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Abstract 

ABSTRACT 

Motivation of this study stems from the need to understand the physical mechanisms 

of whirling fires that occur in an open space and within enclosures. Buoyant whirling 

flames may be potentially more destructive than ordinary fires due to greater burning 

rate, higher concentration of heat release in a small region of the plume core, 

increased radiative output and unexpected smoke movement. The effects of rotation 

upon the structure and behaviour of buoyant flames have not yet been thoroughly 

studied and understood. Investigation of this phenomenon is therefore required to 

allow techniques to be developed that will counter the threat of such outbreaks. Also, 

the mechanisms controlling the development and stability of whirling flames are of 

fundamental interest for refined modelling of coherent and self-organised flame 

behaviour. This work, is an experimental, theoretical and numerical study of 

whirling fires. Experimental results, a modified CFD model and simulations of 

whirling flames are presented within this Thesis. 

The work aims to overcome the limitations of the previous research of whirling fires 

which is insufficient from both an experimental and theoretical point of view. 

Firstly, experimental studies of intermediate (room-size) scale whirling fires have 

not yet been comprehensively reported, despite a great deal of attention devoted to 

both large scale mass fires and smaller laboratory flames. Experimental studies 

undertaken using a facility at the Greater Manchester Fire and Rescue Service 

Training Centre fill this gap, thus demonstrating that whirling flames may develop 

within a compartment. The periodic precession, formation and destruction of the 

whirling flame and the increase of the time-averaged burning rate (compared to non-

whirling flames in the open space) have been observed. Three fuels with 

significantly different burning rates (diesel, heptane and ethanol) were investigated 
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Abstract 

in this work. Secondly, previously published results of theoretical analysis of 

rotating flames were oversimplified and based on strict limitations of the integral 

model or the inviscid flow assumption. Also there have only been few attempts to 

undertake CFD modelling of whirling flames. In published studies, radiative heat 

transfer was not modelled and the burning rate was not coupled with the incident 

heat flux at the fuel surface. To overcome these limitations, the CFD fire model 

Fire3D, developed in the Centre for Research in Fire and Explosion Studies, has 

been adapted to allow numerical simulations of rotating buoyant turbulent diffusion 

flames. The turbulence model was modified to take into account stabilisation of 

turbulent fluctuations due to the centrifugal acceleration within the rotating flow. 

Theoretical analysis of the vorticity equation revealed the physical mechanisms 

responsible for vorticity concentration and amplification in the rising plume affected 

by externally imposed circulation. This explains the significant flame elongation 

(when compared to non-rotating cases) observed in the experiments. Computational 

results have also been compared to video-recordings of the experimental flames 

produced; flame elongation was replicated and similar stages of oscillating flame 

evolution, including formation and destruction of the vortex core, have been 

identified. 

Implications of the phenomena studied in relation to fire engineering are also 

provided. This study contributes to a performance based framework for an 

engineering approach, which is reliant upon detailed quantitative analysis and 

modelling. Such an approach is encouraged by modem fire safety legislation 

including the guides to fire safety engineering BS9999-2' and 8S7974 2 . 

'British Standard 9999-2 Draft Code of Practice for fire safety in the design, construction and use of 

buildings. BS!, 2004. UK. 
2 British Standard BS7974 Application of fife safety engineering principles to the design of buildings. 

BSI, 200 1-2003. UK. 
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Chapter I. Introduction 

CHAPTER 1. 

INTRODUCTION 

1.1. Background of the project 

The subject of this work is the formation and behaviour of fire whirls within 

enclosures. The existence of this phenomenon must be taken into account in the 

development of fire engineered solutions, since their success is based on quantitative 

and detailed analysis of all the specific aspects of the design and possible fire 

scenarios. (as required by the British Standard BS 7974'). 

Previous studies of the structure and dynamics of buoyant turbulent diffusion flames 

have been mainly focused on flames and plumes developing in a stagnant 

atmosphere (see a review in [Joulain, 1998]), and, more rarely, when exposed to 

cross-winds [Mudan and Croce, 1995; Beyler, 2002; Snegirev, 2004]. However, 

qualitatively different flame behaviour is possible when a whirling flame develops 

[Emmons and Ying, 1966; Gupta et al, 1984]. Buoyant whirling flames are usually 

much longer than those observed in ordinary free-standing wind-blown fires. They 

may be potentially more destructive due to a greater burning rate, increased radiative 

output and a higher concentration of heat release in a small region of the rotating 

core. The effect of rotation upon the structure and behaviour of buoyant flames is not 

similar to that of swirling jet flames, and it has not yet been thoroughly studied. A 

better understanding is therefore needed to allow efficient techniques to be 

The British Standard BS 7974. Application of fire safety engineeSg principles to the design of 

buildings. British Standards Institution. 1.1K. 2001-2003. 

1 



Chapter 1. Introduction 

developed that will counter the possible threat presented; and it can affect the 

application of fixed fire extinguishing systems. Also, the development and stability 

of whirling flames are of fundamental interest for refined modelling of coherent and 

self-organised flame behaviour. 

An example of a possible whirling flame in an enclosure is presented in Fig. 1.1 a), 

where the rotating flame is generated inside the compartment. This flame is indeed 

much longer than that normally expected, and it can be seen exhausting through the 

roof. In this case a longer flame provides greater a radiant hazard to its surroundings. 

The current experimental and modelling studies of whirling flames, such as that 

shown in Fig. 1.1 b), attempt to give a quantitative and qualitative description of the 

phenomenon. 

a) 	 b) 

Fig.1.1. Examples of a whirling fire: a) The longer and possibly rotating flame 

exhausting through the roof vent; b) Whirling buoyant flame in enclosure (the training 

centre, Greater Manchester County Fire and Rescue Service). 

Occurrences of a whirling fire within an enclosure are the direct result of an imposed 

circulating flow. The literature review provided in Chapter 2 demonstrates that these 

and other buoyant rotating flows and rotating flames can be classified in terms of 

three characteristics, these being: 

flow spatial scale; 

9 the ratio of flow momentum to buoyancy (buoyant of forced jet flows); 

VA 



Chapter 1. Introduction 

• the mechanism (buoyant or forced, external or internal circulating flow) that 

provides the circulation. 

The corresponding classification of buoyant rotating flows and rotating flames is 

shown in Table!.!. 

Depending on their characteristic size, rotating flows can be regarded as very large, 

large, medium, and small. Very large buoyant rotating flows occur in the great 

oceans and the atmosphere, having a characteristic size in the order of hundreds of 

kilometres. Although this work is devoted to whirling flames, reference to very large 

environmental flows without combustion are also included since they are initiated by 

similar mechanisms of vorticity concentration and amplification. Large rotating 

flows occur in the atmosphere (e.g. tomados) and observations of such have been 

made in large mass fire situations. Studies of small scale rotating flows and flames 

are relatively commonplace, and technological development has made use of 

gathered knowledge. 

The overview of rotating flows and flames shown in Table I.! revea!s a gap between 

the studies and observations available of large-scale mass fires, small-scale 

laboratory buoyant flames and swirling flames in industrial burners. The references 

for medium scale were all written as a result of the registered programme of doctoral 

studies reported within this Thesis. !ndeed, to the current knowledge of the author, 

no other systematic studies have been reported of medium scale (room-size) whirling 

fires. Experiments reported in this Thesis were therefore required to fill this gap, i.e. 

to examine the possibility of whirling flame development and its behaviour in 

compartment fires such as those occurring in industrial and domestic premises. 

At the commencement of the current study, the physical mechanisms and necessary 

conditions for buoyant rotating flames to develop had not been clearly formulated. 

This called for a study revisiting basic theoretical concepts of rotating flows and for 

applying it to buoyant turbulent diffusion flames, such as those occurring in natural 

fires. Thus experimental studies have preceded modelling and computer simulations, 

with the former improving the latter to overcome the limitations of currently 

available computational fluid dynamics (CFD) models. Most importantly, through 

3 



Chapter 1. Introduction 

this work (I) the effect of flow rotation on turbulence, (ii) radiative transfer, and (iii) 

coupling of fuel burning rate with heat flux received by the fuel surface was 

accounted for. 

4 
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Chapter 1. Introduction 

Accordingly, the aim and objectives of this work were formulated. The overall aim 

of this work is to study (experimentally, theoretically, and numerically) medium 

scale (room size) fire whirls within a compartment. The specific objectives of the 

work include: 

1. To examine (theoretically) the physical mechanisms responsible for whirling 

flames to develop and the conditions necessary for flame rotation to occur. 

2. To determine (experimentally) the major characteristics of whirling flames 

(burning rates, flame heights, heat fluxes and temperatures) and to compare 

their behaviour to that of non-rotating flames above the same fire source. 

3. To study (experimentally and numerically) the transient behaviour and 

determine the periodicity of such flames using a range of different fuels. 

4. To modify, adjust, apply and validate a CFD model that is capable of 

reproducing rotating flames both in an open space and within an enclosure. 

The burning rates, heat fluxes and temperatures predicted by the model to be 

validated by the experimental work undertaken in Chapter Three. 

5. To undertake numerical simulations of whirling flames in an open space and 

in an enclosure replicating the behaviour observed in the experimental work 

and to interpret both experimental and computational results in terms of the 

existing theory of rotating flows. 

In this work, experimental observations of medium (room-size) scale whirling fires 

are presented, demonstrating that whirling flames may develop within 

compartments. The periodic formation and destruction of the whirling core and the 

resulting increase in time-averaged burning rate are also addressed. Basic concepts 

of rotating flows are then summarised, illustrating the mechanism of development of 

buoyant whirling flames and the conditions required for flame rotation to occur. A 

CFD model is discussed and modified to represent the response of a buoyant 

turbulent diffusion flame upon the imposed circulation causing a decrease of 

turbulent mixing. The model is consequently applied to simulate buoyant whirling 

flames in an open space and in the enclosure representing that used in the 

experiments; and for a range of geometrical arrangements. 

r4 



Chapter 1. Introduction 

Finally, the results of this work, its novelty and contribution are summarised together 

with avenues of further research suggested. 

1.2. Outline of the Thesis Chapters 

Chapter One "Introduction". This chapter contains a brief discussion of the 

background to the research and an overview of the research undertaken. An analysis 

of the current state of research is given in tabular form clearly identifying the "gap" 

that this piece of research attempts to fill. 

Chapter Two "Literature Review". The literature review consists of two sections: 

firstly the behaviour of pool fires are discussed; and secondly a synopsis is given of 

prior research undertaken in respect to whirling fires. 

Chapter Three "Experimental Studies of Whirling Flames". A detailed 

description is given of how medium scale whirls are produced within a test 

enclosure. This chapter covers the experimental apparatus and methodology 

employed in the formation and recording of such whirls. Two distinct regimes are 

considered, namely fires within enclosures and in the open space. The chapter 

concludes with a presentation and discussion of the results obtained from the 

experiments. 

Chapter Four "Basic Theoretical Concepts of Rotating Flows and Flames". A 

description of the physical mechanisms that cause vorticity concentration and 

amplification is presented. The chapter firstly presents basic considerations of 

rotating flows and concludes with a discussion of the dimensionless parameters that 

are associated with whirling fires. 

Chapter Five "Mathematical Model and CFD Code". A description is given of 

the mathematical model and CFD code used in the simulations. The chapter 

describes the modifications made to the turbulence model as part of this work. 

7 
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Chapter Six "Numerical Simulations of Whirling Flames". A discussion of the 

results of the numerical simulations is undertaken in respect to medium scale fire 

whirls. The chapter considers the formation of a fire whirl within an open space, 

above the same fuel source as that in the enclosure. Then the formation of the fire 

whirl within the enclosure is analysed. Comparisons are made with the experimental 

data gathered from the experiments. 

Chapter Seven "Conclusions". A summary is given of conclusions in respect to the 

experimental, theoretical and numerical studies, coupled with suggestions for future 

work within this area of research. 



Chapter 2. Literature review 

CHAPTER 2. 

LITERATURE REVIEW 

2.1. Introduction 

The literature review is divided into two distinct parts. The first part outlines the 

behaviour of non-rotating flames in pool fires within a stagnant atmosphere and 

when exposed to cross-winds. The second part concentrates on the behaviour and 

existence of large and small scale fire whirls that are either the result of large mass 

fires or laboratory experiments. 

Enforced rotation of the fuel and oxidiser is widely used in industrial applications 

such as in gas turbines and swirl burners. Rotation of the fuel/gas mixture results in a 

shorter flame length and therefore a more compact burner size. Research in this field 

is well reported in literature and only a brief overview is made in this review. 

However in the case of rotating flames induced by externally imposed circulation, 

the flame response is qualitatively different; in particular, flame elongation is 

observed and the fuel mass burning rate increases [Emnions and Ying, 1966; Satoh 

and Yang, 1996; and others]. The review of previous research will demonstrate that 

the behaviour of medium scale fire whirls within enclosures has not yet been studied, 

although large and small scale fire whirls as defined in Table 1.1 have been 

investigated. 

Before commencing a literature review on non rotating flames and fire whirls, the 

nature of buoyant turbulent diffusion flames must be first understood. Depending on 

the ratio of momentum introduced by the fuel flow to that generated by buoyancy, 

two distinct types of turbulent diffusion flames, namely buoyant and jet flames, can 



Chapter 2. Literature review 

be identified. The dimensionless criteria that expresses the above ratio is the Froude 

number, 

Fr = 
gD 
	 (2.1) 

where Vfue , is the gas (vapour) ffiel velocity emanating at the surface of the 

condensed fuel, or emitted axially from a gas burner outlet, and D is characteristic 

size (diameter) of the fuel surface or burner bore. 

Along with the Froude number, Eq. (2.1), dimensionless heat release rate is given as, 

0 
= p0C0T0D2' 	

(2.2) 

and is used as an important criteria for determining flame type (see [Zukoski, 1995; 

Drysdale, 1999]). Using the relationship between fuel velocity and heat release rate, 

Q = a.ti c th jU.!I' fuel = IS11 cP jr,,e,Vi,ei 	 (2.3) 

it can be demonstrated that Fr and Q are related to each other. 

Apart from heat release rate, the flame characteristic that is of primary importance in 

fire safety engineering is the flame length. The empirical data available for the flame 

length are usually expressed as a function of ', and the correlations are different 

depending upon the flame type (i.e. buoyant or jet). For example, jet flames are 

limited such that Fr >> I and Q > Ø (where  Q is a conventional threshold 

value, see [Heskestadt, 1986]) and the flame length does not depend on Q • ). One of 

the flame length correlations available in the literature is given in [Beyler, 2002]: 

10 
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Fwwf-:,
D 	 (2.4) L1 

=lS 

where D is the jet nozzle diameter, Ciuej  is volume fraction of fuel in a 

stoichiometric fuel-air mixture (e.g. 0.091 for methane, 0.074 for ethane, 0.038 for 

propane), and Wajr  Wfr C, are the molecular weights. The relationship (2.4) shows 

that L1  >> D for jet flames. 

Alternatively, for buoyant flames the condition Fr << 1 holds, and the flame length 

scales with Ø. It has been established (for example, see [Heskestadt, 2002]), that if 

Q <0.1 (very large pool fire) then L oc 0 2  and L1  < D; whereas if 1 :5 Q :5 

Q (medium to large pool fires) L1  cc 0 2 ' 5 
 and L. > 3D. The latter range covers 

the interval of sizes corresponding to compartment fires (the flames studied in this 

work fall into this range). In this case, the most popular empirical flame length 

correlation for buoyant turbulent diffusion flames in still air (normal atmospheric 

conditions, no crosswind) is that given by Heskestadt where: 

L1  = 0.235Q215  —1.02D, 	 (2.5) 

and 0  must be in kW [Heskestadt, 1986]. In Chapter 3 of this work this empirical 

relationship will be used to verify our observations of flames in the open space. 

This work is concerned with the behaviour of pooi fires corresponding to buoyant 

flames with Fr cc  1 and Ø 	1. The flames can either occur in stagnant 

atmospheres or be exposed to external disturbances such as (crosswind or circulating 

flow). These scenarios may develop both in the open space and within enclosures 

and the appropriate classification is determined by Fig. 2.1. 

As shown in Fig. 2.1, the case of whirling fires studied in this work presents a 

special case of buoyant turbulent difThsion flame that is exposed to external 

circulation. 

11 
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Chapter 2. Literature review 

2.2. Liquid fuel pool fires in still air 

Here, pool fires are considered above combustibles that are in the liquid state under 

normal atmospheric conditions. The most carefully studied (although somewhat 

ideal) is the case of burning in a stagnant environment, with no organised external 

flow such as crosswinds or draughts. If ignited, such a fire is a self-sustained process 

of turbulent diffusion combustion that is fed by the evaporating fuel; sustained by 

heat flux from the gas flame to the fuel liquid surface. 

Self-sustained buoyant turbulent diffusion flames above a liquid and solid fuels are a 

phenomenon encountered in a wide range of applications. Accidental fuel spill fires 

in residential and industrial compartments, in fuel stores, on ship decks, rail tankers 

and offshore platforms, in plane crashes and petrochemical industrial processes are 

some of the examples of hazards caused by burning pools. These events have 

stimulated significant long-standing research of liquid pool fires burning in open 

environments and enclosures ([Blinov and Khudiakov, 1961; Mudan and Croce, 

1995; Babrauskas, 1996; Drysdale, 1999; Joulain, 1998; Gottuk and White, 2002; 

Beyler, 2002], among many others). 

The burning of a liquid fuel is a complex process comprising fuel evaporation, 

vapour diffusion, turbulent mixing, combustion, thermal radiation, conjugate heat 

and mass transfer at the fuel surface and to surrounding structures. Since the 

pioneering work (e.g.[Blinov and Khudiakov, 1961]), qualitatively different burning 

regimes were identified that were dependant upon the pool diameter. Three regimes 

can be distinguished [Hottel, 1958]. 

. Small pool diameter, D C 0.03 m. The flames are laminar, optically thin, and 

fuel lean due to an excess of entrained oxygen and the burning rate decreases 

with an increase of diameter. 

13 
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Intermediate pool diameter, 0.03 C D C 1.0 m. The flame behaviour is 

transitional between laminar and turbulent, optically thin and optically thick, 

fuel-lean and fuel-rich flames. The burning rate increases as the diameter of the 

fuel burner increases. 

Large pool diameter, D > 1.0 m. The flames are turbulent, optically thick and 

the fuel-rich core has a lack of oxygen and in this case the burning rate does not 

depend upon the pool diameter. 

This work is mainly concerned with pool sizes, which fall in the range of the 

intermediate (according to the above classes) to large pools and in this case the 

development of a turbulent flame above the pool is governed by radiative feedback 

from the flame to the fuel surface. In this range it has been firmly established (see 

[De Ris, 1978], [Marksticn, 1978], [Modak and Croce, 1995] among others) that 

radiant feedback controls the combustion rate of the fuel bed, and the higher the 

radiant feed back value to the fuel surface, the greater is the fuel vaporisation rate. 

The radiant emission from the flame is determined by flame temperature and 

composition. The main combustion products contributing to the radiant emission 

and absorption are soot, carbon dioxide and water vapour, although the role of 

unburned hydrocarbons (in the fuel rich core near the fuel surface) and of carbon 

monoxide may also be significant. For various hydrocarbon pool fires, the heat 

radiated by flame is within the range from 7 to 60% [Modak and Croce, 1995], and 

it correlates well with the soot yield. For example, the radiative fraction in open 

low-soot ethanol flame is about 7%, whilst in very sooty heptane flame it is about 

40%. 

Approximate models were developed to allow for radiative feedback in pooi fires 

[Orloff, 1980; De Ris, 1979; Adiga et al, 1989; Souil et al, 1984, Modak and Croce, 

1995; Beyler, 2002]. Usually a real flame is approximated by either a point source 

or "solid" radiating body of simplified (cylindrical or conic) shape. In more 

advanced CFD models a range of methods to simulate thermal radiation transfer are 

used. The available approaches are the discrete ordinates, the discrete transfer, the 

finite-volume, the multi-flux and moment, the spherical harmonics (usually P1 

14 
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approximation), and the statistical (Monte Carlo) methods (for example, see 

[Modest, 1993; Cox, 1995]). 

In experiments with poois of D > 0.2 m, the burning rate (kg/(m 2i)) was found to 

increase with pool diameter until reaching a constant value in the case of large pools. 

The existing experimental data on mass burning rate, thfre/ can be approximately 

represented by the formulae 

thfrC, = th iueior,(l —exp(—k jD)), 	 (2.6) 

where thfuel. is  the mass burning rate of a very large pool, k is the effective flame 

absorption coefficient and D is the pool diameter. Databases covering a number of 

practically important fuels are available e.g. in [Mudan and Croce, 1995] and 

[Babrauskas, 1983; 1996]. Burning rate, heat release rate, and flame length estimates 

of pool fires originated by the three fuels used in this work are given in Table 2.1. 

Note, the three fuels chosen exhibit signcantly different burning rates when 

burning in free-standing poo1 fires. They were chosen for this reason and for their 

range of soot production. 

Steady mass burning rate of large pools were also found to correlate with fuel 

thermo-chemical properties. The relationship between mass burning rate and the 

ratio of the heat of combustion AI-I,  and heat of vaporisation, AH_., are given by 

the empirical relationship 

= 0.001 	kg/(m2 's), 
AH vap 

(2.7) 

which covers a wide range of hydrocarbon fuels [Mudan and Croce, 1995]. 
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Chapter 2. Literature review 

Mass burning rates of liquid pools may significantly depend upon the heat loss rate 

from the fuel layer. In particular, in shallow spillages above the solid (or liquid) 

surface, the heat flux to the substrate may observably reduce the mass burning rate 

when compared to that in deeper pans. The recently reported spill fire burning rates 

[Gottuk and White, 2002] are remarkably (by a factor of about five) lower than those 

given in [Babrauskas, 1996]. Therefore, the heat loss rate should be taken into 

account in simulations of self-sustained pool fires. Special consideration may also be 

needed for heat exchange within the pan rig, as indicated in [Nakakuki, 1997; 

Nakakuki, 2002]. 

In the majority of cases there is a time period following ignition until the whole of 

the surface of the fuel bed is involved in the combustion process. Duration of this 

period is governed by the area of the fuel pan and the volatility of the fuel itself 

[dine and Koenig, 1983]. During this period, the fuel mass loss rate from the fuel 

surface will steadily increase as more of the surface of the fuel is involved in flame. 

When the whole surface of the fuel is fully involved the mass toss rate will reach a 

steady value (provided that the heat losses to the fuel and surroundings are constant). 

If these heat losses are not constant then the mass loss rate will vary with time. It is 

therefore important for the accurate measurements of burning rates to ensure steady 

state conditions exist. Mass loss rate is affected by any changes within the fuel pan; 

such as a change in the level of the liquid. This change of level increases the area of 

the available freeboard and therefore affects the heat transfer to/from the surrounding 

medium [1-Iayasaka, 1996]. Any experimental work should preferably be conducted 

with a constant freeboard. 

2.3. The effects of cross-wind 

In previous studies of flames subjected to a cross-wind, augmentation of the burning 

rates was experimentally observed [Blinov and Khudiakov, 1961; Quintiere, 1989] 

and acceleration of flame spread was numerically predicted [Porterie, 2000]. If the 

velocity of a cross-wind exceeds a critical value, flame blow-off occurs and the 

combustion process ceases [Blinov and Khudiakov, 1961; Capener and Alger, 1972]. 

17 
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The velocity of cross-winds can have an effect upon flame radiation and this is 

considered in [Mudan and Croce, 2002; Beyler, 2002; Snegirev, 2004] 

There is controversy in the effect of a crosswind upon the burning rates measured in 

different experimental conditions. For example, Capener and Alger [Capener and 

Alger, 1972] studied a 1 m diameter pooi fire burning in a cross-wind of 6 m/s and 

found that the mass loss rate from the surface was half the value of that in still air. 

However, Lois and Swithenbank [Lois and Swithenbank, 1978] reported a doubling 

of the mass loss rate in a pool fire when subjected to a cross wind. A possible 

explanation for these differing conclusions is a non-monotonic dependence of the 

burning rate on the wind velocity. Indeed, a cross-wind brings extra oxidiser into the 

flame zone and simultaneously tilts the flame, causing a distribution of a greater 

fraction of radiated heat outside the fuel surface. As a result, the effect of cross-wind 

on burning rates may be qualitatively different, depending on whether the extra 

oxidiser entrained is used in the reaction zone to increase flame temperature and, 

consequently, the radiative output. The latter is determined by the size of the pool 

(and flame above it), i.e. whether or not the flame is well ventilated or the fuel-rich 

core develops. This is also supported by recent numerical studies of the dependence 

of mass burning rate on the cross-wind velocity [Snegirev, 2004]. 

In the case of a pool fire within a compartment, the effect of airflow coming through 

openings is similar to that of a cross-wind in an unconfined space. For example, 

Quintiere and co-workers [Quintiere et al, 1981] have demonstrated that the 

inflowing gases resulted in improved mixing of the fuel and oxidiser. 

A number of empirical correlations is recommended for predicting the flame tilt 

angle e (angle between the flame and the vertical) resulting from a crosswind. In 

particular, according to the American Gas Association (see [Beyler, 2002]), 

cos8=min1, 	* 	, 	 (2.8) 

tEl 
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where Vfld = 

	 is the non-dimensional wind velocity. 

Details on the effects of cross-winds on flame length and flame shape of jet flames 

can be found in [Mudan and Croce, 1995] and [Beyler, 2002]. 

2.4. The effect of external circulation 

External circulation is another type of the external disturbances that may be imposed 

upon a buoyant flame (see Fig. 2.1). Externally imposed circulation may result in 

flame rotation, which significantly changes the flame shape and behaviour. The 

physical mechanism causing circulating flows may be of a very different nature. For 

example, the Earth's rotation may provide such external circulation for very large 

scale whirling flows in oceans and the atmosphere, whilst wind-shear supplies the 

external circulation required for tornados and large mass fire storms. An 

asymmetrically incoming airflow may play a similar role in the formation of 

whirling fires within enclosures. Here, a review of experimental observations, 

approximate theoretical approaches, and CFD studies of rotating flames is given. 

The flows and flames are classified in terms of the following three characteristics: 

the ratio of flow momentum to buoyancy (buoyant or forced jet flows), the 

mechanism (buoyant or forced, external or internal circulating flow) that provides 

the circulation, and flow spatial scale. This classification of rotating flows and 

flames is illustrated by Table 1.1 of the Introduction. 

Depending on their characteristic size (see Table 1.1), rotating flows can be regarded 

as very large, large, medium, and small. 

2.4.1. Large scale fire whirls 

Very large buoyant rotating flows occur in oceans and the atmosphere [Morton, 

1970; Fernando and Smith, 2001]; and in this case background weak external 

vorticity introduced by the Earth's rotation is concentrated into a whirling core of 

19 
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characteristic size of about 10 5  m. The work [Fernando and Smith, 2001] contains a 

review of buoyancy driven circulation patterns, including environmental plumes and 

thermals. 

In large buoyant whirls, such as those produced in oil, forest or city fires, the 

external circulation imposed due to wind-shear effects is supposed to be the primary 

source of the vorticity, which is then concentrated and amplified in the rising 

buoyant flow. The height of the whirling core may range from a very small size up to 

a few hundred meters. Soma and Saito [Soma and Saito, 1991] provided 

categorisation and historical examples of large fire whirls. The fire whirls observed 

can be categorised as stationary and moving types. Stationary whirls are represented, 

for example, by the Hamburg mass fire, 1943. Moving types may appear as a whirl 

core separated from the fire area. Moving whirls may also be attached to the fire and 

carry flame. Such an example is a fire that occurred in downtown Tokyo, 1923, 

following an earthquake [Soma and Saito, 1991]. 

Due to the destructive nature of large scale fire whirls they are very difficult to study 

experimentally. High entry velocities (up to about 100 m/s) and sheer scale mean 

that the only effective way to experimentally study the physics of such whirls is at a 

smaller scale. 

2.4.2. Small scale rotating flames 

2.4.2.1. Enforced (Jet) swirling flows 

Small scale rotating flames (see Table 1.1) can be produced by a forced flow or by 

buoyancy'. Important examples of forced rotation are jet swirling flames, which are 

intensively employed in industrial applications, in particular in combustion chambers 

and industrial furnaces, gasoline and diesel engines, gas turbines and utility boilers. 

The swirling is used as a means of controlling flame size, shape, stability, and 

In this work we will refer to buoyant rotating flames as whirling whereasforced (jet) rotating flames 

will be denoted as swirling ones. 

20 
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combustion intensity. The swirling flows result from the enforced spiralling motion 

and swirl velocity component (azimuthal or angular velocity). This flow is imparted 

by swirl vanes or by tangential entry into the chamber [Gupta et al, 1984; Sloan et al, 

1986; Kuroze et al, 2004] (Fig. 2.2). 

Secondary staged 
combusLion air 

air 

________L T1)5 Recirculation now 
NOx reduction area I 

f Higr NOs emission is Sed 

cI I___  ___  

+ 	 (ombtas&n 	I 	[Ujiburned carbon I 

	

Pulverized 	

in strong reduction atmosphere 

Pflmwyaw 	 acetic 	area I 	I naniIn area I 

	

Te 	cbusdon 	r 	I 

Unbim n article 	 Complete rebsmiag is accomplished 
is redixedsa mi2npnssiue 	 wuimgeaaitiocoiNOx 

Fig. 2.2. Entry swirl generator by the use of swirl vanes tKurose et al, 20041. 

Due to its importance in industrial applications, jet swirling flows have been 

thoroughly studied [Falco, 1977; Gupta et al, 1984; Milosavljevic et al, 1990; Weber 

and Dugue, 1992; Zhang and Hill, 1996; Faltsi-Saravelou et al, 1997; Xia et al, 

1998; Morcos and Abdel-Rahim, 1999; Chuang et al, 1999; Cha et al, 1999; 

Underwood et al., 2000; Cheng et al, 2001; Gradinger et al, 2001; Masri et al, 2004; 

Selle et al, 2004]. 

The structure of these flows was found to depend on the degree of swirl, which is 

characterised by the swirl number, S. The latter is the ratio of the axial fluxes of 

angular and axial momentum [Gupta et al, 1984], that can be approximately defined 

as 

s = 
D 	2 

-j £ 
i" rdr 

(2.8) 
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where the contribution of turbulent fluctuations are neglected. At high degrees of 

swirl, the vortex core becomes unstable, it exhibits oscillatory behaviour and, if the 

swirl is further increased (S > 0.6 [Gupta et al, 1984]), vortex breakdown occurs. 

The recirculation zone develops, with the shape of an oscillating bubble. This time-

dependent coherent structure is referred to as the precessing vortex core (see 

Fig. 2.3b). As a result, the lateral spreading of the flow is increased and the decay of 

the axial velocity is facilitated. Accordingly, turbulent mixing and the reaction rate 

are increased, resulting in flame shortening when compared to a non-swirling one. 

a) 	 b) 

Fig. 2.3. The structure of jet flows with a different degree of swirl jGupta et at 1984): a) 

S <O.6;b) S >0.6. 

Thus, in jet swirling flames, swirling is imposed internally due to the rotation of 

forced incoming flow of reactants. However a qualitatively different effect of 

rotation upon turbulent mixing and flame length has been observed in flows and 

flames submerged into a rotating flow environment, i.e. where the circulation is 

externally imposed. In this case (the example of forced flow is the flow in a rotating 

pipe [Imao et al., 1996]; buoyant whirling flames studied here also fall in this 

category), the intensity of turbulence has been shown to decrease due to rotation 

because of the stabilising effect of the centrifugal force. 

22 



Chapter 2. Literature review 

2.4.2.2. Buoyant whirling flows 

Studies of buoyant flames in rotating flow environments were initiated by the work 

of [Byram and Martin, 1962], where the rotation of buoyant flame above an alcohol 

pool was induced by tangential airflow incoming into the cylindrical chamber 

through vertical slits in its walls. Whirling flame development was observed and, in 

contrast to that observed in the case of jet swirling flames, flame elongation 

occurred. More consistent measurements and observations together with simplified 

modelling were carried out using the work of Emmons and Ying [Emmons and 

Ying, 1966]; in which a cylindrical penetrable rotating screen (3.0 m height, 2.2 m 

diameter) was used as a source of the external circulating flow which, was imposed 

on the buoyant flame situated above a 0.1 m diameter acetone pool. Flame 

elongation was again noted with imposed circulation (see Fig 2.4). 

a) 	 b) 

Fig. 2.4'. The effect of the imposed circulation on flame length: a) free-standing non-

disturbed flame; b) whirling flame inside rotating screen cylinder lEmmons and Ying, 

19661. 

The rotation of the screen produced circulation values up to about 4 m 2/s. Significant 

(by a factor of 5) flame elongation was obtained when the vortex core developed. 

Illustration taken from aged publication, other examples of this method are not available. 
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Burning rates substantially increased when compared to non-whirling fires of the 

same size. This flame elongation was attributed to the decrease of turbulence 

intensity, air entrainment and its mixing with the fuel, resulting from the stabilising 

rote of centrifugal forces. Similar conclusions were derived by [Chigier et al, 1970], 

[Beer et al, 1971] and [Beer and Chigier, 1972], who studied similar flames with a 

controlled fuel supply rate (burner fires) also surrounded by rotating screens. 

The above experiments are of flames with enforced external circulation. External 

circulation may also be induced by asymmetrically incoming buoyant airflows, such 

as in the experimental enclosure with 4 vertical gaps between the walls (see 

Fig. 2.5), which was used by [Soma and Saito, 1991], [Satoh, 1996], [Satoh and 

Yang, 1996-1999]. In these experiments different types of fuel (heptane, kerosene, 

ethanol and wood) were burned in pools, the sizes being from S to 20 cm in diameter 

and at some particular gap widths, flame rotation was observed. Similar to the earlier 

experiments with enforced circulation, a decrease in turbulent fluctuations and 

increase in flame length and its luminosity was clearly indicated for buoyant 

circulation induced rotating flows when compared to non rotating flames. Although 

reference is made to an increase of mass burning rate, no quantitative results have 

been provided. In [Satoh and Yang, 1996], instability of the whirling flame was 

observed and if its height exceeded that of the walls, then the vortex core was 

destroyed. 

Fig. 2.5. Enclosure geometry for a small scale whirling flame ISatoh and Yang, 19961. 

Small scale whirls have also been generated using gas burners [Soma and Saito, 

1991]. 
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Thus, the behaviour of buoyant whirling flames and plumes is remarkably different 

when compared to forced swirling jets. It has first been established in the 

experiments using a buoyant rotating flame above an acetone pool developed inside 

a rotating screen [Emmons and Ying, 1966] and later confirmed in subsequent works 

[Chigier et al, 1970; Beer et al, 1971; Beer and Chigier, 1972; Satoh, 1996; Satoh 

and Yang, 1996, 1997] that rotation decreases the turbulence in the rising core thus 

inhibiting turbulent mixing at the core boundary and the air entrainment through it. 

As a result, dissimilar to forced swirling flows in industrial burners, rotation of 

buoyant flows causes flame lengthening, with no recirculating zone inside the core. 

2.4.3. Medium scale fire whirls 

In his review, Pins [Pius, 1990] mentioned rare occurrences of whirling fires being 

several meters in height. However, consistent studies of medium scale (as defined in 

Table 1.1) buoyant whirling flames with characteristic size of the order of I - 10 in 

do not appear to have been reported prior to the work undertaken for this Thesis. 

Nevertheless, this range corresponds to room-size compartments where the external 

circulation of asymmetrically incoming buoyant airflow through the openings may 

potentially result in creation of fire whirls. Although reports on the occurrence of 

these phenomena are rare they are potentially destructive so are of importance to fire 

fighters. Lack of quantitative information about these types of flames and the need to 

clarify the conditions for this phenomenon to occur motivates this work. 

2.4.4. Theoretical studies and modelling of fire whirls 

Theoretical studies of buoyant whirling flows have mainly been undertaken for 

environmental flows without combustion. Morton [Morton, 1970] discussed the 

different mechanisms of vorticity production and amplification, emphasising the role 
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of ambient vorticity. Stretching of the vortex tubes' within a buoyant rising flow is 

identified as an important feature in the amplification of vorticity. The Rossby 

number, one of the governing criteria, was introduced and estimated for a range of 

whirling flows. A more recent review of buoyancy driven circulation patterns, 

including plumes and thermals, is given in [Fernando and Smith, 2001]. 

Available theoretical analysis of buoyant rotating flames is based on strict 

limitations of the integral model [Emmons and Ying, 1966] and the inviscid flow 

assumption [Battaglia et al, 2000]. There have been only few attempts to carry out 

CFD modelling of whirling flames [Satoh and Yang, 1998; Satoh and Yang, 1999; 

Battaglia et al, 2000], and the models used were oversimplified. For example, 

combustion and thermal radiation were not modelled in [Satoh and Yang, 1998; 

Satoh and Yang, 1999], where a constant volumetric heat source was assumed. In the 

works cited, neither the effect of flow rotation upon turbulent fluctuations and 

relating the fuel burning rate together with the heat flux at the fuel surface was 

considered. Computations [Battaglia et al, 2000] have not reproduced the substantial 

lengthening of rotating flames observed in experiments [Emmons and Ying, 1966]. 

Clearly, there is a lack of experience in turbulence modelling of buoyant reacting 

flows with strong effect of rotation. 

The progress in modelling forced swirling flows and flames is much more 

pronounced. Here, the primary challenge was to develop turbulence models suitable 

to feature strong curvature of the streamlines in swirling flows. Limitations of 

conventional two-equation turbulence models have been recognised some time ago 

[SafThian, 1977; Srinivasan and Mongia, 1980; Abujelala and Lilley, 19841. A 

number of approaches to improve these types of models were developed [Nikjooy et 

al, 1989; Sturgess and Syed, 1990; Weber et al., 1990; Morsi, 1995; Lai, 1996; Lei, 

2000] including those based on: 

• eddy-viscosity models [Sloan et al, 1986; Fu et al, 1988; Chang and Chen, 

1993; Chen and Chang, 1995; Wall and Taulbee, 1996]; 

These being lines that pass thiough some simple closed curve in space are said to form a vortex tube. 

See Acheson Elementary Fluid Dynamics page 162. 
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• Reynolds stress models [Jones and Pascau, 1989; Hogg and Leschziner, 1989; 

Zhou et al, 2003] 

large-eddy simulations [Conway et al, 2000; Wegner et al, 2004] and 

. stochastic models [Repp et al, 2002]. 

Swirling flows have been modelled both with and without combustion. Experience 

gained in modelling jet swirling flows can be instructive when attempting to 

simulate buoyant whirling flames. Further discussion of this subject is given in 

Section 5.3 of this work. 

In recent decades, there have been significant improvements in the ability to 

numerically simulate fires within compartments by means of CFD. This is gradually 

becoming a routine tool for fire safety engineers. The review by Novozhilov 

[Novozhilov, 2001] demonstrates a successful application of various approaches to 

turbulence modelling, including the use of Reynolds averaged Navier Stokes 

equations (RANS) and Large Eddy Simulations (LES). Also, powerful software 

packages have been developed, which can be broadly divided into fire-specific and 

general-purpose CFD codes. The most successfulfire specflc  packages include: 

• JASMINE' (Fire Research Station, UK), for example, see [Cox et al, 1986; 

Cox, Kumar, 1987; Kumar, Cox, 1989; Kumar et al, 1991; Kumar et al, 1997; 

Miles et al, 1997; Chitty and Kumar, 2004; Hua et al, 2004; Miles and Kumar, 

2004] 

• SOFIE2  (Cranfield University, UK), for example, see [Lewis et al, 1997; Li et 

al, 1999; Sanderson et al, 1999; Lewis et al, 2000] 

• SMARTFIRE3  (Greenwich University, UK), for example, see [Galea and 

Markatos, 1989; Kerrison et al, 1994; Jia et al, 1997; Ewer et al, 1999; Wang 

et al, 2001; Hurst-Clark et al, 2004; Jia et al, 2004; Zhang et al, 2004] 

'www.bre.co.uk. FRS Division of BRE. Garston.Watford.UK. 
2 www.cranuield.ac.uk . Cranfield University. Cranfield. Bedfordshire.UK. 

www.fseg.gre.ac.uk . University of Greenwich. Queen Mary Building. Greenwich. London. 1.1K. 

27 



Chapter 2. Literature review 

. Fire Dynamics Simulator, FDS' (NIST, USA), for example, see [McGrattan et 

al, 1998; Fleischmann and McGrattan, 1999; Xin et al, 2002; Mammoser and 

Battaglia, 2004]. 

The general purpose commercially available codes can also be used efficiently to 

undertake fire simulations and the most widely used are CFX 2, FLUENT3  and STAR 

CD4 . 

In this work it was decided to use an 'in house' developmental code Fire3D. This 

code differs from commercially available codes in that that it employs a Monte Carlo 

approach to heat flux modelling as opposed to the six flux method. Another 

consideration taken into account to use this particular code was that being developed 

'in house' modifications to the parameters could be easily undertaken. 

For research purposes, in-house software can provide more flexibility and 

opportunities for modifications needed to investigate a phenomenon of interest. In 

this work, the model and code Fire3D earlier developed by Dr Snegirev (Centre for 

Research in Fire and Explosion Studies, University of Central Lancashire, Preston, 

UK) was used. The model and code was created for and applied in unsteady RANS 

modelling of open and enclosed buoyant turbulent diffusion flames [Snegirev et al; 

2001; 2003; 2004]. The model and code has certain advantages over the other fire-

specific and general-purpose commercial computer codes used in the field; these 

advantages include statistical (Monte Carlo) modelling of radiative transfer, 

consideration of conjugate heat transfer at solid surfaces and prediction of the 3D 

transient temperature field inside the solid material, and of liquid/solid thel 

combustion with burning rate determined by thermal feedback between flame and 

fl.iel surface. For successful completion of this work, however, a modification of the 

turbulence model previously used in Fire 3D was necessary. Such a modification is 

described in Section 5.3. 

'www.nist.gov. National Institute of Standards and Technology.USA. 
2 www.waterloo.ansys.com . CFX Gemini House. Didcot. Oxford. UK. 

www.fluent.com. Sheffield Business Park. Sheffield.UK. 

www.Cd-adapco.com. 200 Shepherds Bush Road. London. UK. 
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2.5. Conclusions 

Two major conclusions from previous studies of rotating flames can be identified. 

Firstly, there have only been a few experimental studies undertaken in respect to 

buoyant whirling flames. None of these studies addressed medium (room-size) fire 

whirls of a spatial scale between 1-10 meters. These types of flame are particularly 

important for the study of compartment fire dynamics. Secondly, the knowledge 

gained in extensive previous studies of jet swirling flames is not directly applicable 

to buoyant whirling flames and indeed, qualitatively different effects of rotation 

upon turbulent mixing and flame length have been observed. Therefore 

experimental, theoretical and numerical studies are required to provide a clear 

explanation and quantification of the formation and stability of buoyant whirling 

flames. Validations of the CFD model used to replicate these types of flames are also 

of importance if accurate and meaningful numerical simulations are to be 

undertaken. Further chapters of the Thesis will present work undertaken within the 

above avenues. 
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CHAPTER 3. 

EXPERIMENTAL STUDIES 

OF WHIRLING FLAMES 

3.1. Introduction 

Previous research discussed in Chapter 2 demonstrated that flame rotation can 

develop in small-scale laboratory enclosures when an external circulating flow is 

imposed on the flame and rising plume. The circulation may be enforced by the use 

of a rotating screen [Emmons and Ying, 1966] or induced by buoyant air inflow 

through appropriately located openings, e.g. [Satoh and Yang, 1996]. Large scale fire 

whirls [Pitts, 1990; Soma and Saito, 1991] have also been reported. However there is 

a clear gap in spatial scales (see Table 1.1) at which whirling flames have been 

reported, and the existence and dynamics of medium scale whirls within enclosures 

requires further investigation. 

This Chapter outlines a method and experimental apparatus to produce medium-scale 

fire whirls within an enclosure. The apparatus is designed to study both rotating and 

non rotating flames in the enclosure, and also non rotating flames in the open space. 

The setup is also capable of maintaining the fuel surface at a constant level during 

the burning phase, thus ensuring steady state conditions (for heat exchange rate, air 

entrainment into the area near the fuel surface etc) are satisfied. 

Within this work, three different types of liquid fuels namely heptane, diesel and 

ethanol were used. During the experiments, thel mass loss rates (burning rates), 

plume temperatures, heat fluxes at enclosure walls and flame heights have been 

recorded. A series of video recordings and still photographs enabled analysis of the 
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transient behaviour of the flame and identification of distinct stages of its 

development. This past of the work has been supported by Greater Manchester Fire 

and Rescue Service' who provided and funded the experimental facilities. 

3.2. The experimental equipment 

The experimental equipment includes the enclosure, the fuel supply system, 

temperature and heat flux sensors, data acquisition and visualisation devices. 

3.2.1. Description of the enclosure 

The fire whirls were produced in a stand-alone former shipping container as shown 

in Fig 3.1. 

Vertical doorway 	
Ceiling vent 

a) 	 b) 

Fig 3.1. The experimental enclosure: a) front view: b) top view. 

The container comprises of two compartments, but in Fig 3.1 a) only the right hand 

compartment (viewed from the side) is shown; this being the compartment in which 

the fire whirls were produced. To the left not shown in Fig 3 a) is a control room not 

used in this work. The compartment is constructed of 5 mm thick corrugated steel 

I  www.manchesterfire.gov.uk  Greater Manchester Fire and Rescue Service, Training Centre, Cassidy 

Close, Manchester, UK. 
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with a hardwood floor. A schematic view and dimensions of the compartment are 

shown in Fig.3.2. The compartment measurements are 2.77 m (front wall), 2.4 m 

(side wall) and 2.29 m (high). There is a doorway at the front wall having 

dimensions of 0.8 m width and 1.95 m height with its jamb at a distance of 0.135 m 

from the side wall. A ceiling vent measuring 0.8 x 0.9 m (longer side is along the 

front wall) is located centrally in the enclosure ceiling. 

Ceilingvent 	- 	-- 

2.4 m 

2.2 

V. ij)m 
Fuel pan 0.6 m diameter 

Fig. 3.2. Schematic and dimensions of the enclosure. 

The diameter of the fuel pan is 0.6 m, and the pan lip height is 0.3 m above the base 

of the fuel pan (see Section 3.2.2 for more details). The pan is located centrally, i.e. 

directly underneath the vent opening. 

3.2.2. Fuel system 

The fuel system comprises fuel pan, fuel supply pipe, reference container, supply 

container and control valve, these parts being installed on an adjustable stand. The 

supply pipe leading from the base of the reference container passes through the wall 

of the enclosure and is connected directly to the base of the fuel pan. The fuel supply 

system is shown in Fig 3.3. 

The fuel pan was filled with fuel to within a level of 50 to 100mm of the burner lip 

and the reference container and supply pipe was filled to the same level from the 

pan. The system was then allowed to equalise levels in the pan and reference 
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container before the ignition of the fuel surface. A datum line was established within 

the reference container and the fuel within the pan was ignited using an industrial 

pilot burner. The level of the fuel within the reference container was maintained at a 

constant level by allowing a controlled amount of fuel to flow from the supply 

container via the control valve. When steady state conditions were established within 

the compartment, the flow of the fuel from the supply container was at a constant 

rate equalling the mass lost rate from the fuel surface. After this steady state phase 

was established, and a record made of the time taken for a set volume of fuel (3 

litres) to be burnt, this being the time to lose an equivalent amount from the supply 

container. This procedure was repeated three times for each fuel and the consistent 

values obtained are presented within this work. Before measurements were 

undertaken time was allowed for the compartment temperature and mass loss rate to 

reach a steady state within the enclosure. When this was achieved then the 

measurements were taken. The same experimental procedure was undertaken for 

fires in an open space and within the enclosure. 

Fuel supply 

Reference ci 

Supply pipe 

:ontrol valve 

Flow pipe 

Fig 3.3. Fuel supply system. 

The fuel pan (Fig. 3.4) has a diameter of 0.6 m and a height of 0.30 m, the 

construction is of 2.0 mm thick mild steel giving a maximum fuel capacity of 178 
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litres when full. The base of the fuel pan is raised from the floor by means of a metal 

skirt of 0.05 m in height thus allowing the fuel supply pipe to be attached centrally at 

the base of the pan. These arrangements were chosen for both safety reasons and also 

that the cooler inflowing fuel would not directly cool the fuel surface. The skirt fully 

covers the curtain area at the base of the pan, so preventing airflow under the burner. 

In order that heat transfer between the surrounding atmosphere and the fuel pan is 

minimised, the fuel pan is insulated with approximately 4 mm of fibreglass matting. 

To measure fuel temperature a type K thermocouple with a 0.25 mm tip is installed 

about 5 mm below the fuel surface. 

Thermocouple 

(type K, 

0.25 mm) breglass matting 

Fig 3.4. Insulated fuel pan. 

The surface of the fuel is ignited using an industrial burner. The burner flame 

provided sufficiently quick (5 to 10 s) heating up the liquid and initiation of self-

sustained burning. The ignition process was followed by flame development which 

was recorded by video camera. In all the experiments the fire was allowed a rise time 

such that the mass of fuel leaving the fuel surface is equal to the amount of fuel 

entering the reference container in the majority of the test. The spread of flame 

across the fuel surface is not considered in this work, since this stage is relatively 

short. 

3.2.3 Description of the fuels 

In the design stage of the apparatus, commercially available diesel fuel was used to 

produce medium scale fire whirls [Marsden, 2000]. 
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3. Experimental studies of whirling flames 

Subsequently three different fuels (diesel, heptane, and ethanol) were used in these 

studies and the physical properties of the fuels used are summarised in Table 3.1. 

These fuels were selected because, as shown in Table 2.1, they exhibit significantly 

different burning rates and heat release rates when burnt in still air. This will allow 

an investigation to be conducted, concentrating on the effect of the heat release rate 

("fire size") on the formation and dynamics of whirling flames. Soot production rate 

and, accordingly radiative fraction, in flames originated by these fuels are also 

known to be considerably different. This will affect the radiative output from the 

flames studied and the measurement data obtained will be used to validate the CFD 

model used. 

3.2.4. Temperature measurement 

Four thermocouples (type K, 0.25 mm exposed junction) supplied by Omega 

Electronics were used to measure the plume temperatures. The finest tip size that can 

be practically used is 0.25 mm which provides a temperature measurement error in 

the order of ± 0.2% as estimated in the work [Brohez et al, 2004] for similar 

experimental conditions. The use of this type of thermocouple will allow 

temperatures of up to 1140K to be recorded. The estimated time constant is of the 

order of 1 s [Snegirev 2004] for this type of thermocouple. An estimated time 

constant for a 3mm diameter sheathed type K thermocouple in a compartment fire 

has also been previously published [Yau 2001] being in the order of 10 seconds. The 

thermocouples have been assembled in the form of a thermocouple tree that is 

portable within the enclosure. The thermocouples were positioned at the symmetry 

axis of the fuel pan, at elevations of 0.57, 1.27, and 2.29 m (the latter is in cross-

section of the exhaust ceiling vent) above the floor level. 

3.2.5. Heat flux measurement 

To record heat flux values at the enclosure wall surfaces, two thin film heat flux 

sensors (HFS-3, Omega Electronics) were installed at locations as shown in Fig. 3.5 

and Fig. 3.6. The heat flux sensors operate as self-generating thermopile transducers 
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and require no special wiring, reference junctions or signal conditioning. The 

construction of the sensors is of the thin film type which gives the advantage of 

being easily mounted (Fig. 3.5). The carrier is a polyimide film which is bonded 

using a Teflon lamination process and has an upper temperature range of 478 K. The 

sensors were connected to a Squirrel data recorder and the voltage readings taken 

were converted to W/m 2  using the conversion factor of 0.924 jxV/(W/m 2). 

Fig. 3.5. Heat flux sensors (HFS-3, Omega Electronics) installed within the enclosure. 

Fuel pan 

Central axis 

C- 1.6m 
HFI 

HF2 

1.2m 	0.7m 

Fig. 3.6. Heat flux sensor positions (LIFt, 11F2) within the enclosure. 
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According to the information supplied by the manufacturer, an estimated response 

time for an HFS-3 sensor is 0.6 s. 

3.2.6. Data acquisition 

Data from the thermocouples and heat flux sensors were recorded using a Squirrel 

series 1000 data recorder (Grant Instruments) which has ability to measure up to 125 

digital or analogue channels and can store up to 2 million readings. The meter is 

portable and can be connected to a PC for downloading purposes. 

3.2.7. Visualisation techniques 

Photo and video recordings were taken during the experiments. A Sony TRV250E 

digital video camera recorded the flame behaviour in both the enclosure and in the 

open space. In all cases the camera was tripod mounted and positioned at a distance 

of about Sm away from the fuel pan. 

3.2.8. Experimental arrangements for open flames 

The same apparatus and procedure were employed in the case of flames in the open 

space and in the enclosure. Figure 3.7 illustrates the equipment set up prior to 

ignition in the open space. 

Therm 

Fuel 

sensor 

Fig. 3.7. Experimental apparatus for flame in the open space. 



3. Experimental studies of whirling flames 

3.3. Experimental observations of flames in the open space 

A series of initial experiments were undertaken using the apparatus and technique, 

just described to measure time averaged steady burning rates and flame lengths in 

the open space. The measurements then were compared with published data 

[Babrauskas 1983] thereby validating the experimental methodology adopted for this 

Thesis 

Figures 3.8 and 3.9 illustrate flames produced by the experimental apparatus when 

three different fuels were burnt. It can be clearly seen that the appearance and 

luminosity of these flames is rather distinct. In accordance with the data in Table 3.1, 

the ethanol flame produces the least amount of soot. It also exhibits the lowest 

luminosity level of the fuels used such that the flame is transparent for visual light 

(Fig. 3.8a, 3.9a). The diesel flame releases the largest amount of soot (Fig. 3.8b, 

3.9b), which is also in accordance with data of Table 3.1. The heptane flame is 

longest of these three (Fig. 3.8c, 3.9c); this is because of the highest heat release rate 

(see Table 2.1). 

a) 	 b) 	 c) 

Fig. 3.8. Non-rotating flames in the open space, weak effect of cross wind. 

Fuel: a) ethanol; b) diesel; c) heptane. 
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a) 	 b) 	 c) 

Fig. 3.9. Non-rotating flames in the open space, strong effect of cross wind. 

Fuel: a) ethanol; b) diesel; c) heptane. 

In the experiments, fuel mass burning rates were measured and average flame 

heights were determined from the photographs taken. The experimental results are 

shown in Tables 3.2 to 3.4. 

The effects of the cross wind cannot also be overlooked, burning mass loss rates 

were recorded when in the open still air. However, it must be acknowledged that 

there will still be slight fluctuations in the circulating air which could in turn affect 

mass loss rates 

Table 3.2. Characteristics of flames in the open space 

Fuel Burning rate, 

thftCJ 	kg/(m 2 s) 

Heat release 

rate, Q, kW 

0*1 

Eq. (2.2) 

Fr, 

Eq. (2.1) 

Ethanol 0.018 136 0.43 5.7310.6 

Diesel 0.027 337 1.07 1.7310 

Heptane 0.040 502 1.60 2.581O 

Tables 3.3 and 3.4 present the experimental results obtained by the experimental 

apparatus designed and built by the author. A comparison of the fuel mass loss rate 

with published data (see Chapter 2) shows that there is a small discrepancy between 

the published and experimentally obtained values. 
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Table 3.3. Comparison of burning rates in the open space 

Burning rates, thfrC, 	kg/(m2 s) 

Fuel Measured in this work Literature data! 

Ethanol 0.018 0.014-0.016 

Diesel 0.027 0.028-0.038 

Heptane 0.040 0.034-0.060 

Table 3.4. Comparison of flame lengths in the open space 

Flame length, L1 , m 

Fuel Measured in this work Eq. (2.5)2 

Ethanol 1.0 1.1 

Diesel 1.5 1.8 

Heptane 2.3 2.2 

Possible reasons for these small differences could be explained by different 

freeboard heights and the effects of crosswinds. The differences in respect to flame 

length show good agreement with equation 2.5. Comparison of the results obtained 

using this experimental apparatus to published data is of prime importance if 

accurate mass loss rates in respect to whirling flames are to be obtained. The results 

when compared to published data show good agreement with the published data in 

Table 3.3 

Data from [Babrauskas, 39831 as presented in Table 2.1. 
2 Heat release rate is calculated for measurement data, Table 3.2. 

41 



3. Experimental studies of whirling flames 

3.4. Experimental observations of whirling fires in the enclosure 

3.4.1. Flame formation and the behaviour of smoke layer 

a) 	 b) 

Fig 3.10. Formation of the smoke layer within the enclosure: a) smoke layer in the 

absence of rotation; b) the absence of the smoke layer during flame rotation in the case 

of all three fuels. 

Shortly after ignition by the pilot burner the whole of the fuel surface became 

involved and a typical turbulent diffusion flame was established above the the! pan. 

A smoke layer formed within the enclosure, which was approximately 1 meter deep 

when measured from the ceiling (Fig 3.10 a). After the diffusion flame had become 

established the incoming airflow through the door way began to have an effect upon 

the flame behaviour such that the flame began to tilt to the rear left of the enclosure 

(see Fig 3.11). 

The flame then began to rotate around the fuel pan and a fully established rotating 

flame was observed within the enclosure (Fig 3.10 b), the flame lengthening was 

such that it was visible above the vent opening and during this phase the smoke layer 

was clearly absent. During this rotation phase the inflowing air through the door way 

had sufficient force to cause the rotating flame to collapse and a diffusion flame to 

re-establish above the fuel pan, the cycle then repeated itself, this action is further 

discussed in 3.4.2. 
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Rotation of the flame is caused by vorticity being induced within the compartment 

by means of inflowing air, the vorticity has caused a significant effect upon the 

flame such that the resultant vortex tube formed by the hot rising plume is stretched 

resulting in flame lengthening. The increasing airflow through the enclosure is such 

that it has sufficient force to displace the vortex tube from the buoyant rising plume 

and this action causes the vortex tube to collapse resulting in flame shortening and 

the establishment of a diffusion flame. 

For the different fuels used in this work different times were recorded in respect to 

the length of the cycle of the formation and destruction of the rotating plume and it 

was observed that in the case of heptane and diesel that the cycle was significantly 

shorter when compared to that of ethanol. This cyclic nature exhibited is further 

discussed in Chapter 6 in which numerical simulations of this behaviour are 

compared to the experimental results. 

In respect to the formation of the rotating plume within the enclosure two conditions 

are necessary to ensure that rotation of the flame will occur. Firstly vorticity must be 

generated within the enclosure and secondly the buoyancy of the hot gases in the 

rising plume must further amplify the vorticity generated resulting in subsequent 

flame lengthening. 

3.4.2. Periodicity of flame rotation. 

When the flame and plume began to rotate, the flame was significantly lengthened, 

such that it was visible through the ceiling vent. After a short while the rotating 

flame became unsteady and then collapsed; and then it behaved as an ordinary free-

standing pool fire tilted by incoming airflow. This cycle then repeated itself and a 

rotating flame was again established. Consequent stages of this oscillating process 

extracted from video recordings are presented in Fig. 3.11. 
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Fig. 3.11. Experimentally observed temporal evolution of whirling flame (fuel is diesel). 

Conventional time is set to zero for the first frame. Fully developed whirling flames 

occur at time moments of 4,14,24 and 34s. 

It can be seen that along with the rotation of flame around its vertical axis (clearly 

visible at time instants 4, 14, 25 sec), the flame axis itself travels around the 

enclosure keeping its base at the fuel source (for example, the axis is tilted towards 

left wall at time instants 0, 8, 17, 28 sec and towards the right wall at 34 see). It is 

therefore concluded that flame precession, with some degree of periodicity in the 

formation and destruction of the whirling colunm, occurs. This instability and quasi-

periodicity was found to be inherent to the enclosed whirling flame. 

The flame behaviour was observed to be sensitive to the effects of external winds 

and as such repeatability was only achieved in still conditions. The experiments were 

conducted over a period of three days in which the wind conditions were negligible 
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when measured with an anemometer. Despite this, it is possible to estimate from 

video frames the characteristic period as 20-30s, 10-15s, and 5-7 seconds for ethanol, 

diesel, and heptane respectively in no wind conditions. 

3.4.3. Fuel mass burning rates and flame length 

Table 3.5 presents the experimental data obtained for the range of fuels used in this 

work. A significant increase in burning rates (110% for ethanol, 44% for diesel, and 

80% for heptane) has been observed for whirling flames in the enclosure, when 

compared to those in the open space. A qualitatively similar observation was earlier 

reported in smaller size whirling flames over combustible liquids (e.g., mass burning 

rate of liquid acetone was reported to increase by a factor of 5 when the whirling 

flame was induced by rotating screen in [Emmons and Ying, 1966]). 

The reason for enhanced burning rates has to be fully explained. A possible 

explanation is that the flow rotation enhances air entrainment into the fuel rich 

region near the fuel surface, which intensifies mixing of the reactants in this area, 

thus providing greater reaction rates, temperature, radiation emission, and 

consequently the increased evaporation rate. 

In an enclosure, it can also be suggested that re-radiation from the hot smoke layer 

and the heated enclosure walls may result in additional heating of the fuel, thereby 

increasing the evaporation rate from the fuel surface. However, this might not be so 

in the case of rotating flames where firstly the absence of the smoke layer will 

reduce radiative effects and second, the effect of wall re-radiation can be estimated. 

Second, the effect of wall re-radiation can be estimated from additional trials carried 

out, in which air flow incoming through the doorway was directed such that rotation 

did not occur. The measured burning rate was found to be similar to that in open 

space, which indicates that wall re-radiation did not significantly affect the fuel mass 

burning rate. Therefore, the primary mechanism for the fuel burning rate to increase 

is most likely to be related to the intensification of fuel vapour/air mixing near the 

fuel surface, as discussed above. 
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3. Experimental studies of whirling flames 

Table 3.5 presents some of the measurements obtained from the experimental results. 

It can be seen that although the mass burning rates were found to be similar for 

ethanol and diesel whirling flames, this being due to the significant difference in heat 

of combustion, 6.H, the heat release rates are still different and correlate with 

considerably different characteristic periods. Similar effect will be demonstrated by 

the numerical simulations undertaken as discussed in Chapter 51 

The fire size Q has an affect upon the characteristic period, at a larger fire size (such 

as measured in heptane fuel) the cycle appears to be very short when compared to 

the smaller fire size for the same diameter burner in the case of ethanol. For all the 

fuels, much longer whirling flames have been observed compared to non-whirling 

ones that were seen in the open space (see Fig. 3.12 and compare to Fig. 3.8 and 

flame length data in Table 3.4). Several reasons contributed to this. First, fuel mass 

burning rates and therefore total heat release rates increase in whirling flames (flame 

length is known to correlate with Q, see Eq. (2.5)). 

Second as discussed in the literature review (Section 2.4.2.2), flow rotation is known 

to decrease turbulence within the rising core, thus reducing turbulent mixing at the 

core boundary and the air entrainment through it. That requires a greater flame 

surface to develop for the same degree of combustion resulting in a longer flame. 

This phenomenon was demonstrated in the experiments of [Chigier et al, 1970], 

[Beer et al, 1971] and [Beer and Chigier, 1972], in which jet flames with a controlled 

fuel supply rate (burner fires) were studied. These jet flames were subject to external 

circulation being imparted by the action of rotating screens. Third, the buoyancy 

induced stretching of the vortex tube in the rotating flow also makes the whirling 

flame narrower and therefore (to maintain the flame surface area) longer. 

'In fact, conelation of the characteristic period and total heat release rate was established in 

numerical simulations before the experiments with different fuels were carried out. The increase in 

process frequency with the fuel supply rate (computations were performed assuming the same type of 

fuel) first predicted numerically has been later qualitatively confinned by the experiments, thereby 

indicating credibility of the model. 
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Lf =  2.2 m Lf  =2.7m Lf  =3.Om 

a) 	 b) 	 c) 

Fig 3.12. Whirling flames within the enclosure and the estimated flame lengths. Fuel: a) 

ethanol, b) diesel, c) heptane. 

As a result of greater mass burning rates and flame lengths, higher plume 

temperatures and wall heat fluxes were recorded as shown in the next Section. 

3.4.4. Temperature and heat flux measurements 

Temperature variations with time, as recorded by a thermocouple located on the 

vertical symmetry axis of the fuel pan, at an elevation of 0.57 m above the floor, are 

presented in Figs 3.13 and 3.14 for ethanol and heptane respectively. It can be seen 

that temperature evolution measured in the enclosure differs from that in the open 

space in that it is generally lower and exhibits a much greater magnitude of variation. 

The latter can be explained by the fact that in the enclosure, dissimilar to that in the 

open space, the entire flame is unsteady (as described in Section 3.4.1). The whirling 

core develops and destroys in a quasi-periodic manner, and the flame oscillates, 

travelling around the enclosure. Therefore, thermocouple junctions are not always 

positioned inside the high-temperature flame zone, as it occurs in free-standing flame 

in still air. Large oscillations of the entire flame result in large fluctuations of a 

similar frequency to the period formation and destruction (Fig. 3.13b and 3.14b). 
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3. Experimental studies of whirling flames 

	

Time,s 	 Tlme,s 

	

a) 	 b) 

Fig 3.13. Temperature evolution In time for an ethanol flame (thermocouple at the 

elevation of 0.57 m above the floor level: a) free-standing flame in the open space; b) 

whirling flame in the enclosure. Dashed line - time-averaged value. 

	

Time, s 	 Time, s 

	

a) 	 b) 

Fig 3.14. Temperature evolution in time for a heptane flame (thermocouple at the 

elevation of 0.57 m above the floor level: a) free-standing flame in the open space; b) 

whirling flame in the enclosure. Dashed line - time-averaged value. 

It can also be seen that the frequency of the oscillations is greater for the heptane 

flame when compared to that of the ethanol flame. This is consistent with the above 

observations in that the characteristic period of the process decreases with the heat 

release rate. Time-averaged temperatures measured at different locations within the 

vertical symmetric axis of the fuel pan are presented in Table 3.6. 



0 	100 200 300 400 500 600 
Time, s 

0 	100 200 300 400 500 600 
Time, s 

3. Experimental studies of whirling flames 

Table 3.6. Time-averaged temperatures at different locations 

(vertical symmetry axis of the fuel pan) 

Fuel 

Elevation of thermocouple above the floor level 

2.35 m 1.1 m 0.57 m 

Open Enclosed Open Enclosed Open Enclosed 

Ethanol 349 683 401 766 921 790 

Diesel 326 547 598 715 1027 973 

Heptane 321 379 368 521 935 770 

Although the time-averaged temperature measured in the enclosure may be less than 

that in the open space (for example, see Fig. 3.13 and 3.14), maximum temperatures 

in an enclosed flame can be greater, with greater radiant emission from whirling 

flames and, accordingly, greater radiative impact onto surrounding structures. 

Radiant heat fluxes were measured in the enclosure, as described in Section 3.2.5. 

and the measurements for ethanol and heptane flames are shown in Fig. 3.15a and 

3. lSb respectively. 

a) 
	

b) 

Fig. 3.15. Dependence of radiative heat flux on time recorded by heat flux sensor HF1: 

a) ethanol flame; b) heptane flame. 
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Clearly, (despite the time-average temperatures for the two fuels being similar, see 

Fig. 3.14b and 3.15b) the heptane flame produces a considerably higher heat flux, 

fluctuating with much greater magnitude. The reasons are: (i) greater fuel mass 

burning rate and, therefore, total heat release rate, and (ii) greater amount of soot 

produced, which is an important contributor to the radiant emission from flame. 

Table 3.7 presents the time-averaged heat flux measurements by two heat flux 

sensors for the three fuels studied. 

Table. 3.7. Time-averaged heat fluxes at the enclosure wall 

Fuel HF1, 

kW/m2  

HF2, 

kW/m2  

Ethanol 1.7 1.8 

Diesel 2.6 3.1 

Heptane 4.1 5.0 

These data will be used in Chapter 5 for validation of the numerical studies 

undertaken with CFD model used. 

3.5. Conclusions 

A medium-scale (according to Table 1.1) experimental apparatus has been 

constructed to produce fire whirls that are generated when an asymmetrically 

incoming airflow imposes circulation onto a flame above the fuel pan (located in the 

centre of the enclosure beneath the ceiling vent). Circulation appeared to be 

necessary for the whirling flame to develop. Arrangement of the openings within the 

enclosure provide the conditions necessary for a rotating flame to occur. These 

openings included an asymmetrically located vertical doorway at the front wall, and 

centrally located ceiling vent. 
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Although the aim of this work is to study whirling flames, free-standing non-

whirling flames were also produced above the same fuel source, and corresponding 

fuel mass burning rates, as well as temperatures at three points of the flame axis have 

been recorded. Measured burning rates and flame heights have been compared to the 

data published in literature. Fair agreement with the previously published data has 

been obtained, which demonstrates suitability of the experimental methodology in 

measurements of the required parameters for whirling flames. 

Observations of whirling flames in the experimental enclosure have then been made, 

for three liquid fuels (with considerably different mass burning rates, when burned in 

the open). Key characteristics (burning rates, temperatures and heat fluxes) have 

been compared to those in non-whirling flames produced with the same fuel source. 

The observations revealed remarkable and distinctive features of whirling flames as 

summarised below. 

1. Whirling flames exhibited much greater burning rates (40 to 110%, 

depending on fuel type) than their non-whirling counterparts. 

2. Whirling flames were always unstable due to the precessing nature and 

susceptibility to wind. Whirling flames were part of a quasi-periodic process 

of flame precession accompanied with formation and destruction of a 

whirling column. Whirling flames produced large temperature fluctuations. 

3. The characteristic period of the process depends on the fuel burnt. It has been 

found that the period decreases as the total heat release rate increases. 

4. Whirling flames were thinner and much longer than non-whirling ones. 

5. Whirling flames in the enclosure produced greater radiative heat fluxes than 

non-whirling ones in the open space (although the fuel source was the same). 

6. During the existence of a whirling flame, the upper smoke layer was 

completely expelled through the ceiling vent. 

Clearly, the understanding of this phenomenon requires theoretical analysis and 

numerical simulations, which are provided in the next sections of this work. 
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Chapter 4. Basic theoretical concepts of rotating flows 

CHAPTER 4. 

BASIC THEORETICAL CONCEPTS OF 

ROTATING FLOWS 

4.1. Introduction 

This Chapter presents the major characteristics of differing classes of rotating flows, 

it also outlines basic concepts of the existing theory. As a result, the necessary 

conditions for buoyant rotating flow to develop are formulated and discussed. 

4.2. Characteristics of rotating flows 

A fluid flow rotating about the symmetric axis can be considered in cylindrical polar 

coordinates ( , 0 , Z) with corresponding radial, angular (azimuthal, swirl) and axial 

velocity components (Vr , , v 2 ). The flow rotation is characterised by the following 

kinematic quantities [Batchelor, 1967] :being the vorticity vector, 

3'o 	ählr  th' 2 	i(ôrv0  ävr ) 
th=Vxi3—----, ---, 

	39Jf 	
(4.1) 

the angular frequency of rotation of a fluid particle about the axis, 

= 
	 (4.2) 
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and the circulation along a concentric path 1, 

r- 	 (4.3) 

where dI is the infinitesimal directed segment along the path 1. 

4.3. Classification of simple rotating flows 

To classify different types of rotating flows, consider an axisymmetric flow with no 

radial and axial velocity components. Within such a flow, the angular velocity, v 9 , is 

the only non-zero velocity component, and it depends on radius r. The vorticity 

vector also has only one non-zero (axial) component, w, 

18 
m =--rv0 . 

r ôr 
(4.4) 

In the idealised (axisymmetric, steady-state, laminar) flow, the momentum equation, 

dpv 
—=p—, 	 (4.5) 
dr 	r 

represents balance between the centrifugal force and the pressure force. 

Depending on the variation of the angular velocity with radius, three types of 

axisymmetric rotating flows (Fig. 4.1) are identified [Gupta et al, 1984]. 

1. Angular velocity linearly increases with radius (Fig. 4.1 a), 

v. = C1 r, 	C1  = const. 	 (4.6) 
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Chapter 4. Basic theoretical concepts of rotating flows 

This type of flow is termed as the solid body or forced vortex, for which the vorticity, 

the angular frequency, and the circulation are equal to 

(o=2C1 , 	Q=C, 	F=2itC1 r2 , 	 (4.7) 

respectively. 

a) 
	

b) 
	

c) 

Fig. 4.1. Radial profiles of angular velocity, v0 (r): a) forced (solid body) vortex; b) free 

(potential) vortex; c) combined (Rankine) vortex. 

2. Angular velocity decreases with radius (Fig. 4.1b), 

C2  
Ve =, 	C2  =const. 

r 
(4.8) 

This type of flow (called potential or free vortex) has the following vorticity, angular 

frequency, and circulation: 

2 	
ci= -, 	r'=2itC2 . 

	 (4.9) 

The forced vortex has non-zero constant vorticity and angular frequency, its 

circulation increases with radius. Alternatively, the vorticity in thefree vortex is zero 

(fluid particles follow a circular streamline without rotation about its own axis), its 

angular velocity and frequency both tends to zero away from the axis, and its 

circulation is of constant value. It can be shown (see [Batchelor, 1967, p.  203]) that 
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forced vortex velocity profile (4.6) represents the constant properties fluid flow 

inside a rotating cylinder, while free vortex (4.8) corresponds to the unconfined flow 

outside the cylinder. 

These two types of flow are also different in terms of their stability. The fluid 

particle displacement radially outwards, which is forced by the centrifugal 

acceleration, is resisted by the pressure gradient (4.5) increasing with radius in the 

forced vortex and is not compensated by the decreasing pressure gradient in the free 

vortex. Therefore, fluctuations are stabilised in a forced vortex and destabilised in a 

free vortex [Sloan et al, 1986]. 

3. The vortex that combines all these properties is the Rankine vortex, in which the 

angular velocity increases with radius inside the vortex core and decreases outside it 

(Fig. 4.1c) 1 : 

c3[ 	

I rV 
v0  =— 1–expl---3-II, 

r 	rj) 
(4.10) 

where t o  is the effective radius of the vortex. The corresponding vorticity, angular 

frequency, and circulation are 

2C3 ( r 
(0 2  = —j— expl 	I' r} 

C 
Q 	

3 	I r )),
L

--expl--5
to 

F = 27tC3 [1_exP(_L)J. 	 (4.11) 

For small distances, r1r0  <<1, relationships (4.6), (4.7) for solid body rotation 

recover with C 1  = C3 1r[ In the opposite limit, r1r0  >> 1, the flow parameters 

coincide with those of a free vortex (4.8), (4.9) with C2  = C3 . 

'In [Flopfinger and Van Heijst, 1993] the Rankine vortex is defined as combination of(4.6) and (4.8). 
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Vortexes in rotating fluids are often of the Rankine type. For example, the velocity 

distribution (4.10) appears as a transient solution of vorticity diffusion away from an 

initial concentration on a vortex line [Batchelor, 1967, p.  204]. In that case, which is 

also called Lamb vortex [Hopfinger and Van Heijst, 1993], the radius of the vortex 

core increases in time as r0  = V, where v is the kinematic viscosity. Another 

example is cyclonic (sink) vortex [Sanson, 2001]. Also, a Rankine vortex forms in a 

rising rotating flow which is considered below. 

Due to a different response on fluid particle radial displacements, turbulent 

fluctuations are reduced (stabilised) in the internal (forced) part of the Rankine 

vortex and they are increased (destabilised) in its external (free vortex) part. This 

results in the inhibited turbulent mixing and air entrainment into rotating flames, 

which facilitates flame elongation. 

4.4. The vorticity equation & Sources of vorticity 

Consider now a general flow with the momentum equation 

av  
+ . 	 = —'Vp + !VÔ + - 0 

at 	 p 	p 	p 
(4.12) 

Where ô is the stress tensor which may include turbulent components if time 

averaged (mean) flow is considered. The evolution of vorticity in the flow is 

governed by the vorticity equation, which can be derived by taking curl of the 

momentum equation (4.12) 

aco 
 + V~-  = -V 

I 
 XVP+VX  I  V+VL2-xj-05(V-V)+(Co-V)i~. (4.13) 

at 	 P 	(P 	P 

Analysis of this equation allows the vorticity sources in the flow to be identified. In 

particular, in the special case of an inviscid fluid of uniform density acted on by a 
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potential body force, the vorticity of a given fluid particle is conserved. It is 

however, not the case in buoyant turbulent flames (which are considered in this 

work). In such a flow the vorticity of a given fluid particle is changed due to the 

following reasons, each of which corresponds to a particular term in right hand side 

of Eq. (4.13). 

1. Non-buoyant baroclinic vorticity generation caused by misalignment of pressure 

and density gradients. Note that the corresponding term (also called baroclinic 

torque), - V1 x Vp, vanishes for barotropic fluids, i.e. if p = p(p). 
p 

2. Viscous (turbulent) dissipation, represented in the vorticity equation (4.13) by 

v x V& This term converts to vAô for constant density, constant viscosity 
'p 	) 

flows. 

3. Buoyancy, - V.P2 x . If the acceleration of gravity, g, is directed along the axis 
p 

of rotation z, then it can be shown that the buoyancy term in Eq. (4.13) does not 

contribute into the axial component of the vorticity vector, i.e. buoyancy has no 

effect on rotation about vertical axis. 

4. Dilatation, - o(V . 'v), which vanishes in incompressible fluids but affects the 

vorticity in non-isothermal, variable density flows. 

5. Stretching of the vortex tubes. The corresponding stretching term, (as . v)c', in Eq. 

(4.13) is the most important source of vorticity, which is discussed below in more 

detail. 
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The most important term is the last term in which the flows examined within this 

work concern rotation about the vertical z -axis, (i.e. in horizontal x - y plane), 

takes place. The stretching term is governed by the induced buoyancy of the hot 

rising plume from the fuel pan. Therefore in this particular case the analysis can be 

restricted by consideration of the evolution of z -component of the vorticity vector 

only. Written in cylindrical coordinates, the corresponding equation takes the form 

3w 	3w 	13w 	3w 2  L+ v  --+v----2-+v 
at 	

3 	"röO 	2 3z 

- 

rôOôrp ôrrS'dp 
baroclinic torque 

( 13 3w 	132w 	32w'\ 
±v__rL+_y 	

aZ 2 J  OV 

viscous dissipation 

+0 

buoyancy 

CO 
 (

I  arv,  + 1 &0  + O-V~ 

r 3r r30 3z) 

dilatation 

0v 	13v 	öv 
+ 0r 

___!_ + w9 	+ w 2  
3r 	rEid 	3z 

strething 

(4.14) 

where the viscous dissipation term is written for a constant viscosity flow, and v is 

the kinematic viscosity. The very last (underlined) summand in the stretching term 

causes the amplification of non-zero vorticity, w, in a vertically accelerating flow 

in which 3v2  /3z > 0. In a buoyant flame and a plume the buoyancy force causes the 

vertical acceleration of the flow inside the flame zone. That results in increase of w 2  

provided that non-zero background vorticity is introduced. This is the explanation of 

development of a rotating core within a rising buoyant flow. 
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The term w3w/3z becomes negative in the upper plume where axial velocity 

decreases with height. In this region the vortex tubes are not stretched but expanded, 

due to which the vorticity is decreased. Viscous and turbulent dissipation also results 

in decrease of vorticity, while the baroclinic torque and dilatation may change their 

sign in the flow. 

4.5. Vorticity concentration in axisymmetric flow 

A useful example of a simple flow, in which the vorticity is intensified due to 

stretching of vortex tubes and balanced due to lateral spreading by viscous 

dissipation, is given in [Batchelor, 1967, p.  272]. The axisymmetric, constant 

properties flow is considered in which the transport equation (4.14) for w 7  takes the 

form 

Ow L 	Ow 	lOw , 	Ow 7  +v  -- 
3: 	

3 + v 
° rOO 	3z 

(io ô® 	102w 32 w 
vi ---r---+— 7  + 

r3r Or r2 	2 	
äz2 

viscous dissipation 

3v 0v 	10v 
+w,.+weL+w __!_ 

Or 	r30 	3z' 
stretching 

(4.15) 

In the region z ~: 0, r ~: 0, 0 :5 9 c 2n a solenoidal velocity field is assumed, 

v
' 
 =— 

C 
—r, 	v0  =v9 (r), 	v 7  =Cz, 	C=const>0, 

 2 
(4.16) 

representing vertically accelerating rotating flow, which may be considered as a 

rough approximation of a rising whirling plume. Then Eq. (4.15) has a steady-state 

solution w,, which does not depend on 0 and z: 
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( 	
' 

(O = w 	
r 

 ) 
,expj ---I, 	 (4.17) 

. 

r.
2  

where 

r0 =J-. 	 (4.18) 

The angular velocity corresponding to (4.17) can be derived from (4.4): 

1 V 
1)8- 	

r2 
Il-expI---I. 	 (4.19) 

2r 	 " 'f,') 

It can be seen that the flow is in fact the Rankine vortex, Eq. (4.10). In this flow the 

concentration of vorticity into the vortex core is balanced by viscous dissipation, 

which results in three-dimensional flow known as the Burgers vortex [Hopfinger and 

Van Heijst, 1993]. Typical streamlines of the flow are shown in Fig. 4.2. 

a) 	 b) 

Fig. 4.2. Streamlines of the flow (4.16), (4.19): a) 	= 0, b) 	>0. 
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The steady vorticity field (4.17) is the distribution to which transient vorticity, 

o (r, it), tends, as it —* cc', if its initial distribution, o (r,0), satisfies the condition 

0< Jo (r,0)27Erdr <cc. 	 (4.20) 

It can be shown using Eq. (4.15), that for the considered flow the integral of the 

vorticity over a horizontal plane is invariant: 

= 0. 	 (4.21) 

As follows from (4.3) and (4.4), the integral in (4.21) is the circulation, 

= lim 2mrv 9  (r), 	 (4.22) 

of the external flow. Therefore, the initial non-zero vorticity (and external circulation 

170 ) must be introduced for a steady rotating flow to develop; a spatial distribution of 

the initial vorticity may be arbitrary. Due to (4.21), the maximum vorticity 	in 

the steady vortex (4.17) is coupled with the external circulation: 

I0 
@znux 	 (4.23) 

itr0  

As follows from (4.16) and (4.18), the radius of the vortex core is 

FI 4v 
Tb = 	

/ôz 
' 	 (4.24) 

and therefore the maximum vorticity and angular velocity are 
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F0  c3v /8z 
zrmx = 	

. 	 (4.25) 
it 4v 

Vo nrn  = 0.638 	
f5v1/az 	

(4.26) 
it 	4v 

Thus, the greater is the vertical flow acceleration or the smaller is the viscous 

dissipation, then the thinner and more intensive is the vortex core. Note, vortex 

radius (4.24) does not depend on the external circulation 17 0 . 

The overall degree of whirling can be characterised by the swirl number [Gupta et al, 

1984], 

= 
f'vy8rdr 

2 f v 2 rdr  
2° 

(4.27) 

where (for the problem considered) D is the pooL/burner diameter. The swirl number 

presents the ratio of axial fluxes of angular and axial momentum (turbulent 

components and pressure term are neglected in Eq. (4.27)). It can be demonstrated 

for the flow considered, that the swirl number is 

= 1 	 (4.28)  FO 4vR 	4itRv 

being proportional to the external circulation: S oc 170 . 

4.6. Dimensionless criteria governing buoyant rotating flow 

Dimensional analysis of the vorticity, momentum, and energy equations for a general 

flow (See Chapter 5) shows the governing role of several dimensionless criteria. 

These can be formulated based on characteristic length L, velocity V, density p, 

density drop p, and vorticity w. The Rossby number, 
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Ro= 	 (4.29) 
Lw 

presents the ratio of inertial to centrifugal forces. The Reynolds number 

Re = 
V

, 	 (4.30) 
V 

shows the ratio of inertial forces to viscous stresses. The Froude number, 

(4.31) 
4 gL 

gives the ratio of fuel flow kinetic energy to buoyancy. Prandtl number, Pr, is equal 

to the ratio of kinematic viscosity to thermal diffusivity. 

V 
Pr=— 	 (4.32) 

a 

where a is the thermal diffusivity 

In buoyant whirling flows, additional dimensionless criteria, which are derived from 

those given above, are justified. Firstly, since the velocity scale V is not given in 

input data, it therefore is taken as 

V =JgLLsp/p, 	 (4.33) 

thereby setting the Froude number to unity (i.e. a balance between the deceleration 

produced by the entrained air flux and acceleration produced by the buoyancy. Thus 

the velocity more or less remains constant with respect to height). Secondly, instead 

of the Reynolds number, the Rayleigh number, 
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Re2 =? 
Pr 	-----Pr , 	 (4.34) Ra = - 

Fr 	v p 

which does not include the velocity scale, is used to quantify buoyant convection. To 

take the heat release into account, the modified (flux) Rayleigh number is 

introduced, 

Ra fi  = Ra 
Q/Aiuei 	 (4.35) 

where 0 = EXH C thI A IUeI  is the total heat release rate (AJIc  is the heat of combustion, 

th iuei  is the fuel mass burning rate, and AfUd  is the burning area), C,,0  is the constant 

pressure specific heat of the ambient air at temperature 7, and t\T = T - 7 is the 

characteristic temperature drop. 

Finally, in rotating flows the Ekman number, Ek, and the Taylor number, Ta, 

represent the mutual significance of viscous stresses and centrifugal forces: 

Ek=1/ReRo, 	Ta=1/Ek2 
	

(4.36) 

Among the above dimensionless criteria, the Rossby number is the primary one that 

determines the whirling of a buoyant flame. The overall degree of whirling can be 

characterised by the swirl number, Eq. (4.27). The swirl number presents the ratio of 

axial fluxes of angular and axial momentum (turbulent components are omitted in 

Eq. (4.27)). In an axisymmetric flow, the swirl number is a function of the above 

dimensionless parameters and, possibly, of the axial position: 

S = S(Ro Rafl , Ek4). 	 (4.37) 
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For example, considering Eq. (4.28) and taking into account relationship (4.23), 

= rjitrO2  , the swirl number (4.27) can be shown to be inversely proportional 

to the Rossby number: 

(4.38) 
2Ro z 

where in definition (4.29) of Rossby number the characteristic value w = 17 0 /itR 2  is 

used for vorticity and vertical velocity is v = Cz = (v'/E)z. 

Note, the characteristic length, C, should approximate the distance at which the 

buoyancy force determines the flow acceleration. The appropriate length scale, 

' 2/5

'¼ c0p07;JiJ 
	 (4.39) 

is introduced in [Zukoski, 19951. 

4.7. Conclusions 

The theory of rotating flows reveals two necessary conditions for buoyant rotating 

flow to develop: 

1. non-zero background vorticity (and external circulation) and 

2. vertical acceleration of the flow. 

The primary mechanism of vorticity concentration in the vortex core is the stretching 

of the vortex tube in this case by the hot rising plume; the latter is balanced by 

viscous (and possibly turbulent) dissipation. When the above conditions are satisfied, 

the steady rotating flow has a radial velocity distribution similar to that of the 

Rankine vortex; the swirl number of the flow is proportional to the external 

circulation. The above mechanism is known to work in buoyancy driven flows of a 
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wide range of spatial scales, from small-scale laboratory flows to very large 

circulating patterns in oceans and in the atmosphere. 

In the internal part of a Rankine-type vortex the turbulent fluctuations associated 

with a non rotating diffusion flame are reduced by the stretching of the vortex tube, 

this stretching reduces the turbulent intensity resulting in a reduction of the mixing 

of the fuel and oxidiser. This reduction of intensity increases the combustion zone 

and the flame is lengthened by the stretched vortex tube imposed on the buoyant 

plume. 

These results are reproduced by (and used in the interpretation of) the experimental 

observations (Chapter 3) and numerical simulations (Chapter 6) presented in this 

work, where the development of whirling buoyant turbulent diffusion flames are 

studied in the enclosure. The CFIJ model and code Fire3D [Snegirev et al, 2001; 

Snegirev et al, 2003; Snegirev, 2004; Snegirev et al, 2004] was used. In the model, 

the above mentioned inhibiting of turbulent mixing intensity has been explicitly 

taken into account to obtain predictions reproducing elongated rotating flames. The 

model, the code, and the results of the simulations are discussed below (Chapters 5 

and 6). 
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CHAPTER 5. 

MATHEMATICAL MODEL AND CFD CODE 

5.1. Introduction 

This Chapter describes the mathematical model and the CFD code that has been 

applied in the numerical simulations of whirling flames. The model used is the 

modified version of that which was developed in the Centre for Research in Fire and 

Explosion Studies at the University of Central Lancashire (Fire3D) to simulate 

essentially sub-sonic turbulent multi-component reacting and radiating flows in an 

open space and in enclosures. The governing equations (expressing conservation of 

mass, momentum, and energy) and the sub-models for turbulence, combustion, soot 

formation, and thermal radiation are presented within this chapter. As a part of this 

work, particular attention is paid to the modification of the turbulence model which 

is required to allow for the inhibiting effect of centrifugal forces in a rotating flow on 

turbulent fluctuations. The remaining sub-models are standard in the code Fire3D 

and are discussed within this chapter. A brief description of the numerical 

implementation and overview of the validation studies undertaken is also provided. 

5.2. Governing equations 

A RANS (Reynolds Averaged Navier Stokes)-type CFD model is used, in which the 

continuity, specie conservation, momentum and energy equations are 

r4. 
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&apu1 	
(5.1) 

at 	ax1  

ÔPYa  äPUjYa  = 8 	11, 	 (5.2) 
at 	ax1  

ôpu, aptt1ui, =---+
2 +(p—p 0 )g1 , i = 1,2,3, 	 (5.3) 

at 	ax1 	ax, ax1  

ahaPU1h = a I 	
ç) 	

(5.4) 
at 	ax1 	&1 LPr P& 1  8x1  

where t is the production rate of the a -component of the mixture, p is the 

dynamic pressure (equal to difference between the total pressure P and the 

hydrostatic pressure in still air with density p0), a,  is the stress tensor, 

=+)1+?i_o..[pk+@+M 
'' )A- 	 (5.5) 

ax1 	ax,.) 3 ' ax,..)' 

It is the enthalpy of the mixture, 

h=Y(Ah + J7 c(T)dT). 	 (5.6) 

and a = fuel, 02,  CO, F120, N21  CO, C. Low Mach number flow at constant 

atmospheric pressure, P, is assumed. Density is obtained from the state equation, 

P = R pT>21!- , 	 (5.7) 
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for the ideal gas mixture. In the above turbulent flow equations, Favre-averaged 

mean values of parameters are assumed, wherever appropriate (with no overbars 

shown). 

5.3. Turbulence modelling & the effect of flow rotation 

The buoyancy-modified k - c turbulence model is used in this CFD model. In 

transport equations for turbulent kinetic energy k and its dissipation rate s, 

Bpk + ôpuk 	a ( 	x, ' ôk 
+p(G+GB ) — pc, 	 (5.8) 

 CFk  a 	axi  

apE  + 	 a 	
+ p(C 1  (G + CG3 )— C 2s), 	(5.9) 

at 	ax 

turbulence production by shear stresses and buoyancy are as follows 

G - P, 
auj  (au i  , auj - 2 au, 

 (k +.P' allk 	 (5.10) 
ax,ax ax,) 33xk 	QXj 

8 	 (5.11) 
p Pr, p  ax 

The eddy viscosity is calculated from Kolmogorov-Prandtl formulae, 

(5.12) 
8 

The constants used are C. 
 = 0.09, CO = 1.44, C, 2  = 1.92, C~B  = 1.01 0k = 

= 1.3, Pr, = 0.7, Sc, = 0.7 as suggested by [Launder and Spalding 1972]. This 

standard model is known to have a number of limitations. For example, this model 
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fails to adequately predict the correct lateral spreading rate of axisymmetric jets and 

plumes which results in overestimated axial temperature and velocity, and a poor 

prediction of flame width and length. A number of approaches have been suggested 

to resolve the problem, including axisymmetric corrections in the a -equation, 

adjustment of constants, and use of the algebraic stress models. In this work, when 

axisymmetric flames were simulated, the equation (5.9) for turbulence dissipation 

rate was modified by axisymmetric correction - C 3kôw/Oz to the turbulence 

production term (according to [Hanjalic, Launder, 1980]), with C3 = 0.5. As shown 

in [Snegirev, 2004], the experimentally observed spreading rates for the 

axisymmetric plumes in still air [Gengembre et al, 1984] are reasonably reproduced 

when this modification to the a -equation is used. 

What is particularly important for the framework of this study is that the above 

version of the turbulence model does not take into account the specifics of rotating 

flows. Indeed, in modelling of jet swirling flows, conventional isotropic eddy 

viscosity turbulence models, such as k - a, have proved to fail in correct 

representation of rotating flows. For this kind of flow, several modifications were 

proposed and explored for the eddy viscosity turbulence models [Leschziner and 

Rodi, 1981; Sloan et al, 1986; Jones and Pascau, 1989; Chang and Cheng, 1993; 

Yuan and So, 1998, among others]. These modifications were through corrections in 

the source terms within the dissipation equation (5.9) or correction to the eddy 

viscosity, Eq. (5.12), by expressing the C.  as a function of rotation. 

As shown in the literature review (Chapter 2), there is little experience of numerical 

modelling of buoyant turbulent whirling flames. Indeed, in simulations by [Satoh 

and Yang, 1997] constant viscosity was assumed, and the performance of turbulence 

model was not addressed. In the work [Battaglia et al., 2000], in which the 

experimental results reported by Emmons and Ying [Emnions and Ying, 1966] were 

modelled numerically, the predicted flame lengthening due to imposed rotation was 

much less pronounced than that observed in the experiments, although a large eddy 

simulation (LES) technique was applied. In this work, where a k - a eddy viscosity 

model is employed, the approach previously used to improve the model performance 

in jet swirling flows (namely rotation dependent correction of CM)  is applied in the 
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modelling of buoyant whirling flames. It will be shown that the conventional two-

equation eddy viscosity turbulence model, after the ad hoc modification, allows the 

experimentally observed lengthening of rotating flames. The discussion below is the 

justification of such a modification. 

As an approximation for realistic vortex behaviour, consider the Rankine-type vortex 

with angular velocity distribution (4.10) which combines features of solid-body (4.6) 

and free vortex (4.8) profiles. As mentioned earlier, the central forced vortex region 

r .c r0  (vortex core) exhibits flow field and turbulent characteristics, which are 

significantly different from those in the surrounding irrotational vortex flow field, 

r >> r0 . The traditional viewpoint [Sloan et al, 1986] is that the turbulence is 

stabilised by solid body rotation (i.e. inside the forced vortex core, where the 

turbulent fluctuations caused by centrifugal acceleration are resisted by the 

increasing pressure gradient) and destabilised by a free vortex profile. To take this 

behaviour into account, the Richardson number, Ri, is introduced, that expresses the 

ratio of centrifugal force of the mean flow to a representative turbulent quantity. The 

conventional form of the Richardson number is given by [Sloan et al, 1986]: 

V0  ô 
---R v 0  

Ri = Rtô 
e 2 /k 2  

(5.13) 

where R is the local radius of curvature of the streamline. The numerator in 

Eq. (5.13) is equal to 202  in the forced vortex core (4.6), and it tends to zero in the 

free vortex (4.8). Thus inside the core, the Richardson number (5.13) is inversely 

proportional to the ratio squared of the period of rotation (of the mean flow) to the 

turbulent time scale, k/c. There is however another way to define the Richardson 

number, expressing the role of centrifugal acceleration of the mean flow explicitly: 

Ri 
= (v/Rj 
	

(5.14) 
s 
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The latter relationship (where the Richardson number is set to the ratio squared of 

the centrifugal acceleration, v /R, (of the mean flow) to the corresponding 

turbulent quantity, c10 2 ) was used in this work. The coefficient in the turbulent 

viscosity formula (5.12) was modified as follows: 

c; = (CM  - cr )exp(— CO3 Ri 2  )+ Cr" 
	

(5.15) 

where C.-n  and C. are the adjustable model constants. Note that the Richardson 

number corrections (either to the source terms in the dissipation equation or to the 

turbulent viscosity) have not been optimised for general rotating flows, and they can 

be case-dependent [Sloan et al, 1986; Wilcox, 1998]. Also, the systematic 

experimental data on buoyant whirling flames, which might be used to determine a 

suitable constant adjustment, are not yet available. Here, the conclusion made in 

[Emmons and Ying, 1966] was used, namely that turbulent plume mixing is reduced 

by an order of magnitude due to flow rotation. We therefore assumed that C °  /C0  

= 0.1, (whereas CM = 0.09 is the conventional value). Reasonable predictions and a 

relatively weak dependence of the simulation results on the numerical value of C. 

were obtained when C. was varied about the value of In the simulations 

performed C. was set equal to 0.0012. 

Note, other than (5.15) other modifications for C.  were also proposed for swirling 

flows, for example one similar to that by [Leschziner and Rodi, 1981]: 

• C1. 
 

C- 
1+CO3 Ri 

(5.16) 

Here we prefer to use Eq. (5.15) because, in contrast to Eq. (5.16), the dependence 

given by Eq. (5.15) has an inflection point, RY = i/]b, which separates regimes 

with negligible (Ri c  RY) and strong (Ri > Ri) effect of rotation on turbulence. 

For C. = 0.0012 used in the simulations, RI = 20.4. 
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To calculate the Richardson number the local radius of curvature and the angular 

velocity are required. In the problems addressed in this work, the radius of curvature 

should only account for flow rotation about the z axis. It was therefore calculated as 

[Korn and Korn, 1968] 

R=1/Jf 2 +yM2  

where x' = 32x/3s2 
, 	

= 32y/5s2 are the derivatives of the fluid particle and 

Eulerian coordinates taken in the streamwise direction, and s is the coordinate 

parallel to the streamline. Differentiation along the streamline yields 

	

 8(ôxdt" O1u 	11ôuôq"
-u-I, 	 (5.17) 

( ax )

=)=J=ka 	as,, 

y" 	 ( ~
L d' ) =2-(V) =-L(a`v q –v-4)q) , 	 (5.18) 

OsLôs) 5s3t ds 	3sq 	q2 Os 	ôs 

where q = ds/dt = ,ju2 + v 2  , since only rotation in x 
- 

y plane, i.e. about the z 

axis, is considered. In the above equations, 

aq 1 	I — 
aq a 

as 
-= -. 

[q J = 
qÔx ay ) 

au  
4

4 I 
=—u—+v—I, 

ôu Ou' (5.19) as lq ) 	q
I 

Ox ay) 

av  i &V ôv '  44 =—I u—+v 
as q ) 	q1 Ox yJ' 

where Ej = ui + vj. For a fluid particle that has coordinates (x . , z), the centre of 

rotation in horizontal plane were found as 

x=x+fR, 	 (5.20) 
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Radial and angular components of the velocity vector where then obtained from 

C 
V U

x—x 	
ye 	 c+V  

x—x 

R 
(5.21) 

The use of the modified coefficient C (5.15) for the turbulent viscosity calculation 

provided significant improvement in the model capability to predict elongation of 

whirling flames. 

5.4. Modelling of combustion and soot formation 

A three-reaction model for fuel oxidation including two sequential semi-global steps 

was used in this model. In the first reaction step, fuel decomposition produces carbon 

monoxide, soot and water vapour: 

CH 0 
c n11  IT0 

( 2 	4 	2 ) 

(i - YLc )"c" 0  + xcncC + fl H2 0 
	

(5.22) 

In the second step, carbon monoxide and soot oxidise to produce carbon dioxide: 

c0+10, --) Co2 . 	
(5.23) 

C+0—>CO2 . 	 (5.24) 

The reaction rates for all three reactions (5.22), (5.23) and (5.24) were determined by 

the eddy break-up model: 
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(5.25) k 
=Cmin[Yfu 

.!2a- 	Yfr ClS 	 '1 
fuel 	P 	

' j 	+ 	+ Ys 

(2)6 	( 

	

= C, - min1Y0, 	
YJ1Sr + 	+ Ys 	

(5.26) Co  

A 
=C(!min[Yc,2L 	

(5.27) 
C 	R 	

s 	Yf, Cls + 	+ ). 

where s, s, and s 	are the oxygen mass stoichiometric coefficients for 

reactions (5.22), (5.23), and (5.24), respectively. The standard value, CR ' 2 ' 3 
 = 4.0 

[Magnussen and Hjertager, 1977], was used here similar to other works 

implementing this model. Soot oxidation was neglected for mean temperatures 

below = 640 K. 

Soot formation was modelled using the empirical relationship from [Khan and 

Greeves, 1974], 

PRsp = CsFPfre!+ exp(— ESF /RT), 
	 (5.28) 

which couples the soot formation rate with the partial fuel pressure, fre/'  the 

equivalence ratio, = (YfUC,$ )/ 0  , and the temperature, T. The numerical values 

of n = 3 and E51. /R = 20 000 K were used as in previous studies [Khan and 

Greeves, 1974; Abbas and Lockwood 1985; Coelho and Carvalho, 1995]. 

In averaging the soot formation rate, Eq. (5.28), it was assumed that the major effect 

of turbulence is due to temperature fluctuations. An approximate relationship has 

been obtained in [Snegirev, 2004] that couples the averaged soot formation rate, 

RSF with the mean temperature, T, and its variance, 1sT = 	(the latter is 

calculated from separate transport equation for V 2 . Eq. (5.42)). Approximating 
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probability density function for temperature fluctuations by two delta functions, the 

temperature dependent term of the average soot formation rate (5.28) can be shown 

(see [Snegirev, 2004]) to be equal to A exp(— Es,.  /RT); the factor 

A = ex p(ESFZIT/RT 2 ) approximately accounts for the effect of temperature 

fluctuations'. 

The soot production efficiency, Xc'  appearing in Eq. (5.22) is then obtained as Xc = 

min(1, (wiue,/nc wc A,)), where is the reaction rate of fuel oxidation. The 

model parameter, C, was taken to be C51.. = 6.0 kg/(N.m.$). 

Table 5.1. Mass stoichiometric coefficients (three reaction scheme) 

a CI) S (2) 
Q 

(3) 

Fuel CnCHn,IOnONnN 1 

Oxidiser 02 fl u 	flo ' 	oz  ((1xc)+7_1J_ i W0 

Wc 

Products C X c fl c Wc  

wfuet  

CO (1_x c )nc Wco  1 

Wjuet  

CO2  0 Wco  

Wco  Wc  

H2 0 n 

2 	
Wfiel 

N2 
'N 	

K',., 

2 Wfel  

'In Eqs (5. 1)-(5.7), the overbar is omitted for the mean quantities. 
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The source terms, i., in specie conservation equations (5.2) take the form: 

fue! = Rfud  

- (Ô _ b 
r0 5CO"juel "co' 

T =sj7R1,et —R e , 

- (2) h 	(3) 
rCO - CO, Co 	CO, C' 

, 	
- (I) 

h',0 - /1 20 fuel' 

- 	(I)' 	- (2)' 	- (3)' 
r0  - 	fret 	02 CO 	o, C' 

(5.29) 

where the indices (')' (2), (3) correspond to reactions (5.22), (5.23), and (5.24) 

respectively, s ( i )  are the (positive) mass stoichiometric coefficients of a -th 

component in i -th reaction given in Table 5.1. 

Justification of this combustion model is discussed in [Snegirev, 2004]. Despite its 

simplicity, the model provides predictions, which are mainly in agreement with the 

experimental data and with the more advanced combustion models. A one-step 

reaction, 

C H 1f  0 ' O 11  N 
N +[nC[1_ XCXCO) +t_t

)

o2  e 	'1   

(i - Xc Xco)12c4'02 + H,0 + N 2  + X C F2 CC + XCoCCO, 	 (5.30) 

with constant prescribed values of Xc and  Xco taken from published measurements 

(0.07 and 0.01 for diesel, 0.04 and 0.007 for heptane, 0.01 and 0.0 for ethanol) was 

also used in the simulations; the choice of soot formation model did not significantly 

affect the structure and behaviour of the whirling flames studied. Note, the 

phenomenon of flame whirling, being mainly of hydrodynamic nature (see the 

explanation based in the analysis of vorticity equation in Section 4.4), appeared to be 
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not too sensitive to the choice of combustion model. Therefore, the use of simple and 

robust model described above is justified for the purpose of this work. 

5.5. Modelling of thermal radiation 

In this model, a non-scattering media is considered, spectral properties of which 

were approximated by the effective absorption coefficient (gray media assumption). 

Scattering of thermal radiation by soot is neglected since the diameter of primary 

particles composing soot aggregates formed in flames is significantly less than the 

characteristic radiation wavelength [Viskanta, Menguc, 1987]. The gray media 

assumption is justified by the appropriate choice of the effective absorption 

coefficient as discussed later. 

The radiative transfer equation (RTE) integrated over the entire spectrum is 

employed [Viskanta and Menguc, 1987; Modest, 1993; Lallemant et al, 1996]: 

ds 
	1CpIb1CJ, 	 (5.31) 

where 

= JdX 

is the total intensity, 

4 = .c 4d%=aT/n 

is the black body intensity, 

1C, = TO K
klbkdX/f lb).dX 	 (5.32) 
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is the Planck mean absorption coefficient, and 

K = 
	
KxJAdX/J00 IdX 	 3) 

is the incident mean absorption coefficient. Generally K, # ic since the spectrum of 

incident radiation, i, differs from that of black body, 4,. However, for a gray 

media ic,, = ic, and the RTE, Eq. (5.31), simplifies to 

dI 
 = )C(I —i). 

ds 
(5.34) 

To solve the energy conservation equation, the divergence of radiative heat flux must 

be calculated, 

Vq = ic(4ciT —G), 	 (5.35) 

where G = f4a 
Idw is incident radiation; this being the total radiation intensity 

impinging on a point from all directions. 

The effective emission/absorption coefficient, K, is calculated to provide a correct 

value for the total emissivity of the mixture occupying a given control volume of the 

computational grid. Although such an approach suffers from lack of a theoretical 

justification, previously reported predictions of the total radiative heat flux (as 

discussed e.g. in [Lallemant et a!, 1996] and demonstrated in [Snegirev, 2004]) were 

found to be in reasonable agreement with the measured radiative fluxes. Further 

validation studies against the measurements made in this work are shown later in 

Section 5.8. 

LIN 



Chapter 5. Mathematical model and CR3 code 

5.5.1. Radiative properties of combustion products 

The participating media comprises CO,, H 2 0 1  soot, CO, and unburnt 

hydrocarbons. 

For CO2  and H 2 0 mixtures, the gray absorption coefficient, Kc02+1120.  is defined 

for 	each 	grid 	cell, 	such that 	it 	yields the same 	total emissivity, 

6 co2+ ,j20 
= 1— exp(— ic 02+1120 L), as that obtained from the exponential wide-band 

model (which is often used to provide benchmark data, for example see [Lallemant 

et al, 1996; Smith et al, 1982]) in a homogeneous media. The total emissivity is 

calculated using the relationship, 

3 

co,+n,o = Ea, (T(1 - exp(ic g,jg  (i ,  + P11,0  )L)), 	 (5.36) 
lg =O 

in which the gas mixture is represented by one transparent and three gray gases with 

absorption coefficients K11 . The weighting factors, gJg  (T), are dependent on 

temperature, 

agig  (T) = I bg 
J1  7 , ig  = 0, 1, 2, 3. 	 (5.37) 

The numerical values of polynomial coefficients b11  and absorption coefficients 

K gjg  were taken from [Smith et at, 1982]. For a grid cell with sides &, Liy, Az, 

volume LW = AxAyAz, and surface area AA = 2(AxAy+&Az+AyAz), the mean 

path-length is calculated as L = 3.6AV/AA . The mean absorption coefficient is then 

derived as 

K0+110—lfl1 	
1 

L 	1cco .no ) 
(5.38) 
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The soot absorption coefficient is calculated as in [Smith et a!, 1987], 

2 

= 	a,3  (T)ic 51, 	 (5.39) 
=1 

where the soot is represented by two gray "gases", i, = I, 2, with the absorption 

coefficients 

The contribution of carbon monoxide and unburnt hydrocarbons is also 

approximately accounted for in the proposed model. Because of lack of experimental 

data on radiative properties of hydrocarbons, the fuel absorption coefficient, 

ic, (T), is equated here to that of methane. In view of the low fuel partial pressure 

in the flame zone, the error introduced by this assumption is not expected to be 

significant, with the exception of very large pool fires. Mean absorption coefficients 

for methane and carbon monoxide, ICCH  (T) and ic co (T), were calculated using data 

from [Marracini and Lentini, 1997], both in the optically thin limit. The total mean 

absorption coefficient for the gas-soot mixture is then calculated as the sum, 

K- KC0+1120(T,PC,PK20,L)+KsoorT,fV)+KcO(T,PCO)+KfuAT,Pfuet), (5.40) 

of the all the contributing components. 

5.5.2. Turbulence-radiation interaction 

Turbulence-radiation interaction might be particularly important in buoyant flames 

with high magnitude of turbulent fluctuations. Indeed, root mean square of the 

velocity and temperature fluctuations were found to be up to 50% of its average 

values, see [Cox and Chitty, 1982; Gengembre et al, 1984]. In this work, the effect of 

turbulent fluctuations is approximately taken into account through its influence on 

the radiation emission [Snegirev, 2004]: 
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( 	T' 2 	 &I 
wcT=aicT 4 i 1+CTR, 1 6 —j- +CTRJ2 4=--= 	 (5.41) 

T 	K.TOT?) 

where the absorption coefficient R is calculated from Eq. (5.40), and the mean 

square temperature fluctuation T' 2  is obtained from separate transport equation, Eq. 

(5.42). The constants used are C 11  = 2.5 and CTRJI = 1.0 [Snegirev, 2004]. 

The temperature variance, T' 2  , (which is needed to calculate time averaged 

radiation emission rate (5.41) and soot formation rate (5.28)) is obtained by solving 

corresponding transport equation [Kuo, 1986; Poinsot and Veynante, 2001]: 

opT' 2 +  OPUJ T 	 a 	 + 	 - C.pT'--, 	(5.42) 
at 	8x, 	 P 1  ôx, 	ii, ôx Ox 

where Cr =  2.0 is the model constant. 

5.5.3. Statistical modelling of thermal radiation transfer 

The statistical (Monte Carlo) method (for example, see [Modest, 1993]) is used to 

model thermal radiation transfer. This is the advanced methodology that circumvents 

the ray effect which is inherent in more conventional (discrete transfer, discrete 

ordinate, multi-flux) methods currently used in CFD fire models. Such an 

improvement is extremely important in quantitative predictions of thermal impact of 

fire onto surrounding structures. 

In modelling the interaction of the radiation emitted from the plume with solid 

boundaries we assume the solid surfaces to be gray diffuse emitters and reflectors 

that are maintained at a constant temperature. The method is applied to radiation 

emitted by both gases and particles in any internal control volume and by boundary 

surface elements. In both cases the method is applied in each time step and it consists 

of the following two stages [Snegirev, 2004]: 

E*J 
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When the radiation emission by internal control volumes is calculated: 

1. Every control volume (grid cell) launches a sufficiently large amount 

(discussed below) of energy bundles ("photons"), the total energy of which is equal 

to 4oicT 4 aV&, where AV is the cell volume, S is the time step. The locations of 

the emission points inside the grid cell and the photon travelling directions are 

randomly chosen with probability uniformly distributed over the solid angle 

(emission is isotropic). The photon then travels along straight lines. As a photon is 

launched, the energy contained in the grid cell is reduced by the energy of the 

photon. 

2. The history of a travelling photon is then tracked. A photon may be 

absorbed into the grid cell, which results in an increase of the energy of the grid cell 

by the energy of the absorbed photon, or may penetrate into the adjacent grid cell 

where its history is tracked in a similar manner. A photon may also approach a 

boundary of the computational domain (solid wall or open boundary) and in this case 

a decision is made to either absorb the photon or to reflect it away from the 

boundary. The probability of absorption is proportional to the wall absorptivity, 

which is assumed here to be equal to the wall emissivity, c, and if absorbed, a 

photon contributes its energy to the radiative heat flux received by the boundary. 

When the radiation emission by the boundary surface elements is calculated: 

1. Every boundary surface element (boundary face of a grid cell) launches a 

sufficiently large amount of photons in which the total energy is equal to 

where 6.A is the area of the surface element. The locations of emission 

points inside the surface element and the photon travelling directions are randomly 

chosen with their probability uniformly distributed over the hemisphere above the 

element (the boundary is assumed to be a diffuse emitter). As above, the photon then 

travels along straight lines and as a photon is launched, the energy received by the 

surface element at a given time step is reduced by the energy of the photon. 

2. The history of a travelling photon is then tracked, similar to that for the 

photons launched by internal grid cells. 
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The value of the divergence of radiative heat flux, Vq, which is the sink term the 

enthalpy equation is equated to the difference between emitted and absorbed energy 

divided by A VAt. 

The photon tracking procedure is as follows. Let r, r, r, r0 , r,, and rObS  are the 

random variables uniformly distributed between 0 and I. Coordinates of the 

launching point, x0 , y 0 , z 0 , of the photon are then calculated as 

xo  =xii  +T(X 1  —x,_ 1 ), 

Yo = Y-i + ry 	- Yj-I)' 

zo = Z_1  +rZ (zk — zk_l), 

where x,, y,, z are the coordinates corresponding to grid faces (the grid is 

composed by rectangular cells). The direction of the travelling direction is 

represented by vector óì = + co 3,j + w 2 k, in which the direction cosines are 

related to polar and azimuthal angles 0 and p: 

co =sinOcosp, 

w,, =sinOsinp, 

co =cosO. 

Angles 0 and p are derived from the following relationships: 

cosO = 	—1, 

p = 2mr, 

to provide isotropic emission over the entire solid angle. 
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As the direction of the photon travelling is specified, the photon trajectory in 3D 

space and therefore the coordinates, x, y, z, of the photon entrance into the next 

adjacent grid cell are obtained from 

x—xo = y — yo = — o  

(0, 	(1) 	(0 

where x0 , y0 , z0  are the coordinates of either the point of photon emission or the 

point of first appearance of the photon in the grid cell. The path length to the photon 

absorption, Lab,  inside a given grid cell with absorption coefficient, K, is calculated 

Lab, = 1 
	1 
ln

( 1— r.b,) 
. 

 

K  

If Lab,  turns out to be less than the distance to the adjacent grid cell along the photon 

trajectory, then the photon is considered to be absorbed by the media. 

The number of photons launched by each grid cell and surface element was taken to 

be proportional to the difference between the radiation emission at grid cell 

temperature and the radiation emission at minimum (background ambient) 

temperature: 

K(T -7)v 
N0, .j.* = 1"voi zmx 	

K1T - 	 v 
vol j.f.k 

c(T —1).A 
N, U,,., Jk  =N_ 

surf j.f.k 

With this approach, photons cannot be launched by the cold media, thereby avoiding 

temperature undershoots which may appear in this case because of finite photon 

energy and finite number of photons. The total number of photons, N,0 , = N, 

EIR 
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+ N,uq  =X , was taken in the range from 105 to 2• 1 6•  The energy of each photon was 

obtained as the ratio of the radiation emission by the grid cell (4(YicT 4  A VAt) divided 

by the number of photons launched by the cell. 

5.6. Boundary and initial conditions 

Two types of flames, unconfined and enclosed have been modelled in this work. 

Similar to the experimental setup described in Chapter Three the round shape fuel 

burner was located centrally at floor level. The domain size had dimensions of 

2.4x2.40.29 m for unconfined flames and for enclosed flames the enclosure 

measured 2.4x2.77x2.29 and the computational domain was further expanded 

beyond this enclosure to a size of 3.4x2.770.29m, (further extension of the 

boundary did not significantly affect the numerical solutions) and at the open 

boundaries the dynamic pressure p was set to zero. Initial values were assigned for 

all transported quantities in the inlet part of the open boundaries and zero normal 

gradients were imposed for all the quantities leaving the computational domain. In 

solving equation (5.42) for temperature variance, zero initial and boundary 

conditions were used. On the solid wall surfaces, conventional wall functions were 

used to specify boundary conditions for turbulent quantities, tangential velocity and 

enthalpy whilst a zero pressure gradient was imposed on pressure. The temperature 

of the solid wall was equal to the initial temperature, T0. 

Boundary conditions, particularly for turbulent quantities, k and c, at the burner 

exit or fuel surface significantly affect the flame shape and structure. The usual 

approach is to relate k 	 and efuel to  the fuel velocity, kfiel = CkVIflI2,fuel 

3/2 
= C k, llt.fud 

 , where the turbulent length scale, 1,fuel  I is expressed via the 
fuel 

burner size (e.g. equal to the burner radius [Adiga et al, 1989]), and C. and C6 , are 

the adjustable parameters. However, optimum values for these parameters were 

found to be case dependent and this is because the fuel velocity at the burner exit, 

V1 ,, is not a characteristic value for the entire flow, which is (dissimilar to high- 

momentum jet flames) driven by buoyancy rather than by the fuel momentum. This 

RE 
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is reflected in very small values, of the Froude number, Fr = Vjj2/gD) being in the 

order of(1O to 104  see Table 3.2), A similar approach (used in [Blundson, 1996]]) 

is to preassign numerical values for k fel and '(fuel at the burner exit and to also 

introduce two adjustable parameters. However, in the case of buoyant flames, which 

is also applicable to evaporating pool fires, the burner or pool surface should be 

regarded as a solid one rather than as an inlet flow through a jet nozzle, thereby 

avoiding use of extra adjustable parameters (C  and C, or kfuel  and 'ifrel)  in the 

model. This assumption is used here neglecting, the very low velocity of emanating fuel 

vapour from the surface and the effect of mass transfer. As flow near to the burner exit 

or fuel surface might not be fully turbulent, it is important to allow for this possibility by 

a near-surface control volume, either in the viscous sub layer or in the turbulent part of 

flow. 

A wall function approach was used to specif' boundary conditions (fuel, floor, walls and 

ceiling surfaces) for turbulent quantities, tangential velocity, and enthalpy. The central 

points of near-wall control volumes (designated here by index P) were specially 

considered. Depending on the numerical value of il p  = C11 11 pJi&/,.s, point P was 

regarded as situated within the viscous sublayer (1 . :5 10 = 11.5) or in the turbulent 

region (ii,. > lo). Shear stress and heat flux at the surface were calculated from 

T. = jf V,,,/Ax,, and q = —D (h 4. —h(T))/Ax, respectively, where V1 , is tangential 

velocity, Ax p  is normal distance from the surface to point P. Linear profiles were 

assumed for tangential velocity and enthalpy inside the viscous sublayer, (i.e. x = 

and D =M/Pr, if rl p  :5lo).  The log-law was applied within the turbulent region 

(i.e.if 
= ppC4./1cAxp/ln(Eflp) and D = p,.c",Jkica.x,./pr, ln(Eh1P),  if 

lp >10 constants E =exp( 0 ic)/ 0  = 9.71 and E. =exp(Pr 0 ic/Pr,)/i 0  = 10.4 

were obtained by matching linear and logarithmic profiles at n, = lb with K = 0.41, 

Pr = 0.72, Pr, = 0.7. In solving the transport equation for k, the diffusion of k to the 

surface was neglected and in the near-wall control volumes the dissipation rate was 

prescribed as c,, = 2ji,,k/p,.A4 [Wilcox, 1998] if , ~i and 

C P  = C 4 k 2 /1cAx,. otherwise. Turbulence generation rate was equated to c,.,and the 

[:E 
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turbulent 	viscosity 	was 	set 	as 	in 	[Zaichik, 	1997]: 

PtP = tLp (]l+4knp (i_exp(_n p /4)]2  —1)/2. where A = 26 this being the Van 

Driest constant. The latter relationship for t, allows for limiting cases of both the 

turbulent region (Tip —* CD, j.t,, -+ Cpk 2 /c) and the viscous sublayer (i —*0, 

Ptp >Pp t' j 2  Vp /Ax,. ,where i,, =icAx(1—exp(—i/A)) is the mixing length). 

The temperature of the solid walls, T,,, was set equal to the ambient temperature, T0 . 

Ambient values were also assigned for all the transported quantities within the inlet 

part of the open boundaries and zero normal gradients were imposed for all the 

quantities leaving the computational domain. In solving Eq. 5.42 for temperature 

variance, no boundary conditions were used. The ambient air characteristics were 

taken as follows: temperature is T0  = 298 K, pressure is I atm, nitrogen and oxygen 

mass fractions are 0.77 and 0.23 respectively, and the turbulent parameters are k0  = 

10 m/s2  and c 0  = 10 3  m2/s3 , which corresponds to a turbulent length scale of 

k0312 /c = 0.032 m 

In radiation modelling, the wall surface emissivity was taken as c. = 0.7 and the 

emissivity of the liquid fuel surface was set to 0.4. The photons that approached an 

open boundary were considered to have left the computational domain. 

In modelling the burning liquid pool fire, two approaches to describe the fuel supply 

rate are used. The first one implies a constant prescribed fuel evaporation rate, rhfiel 

(mass burning rate) and in this work the numerical value for this parameter was 

taken from the experimentally measured range of mass burning rates obtained in 

Chapter Three. Within the second approach, the thermal feedback between the gas 

flame and the fuel surface is taken into account and it was assumed, that the 

evaporation rate is limited mainly by the incident heat flux. This assumption is valid, 

if the temperature of a liquid surface is close to its boiling point (which is typical for 

a fully developed fire). In the experiments, the subsurface temperature of the fuels 

used was indeed close to the boiling point (measured by thermocouple shown in Fig. 
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3.4); and therefore the boiling temperature was used as a boundary value at the fuel 

surface in the simulations. The burning rate was then calculated from the heat 

balance at the fuel surface given by, 

th fiel (X I Y)— 
q11 (x,y) 

(5.43) 
AH vap (Tj )' 

where 

qfu (x,y)=qr  +q — q0 	 (5.44) 

is the total (net radiative and convective minus heat loss rate) heat flux received by a 

given point of the fuel surface; and ,v-z,,, (i) is the enthalpy of vaporisation at 

initial conditions and the fuel temperature taken equal to 1. 

In Eq. (5.43) the net radiative heat flux, q,, is calculated by the statistical method as 

a balance of the incident and reflected radiant fluxes and less fuel surface radiation 

emission. The convective heat flux, q, is calculated using a wall function approach 

as discussed above; and the heat loss rate is assumed to be proportional to the 

difference between fuel surface temperature and the ambient temperature is given by. 

q 0  =hiuei (T_ —T 0 ). 	 (5.45) 

The origin of the heat losses from the fuel is the heat flux from the fuel surface to the 

base of the fuel pan and floor. Therefore, the heat transfer coefficient, hfrej  

represents the thermal resistance of: (i) the substrate, (ii) the contact layer between 

the substrate and the bottom of the pan (metal skirt of 0.05 m as described in Section 

3.2.2), (iii) the pan bottom itself, and (iv) the fuel layer between the top of the fuel 

surface and the bottom of the fuel pan. Numerical values for these quantities are case 

dependent and are difficult to be estimated for a general situation. For the 

experimental arrangements made in this work, zero value of hfuelwas  assumed. 
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5.7. Numerical implementation 

Two types of flames, unconfined and enclosed, have been modelled in this work. 

Similar to the experimental studies (See Chapter 3), in both cases a circular fuel pan 

of 0.6 in diameter was located centrally within the enclosure at the floor level. The 

domain size had dimensions 2.4x2.4x3.29 m for unconfined flames. In modelling the 

enclosed flame dynamics, the experimental enclosure 2.4x2.4x3.29 m was 

reproduced and in the latter case, the computational domain was expanded beyond 

the enclosure, having the dimensions of 3.4x2.77x3.29 m. The flow equations were 

discretised by using a finite volume approach [Hirsch, 1988; Ferziger and Peric, 

1999]. The non-uniform rectangular computational grid consisted of a total of 

102400 cells (40x40x64 grid nodes) that were employed in the simulations of 

unconfined flames; 122880 cells (48x40x64 grid nodes) were used in the simulations 

of flames within the enclosure and the grid nodes were concentrated within the flame 

zone to better resolve high gradients of the parameters. The fuel surface was spanned 

by 264 grid nodes of which the minimum cell sizes were of 0.03750.03750.03 m. 

and for preliminary simulations a coarser grid was also used, being 18432 cells 

(24x24x32 nodes). Table 5.2 illustrates the effect of the grid sensitivity in relation to 

the periodic formation and destruction of the vortex core at a prescribed burning rate 

(in this case 0.040kg (m.s2). The use of a coarse grid predicts that the periodicity is 

in the order of 21 seconds, further refinement of the grid nodes results in values of 

16 and 13 seconds using a medium and fine grid respectively. Further grid 

refinement although prohibitively expensive for computers at the time is not 

therefore expected to result in changes more than 20%. Similar behaviour was 

demonstrated by other monitored parameters i.e. the wall heat fluxes, flame height 

and its averaged axial temperatures. The spatial derivatives used in the diffusion 

terms were approximated by second order central differences. For the convective 

terms, first order upwind (UDS-1) and TVD schemes (with Van Albada limiter 

[Hirsch, 1988]) were applied. A fully implicit scheme was employed with a first 

order time accurate approximation of temporal derivatives. 

I'll 
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Grid type Nodes Period, s 

Coarse 24x24x32 21 

Medium 36x32x48 16 

Fine 48x40x64 13 

Table. 5.2. Sensitivity of the grids used in relation to periodic formation and 

destruction of the vortex core for a constant prescribed burning rate. 

A staggered grid arrangement was used in conjunction with a pressure correction 

technique, which couples the pressure and velocity fields in the low Mach number 

limit to satisfy the continuity equation. The Poisson equation for pressure correction, 

that is derived from the continuity equation, was solved numerically using the 

multigrid approach based on V-cycling over four nested grids with a successive line 

over-relaxation (SLOR) smoothing technique [Hirsch, 1988]. Discretised flow 

equations were also solved by the SLOR at each time step. The solution was 

regarded as converged when the residual heat flux scaled against a representative 

flux fell below 104. To provide coupling between the variables at each time step, all 

the equations were included into the external iteration loop. The time step was 

calculated to keep the Courant number no greater than a prescribed maximum value 

at each grid cell. The maximum Courant number was 2.0 or 0.6 depending on 

whether the first order upwind or TVD scheme was used. The code was developed 

for transient simulations and the steady-state solutions were obtained by solving the 

unsteady problem until the steady state was approached. 

To assess the dependence of the numerical solutions obtained on the computational 

grid and the discretisation scheme used, computational trials using the two above 

mentioned grids with significantly different cell sizes (for preliminary simulations a 

coarser grid was used being 18432 cells (24x24x30 nodes as opposed to the use of 

122880 nodes in the simulations)). This sensitivity analysis demonstrated that the 

solutions reported below are qualitatively grid-independent, although the numerical 

values of the calculated quantities changed observably with grid refinement. The 
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period between stages of formation of a whirling flame within an enclosure is not 

expected to change more than by 20% due to further grid refinement, which was not 

possible because of severe Cpu time requirements. 

5.8. Conclusions 

As a numerical tool for this study, the CFD model and code Fire3D has been 

adjusted to take into account the effects of rotation particularly the inhibited 

turbulent mixing within the whirling core. The Richardson number has been 

introduced as a controlling criterion and the C.  coefficient is dependent upon the 

Richardson number thereby reducing turbulent viscosity in the whirling core. This 

improvement was undertaken as a part of this work. 

In addition to earlier validation studies, the model and code were examined to test 

their capability in predicting radiant heat fluxes from the flames. Reasonable 

agreement has been obtained between the experimental and numerically predicted 

values for the heat fluxes at the enclosure wall. This observation supports the 

credibility of the model which is used for numerical studies of whirling. The results 

of such work are fully discussed within the next section. 
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CHAPTER 6. 

NUMERICAL SIMULATIONS OF 

WHIRLING FLAMES 

6.1. Simulations of open whirling flames 

Numerical simulations were conducted on unconfined whirling flames above a fuel 

source being 0.6 m in diameter that is centrally located at floor level (representing 

that used in our experiments). The flames were modelled in a computational domain 

such that 0 < x <x, 0< y <y, 0< z <z with x = y =x  =2.4m, 

= 3.29 m. The non-uniform rectangular computational mesh consisted of a total 

of 102400 control volumes (40x40x64 grid nodes) and these grid nodes were 

concentrated within the flame zone to better resolve the higher gradients of the 

parameters. The fuel surface was spanned by 264 grid nodes of which the minimum 

cell sizes were 0.03750.03750.03 m. 

Externally imposed circulation was modelled through boundary conditions imposed 

upon the velocity components tangential to the vertical boundaries of the 

computational domain. These velocity profiles were chosen to represent a free 

(potential) vortex and derived from Eq. (4.8) and (4.9): 

y — yo 	
Y=°'Ymax' 	 (6.1) 

27t (x—x0 )2  +(y—y0 ) 2  
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I-.0 	x—x0  

2n(x—x0 )2 
 +(y—y0 )

2'  

where x0 , y0  are the coordinates of the flow symmetry axis (half of the horizontal 

size each), F0  = 27u0 u, 	is the external circulation, and u,, is the maximum 

tangential velocity at the boundary. The effects of the external circulation upon 

flames that exhibited different heat release rates were numerically studied. The fuel 

supply rates, thfrej  were varied from 0.010 to 0.040 kg/(m 2 s), which covers the 

time-averaged burning rates measured in the experiments. To approximate diesel 

properties, gas fuel representing vaporised kerosene, C14 H301  was used of which the 

physical properties are shown in Table 3.1. 

The steady state mean temperature fields and flow streamlines for a numerically 

simulated whirling flame within an open space having a mass loss rate value from 

the fuel surface of thfid = 0.040 kg/(m2 s), which corresponds to a heat release rate 

of 516 kW (in this case diesel fuel), is shown in Fig. 6.1. Unconfined free-standing 

non-rotating flames (u = 0 m/s, 1-0  = 0 m2/s), and flames with a relatively weak 

(u 	= 0.2 m/s, F(, = 1.45 m2/s) and strong (u,, = 0.6 m/s, 1-0  = 4.35 m2/s) 

imposed external circulation are presented within this chapter. 

Clearly, external circulation significantly affects the predicted flame shape and 

length. Similar to earlier reported measurements [Emmons and Ying, 1966; Gupta et 

al, 1984; Satoh and Yang, 1996] and experimental observations (presented in 

Chapter Three), rotation may cause significant flame lengthening (Fig. 6.1b). 

However, the model also predicts flame shortening if the external circulation 

imposed is greater than some particular value (Fig. 6.1c). 
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Fig. 6.1. Steady state mean temperature fields and mean-flow streamlines in a 516 kW 

flame: a) F0  = 0 m1/s; b) F0  = 1.45 m2/s; c) F0  = 4.35 m1/s. 
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The turbulence model used in the calculations is of crucial importance for modelling 

flame lengthening due to rotation. The comparison of predictions for the axial 

temperature profiles given in Fig. 6.2 shows that the standard version of k —s model 

yields only a minor increase in the flame length when compared to the non-rotating 

case, while the modified model predicts a much longer rotating flame (matching 

experimental observations). 

m. =  0.04 kg/(m's) 

1500 

1250 
I - 

a 
1000 

U 
C 

1 750 

Non-rotating flame 
500-- Standardk-e model, r0  1.45 m2/s 

Modi lied k-c model, r, = 1.45 m2/s 

z, m 

Fig. 6.2. The effect of turbulence modelling on the predicted flame centreline 

temperature. 

Figures 6.3 and 6.4 illustrate the effect's of rotation upon the flame's internal 

structure. When compared to the non rotating case, Fig. 6.4 demonstrates that flame 

temperature predicted by the model shows a consistently higher core temperature in 

the upper regions of the rotating flame. The vortex developed is of Rankine-type of 

which the magnitude of the angular velocity is proportional to the external 

circulation (which is in accordance with the approximate theory, see Eq. (4.26)) and 

it also depends upon the flame heat release rate. In agreement with Eq. (4.25) the 

radius of the vortex core is not affected by the magnitude of the external circulation 

imposed. 
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Fig. 6.3. Radial profiles of angular velocity. 

Axial profiles of mean temperature and velocity are given in Fig. 6.4. It can be seen, 

that for flames with relatively low heat release rates (for example, rhf.d = 0.020 

kg/(m2 •s), 0 = 258 kW), external circulation may cause a decrease in the flame 

length. Rotating flames with a greater heat release rate (for example, 

thfr, = 0.040 kg/(m2 •s), 0 = 516 kW) create flame lengths that are significantly 

longer than their non-rotating counterparts and this can be explained using the results 

obtained in Chapter Four. Indeed, it has been demonstrated that the externally 

imparted vorticity is augmented by the rising accelerating flow; this being due to the 

buoyancy induced stretching of the vortex tube, while the vorticity in decelerating 

flow decays due to the expansion of the vortex tube. The accelerating part of the 

flow is obviously greater for flames with higher heat release rates. As the vorticity is 
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augmented, the increase of the speed of rotation causes a decrease of turbulent 

mixing 1  of the fuel with the entrained air, which is modelled using the turbulent 

viscosity Equation (5.12) and corrected using Eq. (5.15). Less intensive mixing of 

the reactants requires greater flame surface and, consequently, greater flame length 

and the opposite effects are obtained in the upper decelerating part of the plume. 

For either fuels (or mass burning rates) the imposition of weak circulation initially 

lengthens the flame (comparing 0.0 m 2/s with 1.45 m2/s), but additional circulation 

can subsequently reduce the flame length (compare 1.45 m 2/s with 4.35 m2/s, with 

7.23 m2/s); and for the lower heat output the reduction in the high temperature zone 

is such as to cause this zone to be shorter than was the case with no circulation. 

However, flame surface area is not dependant upon the flame height alone, but also 

on the plume diameter. 

'Note, larninarisation of flame was indicated in the experiments by [Satoh and Yang, 19961 
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Fig. 6.4. Axial profiles of mean temperature and velocity. 

Due to the vortex tube stretching in the rotating flow, the flame becomes narrower 

and this can be seen in Fig. 6.5, where the predicted radial profiles of mean 

temperature and velocity (in this case diesel fuel) are presented. The figure compares 

the effect of circulation upon the flame length and temperature. In the case of no 

circulation the effects of vorticity show little or no effect upon the predicted radial 

profiles; however the effects of imposed circulation upon the temperature and 

velocity are quite clear. The imposed circulation has reduced the turbulent intensity 

within the flame core resulting in a higher temperature distribution (flame 

lengthening) coupled with an increase of the vertical velocity of the buoyant plume 

when compared to a non rotating case. 
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Fig. 6.5. Radial profiles of mean temperature and velocity. 

As expected from consideration of a simple rotating flow (see Eq. (4.28)), the swirl 

number S (calculated here using Eq. (4.37)), was found to be proportional to the 

imposed circulation 170  and this is demonstrated by Fig. 6.6. 

When the swirl number exceeded a value of 0.6, flame shortening was indicated as 

shown in Fig. 6.1 c. Furthermore, flames with low heat release rates (such as 126 kW 

flame) became unstable, and steady state conditions were not reached. Note that 

behaviour of jet swirling flows also exhibits qualitative changes at high degrees of 

swirl (i.e. when S > 0.6 [Gupta et al., 1984]). 
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Fig. 6.6. Swirl number of rotating flows versus external circulation. 

Fig. 6.7 compares the radiative heat fluxes (obtained by the Monte Carlo method) 

emitted by the flames and calculated along the vertical line at a distance of 1.2 m 

from the flame axis. Since the rotating flames are normally thinner than non-rotating 

counter-parts with the same heat release rate (while their maximum temperatures are 

approximately the same) the local radiative heat fluxes are reduced when compared 

to non-rotating case. The change in flame shape also results in some decrease of 

radiative heat flux incident to the fuel surface and it can therefore be concluded that 

rotation of the flow within the vortex core alone is not sufficient to provide the 

experimentally observed increase in burning rate in whirling flames above 

evaporating pools. However, this rotation may instigate a suitable mechanism not 

accounted for in the CFD model used here to predict whirling fires in the open space. 
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Fig. 6.7. Radiative heat fluxes at a distance of 1.2 m from the flame axis: 

a) Q = 258 kW; b) Q= 516 kW. 

It can be suggested that the rotation of the flow intensifies the entrainment of the air 

into the fuel rich region near the fuel surface, which may intensify the mixing of the 

reactants in this area, thus providing greater reaction rates, temperature, radiation 

emission, and evaporation rate; and possibly moving the reaction zone closer to the 

fuel surface and it may then reduce the radiation blockage effect at the fuel surface. 

This is not yet fully understood but is attributed to a participating medium of fuel 

vapour between the fuel surface and the reaction zone. Fuel rich vapour near the fuel 

surface blocks reradiated heat from reaching the fuel surface. These phenomena may 

be a possible mechanism that encourages the observed increase of burning rate due 

to rotation. It has rarely been considered in modelling studies, but the effects have 

previously been noted in experimental and theoretical work within the Centre for 

Fire and Explosion Studies UCLAN. Despite the model not accounting for the 

radiation blockage of vapour under the reaction zone, the numerical simulations 

produced results which are in agreement with basic theoretical concepts of rotating 

flows. The rotation modification to the turbulence model introduced in this work has 

been shown to be capable in predicting experimentally observed flame elongation 

when whirling flame develops. 

After the analysis of flames in an open space, the model is then applied to simulate 

whirling flames within the enclosure. 
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6 Numerical simulations of whirling flames 

6.2. Simulations of whirling flames in enclosure 

6.2.1. Simulations with constant prescribed burning rate 

In numerical simulations, the experimental enclosure (see Chapter 3) is reproduced. 

The computational domain used in the simulations was expanded beyond the 

enclosure, having the dimensions of 3.4x2.77x3.29 m. A non-uniform rectangular 

computational mesh consisted of 122880 control volumes (48x40x64 grid nodes). In 

this section, simulation results are presented for whirling flames modelled with a 

constant prescribed fuel supply rate this being between 0.010 to 0.040 kg/(m2 s). 

Covering the time-averaged burning rates measured in the experimental work. Fig. 

6.8 demonstrates a representative temperature-velocity field with the flame zone, 

incoming airflow, hot layer, and the outgoing flows leaving the compartment 

through the ceiling vent and the doorway. A time instant is shown, when a straight 

rotating flame is exhausting through the ceiling vent. 
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Fig. 6.8. The predicted straight rotating flame exhausting through the ceiling vent: 

a) mean temperature and velocity fields; b) mean-flow streamlines and 773 K 

temperature surface (approximates visual flame). 
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6 Numerical simulations of whirling flames 

One of the main findings from the numerical simulations of enclosed flames was 

their intrinsically transient behaviour and unsteadiness. Although the predicted mean 

temperature, velocity and other fields are identical to that of unconfined flames of 

the same calorific power and required steady state, the enclosed flames appeared to 

be unsteady. The unsteadiness manifested itself through the precession of the flame 

and the periodic formation and destruction of the whirling high-temperature core. As 

discussed previously, this phenomenon has been also observed in the experimental 

enclosure. Frame by frame analysis of the predicted flame development has been 

performed, and different stages have been identified as shown by a sequence of 

frames taken from video recordings. Temperature and vorticity fields with mean 

flow streamlines are illustrated in Fig. 6.9 a-f. 

Once the whole surface of the fuel is involved the flame is deflected towards the 

corner near the front wall and no organised rotation occurs (Fig. 6.9a). Later on, the 

flame zone is driven anti-clockwise by the circulating incoming airflow and driven 

towards the front wall and consequently to the doorway. The vorticity slowly 

concentrates around the flame zone (Fig. 6.9b) and then the subsequent vortex core 

forms resulting in flame lengthening and the formation of a straight, long, thin 

rapidly rotating flame (Fig. 6.9c, d). The flame and the vortex core coincide at this 

stage of which the duration of which appears to be relatively short (in the region of 

5-10 seconds), depending on the fuel used. 

The incoming air inflow displaces the upper part of the flame and the entire vortex 

core towards the rear corner (Fig. 6.9e). Since the vortex core and the flame no 

longer coincide, the effects of rotation no longer reduce turbulent mixing of the 

fbellair mixture and the flame shortens. Further downstream displacement of the 

vortex core (Fig. 6.1 Oe) leaves the plume without a source of vorticity. Also, the 

upper part of the vortex tube is chopped off, because the tube is no longer directed 

towards the ceiling vent and due to above events the vortex tube finally dissipates, 

and the non-rotating flame temporarily stabilises as it is deflected to the left wall 

(Fig. 6.91). Then the whole cycle repeats itself in a cyclic manner. 
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a)  

b)  

c)  

Fig. 6.9. Comparison of observed and predicted flow. From left to right: frames taken 

from video recordings; surface T = 773 K (approximates visual flame zone); surface 

= 15 s (location of rotating core). Stages of flame development: a) Flame is 

deflected towards the rear wall, no regular rotation occur; b) Flame is deflected 

towards the doorway, whirling zone starts to form; c) Flame lengthens and straightens, 

vortex core develops. 
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d)  

e)  

6 Numerical simulations of whirling flames 

Fig. 6.9 (Continued). d) Flame is straight, it exhausts through the ceiling vent, stretched 

vortex core erects; e) Upper pad of flame is displaced by rotating incoming airflow, the 

vortex core travels towards the rear wall; I) Similar to a). Streamlines run out from the 

points at doorway cross-section, at elevations 0.2 and 0.4 m above the floor. 
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6. Numerical simulations of whirling flames 

Thus, the numerical simulations confirmed the reason and the mechanism of 

whirling flame instability and quasi-periodic precession: the formation of strong 

whirling flames increases the air inflow into the compartment, which in turn destroys 

the rotating column. 

a) 	 b) 

Fig 6.10. Periodic formation and destruction of the vortex core for different burning 

rates: a) maximum z-vorticity as a function of time; b) spectra of maximum z-vorticity. 



6 Numerical simulations of whirling flames 

Figure 6.10 presents the predicted periodic process by demonstrating the dependence 

of maximum w 2  in respect to time (Fig. 6.1 Oa); and presents the corresponding 

spectra (Fig. 6.1 Ob) obtained by Fourier transformation of this dependence. The 

predicted process is either aperiodic (as that for 10 g(m 2 .$)), periodic (for fuel 

supply rate of 20 g/(m 2 .$)) or quasi-periodic (40 g/(m 2 s)) and this is reflected in the 

spectra layout. It can also be seen that the dominant frequency for 40 g/(m 2 .$) is 

greater than that for 20 g'(m 2.$), which is consistent with the experimental 

observations of flames of fuels with different burning rates. The average period 

between the formations of a straight whirling flame varied from between 17 s for 

Phíuei = 0.020 kgl(m 2•s) to 12s for thfre! = 0.040 kg/(m2 .$). These mass loss rates 

correspond to the measured experimental results obtained for ethanol and heptane 

fuel and these values can be validated to some extent by the temperature fluctuations 

recorded in Figures 3.13 and 3.14 respectively. In these figures it is clear that the 

thermocouple does not remain within the flame core, approximation of the time that 

the thermocouple remains within the core corresponds to the predicted value 

numerically simulated. 

It is worthy of note that the conclusion about the decrease of the characteristic period 

as the fuel supply rate increases (i.e. more volatile combustibles are expected to 

produce a higher frequency of the process) was initially made purely on the basis of 

computational results (see [Snegirev 2004]). This conclusion is derived from the 

numerical predictions and later experimentally confirmed when the series of 

experimental tests had been undertaken as described in Chapter 3 of this work. 

6.2.2. Simulations with burning rate coupled with incident heat flux 

In this series of simulations, the fuel supply rate was coupled with the heat release 

rate through the boundary conditions as in equation (5.42). Incident heat flux to the 

fuel surface is dominated by radiative heat flux in this case being in the order of 65 

to 85% in the numerical simulations undertaken. The effects of the cyclic nature of 

the rotating flame affected the stability of the system in respect to consistent heat 

flux values. Indeed, once the flame is deflected and tilted, a significant fraction of 

the radiated heat flux can no longer reach the fuel surface, and is distributed outside 
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6. Numerical simulations of whirling flames 

the fuel pan area [Snegirev, 2004]). In this case the fuel evaporation rate from the 

fuel surface results in a reduced heat release rate in the flame zone. Alternatively, if 

the flame forms a straight high-temperature rotating column just above the pooi, the 

fraction of radiated heat that reaches the flame surface attains its maximum value. 

More fuel is evaporated from the surface causing greater heat release and an increase 

of the distance along which the flow accelerates and the vorticity increases. 
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Fig. 6.11. Oscillating flow and combustion in enclosure. Simulations with burning rate 

coupled with incident heat flux: a) - maximum z-vorticity; b) - fuel mass burning rate; 

c) - temperature at the centre of the ceiling vent; d) - incoming flow rate through the 

doorway (lower curve) and outgoing flow rate through the ceiling vent (upper curve). 
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6. Numerical simulations of whirling flames 

Computer simulations show that this mechanism leads to an increase in the 

frequency of the oscillations when compared to a constant fuel supply rate model. 

Furthermore, similar to experimental observations, the predicted oscillations are now 

disordered and aperiodic. 

This can be seen in Fig. 6.11, where the maximum vorticity, fuel mass burning rate, 

the temperature at the centre of the ceiling vent, and the incoming (through the 

doorway) and outgoing (through the ceiling vent) mass flow rates are presented as a 

function of time. After a transient period of about 100 s (which is longer than that for 

constant fuel supply rate, see Fig. 6.10), an oscillating regime is established with the 

period between formations of rotating flames (correspond to spikes in o 

dependence this being in the order of about 10 to 20 sec. Note the magnitude of 

variations of the burning rate is rather high: minimum and maximum values are 

approximately 15 and 50 W(m 2 s) respectively, i.e. a difference of a factor of more 

than three. The measured average value of the mass burning rate for diesel (see 

Chapter 3) is 39 gI(m 2 s), which indicates reasonable agreement of the measured and 

predicted values. Unfortunately, the experimental arrangements did not allow the 

measurements to be made of instant fuel evaporation rate and its variation in time. 

6.2.3. The effect of doorway location 

As identified in Chapter 4, two necessary conditions namely externally imposed 

circulation and vertically accelerating flow must be satisfied for flow rotation to 

occur. The location of the enclosure doorway and the ceiling vent position are very 

important to produce the conditions required to impose external circulation upon the 

flame. When the doorway is located asymmetrically, the inflowing air through the 

doorway provides external circulation for the centrally positioned rising plume and 

to further prove this conclusion, the simulation was carried out in which doorway 

was located symmetrically, in the centre of the front wall. 
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a) 	 b) 

Fig. 6.12. Predicted flame within the enclosure with the symmetrically located 

doorway: a) mean temperature and velocity fields; b) mean-flow streamlines and 773 K 

temperature surface (approximates visual flame). Fuel is heptane, mass burning rate 

is 40 gI(m 2 s). 

Figure 6.12 illustrates a representative temperature-velocity field obtained from 

relocating the doorway. Flame whirling does not develop, and the mechanisms for 

flame lengthening (the stretching of vortex tube and the inhibition of turbulent 

mixing) are not therefore activated. As a result, the "ordinary" non-whirling flame is 

tilted by the incoming airflow, and the flame length is similar to that expected from a 

'normal' diffusion flame (Eq. (2.5)). 

6.3. Validation of the model by experimental results 

Prior to use in this work, the model and code described earlier has been exposed to 

extensive validation studies covering both open and enclosed flames. In particular, 

buoyant turbulent diffusion flames of propane in still air above a 0.3 m diameter 

burner were modelled in [Snegirev, 2004]. There, a favourable comparison is 

presented of the predictions and measurements [Gengembre et al, 1984; Souil et al, 

1985] of gas species concentrations, temperature, velocity and their turbulent 

fluctuations, and radiative heat fluxes obtained in flames with different heat release 
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rates. Also, predicted the mass burning rates of a liquid fuel (acetone) were found to 

be in good agreement with the published experimental data [Babrauskas, 1983]. 

Similar to measurement results, the predicted burning rates where shown to increase 

with the pool diameter and to reach a constant level for large pool sizes. The 

examples of modelling of the enclosed flames are the works of [Snegirev et al, 2001; 

Snegirev et al, 2003], where a comparison is demonstrated of the predictions and 

experiments within a small-scale enclosure (fire box). In that case, conjugate gas-

solid heat transfer at the wall surface (and transient temperature field inside the wall 

material) was modelled, and the simulated wall surface temperature rise was similar 

to that measured. In the experimental part of this work, the heat fluxes received by 

the enclosure walls were measured as described above (see Sections 3.2.5 and 3.4.3), 

which were also used here for model validation purposes. 
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Fig. 6.13. Measurements and predictions of heat flux received by the enclosure wall: 

a) vertical profiles of total (net radiative and convective) heat fluxes; b) heat flux 

sensors RFS-3; c) predicted distribution of total heat flux received by vertical plane 

coinciding with the enclosure wall (fuel is ethanol). 

Figure 6.13 depicts a satisfactory comparison of the predicted and measured heat 

fluxes obtained from the whirling fire within the enclosure. In respect to Ethanol 

there is reasonable agreement with the experimental and numerical predictions, 

however in the case of heptane there is a difference. One suggested reason for this 

discrepancy was the build up of soot on the heat flux sensors during the experimental 

work. 
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Good agreement was also obtained in respect to the upper temperature of the 

whirling plume, peak temperatures of 1200K were recorded by the thermocouple 

situated at a height of 2.35 meters and this compares with the temperature profiles 

shown in Fig 6.2 at an equivalent height. Due to periodic nature of the whirling 

flame the thermocouples did not remain within the flame front and therefore peak 

flame temperature readings are discussed. 

6.4. Conclusions 

The 3D CFD model and code Fire3D (earlier developed for predictions of buoyant 

turbulent diffusion flames and modified in this work as described in Chapter 5) is 

applied to simulate whirling fires both in an open space and within an enclosure. The 

numerical simulations displayed the development of unconfined rotating flames, the 

effect of rotation upon flame structure, temperature, and radiative heat output. The 

formation of a Rankine-type vortex has also been demonstrated. Similar to 

experimental observations, flame lengthening due to rotation has also been predicted. 

In accordance with the approximate theory, the flame structure and its response upon 

the effect of externally imposed circulation were found to depend upon the 

magnitude of the external circulation and the amount of heat release rate in the 

flame. The latter determines the length of accelerating part of the flow, where the 

vorticity is amplified and if the external circulation is imposed then a Rankine-type 

vortex develops with maximum vorticity (at the axis) and angular velocity (at certain 

distance away from the axis) proportional to the external circulation. The swirl 

number of the rotating flow is shown to be proportional to the imposed circulation 

and at high degrees of swirl, flame shortening and destabilisation was predicted. 

Local and maximum radiative heat fluxes from the rotating flames (with constant 

prescribed fuel supply rate) were found to be less then those in non-rotating flames. 

This can be attributed to a change in the flame shape (the high temperature radiating 

flame zone is longer and thinner). It also indicates that additional physical 

mechanisms should be taken into account to explain and predict the experimentally 

observed increase in burning rate when the rotation of the flame occurs. A possible 

mechanism, namely entrainment intensification of the air into the fuel rich region 

near the fuel surface, has been identified. 
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Using Fire3D, whirling flame development was then simulated within the enclosure 

that was provided with a ceiling vent and asymmetrically located doorway. 

Circulating air inflow provided the externally imparted vorticity that was responsible 

for the formation of a buoyant whirling flame. The geometry of the enclosure 

represented that of the experimental compartment and similar to experimental 

observations, predicted whirling fires within the enclosure were found to be transient 

and intrinsically unstable, although of the unconfined flames of the same heat release 

rate produced steady-state mean flow fields. The periodic process of formation, 

precession and destruction of a whirling flame was predicted numerically and 

interpreted in terms of the conclusions from the existing theory of rotating flows. 

Experimental data has been used to validate the numerical model in respect to heat 

flux and temperature and good agreement has been obtained. 

The period of oscillations was found to decrease if the fuel supply rate increases. It 

was therefore concluded that more volatile combustibles should cause a higher 

frequency process. The predicted period was similar to that observed in experiments 

and different stages of flame evolution observed in the experiments (Chapter 3) are 

now predicted numerically. The transient process in which the whirling flame forms 

and deteriorates is explained in the terms of two necessary conditions required (the 

imposed circulation and vertical acceleration of the flow) for flow rotation to occur. 

The flame shape and the flow pattern were compared to those obtained from the 

video recordings of the experimental flames. The model predictions can therefore be 

regarded as being in reasonable agreement with the experimental observations of the 

whirling flame development. 

In the predictions the fuel mass loss rate was coupled with the thermal feedback from 

flame to the fuel surface and the oscillations are found to be more disordered and 

aperiodic when compared to the simulations with a constant prescribed fuel supply 

rate. 
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Chapter 7. Conclusions and future work 

CHAPTER 7. 

CONCLUSIONS AND FUTURE WORK 

7.1. Results and conclusions 

The formation and behaviour of fire whirls in enclosures has been investigated in 

this Thesis. 

Based on the review of the previous studies of buoyant turbulent diffusion flames, it 

has been concluded that the behaviour and characteristics of whirling flames are 

remarkably different when compared to their non-whirling counterparts. Also, 

buoyant whirling flames were found to be qualitatively different to swirling jet 

flames, which (due to their intensive use in industry) are carefiñly studied. Here, 

substantial gaps in knowledge and understanding have been identified regarding the 

development and characteristics of medium scale whirling fires in room-size 

enclosures. 

This work included experimental, theoretical, and computational components. 

In the experimental programme of the research, the experimental apparatus has been 

designed and constructed to produce whirling flames and to measure their major 

characteristics. In the experimental enclosure, fire whirls above a fUel pan (located in 

the centre of the enclosure beneath the ceiling vent) fed with liquid fuel were 

generated when the airflow (incoming through the asymmetrically located doorway) 

imposed its circulation onto the flame above the pan. An asymmetrically located 
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vertical doorway at the front wall, and central ceiling vent appeared to be necessary 

for the whirling flame to develop. 

To justify the measurements of mass burning rates, temperatures and heat fluxes in 

the case of enclosed whirling fires, an additional series of experiments have been 

carried out with free-standing non-whirling flames above the same size fuel source. 

Measured burning rates and flame heights have been compared to the data published 

in literature; the results obtained have demonstrated fair agreement thus justifying 

the suitability of the apparatus to undertake experimental studies of whirling fires 

within enclosures with sufficient accuracy. 

Observations of whirling flames in the experimental enclosure have been made, for 

three liquid fuels namely ethanol, diesel, and heptane. These fuels when burnt within 

the enclosure exhibit considerably different mass burning rates, when compared to 

the values for non-whirling flames. Key characteristics, burning rates, temperatures 

and heat fluxes have been compared to their non-whirling counterparts produced 

with the same fuel source. 

The observations revealed remarkable and distinctive features of whirling flames: 

1. Whirling flames in the compartment exhibit much greater burning rates of 

between 40 to 110%, higher depending on fuel type when compared to their 

non-whirling counterparts. 

2. Whirling flames in the compartment are induced by asymmetrical air flow 

were always unstable and existed for relatively short period of time (in the 

order of 10 seconds). The existence of a whirling flame was part of a quasi-

periodic process of flame precession accompanied with the formation and 

destruction of the whirling column. Periodic whirling flames produced large 

temperature fluctuations. 

3. The characteristic period of the process depends upon the fuel burnt. It has 

been found that the period decreases as the total heat release rate increases. 

4. Whirling flames are thinner and much longer than non-whirling ones. 

5. Whirling flames within the enclosure produce greater radiative heat fluxes 

than non-whirling ones in the open space (although the fuel source is the 

same). 
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6. During the existence of a whirling flame, the upper smoke layer is 

completely expelled through the ceiling vent. 

To examine the physical mechanisms responsible for whirling flames to develop and 

the conditions necessary for flame rotation to occur, basic concepts of the existing 

theory of rotating flows have been applied. By the theoretical analysis of the 

vorticity equation, two necessary conditions have been identified for buoyant 

rotating flows to develop: 

I. non-zero background vorticity (and external circulation) and 

2. vertical acceleration of the flow. 

The primary mechanism of the vorticity concentration within the vortex core is the 

stretching of the vortex tube and the latter is balanced by viscous (and possibly 

turbulent) dissipation. When the above conditions are satisfied, the steady rotating 

flow was shown to have a radial velocity distribution similar to that of the Rankine 

vortex; the swirl number of the flow was found to be proportional to the external 

circulation. In the internal part of Rankine-type vortex, turbulent fluctuations are 

stabilised by centrifugal force and this explains the reduced turbulent mixing 

intensity at the boundary of the rotating core. 

These results were reproduced by and used in the interpretation of the numerical 

simulations presented in this work, where the development of a whirling buoyant 

turbulent diffusion flames were consequently simulated both in the open space and in 

the enclosure (which corresponds to that used in the experimental studies). 

In the numerical studies, the RANS version of the CFD model and code Fire3D was 

used. The most important development introduced into the model within this work 

was the modification to the turbulence model to account for the effect of rotation 

inhibiting turbulent mixing within the whirling core. The Richardson number was 

introduced as a controlling criterion, and the C.  coefficient was made dependent 

upon the Richardson number in such a way which reduces turbulent viscosity in the 

whirling core. 
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As a part of the validation studies, the model and code were examined in its 

capability to predict radiant heat fluxes and upper flame temperatures in accordance 

with the data obtained from the flames produced experimentally in this work. 

Reasonable agreement has been obtained between the experimental and numerically 

predicted values for the heat fluxes at the enclosure wall coupled with plume 

temperatures. 

In the numerical simulations of unconfined rotating flames, the effect of rotation 

upon the flame structure, temperature, and radiative output has been demonstrated. 

The formation of a Rankine-type vortex has also been demonstrated and similar to 

experimental observations; flame lengthening due to rotation has been predicted. In 

accordance with the approximate theory, the flame structure and its response to the 

externally imposed circulation were found to depend upon the magnitude of the 

external circulation and on heat release rate within the flame. The latter determines 

the length of the accelerating part of flow, where the vorticity is amplified. If the 

external circulation is imposed then the Rankine-type vortex develops with 

maximum vorticity at the axis and maximum angular velocity at a certain distance 

away from the axis, both being proportional to the external circulation. The swirl 

number of the rotating flow is shown to be proportional to the imposed circulation; 

at high degrees of swirl, flame shortening and destabilisation was predicted. 

Using Fire3D, the whirling flame development was then simulated within the 

enclosure with a ceiling vent and asymmetrically located doorway. The geometry of 

the enclosure represented that of the experimental compartment. Similar to 

experimental observations, predicted whirling fires produced in the enclosure were 

found to be transient and intrinsically unstable, although unconfined flames of the 

same heat release rate produced steady-state mean flow fields. The aperiodic process 

of formation, precession and destruction of the whirling flame was predicted 

numerically and interpreted in terms of the conclusions from the existing theory of 

rotating flows. 

The predicted characteristic period of the process was similar to that observed in the 

experiments. The period was found to decrease if the (constant prescribed) fuel 

supply rate (given type of fuel) increases. In the predictions with fuel mass loss rate 

coupled with the thermal feedback from flame to the fuel surface, the oscillations are 
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found to be more disordered and aperiodic when compared to the simulations with 

constant prescribed fuel supply rate. Different stages of flame evolution observed in 

the experiments have been demonstrated by numerical simulations. The flame shape 

and the flow pattern were compared to those obtained from the video recordings of 

the experimental flames, and the model predictions were found in reasonable 

agreement with the experimental observations of the whirling flame development 

and destruction. It has been shown, that the transient process in which the whirling 

flame forms and deteriorates can be explained in terms of two necessary conditions 

(the imposed circulation and vertical acceleration of the flow) for flow rotation to 

occur. 

Buoyant whirling flames were shown both experimentally and by numerical 

simulations to be considerably longer than those in ordinary free-standing or wind-

blown fires, and they exhibited much greater burning rates, increased total heat 

release and radiative output and a qualitatively different behaviour of the smoke 

layer within the enclosure. 

The above listed results indicate that the overall aim and specific objectives of this 

work have been met. 

The novelty of this work includes: 

1. New experimental data on the formation and dynamics of whirling flames in 

enclosure of medium (room-size) scale. 

2. Identification of the physical mechanisms and necessary conditions for 

buoyant rotating flames to develop in the enclosure fires. 

3. Improvements to the CFD model and code to account for the effect of flow 

rotation on turbulence. 

4. Results and analysis of the numerical simulations, in which (i) the effect of 

flow rotation on turbulence, (ii) radiative transfer, and (iii) coupling of fuel 

burning rate with heat flux received by the fuel surface were simultaneously 

accounted for. 

From a practical point of view, the new knowledge obtained in this work may 

potentially be used in development of efficient fire mitigation techniques that will 

counter the possible threat presented by fire whirls. The increased mixing and 
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entrainment (leading to greater burning rate) implies a possible use of deliberately 

created enclosure vents and suspended extinguishing media to interfere with the 

reaction taking place. A similar fire fighting technique is implied by the tendency of 

the fire whirl to exhaust the smoke layer. However, it is in the assessment of and 

possible modification to design calculations that this work has the most potential for 

practical use, bearing in mind the greater intensity of the burning when compared to 

commonly used non rotating design fires used in the fire engineering industry, and 

the consequent increase in the flame length when compared to a non rotating flame. 

7.2. Future Work 

Future work in this area could include improvements both in modelling and 

experimental performance. 

In modelling studies: 

1 Large-eddy simulation techniques may be usefully employed for turbulence 

modelling. 

2 A more refined and theoretically sound combustion model, based on 

probability density function approach, can be incorporated. 

3 A more robust methodology to resolve spectral properties of thermal 

radiation could be applied. 

4 Higher order accuracy numerical algorithms could be used in numerical 

studies of the transient process. 

5 Grid resolution could be enhanced. 

6 In particular air entrainment and mixing with fuel vapour could be closely 

considered near the fuel surface to explain and to reproduce the 

experimentally observed increase of burning rate in case of flow rotation, 

taking the effects of the freeboard into account and the participating medium 

under the reaction zone. 

Some work within these avenues is currently in progress, as demonstrated in the 

recent paper [Snegirev et al, 2004]. 

In experimental studies: 
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1 Transient measurements of the burning rates would provide more detailed 

quantitative information on the process. 

2 Studies using a wider range of fuels and sizes of fuel source, as well as of 

different geometries of the enclosure would be helpful in further justification 

and refinement of the conclusions derived in this work. 

However, the work conducted for this Thesis has demonstrated the advantages of the 

CFD code 'Fire 3D' which could be used to further study quantifiable limits to the 

geometrical arrangements and fluid dynamic conditions for fire whirls to develop. 
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