diabetic myocytes 

was more marked at shorter time periods compared to control. Increase in contraction is an 

indication of either altered or an increased amount of [Ca 2+ 
 ]i or changes in myofilament 

sensitivity to Ca 2  during systole in the contractile phase. Other reports suggest that 

contractility is decreased in the STZ-induced diabetic cardiac myocyte following 5 months 

(Okayama ci at 1994), 6 weeks (Yu c/at 1994a) and 8-weeks (Noda ciat 1993; Choi ci 

at 2002) of STZ-treatment, while other reports suggest that there is no change in 

contraction following 4-6 weeks and 8 weeks of STZ-treatment (Tamada ci at 1998), 

respectively (Ishitani ci at 2001). Inconsistencies in data may well reflect differences in 

dose, time treatment, experimental protocol, and strains of animals used. What does seem 

evident is that in most reports there is either an alteration or/and disturbance in contraction 

in the diabetic heart. The ipk of contraction was significantly increased in STZ-induced 

diabetes following 4, 8-12 weeks and 5 months but not following 10-months of STZ-

treatment. An increase in the tpk  has also been reported in STZ-induced diabetic myocytes 

following 4-6 days (Ren & Davidoff, 1997), 6 weeks (Choi ci at 2002) and 8 weeks of 

treatment (Yu ci at 1994a; Ren & Davidoff, 1997; Howarth c/at 2000). However, in this 

study, it has also been observed that following 10-months of STZ-treatment there was no 

significant different in the 'pk contraction between diabetic and age-matched control 

myocytes. The t retax  was not significantly altered by STZ-induced diabetes following 4, 8-

12 weeks and 5 months of treatment, but was significantly (P<0.01) decreased after 10 

months of treatment. This is in agreement with a previous study (Howarth ci at 2000), 

which, reported an increase in the relaxation phase following 10 months of STZ- 
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treatment. Either way little/or no other data are currently available to compare the effect of 

such chronic treatment times on the type I model of diabetes. However, longer relaxation 

phases have been reported in shorter periods (8 weeks) of treatment (Choi et al. 2002). 

The changes in the amplitude and the time-course of contraction would suggest that over 

time the STZ-induced diabetic rat heart undergoes a compensatory adaptive process to try 

and secure the integrity of the heart. It could be that a change in blood glucose and insulin 

instigates a slow change in gene regulation that is characterized by changes in contractile 

performance. This is an interesting hypothesis needing future investigation. Furthermore, 

because contraction is ultimately dependent on Ca 24  homeostasis, it is likely that a change 

in [Ca2 ]1 regulation and or a change in myofilament sensitivity may explain differences 

seen in the STZ-induced diabetic model of diabetes versus age-matched control. 
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4.2 	Post rest potenhiation in STZ-induced diabetic heart 

4.2.1 Introduction 

E-C coupling is the process underlying contraction in the heart (Bers, 2002a). In the 

steady-state, contraction is followed by a short period of rest, which is characterised, by a 

refractory period (restitution). The predominant factor responsible for this is the recovery 

of the RyR from an inactivated or adapted state (Hers. 2002a). In the non-steady-state, 

cardiac cells are left in a quiescent phase for artificially long periods. Thus, the subsequent 

amplitude of contraction is greatly increased versus prior steady state in the rat (Yu & 

Mcneil!, 1991; Bassani & Hers, 1994; Bers ci al. 1993; Maier ci al. 2000) and human 

(Pieske ci' aL 1999) but is diminished in the rabbit heart (Bassani & Hers, 1994; Bers et al. 

1993; Maier c/al. 2000). It is thought that an increase in amount of fractional Ca 2  release 

coupled together with the total available SR Ca 2  is likely to contribute to the increase in 

the amplitude of contraction. Increased availability ofCa 2  in the SR leads to an increase in 

contracture and therefore, longer periods of resting phases produce larger contractions. 

This phenomenon is referred to as the post rest potentiation (PRP), and is an indication of 

the degree of stored Ca 2  available for contraction (Yu & Mcneil!, 1991). This study 

investigated the contractile characteristics of PRP in the STZ-induced diabetic rat heart 

compared to age-matched control. Changes in the STZ-induced diabetic heart may have 

implications regarding SR loading and Ca 2  release from SR stores. 

4.2.2 Method 

See Chapter 2 section for details. 
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4.23 Results 

In all figures, unless otherwise stated, relate to 8-12 weeks STZ-induced diabetic 

ventricular myocytes and age-matched controls. Myocytes were stimulated at 1 Hz until 

steady state contraction was attained. Stimulation was then abbreviated for periods 

between 2 and 60 s (Figure 4.2.). PRP was assessed by comparing the amplitude of the first 

PRP contraction with pre steady-state. 'pk of contraction and / reiax were also measured 

after each of the rest periods in control and diabetic myocytes. Figure 4.3. shows (a) PRP 

shortening. (b) tpk and (c) ty. relax of myocytes. The amplitude of PRP shortening increased 

progressively in diabetic and control myocytes as rest periods increased between 2 and 60 

s. PRP increases of shortening were not as marked in myocytes from diabetic cells 

compared to control although at no stage were changes significant (Figure 4.3.a). The tpk 

of PRP contraction was consistently longer in myocytes from the diabetic heart compared 

to control. Following 20 sec rest interval, tpk  contraction was 173 ± 4 ms and 143 ± 8 ms 

in diabetic and control myocytes, respectively (Figure 4.3.b). relax of PRP contraction 

after 2 months was not significantly different (P> 0.05) in myocytes from diabetic 

compared to control following all rest periods (Figure 4.3.c). 
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Figure 4.2. Determination of mechanical restitution in isolated rat ventricular 

myocytes. The trace shows the cell contraction (jim) from an isolated myocyte. 
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intervals above. Traces are typical of 15-25 such myocytes taken from 6-8 diabetic 

and 6-8 control hearts. 
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4.2.4 Discuss ion 

PRP of shortening was observed in control and diabetic myocytes, however, shortening 

was less marked in diabetic cells versus contrOl. Yu & Mcneill (1991) have also reported a 

change in PRP contractions in diabetic papillary muscles from Wistar and spontaneously 

hypertensive rats. In contrast, the same workers have reported no change in PRP 

contraction in the left atria suggesting that there may be species as well as regional 

differences in PRP contraction in the heart. The fpk  of contraction has been shown to be 

significantly longer in diabetic myocytes following PRP at all periods. The 'pk in diabetic 

myocytes markedly increased over the increase in time period, however, in the control 

myocytes there was no increase in the 'pk . A change in the /;,k may indicate a slower 

sustained release of Ca 2  from the SR. 

The two factors contributing to changes in the amplitude of PRP contraction in the rat heart 

are the amount of SR Ca 2  and the degree of fractional release (Bers, 2002a). During rest 

periods Ca 2  leaks out of the SR into the cytosolic compartment where it competes with 

other Ca2  to be either transported back into the SR or out of the cell via the Na/Ca 2 -

exchanger and the PMCA (Bassani & Bers, 1995). Because the SR pump predominates 

over the other mechanisms in the rat heart (Bassani cial. 1994), the great majority of Ca 

leek is pumped back into the SR which ultimately contributes to unaltered Ca 2  flux that 

has been reported in the rat heart (Bassani & Bers, 1994). Another reason for the 

predominance of the SERCA pump over the Na/Ca 2 -exchanger is the high resting [Na]1 

that has been reported in the heart (Shattock & Bers. 1989). This would contribute to an 

influx of Ca2  during quiescent phases. The marked decrease in the PRP amplitude of 

shortening (although not significant) and the significant changes in the 'pk  of PRP 

contraction in myocytes from the STZ-induced diabetic heart may be associated with one 
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or more changes in [Na] , SERCA pump activity and fractional Ca 2  release as well as a 

alteration in myofilament sensitivity. 
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4.3 	Effects of chronic streptozotocin-induced diabetes on contraction-frequency 

relationships in ventricular myocytes isolated from rat heart 

4.3.1 Introduction 

Force-frequency relationships have been studied for many years in many different animals 

models. In rabbit (Maier etal. 2000), guinea-pig (Kurihara & Sakai, 1985) and non-failing 

human hearts (Pieske et aL 1999), it has been shown that following an increase in the 

frequency of stimulation, contractile response, as well as SR Ca 2 ' content increase up to a 

point where a maximum frequency response is reached (Bers, 2002a), known as the 

positive staircase response (Bers, 2002a). However, in some rat cardiac myocytes, 

following an increase in frequency stimulus, it has been reported that there is a decrease in 

contractile force (Frampton ci at 1991), although SR Ca 2  does not appear to alter 

significantly (Maier et at 2000). This response has therefore been named a negative 

staircase effect. One of the main reasons why some rat cardiac tissue should behave in this 

way is due to the loading of the SR with Ca 2t In the rat heart, SR Ca 2  is relatively high 

(Maier ciat 2000) which, is due to a predominately strong SERCA pump that mops up the 

greatest percentage of Ca 2  leek from the SR. This is mirrored by a high level of [NC]1 

(Shattock & Bers, 1989) that drives Na+ 2+ 2+ ICa -exchanger to reduce Ca efflux from the 

cell. The aim of this part of the study was to investigate the effect of STZ-induced diabetes 

on the force frequency relationship in isolated ventricular myocytes. A significant change 

in force frequency within the diabetic heart may be associated with a derangement of SR 

Ca2  release sequestration or alterations in myofilament sensitivity. 

4.3.2 Method 

See Chap/cr 2 section for details. 
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4.3.3 Results 

In all figures, unless otherwise stated, relate to 8-12 weeks STZ-induced diabetic 

ventricular myocytes and age-matched controls. Figure 4.4. shows the (a) amplitude of 

contraction (b) tpk of contraction and (c) 1 Y. re/ax in myocytes of STZ-treated and age-

matched control rat hearts. The amplitude of contraction was significantly (P<0.0I) larger 

in myocytes from diabetic heart during electrical stimulation at I liz and 2 Hz frequency, 

compared to age-matched control, but was not significantly altered following 0.2 Hz 

stimulation (Figure 4.4.a). The t;,k of contraction was significantly (Pc0.01) longer in 

diabetic myocytes at all (0.2, I and 2 Hz) frequency ranges compared to age-matched 

control (figure 4.4b). Although 're/ay  was markedly decreased in diabetic myocytes at all 

frequencies (0.2, I and 2 Hz) it was found not to be to a significant level (Figure 4.4.c). 

There was a significant difference in the amplitude on contraction in control myocytes 

when frequency stimulation was switched from 0.2 to I Hz, but was not significantly 

altered between I and 2 Hz. In STZ-induced diabetic myocytes there was no significant 

differences between all (0.2 Hz to I Hz and 1Hz to 2 Hz) frequencies of stimulation. 
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Figure 4.4. Effect of changes in stimulation frequency (0.2, 1 & 2 HZ) on amplitude 

of contraction (a) and t,k of contraction (b) in control and STZ-induced ventricular 

myocytes perfused at 35-37 °C with a NT solution containing 1 mM Ca 2t Data are 

mean ± SEM. Numbers of cells are shown in bars. Cells were obtained from 6-8 

diabetic and 6-8 control hearts * P <0.05 
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4.3.4 Discussion 

The results from this study have shown that the amplitude of contraction is significantly 

greater in STZ-induced diabetic myocytes compared to age-matched control at frequencies 

of I and 2 Hz. However the amplitude of contraction was not significantly different 

between control and STZ-induced myocytes following 0.2 Hz stimulation. This would 

indicate that at lower frequencies (0.2 Hz) differences in contractile function are 

normalized between the control and diabetic heart. In contrast, it has been reported that the 

amplitude of contraction is significantly reduced in the STZ-induced diabetic myocytes 

compared to control. Differences in reports may reflect changes in experimental 

procedures. Within this study, myocytes obtained from 8-12 weeks STZ-induced diabetic 

hearts did not exhibit either a significantly positive or negative contraction-frequency 

response. However, in age-matched control myocytes there was significantly negative 

contraction-frequency response in control myocytes, when stimulation was changed 

between 0.2 and I Hz. Frampton et al. (1991), showed that around 40% of isolated 

ventricular myocytes responded in a negative manner when stimulation was switched from 

0.2 Hz - 1Hz. It has been shown that the reduction in contraction that is seen in a negative 

force-frequency response is coupled with a modest change in the size of the Ca 2+
transient 

(Frampton ci at 2+ 
i 1991). In the rat heart, SRCa s relatively high (Maier ci aL 2000) 

which, is due to a predominately strong SERCA pump that mops up the greatest percentage 

of Ca2  leek from the SR. This is mirrored by a high level of [Na] (Shattock & Bers, 

1989) that drives Na/Ca 2texchanger to reduce Ca 2  efflux from the cell. Therefore, when 

stimulation is increased in cells that respond in a negative manner the SR load is similar, 

which usually results in a similar release ofSR Ca 2t In the diabetic heart, a small change 

in [Na']1 or/and SR loading may underpin differences between control and diabetic 

myocytes. The tpA of contraction was significantly longer in the diabetic cells. This 

observation agrees with other workers who have reported significant increase in 'pk  at 
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frequencies ranging from 0.1-5 Hz (Ren & Davidoff, 1997) in myocytes following 8 weeks 

STZ-treatment. This may reflect binding properties associated with myofilament binding. 

In this study t1, relax  reduced (not to a significant level) in both control and diabetic cells as 

the stimulation frequencies increased from 0.2 Hz to 1 Hz and from 1Hz to 2 Hz. This is in 

agreement with Frampton et al. (1991), who also reported quicker rates of relaxation as 

stimulation of frequency was increased. There were however, no significant differences 

between control and diabetic myocytes, suggesting that the processes that underpin 

relaxation are not affected by the increase in stimulation frequency between control and 

diabetic cardiomyocytes. 

4.4 	Effect of insulin, streptozotocin and perturbation of external calcium 

concentration on the contractility of streptozotocin-induced diabetic ventricular 

myocytes. 

4.4.1 Introduction 

Insulin is a key regulator of the metabolic pathways associated with glucose transport 

homeostasis, and the synthesis and storage of many carbohydrates, lipids and proteins 

(Aulbach et at 1999; Ren ci at 1999). Insulin also participates in gene expression, ionic 

flux as well as cell proliferation and apoptosis (Myers, Jr. & White, 1996). In mammalian 

heart preparations insulin has been reported to exert positive inotropic effect including, 

increases in left ventricular function, SV, CO, isometric tension, contractility as well as 

faster relaxation times (Lucchesi ci at 1972; Reikeras & Gunnes, 1986; Lee & Downing, 

1976; Riekereta/. 1975). 
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This study investigated the effects of exogenous applications of insulin on the contractility 

of isolated ventricular myocytes from STZ-induced diabetic and age-matched control rat 

hearts. 

4.4.2 Method 

See Chap/er 2 for details. 

4.4.3 Results 

In all figures, unless otherwise stated, relate to 8-12 weeks STZ-induced diabetic 

ventricular myocytes and age-matched controls. Figure 4.5. shows a typical fast time base 

recording of a twitch contraction in (a) control, (b) STZ and (c) STZ + insulin treated 

ventricular myocytes stimulated at I Hz. Table 4.1. shows amplitude of the contraction, 

the 1pk of contraction and the t. relax  The t1,A myocyte shortening was significantly 

(P<O.Ol) longer in STZ myocytes and was further prolonged in STZ myocytes that had 

been incubated with insulin compared with controls (Figure 4.6. b). Insulin had no 

significant effect on t relax (Figure 4.6. c). The amplitude of cell shortening was 

significantly larger in STZ myocytes and was not significantly affected by exogenous 

insulin treatment (Figure 4.6. a). 
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400 msec 

Figure 4.5. Typical fast time base records of shortening in (a) control (NT), 

(b) STZ (NT) and (c) STZ myocytes incubated and superfused in insulin (I 

pM) Cells were stimulated at I Hz and perfused at 35-37 °C. Traces are typical 

of 9-I5 myocytes from 4-6 hearts 
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within bars represent number of cells. Statistical significance showing control Vs. STZ 
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In separate experiments we established that 2-3 h incubation of STZ-induced and control 

myocytes with exogenous STZ (I x M) had no significant effects on tpk, IreIaT or the 

amplitude of myocyte shortening. 

5pm 

400 msec 

Figure 4.7. Typical fast time base records of shortening in (a) STZ (NT) and (b) STZ 

incubated in exogenous STZ (10 pM) Cells were stimulated at I Hz and perfused at 35-37 

T. Traces are typical of 9-15 myocytes taken from 4-6 hearts 
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In a further separate study the effect of perturbation of [Ca2t]0  on the contractility was 

assessed in control and STZ-induced ventricular myocytes following 8-12 weeks of 

treatment. Table 4.1 shows the effect of perturbation of [Cal0  on the amplitude of 

shortening, /pk of contraction and 're/ax 

CNT STZ CNT STZ CNT CNT 

0.25 mM 0.25 mM 1 mM 1 mM 2.5 mM 2.5 mM 

ICa2i0  ICa 2 ] 0  ICa2i0  ICa2 I 0  ICa 2 '10 jCa 2 J 0  

Shortening 2.32+1-0.3 3.1+1-0.2 5.2+1-0.3 6.9+/-0.4 10.2+1-0.7 11.9+/-0.6 

(%RCL) (IS) (lS)* (15) (15)* (15) (15)* 

tpk 100.2+/- 109.6+!- 108.2+/- 117.1+/- 115.5+1- 125.5+/- 

contraction 2.3(15) 2.4(15)* 3.1 (IS) 2.5(15)* 3.8(15) 2.1 (15)* 

t½re/ax 47.5+1-3.0 48.0+/2.8 47.1+13.6 43.9+1-1.4 51.9+1-3.4 48.9+7-2.3 

(IS) (IS) (IS) (IS) (IS) (15) 

Table 4.1. The effects of changes in [Ca 2 ] 0  (0.25, I, and 2.5 mM) on the amplitude on 

contraction, 'jik  of contraction and t1z re/ax in ventricular myocytes obtained from age-

matched control and STZ-induced diabetic rat hearts. Data are means ± S.E.M. Number in 

parenthesis indicates number of cells. Control Vs. STZ was compared using Student's 

independent samples I test and, ANOVA and Bonferroni analysis. * P<0.05. 
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4.4.4 Discussion 

Many studies have reported that daily administration of insulin to diabetic rats reverses the 

symptoms of the disease and normalises the contractile dysfunction that has been reported 

in the diabetic hearts (Lee ci at 1992;   Litwin ci al. 1990; Tamada ci at 1998; Yu ci at 

1994b; Yu ci at 1994a). Therefore, this series of experiments was undertaken to see if the 

effect of exogenous application of insulin could reverse the contractile dysfunction seen in 

the STZ-induced hearts at the level of the myocyte. It has been reported that insulin has 

positive inotropic effect on various cardiac preparations. It has also been shown that 

myocardial contractility and the amplitude of cardiomyocyte shortening is enhanced in 

diabetes (Ren ci at 1999). This study, has found that insulin, does not significantly affect 

contractility in diabetic and control myocytes. One possibility for this may lie in the 

treatment time of the diabetic rats. In this study, diabetes treatment with STZ-treatment 

was performed for 5 months, while, other reports have utilised myocytes from 5-7 day 

treated animals (Ren ci at 1999). The myocytes used in this particular experiment were 

isolated and used fresh within 5 hours of isolation, where other reports have used cells that 

have been in a primary culture for up to 24 hrs (Ren c/at 1999). It has been shown that in 

some cases the contractility of the cardiac myocytes have been irreversibly altered when 

stored in primary culture (Ellingsen c/at 1993). Any such change could affect the results 

acquired from these cells. 

When administered to young adult rats. STZ (60 mg/kg) destroys the insulin producing 0-

cells of the pancreas and produces symptoms, which include severe insulinopaenia, 

hyperglycaeniia, glycosuria, polydipsia and muscle wasting (features associated with type 

I diabetes) (Bracken c/at 2003). In this series of experiments, incubating control and STZ 

myocytes had no significant effect on the contractility of the cell. 



it has been shown in table 4.1 that a increasing the [Ca 2 ] 0  from 0.25 mM to I mM to 2.5 

mM significantly increases the amplitude of contraction and 1pk of contraction in control 

and STZ-induced ventricular myocytes. However it can be seen that the amplitude of 

shortening and the !pk of contraction in STZ-induced myocytes is significantly greater 

compared to that of control myocytes in all the [Ca , ranges. Table 4.1 also shows that 

increasing the [Ca 2 ] 0  ranges has no significant effect on the tl.. re/as  in ventricular 

myocytes obtained from age-matched control and STZ-induced diabetic rat hearts 

following 8-12 weeks treatment. This study would therefore suggest that changes in the 

amplitude of contraction and the /pk of contraction that have been reported in this study 

may not be directly associated with the concentration of [Ca2t]0 and is more likely to be 

associated with changes in mechanism associated with Ca 2  mobilisation. 
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4.5 	Effects of varying glucose concentrations on the kinetics of contraction in 

ventricular myocytes Lcolated from streptozotocin-induced diabetic rat bean 

4.5.1 Introduction 

Following the administration of STZ to young adult rats, after a number of days, whole 

blood glucose levels rise to a hyperglycemic status, between 20-30 mmol 1* Chronic 

hyperglycemia is a potent initiator of diabetic micro vascular complications including 

retinopathy, neuropath and nephropathy (Sheetz & King, 2002). Hyperglycemia has been 

linked to the aetiology of a variety of cardiovascular complications, which are associated 

with the diabetic state (Gerstein 1997; Pacher ci' at. 2002). This is hardly surprising as 

glucose metabolism and its metabolites contribute to a vast number of cellular pathways. It 

is however, unclear whether the effects of hyperglycemia are in response to direct toxic 

effects of glucose including change in oxidants, hyperosmolarity or glycosylation products 

or if hyperglycemia is directly related to alteration in sustained signaling pathway changes 

(Sheetz & King, 2002). Increases in glucose concentration in the STZ-induced diabetic 

heart have been shown to potentiate certain cellular pathways including diacylglycerol 

(DAG) (Inoguchi ci al. 1992) and PKC (Kang ci al. 1999) production. Changes in 

contractility have also been reported in the isolated STZ-induced diabetic heart, where the 

perfusion of high glucose concentration caused a significant prolongation of the Q-T 

(measure of cardiac repolarisation) interval (DtAmico clot. 2001). 

This series of experiments investigated the effect of high glucose concentration on the 

contractility in the control and STZ-induced diabetic isolated ventricular myocytes. Altered 

glucose metabolism may underlie contractile dysfunction that has been reported in the 

diabetic heart. 
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4.5.2 Method 

See Chapter 2 for details. 

4.5.3 Results 

In all figures, unless otherwise stated, relate to 8-12 weeks STZ-induced diabetic 

ventricular myocytes and age-matched controls. Figure 4.8. shows real time traces of 

contraction in (a) control and (b) STZ-induced diabetic ventricular myocytes following 8-

12 weeks treatment before and after the incubation with glucose (25 mM). The RCL of 

control and STZ-induced diabetic myocytes was not significantly (P>0.05) changed. The 

amplitude of cell shortening (% of RCL) was significantly (P<0.05) increased in the 

diabetic heart compared to the control (7.30 ± 0.59 % Vs. 4.83 ± 1.12 %), respectively 

with NT solution (Appendix). Following the addition of 25 mM glucose the amplitude of 

cell shortening in the control myocyte significantly (P<0.01) increased (8.88 ± 1.38 %). In 

contrast, elevated extracellular glucose (25 mM) had no effect on the amplitude of 

shortening in STZ-induced myocytes (Figure 4.9.c). The rate and 11g of contraction 

measured was significantly (N0.05) increased in control myocytes following the addition 

of the high (25 mM) glucose concentration (Figure 4.9.a). The rate of relaxation was 

significantly (P<0.05) increased in control myocytes following the addition of high glucose 

concentration (25 mM). Changes in glucose concentration did not significantly (P>0.05) 

affect the time course of contraction or relaxation in STZ-induced diabetic myocytes. 

Osmolarity of the NT solution was 303 +1- 5 mosmol kg' with the addition of 25 mM 

glucose was 323 +1- 5 mosmol kg'. 
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Figure 4.8. Representative real time traces of contraction in (a) control and 

(b) STZ-induced diabetic ventricular myocytes (Bottom) pre and post 

incubation with glucose (25 mM) at 35-37°C. Traces are typical of 8 

(control) and 22 (STZ) some myocytes from at least 4 different rat heads. 
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Figure 4.9. Effects of normal and high glucose concentration on (a) the rate 

of contraction and (b) the rate of relaxation in isolated ventricular myocytes 

from STZ-induced and age-matched controls at 35-37 °C. Data are mean ± 

SEM. Numbers of cells are shown in bars. ** PC0.01 * P<0.05. 
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Figure 4.9. Effects of normal and high glucose concentration on (c) amplitude of 

shortening (% RCL) in isolated ventricular myocytes from STZ-induced and age-matched 

control hearts at 35-37°C. Data are mean ± SEM. Numbers of cells are shown in bars. '' 

P<0.0l* P<0.05. 

Control STZ Control STZ 

10mM Glucose 10mM Glucose 25 mM Glucose 25 mM Glucose 

tpk 
167.6 +/-4.0 (8) 199.6+1-7.6 (22)* 212.1 +1-17.3 (8)a 208.8 +/-9.4 (22)a 

contraction 

ti'1  
103.8 +1-8.5 (8) 88.8 +1-6.3 (22) 95.9 +/-10.3 (8) 87.6 +1-5.3 (22) 

relaxation 

Table 4.2. The effects of normal (10 mM) and high (25 mM) glucose on the amplitude on 

contraction, /pk of contraction and i,-e/ax in ventricular myocytes obtained 8-12 weeks 

STZ-induced and age-matched control rat hearts. Data are means ± S.E.M. Number in 

parenthesis indicates number of cells. Control Vs. STZ was compared using Student's 

independent samples nest. * P<0.05. 
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4.5.4 Disc ussion 

Within this study, it has been previously shown that in control conditions, the amplitude of 

contraction is significantly increased in the STZ-induced diabetic heart compared to age-

matched control. However, following the incubation of control and STZ-induced myocytes 

in a NT solution containing high glucose (25 mM) (similar to that found in the whole blood 

chemistry of diabetic rats), the amplitude of shortening and the rate and 'pk of contraction 

was significantly increased in control myocytes, but appeared to be unchanged in STZ-

induced diabetic myocytes. In fact following the application of high glucose, control cells 

exhibited similar amplitude of contraction and 'pk of contraction to that observed in the 

STZ-induced diabetic. The rate of relaxation following the addition of high glucose 

concentration was significantly increased in control myocytes but had no significant effect 

in STZ-induced myocytes. This is in agreement with Davidoff and Ren (1997) who 

reported markedly longer relaxation in control myocytes culture incubated for 4 days in 

high glucose and low insulin medium. A decrease in Ca 2  transient decay was also reported 

in control myocytes subjected to high glucose and low insulin for 4 days in culture 

(Davidoff& Ren, 1997). An increase in glucose concentration is mirrored by an increase in 

Osmolarity. An increase in the osmolarity is associated with cell shrinkage and has 

reported to lead to a decrease in contraction and an increase in the time of contraction in 

control and STZ-induced diabetic myocytes (Howarth et of 2001). It is therefore unlikely 

that the effects of high glucose concentration can be attributable, purely to a change in 

osmotic effects. One possible explanation for the results seen in this study is that the STZ-

induced diabetic myocytes may be more acclimatized or adapted to high levels of glucose, 

due to the high level of circulating glucose in the blood and therefore they become more 

sensitized. An increase in the amplitude of contraction is likely to be due to an increase in 

SR load and subsequent releasable Ca 2  from the SR. In a agreement with this, it has been 

shown that the cytosolic [Ca 2 ]1 in control cardiac myocytes significant increased following 
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the incubation of cardiac myocytes in high glucose (30 mM) (Smogorzewski ci at (1998). 

Moreover, the increased response of high gludose was abolished when myocytes were 

superfused with either low extracellular Ca 
2+ 

 or Ca 
24- 

channel blockers, suggesting that 

increases in [Ca 24-]1 are likely to be associated with a changes in Ca 24-  influx through 

Na/Ca 24--exchanger or L-type Ca 2  channels. It has also been reported that control cells 

incubated with a high glucose concentration had significantly longer Ap duration's 

compared to control (Ren el at (1997). Prolonged Ap's have been reported in STZ-induced 

diabetic myocytes following 8 weeks treatment (Magyar ci at 1992), probably through a 

decrease in I (Jourdan & Feuvray, 1993). In the STZ-induced diabetics head it has been 

shown that the expression and activity of PKC is significantly increased compared to 

control (Liu ci at 1999; Kang ci at 1999; Guo ci at 2003). Moreover it is known that 

PKC inhibits the JK (Ren ci at 1997). This suggests that in the STZ-induced diabetic 

heart, hyperglycaemia may increase PKC activity, which may lead to increased Ap 

duration. However, it is suggested that in control myocytes a transient application high 

glucose is unlikely to alter expressional changes of PKC and it is therefore more likely that 

increases in [Ca 24-]1 may increase SR load and subsequent SR Ca 2t  release, which may 

lead to an increase in contraction. 



4.6 	Regional djfferences in the streptozotocin —induced diabetic heart 

4.6.1 Introduction 

The heart is made up of a variety of specific myocardial cells according to their position 

and electrical properties. The largest portion of the heart, the left ventricle largely governs 

the contractile propulsion of blood around the body in a heartbeat (Katz, 1977). The 

plateau phase of an Ap in ventricular cells of the heart is far longer than in other areas 

including the atria. The reason for this is two fold, firstly it prevents the re-excitation of 

another Ap, by prolonging the depolarised membrane and therefore inactivating the Na 

and Ca2t  channels on the cell membrane, thus not allowing any tetanic twitch effects that 

can be seen in skeletal muscle. Secondly, it allows the heart to relax, so that the ventricles 

can be filled with blood for the next heart beat (Bers. 2002a). The three main regions 

within the ventricle are the epi, endo and myocardium. The regions differ according to 

their differential ion channel expression, which in turn leads to a differential in electrical 

properties that is seen in a typical action potential. The plateau phase of the ventricular Ap 

is shortest in the epi cells, increased in the endo cells and longest still in the myocardial 

cells. 

The aim of this study was to ascertain if STZ-induced diabetes effects regional specificity 

within the ventricle from the endo and epi portions of the ventricle. Any changes in 

contractile characteristics seen in specific regions of the heart may underpin alterations of 

contractile characteristics that have been reported in the diabetic heart. 

4.6.2 Method 

See Chap/er 2 for details. 
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4.6.3 Results 

In all figures, unless otherwise stated, relate to 8-12 weeks STZ-induced diabetic 

ventricular myocytes and age-matched controls. Figure 4.10 shows (a) cell shortening, (b) 

tpk of contraction and (c) t re/ax  relaxation in endo and epi cell taken from STZ-induced 

diabetic and age-matched control hearts following 8-12 weeks treatment. Cell shortening 

as a % of RCL was not significant (P>0.05) altered between in endo and epi cardial cells in 

control (5.94 ± 0.42 % Vs. 6.46 ± 0.59 %), respectively and STZ-induced (6.59 ± 0.5 % 

Vs. 6.22 ± 0.35 %) diabetic hearts and comparing endo and epi cells with diabetic 

counterparts (Figure 4.6.a). 

The tpk of contraction was significantly (Pc0.05) longer in endo compared to epi cells in 

age-matched control heart, respectively (103.5 ± 3.1 ms Vs. 94.1 ± 2.76 ms). Moreover, 

endo (137 ± 432 ms Vs. 103.5 ± 3.1 ms) and epi (139.6 ± 5.2 ms Vs. 94.1 ± 2.76 ms) 

myocytes from STZ-induced hearts were significantly (F> 0.01) longer than age-matched 

control, respectively, however, there was no significant (P>0.05) difference between i rk of 

endo and epi cells in STZ-induced hearts (Figure 4.6.b). 

The frreiax was significantly (F> 0.05) increased in endo compared with epi cells in control 

(48.1 ± 2.54 ms Vs. 40.7 ± 1.51 ms) and STZ-induced cells (52.3 ± 2.66 ms Vs. 45.1 ± 

1.80 ms) respectively, however, there was no significant (P>0.05) difference in the t re/ca 

between control and STZ-induced epi and endo cells (Figure 4.6.c). 
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Figure 4.10. Regional specific changes in contractile characteristics of control 

and STZ-induced diabetic following 8-12 weeks treatment on shortening (a) and 

time to peak of contraction (b) in isolated endo and epi myocytes at 35-37 °C 

perfused with a NT solution containing I mM Ca 2 . Cells from age-matched 

control myocytes are also shown for comparison. Data are mean ± SEM. 

Numbers of cells are shown in bars. Cells were obtained from 10-12 hearts. * 
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4.10.c. Regional specific changes in contractile characteristics of control 
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4.6.4 Discussion 

Cell shortening as a % of RCL was not significantly altered between epi and endo 

myocytes in control and diabetic hearts. This is agreement with other workers who found 

no difference in the shortening of control and diabetic hearts (Tamada etal. 1998; Ishitani 

el at 2001). Moreover, it has also been reported that there were no significant changes in 

peak amplitude between endo and epi myocytes (Bryant etal. 1997). Results presented in 

this chapter have shown that there is an increase in shortening in STZ-induced myocytes. 

Hence, it is apparent that both epi and endo cells are not affected by diabetes. The tpk of 

contraction was significantly longer in endo cells from control heart, but not in the diabetic 

heart. However, STZ-induced diabetes significantly increased the tpk  in both endo and epi 

cells compared to control. This observation suggests that the rate at which Ca 2  is released 

from the RyR is longer than in normal endo cells. Moreover, the Ap plateau is longer in the 

endo cells, so therefore it may be suggested that increased Ap plateau contributes to a 

slower sustained release trigger for Ca 2  from the SR. The increase in 'pk  in the diabetic 

heart is in agreement with other workers (Choi ci at 2002; Yu c/at 1994a) who have also 

reported similar findings. This suggests that the transport mechanisms that contribute to the 

speed of contraction are affected in diabetes. Alteration in /pk of contraction may be 

associated with either a change in SR Ca 2  release or a change in triggered Ca 2  induced 

SR Ca 2  release. The re/ar was increased in endo compared to epi cells in control and 

diabetic heart but this was not altered between groups. This may well be associated with a 

longer Ap that has been reported in the endo heart cells. Moreover, it can be seen from the 

present results that diabetes has no significant effect on the 'r9/ar  which, is in agreement 

with other workers (Howarth c/ at 2000). 

Overall regional differences in the age-matched control and diabetic hearts may contribute 

to changes in the speed of contraction and relaxation. Moreover, this study has shown that 



STZ-induced diabetes abolishes the speed of contraction in the head, and this in turn may 

be associated with contractile abnormalities that have been reported in the diabetic head 

(Choi el al. 2002) 

4.7 Conclusion 

Contraction as a percentage of RCL length was significantly increased in diabetic 

myocytes. This may be due to altered sensitivity of Ca 2  to myosin activation or an 

increase in the available Ca
2+ 

 during the Ca transient within systole. Although a slower 

Ca 2  transient in acute type I STZ-induced cardiomyocytes has been reported (Ren & 

Davidoff, 1997), other workers have observed little or no significant differences in the 

characteristics of the Ca 2  transient (Tamada c/aL 1998). The amount of Ca 2  released by 

the SR is thought to be graded and dependent upon the amount of trigger Ca 2  entering the 

cardiac cell via the single L-type channel and possibly through the NaH7Ca2exchanger 

operating in reverse mode (Levi ci aL 1993b). Defects in the mechanisms which are 

involved in Ca2  transport including sarcolemmal PMCA, L-type Ca 2  channels, NaH7Ca2+ 

exchanger or SR Ca2  uptake or release mechanisms, may have significant effects on 

contractile function of heart muscle. The tpk  of contraction was longer in diabetic cells 

with STZ treatment. A reduction in jCa,I,  and/or SR Ca 2  release may underlie the increase 

Of tpk of contraction. However, it has been reported that the 'Ca,L  is not effected after STZ-

treatment (Schneider & Sperelakis, 1975; Tamada ci aL 1998). The yre/ax  was not altered 

significantly within the STZ-induced myocytes. Any alterations in the removal of Ca 2  by 

the Na/Ca2texchanger or by increased uptake of Ca 2  through the Ca 2tATPase pump 

back into the SR would alter [Ca2 ] within diastole. 
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Chapter 5 

Effrcts of streptozotocin-in duced 

diabetes on calcium homeostasis in 

rat cardiomyo cytes 
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5.1 	Genera/introduction 

The homeostatic control of [Ca 2+ 11 is crucial in the management of contraction and 

relaxation in the heart. Ca 2  homeostasis is regulated by mechanisms associated with Ca 2  

transport into and out of the cell and its intracellular compartments (Bers, 2002). If this 

equilibrium is unaltered the heart is capable of normal contraction and relaxation. 

However, if any of the mechanisms are impinged, a state of imbalance can arise, which can 

ultimately lead to an alteration in the contractile kinetics of the cell. In order to measure 

the specific mechanisms involved in Ca 2  homeostasis it is necessary to measure the 

amounts of [Ca 2 ]1 at any given point in the contracti on/rel axat ion process. In recent years 

many indicators (including fura and indo) have been manufactured that enable the worker 

to ascertain the relative amounts on [Ca2t]1 

Following depolarisation of the cardiac cell, the L4ype Ca 2  channels open, leading to a 

small influx of Ca2  into the cell. Ca 2  influx contributes to the increased probability of 

RyR opening, which leads to SR Ca 2  release and a Ca2E  transient (Fabiato, 1983). The 

release of SR Ca2t  is graded and dependent upon triggered stimulation from the Ca2t  influx 

(Fabiato 1983). When the SR releases Ca2t  there is a transient rise of[Ca 2 ]1 from resting 

levels of around 60-100 nmol E' to 600-1000 nmol (Cannell c/aL 1987b). An elevation 

in [Ca 
2+  ]i following SR Ca 2  release increases the probability of myofilament sensitive 

sites to alter functional properties, which results in the induction of contraction (Bers, 

2002a). A decrease in Ca2*  in the repolarisation phase induces the decrease in [Ca 24 ]1 and 

+ 
the dissociation of Ca 

2
away from the myofilaments. The same amount of Ca entering 

the cell during L- type channel opening and SR Ca 2  release must either be taken out of the 

cell or pumped back into the SR leading to relaxation. Any changes in these mechanisms 
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may contribute to derangement in the E-C coupling process and this in turn can lead to a 

diseased state 

The effects of type I diabetes on the levels of diastolic [Ca2t]1  are still unclear. It has been 

reported that diastolic [Ca 2 ]1 is either reduced or unchanged. Significant reductions 

(approx. 52%) in diastolic levels of [Ca 2t]1 in type I diabetic heart cells have been reported 

(Lagadic-Gossmann el at 1996; Hayashi & Noda. 1997; Noda ciot 1992). However, in 

another report Yu ci at (1995), reported no significant changes in diastolic [Ca 2t] 

between, type I diabetic and control cardiomyocytes. The effects of diabetes on systolic 

[Ca2 ii in ventricular myocytes obtained from type I diabetic hearts are not well 

understood. It has been reported that the peak systolic Ca2t  transient was reduced in type I 

STZ-induced rat cardiomyocytes by 43 % compared to control (Lagadic-Gossmann ci at 

1996), while other reports have observed little or no significant differences in the 

characteristics of the Ca 2  transient obtained diabetic hearts (Tamada dat 1998). Many of 

these discrepancies may be due to several factors including; varied nature of the 

experimental protocols and in particular, treatment time of the STZ-induction, the type of 

fluorescence indicator employed in the study and the temperature at which experiments 

were carried out. 

This study was designed mainly to investigate Ca 2 ' homeostasis in the STZ-induced 

diabetic and age-matched control ventricular cardiomyocytes. 
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5.2 	Effect of perturbation of extraceilular calcium on calcium transients in the 

streptozotocin induced ventricular myocytes in the diabetic heart 

£2.1 Introduction 

The amount of Ca 2  entering the cell, during cell depolarisation acts as a trigger for SR 

Ca2  release (Fabiato, 1983). A model for CICR was initially described by Fabiato et al., 

(1983), showing how free Ca2*  can trigger SR Ca 2  release from skinned cardiac myocytes 

(Fabiato, 1983). In the presence of high free extracellular Ca 2  ([Ca 2 ] 0) the trigger for SR 

Ca2t  is diminished or inhibited due to the specific binding attributes of Ca 2  on RyR 

(Fabiato 1985). The RyR has two binding sites, a fast low affinity site and a slow high 

affinity site, If Ca 2  binds to the fast sites the channel is activated and allows SR Ca 2  

release, however, if the high affinity site is occupied then the channel becomes deactivated 

and reduces Ca 2  release (Fabiato 1985). Therefore, altering extracellular Ca 2  below or 

above the physiological standard may change the binding and release parameters of Ca 2  

from the SR. It may then be possible to study the affects this has on the control and 

diabetic heart. 

The aim of this section of the study was to investigate the effects of [Ca 2 ] 0  on Ca 2  

handling in the diabetic heart. To pin point any dysfunction, the amplitude (peak ratio 

minus resting ratio), tpk  and t decay of Ca 2  transient were recorded and analysed. 

5.2.2 Method 

See chapter 2 for details. 
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5.23 Results 

In all figures, unless otherwise stated, relate to 8-12 weeks STZ-induced diabetic 

ventricular myocytes and age-matched controls. Figure 5.1. shows typical Ca 2  transients 

recorded in control and STZ-induced ventricular myocytes, perfused with (a), 0.25 mM 

[Ca24] 0, (b), I mM [Ca24] 0  and (c) 5 mM [Ca2 '] 0 . Ventricular myocytes isolated from 8-12 

week STZ-induced diabetic hearts and age-matched controls were superfused with a NT 

solution containing 1 mM [Ca 2 '] 0 . Subsequent Ca 24  transients were recorded during the 

application of electrical stimulation at I }-lz. In some cells a rapid solution switcher was 

used to change [Ca 2 '] 0  (0.25, I, and 5 mM) throughout the experiment. Figure 5.2. shows 

(a) the amplitude of the Ca 2 ' transient (ratio units), (b) the ',,k  of the Ca 2  transient, and (c) 

the decay of Ca 2  transient in age-matched control and STZ-induced myocytes with 

differing [Ca 2 '] 0 . Basal resting Ca 2  (measure by fluorescence ratio units) was significantly 

(N0.01) increased in STZ-induced diabetic myocytes following 8 weeks of treatment 

compared to control (0.599 ± 0.009 ratio units, n=23 Vs. 0.521 ± 0.012 ratio units) 

respectively. The amplitude of Ca 2  release from the SR, induced by electrical stimulation 

was not significantly (P>0.05) different between control and STZ-induced myocytes in the 

presence of different concentrations of [Ca 24] 0 . There was however, a significant (N0.05, 

ANOVA and Bonferroni) difference between the amplitude of Ca 2  release seen in the 

STZ-tnduced myocytes superfused with 0.25 2+ 2+ 
mM Ca and I mM Ca . The 'pk of Ca 

2+ 
 

transient was not significantly (P>0.05) altered between control and diabetic myocytes in 

each group, nor was it significantly (P>0.05) different between groups of cells (ANOVA). 

The decay of the Ca2  transient was significantly longer in STZ myocytes perfused with 

0.25 mM [Ca2 '] 0  (P<0.01), I [Ca2 ']0  (P<0.05) and 5 mM [Ca 2 ']0(P < 005). However, 

there were no significant (P>0.05) differences in control and STZ-induced diabetic groups 

(ANOVA-Bonferroni). 
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(a) (b) (c) 
0.25mM 1.0mM 5MmM 

Ca2  Ca2  Ca2  

0.05 
ratio units 

300 msec 	 300 msec 	 300 msec 

Figure 5.1. The effects of perturbation of extracellular calcium concentration 

(a) 0.25 mM, (b) 1 mM, and (c) 5 mM on electrically stimulated (1 Hz) Ca 2+ 
 

transients in ventricular myocytes isolated from age-matched control and STZ-

induced diabetic rat hearts at 35-37 T. Traces are typical of 10-20 such 

myocytes obtained from 6-8 hearts. 
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Figure 5.2. The effects of changes in [Ca 2 ] 0  (0.25, I. and 5 mM) on, (a) amplitude of the 

Ca2  transient (ratio units) and (b) 'pk  of Ca2  transient in ventricular myocytes isolated 

from age-matched control and STZ-induced diabetic rat hearts. Data are means ± S.E.M. 

Number in bars indicates number of cells. Control Vs. STZ was compared using Student's 

independent samples / test and, ANOVA and Bonferroni analysis. * P<0.05. 
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Figure 5.2. The effects of changes in [Ca 2 ] 0  (0.25, 1. and 5 mM) on, (C) i decay of Ca 2  

transient in ventricular myocytes isolated from age-matched control and STZ-induced 

diabetic rat hearts. Data are means ± S.E.M. Number in bars indicates number of cells. 

Control 1Cs STZ was compared using Student's independent samples (test and, ANOVA 

and Bonferroni analysis. * P<0.05, ttP<0.01. 
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5.24 Discussion 

It has been shown within this report, that contractility is deranged in the experimentally 

induced diabetic heart. It is envisaged that an alteration in Ca 2  handling within the 

cardiomyocyte is responsible for this change in contractility. The effects of diabetes on 

systolic [Ca 2+ 
 ] i  in ventricular myocytes obtained from type I diabetic hearts are still 

somewhat unclear and contradictory. The amplitude of Ca 2  release and the 'pk  of the Ca2* 

transient in electrically stimulated (I Hz) ventricular myocytes were not significantly 

altered at varying concentrations of [Ca 2 ] 0  in 8-12 week STZ-induced diabetic ventricular 

myocytes. This is in agreement with Tamada ci at (1998), who observed little or no 

significant differences in the characteristics of the Ca 2  transient from diabetic hearts 

compared to control. However, this study has shown that an increase in [Ca 2 ]. from a low 

(0.25 mM) up to normal (I mM), significantly increased the amplitude of Ca 2  transient in 

STZ-induced diabetic myocytes. This observation suggests that an elevation in external 

Ca 2  from 0.25 mM to I mM in the diabetic myocyte may contribute to a greater amount of 

trigger Ca 2 , which, may ultimately lead to a greater fractional release ofCa 2  from the SR 

compared to control. The diabetic heart, therefore, may be more sensitive to changes in 

extracellular Ca2F  compared to the control heart. It is worth noting that the amplitude of the 

Ca2 ' transient in the presence of 5mM [Ca 2 ] 0  was similar to that observed when perfusing 

with I mM [Ca 2 ] o  . It is likely, in this case, that the high (5 mM) [Ca 2 ] 0  may have 

saturated the internal system, as it would be expected that a 5 fold increase (compared to I 

mM [Ca2 ] 0) in [Ca 24] 0  would have significantly increased increase the amplitude of the 

Ca2  transient. Moreover, the amplitude of contraction was significantly increased in both 

diabetic and control myocytes when perfusing with 2.5 mM [Ca 2 ] 0  when compared to the 

amplitude of contraction in myocytes perfused with I mM [Ca24]0  (Table 4.1.). This study 
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it has also demonstrated that the basal level of Ca 2  is increased in the diabetic heart. 

Increased levels of basal Ca 2  would increase available Ca 2  for contraction. Resting Ca 2  

is governed mainly by the Na 47Ca2 -exchanger. If this transport mechanism were corrupt, 

or if [Na11 was high, it would benefit Ca 2  influx and may lead to an increase in basal 

Ca2 . The decay of the Ca 2  transient measured from the idecay is longer in diabetic cells 

superfused with Ca 2  (0.25, I and 5 mM) compared to control cells. This is in agreement 

with other workers who have also shown a slower decay of Ca 
.f-  

transient in type I STZ-

induced ventricular myocytes (Lagadic-Gossmann ci at 1996; Kotsanas dat 2000; Choi 

ci at 2002; Ren & Davidoff. 1997; Ha etal. 1999). A slower decay in Ca 2  transient is 

likely to be caused by a discrepancy in the homeostatic control mechanisms within the cell. 

It appears likely that either, the SERCA pump situated on the SR membrane (or one of it 

components) and/or the Na/Ca 2 -exchanger on the sarcolemmal membrane is disrupted in 

the diseased state. This would result in a reduced amount of Ca 2  being taken up by the SR 

and out of the cell through the Na/Ca 2texchanger . The consequence of this would be a 

greater amount ofCa 2  within the cytosol in diastole, which has been reported in this study. 

5.3 	Time dependent effects of STZ-induced diabetes 

The aim of this part of the study was to investigate whether, the contractile changes that 

have been reported (chapter 4) in 4 weeks STZ-induced diabetic is a consequence of 

altered Ca 2  homeostasis as early as 4 week post injection. 

£3.1 Results 

Figure 5.3. shows a typical Ca2  transient following 4 weeks STZ-treatment and age- 

matched controls in electrically stimulated (I Hz) ventricular myocytes (bottom). Basal, 

resting Ca 2  (measured by fluorescence ratio units) was significantly (P<0.01) increased in 
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STZ-induced diabetic myocytes following 4 weeks of treatment compared to control 

(0.738 ± 0.017 ratio units, n=l0 Vs. 0.472 ± 0.07 ratio units, n10). respectively. The 

amplitude and 1 k of Ca2  transient were not significantly (P>0.05) altered in 4-week STZ-

induced diabetic myocytes compared to control. However, the decay of the Ca 2  transient 

measured as the rate of ratio units/sec was significantly (P<0.05) longer in the diabetic 

myocytes versus control (Figure 5.4). Moreover, there was no significant difference 

between STZ-induced myocytes following 4 and 8-12 weeks treatment of STZ (Figure 

5.5). 
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Figure 5.3 Fast time base recordings of a train (a) and a single extrapolated Ca 2  transient 

(b) in electrically stimulated (I Hz) ventricular myocytes isolated from age-matched 

control and STZ-induced diabetic rat hearts. Cells were superfused with a NT solution (I 

mM Ca2 ) at 35-37 T. Traces are typical of 7-10 such myocytes obtained from 3-5 hearts 
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Table 5.1. The effects of 4 and 8-12 weeks STZ-induced diabetes on Ca2 

homeostasis in ventricular myocytes stimulated at I Hz perfused with a NT solution 

(I mM Ca2 ) at 35-37°C 

Control 	STZ 4 weeks 

Ca2 reIease 	 19.9±2.9 (10) 	14.8±1.4 (7) 

(% rise Vc. basal) 

tj'k of Ca 2  transient 	109.6±7.5 (10) 	98.6±8.4 (7) 

(msec) 

Rate of Ca 2  decay 0.56±0.07 (10) 	0.32±0.07 (7)* 

(ratio units/see) 

IV Ca2  decay (msec) 	91.8±4.8(10) 	166.5±12.9 (7)* 

STZ Sweeks 

18.5±1.1 (23) 

102.6±6.3 (23) 

0.37±0.02 (23) 

156.1±8.4 (23) 

Data are means ± S.E.M. Number in parenthesis indicates number of cells. Controls 

Vs. STZ and STZ (8 weeks) Vs. STZ (4 weeks) were compared using Student's 

independent samplesi test. *P<0.05. 
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Discussion This study has shown that the amplitude and 'pk  of Ca 2  transient was not 

significantly altered in 4 week STZ-induced diabetic myocytes compared to control, 

similar to results observed for the 8-12 weeks treated rats. However, basal Ca 2  is 

significantly increased in the diabetic heart following 4 weeks STZ treatment compared to 

age-matched controls. It is proposed that increases in basal Ca 2t may contribute to the 

increase in contraction that has been reported in the diabetic heart. Moreover, this study 

has shown that resting [Ca 2 ]1 is higher following 4 weeks STZ compared to 8 weeks. 

Furthermore, the amplitude of contraction is bigger after 4 weeks compared to 8 weeks 

STZ treatment. The rate of Ca 2  transient decay is also significantly slower in the diabetic 

heart following 4 weeks of treatment. This study has shown that the defects associated with 

changes in Ca 2 ' homeostasis and contractions are in place after 4 weeks post injection of 

STZ. Therefore, the slower decay of the Ca 2  and the increase in resting Ca 2  may lead to 

an increase in contraction that has been reported within this study. 
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5.4 	The effects of caffeine-induced calcium transients in isolated ventricular 

myocytes from streptozotocin-induced diahetk rat heart 

5.4.1 Introduction 

The velocity and measure of Ca2*  released from the SR following an action potential, is 

indicative of the speed of Ca 2  release from the SR but not an overall measure of the total 

amount of Ca2  in the SR. The rapid application of caffeine however, activates the SR 

RyR channels to open and initiate a total release of Ca 2  from the SR (O'Neill & Eisner, 

1990). If the caffeine application is sustained, Ca 2  re-sequestrated back into the SR (via 

the SERCA pump) will be spontaneously released back into cytosol (Rousseau & 

Meissner, 1987). Therefore, a caffeine-induced Ca 2  release will enable the worker to 

assess: (a) total capacity of Ca 2  within the SR and (b) an indication of the speed or rate of 

Ca2  efflux from the cell and back into the mitochondria (although the relative amount of 

Ca 2  pumped into the mitochondria is so little, that it does not contribute to changes in Ca2* 

homeostasis and will therefore will not be discussed). Caffeine also effects myofilaments 

sensitisation as well as inhibiting phosphodiestarse (which can increase cAMP and in turn 

activate of cAMP dependent PKA) (Yu et at 1995). 

The aim of this part of the study was to investigate the effects of caffeine-induced Ca 2  

release in isolated ventricular myocytes from age-matched control and STZ-induced 

diabetic myocytes following 8-12 weeks of STZ-treatment. 

5.4.2 Method 

See C/zap/er 2 for details. 
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5.4.3 Results 

In all figures, unless otherwise stated, relate to 8-12 weeks STZ-induced diabetic 

ventricular myocytes and age-matched controls. Figure 5.6. shows an original chart 

recording of the time course of the experimental protocol used to investigate the effects of 

caffeine (10 mM) on age-matched control and STZ-induced ventricular myocytes. 

Myocytes were electrically stimulated at I Hz before stimulation was abbreviated and the 

myocytes were rapidly superfused with 10mM caffeine. Following a 10 sec application of 

caffeine, myocytes were re-stimulated and superfused with NT solution (1 mM Ca 2 ) until 

Ca2  transients reached pre-caffeine levels. 

Caffeine (10 mM) 

4 	to 

Stimulation 	 Recovery period 

p 

0.05 
ratio 
units 

30 See 

Figure 5.6. Original trace showing the time course protocol for caffeine-induced Ca 2  

release and recovery in rat ventricular myocyte. Myocytes were stimulated and superfused 

with NT solution (I mM Ca2 ) at 35 0C-37 0C. The trace is typical of 18 such myocytes from 

6 rats. 
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Table 5.2. shows that the amplitude of caffeine-induced Ca 2  release was not significantly 

(P>0.05) altered between control and STZ-induced myocytes. Moreover, fractional release 

of Ca2  was not altered significantly in control and STZ myocytes The 'pk of the Ca2  

transient was not significantly (P>0.05) altered between control and STZ-induced. 

However, the Iv.. decay of Ca2  transient following the application of caffeine was 

significantly longer (43%) in myocytes obtained from STZ-induced compared to age-

matched controls (Figure 5.7). Moreover, the rate of relaxation was significantly (P<0.05) 

smaller in diabetic myocytes compared to control (Table 5.2). 

Table 5.2. The effects of 8-12 weeks STZ-induced diabetes on caffeine-induced 

Ca 2  release in isolated ventricular myocytes obtained from rat heart at 35-37°C 

Age-matched control STZ-induced (8 weeks) 

Amplitude of Ca 2  release 	25.7±1.9 (18) 

(% rise Vs. Basal) 

Fractional Ca 2  release 	 89.7±14.8 (18) 

t,,4 of Ca2  transient (msec) 	250.3±50.1(18) 

Rate of Ca 2  decay 	 0.73±0.07(18) 

(ratio units/see) 

'½ Ca 2  decay (msec) 	 91.8±4.8(18) 

25.9±2.2 (17) 

83.5±8.8 (17) 

330.1±48.2 (17) 

0.56±0.04 (17)* 

156.1±8.4 (17) 

Data are means ± S.E.M. Number in parenthesis indicates number of cells. Controls 
Vs. STZ were compared using Student's independent samples / test. *Pc005 
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Figure 5.7.a Original chart recording of Ca 2  transient in age-matched controls (black) and 

STZ-induced (green) myocytes. Traces are typical of 18 such myocytes obtained from 6-8 

rat hearts. 
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Figure 5.7.b shows the tz. deem' of a caffeine-induced Ca 2  release in STZ-induced and 

age-matched control myocytes. Data are means ± S.E.M. Number in bars indicates cells. 

Control Vs. STZ was compared using Student's independent samples t test. 
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5.4.4 Discussion 

The amount of Ca 2  released by the SR is dependent on the SR Ca 2  content and the 

magnitude and duration of the trigger stimulus (Baartscheer ci al. 2000). A rapid 

application of caffeine activates the SR RyR channels to open and initiate a total release of 

Ca2  from the SR (O'Neill & Eisner, 1990). In this study, the amplitude of the caffeine-

induced Ca2  release was not significantly altered in control and diabetic myocytes. In 

contrast, it has been reported that, following a caffeine-evoked Ca 24  transient the amount of 

Ca2  released from the SR is reduced in the diabetic heart (Lagadic-Gossmann el al. 1996; 

Tamada ci at 1998; Yu ci at 1995; Choi ci at 2002). The reported changes in caffeine-

induced SR Ca2  release may be attributable to the rest period preceding an application of 

caffeine. In this study, stimulation was abbreviated for 10 sec, prior to a rapid caffeine 

pulse, but in other reports there was a 30 sec (Choi ci al. 2002) and 40 sec (Lagadic-

Gossmann et at 1996) quiescent phase. Longer rest periods may be associated with 

alterations in SR loading abilities and may contribute to a change in releasable SR Ca 2 . 

Interestingly, Choi eta! (2002) reported that the decrease in caffeine-induced Ca 2  release 

was mirrored by a decrease in the amplitude of contraction. In contrast, this present study 

has shown that that the amplitude of contraction is significantly larger in the diabetic heart 

compared to age-matched controls. It seems likely that alterations in Ca 2  release and 

myofilament sensitivity may contribute to changes in contractile dysfunction. Fractional 

Ca 2  release was not significantly different in STZ-induced diabetic myocytes compared 

to control. This suggests that the triggered response and release of Ca 2  from the SR is 

similar in the diabetic heart. It has been shown that the gain of CICR is dependent on the 

'Ca,L and subsequent influx of Ca 2  to trigger Ca 24  release from the SR (Wier ci at 1994). 

This study has shown that stimulated Ca 24  release and caffeine-induced Ca 2 ' release are 

similar, therefore any changes in 'Ca,L may be indicative of changes in the gain in the 

diabetic heart. The tpk of a Ca2  transient following a rapid application of caffeine is an 
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indication of RyR release sensitivity/activity. In this study, it has been reported that the 'pk 

of a caffeine-evoked Ca 24  transient was increased in the STZ-induced diabetic myocytes 

but not to a significant level. It has however, been reported that the time course of the 

caffeine-induced Ca 24  transient decay was significantly prolonged in the diabetic myocytes 

(Choi et at 2002). Similarly, in this study it has also been shown that the i decay of the 

caffeine-induced Ca 24  was significantly longer in the diabetic myocytes compared to 

control (Figure 5.7.b). This is in agreement with, other workers who have also reported 

longer rates of Ca 2  transient decay in 8 weeks (Choi ci at 2002) STZ-induced diabetic 

myocytes. 

Caffeine application causes the release of Ca 24  from the SR and causes the SR to become 

"leaky". However, the SR is still functional and can sequester Ca 24  back into the SR, where 

it is then expelled out into the cytosol through RyR channels affected by caffeine. It is 

worthwhile to note that a series of experiments were undertaken to look at the effects of 

thapsigargin on the decay of Ca 2+  release during the application of caffeine. However 

following a 10 min incubation of thapsigargin, caffeine induced Ca 24  release was reduced 

and the measure of the decay of the Ca 2  transient was impossible to measure accurately 

due to an increase in noise. Moreover, it has been reported that the rate of decay of a 

caffeine induced Ca 2  transient is largely dependent on the Na/Ca 2texchanger (Bassani ci 

at 1992; Bassani ci at 1994; Negretti c/aL 1993; Choi & Eisner, 1999) and therefore, the 

decay of the Ca 2+  transient during a caffeine-evoked response in the absence of 

thapsigargin provides a direct measure of the rate of Ca efflux out of the cell, although a 

tiny proportion of Ca 24  is sequestered back into the mitochondria. It can therefore, be said 

that in this study the prolonged time course of [Ca 2+  ji decay is associated with a 

derangement in efflux pathways. The prolonged decay of [Ca 2+  ji may also contribute to the 

change in contractile function that is a feature of human and experimentally induced 
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diabetes (Albanna el at 1998; Kiss ci at 1988; Astorri ci al. 1997; Nicolino ci at 1995; 

Regan ci at 1974; Fein ci at 1985; Litwin ci at 1990; Miller 1979; Vadlamudi ci at 

1982). 
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5.5 	Effects of nickel on caffeine-induced calcium transients in the isolated 

ventricular myocytes front streptozotocin-induced diabetic rat heart 

5.11 Introduction 

In order to isolate the mechanism responsible for the delay in [Ca 2 ] efflux, following an 

application of caffeine, it is useful to use a pharmacological too] to block Ca 2  pathways. 

The main transport mechanisms involved in Ca 2  efflux are the Na/Ca 2texchanger and 

the PMCA pump. The Na 17Ca2 -exchanger is the main mechanism by which, Ca 2  is taken 

out of the cell. It has been reported that the Na/Ca 2 -exchanger accounts for between 68 

and 87 % of Ca2  effiux, while the PMCA pump and mitochondria, collectively, accounts 

for between 13 and 32 % (Bassani ci at 1992; Bassani ciat 1994; Negretti ci at 1993; 

Choi & Eisner, 1999). NiC1 2  (10 mM) blocks the Na/Ca 2 -exchanger (as well as the L-

type Ca 2  channel) but has no effect on the PMCA (Egger ci at 1999; Leoty c/at 2001). 

Therefore, following caffeine-induced Ca 2  transient, the rate of efflux in the presence of 

NiCl2 is indicative of the rate at which, Ca 2  is taken up by the mitochondria and passed 

out of the cell via the PMCA. 

Therefore, the main aim of this part of the study was to initiate caffeine-induced Ca 2  

release in the presence ofNiCl 2 , in control and STZ-induced diabetic ventricular myocytes. 

An alteration between control and diabetic myocytes may implicate the PMCA and 

mitochondria to be deranged, while, a similar rate of Ca 2  efflux would imply that the 

NaVCa 2 -exchanger may contribute to changes in Ca 2  efflux that has been reported in the 

diabetic heart. 

5.12 Method 

See Chapter 2 for details. 
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3.5.3 Results 

In all figures, unless otherwise stated, relate to 8-12 weeks STZ-induced diabetic 

ventricular myocytes and age-matched controls. Figure 5.8. shows a time course trace of 

the protocol used for this series of experiments. Following a caffeine protocol (see Figure 

5.6) electrical stimulation is stopped and NiCl 2  (10 mM) is applied to cells for 10 sec, 

caffeine (10 mM) is then rapidly applied to cells for 10 sec, before NT solution is re 

applied to the cells and cell re-stimulated (1 Hz) until pre caffeine controls are reached. 

(i) Caffeine protocol 	 (ii) Caffeine plus NiCl 2  protocol 

0.08 
ratio 

units 

20 sec 

Figure 5.8. Original trace showing the time course protocol for (i) caffeine-induced Ca 2  

release and for (ii) caffeine-induced Ca 2  release in the presence of NiCl2 (10 mM) and 

recovery in rat ventricular myocyte. Myocytes were stimulated and superfused with NT 

solution (I mM Ca 2 ) at 35 0C-370C. The trace is typical of 18 such myocytes from 6 rats. 

135 



0.08 
ratio 
units 

10 sec 

Figure 5.9. The effects of NiCI on the caffeine induced Ca 2  release. 

Superimposed traces of caffeine induced SR Ca 2  release in the absence (blue) and 

presence of nickel (black) from isolated ventricular myocytes. Traces are typical of 

IS cells taken from at least 5 rat hearts. 

In the presence ofNiCl 2, the amplitude ofCa2  release measured by the percentage change 

versus pre caffeine pulse was not significantly (P>0.05) altered in control and diabetic 

myocytes, respectively (Table 5.1). Moreover, there was no significant (P>0.05, Paired t-

test) difference in the amplitude of caffeine-induced Ca 2  release between the pre and post 

application ofNiCl2 in control and STZ-induced myocytes. The /pk of the caffeine-induced 

Ca2  release (peak taken from first point of peak transient) in the presence of NiCl2 was 

significantly (P<0.05) longer in diabetic myocytes compared to control (Table 5.1.). 

Moreover, the 'pk  was significantly (P<0.0 I, Paired t-test) increased in both control and 

diabetic myocytes between pre and post application of NiCl2. The !and rate of decay of 

the Ca2  transient was not significantly (P>0.05) altered in STZ-induced myocytes in the 

presence of NiCl2 (Table 5.1.). However, both control and STZ-induced myocytes had 



significantly (P<0.01, Paired t-test) longer decays in the rate of Ca 2  transient decline 

following an application of NiCl 2 . 

Table 5.2. The effects of STZ-diabetes on the caffeine-induced Ca 2  transient in the 

presence of N1Cl2 of isolated ventricular myocytes obtained from rat heart at 35-

3 7°C. 

Age-matched control 	STZ-induced 

Amplitude of Ca 2  transient 

% rise Vs. stimulated) 

Fractional CaZ*  release 

Time to peak (tpk), (sec) 

Time to half decay (t),(sec) 

Rate of Ca 2  decay (ratio units /sec) 

	

25.6±1.9(18) 	25.8±2.0(17) 

	

90.7 ±15.4 (18) 	82.3 ± 8.7 (17) 

	

0.49 ±0.06 (18) 	0.71 ±0.08 (17) * 

	

2.5±0.23 (18) 	2.9±0.26(17) 

0L03 ± 0.003 (18) 	0.03 ± 0.002 (17) 

Data are means ± S.E.M. Number in parenthesis indicates number of cells. Control 

Vs. STZ was compared using Student's independent samples flest. *P<005. 

5.5.3.1 Gomparison of rate of decay 

The rate of cytosolic Ca 2  decay in electrically stimulated (I Hz) ventricular myocytes 

taken from control hearts was significantly (P<0.0 I) quicker (39.8 %) than that of STZ-

induced diabetic hearts (Figure 5.10.a) Moreover, the rate of decay following an 

application of caffeine was significantly (Pc005) faster (23.6 %) in control compared to 

diabetic myocytes. However, the rate at which. Ca 2  efflux and uptake in caffeine in the 
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presence of NiCl 2  was not significantly (P>0.05) altered in diabetic and control. versus 

control (Figure 5.10.). 

	

-1 	** 

. 	 T 

	

0.5 —I 	I 	I 

Control 
E 	0.4 -I I 	I 	STZ-treated 

0.3H 
C, 

1 

'8 	0.21 

18I 
	

* a, 	-I 
- 

0.1 -1 (18)(17) 

I K/A 	I18F71 

IHZNT 	10mM 	lomMcaffeine 
caffeine 	10 mM NiCI 

Figure 5.10. The rate of Ca 2  decay in electrically stimulated, caffeine-induced 

and caffeine-induced Ca 2  transient in the presence of NiCI in ventricular 

myocytes isolated from controland STZ-induced rat heart perfused with a NT (I 

mM Ca2  ) at 35-37°C. Data are means ± S.E.M. Numbers in bars indicates 

number of cells. Control vs. STZ was compared using Student's independent 

samples nest. P<0.05,**P<0.01.  
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5.5.4 Discussion 

From the results, it can be seen that, in the presence of N1Cl2 the amplitude of Ca 2  

released from the SR, in control myocytes following an application of caffeine was not 

significantly different than in STZ-induced myocytes. Therefore, it would seem that the 

total available amount of Ca2*  is similar in the normal and diabetic heart and that the 

Na/Ca2 -exchanger does not contribute to changes in caffeine-induced Ca2*  release in 

ventricular myocytes. However, it has been reported that in the diabetic heart caffeine-

induced Ca2  release is significantly diminished (Choi el at 2002). In the presence of 

NiCl2, the tpk of the caffeine-induced Ca 2  transient is longer in both control and diabetic 

myocytes (compared to caffeine-induced Ca 2  release without NiCl2) but is significantly 

increased in the STZ-induced myocyte compared to control. This would suggest that either 

NiCl2 itself or the action of NiCl 2  on the Na/Ca 2texchanger changes the tpk of the a 

caffeine-induce Ca 2  release in STZ-myocytes significantly more than control myocytes. 

Because, the speed of Ca 2  release of the SR is indicative of RyR, sensitivity, it is 

suggested that in the diabetic heart the sensitivity of RyR release channels is altered though 

the action of NiC12 itself or through changes in [Ca 2 ] through the Na7Ca 2texchanger 

blockade. The rate of decay of the caffeine-induced Ca 2  transient is longer in diabetic 

niyocytes versus control, but in the presence of NiCl 2  the rate of decay is not significantly 

altered. Because NiCl 2  blocks the Na/Ca 2 -exchanger. the rate of decay during caffeine-

induced Ca2  release in the presence ofNiCl 2  is a rate ofefflux from the PMCA and uptake 

into the mitochondria. Therefore, it is tempting to suggest that in this series of experiments 

the sustained elevation in [Ca2*]j  following caffeine treatment is directly associated with 

the Na7Ca2 -exchanger, but not the changes in PMCA Ca 2  efflux or mitochondrial Ca 2  

uptake. 
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Chapter 6 

Effects of halothane on 'Ca,L, 

[Ca2  jj and contraction in the 

streptozotocin-in duced diabetic 

and age-matched control 

cardiomyocyte 

Eno 



6.1 	Introduction 

Volatile anaesthetics have been used in the clinical environment to produce unconscious 

effects in patients undergoing clinical procedures including surgery on the heart (Davies et 

at 2000). However, cardiovascular complications are a major source of morbidity and 

mortality in patients in surgery under anaesthesia (Campling ci at, 1993). Halothane is a 

well known modern volatile anaesthetic, but has been reported to produce several adverse 

side effects within the heart (Davies c/at 2000). Several reports suggest that halothane can 

induce a negative inotropic (contraction) effect in the heart (Housmans & Murat, 1988). 

The negative inotropic and lusitropic (relaxation) effects of halothane (Harrison et at 

1999; Davies ci al. 1999) have been reported to be attributable to alterations in Ca2t 

sarcolemmal influx (Ikemoto ciat 1985), SR Ca2t  uptake (Connelly & Coronado, 1994) 

and release, and changes in sensitivity of contractile myofilament sensitivity (Davies c/at 

2000). 

The rate of inward 'CaL determines the rate of Ca 2  influx leading to the triggered response 

of Ca2t  from the SR, following depolarisation of the sarcolemmal. Initial depolarisation of 

the cell membrane leads to the rapid activation of 'CaL  around —40 mV Em (Bers, 1991). 

Ca2  influx through L-type channels has been shown to be around 13.8 imol/l cytosol in 

rat ventricular myocytes (Yuan c/at 1996). Given that the rate of inward 'Ca,L  is the trigger 

for SR Ca2t  release (in normal conditions), any alteration in the 'CaL  may effect its opening 

and subsequent ability to trigger Ca 2  release. Moreover, a reduction 'CaL has been 

reported in the heart in the presence of halothane (Ikemoto et at 1985). 

Following the triggered release of Ca2t  from the SR. cytosolic free Ca 2  increases, leading 

to the binding of Ca 2  with the troponin-C complex, which, results in the sliding of actin 
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and myosin over each other, and subsequent contraction. These processes have the 

potential to be altered by changes in pharmacological environment and alterations in the 

pathological state (Morgan et at, 2000). It has also been reported that myofilament 

sensitivity to Ca2*  is altered in the normal rat heart in the presence of halothane (Harrison 

a at 1999). Therefore, changes in myofilament sensitivity may contribute to cardiac 

contractile abnormalities in the diabetic heart and may be attenuated by halothane. 

During surgical procedures, the concentration of plasma halothane ranges between 0.05 

and 0.7 mmol I ' (Davies ci at 1972). It has been reported that, two times minimum 

alveolar concentration (MAC)(2) concentration in the rat is 0.6 mmol I (Rithalia c/ at 

2001). Therefore, in this study, a clinically relevant concentration ofhalothane (0.6 mmol I 

) has been employed to characterise the effects of halothane on the diabetic heart 

compared to age-matched control. The diabetic heart is characterised by an alteration or 

disruption of contractility that is underpinned by changes in Ca 2  homeostasis. The 

intracellular mechanisms underlying the changes in cardiac function in the presence of 

halothane in the diabetic heart are not fully understood. It is hoped that changes associated 

with inotropic effects of halothane in normal and diabetic myocytes may provide a greater 

understanding of the underlying mechanisms of dysfunction in the STZ-induced diabetic 

heart. 

The aim of this study was to investigate the effects ofa clinically relevant concentration of 

halothane on isolated ventricular myocytes from age-matched control and STZ-induced 

diabetic hearts. Specifically this study has investigated the effects of halothane on: (I) 'CaL, 

voltage dependence of contraction, inotropy an lusitropy, stimulated Ca 2 ' transient and 

myofllament sensitivity for Ca 2t 
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6.2 	Results 

In all figures, unless otherwise stated, relate to 8-12 weeks STZ-induced diabetic 

ventricular myocytes and age-matched controls. In a number of tissues it is established that 

membrane Ca 2  conductance decreases progressively over time and is mainly due to 

artificially perfusing cells as thus washing away of molecules that are important in 

maintaining the function of channels, which can result in a loss of 'Cal. (Kameyama et aL 

1997). This process is known as "run-down". Rundown was assessed in a number of 

experiments, and it was shown there was no significance difference between the 'CaL  in 

control and STZ-induced myocytes following wash off periods compared to time-tested 

controls. Cell volume (V) was measured by using a formula based on the observations of 

Satoh c/ al. (1996), that the shape of a rat ventricular myocyte is an elongated ellipse, of 

which the volume is equal to 54% of the volume ofa block. This is defined as the length X 

Width X Depth. Depth was calculated as a prediction of the cell width. Therfore, the 

formula was; V =L X W X (W/W:D) X 5.4 X 10 4  p1 tm 3  or V =L X W2/2667 pV' 

Mm 3 .Cell volume in ventricular myocytes obtained from control beans were not 

significantly different to those obtained from STZ-induced diabetic hearts, respectively. 

Control 15.2 ± 0.8 p1, (n=9) and STZ 14.9 ± 0.31 p1, (n=9). 

LI- 
a 

a 
a 

0 

Figure 6.1. Membrane capacitance (pF) measured in control and STZ-induced diabetic 

ventricular myocytes: Control 102.7 ± 5.64 pF, (iv=9) and STZ 100.6 ± 2.09 pF,(n9). 
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0.3 nA 

50 ms 

(c) STZ 

(a) Control 	 (b) Control plus Halothane 

II .!_1J iii CTTTTi I ''iii ii',,,, 

50 ms 

(d) STZ plus Halothane 

SOms 	 SOms 

Figure 6.2. Typical chart traces Of/C a.L following a test pulse of 0 my from a holding 

poteial of —40 my in (a) control and (c) STZ-induced ventricular myocytes and the 

effects of halothane (0.6 mM) on 'CLL  in (b) control and (d) STZ-induced myocytes at 

room temperature. Traces are typical of 8-10 cells from taken from 3-4 rat hearts. 
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6.2.1 Current function 

Figure 6.2. shows typical 'CaL  traces obtained from either in (a) age-matched control, (b) 

age-matched control plus halothane, (c) STZ-induced or (d) STZ-induced plus halothane 

myocytes. The (pk  of 'Ca,L  was not significantly (P>0.05) altered between control and STZ-

induced diabetic myocytes in the absence or presence of halothane (Table 6.1.). 

Table 6.1. The effects of 8-12 weeks STZ-induced diabetes and halothane on 

the time to peak of the 'Ca,L  compared to age-matched controls in isolated 

ventricular myocytes patched clamped in whole cell configuration at room 

temperature. 

Time to peak of the 'CJ.L  (msec) 

Control 	 7.97±0.97(9) 

STZ 
	

9.25±1.35(9) 

Control plus halothane 	 10.3 1±0.79(9) 

STZ plus halothane 	 8.91±0.91(9) 

Data are means ± S.E.M. Number in parenthesis indicates number of cells. 

Control Vs. STZ was compared using Student's independent samples (test. 

Control Vs Control plus halothane (0.6 mM) and STZ Vs. STZ plus halothane 

(0.6 mM) was compared using a paired / test. 

6.22 Current Amplitude 

Figure 6.3. Shows the peak 'Ca. L amplitude (difference between the peak 'CaL and the 'Ca,L 

at the end of the depolarising pulse) in age-matched control and STZ-induced diabetic 

ventricular myocytes in the presence and abscence of halothane (0.6 mM). The amplitude 
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of peak 'Cal.  was significantly (P<0.05) reduced in STZ-induced myocytes (-3.03 ± 0.19 

pA/pF, n =9 Vs. -4.87 + 0.32 pA/pF, n 9) compared to age-matched control, respectively. 

Following the application of halothane (hal), peak 'Cal. amplitude was significantly 

(P<0.05) to -3.24 ± 0.29 pA/pF, n =7 in control myocytes and to -1.81 + 0.23 pA/pF, n 

in STZ-induced diabetic myocytes (Figure 6.2.). 

CNT 	 CNT hal 	 STZ 	 STZ hal 

Figure 6.3. The effect of halothane (hal, 0.6 mM) on the mean voltage dependence 

oflcai . in control-CNT (b) and STZ-induced diabetic (c) ventricular myocytes. 

Respective control for each group (either control (b) or STZ (c)) is shown for 

comparison. Data shown are mean ± SEM. Statistical significance showing control 

(n8) vs. control plus halothane (n=8) and STZ (n=7) vs. STZ plus halothane (n=7) 

compared using paired (testis represented by p  <0.05. 
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6.23 Currenttl voltage relationship 

Figure 6.4. shows the 'Ca,L voltage relationship in (a) control versus STZ, (b) control 

versus control plus halothane and (c) STZ versus STZ plus halothane. The 'Ca,L  was 

significantly (P<0.05) reduced throughout voltage ranges (0 my and 40 my) in STZ-

induced myocytes when compared to age-matched controls (Figure 6.4.a). However, there 

was no significant difference in 'Ca,L  between control and STZ-induced myocytes in the 

presence of halothane. In age-matched control myocytes, 'CaL  was further reduced at 

voltages between 10 my and 40 mV in the presence of halothane (Figure 6.4.b). Halothane 

also significantly (P>0.05) reduced the ICa,L  further in STZ-induced myocytes at 10 my 

test pulse, but in contrast did have not any significant effect at all other voltages (Figure 

6.4.c). 

(a) 
Membrane potential (my) 

-30 	-20 	-10 	0 	10 	20 	30 	40 	50 

LI- 
a -2 

a 

0) -3 
U, 

E 
o - 
C 

C-) 

s'i 

-6 

Figure 6.4.a. Mean voltage dependence of 'CaL. plotted as current density (pA/pF) 

for test potentials beween —30 and + 50 mV between control-CNT and STZ-

induced diabetic ventricular myocytes at room temperature. Data shown are mean 

± SEM. Statistical significance showing CNT (n=7) vs. STZ (n=7) were compared 

using independent nest. *P <0.05. 
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Figure 6.4. Mean voltage dependence of 'CaL plotted as current density (pA/pF) for 

test potentials beween —30 and + 50 mV in (b) control-CNT and (c) STZ-induced 

diabetic ventricular myocytes, pre and post application of halothane (ha!) at room 

temperature. Data shown are mean ± SEM. Statistical significance showing CNT 

(n7) vs. CNT plus hal (n=7) and STZ vs. STZ plus hal (n=7) were compared using 

paired Itest. *]) <0.05. 



6.2.4 Voltage dependence of contraction 

Figure 6.5. shows the effect of halothane on the voltage dependence of contraction in 

8-12 weeks STZ-induced and age-matched control myocytes at room temperature. 

Contraction was examined in these cells by measuring the amplitude of contraction in 

relation to resting cell length elicited at each test voltage (my) step in the 'CaL  /voltage 

data. Contraction was significantly (P<0.05) greater in control myocytes compared to STZ-

induced myocytes at all test potentials. Following the application of halothane (0.6 mM), 

the amplitude of contraction significantly decreased between - 10 mV and - 50 my 

potentials in control myocytes. Moreover in STZ-induced diabetic myocytes, following the 

application of halothane also resulted in a significant reduction in the amplitude of 

contraction at —20 mV. 0 my and +10 mV potentials. Furthermore, contraction was 

significantly decreased at test potentials between —20 and + 10 my when comparing 

control myocyte with STZ-induced myocytes in the presence of halothane. 
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Figure 6.5. Mean voltage dependence of contraction plotted as percentage of resting cell 

length for test potentials between —30 and + 50 my in control-CNT and 8-12 weeks STZ-

induced diabetic ventricular myocytes, in the absence and presence of halothane (hal) at 

room temperature. Data shown are mean ± SEM. Statistical significance was analysed (see 

commentary) CNT (n=7) vs. STZ (n7) were compared using independent ttest. CNT 

(n=7) vs. CNT plus hal (n=7) and STZ vs. STZ plus hat (n=7) were compared using paired 

(test. 
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6.2.5 Contraction 

Figure 6.6. shows (a) original fast time based chart recordings of contraction, (b) 'pk of 

contraction and (c) contraction as percentage remaining following the application of 0.6 

mM halothane in ventricular myocytes isolated from age-matched control and STZ-

induced diabetic. Figures 6.7 and 6.8 show (a) original fast time based chart recordings and 

the (b), lpk of contraction and t decay of contraction (c) in age-matched control and STZ-

induced cardiomyocytes in the absence and presence of 0.6 mM halothane. The results 

show that the tpk of myocyte shortening was significantly (P<0.01) prolonged in STZ 

myocytes (137.2 ± 4.1 msec, n =32) compared to control (105.5 ± 2.0 msec, n 31) 

(Figure 6.6.a). However, 'pk of contraction were significantly (Pc0.01) reduced in control 

(105.5 ± 2.0 msec, n =31 V.s 94.6 ± 2.4 msec. n =31 ) (Figure 6.7.b) and STZ-induced 

(137.2 ± 4.1 msec, n =32 Vs. 119.3 ± 3.4 msec. ii =32)(Figure 6.8.b) myocytes in the 

absence and presence of halothane, respectively. 1-lalothane significantly (P<0.01) reduced 

amplitude of contraction in both control (from 100% to 65.9 ± 2.7%, n =31) and STZ-

induced (from 100% to 40.9 ± 3.2 %, n =32) myocytes. This reduction in contraction was 

significantly (Pc0.01) greater in STZ-induced myocytes compared to control (Figure 

6.6.c). The decay was not significantly altered between control and STZ-induced 

myocytes in the presence of halothane, but was significantly (Pc0.01) decreased in control 

(46.5 ± 2.1 msec, n =31 Vs. 42.5 ± 2.0 msec, n =31) (Figure 6.7.c) and STZ-induced (48.6 

± 1.8 msec, n =32 Vs. 45.1. ± 1.9 msec, n =32,) (Figure 6.8.c) myocytes before and after 

the application of halothane. respectively. 
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Figure 6.6.a Representative fast lime-base recordings of contraction in 

electrically stimulated (I Hz) rat ventricular myocyles. superfused with NT 

containing 0.6 mM halothane at 35-37 °C, from (i) STZ-induced diabetic 

compared with (ii) control rats. (b), fpk of contraction and (c), conlraction as a 

percentage remaining after the application of halothane. Data shown are mean ± 

SEM. Numbers within bars represent number of cells. Statistical significance 

showing control vs. STZ, independent samples / test is represented by **P <0.01. 

Frames in (a) are typical of3 I control myocytes and 32 STZ treated myocytes. 
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Figure 6.7. (a) Representative fast time-base recordings of contraction in 

electrically stimulated (I Hz) rat ventricular myocytes, superfused with either 

normal Tyrode (NT) alone (Pre) or containing 0.6 mM halothane (Post) at 35-

37°C, from age-matched control rat hearts. (b) tpk  of contraction and (c), i relax. 

Data shown are mean ± SEM. Numbers within bars represent number of cells. 

Statistical significance showing Pre Vs Post application of halothane using paired 

t test is represented by ttP <0.01. 
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Figure 6.8. (a) Representative fast time-base recordings of contraction in 

electrically stimulated (1 Hz) rat ventricular myocytes, superfused with either 

NT alone or NT containing 0.6 mM halothane at 35-37 °C, from STZ-induced 

diabetic rat hearts. (b) !pk of contraction and (c), i Data shown are mean ± 

SEM. Numbers within bars represent number of cells. Statistical significance 

showing Pre Vs. Post application of halothane using paired t test. **p  c 0.01. 

Frames in (a) are typical of32 STZ-treated such myocytes. 
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6.2.6 Calcium 

Figure 6.9. shows typical chart recordings of Ca 2  transient in ventricular myocytes taken 

from age-matched control and STZ-induced diabetic rat heart superfused with either NT 

solution alone or NT solution containing 0.6 mM halothane. Figure 6.10. shows (a) the 

amplitude of Ca2  transient measured in ratio units, (b) tpk  of Ca24  transient (ms) and (c), 

t decay of Ca 2  transient in the absence and presence of halothane in ventricular 

myocytes isolated from age-matched control and STZ-induced diabetic rat hearts. The 

resting level of [Ca 24J (measured as basal ratio units) was not (P>0.05) significantly 

affected by the application of halothane in control and STZ-induced cardiac myocytes. The 

amplitude of Ca24  transient was significantly reduced in both age-matched control (Pc0.01) 

(0.507 ± 0.078 ratio units, n =13, Vs 0.374 ± 0.054 ratio units, n =13) and STZ-induced 

(P<0.05) myocytes (0.513 ± 0.061 ratio units, n 13. Vs 0.437 + 0.058 ratio units, n =13), 

in the absence and presence of halothane, respectively (Figure 6.1O.a). However, there was 

no significant (P>0.05, paired test) difference between the amplitude of Ca 24  in age-

matched control and STZ-induced myocytes in the absence and presence of halothane 

(Figure 6.I0.a). The 'pk  of Ca2  transient was not significantly (P>0.05) altered in STZ 

myocytes (74.7 ± 6.5 msec Vs. 68.3 ± 5.4 msec, n = 13) and age-matched control (66.0 ± 

2.8 msec Vs. 61.4 ± 3.4 msec, n 13) myocytes in the absence and presence of halothane 

(Figure 6.10.b). Moreover, there is no significant (P>0.05, paired test) difference between 

the tpk of Ca24  transient in age-matched control and STZ-induced myocytes either before 

or after the application of halothane (Figure 6.10.b). In contrast, the t decay of Ca24  

transient was significantly (P<0.01) longer in STZ-induced cardiac myocytes (148.4 ± 10.2 

msec Vs. 160.5 ± 9.93 msec, n =13) and control myocytes (104.8 ± 4.5 msec Vs 109.0 ± 

4.0 msec, n =13), in the absence and presence of halothane, respectively (Figure 6.10.c). 
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However, the application of halothane did not significantly (P>0.05) alter the Idecay of 

Ca2  transient the results obtained in the absence and presence of halothane (Figure 6.1 0.c). 
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Figure 6.9. Effect of 0.6 mM halothane on Ca 2  transients (I Hz) in control and 

STZ-induced ventricular myocytes perfused at 35-37 °C. Traces are typical of 13 such 

myocytes from at least 4 rats per group. (a) Control superfused with NT alone and 

control superfused with NT containing halothane, (b) STZ superfused with NT and 

STZ superfused with NT containing halothane (c) Control superfused with NT alone 

and STZ superfused with NT and (d) Control superfused with NT containing 

halothane and STZ superfused with NT containing halothane. 
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Figure 6.10. Effects of halothane on the (a) amplitude of Ca2t  transient and (b) the 

tpk of Ca 
2+ transient from ventricular myocytes taken from age-matched control 

(open) and STZ-induced (hatched) diabetic rat hearts perfused at 35-37 °C with (a) 

Control with NT, (b) STZ with NT, (c) Control with 0.6 mM halothane and (d) STZ 

with 0.6 mM halothane. Data shown are mean ± SEM. Numbers within bars represent 

number of cells. Statistical significance showing NT alone vs. NT plus halothane 

treatment halothane (paired t test) and control i's. STZ, ( independent samples / 

test).*P <0.05 and **P <0.01. 
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Figure 6.10. (c) Effects of halothane on the ¼ decay of Ca 2  transient from 

ventricular myocytes taken from age-matched control (open) and STZ-induced 

(hatched) diabetic rat hearts perfused at 35-37 °C with (a) Control with NT, (b) STZ 

with NT, (c) Control with 0.6 mM halothane and (d) STZ with 0.6 mM halothane. 

Data shown are mean ± SEM. Numbers within bars represent number of cells. 

Statistical significance showing NT alone vs. NT plus halothane treatment halothane 

(paired t test) and control vs. STZ, (independent samples / test). ** <0.01. 
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6.2.7 MyoJilament calcium sensitivity 

Previous reports have suggested that during the final phase of relaxation, cardiac 

myofilaments come into a quasi-equilibrium state with [Ca 
-
] i  (Spurgeon ci al. 1992) 

Therefore, plotting myocyte cell length against the ratio of emitted fura-2 fluorescence 

during the final phase of relaxation of a contraction may provide an index of Ca 2  

sensitivity of the myofilaments. 

The relationship between the magnitude of cell length and analogous fura-2 fluorescence 

ratio from age-matched control and STZ diabetic rats hearts in the absence and presence of 

halothane are shown in table 6.2. Figure 6.11 .a and Figure 6.1 2.a 

Slope of regression Mm/fura-2 fluorescence ratio 

Control 	 -5.0 10.6 pim/fura-2 fluorescence ratio, n = 13 

STZ 	 -13.5 ± 3.6 pm/fura-2 fluorescence ratio, n 6 * 

Control plus halothane 	-3.7 ± 0.5 ttm/fura-2 fluorescence ratio. n =13# 

STZ plus halothane 	-9.0 ± 2.3 Rm/fura-2 fluorescence ratio, n =6 # 

Table 6.2. The slope of regression during the final phase of relaxation in ventricular 

myocytes obtained from age-matched control and STZ-induced diabetic rat hearts 

following 8-12 weeks treatment in the absence and presence of halothane (0.6 mM). Data 

are means ± S.E.M. Number in parenthesis indicates number of cells. Control Vs. STZ in 

the absence and presence of halothane (0.6 mM) was compared using Student's 

independent samples i test. * P<0.05. Control and STZ before and after the application of 

halothane (0.6 mM) was compared using paired nest. # Rc0.05. 
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Figure 6.11. Effects of halothane on myofilament Ca 2  sensitivity in stimulated (I Hz) 

cardiac myocytes from age-matched control rat heart perfused at 35-37 °C. (a) 

Relationship between cell length and ratio obtained during perfusion of NT solution and 

NT solution plus halothane (0.6 mM) and (b) relationship between the cell length and of 

fluorescence ratio during the final relaxation phase obtained in myocytes perfused with 

NT or NT plus halothane. Data in b are fitted with a regression line. Traces are typical 

observations from 13 such myocytes from at least 4 hearts. 
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Figure 6.12. Effects of halothane on myofilament Ca 2  sensitivity in stimulated (I Hz) 
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ratio during the final relaxation phase obtained in myocytes perfused with NT or NT 
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6.3 	Discussion 

6.3.1 'Ca.L  amplitude and tpA 

This study has reported that the tpk of 'Ca,L  was not significantly affected by either the 

diabetic state or by the application of halothane. This would imply that the 'pk  of 'Ca,L  does 

not have a role to play in the downstream characteristics reported in halothane-induced 

inotropic changes in the heart (1-lousmans c/at, 1988). The 'Ca,L  amplitude of the cell is 

indicative of increased 'Cal.  and therefore is of direct significance to the influx of Ca 2  

i into the cell. Increased Ca 2+ 
 influx may lead to ncreased triggering ofCa release from 

the SR (Bers, 2002). This study has reported that in STZ-induced diabetic myocytes, the 

amplitude of 'CaL is significantly less than that of controls, moreover, the application of 

halothane further reduced the peak amplitude of the 'CaL  in control and STZ-induced 

diabetic myocytes. This reduction in peak 'Cal,  amplitude was more pronounced in 

halothane treated diabetic myocytes compared to control. A reduction in the 'CaL  has been 

reported in the following the application of halothane in normal heart (Ikemoto c/at 1985; 

Bosnjal ci at 1991). A halothane—induced decrease in 'CaL  will lead to a reduction in SR 

content and may lead to a reduction in the fractional release of Ca 2  from the SR. 

Reduced SR Ca 2  release may ultimately contribute to a decrease in the amplitude of 

contraction. 

6.3.2 Current voltage relationship 

This study also investigated the relationship between 'OLL and voltage in the diabetic heart 

in the presence of halothane. The 'Ca.L was significantly reduced in all voltage ranges (-10 

mV to 50 mM) in diabetic myocytes compared to control. Moreover, in the presence of 

halothane, the 'CaL  was further reduced in control myocytes (0 my to 50 my) and diabetic 
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myocytes (10 my). Diabetes, therefore, in respect of the JOEL  voltage relationship reduces 

the 'Ca,. at test potentials associated with the opening of the L-type Ca 2  channel. This may 

result in a decrease in Ca2t  influx into the cell and contribute to a decrease in trigger Ca 2  

needed to initiate Ca 2  release from SR. Moreover, reduced SR Ca 2  release may lead to 

reduced amounts of Ca2*  available for contraction. Following the application halothane, 

'Ca,L was also significantly reduced in both control and STZ-induced myocytes, which 

suggest the diabetic state may act synergistically with halothane. 

6.3.3 Voltage dependence of contraction 

The dependence of voltage on the amplitude of contraction was studied in the STZ-induced 

diabetic myocytes in the absence and presence of halothane. In this series of experiments 

the results show that STZ-induced diabetic myocytes displayed significant reduction in the 

amplitude of contraction at all test potentials tested compared to age-matched control 

myocytes. Moreover, myocyte shortening was further reduced in diabetic and control 

myocytes in the presence of halothane. This would suggest that the process by which a 

voltage test pulse causes the contraction is disrupted by the diabetic state and by the 

application of halothane. The reduction in contraction occurs because of a reduction in the 

amount of Ca2t  released from the SR or by a reduction in the myofilament sensitivity to 

Ca 2t It has been reported that halothane reduces the peak 'CaL  amplitude. This would 

therefore imply that a reduction in Ca2t  influx results in a decreased amount of trigger Ca2t 

and a subsequent decrease in SR Ca 2+ 
 release and contraction. Moreover, it has been 

reported in this study that the application of halothane reduces the amplitude of contraction 

in control and STZ-induced diabetic myocytes. 
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In contrast, it has been reported within this study that the amplitude of contraction is 

significantly increased in the STZ-induced diabetic heart compared to that of control in 

electrically cells. One possible reason for these apparent changes in results may lie with the 

properties of the diabetic Ap. In the myocardium the height and duration of the Ap greatly 

correlates to the strength and amplitude of contraction (Fabiato ci at 1985). Moreover, 

Bouchard & Giles, (1995), showed that increased Ap duration resulted in a two-fold 

decrease in the peak 'CaL , but an increase in the Ca 2  transient and the amplitude of 

contraction. In the diabetic heart it has been reported that the Ap duration is significantly 

longer than age-matched controls (Shimoni ci at 1994; Magyar ci al. 1992; Jourdan & 

Feuvray, 1993). An increase in Ap duration in an STZ-induced diabetic myocyte, will be 

associated with a decrease in the 'CaL but an increased flux of Ca 2t The increase in Ca 2  

influx may in turn compensate for any reduction in Ca 2  influx via 'Cal,  that would be 

notable in voltage clamped myocytes. This would neutralise differences between control 

and diabetic myocytes and would result in a similar amount of trigger Ca 2  for both groups. 

Consequently, this may lead to a similar release of Ca 2  from the SR. This is in agreement 

with results detailed within chapter 5. An increase in contraction, in the electrically 

stimulated myocytes in the absence of any relative (compared to control) changes in Ca 2+ 
 

released from the SR is likely to be due to a change in the myofilament sensitivity for 

Ca2 . In the patch clamped myocyte, however, the Ap is not a factor due to the voltage 

clamp protocols. Therefore in these cells, reduced JCa.i.  would lead to a reduction in Ca 

influx and subsequent reduction in trigger Ca 2t This may contribute to a reduction in SR 

Ca2+ release and a subsequent reduction in contraction that has been reported in this study 

in STZ-induced myocyte. 



6.3.4 Contraction 

In the diabetic state it has been reported that contractile function is significantly altered 

(Choi ci at, 2002). Moreover, other reports suggest that halothane has a negative inotropic 

effect on the normal heart (Harrison c/aL, 1999). This study has investigated the effects of 

halothane on the STZ-induced diabetic heart. Although halothane was found to 

significantly depress the amplitude of contraction in both control and STZ-induced 

myocytes, the reduction in the amplitude of contraction was significantly greater in 

diabetic myocytes compared to age-matched controls. This interesting observation suggests 

that either the release of Ca 2  from the SR during stimulation is decreased (this may be due 

to either less influx of Ca 2  from the cellular medium) or myofilament sensitivity to Ca 2  

is reduced. Either or both would bring about a decrease in contraction. Moreover, 

halothane significantly decreased the ipk and idecay of contraction in the diabetic heart, an 

observation that has been reported in the normal heart too (Housmans ci at 2000). A 

change in the tj'k  of contraction may be a consequence of a change in RyR sensitivity for 

trigger Ca 2 . Interestingly, in the diabetic heart it has been reported that the ipk is increased 

(Howarth c/ at 2001). This suggests that STZ-induced diabetes affect cardiac myocytes 

contractility in opposing way with respect to halothane. In this study halothane reversed 

the increased contraction and the Ipk of contraction that has previously been reported in the 

diabetic heart (Howarth ci at, 2001). 

6.3.5 Calcium 

It has been reported in chapter 6 in this study that an alteration in contraction induced by 

halothane is likely to be caused by a change in Ca 2  homeostasis within the cell. Therefore, 

this study has investigated the effect of halothane on electrically stimulated (1 Hz) Ca 2  

transients in control and STZ-induced myocytes, and has demonstrated that halothane can 

significantly reduce the amplitude of Ca 2 ' transient in both control and STZ-induced 
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cardiac myocytes. The application of halothane itself, therefore is likely to account for the 

reduction in the amplitude of Ca2*  release in stimulated myocytes. The reduction in Ca 2  

may be attributable to a number of factors including, the reduction in trigger Ca 2  through 

'Ca,L (which has been reported in this study) or a reduction in SR Ca 2  content or fractional 

release. SR Ca2  content has been reported to be reduced by halothane in normal rat 

ventricular myocytes (Davies et at, 2000). In the present study, it has been shown that the 

peak amplitude of 'CaL  is reduced by halothane. Therefore, it is acceptable to suggest that a 

decrease in 'Ca,L  and therefore Ca 2  influx leads to a reduction in SR Ca 2  release in the 

presence of halothane. The tpk  and tx decay of Ca 2  transient were not significantly 

altered by halothane in control and STZ-induced diabetic myocytes. It is therefore likely 

that in the STZ-induced diabetic heart, halothane has no significant effect on either Ca 2  

efflux or Ca2  uptake during diastole. 

6.3.6 Myofilament sensitivity 

The results in this study have shown that the slope of regression during the final phase of 

relaxation in STZ-induced myocytes was significantly increased compared to age-matched 

controls. Therefore, this study is the first to suggest that the sensitivity of the cardiac 

myofilaments to [Ca 2 ']1 in the STZ-induced diabetic hearts is significantly increased 

compared to that of controls. We have thus far reported that within electrically stimulated 

STZ-induced diabetic myocytes, the amplitude of contraction is significantly increased 

compared to that of control. In contrast, this study has shown that the fractional release and 

total release of Ca2F  from the SR is not changed between control and diabetic myocytes. 

Therefore, the results from Ca 2  and contraction studies have reported that a similar 

increase in [Ca 2 ']1 is mirrored by greater contraction in the diabetic heart. The results in 

this study therefore suggest that the underlying mechanism that controls this change in 
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contraction within the diabetic heart is an increase in the sensitivity of the myofilaments 

for Ca2*  in myofilaments. In contrast, following the application ofhalothane, ventricular 

myocytes obtained from both age-matched control and STZ-induced diabetic hearts 

reported a significant reduction in the slope of regression. This would suggest that 

halothane directly decreases the sensitivity of the myofilament to [Ca 24]. This is in 

agreement with Harrison et at (1999) who reported that halothane induced a reduction in 

myofilament sensitivity in myocytes from a normal heart. The activity of the cardiac 

myofilaments is controlled by cross bridge cycling of actin and myosin. Moreover, a 

change in the affinity of Troponin-C for Ca 2  is a primary reason for changes in 

myofilament sensitivity. Within the diabetic heart it has been reported that the expression 

of the MHC is switched from the active a-MI-IC to the less active 3-MHC isoform 

(Golfman et at 1999; Depre c/at 2000b; Pierce & Dhalla, 1981) which, has been reported 

as a factor in cardiac dysfunction (Brouty-Boye C! al. 1995). It may be that an alteration in 

MI-IC isoform and Troponic-C affinity for Ca 2  is altered by the diabetic state and may 

contribute to an increase in myofilament Ca 2 ' sensitivity, which ultimately is responsible 

for an increase in the amplitude of contraction that has been reported in this study 

167 



Chapter 7 

General discussion and final 

comments 



This study was developed principally to examine the underlying cellular mechanism(s) that 

are associated with contractile dysfunction in an experimentally-induced model of type-I 

diabetes in the rat heart. A stable model of type-I diabetes mellitus was induced in male 

Wistar rats by a single i.p. injection of STZ (60mg Kg") (Howarth etal. 2001). The STZ-

diabetic heart was characterised by hyperglycaemia, hypoinsulinaemia and changes in 

osmolarity. Further more total cardiac Ca 24, Cu2 , Zn2  and Fe2 , following 2 months STZ-

treatment were significantly elevated compared to controls. Therefore, as well as changes 

in blood chemistry the diabetic heart is characterised by an alteration in specific cation 

imbalance. It is suggested these changes may contribute and lead to an alteration in heart 

function that has been reported in STZ-induced diabetes. To assess the relative 

contributions of particular parameters within the heart, cardiac myocytes were isolated 

from ventricular heart tissue, using an enzymatic method to produce single 

cardiomyocytes. In some experiments, the volatile general anaesthetic, halothane was 

applied to myocytes. Halothane is known to alter specific properties of F-C coupling in 

cardiac myocytes from normal hearts (Housmans & Murat, 1988), although very little is 

known about its effects on the diabetic heart. 

Although contractility studies had been reported in human and animal models with 

diabetes, there appeared to be degree a degree of contradiction regarding results 

experimental design. Initial studies therefore focussed on measuring contraction. In 

ventricular myocytes taken from the STZ-induced diabetic rat following 4 weeks, 8-12 

weeks, 5 months and 10 month of STZ-treatment, reported significant increases in the 

amplitude of contraction compared to control. Moreover, the tpk of contraction was 

significantly longer following 4 and 8-12 weeks and 5 months of STZ-treatment. 

However, in the 10-month STZ4reated heart, the t,,k of contraction was not significantly 



altered. Interestingly, the t relax was significantly longer following 10 months of STZ-

treatment but appeared similar to age-matched controls following 4, 8-12 weeks and 5 

months treatment of STZ. These time-dependent changes in the chronic (10 month STZ-

induced) model of diabetes may be indicative of a some underlying compensatory process 

that is instigated within the heart to secure its integrity. Following the application 

halothane, the amplitude of contraction was depressed in both control and STZ-induced 

myocytes, but this was significantly more pronounced in the diabetic cells. Moreover the 

time coarse of contraction was also effected by the application of halothane in the diabetic 

heart, suggesting that the diabetic heart is more susceptible to the actions of halothane. In 

a separate study, it was shown that high glucose (25 mM) increased the amplitude of 

shortening, the rate of contraction and the rate of relaxation in control, but not in STZ-

induced diabetic myocytes, showing that the diabetic heart may be more acclimatized to 

the increase in glucose. 

An increase in contraction is a consequence of increased SR Ca 2  release and/or increased 

myofilanient Ca 2  sensitivity. A change in Ca 2  influx via 'Ca.I.  has been shown to alter the 

SR load and fractional Ca 2  release (Bouchard el at 1995). Therefore, 'Ca,L  and the voltage-

dependence of contraction was measured in the STZ-induced diabetic myocytes. The peak 

amplitude of 'Ca.L  was found to be significantly decreased in STZ-induced myocytes 

compared to age-matched controls. Moreover, following the application of halothane 

application was further reduced the 'Ca,L  in control and STZ-induced diabetic myocytes. 

The voltage-dependence of contraction was found to be decreased in STZ-myocytes 

compared to control, thus opposing the results that been obtained in electrically stimulated 

myocytes. In voltage-clamped myocytes, the depolarising pulse is identical. Reduced 'CaL 

in the STZ-induced myocytes will therefore result in a decrease in Ca2t  influx. Reduced 

Ca2  influx will lead to a decrease in SR Ca 2 ' load and reduced Ca 2  release from the SR. It 
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is therefore likely that a reduction in SR Ca 2  release in voltage clamped myocytes from 

STZ-induced diabetic hearts makes a major contribution in reducing the amplitude of 

contraction. In electrically stimulated myocytes, however, changes in Ap duration may 

influence changes in the open probability of the L-type Ca 24  channel (Sah ci aL2003). The 

open probability of the L-type Ca 2  channel is dictated in part by the membrane potential. 

At more positive potentials there is an increased possibility of L-type Ca 24  channel 

opening. In normal rat myocytes, large 'OLL spikes have a rapid membrane repolarisations 

that, consequently have a rapid phase within the more positive potential and are therefore 

likely to restrict the open probability and channel activation, as well as accelerating the 

channel deactivation (Bers, 2002). Moreover it has been shown that in normal rat 

myocytes, prolonging the AP leads to a reduction in peak 'Cal.,  but an increase in Ca24  

influx release (Bouchard ci at 1995). Increased Ca 2  leads to an increased SR load and 

release and contributes to a positive inotropic effect. In the diabetic heart it is well 

established that the Ap duration is prolonged because of a decrease in f 0  (Shimoni el at 

1994; Magyar ci at 1992) It is therefore suggested that in electrically stimulated STZ-

induced myoeytes, prolonged Ap duration leads to a smaller 'Ca,!, but increased probability 

of L-type Ca2*  influx. Increased trigger Ca 24  is likely to act on the SR and may contribute 

to the changes in Ca 2  release. 

To ascertain if changes in contractile function are partly due to alterations in trigger Ca 24  

influx, Ca 2 ' measurements were taken in the control and diabetic heart. In this study, basal 

resting Ca 2 ' was increased in the diabetic heart, suggesting that increased NaVCa 2t 

exchanger, possibly through increased [Na +]i could reduce the rate f Ca 2  efflux. The 

amplitude and the 'pk of the Ca 2  transient through electrically stimulated myocytes or 

caffeine-induced release were not altered by the diabetic state, suggesting that triggered 

Ca24  release from the RyR's and fractional Ca 2 ' release is not deranged in STZ-induced 
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diabetes. These results show that a similar amount ofCa2*  release released fromthe SR in 

control and diabetic myocytes have different effects on contraction and is therefore likely 

that myofilament Ca2*  sensitivity may play a role in the alteration in contraction within the 

STZ-induced diabetic heart. It was also observed that the decay of the Ca2t  transient in 

both caffeine-induced and electrically stimulated myocytes appeared significantly longer in 

STZ-induced diabetic myocytes. A prolonged decay that was observed in the STZ-induced 

myocytes in the presence of caffeine is an indirect measure of the speed of Ca 2  efflux 

from the cell. In order to ascertain if the prolongation in Ca 2+ 
 decay was partly or 

principally due to the Na/Ca 2texchanger. NiCk was employed to block this mechanism 

during a caffeine-induced Ca2t release. In the presence of NiCl2, Ca2t  efflux in age-

matched control myocytes was similar to that seen in diabetic myocytes. Moreover, NiC1 2  

did not significantly alter the amplitude of Ca 2t  release in the diabetic myocytes. This 

suggests that the NaVCa 2 -exchanger, but not the PMCA, contributes to a longer decay in 

Ca2t transient in the diabetic heart. 

Myouilament Ca2t sensitivity was assessed by simultaneous measurement of contraction 

and Ca2t.  Plotting cell length with [Ca 2 '] generated in the final phase of relaxation 

provided an index of myofilament Ca2t sensitivity (Sturgeon ci aL 1992). In STZ-induced 

myocytes myofilament Ca2t sensitivity was significantly increased compared to controls. 

Therefore, in the STZ-induced diabetic myocytes, increased contraction in the absence of 

increased [Ca 24]1 (compared to control) is primarily due to an increase in myofilament Ca 2 ' 

sensitivity. It is this overriding observation that underpins the differences between the 

diabetic heart and control within this study. It has been reported that changes in the cross-

bridge cycling due to an alteration in MHC isoform (that has been reported in the diabetic 

heart, (Schaffer ci aL, 1989a)) may underpin the change in myofilament Ca 2t  sensitivity 

that has been demonstrated in this study. In the presence of halothane, myofilament Ca2t 

172 



sensitivity was significantly decreased in both control and STZ-induced myocytes. 

Therefore, it is suggested that decreased in myofilament sensitivity in the following the 

application of halothane is the overriding mechanism by which contraction is depressed to 

a greater degree in the diabetic heart. Although a change in expression is a likely candidate 

for explains the perturbation of myofilament Ca 2  in diabetes, it is unlikely that the 

transient application of halothane would manipulate the filaments in such a manner. It is 

therefore suggested that direct action of halothane reduces the affinity of troponin-C for 

Ca2 , and in doing so reduces contraction to a greater degree in the diabetic heart. 

7.1 	Final conclusion 

This main focus of this study has looked at the effects of STZ-induced diabetes on isolated 

ventricular myocytes. The results of the study have shown that a decrease in 'caL  led to an 

increase in the amplitude of contraction in electrically stimulated STZ-induced myocytes 

compared to controls and this was primarily due to an increase in myofilament sensitivity 

for Ca2  and not due to an increase in Ca 2  release from the SR. Moreover, the prolonged 

decay in Ca 2 ' effiux following electrically stimulated and caffeine induced Ca 2  release in 

STZ-induced diabetic myocytes is in part due to dysfunctional Na/Ca 2texchanger. It is 

suggested that prolonged Ap duration primarily through reduced Its. may lead to increased 

Ca2  influx albeit a reduced 'CaL.  Increased Ca 2  influx through 'Ca,L may overcompensate 

for a decrease in SERCA function (that has been reported in the diabetic heart, Misra c/ aL 

1999) and may lead to a similar SR Ca 2  load and release in both diabetic and control 

myocytes. Following SR Ca2  release it is suggested that the increased myofilament Ca 2  

sensitivity in STZ-induced myocytes leads to an increase in contraction that has been 

reported in this study. 
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In voltage clamped myocytes from STZ-induced hearts, however, that are not influenced 

by the Ap, decreased 'Cat,  may lead to a reduction in Ca 2  influx through 'CaL,  leading to a 

reduction in trigger Ca 2  and subsequent SR Ca 2  release. Reduced Ca 2  release from the 

SR, may not be compensate for by the increase in myofilament Ca 2  sensitivity in the 

diabetic heart, and may ultimately lead to a reduction in the amplitude of contraction that 

has been reported in this study. 

It has also been shown that, following the application of halothane, the 'CaI,  Ca2  transient 

and amplitude of contraction were significantly more decreased in STZ-induced myocytes 

compared to that of control. It is suggested that reduced myofi lament Ca 2  sensitivity in the 

presence of halothane contributes to the changes in contraction. However, it is also likely 

that another mechanism such as fractional Ca 2 ' release and/or SR Ca 2  load may also be 

affected by the actions of halothane in the diabetic heart. 
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Chapter 8 

Appendix 
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8.1 	Solutions 

8.1.1 [co/a/ion solution 

The composition of the physiological salt solution used during the cell isolation procedure 

was (in mM) 130. NaCl (VWR, 102415-R), 5.4, KCI (VWR, 1019842); 1.4. MgC1 2 (VWR, 

220933-M); 0.4, Nal-12PO 4  (VWR, 102494-C); 5, HEPES (Sigma, H-3375); 10, glucose; 

20, taurine (Sigma, 1-0625); 10, creatine (Sigma C-0780) and 0.75 Cal set to pH 7.3 

(Orion pH meter, 920-A) with 4 M NaOH (VWR. 10252). 

& 1.2 Normal Tyrode (NT) solution 

The NT solution used to perfuse cells during experiments contained (in mM) 140, NaCl; 5, 

KCI; I. MgCl2.61-120 (VWR, 101494-V); 10, glucose; 5, FIEPES; I. CaCl2, set to pH 7.4 

with 4 M NaOH. 

& 1.3 Patch pipette solution 

Patch pipette solution contained (in mM) 120 mM, CsCl2 (Sigma, C-301 I); 8, K2ATP 

(Sigma A-8937); 5, glucose; 10, NaCl; 8, MgCl 2 ; 10 I-IEPES set to pH 7.2 with CsOH 

(Sigma, C-85 IS). 

8.1.4 Halo/kane solution 

Halothane was made up by adding 132.5 .xl stock solution halothane to 2.37 ml of stock 

DMSO. A 60 p1 portion of this mixed solution was then added to 50 ml of NT (I mM 

Ca2 ) to give a final halothane concentration of 0.6 mM. All solutions were freshly 

prepared using either Milli-Q or Millipore grade water. 
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