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Abstract

This thesis investigates the topic of the design, implementation and potential use of
specialised hardware used to accelerate the recognition and translation of computer
programs expressed in a range of computer languages. This investigation focuses

specifically on the twin processes of parsing and lexical analysis.

The research described was carried out in two areas namely, the feasibility of
designing a specialised instruction set for a RISC like processor able to accelerate the
parsing and lexical analysis process, and the physical implementation of a RISC

processor in CMOS VLSI technology able to execute the designed instruction set.

The feasibility of mapping the process of language recognition onto the instruction set
of a RISC processor is investigated. This involves an assessment of the suitability of
the LL(1) and LALR(1) algorithms, both of which are used for parsing, and other
associated algorithms, used for lexical analysis, as a basis for an approprate
instruction set architecture. The feasibility of an instruction set design which uses
fixed size instructions with variable size data fields to ensure scaleable operation is
also investigated. The appropriate software mechanisms used to validate the

instruction set architecture are outlined.

The practical implementation using CMOS technology of a RISC processor able to
execute the new instruction set is investigated. In particular the feasibility of using
bit-slice technology to implement the processor having fixed size instructions with

variable size data-paths and address ranges is investigated.

The combination of novel instruction set with variable data-widths and the fabricated
devices able to activate semantic actions directly from hardware together form an

original contribution to the field of parsing and lexical analysis.

-8-



1. Introduction
The use of high level languages such as PASCAL, C++, or Java to specify computer
behaviour depends on the ability of computers to analyse the source text and translate

the implied meaning (or semantic specification) into executable machine instructions.

This research investigated the feasibility of designing a specialised processor having
an instruction set aimed specifically at the problem of recognising computer programs
written in a wide range of computer languages. The architecture of the RISC
processor also had to provide interfaces to allow external hardware to implement the
semantics implied by the computer program. This research, therefore provides a
practical application of the theory of parsing and lexical analysis, two fundamental
concepts of language theory extensively used within computer science. These theories

of lexical analysis and parsing are well known,

In the following sections of Chapter 1, the main concepts involved in parsing and
lexical analysis are briefly described. This is needed to provide an informed
background before discussing both the research objectives and the overview of the

thesis.

For more information refer to the literature on the theory of parsing and lexical

analysis. The following is a partial list of useful references :-

[Aho 1977] “Principles of Compiler Design”

[Brown 1981] “Writing Interactive Compilers and Interpreters”
[Denning 1978] “Machines, Language and Computation”
[Fischer 1991] “Crafting a Compiler with C”

[Hunter 1981] “The Design and Construction of Compilers”
[McGettrick 1980] “The Definition of Programming Languages”

[Minsky 1972] “Computation: Finite and Infinite Machines”.



1.1 Parsing and Lexical Analysis - An Overview

Just as the process of reading a book uses the twin processes of lexical analysis and
parsing, so does the example of reading and translating a computer program. Firstly
the sequences of characters are analysed into words (possibly requiring a dictionary).
Next the combinations of words are analysed to see if they form correct sentences.
The final stage is to recognise the meaning of the individual sentences and perform

any actions implied by the meaning.

Lexical Analysis is defined as being the process of recognising “words” from
sequences of characters in the computer program source text. The dictionary (or

lexicon) of words depends on the language being used.

Parsing is defined as being the associated process of checking that the sequence of
recognised “words” forms a valid sentence in the language. Different languages will

have different structures for a legal sentence.

Together these two processes recognise source code as belonging to a specific
language and also provide hooks to allow the generation of executable code based on
the semantics implied by the source text. The “definitions” provided describe the
behaviour of a parser and lexical analyser as if they were “black boxes”. Some
awareness of the internal operations of a parser and lexical analyser is needed for an
understanding of both the processor architecture (and its instruction set) and its
practical implementation in hardware. The actual internals and concepts involved in
both parsing and lexical analysis are introduced informally. To highlight the important
concepts in parsing and lexical analysis, the example (mentioned above) of reading a

sentence 1n a book will be used.

1.2 Parsing - The Basic Concepts
As indicated in the previous section, the parsing process checks that the tokens (or

words) provided by the lexical analyser form a legal structure or sentence in the given

-10-



language. This section outlines some of the terminology used in parsing theory (as it

relates to the research).

1.2.1 Sentences and Language

Informally, a sentence consists of a number of words with some constraints on the
sequences of words allowed. There will be a fixed collection of words (known as a

lexicon or dictionary}).

Each word (or token) in the lexicon will consist of a sequence of letters where each

letter is taken from a fixed alphabet.

A language will be defined by the combination of constraints on the word sequences

and the lexicon. A language could therefore consist of many possible sentences.

For example, given a dictionary D of tokens where
D = {*a”, “on”, “cat”, “ball”, “sat”, “the”, “threw” }
then we could form the sequences R, S, T where
R =*“a” “ball” “threw” “a” “cat”.
S =“a” “cat” “threw” “a” “ball”.
T = “the” “cat” “sat” “on” “the” “ball”.
(Note that the full-stop is only used to indicate the end of the token sequence)

We could define all three sequences to be a sentence and state that the language L
only contained these three sentences. Thus we could formally define the language L to

be a set of sequences. That is,

L={R,S, T} whereR, S, T are defined above.

-11 -



For a language containing many sequences (possibly an infinite number) it could be
difficult to verify if a particular sequence of tokens is a sentence due to the large

number of sentences.

1.2.2 Languages and Grammars
Instead of defining a language by listing all its sentences, an alternative mechanism is

to generate the sentences from a simple set of rules known variously as re-write or

production rules.
The following are all examples of productions.
L =R “cat”
L =X “ball”
X=“a"8§
X =%“the” T
R ="a”“ball” Y
S=%cat” Y
T = “cat” “sat” “on” “the”
Y = “threw” “a”

A sequence of symbols can be used more than once as the left hand side of a

production. Thus L and X each have two productions.

Productions can also have more than one symbol on the left hand side. The following

are also examples of productions.
ABC=X"*“sat”

A CB=X"“saw”

Grammars which have productions with rules having more than one symbol as part of

the left-hand side are called context-sensitive. Grammars where all productions have
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only one left-hand symbol are called context-free. Natural languages such as English
or French can only be described by context-sensitive grammars. Computer languages
such as Java or PASCAL can be described using context-free grammars. The research
only investigated the acceleration of recognition of languages generated from context-
free grammars. Accordingly from this point, any grammar described will be context-

free.

Also a production can have an empty right-hand side. That is the right hand side

contains the null symbol, called epsilon. The production is also known as an epsilon

production.
X =
X _ (0,

This defines X as being null or *0’.

A symbol which appears on the left-hand side of a production is known as a non-
terminal symbol. A non-terminal symbol can appear on the right-hand side of a
production. Thus L, X, R, S, T and Y are all non-terminal symbols. A symbol which
only appears on the right-hand side of a production is known as a terminal symbol.
Thus “cat”, “ball”, “a”, “the”, “sat”, “on” and “threw” are all terminal symbols. The
epsilon symbol is an example of a terminal symbol. A symbo! can be either a terminal

or non-terminal symbol. It cannot be both.

Starting with the symbol L and using the productions

L =R “cat”
R - “a,) ‘Cball,’ Y
Y = “th_reW” ﬂ‘a’,

generates the chain
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L

=>R “cat”

=>“3” “ball” Y “cat”

=> “g” “ball” “threw” “a” “cat”
Similarly starting from the s-ymbol L and using the productions,
L =X “ball” etc.
gives the two chains

L

=>X “ball”

=>“a” § “ball”

=>*g” “cat” Y “ball”

=> “a” “cat” “threw” “a” “ball”

L

=>X “ball”

=> “the” T “ball”

=> “the” “Cat” “Sat” ‘$0n!) “the” Iiball”

The generation of all possible chains from a starting expression or symbol (such as L)
by means of the productions is known as a derivation. The derivation set is the set of

sequences obtained when no further production can be used.

Thus we can see that the three sequences
“a” “ball” threw’! ila!! “Cat,’,

“a!! “Cat” “threW” Gia!! ‘Gball!’,
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l’-l’-the” “Cat” “Sat” “On” “[he59 ‘Gball)’

are all derivations from the symbol L. Notice also that the set of derivations from the
symbol L is identical to the set of sentences which represent the language L as defined

earlier.

We define a goal symbol to be a unique non-terminal symbol whose set of derivations

forms the language or the set of sentences.

A grammar is defined to be the combination of productions, goal symbol, non-
terminal and terminal symbols. The set of all derivations from the goal symbol (using

the productions) gives the language defined by the grammar.

Finally, grammars can be described using notation other than re-write rules. One such

notation uses ? + and * to indicate repetition of symbols.

Define a* = {} u { a } u {aa} u {aaa} u ... = {epsilon, a, aa, aaa, ... }. That is, a*
represents the repetition of “a” from 0 to many times. (Sometimes the notation [ a ] is

used instead of a*).

Defineat={a}u{aa}u{aaa}u..={a,aa, aaa, ... }. Thatis, at+ represents the

repetition of “a” from | to many times.

Define a? = { } u { a } = { epsilon, a }. That is, a? represents the repetition of “a”

from 0O to | times.
Note also that a* is the same as a+?.

Define “,” to represent the choice between two sequences.

Thusa,b={a,b}

A grammar expressed using the “?” “*” “+” and “,” symbols can be easily converted

to re-write rules. For example, A = C* can be converted to
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X =
X=XC
or
A=X
X =
X=CX

and A = C+ can be converted to

A=X

X=C

X=XC
or

A=X

X=C

X=CX

The “*”, “+”, “?” and “,” notation is used extensively in the following chapters.

1.2.3 Parsing and Grammars
The use of grammars to define languages aids greatly in the process of recognising

whether a sequence of tokens is a sentence. Grammars do this by converting the
parsing process into a game of “syntactic dominoes”. Each production becomes a
domino where the tokens represent the domino spots. The game starts with the goal
symbol on one side and the proposed sentence (or sequence of terminal symbols) on
the other side. The two sides are then joined together by using the legal dominoes (or
productions). If it is possible to join the goal symbol to the token sequence using only
legal dominoes then the token sequence is a sentence of the language. The game is
identical to finding a derivation of the goal symbol except that the end result 1s known

from the start.
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There are a number of strategies (or parsing methods) possible which can be used to
play this game. Two of these are important for use as potential parsing mechanisms
and are outlined below. The first strategy is where dominoes are always added from
the goal symbol side down towards the token sequence side. This is known as a top-
down parse. The other strategy of interest is where dominoes are always added from
the token sequence side up towards the goal symbol side. This is known as a hottom-
up parse. The pattern made by the dominoes is called the parse-tree. An example

parse-tree 1s shown below.

This example parse-tree is generated when recognising that the token sequence “10 +

11” belongs to the language defined by the grammar with goal symbol E and

productions,
E=E+T
E=T
T=D
T=TD
D=0
D=1

This parse-tree could be created either bottom-up (from the token sequence 10+11) or

top-down (from the goal symbol E).
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Figure 1 - A Parse-Tree

The following diagram shows a left to right traversal of the parse-tree starting from
(and returning to) the top (or goal symbol)
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Figure 2 - Parse-Tree Traversal
A pre-order traversal of a parse-tree is a visit of the node N then a recursive visit of
the sub-trees rooted at children N 1.k of a node N. A post-order traversal of a parse-
tree 1s a recursive visit of the sub-trees rooted at children N 1.k of a node N then a

visit to N.

For the above parse-tree the sequence of rules given by both post-order and pre-order

traversals are shown.

Parse Tree Label  Pre-Order Traversal Parse Tree Label Post-order Traversal

Rule sequence Rule sequence

10 E=E+T | D=1

5 E=T 2 T=D

4 T=TD 3 D=0

2 T=D 4 T=TD
1 D=1 5 E=T

3 D=0 6 D=1

9 T=TD 7 T=D

7 T=D 8 D=1

6 D=1 9 T=TD
8 D=1 10 E=E+T

Table 1 - Pre and Post-order Traversal of Parse Trees
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It is important to note that a pre-order traversal predicts the rule to be recognised, and

that a post-order traversal is able to refer to data already recognised.

1.2.4 Grammars and Semantics
The purpose of a language is to communicate meaning or semantics. A grammar with

its productions can only define the structure of the sentence. It cannot normally
indicate the semantics or meaning of a particular sentence. However, it is possible to
attach semantic actions to the individual productions. That is each production can

have an action to perform when the rule is recognised.

The following example shows how binary numbers can be recognised from text and
then added. This example uses the grammar and parse-tree shown in the previous
section, where the following table shows the productions and associated actions to

recognise binary numbers. The goal symbol of the grammar is E.

Production Action

E=T E=T
E=E+T E:=E+T
D=0 D=0
D=*1" D=1
T=D T:=D
T=TD T=2*T+D

Table 2 - Productions and semantic actions
The semantic actions shown assume that there are three registers E, T and D. For the
token sequence 10 + 11, we use the post-order traversal of the previously mentioned
parse-tree. Writing the rules with associated semantic action in reverse order (starting

from the token sequence to the goal symbol i.e. bottom up) (evaluating E,T,D as we

g0)

Parse Tree Label  Rule Action Valueof D Value of T Value of E
1 D=1 D:=1 1 ? ?
2 T=D T:=D 1 1 ?
3 D=0 D:=0 0 1 ?
4 T=TD T:=2*T+D 0 2 ?
5 E=T E=T 0 2 2
6 D=1 D=1 1 2 2
7 T=D T:=D 1 1 2
8 D=1 D:=1 1 1 2
9 T=TD T:=2*T+D 1 3 2
10 E=E+T E=E+T 1 3 5

Table 3 - Semantic actions and Parse-Trees
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Note that E contains the answer 5 (in decimal) which is the value of 10+ 11 in binary.

Thus we can see that semantic actions can be attached to the syntax productions to
obtain the desired meaning. In pre-order traversal the semantic action is triggered at
the start of a predicted production. For post-order traversal the semantic action is
triggered after the production has been recognised. The left-right post-order traversal
emits the productions in a sequence where all information is acquired before using it.
The left-right pre-order traversal of a parse-tree predicts but does not acquire the

information required at the time of triggering of a semantic action.

Therefore, the design of semantic actions to attach to productions works best when
the rules are recognised in the order given by the post-order traversal of the parse-tree.
It must be noted that the semantic actions are specific to the productions. Changes to

the productions will require different semantic actions.

1.2.5 Grammar Hierarchies

For a given language there may be more than one grammar which can “generate” all
the sentences in that language. However the converse of a grammar generating
multiple languages is not possible. This is due to the uniqueness of the derivation set

(or set of sentences in the language) obtained from the goal symbol.

1.2.5.1 Ambiguous Grammars

It is possible to have a grammar which allows a sentence to be derived in more than
one way from the goal symbol. This i1s equivalent to stating that there is more than
one parse-tree for at least one sentence in the language. An ambiguous grammar is
defined to be a grammar with this property. The following is an example of an

ambiguous grammar.

Using E as the goal symbol with the following productions,
E=E‘’E

E = number
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where number and ‘-’ are both terminal symbols. ‘-* represents the arithmetic

subtraction operator.

The sentence “n °-> n *-’ n” can be derived from E in two possible ways. Note that the

two routes generate the same sequence or derivation.
Parse Tree 1.
E
=>E‘“’E
=> number ‘-’ E
=>number -’ E *-’ E
=> number ‘-’ number -’ number
This is equivalent to working out the value of number - (number - number)
Parse Tree 2.
E
=>E ‘-’ E
=>E ‘-’ number
=>E ‘-’ E *-* number
=> number ‘-’ number ‘-’ number
This is equivalent to working out the value of (number - number) - number.

These values are not normally the same. They are only equivalent if the last number is

zero or just one of the first two numbers is infinite.

A parser for an ambiguous grammar could generate an incorrect sequence of actions.

Therefore ambiguous grammars must not be used.

-22-




1.3 Parsing Methods

The practicality of using productions to both define a language and also to assist as
place-holders for semantic actions should have been demonstrated. What has not been
shown are any algorithms which can recognise a token sequence as being a sentence,
or how productions can be used in the process. The format of productions should
indicate that state machines could be used to implement the parsing and lexical
analysis processes. The following sections indicate the use of state machines to

implement the parsing process which are based on productions.

1.3.1 State Machines
A state machine can be represented by a graph where each node corresponds to a state

and the arcs linking the states represent the state transitions. Each transition is a
directed arc (or one-way street) from one state to another state and is tagged with the
transition trigger. For the parsing process, state transitions are triggered by the
currently visible terminal or non-terminal symbol. Each production could be mapped
onto a number of states (depending on the number of symbols in the rules’ right-hand

side) where the transitions are triggered in sequence by the symbols of the production.

For example,

The production R = A “+* B could become the state machine S with states S1, §2, 83, S4
where S1 is the initial state and S4 the final state.

===

Figure 3 - State Machine

State machines can be classified depending on the transitions and number of states.

Generally there can be many start states and many end states for a given machine.

A deterministic state machine is one with many states (possibly infinite) where each
input symbol has at most one transition from each state. Thus for each state and for

each possible input symbol (terminal or non-terminal) it is possible to “determine” the
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next state. This machine ensures that there is no ambiguity of transitions when

reading a stream of input symbols.

A finite-state state machine 1s one with a countable {finite) number of states. When
used to implement a parser there will be a single start state with a single end state.
The end state will indicate that the goal symbol has been recognised. This type of
state machine just stores the current state as a single variable. State transitions are
decided by noting the current state and current symbol in the input queue, using the
state transition table to determine the next state, which becomes the new value of
current state. The current symbol is consumed and the following symbol becomes the
current symbol. This machine has two types of instructions, a shift to state instruction

and an accept instruction attached to the end state.

A finite-state machine with stack is similar to a finite-state machine except that a
stack is used to store the current states. State transitions are decided by noting the
state on the top of the state stack and next symbol from the input queue and using the
transition table to determine the next state. This next state is then pushed onto the
state stack. These transitions are shift instructions. There are some states where a
production is recognised (possibly determined by the next input symbol). The
production will be reduced at this point. The state stack is popped by the number of
symbols in the right hand side of the rule and the top of the stack becomes the current
state. The symbol on the left of the rule is inserted into the input queue to become the
new next symbol. This has an additional reduce instruction as well as the shift and
accept instructions. The top-down and bottom-up strategies can both be emulated

using this type of state machine.

In both types of finite state machines it is possible to have the state transition or
reduce conditional on knowing more that just the current next symbol but the
subsequent next n symbols. In practice n is either 0 or 1. The next n symbols are

known as the look-ahead symbols.
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There are many algorithms to construct the transition (or gote) tables and the reduce

tables are discussed next.

1.3.2 Algorithms
There are a large number of parsing algorithms, however only the three most common

will be outlined. Each algorithm involves creating a mechanism to decide which
production to recognise. A grammar may have a non-terminal symbol which defines a
number of productions. Deciding which rule to start to recognise requires knowing the

set of symbols which can possibly start a rule.

1.3.2.1 First and Follow Sets
A parser needs to decide which rule to start recognising for those productions defined

by a common non-terminal. Knowledge of which terminal symbols can be seen first
when starting a production is then required. Also knowledge of which terminal
symbols can be seen following after a rule is useful to decide whether to recognise a

rule or continue shifting to other states.

A first set for a non-terminal symbol N contains those terminal symbols which can be
present at the start of the productions for the symbol. It is the set of those terminal
symbols which appear first in the set of derived sequences from N. The epsilon (or
null) symbol can also be in this first set. Note that the first set for a terminal symbol is

the set containing itself.

-25-



Example.
Given the productions for a grammar as being

S=A®
Azi$1

0w
»>

NNORP >0
S =

[ T (O T TR [

then the derivatives D of A are
D = { epsilon, ‘1°, ‘0’...* 1", ‘0°... *0’}

The start set is therefore { epsilon, ‘0°, ‘1" }

Figure 4 - Start Sets
Elimination of the epsilon symbol from the first set of a non-terminal symbol N
depends on where N is referenced in the other productions. One method is to augment
the first set with the first set of each symbol immediately following N when N appears
on the right-hand side of a production. Should there be no following symbol in the
rule where R is the left-hand symbol then use the first sets of the symbols following

references to R. Repeat this until epsilon is eliminated.

Using this method for the above example gives the start set S for A where epsilon has

been removed as S={ %, <, §, 0", ‘1’ }.

A follow set for a non-terminal symbol contains those terminal symbols which c¢an be
legally expected to occur after the symbol. It can be generated by forming the set of
non-terminal and terminal symbols which can follow the specified non-terminal
symbol in all productions which reference it. The non-terminal symbols are
repetitively replaced until no more terminal symbols can be added. Any non-terminal
symbols are replaced by the non-terminal symbol starter set q.v. A non-terminal
symbol which is defined by an epsilon rule is replaced by its own follower set. A non-
terminal symbol which is the last symbol in a production and is defined by an epsilon

rule is replaced by the follower set of the non-terminal on the left of the production.
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Example.

Given the productions for a grammar as being

S=A*
A=
A='T
A=0A

then the follower set for A is { *’ } , since only “*’ occurs after A

Note.
Non-terminal A has an epsilon rule,

A=

Figure 5 - First and Follow Sets

First and Follow sets are used by the following three parsing algorithms.

1.3.2.2 Recursive Descent

This algorithm uses the grammar rules and involves writing a sub-routine for each
production. The routine corresponding to the rule defining the goal symbol is the first
to be called. The sub-routines are potentially recursive and use the top-down
approach. For a non-terminal symbol which has many productions, deciding on the
appropriate rule will require examining the current next symbol and comparison with

the start set for the non-terminal.

A recursive descent parser (in a PASCAL-like notation) based on the example

grammar used above to demonstrate starter and follower set is given as an example.
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(* next_token is a lookahead to the current next token *)
(* read_token consumes the current next token from the input stream *)
(* this recognises all rules which define A *)
procedure A
begin
case next_token of
.
‘0’: read_token;
‘1’: begin
read_token:
A;
end
else
eITOr;
end
end

(* this recognises all rules which define S *)
procedure S
begin
A
if next_token = “*’ then
read_token
else
erTor;
end

Figure 6 - Recursive descent parser
This algorithm does not check if the grammar is unambiguous and may require

extensive manual re-work to alter the parser should the grammar be modified.

1.3.2.3 A Top-down Algorithm using one Lookahead Symbol
This algorithm is based on a finite-state automata with stack using a top-down (or

predictive) approach and reading the source symbols from left to right, using one
symbol of look-ahead to help decide on the appropriate state transition or rule
recognition. The parse trees generated are traversed using a pre-order (or left hand)

traversal.

This algorithm is usually known as the LL(1) parsing algorithm, where :-
L - read the text from Left to right
L - use a Lefi-hand (or pre-order) traversal of the parse tree

(1) - always use one look-ahead symbol
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The LL(1) algorithm can be generalised to use more than one look-ahead symbol
when it is known as LL(n) (or LL), where n is the number of look-ahead symbols
required. The LL algorithm requires the placing of constraints on the productions of

the grammar which mean that many grammars cannot use this algorithm.

The algorithm has two parts, the state table generation and the parser which uses the
state table. The first and follow referred to in the algorithm are the first and follow
sets for a non-terminal symbol. These sets will not have had the epsilon symbol

removed.

Input: Grammar G
Qutput: Parse table (or array) M

Note $ is used to denote end of input.
Algorithm:
For each production A -> rhs of the grammar
1) for each terminal a in first(rhs), add A = rhs to the table M[A a]
2) Ifepsilon is in first(rhs), add A = rhs for each terminal b in follow(A).
If epsilon is in first(rhs) and $ is in follow(A), add A = rhs to table M[A,$]

Finally mark each undefined entry in M as error.

If there is more than one entry in any M[{A,x] then the grammar is not LL{1)

Figure 7 - LL(1) Table Generation

The following is the LL(1) parse table generated for the example grammar used to

indicate recursive descent.
Note:

first(A *** ) = { epsilon, ‘0", ‘1’ }, follow(A “**)={§ }

Terminals
Non-terminals Kl ‘P ¥ $
S S:As*) S___A;*! S‘_—A‘*, S=Ac*5
A A=0A A=°1 A=

Table 4 - LL(1) Parse Table
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The generated parse table M is used in the parser. This LL(1) parser is described using
a pseudo-PASCAL notation.

(* let X be the top stack symbol *)
(* let a be the next input symbol *)
push goal symbol G onto the stack
repeat
if X is a terminal or § then
begin
if X =a then
pop X from stack and consume a from input
else
error
end
else
begin
ifM[X,a]=X->Y1Y2 ... Yk then
begin
pop X from stack
push YK, Yk-1, ... Y1 onto stack (Y] new stack top)
end
else
€ITor
end
until stack is empty

Figure 8 - LL(1) parser

For more details of this algorithm refer to [Aho 1977].

1.3.2.4 Parsing from the Bottom Up using Lookahead symbols
This algorithm (like the LL(1) algorithm) is also based on a finite-state automata with

stack but it uses a bottom-up approach. It reads the source from left to right and
generates a right-hand (or post-order) traversal of the parse tree using a number of

look-ahead symbols to determine state transitions.

The algorithm is known as LR(1), where :-
L - read source from Left to right
R - use a Right-hand traversal of the parse tree

(1) - always use one look-ahead symbol
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The LR(1) algorithm can be generalised to use more than one look-ahead symbol
when it is known as LR(n) (or LR), where n is the number of look-ahead symbols

required.

The LR algorithm was first described in the paper [Knuth 1966] “On the Translation
of Languages from Left to Right” and extended in the paper [DeRemer 1971] “Simple
LR(k) Grammars”.

A variant of the LR algorithm which only uses one look-ahead symbol where
necessary is known as the LALR(1) algorithm, where :-

L - Look

A - Ahead

L - read source from Left to right

R - use a Right-hand traversal of the parse tree
(1) - with at most one look-ahead symbol

The mechanism for generating LALR(1) parse tables is best shown in [Aho 1977]
“The Principles of Compiler Design”. The paper [Pager 1977] “The Lane-Tracing
Algorithm for Constructing LR(k) Parsers and Ways of Enhancing Its Efficiency”
improves on the algorithm in [Aho 1977].

It can be shown that a grammar which is LL(1) is also LALR(1). The converse is not
true. Therefore LALR(1) can recognise more languages than LL(1). It can also be
shown that the LALR(1) algorithm will detect ambiguous grammars. The LALR(1)

parse table contains shift and reduce instructions.

The example LALR(1) parse table, shown below, is generated from the grammar used

to demonstrate the recursive descent parser.
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States
Symbols | 1 2 3 4 5 6
$ accept
S
A 52 s6
* ra="- 835 rA=1" [ rA=¢ rA=0A"
1 s3 53
0 54 s4

Table 5 - LALR(1) Parse Table
Entries in the LALR(1) parse table M[X,t] contain shift, reduce or accept instructions,
where X is a state and t is a symbol (terminal or non-terminal). Blank entries

represent parse errors.

The following is the pseudo PASCAL code used to operate the LALR(1) parsing
algorithm.

Let X be top of state stack, S next state, t next token

repeat
case M[X,t].instruction of
shift:
begin
S =M[X,a].data
push S onto state stack
consume t from input queue
end
reduce:
begin
reduce rule = M[X,a].data
R->R1R2...Rk
pop k items from state stack
insert R into input queue as head of queue
end
error:
begin
error
end
end
until t = Goal Symbol

Figure 9 - LALR(I) Algorithm
This algorithm is based on a table driven state machine with SHIFT and REDUCE

instructions.
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1.4 Lexical Analysis Methods
Each parser will have an associated lexical analyser which reads the source text

combining character sequences to form the parse tokens.

1.4.1 Dictionary Lookup and Names
As indicated earlier, lexical analysis is akin to looking up a word in a dictionary. For

a language there is a finite set of parse tokens possible. However some of these parse
tokens can have many forms. Keywords such as while or do have a fixed form.
Examples of tokens that can have many forms are variable identifiers (akin to proper
nouns in English) and also integers. These types of tokens can be defined by sets of

simple rules.

Most computer languages have an overlap in the rules for defining an identifier and a
keyword. That is, a keyword could be regarded as an identifier. There are two
alternate mechanisms to resolve this problem. When a character sequence is found
which matches a keyword either accept the keyword or continue the sequence whilst
the sequence obeys the format of an identifier. The first method does not allow an

identifier to start with the text of a keyword, the second method does.

1.4.2 Finite State Automata
The concept of tokens being words in a dictionary leads to the possibility that each

token can be detected by a finite state automata. The dictionary can be implemented
as a non-deterministic automata q.v. which has a single start state and multiple end

states, one for each token.

A non-deterministic automata is a state machine which allows transitions to
multiple states from a state for the same trigger (or character). That is, it may not be
possible to determine the next state to reach if the trigger (or character) has a

transition to more than one state.

A deterministic automata is a state machine which has at most one transition from

each state for a tnigger.
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It is possible to describe the format of tokens and have mechanisms to convert the
token definitions into a format which represents a non-deterministic automata. Also,
there are algorithms which can convert non-deterministic automata into deterministic
automata. These algorithms are shown in [Aho 1977]. Both mechanisms can be
implemented as computer software taking as input the set of token definitions for a

language and outputting a description of a deterministic finite state automata.

A deterministic finite state automata is another example of a state machine. This has
two instructions, SHIFT and ACCEPT. Each SHIFT instruction knows of the
transition trigger and the target state. Each ACCEPT instruction knows of the token

just recognised for use by the associated parser.

1.5 Compiler-Compilers

The section on parsing mentioned that mechanisms existed which could automatically
generate parsers from the language re-write rules, subject to constraints on the rules.
A software tool known as a compiler-compiler is an example of such 2 mechanism.

This type of tool has three mechanisms :-

¢ one for generating parsers from grammars
+ one to allow semantics to be hooked in

¢ one for generating a lexical analyser from the token definitions

A compiler-compiler could generate recursive descent parser from a grammar but
would need to ensure the grammar is unambiguous. However, most compiler-
compilers use either the LL or LR algorithms to validate the re-write rules and to also
generate the appropriate parse tables. Using either the LL or LR algorithms means
that a general purpose table-driven parser routine can be used. A compiler-compiler
(based on the LALR(1) algorithm which is a variant of the LR algorithm) which was
designed and implemented by the author was used as a background tool within the
research. The implementation of the run-time parsing and lexical kernel formed the

basis for the architecture of the hardware developed as part of the research.
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1.6 Objectives of the Research

The research had three objectives.

Firstly, to investigate the possibility of accelerating the parsing and lexical analysis by
using specialised hardware. This was to determine if it was possible to have hardware
(specific to the recognition of languages) which was sufficiently general purpose to
recognise most computer languages. An alternative was to have hardware specific to
each individual language. Part of this work was to investigate the suitability of the

various parsing and lexical analysis algorithms for implementation as hardware.

Secondly, to verify if it was possible to design an appropriate instruction set which

could be used for the lexical analysis and parsing processes in combination.

Lastly, to implement a VLSI chip set capable of executing designed instruction set.

This research is based on the authors own software implementation of a simple
compiler-compiler. This compiler-compiler uses the LALR(1) algorithm to both

validate the input grammar and to generate the parsing tables automatically.

1.7 Overview of the Thesis
This thesis describes current work in the field, and the results of the work carried out

to fulfil the research objectives.
Chapter 2 indicates the current status of work in the field.

Chapter 3 describes the steps taken to design the instruction set. The use of the
compiler-compiler system to validate the various designs of instruction sets is

indicated.

Chapter 4 describes the hardware design of the RISC processor to execute the
instruction set. The further use of the compiler-compiler system to both derive,

simulate and generate test vectors for the logic design is also shown.

Chapter 5 indicates the potential applications of the hardware.
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Finally, Chapter 6 indicates the scope for further research based on the implemented

hardware.

Also, there are a number of appendices attached which describe the logic design, its

validation and a simple language that can be recognised by the processor.

Appendix A describes the steps taken to validate the hardware design by using the

software implementation of the parser to generate test-vectors.

Appendix B details some of the logic design for the bit-slice device.

Appendix C provides an example of a simple language (with grammar) which can be

used to synthesise logic design from regular expressions.
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2. Hardware Implementations
The practical implementation of hardware to accelerate the parsing and lexical
processes has not been widely considered or described in the literature. Most papers
describe theoretical hardware implementations of either lexical analysers or parsers
which use the LL(1) algorithm. The LALR(1) parsing algorithm which allows a wider

range of languages to be recognised does not appear to have been considered.

What follows is a discussion of the paper [Evans 1985] “Architectures for Language
Recognition” which describes two hardware architectures, one used to implement
recognisers for regular expressions suitable for a lexical analyser, and the second to
implement an LL(1) parser. Also discussed is another paper [Kazuo et al. 1983]
“Design and Evaluation of Parsing Chip” which describes the implementation of the

LL(1) algorithm but is specifically targeted at implementing a parser for PASCAL.

2.1 Recognising Regular Expressions in Hardware

A regular expression is formed from mixing tokens with indicators showing token
repetition. Thus the notation which uses “+7, “*¥7, “?” ,*” and also “T" “1” (briefly
described in the previous chapter) can be used to form regular expressions. Thus, in
this notation, [a](d, b c) is an example of a regular expression. It could alternatively
be written as a* (d, b c). This notation can be used to specify both lexical analysers or

parsers after transformation into re-write rules.

2.1.1 Logic Design
The following describes an architecture to recognise regular expressions where the

individual tokens (for parsers) or characters (for lexical analysers) are input at regular

clocked intervals.

2.1.1.1 Recognising a Token
As shown in Figure 10 - Token recogniser cell, this logic cell accepts as input signals

the next character or token, the clock and the current result. It will output the new
result for input to the next stage. The token to be recognised (or token reference) is

compared for equality with the token input. The result of the comparison is logically
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anded with the current result to form the value to be latched into a flip-flop to form

the next result.

Token bus l ’
Token ——* E:]
1 New result

v
ke

- |ff | —m——

I clock

Figure 10 - Token recogniser cell

result

This logic could be implemented as a parameterised VLSI custom cell where the

parameter is the token reference.

2.1.1.2 String concatenation
If two regular expressions E1 and E2 are to be recognised where E2 follows after El

then this can be implemented as follows. The output result of E1 becomes the input

result for E2.

E1 E2

Figure 11 - String Concatenation Cell
If E1 and E2 are composite VLSI cells then the use of cell abutment should

automatically provide the required logic and power connections.

2.1.1.3 String union
String union is defined to be the new string formed by selecting either E1 or E2 where

they are both regular expressions. This is simply the OR-ing together of the result
signals of E1 and E2.
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Figure 12 - String union cell
The above diagram shows the logical connections needed to form the “El1 , E2”
expression. The diagram shows a layout which would create irregular shaped areas for
cell layout. In VLSI semi-custom cell design a linear layout is preferable to allow
logic connections by cell abutment. The following layout method (adapted from the

paper under discussion) enables a uniform height to be used for the logic cells.

Y‘*Ebz* 2 *jm —
—_—

Figure 13 - Linear layout of string union cell

This layout requires an extra wiring channel for E1 and E2, with three extra types of
cell. The first cell type splits the result signal channel to form an extra bypass routing
channel. The second cell type switches the result and extra wiring channels over. The
third cell type or’s the result channel and the extra wiring channel to form the new
result signal. The logic is equivalent to the previous layout except that the E1 and E2

macro cells have been modified to be capable of being placed in lines.

The paper [Evans 1985] describes the use of two wiring channels and two OR gates
for the same end result, thus wasting silicon. The modified cell design, as shown in
“Figure 13 - Linear layout of string union cell”, is an improvement since the

redundant or-gate and wiring channel are eliminated.

2.1.1.4 Repetition
Noting that the regular expressions A* and (A+)? are equivalent then we need only

consider mechanisms for A+ and A?. As A? means A is optional, then the new result
is formed from the OR-ing of the current result with the result output from A

(implying A has been detected).

-39-



» > P »jor | —P
\ >/

Figure 14 - Optional Cell

Notice that this uses the “split cell” and the “or cell” to select the extra wiring channel

with the result channel.

A+ means that A is concatenated at least once. Thus the input for A is either the

prefix or the result output from A.

A
— | > —> > > >

~ L o

Figure 15 - Repeat 1..n cell

At first glimpse this seems to require two extra types of cells to cope with the
reversed direction of use of the extra wiring channel. However, the original split and
the or cells can both be used if the extra wiring channel extends the full cell width in
both cases. For the split cell there is an internal link joining the extra wiring channel
to the result wiring channel. For the or cell the second input to the or gate is taken
from extra wiring channel. It is important to note that all cells will need wiring
channels for the token bus, clock and result signals. There may be many extra wiring
channels required depending on the depth of nesting caused by use of the , * and ?

operators.

All cells will need to have an associated parameter to indicate the number of extra
wiring channels, with the or, split and switch cells having an extra parameter to

indicate which extra channel is being used by the cell.

2.1.2 Logic Synthesis from Regular Expressions
The following set of re-write rules define a language which contains regular

expressions, using the “*”, “+” “?” and “,” notation which also uses brackets. The

language describes the definition of a single regular expression.
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RegRule = LefiName '='Exp ;' ;
LeftName = identifier ;
Exp = Factor ;

Exp =Exp *, Factor ;
Factor = Term ;

Factor = Factor Term ;
Term = Primary ;
Term = Primary '+';
Term = Primary '*';
Term = Primary '? ;
Primary = identifier ;
Primary ='( Exp)';

The following rules can have semantic actions attached so that the correct logic cells

are generated to form the appropriate regular expression recogniser.

Re-write Rule Semantic Action To Apply
RegRule = LeftName '="Exp ‘;* | write code for expression
LeftName = identifier initialise and note expression name
Exp = Exp ‘,' Factor code for A, B

Factor = Factor Term code for A B

Term = Primary '+ code for A+

Term = Primary '*' code for A* (< A+ 7)

Term = Primary '? code for A?

Primary = identifier recognise token

Table 6 - Regular Expression Semantic Actions
These semantic actions will generate code or layout information for a single regular

expression.

2.1.3 Critique
The architecture described above will successfully generate hardware to recognise

regular expressions. A potential disadvantage of this approach is that each recogniser
however can only recognise one expression which is defined at time of manufacture.
The use of FPGA’s only cuts down the time between design and implementation.
Also, the architecture has no mechanism whereby a lexical string (defined as a regular
expression) can be remembered and passed to parsing hardware. This is needed when

passing on the value of parse tokens such as identifiers or numbers.

A lexical analyser recognises a number of regular expressions and has to indicate

which one has been found. This requires the architecture to be able to generate a
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mechanism to detect which of a number of hardware recognisers is first to detect a

token. There is no such mechanism available.

In most computer languages there is a potential clash between the use of keywords
such as “begin” or “end” and the form of an identifier. Some languages resolve this by
not allowing an identifier to start with a reserved keyword, such as BASIC. The

remaining languages allow identifiers to start with a keyword.

The hardware architecture described will always signal that a keyword has been
recognised in preference to an identifier. This is a severe constraint on the range of

computer languages this system can be used with.

Overall the architecture is not practical for recognising lexical tokens in hardware

given the above problems.

2.2 An Architecture to recognise LL(1) Grammars

The paper [Evans 1985] “Architectures for Language Recognition” also describes a
hardware architecture which recognises languages defined by LL(1) grammars. This
architecture depends on the theorem that, if for each non-terminal Z and terminal a,

then there is at most one re-write rule which takes one of three forms :-

e 7Z=a2a
e Z=aX
o Z=aXyY

where X, Y, Z are non-terminals and a is a terminal then the grammar is LL(1).

The action to be taken by the three types of rule is shown in the following table.

Rule Format Current Phase (Test) Next Phase (Action)
Z=a nile=7, token=a rule’ = POP
Z=3X nule =7, token=a rule’ =X
Z=aXY nile =7, token=a rule’ =X, PUSHY

Table 7 - LL(1) Actions
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The re-write rules can be placed in a table of terminal versus non-terminal symbols,
where each entry will be either a re-rewrite rule (in one of the three forms) or no entry

indicating an error. The parsing algorithm works as follows :-

Repeat the following until either both the stack and token input stream are empty or

an error is detected.

Using the current combination of rule and token access the table to see which re-write

rule is being recognised.

Depending on the table entry take the appropriate action. The POP and PUSH actions
refer to the associated stack and rule’ represents the next value of rule. In all cases the

token from the input stream is consumed.

Parse errors can arise in a number of ways. If there is no entry this represents a parse

error. A POP command on an empty stack is also a parse error.

The next section describes the logic to implement each of the three types of cell.

2.2.1 Logic Design
There are three types of cell corresponding to the three types of re-write rule. The

three logic cells all have a common sub-unit which is used to recognise which rule

and token combination triggers the action for that specific cell. This sub-unit is shown

below.
‘ —
—p >
and =
E | —» —p [ %
A FF >
— Rule,
A token
detected
Rule
ref (Z) Token ref (a)
Rule bus Token bus clock

Figure 16 - Rule and Token detection cell
The rule and token detection cell uses a synchronous clock to latch the fact that the
rule, token combination has been found for that particular clock cycle. The next clock
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cycle will clear the flag (unless the same rule, token combination is present). The

required action depends on the rule type and is carried out in the next cycle.

The three different action cells corresponding to the three rule types are shown below.

2.2.1.1 Cell for rule “Z =a”

4 Stack
Rule + token - pop
recogniser
or
tok Stack Stack
rule oxen out pop’

Figure 17 - Cell for rule "Z = a"
For the rule “Z = a”, the stack is popped to give the next value for the rule bus. The
“stack pop” command is rippled through the cells. An alternative mechanism would

be to use a tri-state buffer to “or” the value onto the stack control signal.

2.2.1.2 Cell for rule “Z=a X”

For this cell the action is to place the value of the X non-terminal onto the rule bus for
the next clock cycle. The value of X is tri-stated onto the rule bus as shown below.

This allows the rule bus to have the value X for the next clock.

‘ \
Rule + token -——————— |Tri-state buffer
recogniser
s
X
token
rule

Figure 18 - Cell for rule "Z = a X"

2,2.1.3 Cell forrule “Z=aXY”
For this cell the action is to place the value of the X non-terminal onto the rule bus

and also to push onto the stack the value of the Y non-terminal. This stack value will

eventually be popped when a rule of the form “Z = a” is detected.
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Figure 19 - Cell for rule "Z=a X' ¥"

2.2.1.4 Combined Cell
The paper combines these three cells into one combined cell. The combined cell uses

tri-state buffers extensively instead of the ripple-through logic as shown in the three
cells described above. The combined cell uses two extra flags to indicate if non-
terminals X, Y are present. Extra logic is used to ensure that the tri-state buffers are
correctly activated. The paper [Evans 1985] shows a logic diagram for the combined

cell.

2.2.2 Logic Synthesis
The complete LL(1) recogniser is formed by instancing all rules present in the

grammar as the appropriate logic cells. The cells are joined together so that the rule,
token, stack input, stack output busses and the stack control signals are connected. A
stack is also required which has its output connected to the rule bus and input

connected to the tri-stated stack input bus from the rule cells.
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(stack output) input control
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token bus 4 —

Figure 20 - Complete LL(1) recogniser

2.2.3 Critique
This architecture can be used to generate a large range of LL(1) parsers. Unfortunately

most languages are not LL{1). Therefore this architecture will be unable to recognise
a large range of computer languages of interest to programmers and computer

scientists.

This architecture fixes the implementation of the parsing hardware at time of
manufacture, thus preventing rapid modification of a parser. Specialised FPGA’s
could be designed which contained the three (or single combined cell) as the basic

logic element and therefore allow for device re-use.

Also the architecture has no error recovery mechanism to allow the hardware to
continue from a parse error. The hardware just reports the first error found. Most

users would regard this as a serious failing.

Thirdly, there is no mechanism to use the sequence of rules predicted (LL(1) is a top
down parsing technique). This is needed to allow hooks for the semantic actions to be

called. Associated with this is the problem that there is no mechanism to pass token
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strings from the lexical analyser hardware to the semantic hardware at the appropriate

parse state.

Overall, the use of the LL(1) algorithm by this architecture is the main stumbling

block to its practical use.

2.3 Other Implementations

The paper [Kazuo 1983] “Design and evaluation of parsing chip” describes the
implementation of an LL(1) parser for PASCAL. The design used a number of PLA’s
to implement the parse state engine. The design was not able to perform lexical
analysis. This design was successfully validated by being fabricated. The design,
however, was not an example of a general purpose architecture able to synthesise

general purpose parsers. Therefore this was of limited interest to this thesis.

2.4 Summary

To summarise, the LL(}) algorithm has been the main focus of research into the
implementation of parsing techniques as hardware. The next chapters will describe
the practical implementation of the LALR(1) algorithm with built-in support for the

process of lexical analysis.
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3. Instruction Set Design
In the previous chapters, it is shown that the LALR(1) parsing algorithm is based on a
finite state machine (with an associated state stack) which only uses shift and reduce
actions. This strongly suggests that these two actions could be implemented as
instructions for a VL.SI RISC processor. This proposed processor would have a very
specialised instruction set which could implement both the shift and reduce actions as
required by the LALR(1) algorithm. Each computer language would be implemented
as a different program to be run by the processor. Also, the parsing of a sentence for a
given language would be carried out by the running of the appropriate program on the

processor.

It must also be noted that the lexical analysis algorithm also uses a finite state
machine (without a state stack) where this machine also has shift and accept actions.
These actions could be implemented by extending the processor instruction set with

extra instructions to implement the shift and accept actions.

The derivation of an instruction set able to implement both the LALR(1) and lexical
analysis algorithms will now be described. The design and simulation of the
combined instruction set was carried out using a compiler-compiler. This software

was developed as part of the research.

3.1 Parse Instructions

The use of only shift and reduce actions by the LALR(1) algorithm indicates that a
minimum of two instructions is required. Accordingly a description of the required
behaviour of the shift and reduce actions as instructions will be given. Also a simple

error recovery mechanism is described.

3.1.1 States and Instruction Sequences
As stated ecarlier the LALR(1) parsing algorithm is based on a finite state machine

with state stack. The algorithm operates with shifts (or transitions) from one state to

another state being triggered by the recognition of the next parse token (or word).
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Each state may also recognise one or more rules of the grammar, where the
recognition of the rule will again depend on the next parse token. If the current
combination of state and token has no defined action then this indicates the detection

of a parse error.

One possible representation of a single parse state would be as a large array of entries
implemented as a case statement. The current token would be used as the index to
select the appropriate entry. Each entry would be one of the shift, reduce or error
actions. In this state representation each state would need an entry for all possible
tokens. This would create large sparsely populated arrays. This state representation
has the benefit of ensuring all state transitions took the same time. This representation

was investigated but quickly rejected as being an inefficient use of memory.

An alternative state representation would implement a state as a list of conditionally
triggered instructions. Thus, each shift or reduce action is a single conditional
instruction which would be triggered by comparing the current token with the token
needed to trigger the action. The final instruction for each state would implement the
default action to take for that state (usually the error detection action). This
representation would be more efficient in memory usage. It’s main disadvantage is
that each state would take a variable amount of time caused by the need to examine a
number of instructions for the appropriate token. This state representation was chosen

as the starting point for the design of the instruction set.

3.1.2 Parser Registers

The parser processor will require a number of registers to hold temporary data and to
indicate which instruction is being executed. Also the parser processor uses a stack to

hold states. The main parser registers are shown in the following table.
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Register Purpose

Program Counter Points to current Parse Instruction

Instruction Register Contains current instruction

Top Symbol Indicates immediate next token symbol in token input queue
Next Symbol Indicates next symbol after “Top Symbol” (Could be undefined)
Error Flags Used to record parse errors

State Stack Pointer Points to Top of State Stack.

Table 8 - Parser Registers
As the individual states each consist of sequences of instructions, then each state can
be represented by the address of the first instruction in the state. Thus the state stack
can actually store addresses, where each stack entry (representing a state) is actually

the address of the first instruction in a state.

The initial instruction set is shown in the following table.

Instruction Parameter 1 Parameter 2 Parameter 3 Parameter 4
shift OnToken ToState UNUSED UNUSED
reduce OnToken ByRule RuleToken RuleCount
shift-reduce OnToken ByRule RuleToken RuleCount

Table 9 - Initial Parse Instruction Set

The following sections describe the actions of the instructions in further detail.

3.1.3 Shift Action
The shift action represents the transition from one state to another state, where the

transition is triggered by the recognition of a parse token. As an instruction this would

be shown using a pseudo-assembler notation as :-

On <Token> Shift To <State>

3.1.3.1 Parameters
The <Token> parameter denotes the triggering token for the shift action.

The <State> parameter denotes the new state to go to. The parameter value 1s actually

the address of the first instruction in the state.

3.1.3.2 Instruction Actions
Firstly, the current token is compared with the <Token> parameter. If there is no

match then the processor executes the next instruction, otherwise the following steps

are performed.
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The <State> parameter is pushed onto the state stack.
The current token (which must be identical to the <Token> parameter) is consumed.

If there is no value held in the next token buffer then the next token must be read.
This is the appropriate time to activate the lexical analyser which scans the raw input

text to recognise the next token.

3.1.4 Reduce Action
The reduce action represents the occasion when a grammar rule for the language has

been recognised. As an instruction this would be shown using a pseudo-assembler

notation as :-

On <Token> Reduce By <Rule> New Token <Token> Pop <Count>

3.1.4.1 Parameters
The <Token> parameter denotes the triggering token for the reduce action.

The <Rule> parameter denotes which rule has been recognised. This 1s used to
indicate which semantic routine should be called. (See the section on “Semantic

Interrupts™).

The second <Token> parameter denotes the non-terminal token which is defined by

the rule.

The <Count> parameter indicates the number of states to pop from the state stack.

3.1.4.2 Instruction Actions

As with the shift instruction, the current token is compared with the <Token>
parameter. If no match is detected then the next instruction is executed, otherwise the

following steps are performed.

Firstly the <Rule> parameter is used to indicate which semantic actions should be

performed. See the following section on “Semantic Interrupts”.

Next, the rule’s left-hand token symbol (the <Token> parameter) is inserted into the

token input queue as the next token to be read.

Finally, a number of states must be “popped” from the state stack. The <Count>

parameter is used to determine how many states should be popped from the state

-51-



stack. For each item on the right-hand of the rule, one pop is done. Thus the <Count>

parameter will equal to the number of items on the right-hand of the rule.

3.1.4.3 Semantic Interrupts
The reduce action provides the opportunity or hook to allow semantic actions to be

performed. Each individual rule can be regarded as an interrupt generated by the
processor. Each interrupt will trigger an action or sequence of actions within
additional hardware to implement the semantics of the particular language. Each
language has its own associated semantic actions and therefore will require different

hardware to implement these actions.

It is important to note that the processor cannot have two semantic actions in progress
simultaneously. That is each semantic action must complete before the next one can
be started. To guarantee this, the processor should be constrained to only be able to
continue with the parsing process when the current semantic interrupt has been

completed.

3.1.5 Halting
The LALR(1) parsing process should halt when the unique rule, with the goal symbol

as it’s left-hand symbol, is recognised or reduced. Therefore, if the goal rule has a
fixed value such as 1 then this can be detected by the reduce instruction and the
processor halted accordingly. An alternative is to add a halt instruction to the

instruction set.

3.1.6 Error Handling
The LALR(1) algorithm is able to detect a parsing error at the first possible

opportunity and should halt at that point flagging the fact. However, this mechanism
of halting for each error is not acceptable, since each parse would only reveal the first
error detected and no more. The processor architecture needed a mechanism whereby

a form of error recovery could be atitempted.
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In most software implementations of the LALR(1) algorithm this is achieved by a
combination of popping the state stack and skipping tokens until it is possible to

continue the parse process and successfully recognise a rule in the language grammar.

The concept of a special token to assist in error-handling, denoted by $error, was
examined. The Serror token would be used to denote the presence of a parse error in
the token input stream. The detection of a parse error would cause the $error token to
be inserted in the token input stream. The error-handling mechanism would then have
the task of removing the $error token and a limited number of tokens following the
$error token. Also, the Serror token could then be used as the trigger for a shift
instruction. This would allow a grammar to be augmented with special error rules
each of which would contain the $error token followed by one or more tokens as the
rule’s right-hand. The sequence of tokens following the $error token would allow the
parser to re-synchronise itself with that token sequence after an error was detected.
The extra error rules would cause some parse states to contain shift instructions which
would be triggered by the $error token. Thus the error recovery mechanism would be
to pop the state stack until the state at the top of the state stack contained a shift
instruction triggered by the $error token. If there were no state found which satisfied
that criteria before emptying the state stack then this would imply that no recovery
was possible. The detection of the case that no recovery was possible should cause the

processor to halt and the reason for the halt to be flagged.

This mechanism will allow both tokens and states to be skipped until a valid rule can
be recognised. Additionally the associated semantic hardware needs to be informed
that a parse error has been found. This can be solved by having a special rule which

has as its left-hand token the $error token and an empty right-hand side.

Thus the instruction set can be extended to allow a reduce instruction to trigger the

rule “Serror = .

3.1.7 Default Actions for a Parse State
The default action for a state will normally be the error action which is a modified

reduce action. This error action, if reached, must be triggered irrespective of the next
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token. The set of tokens can be extended by adding the concept of a wild-card token
which matches any token and is denoted by $lambda. Thus the default action for a
state can be triggered by the $lambda token. This ensures that all parse actions are
triggered by a token match, even if the token to match is a wild-card. The $lambda

token could be used to trigger either shift or reduce actions.

3.1.8 State Table Minimisation
The use of the $lambda token enables some minimisation of state tables to be

achieved.

3.1.8.1 Replacing the default action

If a state contains at least one reduce action then one of these reduce actions can be
chosen to replace the default error action. The reduce action could be triggered by
many different tokens where each token requires one reduce instruction. Therefore
this minimisation replaces all occurrences of the reduce instruction by a single
instance of the reduce instruction. This replacement reduce instruction is triggered by

the $lambda token and will be the final instruction for a given state.

3.1.8.2 Single Reduce States

Another possible minimisation occurs when a state consists of only one reduce action.
That is, the state has no shift actions and contains one reduce action with the default
error token. This type of state will only be reached by shift actions contained within

other states.

It is possible to eliminate the state and all its instructions by adding an instruction
(shift-reduce) which combines the effects of the shift and reduce actions. Those shift
instructions which point to the state being eliminated are replaced by the new shift-

reduce instruction. This shift-reduce instruction is described in the next section.

3.1.9 Shift-Reduce Action
The shift reduce action represents the combination of a shift action immediately

followed by a reduce action. This action is triggered by the recognition of a parse

token. As an instruction this would be shown using a pseudo-assembler notation as :-

On <Token> Shift Reduce <Rule> New Token <Token> Pop <Count>
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3.1.9.1 Parameters
The <Token> parameter denotes the triggering token for the shift action.

The <Rule> parameter denotes which rule has been recognised.

The second <Token> parameter denotes the non-terminal token which is the left-hand

symbol being defined by the rule.

The <Count> parameter indicates the number of states to pop from the state stack.

3.1.9.2 Instruction Actions
Firstly, the current token is compared with the <Token> parameter. If there is no

match then the processor executes the next instruction, otherwise the following steps

are performed.

Next, the current token (which must be identical to the <Token> parameter) is

consumed.

The <Rule> parameter is used to indicate which semantic actions should be

performed. See the section on “Semantic Interrupts”.

Next, the rule’s left-hand token symbol (given by the <Token> parameter) is inserted

into the token input queue as the next token to be read.

Finally, a number of states must be “popped” from the state stack. The <Count>
parameter is used to determine how many states should be popped from the state
stack. For each item on the right-hand of the rule, one pop is done. The value of the
<Count> parameter is one less than the number of items on the rule right-hand side
since the shift half of the shift-reduce action would normally push a state onto the

state stack. This push to the state stack is not needed.

3.2 Lexer Instructions

A lexical analyser is another example of a finite state machine but does not use an
associated state stack. However, the instructions for the lexical state machine will
correspond to the parser shift and reduce actions. Also a simple mechanism which can

recover from lexical errors such as incorrectly spelt language keywords is described.
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3.2.1 States and Instruction Sequences
The algorithm for a lexical analyser is based on a finite state machine which has

transitions (or shifts) from state to state which are triggered by the next character
present in the input stream. Some states will be “accept” states when a lexical token
has been detected. For the lexical algorithm used by this research, it must be noted
that each accept state only detects one token. This ensures that a character string can
be an example of just one lexical token. Thus for the computer language PASCAL the

string “begin” will be regarded as the begin keyword and not as a variable identifier.

Each state will have a default action to be performed should there be no shift
transition be defined for the next character present. As the lexical algorithm used by
this research forces an accept state to have a single token this can be used to
determine the default action for a state. Thus the default action for an accept state is
the accept action for the token detected, and for a non-accept state it is the error

action.

The selected representation for each lexical state foliows the representation used
within the parser. That is, a lexical state is a list of conditionally triggered
instructions. Each shift action is a single conditional instruction triggered by
comparing the current character with the character (or range of characters) needed to
trigger the instruction. The final instruction for the state implements the default action

(accept or error) for that state.

3.2.2 Lexical Analyser Registers

The lexical analyser will also use some of the parser registers. These are shown in the

following table.

Register Purpose

Program Counter Points to current lexical instruction
Instruction Register Contains current lexical instruction
Top Symbol Indicates next character in input

Table 10 - Lexical Registers
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The lexical analyser must also store the character strings for the previous token,
current token and next possible token that it is trying to recognise. These strings are
used by the semantic actions associated with the parser. These character strings could
be stored within three individual areas of memory where each character string needs a
pair of start and end pointers. Both the software and hardware implementations

actually used a cyclic buffer to hold the three character strings.

Instruction Parameter | Parameter 2 Parameter 3

shift MinChar MaxChar ToState

accept AcceptToken UNUSED UNUSED

test TestRoutine NextState (if passed) NextState AcceptToken

Table 11 - Initial Lexical Instruction Set

3.2.3 Lexical Shift
The shift action represents the transition from one state to another, where the

transition is triggered by the recognition of a lexical character. As an instruction this

would be shown using a pseudo-assembler notation as :-

Shift <ToState> On Char Range <lo> <hi>

3.2.3.1 Parameters

The <lo> and <hi> parameters indicate the contiguous range of characters which will

trigger the lexical shift action. <lo> being the minimum and <hi> the maximum.

The <ToState> parameter denotes the new state to go to. The parameter value is

actually the address of the first instruction in the state.

3.2.3.2 Instruction Actions

Firstly, the input character buffer is examined to see if it is empty. If it is empty then a
request to read the next character in the input stream is made. This causes the

processor to wait until a character is supplied.

If the input character buffer is not empty then the current next character (which is read
from the buffer) is examined to see if it is in the range given by the <lo> and <hi>
parameters. If there is no match then the processor will continue at the next

instruction.

If there is a maich then the character is added to the buffer holding the next token

character string and the program counter with the value of the <ToState> parameter.
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3.2.4 Lexical Accept
The lexical accept action is taken when a lexical token has been recognised. This

action is triggered as the default action for some states. As an instruction this would

be shown using a pseudo-assembler notation as :-

Accept <Token>

3.2.4.1 Parameters
The <Token> parameter represents the token just recognised and corresponds to the

value used by the parser for the language.

3.2.4.2 Instruction Actions
Firstly, the <Token> parameter is stored in the TopSymbol register. This provides a

return link to the parser to indicate which token has been found.

Next, the token string buffer pointers are adjusted so that the token strings are
updated. Thus, the current token becomes the previous token, the possible next token

becomes the current token.

Finally, the Program Counter register is reset to point to the next parse instruction. As
the lexical analyser is only entered from a parse shift instruction then the top of the

state stack will contain the appropriate address.

3.2.5 Error Handling

It cannot be assumed that the input stream of lexical characters will be free from
“spelling mistakes”. That is the character input stream could contain sub-sequences of
characters which cannot be matched with the definitions of any lexical token. This
could occur when attempting to find the longest matching sequence of characters that

can be recognised as a token.

For example :-

In PASCAL a real number will contain a decimal point (°.”) and an integer could be
followed by the sub-range token ‘..". Thus the sequence ‘12.." could be a miss-spelt
decimal number or it could be twelve (‘12°) followed by the sub-range token (*..”). If
the lexical analyser has the strategy of recognising the shortest sequence it will easily

recognise ‘12’ followed by “..” but will find it hard to recognise a decimal number,
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since the digits before the decimal point will be regarded as an integer and the token
sent to the parser. If the lexical analyser has the strategy of recognising the longest
sequence it will attempt to recognise '12..” as starting a decimal number of the form

’12.D’ (where D is a non-empty sequence of digits) and regard the next °.” as an error.

This type of error will be detected when a lexical state has no transition defined for
the next input character and the state does not default to recognising a token. Thus the
lexical parsing algorithm implicitly uses the strategy of trying to recognise the longest

string.

Therefore a mechanism to detect and correct both genuine errors and errors caused by
the maximal string strategy is needed. This mechanism will be triggered as the default

action for those states which do not accept a token.

Noting that,

e each state has an associated default token (which could be the error token)

e each character of the string corresponds to a state (the first character maps
to the initial lexical state)

then each character of the string will have a matching token. The sequence of tokens
defined will be a mixture of legal and error tokens, where the last token should be an
error token. For the example given above (of "12..”) this would be the token sequence
“integer integer error error”. (This is assuming that a decimal number cannot end with
a decimal point). Using the maximal string strategy, then the next token should be the
maximal sub-sequence of characters which has a legal token corresponding to the last
character. Thus, for the example given, the next token will be ‘12° which is the
maximal string forming a legal token (an integer). The surplus characters following
the maximal string will form the start point for the next token to be recognised. If
there is no maximal string this implies that the first character seen cannot start any
token and that it should be ignored (after flagging the fact by means of an error
interrupt). The remaining characters should be used as the start point for the next

token. Also, the lexical analyser should be restarted from its initial state.
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Thus the error action would become an instruction having the form,
Error <ErrorRoutine>
The instruction actions would be as outlined above.

Also each lexical state would need a new instruction to note the default token
(possibly the error token) for that state. As an instruction this would be shown using

the pseudo-assembler notation as :-

Default <Token>

where <Token> would indicate the value of the default token.

This instruction would push the <Token> parameter onto a stack which would be
initialised to be empty whenever the lexical analyser was started either from the

parser or by the Default instruction.

The combination of Error and Default instructions meant that the Accept instruction
was redundant. Therefore all occurrences of the accept instruction were replaced by

the error instruction which was renamed to be accept.

3.2.6 Test Action
Many computer languages allow identifiers (or names) to belong to different classes

(or types) such as procedure identifiers, record identifiers or variable identifiers.
These identifiers could be different types of token yet have the same lexical
definition. Therefore a mechanism was required which could be used to split strings
of the same format into different tokens. It would be a special variant of the shift
instruction. This test instruction would raise an interrupt routine (able to read the
current character sequence) and return a logical value whether to shift or not to

another lexical state.

Also most languages allow comments (which may be nested) which are not tokens but
must be allowed as legal noise or whitespace. A mechanism to check for nesting

levels and allow the external semantic engine to clear the whitespace was required. To
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satisfy both requirements the test instruction was implemented. As an instruction this

would be shown using a pseudo-assembler notation as :-

Test <Routine> Goto <GotoState>

3.2.6.1 Parameters
The <Routine> parameter indicates which routine is to be called.

The <GotoState> parameter indicates which state to go to depending on the status

returned by the interrupt routine indicated by the <Routine> parameter.

3.2.6.2 Instruction Actions
First, the <Routine> parameter is used to generate an interrupt to the required

semantic routine. This routine may need to read the value of the string which is the
possible next token. This will allow the routine to match the token string (a possible
identifier) with other known token strings. The routine could return a status value
formed from two flags. The subsequent actions depend on the values of the flags. One
flag indicates if the current token string should be reset and the lexer reset to its initial
state. This flag takes precedence over the second flag. The second flag indicates if the
test was successful and the <GotoState> parameter can be used to indicate the next
lexical state. If the test was not successful then the next instruction in the state is

performed.

3.3 Review of Initial Instruction Set

The initial instruction set as described in the previous sections used an instruction size
of 32 bits. Address 0 of the instruction address space was used to hold the address of
the first lexical instruction (all lexical instructions followed the parser instructions)

and also the address of the first parse state.

The initialisation of the combined parser and lexer processor read address 0 to stack
the first parser address and to start execution at the first lexical state. The initial
instruction set design required every instance of the lexical test and parse shift
instructions to need the address of the first lexical state. Storing it at address 0

reduced the number of parameters needed for those instruction.
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The following table shows the initial instruction set and indicates the instruction and

parameter locations as bit string locations in the 32-bit instruction.

Inst’n Inst’n <31:29> [Param | <28:16>| Param 2 <12:0> [Param 3 <15:8> | Param 4 <7:0>
Shift 0 Token State

Call 1 Token Routine

ShiftCall | 2 Token Routine

Reduce 3 Left Symbol Count

LexShift | 4 State LoChar HiChar

Test 5 State Routine

Default 6 State

Accept 7 Routine

Table 12 - Initial Combined Instruction Set

The original decision to use both a 32-bit instruction and 8-bit characters constrained

the lexshift instruction to have a 13-bit address space.

The introduction of the 16-bit UNICODE standard for characters (an extension of the
ASCII code) and also noting that some of the combined parse and lexical tables for
languages could be larger than 8192 words (13-bit address range) forced the
development of a new version of the instruction set which would avoid these

limitations. This new version is describe in the next sections of this chapter.

3.4 Micro-Instructions

The similarities in behaviour of the lexical and parser instructions from the original
design led to the concept of lexical and parser actions as macros. The new instruction
set would therefore consist of a number of micro-instructions that could be combined

to form the required actions for the parser and lexer.

Another design goal of the new instruction set was to have a larger addressing range
(bigger than 8192) and also to be able to use 8-bit or 16-bit characters. These goals

implied that the instruction parameter size should be increased.
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The mixture of parser and lexer actions as macros of micro-instructions having

variable parameter width forced the adoption of the following instruction architecture.

Each micro-instruction would consist of two parts, 3-bits describing the instruction
and n-bits for the parameter. Each address location would consist of 4 micro-
instructions, a phase 0, phase 1, phase 2 and phase 3 micro-instruction. This would
make each lexical and parser action into a Very Long Instruction Word (VLIW)

format.

The 3-bit instruction would have different actions depending on the phase of the
instruction. Thus the complete instruction set would actually comprise of 32 micro-
instructions, 8 for each phase. The final micro-instruction set has some instructions
which are identical in behaviour, but are in different phases. These instructions may

not have identical values.

The n-bit parameter would have to represent a state address (both parser and lexical),
a parser token, a parser semantic action, a lexical test routine and also a lexical
character. The value of n for the software emulation of the processor was set to be 13.
The actual hardware implementation used a bit-slice architecture, where the
parameters could be multiples of 8 bits. Thus the software emulation (using 13-bits)

would require two bit-slices to allow 16-bit parameters.

3.4.1 Registers and Flags

The processor architecture uses a number of registers and flags to hold information

about the progress of the parse and lexical state machines.

3.4.1.1 Program Counter
The current address is held in two registers. PC indicates the address of the current

VLIW instruction and Phase indicates which of the 4 micro-instructions is being
executed. P1 is used to hold the parameter value of the current micro-instruction

pointed to by PC and Phase.

-63 -



3.4.1.2 Token Queue
The token queue is used to store the parse token values. It is implemented as two

registers, TopSymbol and LookAheadSymbol and an associated flag ValidQueue.

TopSymbol is used to store the value of the next parse token. This is either read from
the input stream of parse tokens, the LookAheadSymbol register or the left-hand
symbol of a parse rule recognised by a parse reduce action. It is also available for use
by the lexical instructions to return the next parse token detected by the lexical

machine.

LookAheadSymbol is also used to store the value of the next parse token. It is written
to (from the TopSymbol) when a parse reduce inserts the rule lefi-hand symbol into
the head of the parse token queue. The LookAheadSymbol register value (if it is
valid) is returned to the TopSymbol register after a parse shift instruction has been

executed.

The ValidQueue flag indicates that the LookAheadSymbol register holds a valid

token value.

3.4.1.3 Lexical Buffer
The lexical buffer is used to store the lexical values (as character strings) of the

previous token and current token recognised. It also holds the lexical characters which

should form the next token.

The buffer is implemented in software as a cyclic buffer. It comprises of an area of
memory and four pairs of registers. Each pair of registers acts as pointers to the start
and end of the token character string. The fourth pair of registers is used when
outputting one of the token strings for use by a semantic or lexical test action. The use
of a cyclic buffer enables the memory space to be re-used but requires a decision on
the appropriate size of memory to hold all the token strings. Each memory address

location must be able to store a lexical character (either 8-bit ASCII or 16-bit
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UNICODE). Also each register pair represents a start and end address (of the buffer

memory) and so must be compatible with the buffer memory address range.

The three main register pairs are TokenBuffer, Tokenls and TokenWas.

¢ TokenWas points to the previous token string.
s Tokenls points to the current token string.

¢ TokenBuffer points to the string which may form the next token.

Finally the TokenRam register pair is used to point to one of the TokenWas, Tokenls

or TokenBuffer strings as required.

3.4.1.4 Stacks
The software implementation of the processor architecture also uses two stacks. These

being the parse state stack and the token stack. Both stacks require an area of memory

and a stack pointer.

The parse stack holds the parse state values which are implemented as instruction
addresses. Thus each stack location must be able to store a processor instruction
address. The maximum stack size required depends on the language grammar and the

source input.

The token stack holds the token values for return by the lexical machine. Thus each
stack location must be able to store a parse token value. The maximal size of this
stack is identical to the size of the longest token string. If the language grammar

allows large size comments then a large token state buffer is required.

3.4.1.5 Flags
Most of the flags used by the processor architecture are used to report on the status of

the parser/lexical processes. These types of flags are initialised as false and may only

be set to true.
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The EOIFound flag is used to indicate that the end of input token has been seen. This

token is akin to a full-stop in an English sentence.

The ParseDone flag indicates that the parsing process has finished. It could be caused
by a successful parse of the input or by a fatal (and unrecoverable) error being

detected.

Also, a number of flags are used to indicate warnings and errors detected in the

running of the parse and lexical processes.

A waming flag indicates a fault that can be recovered from. These are :-

e ParseSyntax - a parse syntax error
e ParseSemantic - a semantic action error

e [exSyntax - a lexical syntax error

An error flag indicates that the fault cannot be recovered from. These are :-
s SourceExhausted - attempting to read the input stream after the end of input
token was seen.
¢ NoErrorHandler - no error handler rule has been specified

e BufferOverflow - the lexical buffer has overflowed (caused by a very long
token)

o StackOverflow - the state or token stack has overflowed
o StackUnderflow - attempting to pop from an empty stack

e lllegallnstruction - attempting to execute one of the undefined micro-
instructions

If any error flag is set then this will cause the processor to halt.

The remaining flags, which can be both set and reset, are the SynchroniseMode,

SysResult and SysNullToken flags.
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The SynchroniseMode flag is set to show that a parse error has been detected and

cleared when a non-error rule parse reduce has been performed.

The SysResult flag is cleared before the start of each parse semantic action (or lexical
test). It is set or cleared by the action routine to indicate success or failure. This is

then used to either set other error flags or to select the next instruction address.

The SysNullToken flag is cleared before the start of each lexical test. It is set by the
test routine to indicate that the possible next lexical token is a comment and can be
ignored. It causes the possible token buffer to be emptied and restarted with the next

character in the character input stream.
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3.4.2 The Micro-Instruction Set
The following table lists the micro-instructions for each phase, giving the instruction

name, code and parameter. Each phase can potentially have eight micro-instructions

defined. Only phase one defines all eight micro-instructions.

Name Phase | Code <15:13> | Parameter Usage <12:0>
ifequal 0 0 token
lambda 0 1 not used
illegal 0 2 not used
nomatch 0 3 not used
lexchar 0 4 character
lexerror 0 5 token
lexeoi 0 6 token
lexaccept 0 7 token
shift 1 0 state
shift-reduce 1 1 rule
reduce 1 2 rule
lambda 1 3 not used
lexshift 1 4 character
lerror 1 5 rnule
lextest 1 6 rule
perror 1 7 rule
lpush 2 0 token
assign 2 i token
push 2 2 token
loadchar 2 3 not used
halt 2 4 not used
lambda 2 5 not used
illegal 2 6 not used
illegal 2 7 not used
goto 3 0 state
pop 3 1 not used
readstack 3 2 not used
illegal 3 3 not used
illegal 3 4 not used
illegal 3 5 not used
illegal 3 6 not used
illegal 3 7 not used

Table 13 - Micro-Instructions

The table indicates that some instructions have the same name despite having
different values and different phases, in particular the lambda (or no-op) instruction.
The use of the same name indicates that the behaviour of the instructions is identical.

The following sub-sections describe each named micro-instruction detailing its
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purpose, parameter and actions performed. Each instruction action is described using

a PASCAL-like notation.

3.4.2.1 ifequal

Parameter Token
Purpose used to check if the current top symbol triggers a parse shift or reduce action.
Action
if (P1 = TopSymbeol) then
begin

Phase := Phase + [;
end
else
begin

PC:=PC+1;

Phase := (;
end;

3.4.2.2 lambda

Parameter unused

Purpose no-op used to jump to next phase
Action

Phase := Phase + 1;

3.4.2.3 illegal

Parameter unused

Purpose undefined instruction
Action

[legallnstructionFlag := true;

This will cause the processor to halt,

3.4.2.4 nomatch

Parameter unused

Purpose no-op jump to next instruction address
Action

PC:=PC+1];

Phase :=0;

3.4.2.5 lexchar

Parameter Character
Purpose test if the character in the input is greater than or equal to the parameter character.
Action
if (P1 <= TopSymbol) then
begin

Phase := Phase + 1;
end
else
begin

PC:=PC+1,

Phase :=0;
end;
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3.4.2.6 lexerror

Parameter Token
Purpose Use the token stack to find the longest token possible from the lexical text just read.
Action
repeat
TopSymbol := POP_TOKEN_STACK
TokenlsEnd:= Dec13(TokenlsEnd);
until (TokenIsStart = TokenIsEnd) or (TopSymbol < 0);

if (TopSymbol = 0) then
begin
Phase := Phase + 1;
end
else
begin
TokenBufferStart := TokenIsEnd;
PC := StateStack[StateSP];
Phase = (;
end;

3.4.2.7 lexeoi

Parameter Token

Purpose Note that the token denoting the end of lexical input has been seen.
Action

EOIFoundFlag := true;

TopSymbol :=P1;

TokenBufferStart := TokenIsEnd;

PC := StateStack[StateSP};

Phase :=0;

3.4.2.8 lexaccept

Parameter Token

Purpose Note that a valid token has been seen.
Action

TopSymbol :=P1;

TokenBufferStart ;= TokenIsEnd;

PC := StateStack[StateSP];

Phase := 0,

3.4.2.9 shift

Parameter State
Purpose Note the parse state to be shifted to, depending on if the token queue is empty then
goto that state otherwise next phase (ready to start the lexical machine).
Action
PUSH_STATE_STACK(P1)
if ValidQueueFlag or ECIFoundFlag then
begin
TopSymbol := LookAheadSymbol;
ValidQueueFlag := false;
PC .= StateStack{StateSP];
Phase :=0,
end
else
begin
{ get the lexical token }
TokenWasStart := TokenlsStart;
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TokenWasEnd := TokenlsEnd;
Phase := Phase + 1;
end;

3.4.2.10 shift-reduce

Parameter Rule
Purpose Call up the rule specified as parameter to perform the associated semantic actions.
(Remember to use the current token string)
Action
SynchroniseModeFlag := false;
TheAction ;= cActionA;
SysNullToken := false;
SysResult := SemanticAction(TheParsePtr, TheSyntaxPir,P1);
if not SysResult then
begin
ParseSemanticFlag := true;
end;
Phase := Phase + 1,

3.4.2.11 reduce

Parameter Rule
Purpose Call up the rule specified as parameter to perform the associated semantic actions.
(Remember to use the previous token string)
Action
LockAheadSymbol := TopSymbol;
ValidQueueFlag := true;
SynchroniseModeFlag := false;
TheAction = cActionB;
SysNullToken := false;
SysResult ;= SemanticAction(TheParsePtr, TheSyntaxPtr,P'1);
if not SysResult then
begin
ParseSemanticFlag := true;
end;
Phase := Phase + 1,

3.4.2.12 lexshift

Parameter Character
Purpose Check that the current lexical character is less than or equal to the expected character.
Action
if (TopSymbol <= P1} then
begin
TokenlsEnd := Inc13(TokenlsEnd);
Phase := Phase + 1;
end
else
begin
PC:=PC+1;
Phase := 0,
end;

3.4.2.13 lerror

Parameter Rule
Purpose Call up a special semantic action to indicate that a lexical error has been detected.
Action
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TheAction := cActionD;

SysNullToken := false;

SysResult ;= SemanticAction(TheParsePtr,TheSyntaxPtr,P1);
LexSyntaxFlag := true;

TokenBufferStart := Incl3(TokenBufferStart);

Phase := Phase + 1;

3.4.2.14 lextest

Parameter Rule

Purpose Call up a lexical test routine to check on the possible token string.
Action

TheAction := cActionC;

SysNullToken := false;

SysResult := SemanticAction(TheParsePtr, TheSyntaxPtr,P1);

if SysNullToken then
begin
TokenBufferStart := TokenIsEnd;
PC =PC+1;
Phase := Phase + 1;
end
else if SysResult then
begin
Phase := Phase + 1;
end
else
begin
PC:=PC+1;
Phase :=0;
end;

3.4.2.15 perror

Parameter Rule
Purpose Depending on if the end of input has been seen or attempting to re-synchronise caused by
previous errors then possible call up a special semantic action to indicate that a new parse error has
been seen.
Action
if EOIFoundFlag then
begin
SourceExhaustedFlag := true;
end
else if SynchroniseModeFlag then
begin
ValidQueueFlag := false;
Phase := Phase + [;
end
else
begin
LookAheadSymbol := TopSymbol;
ValidQueueFlag := true;
SynchroniseModeFlag ;= true;
ParseSyntaxFlag := true;
TheAction := cActionA;
SysNullToken := false;
SysResult:=SemanticAction(TheParsePtr,TheSyntaxPtr,P1);
if not SysResult then
begin
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ParseSemanticFlag := true;
end,;
end;
Phase := Phase + 1;

3.4.2.16 Ipush

Parameter Token

Purpose Initialise the lexical engine, clear the Tokenls string but point to the first possible character
for the token string.

Action

PUSH_TOKEN_STACK(P1);

TokenlsStart := TokenBufferStart;

TokenlsEnd := TokenBufferStart;

Phase := Phase + 1;

3.4.2.17 assign

Parameter Token
Purpose After a parse rule has been recognised then note the left-hand token of the rule. If attempting
to re-synchronise input after a parse syntax error then pop the state stack to find a state which has a
shift on the $error (=0) token.
Action
if SynchroniseModeFlag then
begin
{ find an error handler }
StateSP := Inci3(StateSP),

repeat
PC :=POP_STATE_STACK;
Phase :=0;

TopSymbol ;= ($1fff and ReadTable(4*PC+Phase));

until EMPTY_STATE_STACK or (TopSymbol = 0);

if EMPTY_STATE_STACK then NoErrorHandlerFlag := true;
end
else
begin

TopSymbol := P1;

Phase := Phase + 1;
end;

3.4.2.18 push

Parameter Token

Purpose Push the specified token value onto the token stack.
Action

PUSH_TOKEN_STACK(P1);

Phase := Phase + 1:

3.4.2.19 loadchar

Parameter not used
Purpose Read the next character from the lexical input stream (only if the buffer is empty).
Action
TokenRamStart := TokenIsEnd;
TokenRamEnd := TokenBufferEnd;
if (TokenRamStart = TokenRamEnd) then
begin
{ Read next char into buffer }
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LexRam[TokenRamStart] := READ_NEXT_CHAR;
TokenBufferEnd := Inc13(TokenBufferEnd);
if (TokenBufferStart = TokenBufferEnd) then
begin
BufferOverflowFlag := true;
end;
end;
TopSymbol ;= LexRam[TokenRamStart];

PC=PC+1;
Phase :=Q;

3.4.2.20 halt

Parameter not used
Purpose Halt the processor
Action

ParseDoneFlag := true;
Phase := 0

3.4.2.21 goto

Parameter State

Purpose Goto the specified instruction address.
Action

PC =PI,

Phase = ()

3.4.2.22 pop

Parameter not used

Purpose pop a single value from the state stack.

Action

IfEMPTY_STATE_STACK then StackUnderflowFlag := true;
StateSP ;= Dec13(StateSP);

PC:=PC+1,

Phase :=0;

3.4.2.23 readstack

Parameter not used

Purpose goto the address specified by the top of the state stack.
Action

PC ;= StateStack[StateSP];

Phase :=();

3.5 Combined Macros

The individual micro-instructions for the new instruction set can be combined to form
macro-instructions. These macro-instructions implement the parser and lexer
instructions of the initial instruction set. As mentioned earlier these macros could be

regarded as a form of Very Long Instruction Word (VLIW).
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3.5.1 State Table Macro
The state table macro or layout for the combined parse and lex states has the

following structure (using the regular expression notation for grammars).
Table = Initialisation ParseState+ ParsePop LexState+

The Initialisation, ParseState, ParsePop and LexState macro entities are defined in the
next sections. The above indicates that there must be an initialisation macro, at least
one parse state, that there must be a parse pop section and at least one lex state. The
processor does not verify that a language table has the correct structure. The correct
table structure should always be generated by the associated compiler-compiler

system.

3.5.2 Initialisation
The processor starts with all registers and flags mitialised to zero or false. For the

parser machine to be initialised it needs a token value to be input. This is provided by

the macro placed at address 0.
Phase (0 = lambda0
Phase 1 = shift <parse state(>
Phase 2 = Ipush <lexstateQ default>
Phase 3 = goto <lexstate0>

3.5.3 ParseState

The compiler-compiler used with the processor generates the processor code so that
the parse states start at address 1. Each parse state will have the following structure

(using the regular expression notation for grammars).

ParseState = (Shift, Reduce, ShiftReduce)* Default

The Shift, Reduce, ShiftReduce and Default entities mentioned correspond to the

ParseShift, ParseReduce, ParseShiftReduce and ParseDefault macros.

3.5.4 ParsePop
This is used to store the popping from the parse state stack which is required by the

Parse Reduce action. It has the following structure.
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ParsePop = Pop+ ReadStack

Pop is a macro such that :-
Phase 0 = lambda
Phase | = lambda
Phase 2 = lambda

Phase 3 = pop

ReadStack is a macro such that :-
Phase 0 = lambda
Phase 1 = lambda
Phase 2 = lambda

Phase 3 = readstack

The number of pop macros is given by the number of tokens in the rule with the

largest number of tokens in the right-hand side of the grammar rule.

3.5.5 LexState
Each lexical state will have the following structure (using the regular expression

notation for grammars).

LexState = TestArc* (LexLoadChar CharArc+)? LexAccept

3.5.6 Parse Shift
The ParseShift macro splits down to

Phase 0 = IfEqual <Token>
Phase 1 = Shift <ParseState>
Phase 2 = lpush <lexstate O default token>

Phase 3 = goto <lexstate 0>

3.5.7 Parse Reduce
The ParseReduce macro has three variants depending on the rule to be reduced.
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If the rule is the goal rule then
Phase 0 = IfEqual <Token>
Phase 1 = lambda
Phase 2 = halt
Phase 3 = readstack
else if the rule has no tokens on its right-hand side then
Phase 0 = IfEqual <Token>
Phase 1 = reduce <Rule>
Phase 2 = assign <rule left-hand token>

Phase 3 = readstack

otherwise

Phase 0 = ifequal <Token>
Phase 1 = reduce <rule>
Phase 2 = assign <rule left-hand symbol>

Phase 3 = goto <address of pop = right-hand rule count>

3.5.8 Parse Shift-Reduce
The ParseShiftReduce macro has three variants depending on the rule to be reduced.

If the rule is the goal rule then
Phase 0 = ifequal <Token>
Phase 1 = lambda
Phase 2 = halt
Phase 3 = readstack
else if the rule has no tokens on its right-hand side then
Phase 0 = ifequal <Token>
Phase | = shiftreduce <Rule>

Phase 2 = assign <rule left-hand token>
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Phase 3 = readstack
otherwise
Phase 0 = ifequal <Token>
Phase 1 = shifireduce <nile>
Phase 2 = assign <rule left-hand symbol>
Phase 3 = poto <address of pop = right-hand rule count>

3.5.9 Parse Default Reduce
The ParseDefaultReduce macro has four variants depending on the default rule being

recognised and the number of tokens in the rule right-hand side.

If the rule is the error rule then
Phase 0 = lambda
Phase 1 = perror <Error Rule>
Phase 2 = assign <Error Token>
Phase 3 = readstack
else if the rule is the goal rule then
Phase 0 = lambda
Phase 1 = lambda
Phase 2 = halt
Phase 3 = readstack
else if the rule has no tokens on its right-hand side then
Phase 0 = lambda
Phase 1 = reduce <Rule>
Phase 2 = assign <rule left-hand token>
Phase 3 = readstack
otherwise

Phase 0 = lambda

Phase 1 =reduce <rule>
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Phase 2 = assign <rule left-hand symbol>
Phase 3 = gote <address of pop = right-hand rule count>

3.5.10 Lex Test
Each instance of the LexTest macro takes up two address locations.

Address0:
Phase 0 = lambda
Phase 1 = lextest <test routine>
Phase 2 = push <next lex state default token>
Phase 3 = goto <next lex state>
Addressl:
Phase 0 = nomatch
Phase 1 = lambda
Phase 2 = lpush <lex state ¢ default token>
Phase 3 = goto <lex state 0>

3.5.11 Lex Load Char
The LexLoadChar macro splits down to

Phase 0 = lambda

Phase 1 = lambda

Phase 2 = loadchar

Phase 3 = goto <next address = current address + 1>

3.5.12 Lex Shift
The LexShift macro splits down to

Phase 0 = lexchar <lo character>
Phase 1 = lexshift <hi character>
Phase 2 = push <next lex state default token>

Phase 3 = goto <next lex state>
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3.5.13 Lex Accept
The LexAccept macro has three variants depending on the default token being

recognised.

If the recognised token is the error token (indicating a lexical syntax error) then
Phase 0 = lexerror <ErrorToken>
Phase 1 = lerror <Error Rule>
Phase 2 = lpush <lex state 0 default token>
Phase 3 = goto <lex state 0>
else if the token is the end of input token then
Phase 0 = lexeoi <EOI Token>
Phase 1 = lerror <error rule>
Phase 2 = lpush <lex state O default token>
Phase 3 = goto <lex state 0>
otherwise
Phase 0 = lexaccept <token>
Phase 1 = lerror <error rule>
Phase 2 = Ipush <lex state 0 default token>
Phase 3 = goto <lex state 0>

3.5.14 State Size Reduction

It can be observed that some language grammars have duplicated instructions in some
parse states and also some lex states. Therefore, one further optimisation is to merge
the overlap into a new state, removing the overlap from the two original states. The
two original states would then each terminate with a new macro, the Continue macro.

This would be implemented as,
Phase 0 = lambda
Phase | = lambda
Phase 2 = lambda
Phase 3 = goto <new merged state>
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For a pair of parse states the merged state must contain the ParseDefault macro.
For a pair of lex states the merged state must contain the LexAccept macro.

This optimisation has been included in the compiler-compiler software suite which

generates the instruction tables for a language.

3.6 Sample Language Table Sizes

The following table gives examples of the sizes of parse tables generated by the
compiler-compiler using the original and new instruction sets. For a list of the original
parse instructions refer to “Table 9 - Initial Parse Instruction Set”, and for a list of the
original lexer instructions refer to “Table 11 - Initial Lexical Instruction Set”. For a
list of the final instruction set refer to “Table 13 - Micro-Instructions”. The following
table also compares the size of parse tables for a number of computer language
grammars. Also included is a comparison of the count of instructions executed to read

the language grammars.

It can be seen that the new micro-instruction count is less than double the old
instruction count. This should not imply that the new instruction set will have longer
execution times, since each new micro-instruction is simpler (and presumably faster)

than the old instruction.

Note also that the count of phase0 micro-instructions executed is consistently less
than the number of instructions executed from the old instruction set. This may be
caused by a different ordering of the triggers for parse and lex shift actions between

the tables generated for the two instruction sets.

Language Old Old New New New
Table Max Instruction Table Max Instruction Phase(
Address Count Address Count Count
ACE 818 37509 701 60597 29723
BASIC 1260 30658 1105 48912 23723
M2 4177 107536 3326 177459 84728
M2V 3915 97245 3134 158835 76489
PCPASCAL 3924 100399 3470 169863 80133

Table 14 - Comparison of Table Sizes
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The following table shows some example counts of instruction executed for source

text written in a range of languages, where :-

o ACE is a simple BASIC-like language.

e BASIC is a grammar defining a variant of the original BASIC language.

e M2 and M2V are both language grammars for MODULA-2. M2V is a
grammar which was defined for use on the DEC VAX/VMS operating system.

e PCPASCAL is a grammar derived from the PASCAL definition used for the
Borland Turbo Pascal compiler.

Language Input Instruction Count Instruction Count Phase0 Count
(Old Instruction Set) | (New Instruction Set) | (New Instruction Set)

ACE bad 248 5910 277

ACE bad] 364 5508 2566

ACE jdm 3167 5964 2789

ACE test 6644 12348 5820

ACE test] 7366 13771 5456

BASIC bad 1019 1885 935

BASIC test 788 1476 704

M2 deb 6812 13689 6202

M2 example 7450 15262 6708

M2 examplel 0656 23720 9584

M2 example2 | 3537 6690 3141

M2V deb 6718 13521 6114

M2V example 7357 15096 6621

M2V examplel | 9630 23688 9564

M2V example2 | 3484 6604 3094

PCPASCAL | test 12364 25007 11352

Table |5 - Comparison of Parse Input

The examples given within the table show that the new instruction set roughly

doubles the number of instructions executed compared with the original instruction

set. However due to the simpler actions for the new micro-instructions, the execution

time of each new instruction should be less than that of the old instruction.
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4. Hardware Design
The instruction set architecture, which was designed to implement the combined
LALR(1) and lexical analyser algorithms, did not impose any major constraints on the
physical implementation of the processor. The software implementation of the
processor, used within the compiler-compiler system suggested the main functional

blocks to be implemented as hardware. These functional blocks are shown in the

following diagram.
Char Input Token String Semantic Rule
A
Error Flags .
Lexical Queue Token Stack |g———p
State Stack
S
<+
SymbolQueue Inst Reg. Param PC Phase
‘_’/ Instruction T |
I
Control Logic Address
Language ROM (Instructions)

Figure 21 - Processor Functional Blocks
The PASCAL source code for the software emulation of the processor was

interpreted as being a register transfer model for the hardware implementation.

The following sections discuss the implementation of the various logic blocks within

the processor.
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4.1 State, Token Stacks and Token Queues

The original idea was to implement the two token and state stacks and also the lexical
queue as individual devices which would be controlled from the main processor
device. This would have required the design of one stack device and a lexical
character buffer device. The stack device would have been used twice, once for the

state stack and once for the token stack.

4.1.1 State and Token Stack
The stack device was designed to have the architecture as shown in the diagram

below.

A Stack Pointer -  »
address

= P=
Command (SP=0) (SP=max) Data In Data Out

IncsSP
DecSP
WriteData
ReadData
NoOp

Figure 22 - Stack Device
As the software version of the processor used a 13-bit parameter this required the
stack RAM data width to also be 13-bits. The silicon design tools were only able to
provide memory holding up-to 8192 bits. Several attempts were made to have
multiple memory blocks on a single device (so that a stack depth > 512) but due to

restrictions on internal wire-lengths these attempts were unsuccessful.

The stack chip was however fabricated and contained a RAM block of 13-bits width
and address range of 512 locations. This device, using a 2 micron CMOS technology,

was 4772 by 4656 microns in size and used a 40 pin dual in line package.

4.1.2 Token Char Queue
The token character (or lexical) buffer queue was designed to have the hardware

implementation as shown in the following diagram. This implementation was also
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derived from the processor software emulation, which acted as a register transfer
model. The lexical buffer queue was not implemented as a standalone device. After
the difficulties with the stack chip, the concept of incorporating internal RAM for the

stacks and queues was abandoned.

Data out Data in

Figure 23 - Lexical Buffer

Key :-
+ implies that the register can be incremented by 1. (i.e. TRS, TBE, TBS, TIE)
- implies the register can be decremented by 1. (i.e. TIE)

Hardware Register Source Code Variable
TRS TokenRamStart

TRE TokenRamEnd

TBS TokenBufferStart
TBE TokenBufferEnd

TIS TokenlsStart

TIE TokenIsEnd

TWS TokenWasStart

TWE TokenWasEnd

Figure 24 - Lexical Buffer Registers
The lexical buffer block also incorporated control logic to ensure the defined register
to register transfers were possible, also to enable the increment and decrement by 1 of
the specified registers. Finally the control logic ensured data could be written to and
read from the attached RAM.

The lexical buffer queue was implemented as a cyclic buffer. This is shown in the

following diagram.
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TWE
TIS

TIE .
MinAddress =0

MaxAddress

TBS

TBE

Figure 25 - Lexical Queue as Cyclic Buffer
If any pair of associated registers (i.e. TxS, TxE) have the same value (that is, point to
the same memory address) then the corresponding token string is empty. The TRS,
TRE registers are only used when either reading from or writing to, the buffer RAM.

The TRS register is also used as the current address pointer for the lexical memory.

When the processor is “parsing”, the values held in the TWS, TWE, TIS, TIE, TBS

and TBE registers are not modified and are in the order shown in the diagram.

When the processor is “lexical analysing”, the values held in the TIS, TIE, TBS and
TBE registers are being modified. Additionally, the value in the TIS and TBS
registers are identical and TIE is guaranteed to have an inclusive value in the range
between TBS + | and TBE. The source input supplies characters which are read into

the lexical queue and appended into the memory location indicated by TBE
(TokenBufferEnd).

4.1.3 Token Symbol Queue
The Token symbol queue is primarily used to store the next parse token. This has

either been read from the source (by the lexical instructions) or been inserted from the

left-hand side symbol of a grammar rule that has been recognised.
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| |

TopSymbol | —

I (TopSymbol=0)

|LookAheadJ |ValidQueueFlagJ

Figure 26 - Symbol Quene
The diagram shows the register to register data-paths. The comparison signal
(TopSymbol = 0) is defined from the TopSymbol register value. The diagram omits
the comparison signals (TopSymbol=P1), (TopSymbol>=P1) and (TopSymbol<=P1)
where P1 represents the value of the instruction parameter register. The comparison

signals are used by some of the Phase0 micro-instructions.

4.1.4 Using Internal or External Memory
The difficulties in having multiple memory blocks on a device, caused by the

excessive wire-lengths involved forced a re-evaluation of the design of the processor
hardware architecture. It was decided to move all memory required by the stacks and

buffer queues off the processor to become external to the processor design.

The use of external memory would enable the size of the stacks and buffer queues to
be increased. It was noted that the size of the memory available for use by stack and
queue logic units imposed some constraints on the run-time use of the processor. The
size of the token stack memory constrained the size of tokens (especially comment
tokens). Also the buffer queue had to contain three token strings, which would also

restrict the size of tokens.

The need for external RAM memory imposed a requirement for memory addressing
additional to the instruction memory (assumed to be in a ROM). The use of three
separate address spaces for the two stacks and one buffer queue was immediately
discarded, since this would have required three address signal busses. The concept of
one address space (and hence one address bus) which combined all address spaces

(token stack, state stack, lexical queue and instruction memory) was utilised.
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The software implementation of the processor (and hence the hardware version) also
has to read from the source input stream the values of the lexical characters. The
processor also is required to output (on demand) a token character string when a

semantic action is in progress. That is, an I/O address space was also required.

The various address spaces were therefore combined into one address space which

was partitioned into eight segments. These segments are indicated in a following

table.
Segment | Page | Use/Purpose of Segment
0 0 Phase 0 Instruction (ROM)
1 1 Phase | Instruction (ROM)
2 2 Phase 2 Instruction (ROM)
3 3 Phase 3 Instruction (ROM)
4 0 State Stack RAM
5 1 Token Stack RAM
6 2 Lexical Buffer RAM
7 3 Unused (/O space)

Table 16 - Memory Segment Definition

Segments 0 to 3 are used by the instruction memory (usually ROM) and correspond to
the instructions for phase 0 to 3 respectively. The other four segments 4 to 7 are used

by the various RAM address spaces, including the Input/Output (I/0) space.

The segmented memory address space, which is able to address ROM, RAM and /O,
forced some constraints on the legal combinations of the various memory enable and
write signals. To enforce the legal combinations, the use of an internal 4-bit
“IOMode” control bus (giving 16 legal combinations) was adopted. This is shown in
the table below. The low three wires of the bus are input to the bit-slice device so the

correct address register can be used.
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The instruction memory segments could be implemented as either ROM or RAM

memory. If the instruction memory is RAM then a mechanism is needed to load the

parse and lex instructions from an external source using a fixed message protocol.

InstFlag is an internal signal used to indicate that the instruction memory segments

are being written to (if RAM) and therefore is indirectly set and cleared by the

protocol. This protocol will be described later.

IOMode | Meaning Enable Write Wanted Address Page |
Inst | Data Tnst Data | DMA
0 NoOp 0 0 0 0 0 0 PC 0
| DataWanted | 0 0 0 0 t 0 PC 0
2 DataDMA 0 1 0 0 0 1 TRS 2
3 InstWanted 0 0 0 1 0 0 PC 0
4 ReadInst0 1 0 InstFlag | InstFlag | 0 0 PC 0
5 Readlnst] 1 0 InstFlag | InstFlag | O 0 PC 1
6 Readlnst2 1 0 InstFlag | InstFlag | 0 0 PC 2
7 Readlnst3 1 0 InstFlag | InstFlag | O 0 PC 2
] ReadData0 0 1 0 0 0 0 StateSP 0
9 ReadDatal 0 1 0 0 0 0 TokenSP | 1
i0 ReadData2 0 1 0 0 0 0 TRS 2
11 ReadData3 0 1 0 0 0 0 TRS 3
12 WriteDataQ | 0 1 1 0 0 0 StateSP 0
13 WriteDatal 0 1 1 0 0 0 TokenSP | 1
14 WriteData2 | 0 1 1 0 0 0 TRS 2
15 WriteData3 { 0 1 1 0 0 0 TRS 2

Table 17 - IOMode Definition

4.2 New Processor Architecture

The use of external memory and also having the bit width of the instruction parameter

the same size as the state address (state stack data), the token size, the character size

and the rule size enabled the processor to be split into a control logic block and a data

logic block. The control and data blocks have the connections as shown in the

following diagram.
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Signals [Parameter (P1) | [PC |

Parameter
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Figure 27 - New Processor Architecture
All registers and logic circuitry which depend on the width of the parameter, address,
token and character buses are localised within the data block. Thus the data block
could be implemented with different register widths (i.e. as a bit-slice). Also, the
fixed size busses such as the instruction bus (3-bits) are embedded within the Control

logic block.

4.2.1 Cycle-based Simulation
The modifications to the processor architecture (that is, the splitting of the control and

data-path logic) required further changes to be made to the compiler-compiler
software to emulate the new processor. Primarily the software was altered to provide
cycle based simulation, unlike the previous version of software which only simulated
the execution of instructions. Emulation results of the instruction execution variant of
the software are indicated in a table of results in the previous chapter. Results for the

cycle based emulation are listed in a table in a following section in this chapter.

The software emulation of the processor {written in PASCAL) then formed the design
specification for the two types of logic block. The PASCAL language has similar
constructs to those present in the logic synthesis language LOLA which is part of the
SOLO 1400 software tool set used to design and layout the logic. For more details
about the design suite refer to the Solo 1400 User Guide [European Silicon Structures

93]. The similarity of constructs (such as the case statement) enabled the PASCAL
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source to be quickly converted into logic via the logic synthesis tool, once the

PASCAL source was manually transformed into LOLA.

The software emulation of the processor was also able to generate test-vectors (and
the expected signal outputs) to validate the logic design. It was found that the signal
outputs from the SOLO 1400 logic simulator, MADS and the expected results from
the software emulation were in agreement. Refer to “Appendix A - Software

Simulation” for part of an example simulation run.

4.2.2 Processor Physical Implementation
The data-path and control blocks were both designed and fabricated using 1.5 micron

CMOS gate-array technology. The data-path block (logic and registers) was
implemented as an 8-bit bit-slice device. Both devices are described in the next

sections.

4.3 Data-Path Bit Slice
The bit slice device used a repeated logic cell with ripple-through logic. The top level
block incorporated logic to decode the command bus signals and the repeated slice

logic.

Address Data out Ripple out

N Bit-slice Slice 8

Page Bus + :
DataMemEnable Siice 7

Control % Ripple

_\h’ decode

Command Slice 1

:

Clock 7] Data i 7] REPPIEIR

—x—

Figure 28 - Bit-slice I/0
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The operation of the bit-slice is controlled by the combined EngineCommand bus, the
Page bus and the DataMemEnable signal. The combination of Page bus and
DataMemEnable signal is used to select which register should be used to form the
memory address register, one of PC, TokenSP, StateSP or TokenRAMStart. The
EngineCommand bus controls the register to register transfers and also the increment

or decrement (by one) of some of the registers.

The devices can be combined in series as shown in the next diagram.

A A
address | Data out address Data out
Control Slice Slice
Ripple- Ripple-in Ripple-in
«— S — -—

lcommand Tcommand TData in Tcommand Data in

Figure 29 - Control and Bit-slice blocks
Ripple-through logic was extensively used for simplicity of design. As the main
objective of implementing the processor in silicon was to prove the concept, the
penalty of long delay paths for signals (forcing a slower clock) was accepted. The list

of ripple-through signals is listed in the following table.

Ripple Signal Signal Purpose

Carry Carry for Increment/Decrement by 1
TokenRamEqual {TRS = TRE)

TokenBufferEqual (TBS = TBE)

TokenlsEqual (TIS = TIE)

TokenSPlsZero (TokenSP = 0)

StateSPIsZero (StateSP = 0)

PilsZero (P1=0)

SymbolGreaterOrEqual {TopSymbol >= P1)

SymbolEqual {TopSymbol = P1)

Table 18 - Bit-Slice Ripple Signals

The logic for the individual ripple signals is of 4 basic types. These are :-

s to test if the register is zero
e to compare two registers for equality

e to propagate a carry/borrow signal for the increment/decrement by 1 of a
register

e to test if a register is greater than or equal to another register.
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Using the MODEL hardware description language this becomes,
or[and[a,not[b]],and[eqv[a,b],r_in]]} -> r_out

Thus one slice will require an or gate, two and gates, an equivalence gate and an

inverter.

4.3.1.4 Carry/Borrow for Increment/Decrement by 1
If a[i] represents the i’th bit for register a, and c[i] is the i’th carry/borrow input signal

and inc represents a signal indicating the number is to be incremented (if at logic 1)

and indicates a decrement (if at logic 0) then we have the following table :-

ine c[i] afi] a'[i] cli+1]

(+1if I, -1 ifQ) [ carry/borrow in | register | New value of a[i] | carry/borrow out
0 0 0 0 0

0 0 1 | 0

0 i 0 1 1

0 1 1 0 0

1 0 0 0 0

1 0 1 I 0

1 1 0 1 0

1 1 1 0 1

Table 19 - Carry/Borrow for +1/-1

a’[i] is (a[i] <> c[i]), i.e. the exclusive-or of a[i] with c[i]
and one expression for ¢[i+1] can be optimised to be,
c[i+1]is (inc = a[I]) and (c[I] = 1)

The carry/borrow value of the most significant bit of an increment/decrement is

ignored by the control logic since underflow or overflow is permitted.
Using the MODEL hardware description language this becomes,
eqv[a,c_in] -> a_new

and[eqv[inc,a],c_in] -> c_out

4.3.2 Register To Register Transfer
The register to register transfer is carried out using a number of internal busses. An

increase in silicon area {caused by wiring and extra gates needed to form individual

increment and decrement logic for the TRS, TBS, TBE and TIE registers) was
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avoided by using a single increment/decrement logic block with the internal busses.

This is shown in the next diagram.

mcode

Carry out

&
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Data in
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Figure 30 - Bit-slice Register Transfer

The individual registers each have an associated command signal indicating when to

load data values (from either the sbus or ebus) or to reload the current register value.

The load command is decoded from the command bus input to the bit-slice at the top

level of the device.

clock Reg X
flip-flop
d
nd r
load

nor

v

gbar

v

Figure 31 - Register Transfer

The q and qbar register outputs are both used so as to minimise both logic used and

path delay times.
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4.3.3 Bit-Slice Commands
The operation of each bit-slice device is decided by the EngineCommand bus. This is

5-bits wide giving a total of 32 possible commands. The individual commands are

listed in the following table.

Command Bus | Command Name Command Actions

0 NoOp None

i TokenSctBusMayBe TRS :=TIE, TRE := TBE
2 TokenSetBusBuffer TRS := TBS, TRE := TBE
3 TokenSetBusls TRS :=TIS, TRE :=TIE
4 TokenSetBusWas TRS :=TWS, TRE :=TWE
5 TokenSetIsEmpty TIS := TBS, TIE := TBS
6 TokenLoadWasls TWS :=TIS, TWE :=TIE
7 Zero Clear all registers

8 TokenSPZero TokenSP =0

9 SymbolLoadPC PC :=Pl

10 TokenAccept TBS :=TIE

11 SymbolP1Load P1 .= MEMORY (Dataln)
12 SymbolLoadLAS LookAhead :=0

13 SymbolPop TopSymbol := LookAhead
14 SymbolPush LookAhead := TopSymbol
15 SymbolLoadTS TopSymbol := P1

16 StateSPInc StateSP ;= StateSP + 1

17 TokenSPInc TokenSP := TokenSP + |
18 TokenIncRamStart TRS :=TRS + 1

19 Symbollnc PC:=PC+1

20 TokenlncBufferStart TBS :=TBS + 1

21 TokenIncBufferEnd TBE :=TBE + 1

22 TokenIncIsStart TIS:=TIS+ |

23 TokenlncIsEnd TIE :=TIE + 1

24 StateSPDec StateSP := StateSP - 1

25 TokenSPDec TokenSP := TokenSP - 1
26 TokenDecRamStart TRS :=TRS - |

27 SymbolDec PC:=PC-1

28 TokenDecBufferStart TBS .=TBS -1

29 TokenDecBufferEnd TBE :=TBE - 1

30 TokenDeclsStart TIS:=TIS-1

31 TokenDeclsEnd TIE =TIE - |

Table 20 - Bit-Slice Commands

All the commands arc implemented and available for use, however the control device

uses a subset of the commands to implement the instruction set for the processor.

4.3.4 Fabrication Details
The bit-slice device was fabricated using a 1.5 micron CMOS gate array technology.

The actual device size was 3777 by 3244 microns. It used 6664 stages where each

stage consisted of a pair of NFET and PFET devices and so the bit-slice logic was
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implemented using 13328 transistors. The device was packaged in an 84 pin grid
array where 16 pins were reserved for power and ground connections (8 power and 8

ground) and 15 pins were unconnected.

The diagram on the next page shows the physical design layout for the bit-slice

device.
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Layout of bit-slice device plotted £from £ile “chipB.cif"

Chip

Figure 32 - Bit-Slice Device Chip Layout

-98 -




4.3.5 Device Pinout

The diagram shows the pin layout of the 84 pin grid array used by the bit-slice device.

The package has 85 pins where pin C9 is used for alignment or package orientation

when inserting onto a circuit board.

=
%]

| d
=

Back Side Pattern

Figure 33 - PGA Pin Layout

CROIQEEDOT

The pinout of the device is given by the following table. NC indicates that the pin is

Not Connected to the encapsulated chip. Also the Pad number indicates the internal

pin for connection to the device bond pads.

Pad | Pin_| Signal Pad | Pin [ Signal | Pad | Pin | Signal Pad | Pin Signal

1 B2 | NC 22 K2 | NC 43 K10 | NC 64 B10 NC

2 C2 | address§ | 23 K3 | NC 44 J10 | clock 65 B9 NC

3 Bl | address7 | 24 L2 NC 45 K11 | mcodeQ 66 Al0 NC

4 Cl | address6 | 25 L3 gnd 46 J11 | mcodel 67 A9 seout

5 D2 | address5 | 26 K4 | gnd 47 H10 | mcode2 68 B8 sgeout
6 D1 | address4 | 27 L4 gnd 48 H11 | mcode3 69 A8 plizout
7 E3 | address3 | 28 J5 vdd 49 F10 | mcoded 70 B6 sspizout
8 E2 | address2 | 29 K5 vdd 50 G10 | iomcoded | 71 B7 tspizout
9 El addressl | 30 LS vdd 51 Gl11 | iomcodel | 72 A7 tieout
10 |F2 | gnd 31 Ké | carryin | 52 G9 | iomcode2 | 73 Cc7 tbeout
11 | F3 | vdd 32 |J6 trein 53 F9 | datainl 74 C6 treout
12 | G3 | dataout8 | 33 J7 thein 54 F11 | datain2 75 Ab carryout
13 [ Gl | dataout7 | 34 L7 tiein 55 Ell | datain3 76 A5 gnd

14 | G2 | dataout6 | 35 K7 | tspizin | 56 E10 | dataind 77 BS gnd

15 [ Fl | dataoutS | 36 L6 | sspizin | 57 E9 | datain5 78 Cs gnd

16 | H1 [ dataout4 | 37 L8 | plizin {58 D11 | datainé 79 A4 vdd

17 | H2 [ dataout3 | 38 K8 | sgein 59 D10 1§ datain? 80 B4 vdd

18 | J1 dataout2 | 39 L9 sein 60 Cl1 1 dataing g1 A3 vdd

19 | K1 | dataoutl | 40 L10 [ NC 61 B11 | vdd 82 A2 NC

20 | J2 NC 41 K9 | NC 62 C10 | gnd 83 B3 NC

21 | L1 |NC 42 L11 | NC 63 All | NC 84 Al NC

Table 21 - Bit Slice Pinout
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4.4 Control Device

The logic for the control device is implemented as a finite state machine, whose state
changes depend on internal and external signals and also on the current state. Each
state also outputs a number of signal values to operate external logic such as the bit-
slice devices (via the EngineCommand signals), memory (via the enable, write,

address and data bus signals) and the semantic logic (via the irq and dataout bus

signals).

4.4.1 Internal Logic
The top level logic design of the control device is outlined in the next diagram. This

diagram shows that the major logic unit is the ‘next state and commands’ block

where each connection from this block represents a signal bus sending commands to

TOMode decof:;[\\

Error Flags Phase Inst Sync Valid| [Irg
write| |mode queue flag
flag flag flag

the associated logic.

— —

Next State + Commands

1 i

State Reg Inst reg
reset | clock Phase reg,
Ripple in eocifound flag,
sync mode flag,
syscommand valid queue flag

Figure 34 - Control Logic Internals
The possible commands that can be sent to the IOMode decoder are defined in “Table
17 - IOMode Definition”. Note that the InstWrite flag also is an input to the decoder.
The implementation of the InstWrite, Sync Mode, Valid Queue and IRQ flags is
detailed in the following section 4.4.1.1 titled “Flag Logic™.
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4.4.1.1 Flag Logic

All flags use a dual wire command bus which allows 4 possible commands to be
defined. Using Flag to denote the current flag value and NewFlag to denote the next

value for Flag, the commands and actions are :-

Command Value | Commandl Command0 Action

FlagNoOp 0 0 0 NewFlag := Flag
FlagUnused 1 0 1 NewFlag := Flag |
FlagClear 2 1 0 NewFlag := false
FlagSet 3 1 1 NewFlag = true

Table 22 - Flag Commands
This set of commands could be implemented in two ways. One method is to “gate the
clock” such that the FlagSet and FlagClear commands are gated with the system clock
to give the clock input to the latch. The other method is to always ensure that the latch

data input has a legal value and that the system clock directly feeds the latch clock.

The technique of “Gating the clock™ causes extra loading on the clock wiring which

then slows down the clock. This method was therefore not used.

The second method imposes extra loading on the command signals. This extra
loading can be ignored as it is comparatively local, and not global like the system

clock. It is implemented as shown in the next diagram.

clock latch
flag ——p»flag
and \‘
Commandl or |,
ot |—sfand | "
Command0

Figure 35 - Control Flag Logic

4.4.1.2 Error Flags
The error flags block contains the 9 error flags and also includes the EOIFound flag.

All of these flags are cleared at system reset and only set individually when the error
condition has been detected. Thus the command bus need only have 4 wires allowing

16 possible commands which are listed in the next table.
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Name Value Action

ErrorNoOp 0 None
ErrorSourceExhausted 1 SourceExhausted ;= true
ErrorParseSyntax 2 ParseSyntax := true
ErrorParseSemantic 3 ParseSemantic ;= true
ErrorLexSyntax 4 LexSyntax := true
ErrorStackUnderflow 5 StackUnderflow := true
ErrorStackOverflow 6 StackOverflow := true
Errorlllegallnstruction 7 IHegalInstruction := true
ErrorNoErrorHandler 8 NoErrorHandler := true
ErrorBufferOverflow 9 BufferOverflow := true
ErmrorUnused 10 10

ErrorUnused11 11

ErrorUnused12 12

ErrorUnusedi3 13

ErrorFoundEQI 14 EOIFound := true
ErrorReset 15 All flags set to false

Table 23 - Commands for Error Logic
Each flag was implemented as described in section 4.4.1.1 titled “Flag Logic”, so
each value of the ErrorCommand bus is able to set values for the individual control

busses for the ten flags.

4.4.1.3 Phase Register
The phase register is two bits wide and can be left unchanged or set to a value from 0

to 3. This requires 5 possible commands which mandates the use of 3 command
wires. The commands to modify this register are given below. Each command then
generated a flag command to leave unchanged, clear or set the two latches forming

the phase register.

Command Value | Action HighBit Flag Action | LowBit Flag Action
SemNoOp 0 FlagNoOp FlagNoQp
SemUnusedl 1 FlagNoOp FlagNoGp
SemUnused2 2 FlagNoOp FlagNoOp
SemUnused3 | 3 FlagNoOp FlagNoOp

SemSetD 4 Phase :==0 [ FlagClear FlagClear

SemSetl] 5 Phase ;=1 [ FlagClear FlagSet

SemSet2 6 Phase :=2 | FlagSet FlagClear

SemSet3 7 Phase :=3 [ FlagSet FlagSet

Table 24 - Phase Register Commands

4.4.2 Processor Internal States
The control device executes each micro-instruction of the processor as a sequence of

steps, where each step will perform some actions in the bit-slice, associated memory,
source input logic or semantic logic. Each step is a single state which in combination

form the state machine that is the processor.
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The processor control logic uses 48 states. The state machine could be implemented
using the concept of “one hot” encoding with 48 latches (one per state). In “one hot”
encoding only one latch should ever be set (representing the current state) and all
others latches are clear. This requires the next state logic to ensure that there 15 no
possibility of more than one state latch being set simultaneously. Also extensive re-
design is needed using this approach if extra states need to be added. The actual
implementation used 6 latches to form a state register which allows 64 possible states.
As only 48 states are used this left sufficient unused states for later expansion of the

state machine.

A simplified version of the state machine is shown in the next diagram.

States which
implement the
actions for
each
instruction
Executel|
sysreset
not
Executel sysreset
A
reset mfetch
——— not Executel
sysreset
phalt
Executeld >
sysreset

Figure 36 - Processor State Machine
After the processor has reset, the processor loops through a fetch and execute cycle
using many states until it halts either because the parse and lexical analysis has
completed or an error has been found. The processor then goes to the halt state. In this
state the error flags are available for use by external hardware. The halt state is only

exited by applying the external reset.

Each micro-instruction starts with the fetch state. This latches in the instruction and
parameter to be executed next. (The memory control signals InstMemEnable will be
cleared at the end of this state). Depending on which phase 0 .. 3 is being executed,

the next state will be one of Execute0 .. Execute3. The ExecuteX states decode the
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micro-instruction to be executed and jump to the sequence of states needed by each
micro-instruction to implement the required actions. Some instructions have common

actions and therefore have states in common.

4.4.3 Interfaces and Protocols
The control device has a number of input and output signals which are used to

interface to external logic. The interfaces are implemented using a number of

protocols for the following purposes,

e To read or write to memory

e Logic to implement language semantics
e Logic to input source text

e Logic to read Token character strings

The protocols and signals used are described in the next sections.

Some of the protocols use the SysCommand input bus to send status information back
to the processor from the external logic. Each SysCommand bus value is used and is

indicated in the next table.

SysCommand SysCommand2 | SysCommandl SysCommand0
SysNoOp 0 0 0
StateWanted 0 0 1
TokenWanted 0 1 0
IRQ)_NullToken 0 1 l
IRQ_OK | 0 0
IRQ _Err 1 0 1
DataAvailable 1 1 0
InstAvailable 1 1 1

Table 25 - SysCommand Bus Definitions

4.4.3.1 System Reset
The processor could power up into any of the possible internal states. The logic of the

state machine has been designed so that if the external reset (sysreset) is true then the
state machine will goto the reset state. While in the reset state the processor internal
registers will be initialised, usually to zero. The reset state is only exited when the

external reset goes low.
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4.4.3.2 Accessing Memory
The processor memory space is split into instruction memory or data memory for the

stacks and lexical buffer. Refer to “Table 17 - IO0Mode Definition” for more

information.

Memory access is controlled by the InstMemEnable, DataMemEnable and
MemoryWrite output signals. The instruction memory is accessed when
InstMemEnable is high and data memory when DataMemEnable is high. The
combination of InstMemEnable, DataMemEnable, MemoryPage0, MemoryPagel

help to select which of the eight memory segments is being accessed.

Memory access takes two clock cycles. The first clock cycle sets the memory enable
signals, memory page signals and memory write signal to a legal combination to read

or write to a memory segment. The second clock cycle will clear the enable signal.

4.4.3.3 Reading the Source Text
The processor needs to read the source text to be able to parse it. A request for the

next character in the source input is indicated by SysDataWanted going high. This
output stays high until the external logic has a character available which is indicated
by SysCommand having the value SysDataAvailable. At this point the character is
loaded into the bit-slice and SysDataWanted will go low from the next clock cycle. It
must be noted that each character of source text is read individually and only

requested when the processor needs it.

4.4.3.4 Interrupts (Rule Recognition and Test Routines)
The processor needs to indicate an interrupt to the external logic which handles

language semantics and lexical tests that a grammar rule or test must be handled. This
is signalled by the SysIRQ output going high and staying high until the external logic
acknowledges interrupt completion. For a parse semantic action, the grammar rule
being recognised is output on the dataout bus. For a lexical text routine, the lexical
test being checked is also output on the dataout bus. Interrupt completion is indicated

by the SysCommand input bus having one of the values :-

¢ SysIRQ_OK
o SysIRQ_Err
e SysI[RQ_NullToken.
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Whilst the interrupt is in progress, which could take many clock-cycles, the
SysCommand bus must have the value of SysIRQ_NoOp. This value is used to

indicate that the external logic has not completed.
The legal values to indicate completion are :-

e SysIRQ_OK indicates that the interrupt has been successful.

e SysIRQ_Err indicates that the interrupt detected a parse semantic error. This
should only be used when the interrupt triggered is one to recognise a grammar
rule. That is the interrupt is not a lexical test routine.

o SysIRQ_NullToken should only be used by a lexical test routine to indicate
that the potential next token being recognised can be discarded, probably since it
is a whitespace (or comment) token.

4.4.3.5 Outputting Current Parse State

During the interrupt raised by the processor (i.e. SysIRQ is high), the external logic
may need to request the value of the current parse state for use in error reporting. This
is indicated by SysCommand having the value SysStateWanted for a single clock-
cycle. The value of the current parse state is output on the bit-slice data output bus for

the next clock cycle for use by the external logic.

4.4.3.6 Outputting Tokens
During the interrupt raised by the processor, the external logic may need to request the

complete value of one of the token strings held in the lexical buffer.

This is triggered by SysCommand having the value SysTokenWanted for one clock-
cycle whilst SysIRQ is true. From the next clock-cycle the individual characters of the
token string are output from the data memory, one character per clock-cycle until the
complete token string has been send. Valid characters are indicated by the values

being both true for the output SysDataDMA and of the TREIn input.

4.4.4 Error Detection and Handling
The control device also has a limited capability to detect and handle errors. The

control device has 9 internal latches which are used to indicate a range of detected
errors and warnings (3 warnings and 6 errors). The latch outputs are connected to chip
bond pads for use by external logic. The ParseDone flag (available as an output pin)
indicates when the parsing process has terminated. At that moment the error flags can

be examined to determine if the parse was successful.
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The three warnings detected are ParseSemanticError (pin 7), LexSyntaxError (pin 8)
and ParseSyntaxError (pin 32). Detection of one of these warnings will not cause the
processor to halt. LexSyntax and ParseSyntax errors indicate that the lexical tokens
and parse tokens respectively do not follow the structure given by the language
grammar. ParseSyntaxError could trigger a NoErrorHandlerError if the grammar does

not contain any error rules (or error handler routines).

The six errors detected will cause the processor to halt since continuation could cause

unexpected behaviour.

The SourceUsedError (pin 31) flags the situation that an attempt has been made to

read more source input after the end of input token has been recognised.

The IilegallnstructionError (pin 13) flags the situvation when an illegal or undefined

instruction has been read and the processor is attempting to execute it.

The NoErrorHandlerError (pin 14) flags the situation when a parse error has been
detected and the state stack contains no state which has a shift instruction triggered by
the error token. Error handlers can only be defined by adding error rules to the

grammar definition.

The BufferOverflowError (pin 15) flags the situation when appending a character
from the source input to the TokenBuffer (hence incrementing TokenBufferEnd) it 1s
found that TokenBufferStart and TokenBufferEnd have the same value. This indicates
the buffer has overflowed. The TBE signal from the bit-slice device indicates when
TokenBufferStart and TokenBufferEnd are identical, the control logic uses this signal

at the instance when this becomes a fatal error.

Bounds checks are also performed on the two stack pointers (TokenSP and StateSP).
Underflow and overflow of these stacks are fatal errors causing unexpected processor

behaviour and are flagged by StackUnderflowError (pin 11) and StackOverflowError
(pin 12).

The TSPIZ (TokenStackPointerisZero) and SSPIZ (StateStackPointerIsZero) signais

from the bit-slice are used to detect these occurrences by the control logic. Underflow
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is detected when the StackPointer (SP) is zero and a StackPop (or SP := SP - 1)
command is requested. Overflow is detected when the StackPointer is zero and a

StackPush (or SP := SP + 1) has just been executed.

4.4.5 Fabrication Details
The control device was also fabricated using a 1.5 micron CMOS gate-array

technology. The actual device size was 3317 by 3076 microns. It used 5201 stages
which is equivalent to 10402 transistors. The device was packaged into a 48 pin dual
in line where 8 pins were reserved for power and ground connections (4 power and 4

ground).

The diagram on the next page shows the physical design layout for the control device.
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Figure 37 - Control Device Chip Layout
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4.4.6 Device Pinout
Items marked with * are input signals from the most significant bit-slice device. ltems

marked ** indicate those signals which are outputs and go to all bit-slice devices.
Items marked + indicate those signals which are output to all bit-slice devices and

also the external memory devices.

Pin Number | Signal Pin Number [ Signal

1 syscommand| 48 syscommand(

2 syscommand2 47 inst2

3 datawanted 46 inst1

4 datadma 45 inst)

5 parsedone 44 vdd

6 irq 43 gnd

7 parsesemanticerror 42 sysreset

8 lexsyntaxerror 4] clock

9 gnd 40 *tbe

10 vdd 19 *tre

11 stackunderflowerror 38 *tie

12 stackoverflowerror 37 *nliz

13 illegalinstructionerror | 36 *sspiz

14 noerrorhandlererror 35 *tspiz

15 bufferoverflowerror 34 *symbolge

16 instmenenable 33 *symbolequat
17 datamemenable 32 parsyntaxerror
18 instwanted 31 sourceusederror
19 gnd 30 vdd

20 vdd 29 gnd

21 **engcommand4 28 memorywrite
22 **engcommand3 27 +memorypage0
23 **engcommand? 26 +memorypagel
24 **engcommand 1 25 **engcommand(

Table 26 - Control Device Pinout

The signals named XXXerror (e.g. stackunderflowerror) indicate the error flags which

show the final parse status.

4.5 Testing and Emulation Results

The software emulation of the processor was not only able to generate the test vectors
(and the expected results) for the two types of devices but it was also able to estimate
the number of clock cycles required for a parse and lexical analysis. Accordingly no
detailed analysis of the required minimal set of test vectors to validate the processor
was deemed to be required. The two chip designs were validated by using the test

vectors generated from the software emulation runs and comparing the actual results
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from the MADS hardware simulation software (provided as part of the SOLO 1400

chip design suite) with the expected results provided by the software emulation.

The following table details some sample runs. The table is used to indicate the range
of tests performed and also to help indicate processor performance. A number of
source files (in different languages) were used as input to the processor. The
instruction counts match those recorded for the emulation runs used to compare the
original 32-bit instruction set with the new 4-phase instruction set, with the exception
of those for the LALR language. The LALR language is a language definition to
define language definitions (and is therefore self-referential). This language was
changed slightly between the two sets of test runs and therefore the run-times and
instructions counts were different. The individual language grammars were not

affected by the LALR grammar alteration and were not altered. Thus no change was

expected in the count of instructions executed for the language test runs.

Language File Clock Instruction | Chars | Line Count | Cycles/Line | Interrupts
Cycle Count Read
Count

LALR ACE 165579 60621 | 1758 47 3523 1670
LALR BASIC 136128 48931 | 1568 51 2669 1546
LALR M2 497166 177537 | 6429 144 3453 4907
LALR M2V 442626 158906 | 5552 130 3405 4334
LALR PCPASCAL | 478590 169947 | 6615 144 3324 4331
ACE bad 16274 *5910 147 8 2034 197
ACE badl 15192 *5508 143 8 1899 173
ACE jdm 16408 3964 148 8 2051 199
ACE test 33871 12348 294 16 2117 410
ACE test] 37852 13771 345 18 2103 548
BASIC bad 5353 *1885 66 5 1071 53
BASIC test 4238 *1476 63 4 1060 35
M2 deb 36572 13689 452 16 2286 284
M2 example 41695 15262 546 27 1544 412
M2 examplel 68487 23720 | 1538 69 993 25
M2 example2 17714 6690 193 12 1476 159
M2V deb 36200 13521 452 16 2263 283
M2V example 41332 15096 546 27 1531 411
M2V examplel 68370 23688 | 1538 69 991 24
M2V example2 17522 6604 193 12 1460 158
PCPASCAL | test 76122 25007 | 1241 67 1136 793

Tabie 27 - Clock cycles for Parse Input

The examples marked with an asterisk (in the instruction count column) represent

those parse runs used to test the processors ability to detect invalid input.
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It must be noted that a pseudo-random number generation was used to add in
estimated delays caused by semantic actions and characters being read from the

source stream.

Noting the variations caused by the random numbers and using the results from the
larger source files tested, this gives a range of 2669 to 3523 clock cycles per line of
source. The clock cycle depends on the worst case delay times for the bit-slice and
control devices. These were given as being 25ns and 40ns respectively. For the
fabricated devices and using two bit-slices this would give a clock cycle of 90ns. Best
case delay times were given as 16ns and 25ns for the bit-slice and control devices

respectively, giving a best case clock cycle time of 57ns.

Accordingly, the processor can compile an estimated 3154 to 4163 lines per second

(using worst case delay) and 4980 to 6573 lines per second (using best case delays).
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5. Real Applications
The processor can be used in most situations where there is a need for communication
using a formal language. This does imply that the processor is restricted to compiling
computer languages. The next sections will briefly outline some possible applications
which are not implementations of compilers in hardware but do involve language
recognition. The first, second and third sections describe potential uses of the
processor which has been investigated using the software simulation. The later
sections describe other possible applications which have been investigated in less

detail.

5.1 Logic Synthesis

One possible application is to use the processor to parse regular expressions so that a
logic block which recognises the regular expression can be synthesised. The
“Appendix C - Synthesis Software” provides details of an appropriate grammar, the
corresponding processor instruction table, and the required semantic actions needed to

convert the regular expression into MODEL source code.

The first example expression, A = a b+ ¢ will be used to demonstrate the synthesis

process.

The parse tree for the example expression using the grammar from the appendix is
shown below. The following table relates the actions attached to the grammar rules to

the PASCAL functions which implement the semantics of the actions.

Rule Action PASCAL Routine
Al lefinameis

A2 primaryisid

Al repeatisstar

Ad factoragain

AS ruleis

Table 28 - Logic Synthesis Routines

The source code for the PASCAL routines can be seen in the appendix.

Note that the order in which the routines are called is given by the left-right post-
traversal of the parse tree, which is implied by the LALR(1) algonthm.
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Figure 38 - Logic Synthesis Parse Tree
Using the parse table for the grammar (given in the appendix), the input source text
and referring to the definitions for the micro-instructions given in Chapter 3
“Instruction Set Design” it is possible to determine the sequence of calling the

semantic actions.

For the given example the sequence of semantic routines will generate the following
MODEL source code.

Part A [ ¢lk,tokin ] -> res
Signal n1;
Signal n2;
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Signal n3;
Signal n4;
Signal n5;
Signal ng;
Signal n7;
ONE -> n1
token("a™)[ clk,tokin,n1] -> n2
n2 ->nb
off n5,nd ] -> n3
token("b"™)[ clk,tokin,n3 ] -> n4
n4 -> né
token{"c")[ clk,tokin,n6 ] -> n¥
n7 ->res
End

After eliminating wires with duplicate names, this can be written as :-

Part A [ clk,tokin ] -> res
Signal n3;
Signal n5;
Signal né;

token("a"}[ clk,tokin,ONE ] -> n5

orff n5,n6]->n3

token("b")[ clk,tokin,n3 ] -> n6

token("c™)[ clk,tokin,n6 ] -> res
End;

This can be represented by the following logic diagram.

clock
token
res
Token’(”a”;r n3 oT n3 To%en %"b”) n* To&en ;zc”)
ONE —p > > " —

Figure 39 - Synthesised Logic
Identical logic to recognise the expression A = a b+ ¢ could also have been generated
using the algorithm discussed in Chapter 2 “Hardware Implementations”. Thus it is

possible that a simple logic synthesis tool could be implemented using the processor.

5.2 Device Mask Generation
The manufacture of most integrated circuits depends on the use of photo-lithography

to generate the masks describing the physical layout of integrated circuits. Each mask
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consists of a collection of geometric shapes, where the shapes can be formed from the
combination of primitive geometric shapes such as a circle, rectangle or trapezium.
This physical layout can be described using a number of specially designed languages.

One of these languages is the Caltech Intermediate Form (CIF), which is widely used.

CIF can be easily defined using an LALR(1) grammar and thus can be parsed by the
processor using the tables generated by the compiler-compiler. For a simple example
CIF file, the processor took an estimated 24110 clock-cycles whilst executing 10112

instructions and 208 semantic actions when reading 105 characters.

The processor could control the photo-lithography machine, by operating the photo-
lithography camera aperture size and location directly from the semantic actions thus

generating the appropriate shapes.

The use of direct write X-ray etching machines instead of photo-lithography for some
masks could also be enhanced by the use of this processor. In this case the semantic

actions control the operation of the X-ray beam directly.

5.3 JAVA

The use of the processor to accelerate the compilation of Java would also be an
example of the potential for this device. The Java Language Specification described
within [Gosling et al. 1996] includes an LALR(1) grammar for the Java language.
This was converted into the regular grammar notation used for input to the Compiler-
Compiler system. Imtially, the size of the resulting JAVA grammar caused problems
for the MS-DOS based compiler-compiler. This was caused by the memory required
to store the parse and lex states being greater than that available under MS-DOS. The
compiler-compiler was modified to use a different run-time environment which
provided a larger memory range than MS-DOS. This medification enabled the
compiler-compiler to generate a table of instructions for the processor which would

allow JAVA source to be recognised.

The use of the RISC processor to recognise JAVA source code would reduce or
possibly remove the need to transfer large files of pre-compiled JAVA byte code over

the Internet. Noting that JAVA source code is smaller in size than the corresponding
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JAVA byte code, this would reduce the data bandwidth needed by the Internet to
support JAVA.

Further improvements in the speed of recognition of computer source code such as
JAVA or PASCAL could be gained by extending the INTEL Pentium instruction set
with the instruction set described by this thesis. Merging the instruction sets would
not be expensive in terms of silicon area, since the first implementation of the RISC
processor was in 1.5 micron and current Pentium processors use 0.25 micron
technology. Using a system architecture of a single control device (3317 by 3076
microns) with two bit-slice devices (each 3777 by 3244 microns), where the given
sizes are for a geometry of 1.5 micron would give an approximate increase of 1600 by

580 microns for a Pentium implemented in 0.25 micron geometry.

5.4 Pen Plotters
Pen plotters are examples of devices which can have a simple language to control
their operation. A pen plotter has a range of simple commands which are used in

combination to draw pictures (including text). Some of these commands are :-

e PenUp

¢ Pen Down
e MoveTo

e Reset

¢ Home

e EndOfInput

e SelectPen

e LoadPaper

e FEjectPaper
The structure of allowed command sequences could then be defined by an appropriate
language LALR(1) grammar. Some of the re-write rules of the grammar will require
actions to be performed. These actions, in turn, will interact with the physical world;
such as, causing the movement of the pen from one location to another location. For
the pen plotter, the recognition of a rule will cause an interrupt which will set/clear

the signal values on the dataout bus of the processor. Thus the source text describing
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the diagram can interact with the plotter mechanisms and its logic circuitry via the

pProcessor.

5.5 Disk Controllers

Disk controllers provide an interface between a computer and the electronic hardware
used to read and write the digital data on magnetic media. The behaviour of a disk
controller is similar to that of the pen plotter described previously. The disk controller
operates the movement across the disk surface of the disk read/write heads usually via
a stepper motor. This corresponds to the MoveTo, HeadUp and HeadDown pen

plotter commands.

5.6 Machine Tools (DNC)

Machine tools in engineering are used to drill holes and grind and route surfaces for
sheet materials such as steel, titanium, tin or even plastic. The operation of a modern
machine tool is usually controlled by a computer-like device with files written in a
special Numerical Control (NC) language being used as source. The NC source data
(usually referred to as a “tape™) describes the too!l operations in a similar notation to
that used by a pen plotter. Each tool can be regarded as being equivalent to a pen,
which can be selected, moved to a given set of co-ordinates (x, y, z) and have the

speed of the tool also selected.
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6. Concluding Remarks and Future Work
The research project reported on in this thesis was dedicated to the problem of
accelerating the process of parsing and lexical analysis. Almost all parsing and lexical
analysis is performed on general purpose computers which add time overheads to the
joint processes. The main objective of this PhD research was to develop new
mechanisms by which the parsing and lexical processes could be accelerated. The
research was carried out in two main areas, namely the investigation of appropriate
algorithms to form the basis of a hardware accelerator and the physical
implementation of the hardware accelerator. In this chapter of the thesis, a summary
of the original contributions of the thesis is presented. Also, possible research areas in

which future work could be carried out are discussed.

6.1 Summary of Contributions Made by This Thesis
This thesis has presented the following contributions to the field of parsing and

lexical analysis:

1) A novel processor instruction set (containing 24 instructions) has been defined
which has sufficient instructions to be able to execute a combined parsing and
lexical analysis. A novel feature of the instruction set is its ability to extend the
size of instructions parameters. The design of the instruction set involved
investigation of the LALR(1) parsing algorithm and finite state machine lexical
analysis algorithms to determine the primitive operations which could be

implemented as instructions.

2) A VLSI chip set has been fabricated which is able to execute the defined
instruction set. A novel feature of this chip set is its ability to activate the semantic
actions (required by a language) directly from the hardware. The chip set is
implemented in 1.5 micron CMOS technology with the data-paths implemented

using the bit-slice technique.
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6.2 Future Work

In this PhD project, a specialised processor has been implemented which can be used
to accelerate the combined process of parsing and lexical analysis. However parsing
and lexical analysis are front-end mechanisms used to trigger the correct sequence of
semantic actions. The author believes that further research opportunities could result
from investigations into the design of general purpose logic able to perform special
semantic actions in co-operation with the processor. Research areas which could be

worth investigation are outlined below.

6.2.1 Semantic Hardware
One feature of the processor is its ability to directly trigger semantic actions using the

combination of SysIRQ signal and DataQut bus signals and also its ability to output
the relevant token string as a character sequence. This provides opportunities to
investigate the design and use of specific hardware able to work in co-operation with

the processor.

6.2.1.1 Symbol Tables
A symbol table is used by a compiler to hold information about the identifiers or

variables defined by a program, where the information usually includes the identifier

name, its type (whether integer, character, record, etc.) and scope of visibility.

Possible research would investigate if a general purpose symbol table was possible

and if so, to then design appropriate logic to implement it.

The symbol table implemented as hardware would be an example of a sub-unit of

semantic hardware directly controlled by the processor.

6.2.1.2 Code Generators

Most compilers are used to convert source text expressed in a given language into
executable code for a target machine. Research has already been carried out into
general purpose mechanisms for converting intermediate code generated by a

language parser into machine specific executable code.

Possible further research could involve investigations using the processor to generate
the intermediate code. Further research could investigate if hardware could be

implemented to transform intermediate code into true machine code.
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6.2.2 Software
Although the processor is a hardware device it depends heavily on the compiler-

compiler software to generate the parse and lexical analysis tables for each formal
language being recognised. The following areas of research relate to the software

aspects of the processor.

6.2.2,1 Optimisations
The state tables which form the processor instructions are generated without regard

for optimisation. The ordering of the instructions within the tables could be altered by
analysis of the grammar taking into account the range of possible language sentences,
or possible programs. The re-ordering would be focused on the possible optimisations

which would reduce the time taken by the processor to parse a range of sentences.
Another possible optimisation would involve the reduction of the table sizes.

One possible future research topic could investigate this possibility.

6.2.2.2 Re-ordering the Rules
The grammar rules for a language are defined in numerical order and the values

passed out to the DataOut bus when SysIRQ is active reflect that fact. Thus the
associated semantic hardware has to decode the complete set of DataOut signals to
determine which logic sub-block is to be activated. A possible re-ordering of the rules
by associated function, such as grouping all rules which refer to the symbol table logic

could be performed.

Investigating this possibility could be a further research topic carried out in

conjunction with the research into symbol table hardware.

6.2.2.3 Allowing larger grammars
Further work is needed on the current version of the compiler-compiler software to

overcome the memory limitations imposed by MS-DOS which limits the size of
grammars which can be read. As the compiler-compiler uses a software emulation of
the processor, instead of re-writing the software, it may be possible to research the
conversion of the compiler-compiler software into hardware, thus providing a

universal compiler-compiler system.
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7. Appendix A - Software Simulation

Each run of the software emulation of the processor is capable of generating a set of
test vectors and expected outputs. A number of sets of these test vectors were used to
drive the SOLO 1400 MADS logic simulator. The waveform results from each run
(only examining the values at the time of clock rise and fall) were compared with the
expected results. The simulator results and the predicted results from the processor
emulation were found to match, giving a high level of confidence in the implemented

logic design. Part of a sample simulation run for the control chip is shown below.

7.1 Main Simulation File - The Template

The following is the contents of the main file used to drive the MADS simulator. The
include file “control.vec™ contains the output from the processdr emulation providing
test vectors and predicted outputs. This file will be different for each run of the
processor emulation. The include file “sim.h” contains utility code to convert the data

in the control.vec file into commands which can drive the simulator.

#include "sim.h"
#include "control.vec”

main(}

{

vector_step = 1000;
tick = 0;

Set_Cycle(vector_step);

extclock = 1;
extsysreset = 1;
extsyscommand( = (;
extsyscommandl = (;
extsyscommand? = 0;
extsymbolequal = 0;
extsymbolge = 0;
exttspiz = 0;

extsspiz = 0;
extpliz=0;

exttie = (;

exttre = 0;

exttbe = 0;

extinst0 = 0;

extinstl = 0;

extinst2 = 0;
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testdevice;

Simulate;

}
7.2 Simulator Utility Code

This file contains utility functions to convert the data from a processor simulation run
into commands to drive the MADS simulator. The file also holds information about
the names of the external pins, if they are inputs or outputs, and the legal values of the

various command signals.

Input extelock;

Input extsysreset;

Input extsyscommand0;
Input extsyscommandl;
Input extsyscommand2;
Input extsymbolequal;
Input extsymbolge;
Input exttspiz;

Input extsspiz;

Input extpliz;

Input exttie;

Input extire,;

Input extibe;

Input extinst0;

Input extinstl;

Input extinst2;

Output extengcommand0;
Output extengcommandl;
Output extengcommand?2;
Output extengcommand3;
Output extengcommand4;
Output extmemorypage0;
Output extmemorypagel;
QOutput extinstmemen;
Output extdatamemen;
Output extmemorywrite;
Output extinstwanted,
Output extdatawanted;
Output extdatadma;
Output extparsedone;
Output extirg;

Output extsourceused;
Output extparsyntax;
Output extparsemantic;
Output extlexsyntax;
Output extstackunder;
Output extstackover;
Output extillegalinst;
Output extnoerrhandle;
Output extbufferover;

int vector_step;
int tick;
int cSysNoOp =0;
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int cSysStateWanted = 1;
int cSysTokenWanted = 2;
int cSysIRQ_NullToken = 3;
int cSysIRQ_OK =4,
int cSysIRQ_ERR  =5;
int cSysDataAvailable = 6;
int cSysInstAvailable = 7;

int cEngineNoOp =0,

int cEngineTokenSetBusMayBe =1;
int cEngineTokenSetBusBuffer =2;
int cEngineTokenSetBusls  =3;

int cEngineTokenSetBusWas =4,
int cEngineTokenSetIsEmpty = 5;
int cEngineTokenLoadWasls = 6;
int cEngineZero =7,

int cEngineTokenSPZero =8,

int cEngineSymbolLoadPC =9,
int cEngineTokenAccept =10;
int cEngineP1Load =11;

int cEngineSymbolLoadLAS
int cEngineSymbolPop =
int cEngineSymbolPush =
int cEngineSymbolLoadTS =15;
int cEngineStateSPInc =16;

int cEngineTokenSPInc =17;
int cEngineTokenlncRamStart = 18§;
int cEngineSymbolInc =19;

int cEngineTokenIncBufferStart = 20;
int cEngineTokenIncBufferEnd = 21;
int cEngineTokenInclsStart = 22;
int cEngineTokenlncIsEnd  =23;

int cEngineStateSPDec =24,

int cEngineTokenSPDec =25;
int cEngineTokenDecRamStart = 26;
int cEngineSymbolDec =27,

int cEngineTokenDecBufferStart = 28;
int cEngineTokenDecBufferEnd = 29;
int cEngineTokenDeclsStart = 30;
int cEngineTokenDecIsEnd  =31;

/* simple simulation step */
void simstep(}
{
Toggle(extclock);
Next_Cycle;

Toggle(extclock);
Next_Cycle;
}

/* General purpose command line set-up */

void setcommand( int syscommand }

{
extsyscommandQ = ((syscommand ) & 1);
extsyscommand] = ((syscommand >> 1} & 1);
extsyscommand2 = ({(syscommand >> 2} & 1);

}
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/* General purpose mode line set-up */
void setinst( int inst)
{
extinstd = ((inst ) & 1);
extinst] = ({inst >> 1) & 1);
extinst2 = ((inst >> 2) & 1);
}

/* General purpose command line set-up */
void decommand( int syscommand,

int inst,

int sysreset,

int symbolequal,

int symbolge,

int tokenspiszero,

int statespiszero,

int pliszero,

int tokenisequal,

int tokenramequal,

int tokenbufferequal )

tick =tick + 1;

setcommand( syscommand );

setinst{ inst );

extsysreset = ((Sysreset) & 1);
extsymbolequal = ((symbolequal) & 1);
extsymbolge = ({symbolge) & 1);

exttspiz = ({tokenspiszero) & 1);
extsspiz = ((statespiszero) & 1};
extpliz =({{pliszero) & 1);
exttie = ((tokenisequal) & 1);
extire = ((tokenramequal) & 1);
exttbe = ((tokenbufferequal} & 1);
simstep;

}

int SigTolnt( Output a )

{
return a,

}

void cb( char *mess, Output actual, int expected )

{

int actualbar;
* code doe NOT correctly check the expected v actual signal values */
/* dom't know if signal values are set up correctly or what */
/* hence this code is commented out */

i*
actualbar = (~(SigTolnt(actual) & 1) & 1);

if (actualbar == expected)

{
printf("Mis-match at tick %d for " tick);
printf{mess);
printf{(*\n");

}

-128 -



*/
}

/* Test Vector Check Routines */
void checkvectors(int enginecommand,
int memorypage,
int instmemenable,
int datamemenable,
int memorywrite,
nt instwanted,
int datawanted,
int datadma,
int parsedone,
int irq,
int sourceexhausted,
int parsesyntax,
int parsesemantic,
int lexsyntax,
int stackunderflow,
int stackoverflow,
int illegalinstruction,
int noerrorhandler,
int bufferoverflow )

cb("enginecommand0" extengcommand0, ((enginecommand ) &1));

cb("enginecommand]" extengcommandl, ((enginecommand >> 1) &1) );
cb("enginecommand?” extengcommand?2, ((enginecommand >> 2) &1} );
cb("enginecommand3" extengcommand3, ((enginecommand >> 3) &1) );
cb("enginecommand4" extengcommand4, ((enginecommand >> 4) &1) );

cb("memorypage0” extmemorypage(, ((memorypage ) &1} );
cb("memorypage ", extmemorypagel, ((memorypage >> 1) &1) );

cb( "InstMemEnable", extinstmemen, instmemenable );
cb( "DataMemEnable”, extdatamemen, datamemenable );
cb( "MemoryWrite", extmemorywrite, memorywrite );
cb( "InstWanted", extinstwanted, instwanted );

cb( "DataWanted", extdatawanted, datawanted );

cb( "DataDMA", extdatadma, datadma );

cb( "ParseDone", extparsedone, parsedone );

cb( "IRQ", extirq, irq );

¢b( "SourceExhausted", extsourceused, sourceexhausted );
ch( "ParseSyntax", extparsyntax, parsesyntax );

cb( "ParseSemantic”, extparsemantic, parsesemantic );
cb( "LexSyntax", extlexsyntax, lexsyntax );

cb{ "StackUnderflow", extstackunder, stackunderflow );
cb( "StackOverflow", extstackover, stackoverflow );

cb{ "IllegalInstruction”, extillegalinst, illegalinstruction ),
cb( "NoErrorHandler", extnoerrhandle, noerrorhandter );
cb( "BufferOverflow", extbufferover, bufferoverflow );

7.3 Processor Emulation Data

The include file “control.vec” contains the actual test vector and expected results.

The following is a small fragment of an actual file.
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/* exercise the device */
void testdevice()
{
/* Attick 1 */

docommand( cSysNo0p,0,1,1,1,0,0,1,0,0,0 );

checkvectors( ¢cEngineP1Lo2d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ),
/* Attick 2 */

docommand( ¢SysNoOp,0,1,1,1,1,1,1,1,1,1);

checkvectors( cEngineP 1Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 );
/* Attick 3 %/

docommand( cSysNoOp,0,1,1,1,1,1,1,1,1,1 );

checkvectors( cEngineP1Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
/* Attick 4/

docommand( cSysNoOp,0,1,1,1,1,1,1,i,1,1 );

checkvectors( ¢cEngineP1Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 );
/* At tick 5 */

docommand( ¢SysNoOp,0,1,1,1,1,1,1,1,1,1);

checkvectors( cEngineP1Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 );
I* Attick 6 */

docommand( ¢cSysNoOp,0,0,1,1,1,1,1,1,1,1 );

checkvectors( cEngineNo0p,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 );
/* Attick 7 */

docommand( ¢SysNeOp,0,0,1,1,1,1,1,1,1,1);

checkvectors{ cEngineP1Load, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 );
/* Attick 8 ¥/

docommand( cSysNoOp,0,0,1,1,1,1,1,1,1,1 };

checkvectors( cEngineStateSPInc,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 );
/* Attick 9 */

docommand{ ¢SysNoOp,0,0,0,0,1,1,0,1,1,1 );

checkvectors( cEngineNoOp,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 );
/* At tick 10 %/

docommand( ¢SysNo©p,0,0,0,0,1,0,0,1,1,1);

checkvectors( cEngineTokenloadWasls,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 );
/* Attick 11 %/

docommand( ¢SysNoOp,0,0,0,0,1,0,0,1,1,1);

checkvectors( cEngineP1Load,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 );
* Attick 12 %/

docommand( ¢SysNo0p,0,0,0,0,1,0,0,1,1,1);

checkvectors{ cEngineTokenSPZero,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 );

/* Values after tick 12 have been deleted from the file */

}

7.4 Simulator results
The following is a fragment from the MADS simulator waveform output file which

corresponds to the control.vec file fragment given in the previous section.

The MADS simulator is an event driven simulator and hence the output file shows

when the output signals changed. However the information provided by the processor
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emulation software is based on a cycle based emulation. Therefore only those lines

where the clock edge goes high or low will be of interest.

Note that the column headings have been removed and are indicated in the following

table.
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8. Appendix B - Processor Implementation

The logic for the control device was generated using the logic synthesis tools
provided within the Solo 1400 design system. The PASCAL source code for the
control state machine was modified to become valid input text for the logic synthesis

tool LOLA.

The following MODEL code defines an individual bit-slice element which is repeated
eight times within the actual bit-slice device. For reasons of clarity, the code has been
altered to remove any buffer logic which was only added to reduce excessive gate
loading. Also not shown is the decode logic which generates the appropriate

loadX XX signals from the mcode signal bus.

Part loadbit[clk,d,load] -> q
bdff]clk,or{and[load,d],and[not[load],q]]] -> q
End

Part stice[clock,
mcode0,mcodel ,mcode2,mcode3,mcoded,
iomcode0,iomcodel iomcode2,
loadtrs,
loadtre,
loadtbs,
loadtbe,
loadtis,
loadtie,
loadtws,
loadtwe,
loadpc,
loadpl,
loadtopsymbol,
loadlookaheadsymbol,
loadstatesp,
loadtokensp,
carryin,
trein,tbein, tiein, tspizin,sspizin,
plizin,sgein,sein,
memorydata] -> carryout,
treout,tbeout, ticout,
tspizout,
sspizout,
plizout,sgeout,seout,
dataout,address
Signal trs,tre,
ths,tbe,
tis, tie, .
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tws,twe,
pCJ

pl,

topsymbol,
lookaheadsymbol,
tokensp,

statesp,

ebus,

cbus,

sbus,

sumbus,
datainbus,
topsymbolmatch,
tokenismatch,
tokenbuffermatch,
tokenrammatch

data[mcode0,mcodel,mcode2,mcode3,mcoded,memorydata] -> datainbus
ebit{pl, mcode0, mcodel, mcode2, meode3, mcode4,
lookaheadsymbol, pc, statesp, tbe,
tbs, tie, tis, trs,
tokensp, twe, topsymbol] -> ebus
cbitfmcode3, mcode4, ebus] -> cbus
exor|carryin,ebus] -> sumbus

sbit[p!, mcode0, mcodel, mcode2, mcode3, mcode4,
datainbus, sumbus, tbs, tie, tis,tws] -> sbus

loadbit[clock,sbus,loadtrs] -> trs
loadbitfclock,ebus, loadtre] -> tre
loadbitfclock,sbus,loadtbs] -> ths
loadbit[clock,sbus,loadtbe] -> the
loadbitfclock,sbus,loadtis] -> tis
loadbit[clock,sbus,loadtie] -> tie
loadbit[clock,sbus,loadtws] -> tws
loadbit[clock,ebus,loadtwe] -> twe
loadbitfclock,sbus,loadpe] -> pe
loadbit{clock,sbus,loadpl] -> pl
loadbit]clock,ebus,loadtopsymbol} -> topsymbol
loadbit[clock,ebus,loadlookaheadsymbol] -> lookaheadsymbol
loadbit[clock, sbus,loadstatesp] -> statesp
loadbit[clock,sbus,loadtokensp] -> tokensp

{ Ripple through logic }
and[carryin,cbus] -> carryout

eqv[topsymbol,p1] -> topsymbolmatch
eqvltis,tie] -> tokenismatch
eqv{tbs,tbe] -> tokenbuffermatch
eqv{trs,tre] -> tokenrammatch

and[not[pl],plizin} -> plizout

and[not[statesp],sspizin] -> sspizout

and[not[tokensp},tspizin] -> tspizout
or[and[topsymbol,not[p1]},andftopsymbolmatch,sgein]] -> sgeout
and[topsymbolmatch,sein} -> seout

and[tokenismatch,tiein] -> tieout

and{tokenbuffermatch,tbein] -> tbeout

and[tokenrammatch,trein] -> treout
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iocode[iomcode0,iomcodel,iomcode2,
pe,statesp,trs,tokensp] -> address

pl -> dataout
End

Endoffile
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9. Appendix C - Synthesis Software

This appendix contains further details about the logic synthesis language which was

referenced in section 5.1 “Logic Synthesis”.

9.1 Examples of Regular Expressions
The following are examples of regular expressions which have been used as input to

the software emulation of the processor.

Note :-

the + operator is used to indicate repetition at least once,

the ? operator is used to denote optional inclusion,

the * operator is equivalent to the *? operators in combination,
the , operator indicates choice between two alternatives.

Also the use of brackets () is used to change priority of operations.

9.1.1 Example 1
A=ab+c;

This describes a regular expression A which is shorthand for
A={abc,abbc,abbbec, ...}

The b+ represents the repetition of b at least once.

9.1.2 Example 2

A=ab'c;

B=c¢m+ (a,d+)?;

This describes two separate regular expressions A and B which are shorthand for

A={ac,abc,abbc, ...}

B={cm,cmacmd,cmdd,...,cmmcmma,cmmd,cmmdd,...}
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9.2 Grammar for Synthesis Language

The examples of regular expressions in the previous section can be described by an
LALR(1) grammar. The following text, using the regular expression notation, defines
such a grammar. This grammar can and has been input to the compiler-compiler

software to generate tables for use with the processor.

Note that the parse grammar is defined by the section commencing $parser and
terminated by $lexer. The lexical structure of tokens is described from the Slexer to

the end of file.

' IS s et a2 2R 22 AR I 2 T 22 S R e S e RS s a2 R R a sl a it al el alalal }

iy .
i{ * Copyright (c) 1996 J.D.McMullin. All rights reserved. * }
T .

l{ Ak hAr Rt h kAR R ARkt R A A AR e b dodddddddd }

$parser Reg
Reg = RegExpRule + ;
RegExpRule = identifier <leftnameis> '="Exp '}’ <ruleis> ;
Exp = Factor (',' Factor <expagain>)" ;
Factor = Term (Term <factoragain=>)* ;
Term = Primary ,
Primary '+' <repeatisplus> ,
Primary "' <repeatisstar>,
Primary '?" <repeatisquery> ;
Primary = identifier <primaryisid=> ,
' {Exp’),

! now to define the lexical items

I remember $eoi MUST be present and also $whitespace MAY be present
I

$lexer

eof =26 ;

rs=30;

tab=9;

$eoi = eof ;

$whitespace = (space, "' commentchar” rs) <commentfound> ;
space = {'', tab, rs)+;

commentchar = tab, ['.."~] ;

identifier = idchar (idchar, "_", ["0".."9"])* ;

idchar = ["A".."Z2"], ['a".-"z"] ;

9.3 Semantic Actions

The following text is the full Turbo Pascal source used to implement the semantic
actions referenced in the grammar defined in the previous section. This code was
generated as a template by the compiler-compiler. The semantic actions have been

manually added.
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The semantic actions are used to convert regular expressions into MODEL logic
descriptions. This MODEL code can then be input to the SOLO 1400 design suite (as

was used to design the processor) to form a logic design.

FE IR 2T 22212222 R 22 R R R Rl Rt R R I Rt R R il il dtl]sy )

{ * This software was generated by J.D.McMullin as an * }
{ * integral part of his M.Phil, Ph.D research. *}
{ dudkkrddbdbhbdhd bbbk bk kbt tdh kbt hhrdd et rrkrirey }
unit regAct;
interface
uses share,parser;
type

ErrStringfn = function { errno:integer16 ): lexstring;

function RegGetChar( h:pointer ): char;
function RegParseFile(

FileName,Extension : lexstring;

var ParseHandle : pointer;

ReadTable : Readfn;

ReadTableMax : ReadMaxfn;

DoAction : SemanticActionfn;

ReadChar : GetCharfn,

ReadErrString : ErrStringfn ) : boolean;
function RegParseError{ h,h1:pointer }:boolean;
function RegLexError( h,h1:pointer ):boolean;
function LeftNamels( h,h1:pointer }:boolean;
function Rulels( h,h1:pointer ):boolean;
function ExpAgain( h,h1:pointer }:boolean;
function FactorAgain{ h,h1:pointer }:boclean;
function RepeatlsPlus( h,h1:pointer ):boolean;
function RepeatlsQuery( h,h1:pointer }:boolean;
function RepeatisStar( h,h1:pginter ):boolean,
function Primarylsid{ h,h1:pointer }:boolean;

function CommentFound{ h,h1:pointer ):boolean;

implementation
type

cType = (cToken,cOr,cRename);

RegPtr = "RegParseState;

RegParseState = record
{ lexical input/output stream variables }
StreamPos,
StreamLineNumber : integer32;
StreamInName,
StreamInExt,
StreamQOutName,
StreamQutExt,
StreamBuffer : lexstring;
Streamin,
StreamOut : text;
ErrorLineNumber : integer32;
{ Error Flags to indicate Parse Error has occurred }
ErrorDetected : boolean;
{ "class method" }
FetchErrString : EnrStringin;
{ User-defined variables below }
lexsp : integer;
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lexstack : array [1..100] of record
ni,
n2,
cl,
c2 : integer32;
end;
cellcount : integer;
cellstack : array [1..200] of record
t : cType;
r:integer32;
n : lexstring;
i1,
i2,
o1 :integer32;
end;
TheGlobalNode : integer32;
TheGlobalCell : integer32;
LeftSymbol : lexstring;
end;

{ Global Action Routine variabies }

{ routine to read lexical token string }
procedure CurrentToken( h:pointer; var s:lexstring);
var
ch : char;
begin
clearstring( s };
TokenWanted( h };

while ValidTokenChar({ h, ch ) do
begin
{ DMA read of LexCache to form LexToken }
appendstringchar( s, ch };
end;
TokenAccepted( h );
end;

{ Routine to read individuat chars from the input file }
function RegGetChar({ h:pointer ): char;
var
p : RegPtr;
¢h : char;
begin
p:=h;
with p* do
begin
while (stringlength(StreamBuffer) < 1) do
begin
StreamLineNumber := StreamLineNumber + 1;
readstring{ Stream!n, StreamBuffer );
readin{ Streamin );
StreamPos = 1;
WriteString( StreamQut, T );
WriteInteger( StreamQut, StreamLineNumber , 4 );
WriteString( StreamOut, 7' );
WriteString( StreamQut, StreamBuffer );
WriteLn{ StreamQut ),
appendstringchar{ StreamBuffer , rs);
if eof( Streamin ) then
begin
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appendstringchar( StreamBuffer , eoi);
end;
end;

ch = StreamBuffer[StreamPos];
if (ch <> eoi) then
begin
StreamPos = StreamPos + 1;
if (StreamPos > stringlength(StreamBuffer)) then
clearstring( StreamBuffer };
end;
end; { with }
RegGetChar := ch;
end;

function RegParseFile(
FileName,Extension : lexstring;
var ParseHandle : pointer;
ReadTable : Readfn;
ReadTableMax : ReadMaxfn;
DoAction : SemanticActionfn;
ReadChar : GetCharfn;
ReadErrString : ErrStringfn } : boolean;
var
p : RegPtr;
status : integer16;
flag : boolean;
beqgin
new(p );
ParseHandle := p;

with p* do
begin
{ User defined initialisation code for this parse pass }

{ Parser system initialisation code }
{ MODIFY WITH CAUTION }
FetchErrString := ReadErrString;
ErrorDetected := false;
ErrortineNumber := 0;

clearstring( StreamBulffer );
StreamLineNumber :=0;

StreamIinName := FileName;
StreamInExt := Extension;
StreamOutName := FileName;
StreamQutExt := 'deb’;

openoldfile{ Streamin, StreamInName, StreamInExt };
reset( Streamin );

opennewfile( StreamOut, StreamQutName, StreamOutExt );
rewrite( StreamOut );

Status = SyntaxEngine( ParseHandle, ReadTable, ReadTableMax, DoAction, ReadChar);
if (Status = Q) then
begin
if ErrorDetected then
begin
write("*** Warning **** File ');

- 140 -



writestring{output,StreaminName);
writeln(’ contained a semantic or lexical error’ );
flag = false;
end
else
begin
write('File ');
writestring(output,StreaminName);
writeln(’ parsed OK' };
flag := true;
end;
end
else
begin
write{"*** WARNING **** File ');
writestring(output,FileName);
writeIn{’ contained at least one Syntax Error’ );
writeparsestatus{ output, Status );
flag := false;
end;

closefile( Streamin );
WriteString( StreamOut, ™*** EQF ****');
WriteLn( StreamQut );
closefile{ StreamQut );
end; { with }

RegParseFile := flag;
end;

function RegParseError{ h,h1:pointer }:boolean;
var

p : RegPtr;

s : lexstring;

i :integer32;
begin

p:=h;

CurrentToken{ h1,5 );

with p* do

begin

ErrorDetected := true;

WriteString( StreamOut,” '),
fori =1 to StreamPos - 1 do
hegin
if (StreamBuffer[i] = tab) then
WriteString( StreamQut, tab )
glse
WriteString( StreamQut, ' ' );
end;

WriteString( StreamQut,"» **** ERROR **** Found token " );
WriteString( StreamQut,s);

WriteString( StreamOQut,' but expecting ');

WriteString( StreamOut,fetcherrstring{ CurrentState(h1) ) );
WriteLn( StreamQOut );

if (ErrorLineNumber = 0} then
begin

ErrorLineNumber := StreamLineNumber;
end;
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end; { with }

RegParseError := true;
end;

function ReglLexError( h,h1:pointer }:boclean;
var

p : RegPtr;

5 : lexstring;

i : integer32;
begin

p:=h;

CurrentToken{ h1,s );

with p* do

begin

ErrorDetected = true;

WriteString( StreamQut, ' ' );
fori :=1to StreamPos - 1 do
begin
if {StreamBufferfi] = tab) then
WriteString{ StreamQut, tab )
else
WriteString{ StreamQut, ' " );
end;

WriteString( StreamOut,'* **** ERROR **** Found token " );
WriteString( StreamQut,s);

WriteString( StreamOut," but expecting a legal token');
WriteLn{ StreamQut };

if (ErrorLineNumber = Q) then
begin
ErrorLineNumber := StreamLineNumber;
end;
end; { with }

ReglLexError = true;
end;

{ Semantic Actions to be coded below }

{ Dont forget to add each one to the Turbo Pascal }
{ interface definition

{ Also, all semantic routines are defined as follows }

{ function xx( h,ht:pointer }:boclean; |

{var }
{ p:LALRPointer; }
{ s:lexstring; }
{ flag : boolean; }
{begm }
{p }
{ CurrentToken( hi,s}; }
{ flag := true; }
{

{ User-developed Code (may alter flag/p* values) }
{

{ xx :=flag; }
{ end; }
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{ Also remember about WhiteSpace(h:pointer) when }
{ removing $whitespace / comments

function newcell( h:pointer ):integer32;
var
p : RegPir;
begin
p:=h;
with p* do
begin
TheGlabalCell := TheGlobalCell + 1;
newcell := TheGlobalCell
end;
end;

function newnode( h:pointer ):integer32;
var
p : RegPtr;
begin
p:=h;
with p* do
begin
TheGlobalNode = TheGlobalNode + 1;
newnode = TheGlobalNode,;
end;
end;

function tokenceli{ h:pointer; s : lexstring; n1,n2 : integer32 }:integer32;
var
p : RegPtr;
begin
p:=h;
with p* do
begin
CeliCount := CellCount + 1;
with CellStack[CellCount] do
begin
t := cToken;
r .= CellCount;
n:=s;
i1 :=n1;
i2:=0
ol :=n2;
end;
tokencell := CellCount;
end;
end;

function orcell{ h:pointer; n1,n2,n3 : integer32 ): integer32;
var
p : RegPtr;
begin
p=h;
with p* do
begin
CeliCount := CellCount + 1;
with CellStack[CellCount] do
begin
t == ¢Or;
r := CellCount;
n:="
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i1 :=nl;

i2 :=n2;
o1 :=n3;
end;
orcell := CellCount;
end;
end;

function renamecell{ h:pointer; n1,n2 : integer32 ): integer32;
var
p : RegPtr;
begin
p=h;
with p* do
begin
CellCount := CellCount + 1;
with CellStack[CellCount] do

begin
t := cRename;
r := CellCount;
n="
i1:=n1;
i2 =0;
ot == n2;

end;

renamecell == CellCount;

end;
end;

procedure push{ h:pointer; n1,n2,c1,c2 : integer32 };
var
p : RegPtr;
begin
p:=h;
with p* do
begin
lexsp = lexsp + 1;
lexstack[lexsp].n1 = n1;
lexstack[lexsp].n2 = n2;
lexstack[lexsp].c1 == ¢1;
lexstack[lexsp].c2 := ¢2;
end;
end,

procedure pop( h:pointer; var n1,n2,c1,c2 : integer32 ),
var
p : RegPtr;
begin
p=h;
with p* do
begin
n1 = lexstack[lexsp].n1;
n2 = lexstack[lexsp].n2;
c1 = lexstack[lexsp].c1;
c2 = lexstack[lexsp].c2,
lexsp = lexsp - 1;
end,;
end;

function LeftNamels( h,h1:pointer }:boolean;
var
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p : RegPtr;
s : lexstring;
begin

p=h;

with p* do

begin
CurrentToken{ h1, s );
{ initialise all data for this regular expression }
LeftSymbol ;= s;
TheGlobalNode = 0;
TheGlobalCell = 0;

CellCount := Q;
lexsp = 0;
end;
LeftNamels ;= true;
end;

procedure writecell{ h : pointer; ¢ : integer32 );
var
p : RegPtr;
begin
p:=h;
with p* do
begin
with CeltStack{c] do
begin
write(StreamQut,’ '),
caset of
cOr: write(StreamQut,'or n',i1:1,',n%i2:1,' 1,
cRename: write(StreamOut,’n’,i1:1});
cToken: write(StreamQut,'token{™,n,™)[ clk,tokin,n"i1:1,"]');
end;
writeln(StreamQut,’ -> n',01:1);
end;
end;
end;

function Rulels{ h,h1:pointer ):boolean;
var
p : RegPtr;
n1,n2 : integer32;
cl,c2,c . integer32;
i :integer32;
begin
p:=h;
with p* do
begin
pop( h, n1,n2,¢1,¢2 );
writeln(StreamQut,'Part *,LeftSymbol,' [ clk,tokin ] -> res’);
for i := 1 to TheGlobalNode do
begin
writeln(StreamOut,' Signal n',i:1,"}");
end;
writeln(StreamOut,” ONE -> n',n1:1);
c=ci;
while (c <> c2) do
begin
writecell(h,c);
c = cellstack]c].r;
end;
if (c1 <> ¢2) then writecell(h,c2);
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writeln(StreamQut,’ n',n2:1,' -> res’);
writeln(StreamQut,'End;");

{ reset the system for the next expression )
TheGlobalNode = 0;

TheGlobalCell := 0;

CeliCount :=0;
lexsp = 0;
end;
Ruleils := true;
end;

function ExpAgain{ h,h1:pointer ):boolean;
var
p : RegPtr,
n1,n2,n3,n4,n5 : integer32;
c1,c2,c3,c4,c5,c6 : integer32;
begin
p:=h;
with p* do
begin
{E=F'"'F}
pop( h, n3,n4,c3,c4 );
pop{ b, n1,n2,c1,c2 );
nS := newnode(h);
¢5 = renamecell(h,n1,n3);
c6 := orcell(h,n2,n4,n5);

cellstack[c5].r := ¢1;
cellstack[c2].r == ¢3;
celistack[c4].r := c6;

push( h, n1,n5,c5,c6 );
end;
ExpAgain := true;
end;

functien FactorAgain( h,h1:pointer }:boolean;
var
p : RegPtr;
n1,n2,n3,n4 : integer32;
c1,¢2,c3,c4,c5 : integerd2;
begin
p:=h;
with p* do
begin
{F=TT}
pop( h, n3,n4,c3,c4 );
pop( h, n1,n2,c1,c2);
¢5 = renamecell{h,n2,n3);

celistack[c2].r := ¢5;
celistack[c5].r := ¢3;

push( h, n1,nd,c1,c4);
end;
FactorAgain = true;
end;

function Primarylsld( h,h1:pointer ):bootean;
var
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p : RegPtr,
ni,n2 : integer32;
¢l : integer32;
s : lexstring;
begin
p:=h;
with p* do
begin
CurrentToken( h1,s);
n1 = newnode({h};
n2 := newnode(h);
c1 = tokenceli(h,s,n1,n2);
push( h, n1,n2,c1,c1};
end;
Primarylsld := true,
end;

function RepeatlsPius( h,h1:pointer }:boolean;
var
p : RegPtr;
n1,n2,n3 : integer32;
¢1,c2,c3 : integer32;
begin
p:=h;
with p* do
begin
{F=T+}
n1 = newnode(h);
pop( h, n2,n3,c2,c3 };
¢1 := arcellth,n1,n3,n2);
cellstack[c1].r := ¢2;
push( h, n1,n3,c1,c3);
end;
RepeatlsPlus = true;
end;

function RepeatlsQuery( h,h1:pointer ):bcolean;
var
p : RegPtr;
n1,n2,n3 : integer32;
¢1,c2,c3 : integerd2;
begin
p:=h;
with p* do
begin
n1 := newnods(h);
pop{ h, n2,n3,c2,c3 );
c1 = orcell(h,n2,n3,n1);
cellstack[c3].r = ¢1;
push( h, n2,nt,c2,c1);
end;
RepeatisQuery := true;
end;

function RepeatlsStar( h,h1:pointer }:boolean;
var

p : RegPtr;

n1,n2,n3,n4 : integer32;

¢1,c2,¢3,c4 : integer32;
begin

p:=h;
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with p* do

begin
n1 := newnode(h);
n2 := newnode(h);
pop( h, n3,n4,c3,c4 );
¢1 = orcell(h,n1,n4,n3};
c2 := orcell(h,n3,n4,n2);
cellstackic1].r := c3;
cellstack]c4].r := c2;
push(h,n1,n2,c1,c2);

end;

RepeatlsStar := true;

end;

function CommentFound( h,h1:pointer }: boolean;
begin

WhiteSpace( h1 );

CommentFound := true;
end;

end.

9.4 LALR(1) Parser and Lexer Tables
If the grammar definition is LALR(1) then the compiler-compiler automatically
generates the combined parse and lex tables for use with the processor software

emulation.

The example table, given next, has been generated from the grammar describing
regular expressions. Note that the individual parse and lexical states are indicated.
Also note that each entry consists of four micro-instructions and has an associated

comment.

Ak hdkh bk kb bdbrh kbbb hk kbbb bbb bbb dd bk ddd

{
{* This software was generated by J.D.McMullin as an *}
{ * integral part of his M.Phii, Ph.D research.

{

LR LS 2SRt a s ot il i sl a i al ol sl e st ol sl ass it ity d) }

unit Regtab;

interface
type
integer16 = integer,
function Regtableread( a:integer16) : word,;
function Regtablemax:integer16;
implementation

const
addrmax = 152;
instmin = 0;
instmax = 611;
plt : array [instmin..instmax] of word =

(
$2000,$0001,$0000,$003D, { 0 PSHIFT $lambda 1 ** lex reset 61 push $error }
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{ Parse State 1)

$0003,$2005,$2013,$4000, { 1 PSC identifier _$2 = identifier <leftnameis> }
$000F,$0007,$0000,$003D, { 2 PS Reg 7 }

$0010,$2003,$2012,%4000, { 3 PSC RegExpRule _$1 = RegExpRule }
$0012,$0009,$0000,$003D, { 4 PS_$19}

$0013,$000D,$0000,$003D, {5 PS _$2 13}

$2000,$E000,$2000,$4000, { 6 ELSE **** PARSE ERROR HANDLER **** }

{ Parse State 3}
$0002,$6001,$8001,$003B, { 7 PSC $eoi $goal = Reg $eoi }
$2000,$E000,$2000,%4000, { 8 ELSE **** PARSE ERROR HANDLER **** }

{ Parse State 5}

$0003,$2005,$2013,$4000, { 9 PSC identifier _$2 = identifier <leftnameis> }
$0010,$2002,$2012,$003B, { 10 PSC RegExpRule _$1 = _%1 RegExpRule }
$0013,$000D,$0000,$003D, { 11 PS _$2 13}

$2000,$4004,$200F,$003B, { 12 ELSE Reg=_%1 }

{ Parse State 6}
$000A,$000F,$0000,$003D, { 13 PS'=" 15}
$2000,$E000,$2000,$4000, { 14 ELSE **** PARSE ERROR HANDLER **** }

{ Parse State 9}

$0003,$2014,$200E,$4000, { 15 PSC identifier Primary = identifier <primaryisid> }
$0004,$0016,$0000,$003D, {16 PS'(' 22}

$000C,$001D,$0000,$003D, { 17 PS Exp 29 }

$000D,$001F,$0000,$003D, { 18 PS Factor 31}

$000E,$0021,$0000,$003D, { 19 PS Primary 33 }

$0011,$0025,$0000,$003D, { 20 PS Term 37 }

$2000,$E000,$2000,$4000, { 21 ELSE **** PARSE ERROR HANDLER **** }

{ Parse State 11}

$0003,$2014,$200E,$4000, { 22 PSC identifier Primary = identifier <primaryisid> }
$0004,$0016,$0000,$003D, { 23 PS'( 22}

$000C,$0027,50000,$003D, { 24 PS Exp 29}

$000D,$001F,$0000,3003D, { 25 PS Factor 31 }

$000E,$0021,$0000,$003D, { 26 PS Primary 33 }

$0011,$0025,$0000,$003D, { 27 PS Term 37 }

$2000,$£000,$2000,$4000, { 28 ELSE **** PARSE ERROR HANDLER **** }

{ Parse State 12}
$0009,$2006,$2010,$0039, { 29 PSC ';’ RegExpRule = _%$2'="Exp "' <ruleis> }
$2000,$E000,$2000,$4000, { 30 ELSE **** PARSE ERROR HANDLER **** }

{ Parse State 13}
$0016,$0029,$0000,$003D, { 31 PS _%4 41}
$2000,$4009,$2016,$4000, { 32 ELSE _$4 =}

{ Parse State 14}

$0006,$2010,$2011,$003B, { 33 PSC ™' Term = Primary ™ <repeatisstar> }
$0007,$2011,%$2011,$003B, { 34 PSC '+ Term = Primary '+’ <repeatisplus> }
$000B,$200F,$2011,$003B, { 35 PSC '?" Term = Primary '?' <repeatisquery> }
$2000,$4012,$2011,$003B, { 36 ELSE Term = Primary }

{ Parse State 15}
$0017,$002C,$0000,$003D, { 37 PS _$6 44}
$2000,$400D,$2017,$4000, { 38 ELSE _$6 = }

{ Parse State 16}
$0005,$2013,$200E,$003A, { 33 PSC 'Y Primary ='('Exp ') }
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$2000,$E000,$2000,$4000, { 40 ELSE **** PARSE ERROR HANDLER **** }

{ Parse State 18}

$0008,$0032,$0000,5003D, { 41 PS",' 50}
$0014,$2008,$2016,$003B, {42 PSC _$3 _$4=_%4 83 }
$2000,$400A,$200C,$003A, { 43 ELSE Exp = Factor _$4 }

{ Parse State 22 }

$0003,$2014,$200E,$4000, { 44 PSC identifier Primary = identifier <primaryisid> }
$0004,$0016,$0000,$003D, { 45 PS'(' 22}

$000E,$0021,$0000,$003D, { 46 PS Primary 33 }

$0011,$200B,$2015,$4000, { 47 PSC Term _§5 = Term <factoragain> }
$0015,$200C,$2017,$003B, {48 PSC _$5 _$6=_%$6 _%$5 }
$2000,5400E,$200D,$003A, { 49 ELSE Factor = Term _%6 }

{ Parse State 24}

$0003,$2014,$200E,%$4000, { 50 PSC identifier Primary = identifier <primaryisid> }
$0004,$0016,$0000,$003D, {51 PS'( 22}

$000D,$2007,%$2014,30038B, { 52 PSC Factor _$3 =", Factor <expagain> }
$000E,$0021,$0000,$003D, { 53 PS Primary 33 )

$0011,$0025,$0000,$003D, { 54 PS Term 37 }

$2000,$E000,$2000,$4000, { 55 ELSE **** PARSE ERROR HANDLER **** }

{ Max Symbols inarule =4}
$2000,$6000,5A000,$2000, { 56 POP }
$2000,$6000,$A000,$2000, { 57 POP }
$2000,$6000,$A000,$2000, { 58 POP }
$2000,$6000,$A000,$2000, { 59 POP }
$2000,$6000,$A000,$4000, { 60 REDUCE }

{ Lex State 1}

$2000,$6000,$6000,$003E, { 61 LC }
$8009,$8009,$4000,$005C, { 62 IF 9 .. 9 LS 92 push $error }
$801A,5801A,$4002,30056, { 63 IF 26 .. 26 LS 86 push $eoi)
$801E,$801E,$4000,$005C, { 64 IF 30 .. 30 LS 92 push $error }
$8020,$8020,$4000,$005C, {65 IF .. LS 92 push $error}
$8021,$8021,$4000,$0057, { 66 IF ! .. | LS 87 push $error }
$8028,$8028,$4004,$004E, { 67 IF (.. (LS 78 push ('}
$8029,$8029,$4005,$004F, { 68 IF ) .. ) LS 79 push '}'}
$802A,$802A,$4006,$0050, { 69 IF * .. * LS 80 push ™'}
$802B,$802B,$4007,$0051, { 70 IF + .. + LS 81 push +'}
$802C,$802C,$4008,%0052, {71 IF, .., LS 82 push "'}
$803B,$803B,$4009,$0053, { 72 IF ; .. ; LS 83 push '} }
$803D,$803D,$400A,$0054, { 73 IF = .. = LS 84 push '='}

$803F ,$803F,$400B,$0055, { 74 IF ? .. ? LS 85 push '?'}
$8041,$805A,$4003,$0064, { 75 IF A .. Z LS 100 push identifier }
$8061,$807A,$4003,$0064, { 76 IF a .. z LS 100 push identifier }
$A000,$A000,$0000,$003D, { 77 LA $error ** lex reset 61 push $error }

{ Lex State 13}
$E004,$A000,$0000,$003D, { 78 LA (' ** lex reset 61 push $error }

{ Lex State 12}
$E005,$A000,$0000,%003D, { 79 LA} ** lex reset 61 push $error }

{ Lex State 11}
$E006,$A000,$0000,$003D, { 80 LA ™ ** lex reset 61 push $error }

{ Lex State 10}
$E007,$A000,$0000,3003D, { 81 LA '+' ** lex reset 61 push $error }
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{Lex State 9}
$E008,$A000,$0000,$003D, { 82 LA ",' ** lex reset 61 push $error }

{ Lex State 8}
$E009,$A000,$0000,$003D, { 83 LA ", ** lex reset 61 push $error }

{ Lex State 7 }
$EO00A,$A000,$0000,$003D, { 84 LA '="** lex reset 61 push $error )

{ Lex State 6}
$E00B,$AD00,$0000,$003D, { 85 LA '?" ** lex reset 61 push $error }

{Lex State 5}
$C002,$A000,$0000,3003D, { 86 LA $eoi ** lex reset 61 push $error }

{ Lex State 4}

$2000,$6000,$6000,$0058, { 87 LC }

$8009,$8009,$4000,$0057, ( 88 IF 9 .. 9 LS 87 push $error }
$801E,$801E,$4000,$005C, { 89 IF 30 .. 30 LS 92 push $error
$8020,$807E,$4000,$0057, { 90 IF .. ~ LS 87 push $error }
$A000,$A000,$0000,$003D, { 91 LA $error ** lex reset 61 push $error }

{ Lex State 3}

$2000,$C015,$4000,$006A, { 92 LT commentfound to 106 push $error }
$6000,$6000,$0000,$003D, { 93 ** lex reset 61 push $error }
$2000,$6000,$6000,$005F, { 94 LC }

$8009,$8009,$4000,$005C, { 95 IF 9 .. 9 LS 92 push $error }
$801E,$801E,$4000,$005C, { 96 IF 30 .. 30 LS 92 push $error }
$8020,$8020,$4000,8005C, { 97 IF .. LS 92 push $error }
$8021,$8021,$4000,$0057, { 98 IF | .. | LS 87 push $error }
$A000,3A000,$0000,$003D, { 99 LA $error ** lex reset 61 push $error }

{ Lex State 2}
$2000,$6000,$6000,$0065, { 100 LC }

$8030,$8039,$4003,$0064, { 101 IF 0 .. 9 LS 100 push identifier }
$8041,$805A,$4003,30064, { 102 IF A .. Z LS 100 push identifier }

$805F $805F,$4003,$0064, { 103 IF _ .. _ LS 100 push identifier }
$8061,$807A,$4003,$0064, { 104 IF a .. z LS 100 push identifier }
$E003,$A000,50000,$003D, { 105 LA identifier ** lex reset 61 push $error }

[ Lex State 14}

$2000,$6000,$6000,$006B, { 106 LC }
$8009,$8009,$4000,$0080, { 107 IF 9 .. 9 LS 128 push $error }
$801A,$801A,$4002,$0056, { 108 IF 26 .. 26 LS 86 push $eoi }
$801E,$801E,$4000,$0080, { 109 IF 30 .. 30 LS 128 push $error }
$8020,$8020,$4000,$0080, { 110 IF .. LS 128 push $error }
$8021,$8021,$4000,$007B, { 111 iF | .. | LS 123 push $error }
$8028,$8028,$4004,$004E, { 112 IF (.. { LS 78 push ('}
$8029,$8029,$4005,%004F, { 113 IF ) .. ) LS 79 push '}’ }
$802A,$802A,$4006,$0050, { 114 IF * .. * LS 80 push ™'}
$802B,$8028B,$4007,$0051, { 115 IF + .. + LS 81 push *+'}
$802C,$802C,$4008,$0052, { 116 IF, .. ,LS 82 push ', }
$803B,$803B,$4009,$0053, { 117 IF ; .. ; LS 83 push ;" }
$803D,$803D,$400A,$0054, { 118 IF = .. = LS 84 push ="}
$803F,$803F,$400B,$0055, { 119 IF ? .. 7 LS 85 push '?'}
$8041,$805A,$4003,50064, { 120 IF A .. Z LS 100 push identifier }
$8061,$807A,$4003,30064, { 121 IF a .. z LS 100 push identifier }
$A000,5A000,$0000,$003D, { 122 LA $error ** lex reset 61 push $error }

{ Lex State 16}
$2000,$6000,$6000,$007C, { 123 LC }

-151-



$8009,$8009,$4000,$007B, { 124 IF 9 .. 9 LS 123 push $error }
$801E,$801E,$4000,$0080, { 125 IF 30 .. 30 LS 128 push $error )
$8020,$807E,$4000,$007B, { 126 IF .. ~ LS 123 push $error }
$A000,$A000,$0000,$003D, { 127 LA $error ** lex reset 61 push $error }

{ Lex State 15}

$2000,$C015,$4000,$0093, { 128 LT commentfound to 147 push $error }
$6000,$6000,50000,3003D, { 129 ** lex reset 61 push $error }
$2000,$6000,$6000,$0083, { 130 LC }

$8009,$8009,$4000,$0080, { 131 IF 9 .. 9 LS 128 push $error }
$801A,$801A,$4002,$0056, { 132 IF 26 .. 26 LS 86 push $eoi }
$801E,$801E,$4000,$0080, { 133 IF 30 .. 30 .S 128 push $error }
$8020,$8020,$4000,$0080, { 134 IF .. LS 128 push $error}
$8021,$8021,$4000,$007B, { 135 IF ! .. 1 LS 123 push $error }
$8028,$8028,54004,3004E, { 136 IF { .. (LS 78 push '(' }
$8029,$8029,$4005,$004F, { 137 IF ) .. } LS 79 push ")' }
$802A,$802A,$4006,$0050, { 138 IF * .. * LS 80 push ™'}
$802B,$802B,$4007,$0051, { 139 IF + .. + LS 81 push '+'}
$802C,$802C,$4008,$0052, { 140 IF , .., LS 82 push " }
$803B,$8038,54009,$0053, { 141 IF ;.. ; LS 83 push ;' }
$803D,$803D,%$400A,50054, [ 142 IF = .. = LS 84 push '="}
$803F,$803F,$400B,$0055, { 143IF ? .. ? LS 85 push '?"}
$8041,$805A,$4003,30064, { 144 IF A .. Z LS 100 push identifier }
$8061,$807A,$4003,$0064, { 145 IF a .. z LS 100 push identifier }
$A000,$A000,$0000,%003D, { 146 LA $error ** lex reset 61 push $error}

{ Lex State 17 }

$2000,$6000,$6000,$0094, { 147 LC }

$8009,$8009,$4000,$005C, { 148 IF 9 .. 8 LS 92 push $error }

$801E,$801E,$4000,$005C, { 149 IF 30 .. 30 LS 92 push $error }

$8020,$8020,$4000,%005C, { 150 IF .. LS 92 push $error }

$8021,$8021,$4000,$0057, { 151 IF ! .. | LS 87 push $error }

$A000,3A000,$0000,$003D { 152 LA $error ** lex reset 61 push $error }
)

function Regtableread( a:integer16) : word;
begin
if (instmin<=a} and (a<=instmax) then
begin
Regtableread = plt[a];
end
else
begin
write('lllegal Instruction Address *,a};
writeln(' legal range [',instmin,’.."instmax,}');
Regtableread := pltfa mod 4];
end;
end;

function Regtablemax:integer16;
begin
Regtablemax := addrmax;
end;
end.
9.5 Examples of Parses
The section *“Examples of Regular Expressions” in this chapter gave some regular

expressions suitable for input to the software emulation of the processor. The
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resulting output is given in the corresponding sections. The output also includes
MODEL source code intended to generate logic to recognise the expression. The
MODEL code generated follows the algorithm described in section 2 “Hardware
Implementations”. The logic to recognise a given token, such as “a” is referenced but
not defined. It will be similar to that defined in section 2.1.1.1 “Recognising a
Token”.

9.5.1 Example 1
The regular expression A = a b+ ¢ generated the following debug information which

also included some MODEL source code for logic to recognise the expression. The

logic to detect tokens a, b and c is not defined.

[ 1JA=ab+c;
Part A [ clk,tokin ] ->res
Signal n1;
Signal n2;
Signal n3;
Signal n4;
Signal n5;
Signal n6;
Signal n7;
ONE -> n1
token("a")[ clk,tokin,n1 ] -> n2
n2 ->n5
or[ n5,nd ] -> n3
token("b")[ clk,tokin,n3] -> n4
n4 -> né
token("c")[ clk,tokin,n6 ] -> n7
n7 ->res
End;
[ 9]
[ 3]
ik EOF ke

9.5.2 Example 2
The regular expressions A = a b* ¢ and B = ¢ m+ (a, d+)? Gave the following

fragments of MODEL source code.

[ 1]1A=ab'c;
Part A [ clk,tokin ] -> res
Signal n1;
Signal n2;
Signal n3;
Signal n4;
Signal n5;
Signal n§;
Signal n7;
Signal n8;
ONE -> n1
token("a™)[ clk,tokin,n1] -> n2
n2 -> n
orff n5,n4]->n3
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LT T

token("b")[ clk,tokin,n3 ] -> n4
orf n3,n4 ] -> n6
h6 -> n7
token("c™)[ clk,tokin,n7 ] -> n8
na ->res
End;
[ 2IB=cm+ (a,d+)?;
Part B [ clk,tokin ] -> res
Signal n1;
Signal n2;
Signal n3;
Signal n4;
Signal n5;
Signal n6;
Signal n7,;
Signat ng;
Signal ng;
Signal n10;
Signal n11;
Signal n2;
ONE -> n1
token("c")[ clk,tokin,nt  -> n2
n2 ->n5
orf n5,n4]->n3
token("m")[ clk,tokin,n3 ] -> n4
n4 -> nb
ng -> n10
token("a")[ clk,tokin,n6 ] -> n7
ofn10,n9]->n8
token("d")[ clk,tokin,n8] -> n9
off n7,n9]->nt1
off n6,n11]->n12
n12 ->res
End;
bk EOF ek b
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