
Accelerating the parsing process with

an

Application Specific VLSI RISC processor

by

John Derek McMullin

Thesis submitted to the University of Central Lancashire in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

October 1997

The work presented in this thesis was carried out in the Department of Electrical and

Electronic Engineering at the University of Central Lancashire.

Declaration

I declare that while registered with the University of Central Lancashire for the degree

of Doctor of Philosophy I have not been a registered candidate or enrolled student for

another award of the University of Central Lancashire or any other academic or

professional institution during the research programme. No portion of the work has

been submitted in support of any application for another degree or qualification of any

other University or Institution of learning.

Signed.................................

Joim Derek McMullin

Table of Contents

ACOEDGEMENTS ... 7

ABSTRACT

I . INTRODUCTION .. 9
1.1 PARSING AND LEXICAL ANALYSIS - AN OVERVIEW .. 10

1.2 PARSING - THE BASIC CONCEPTS ... 10

1.2.1 	Sentences and Language ... LI

1.2.2 Languages and Granunars ... 12

1.2.3 	Parsing and Grammars .. 16

1.2.4 Grammars and Semantics 20

1.2.5 Grammar Hierarchies .. 21

1.3 	PARSING METHODS... 23

1.3.1 	State Machines .. 23

1.3.2 	Algorithms 	.. 25

1.4 LEXICAL ANALYSIS METHODS .. 33

1.4.1 	Dictionaty Lookup and Names ... 33

1.4.2 	Finite 	State Automata.. 33

1.5 	COMPILER-COMPILERS ... 34

1.6 OBJECTIVES OF THE RESEARCH .. 35

1.7 OVER VIEW OF THE THESIS .. 35

2. HARDWARE IMPLEMENTATIONS .. 37
2.1 RECOGNISING REGULAR EXPRESSIONS IN HARDWARE.. 37

2.1.1 	Logic Design ... 37

2.1.2 Logic Synthesis from Regular Expressions ... 40

2.1.3 	Critique 	... 41

2.2 AN ARCHITECTURE TO RECOGNISE LL(1) GRAMMARS ... 42

2.2.1 	Logic Design ... 43

2.2.2 	Logic 	Synthesis ... 45

2.2.3 	Critique ... 46

2.3 	OTHER IMPLEMENTATIONS ... 47

2.4 	SUMMARY 	.. 47

3. INSTRUCTION SET DESIGN ... 48

3.1 	PARSEINSTRUCTIONS ... 48

3.1.1 	States and Instruction Sequences .. 48

3.1.2 	Parser Registers... 49

3.1.3 	Shift Action ... 50

3.1.4 Reduce Action... 51

3.1.5 	Halting 	.. 52

3.1.6 	Error Handling .. 52

3.1.7 Default Actions for a Parse State .. 53

3.1.8 State Table Minimisation .. 54

3.1.9 	Shift-Reduce Action 54
.................... 55 3.2

LEXER INSTRUCTIONS 3.2.1 	States and Instruction Sequences .. 56

3.2.2 Lexical Analyser Registers.. 56

3.2.3 	Lexical 	Shift.. 57

3.2.4 Lexical Accept ...

3.2.5 Error Handling ...

3.2.6 Test Action...

3.3 REVIEW OF INITIAL INSTRUCTION SET ...

3.4 MICRO-INSTRUCTIONS ..

3.4.1 Registers and Flags ...

3.4.2 The Micro-Instruction Set

3.5 COMBINED MACROS ...

3.5.1 State Table Macro ..

58
60
61
62
63
68
74
75

FIN

3.5.2 Initialisation .75
3.5.3 	ParseState .. 75
3.5.4ParsePop 	... 75
3.5.5 	LexState 	.. 76
3.5.6 Parse 	Shift ... 76
3.5.7 	Parse Reduce ... 76
3.5.8 	Parse 	Shift-Reduce .. 77
3.5.9 	Parse 	Default Reduce .. 78
3.5.I0LexTest .. 79
3.5.11 	Lex Load Char .. 79
3.5.l2LexShift .. 79
3.5.13 	Lex 	Accept .. 80
3.5.14 	State Size 	Reduction ... 80
3.6 SAMPLE LANGUAGE TABLE SizEs ... 81

4 . HARDWARE DESIGN ... 83
4.1 STATE, TOKEN STACKS AND TOKEN QUEUES ... 84
4.1.1 	State and Token Stack ... 84
4.1.2 	Token Char Queue .. 84
4.1.3 	Token Symbol 	Queue .. 86
4.1.4 Using Internal or External Memory .. 87
4.2 NEW PROCESSOR ARCHITECTURE ... 89
4.2.1 	Cycle-based Simulation ... 90
4.2.2 Processor Physical Implementation ... 91
4.3 	DATA-PATH BITSLICE .. 91
4.3.1 	Bit-Slice Logic .. 93
4.3.2 Register To Register Transfer ... 94
4.3.3 	Bit-Slice 	Commands ... 96
4.3.4 	Fabrication Details .. 96
4.3.5 	Device Pinout .. 99
4.4 CONTROL DEVICE ... 100
4.4.1 	Internal 	Logic .. 100
4.4.2 Processor Internal States ... 102
4.4.3 	Interfaces and Protocols .. 104
4.4.4 Error Detection and Handling ... 106
4.4.5 	Fabrication 	Details .. 108
4.4.6 	Device 	Pinout .. 110
4.5 TESTING AND EMULATION RESULTS ... 110

5. REAL APPLICATIONS ... 113
5 .1 	LOGIC SYNTHESIS ... 113
12 DEVICE MASKOENERATION ... 115
5.3JAVA ... 116
54 	PEN PLOTFERS .. 117
5.5 	DISKCONTROLLERS .. 118
5.6 MACHINETOOL5(DNC) ... 118

6. CONCLUDING REMARKS AND FUTURE WORK .. 119
6.1 SUMMARY OF CONTRIBUTIONS MADE BY THIS THESIS... 119
6.2 	FUTURE WORK ... 120
6.2.1 	Semantic Hardware ... 120
6.2.2 	Software .. 121

REFERENCES ... 122

7. APPENDIX A - SOFTWARE SIMULATION .. 125
7.1 MAIN SIMULATION FILE- THE TEMPLATE .. 125
7.2 	SIMULATOR UTILITY CODE ... 126
7.3 PROCESSOR EMULATION DATA... 129
74 SIMULATOR RESULTS .. 130

8. APPENDIX B - PROCESSOR IMPLEMENTATION ... 133

Mic

136
136
136
136

9. APPENDIX C - SYNTHESIS SOFTWARE 	.
9.1 EXAMPLES OF REGULAR EXPRESSIONS 	 .
9 .1.1 Example I ...
9.1.2 Example 2 ...
9.2 GRAMMAR FOR SYNTHESIS LANGUAGE
9.3 SEMANTIC ACFIONS
9.4 LALR(1) PARSER AND LEXER TABLES...
9.5 EXAMPLES OF PARSES ..
9.5.1 Example I ...
9.5.2 Example 2 ...

137
137
148
152
153
153

-4-

Table of Figures
Figure 1 - A Pae-Te 18

Figure2 - Parse-Tree Traversal 	... 19

Figure3 	- 	State Machine .. 23

Figure4- 	Stan 	Sets.. 26
Figures- First and Follow Sets ... 27
Figure 6 - Recursive descent parser ... 28

Figure7 - LL(1) Table Generation... 29
Figure8- LL(l) parser... 30
Figure9- LALR(l) Algorithm 	.. 3 2

Figure 	10 - Token recogniser cell .. 38

Figure 	II 	- String Concatenation Cell.. 38

Figure 12 	- 	String union cell .. 39

Figure 	13 - Linear layout of string union cell... 39

Figure14 - Optional 	Cell ... 40

Figure15 	- 	Repeat 	l..n cell .. 40

Figure 	16 - Rule and Token detection cell ... 43

Figure17- Cell 	for rule 	'7 	= a 	... 44

Figure18-Cellforrule"Z=aX 	... 44
Figure19-Cellforrule"ZaXY" ... 45

Figure 20 - Complete LL(1) recogniser ... 46

Figure 21 	- Processor Functional Blocks ... 83

Figure 22 - Stack Device.. 84

Figure23 	- 	Lexical 	Buffer.. 85
Figure 24- Lexical Buffer Registers .. 85

Figure 25 - Lexical Queue as Cyclic Buffer... 86

Figure26 - Symbol Queue ... 87

Figure 27 - New Processor Architecture .. 90

Figure28- 	Bit-slice 	1/0 ... 91

Figure 29 - Control and Bit-slice blocks .. 92

Figure 30 - Bit-slice Register Transfer... 95

Figure31 	- Register Transfer ... 95

Figure 32 - Bit-Slice Device Chip Layout.. 98

Figure33 	- PGA Pin Layout .. 99

Figure 34 - Control Logic Internals .. 100
Figure35-Control Flag Logic .. 101
Figure 36- Processor State Machine 	... 103
Figure 37-Control Device Chip Layout.. 109
Figure 38- Logic Synthesis Parse Tree.. 114
Figure39- Synthesised Logic.. 115

-5-

Table of Tables
Table 	I - Pre and Post-order Traversal of Parse Trees .. 19

Table 2 - Productions and semantic actions ... 20

Table 3 - Semantic actions and Parse-Trees ... 20

Table4- LL(l) 	Parse Table... 29
Table5- LALR(1) Parse Table ... 32

Table 6 - Regular Expression Semantic Actions .. 41
Table7- LL(l) Actions ... 42

Table8 	- Parser Registers .. 50

Table 9 - Initial Parse Instruction Set... 50

Table 10 - Lexical Registers .. 56

Table 	11 	- Initial Lexical Instruction Set ... 57

Table 	12- Initial Combined Instruction Set... 62

Table 	13 	- Micro-Instructions .. 68
Table 	14- Comparison of Table Sizes ... 81

Table 	15 - Comparison of Parse Input ... 82

Table 	16- Memory Segment Defmition .. 88
Table 	17 - 	lOMode Definition ... 89
Table 	18- Bit-Slice Ripple Signals.. 92
Table 	19- Carry/Borrow for + li-I 	.. 94
Table 20- Bit-Slice Commands ... 96

Table 21 	- 	Bit 	Slice Pinout... 99
Table22- Flag Commands .. 101
Table 23 - Commands for Error Logic... 102
Table 24- Phase Register Commands.. 102
Table 25- SysCommand Bus Definitions .. 104

Table 26 - Control Device Pinout .. 110
Table 27- Clock cycles for Parse Input ... lii
Table 28- Logic Synthesis Routines.. 113

-6-

Acknowledgements

I would like to express my sincere thanks to my Supervisor, Greg Stevenson for his

help, guidance, support and patience during the various stages of this research project.

I wish also to acknowledge the support of the University of Central Lancashire to this

research. I wish to thank Mr. Simon Hill for the technical support during the project.

Finally, I wish to give special thanks to my wife, Jacqueline and daughter, Caroline

for their love and support throughout this research.

St

Abstract

This thesis investigates the topic of the design, implementation and potential use of

specialised hardware used to accelerate the recognition and translation of computer

programs expressed in a range of computer languages. This investigation focuses

specifically on the twin processes of parsing and lexical analysis.

The research described was carried out in two areas namely, the feasibility of

designing a specialised instruction set for a RISC like processor able to accelerate the

parsing and lexical analysis process, and the physical implementation of a RISC

processor in CMOS VLSI technology able to execute the designed instruction set.

The feasibility of mapping the process of language recognition onto the instruction set

of a RISC processor is investigated. This involves an assessment of the suitability of

the LL(1) and LALR(1) algorithms, both of which are used for parsing, and other

associated algorithms, used for lexical analysis, as a basis for an appropriate

instruction set architecture. The feasibility of an instruction set design which uses

fixed size instructions with variable size data fields to ensure scaleable operation is

also investigated. The appropriate software mechanisms used to validate the

instruction set architecture are outlined.

The practical implementation using CMOS technology of a RISC processor able to

execute the new instruction set is investigated. In particular the feasibility of using

bit-slice technology to implement the processor having fixed size instructions with

variable size data-paths and address ranges is investigated.

The combination of novel instruction set with variable data-widths and the fabricated

devices able to activate semantic actions directly from hardware together form an

original contribution to the field of parsing and lexical analysis.

-8-

1. Introduction
The use of high level languages such as PASCAL, C++, or Java to specify computer

behaviour depends on the ability of computers to analyse the source text and translate

the implied meaning (or semantic specification) into executable machine instructions.

This research investigated the feasibility of designing a specialised processor having

an instruction set aimed specifically at the problem of recognising computer programs

written in a wide range of computer languages. The architecture of the RISC

processor also had to provide interfaces to allow external hardware to implement the

semantics implied by the computer program. This research, therefore provides a

practical application of the theory of parsing and lexical analysis, two fundamental

concepts of language theory extensively used within computer science. These theories

of lexical analysis and parsing are well known.

In the following sections of Chapter 1, the main concepts involved in parsing and

lexical analysis are briefly described. This is needed to provide an informed

background before discussing both the research objectives and the overview of the

thesis.

For more information refer to the literature on the theory of parsing and lexical

analysis. The following is a partial list of useful references :-

[Aho 1977] "Principles of Compiler Design"

[Brown 1981] "Writing Interactive Compilers and Interpreters"

[Denning 1978] "Machines, Language and Computation"

[Fischer 1991] "Crafting a Compiler with C"

[Hunter 1981] "The Design and Construction of Compilers"

[McGettrick 1980] "The Definition of Programming Languages"

[Minsky 1972] "Computation: Finite and Infinite Machines".

192

1.1 Parsing and Lexical Analysis - An Overview
Just as the process of reading a book uses the twin processes of lexical analysis and

parsing, so does the example of reading and translating a computer program. Firstly

the sequences of characters are analysed into words (possibly requiring a dictionary).

Next the combinations of words are analysed to see if they form correct sentences.

The final stage is to recognise the meaning of the individual sentences and perform

any actions implied by the meaning.

Lexical Analysis is defined as being the process of recognising "words" from

sequences of characters in the computer program source text. The dictionary (or

lexicon) of words depends on the language being used.

Parsing is defined as being the associated process of checking that the sequence of

recognised "words" forms a valid sentence in the language. Different languages will

have different structures for a legal sentence.

Together these two processes recognise source code as belonging to a specific

language and also provide hooks to allow the generation of executable code based on

the semantics implied by the source text. The "definitions" provided describe the

behaviour of a parser and lexical analyser as if they were "black boxes". Some

awareness of the internal operations of a parser and lexical analyser is needed for an

understanding of both the processor architecture (and its instruction set) and its

practical implementation in hardware. The actual internals and concepts involved in

both parsing and lexical analysis are introduced informally. To highlight the important

concepts in parsing and lexical analysis, the example (mentioned above) of reading a

sentence in a book will be used.

1.2 Parsing - The Basic Concepts

As indicated in the previous section, the parsing process checks that the tokens (or

words) provided by the lexical analyser form a legal structure or sentence in the given

- 10 -

language. This section outlines some of the terminology used in parsing theory (as it

relates to the research).

1.2.1 Sentences and Language

Informally, a sentence consists of a number of words with some constraints on the

sequences of words allowed. There will be a fixed collection of words (known as a

lexicon or dictionary).

Each word (or token) in the lexicon will consist of a sequence of letters where each

letter is taken from a fixed alphabet.

A language will be defined by the combination of constraints on the word sequences

and the lexicon. A language could therefore consist of many possible sentences.

For example, given a dictionary D of tokens where

D= {"a" , " on,, , " cat", ''ball", ''sat", "the", ''threw" }

then we could form the sequences R, S, T where

lit = ''a" ''bal ''tlrev"

S = ''a''

1' = ''the" ''cat"

(Note that the full-stop is only used to indicate the end of the token sequence)

We could define all three sequences to be a sentence and state that the language L

only contained these three sentences. Thus we could formally define the language L to

be a set of sequences. That is,

L = { R, 5, T } where R, 5, T are defined above.

- 11 -

For a language containing many sequences (possibly an infinite number) it could be

difficult to verif' if a particular sequence of tokens is a sentence due to the large

number of sentences.

1.2.2 Languages and Grammars

Instead of defining a language by listing all its sentences, an alternative mechanism is

to generate the sentences from a simple set of rules known variously as re-write or

production rules.

The following are all examples of productions.

L = R "cat"

L = X "ball"

X= "a" S

X = "the" T

R = "a" "ball" Y

S = "cat" Y

'IT 	 ''on"

Y = "threw" "a"

A sequence of symbols can be used more than once as the left hand side of a

production. Thus L and X each have two productions.

Productions can also have more than one symbol on the left hand side. The following

are also examples of productions.

A B C = X "sat"

A C B = X "saw"

Grammars which have productions with rules having more than one symbol as part of

the left-hand side are called context-sensitive. Grammars where all productions have

- 12 -

only one left-hand symbol are called context-free. Natural languages such as English

or French can only be described by context-sensitive grammars. Computer languages

such as Java or PASCAL can be described using context-free grammars. The research

only investigated the acceleration of recognition of languages generated from context-

free grammars. Accordingly from this point, any grammar described will be context-

free.

Also a production can have an empty right-hand side. That is the right hand side

contains the null symbol, called epsilon. The production is also known as an epsilon

production.

x=

x = '0'

This defines X as being null or '0'

A symbol which appears on the left-hand side of a production is known as a non-

terminal symbol. A non-terminal symbol can appear on the right-hand side of a

production. Thus L, X, R, S, T and Y are all non-terminal symbols. A symbol which

only appears on the right-hand side of a production is known as a terminal symbol.

Thus "cat", "ball", "a", "the", "sat", "on" and "threw" are all terminal symbols. The

epsilon symbol is an example of a terminal symbol. A symbol can be either a terminal

or non-terminal symbol. It cannot be both.

Starting with the symbol L and using the productions

L = R "cat"

R = "a" "ball" Y

=

generates the chain

- 13 -

L

=> R "cat"

> "a" "ball" Y "cat"

=> 	"ball"

Similarly starting from the symbol L and using the productions,

L = X "ball" etc.

gives the two chains

L

> X "ball"

> "a" S "ball"

> "a" "cat" Y "ball"

=> ''a'' ''cat'' 	''a" ''ball"

L

> X "ball"

> "the" I "ball"

> ''the'' 	''sat" ''on 	''ball"

The generation of all possible chains from a starting expression or symbol (such as L)

by means of the productions is known as a derivation. The derivation set is the set of

sequences obtained when no further production can be used.

Thus we can see that the three sequences

"a'' 	 ''a" ''bal I'',

-14-

"on'

are all derivations from the symbol L. Notice also that the set of derivations from the

symbol L is identical to the set of sentences which represent the language L as defined

earlier.

We define a goal symbol to be a unique non-terminal symbol whose set of derivations

forms the language or the set of sentences.

A grammar is defined to be the combination of productions, goal symbol, non-

terminal and terminal symbols. The set of all derivations from the goal symbol (using

the productions) gives the language defined by the grammar.

Finally, grammars can be described using notation other than re-write rules. One such

notation uses ? + and * to indicate repetition of symbols.

Definea*={} u { a } u { aa } u { aaa } u ... 	{ eps ilon, a, aa, aaa, ... }.Thatis,a*

represents the repetition of "a" from 0 to many times. (Sometimes the notation [a] is

used instead of a*).

Definea+={a}u{aa}u{aaa}u ... {a,aa,aaa, ... }.Thatis,a+representsthe

repetition of"a" from 1 to many times.

Define a? = { } u { a } = { epsilon, a }. That is, a? represents the repetition of "a"

from 0 to 1 times.

Note also that a* is the same as a+?.

Define "," to represent the choice between two sequences.

Thus a , b = { a , b }

A grammar expressed using the "?" " "+" and "," symbols can be easily converted

to re-write rules. For example, A = C" can be converted to

- 15 -

A = X

x =

x=xc

or

A=X

x=

x=cx

and A = C+ can be converted to

A=X

x=c

x=xc

or

A=X

x=c

x=cx

The "p", "+", "?" and "," notation is used extensively in the following chapters.

1.2.3 Parsing and Grammars

The use of grammars to define languages aids greatly in the process of recognising

whether a sequence of tokens is a sentence. Grammars do this by converting the

parsing process into a game of "syntactic dominoes". Each production becomes a

domino where the tokens represent the domino spots. The game starts with the goal

symbol on one side and the proposed sentence (or sequence of terminal symbols) on

the other side. The two sides are then joined together by using the legal dominoes (or

productions). If it is possible to join the goal symbol to the token sequence using only

legal dominoes then the token sequence is a sentence of the language. The game is

identical to finding a derivation of the goal symbol except that the end result is known

from the start.

- 16-

There are a number of strategies (or parsing methods) possible which can be used to

play this game. Two of these are important for use as potential parsing mechanisms

and are outlined below. The first strategy is where dominoes are always added from

the goal symbol side down towards the token sequence side. This is known as a top-

down parse. The other strategy of interest is where dominoes are always added from

the token sequence side up towards the goal symbol side. This is known as a bottom-

up parse. The pattern made by the dominoes is called the parse-tree. An example

parse-tree is shown below.

This example parse-tree is generated when recognising that the token sequence "10 +

11" belongs to the language defined by the grammar with goal symbol E and

productions,

E=E+T

E=T

T=D

T=TD

D=0

D=l

This parse-tree could be created either bottom-up (from the token sequence 10+11) or

top-down (from the goal symbol E).

- 17 -

Figure 1 - A Parse-Tree

The following diagram shows a left to right traversal of the parse-tree starting from

(and returning to) the top (or goal symbol)

-18-

E 	 4
= 	 (10)

E '+' T

E

i 	(5) 	 = 	(9)
TO

T T
(4) 	

=

T
D4 D

D 	(2) 	 (3

= 	

(6)

D
= 	(1)

Figure 2 - Parse-Tree Traversal

A pre-order traversal of a parse-tree is a visit of the node N then a recursive visit of

the sub-trees rooted at children N 1 ..k of a node N. A post-order traversal of a parse-

tree is a recursive visit of the sub-trees rooted at children N I ..k of a node N then a

visit to N.

For the above parse-tree the sequence of rules given by both post-order and pre-order

traversals are shown.

Parse Tree Label Pre-Order Traversal Parse Tree Label Post-order Traversal
. ç.qacc.......... eg3ence

10 E=E+T 1 D1
5 E=T 2 T=D
4 T=TD 3 D=0
2 T=D 4 T=TD
1 D = 1 5 E=T
3 D=0 6 D=l
9 T=TD 7 T=D
7 T=D 8 0=1
6 D = 1 9 T=TD
8 D = 1 10 E=E--T

Table I - Pre and Post-order Traversal of Parse Trees

- 19 -

It is important to note that a pre-order traversal predicts the rule to be recognised, and

that a post-order traversal is able to refer to data already recognised

1.2.4 Grammars and Semantics

The purpose of a language is to communicate meaning or semantics. A grammar with

its productions can only define the structure of the sentence. It cannot normally

indicate the semantics or meaning of a particular sentence. However, it is possible to

attach semantic actions to the individual productions. That is each production can

have an action to perform when the rule is recognised.

The following example shows how binary numbers can be recognised from text and

then added. This example uses the grammar and parse-tree shown in the previous

section, where the following table shows the productions and associated actions to

recognise binary numbers. The goal symbol of the grammar is E.

Production 	Action
ET E:T
EE'+'T E:E+T
D'O' D:0
0='!' D:1
TD T:D
T=TD T:2*T+D

Table 2 - Productions and semantic actions

The semantic actions shown assume that there are three registers E, T and D. For the

token sequence 10 + 11, we use the post-order traversal of the previously mentioned

parse-tree. Writing the rules with associated semantic action in reverse order (starting

from the token sequence to the goal symbol i.e. bottom up) (evaluating E,T,D as we

go)

Parse Tree Label Rule Action Value of D Value of T Value of E
0=1 D:1 I 7

2 TD T:=D I I 7
3 D0 D:0 0 1 ?

4 T=TD T:2*T+0 0 2 ?

5 ET E:T 0 2 2
6 D1 D:=l 1 2 2
7 T0 T:D I I 2
8 D1 0:1 1 1 2
9 TTD T:2*T+D 1 3 2
30 EE+T E:E+T I 3 5

Table 3 - Semantic actions and Parse- Trees

- 20 -

Note that E contains the answer 5 (in decimal) which is the value of 10 + Ii in binary.

Thus we can see that semantic actions can be attached to the syntax productions to

obtain the desired meaning. In pre-order traversal the semantic action is triggered at

the start of a predicted production. For post-order traversal the semantic action is

triggered after the production has been recognised. The left-right post-order traversal

emits the productions in a sequence where all information is acquired before using it.

The left-right pre-order traversal of a parse-tree predicts but does not acquire the

information required at the time of triggering of a semantic action.

Therefore, the design of semantic actions to attach to productions works best when

the rules are recognised in the order given by the post-order traversal of the parse-tree.

It must be noted that the semantic actions are specific to the productions. Changes to

the productions will require different semantic actions.

1.2.5 Grammar Hierarchies

For a given language there may be more than one grammar which can "generate" all

the sentences in that language. However the converse of a grammar generating

multiple languages is not possible. This is due to the uniqueness of the derivation set

(or set of sentences in the language) obtained from the goal symbol.

1.2.5.1 Ambiguous Grammars

It is possible to have a grammar which allows a sentence to be derived in more than

one way from the goal symbol. This is equivalent to stating that there is more than

one parse-tree for at least one sentence in the language. An ambiguous grammar is

defined to be a grammar with this property. The following is an example of an

ambiguous grammar.

Using E as the goal symbol with the following productions,

E = E '-' E

E = number

- 21 -

where number and '-' are both terminal symbols. '-' represents the arithmetic

subtraction operator.

The sentence "n '-' n '-' n" can be derived from E in two possible ways. Note that the

two routes generate the same sequence or derivation.

Parse Tree 1.

E

=> E '-' E

> number '-' E

> number '-' E '-' E

> number '-' number '-' number

This is equivalent to working out the value of number - (number - number)

Parse Tree 2.

E

=> E '-' E

> E '-' number

> E '-' E '-' number

=> number '-' number '-' number

This is equivalent to working out the value of (number - number) - number.

These values are not normally the same. They are only equivalent if the last number is

zero or just one of the first two numbers is infinite.

A parser for an ambiguous grammar could generate an incorrect sequence of actions.

Therefore ambiguous grammars must not be used.

- 22 -

1.3 Parsing Methods
The practicality of using productions to both define a language and also to assist as

place-holders for semantic actions should have been demonstrated. What has not been

shown are any algorithms which can recognise a token sequence as being a sentence,

or how productions can be used in the process. The format of productions should

indicate that state machines could be used to implement the parsing and lexical

analysis processes. The following sections indicate the use of state machines to

implement the parsing process which are based on productions.

1.3.1 State Machines
A state machine can be represented by a graph where each node corresponds to a state

and the arcs linking the states represent the state transitions. Each transition is a

directed are (or one-way street) from one state to another state and is tagged with the

transition trigger. For the parsing process, state transitions are triggered by the

currently visible terminal or non-terminal symbol. Each production could be mapped

onto a number of states (depending on the number of symbols in the rules' right-hand

side) where the transitions are triggered in sequence by the symbols of the production.

For example,

The production R = A '+' B could become the state machine S with states SI, S2, S3,S4
where SI is the initial state and S4 the final state.

Figure 3 - State Machine

State machines can be classified depending on the transitions and number of states.

Generally there can be many start states and many end states for a given machine.

A deterministic state machine is one with many states (possibly infinite) where each

input symbol has at most one transition from each state. Thus for each state and for

each possible input symbol (terminal or non-terminal) it is possible to "determine" the

- 23 -

next state. This machine ensures that there is no ambiguity of transitions when

reading a stream of input symbols.

A finite-state state machine is one with a countable (finite) number of states. When

used to implement a parser there will be a single start state with a single end state.

The end state will indicate that the goal symbol has been recognised. This type of

state machine just stores the current state as a single variable. State transitions are

decided by noting the current state and current symbol in the input queue, using the

state transition table to determine the next state, which becomes the new value of

current state. The current symbol is consumed and the following symbol becomes the

current symbol. This machine has two types of instructions, a shift to state instruction

and an accept instruction attached to the end state.

A finite-state machine with stack is similar to a finite-state machine except that a

stack is used to store the current states. State transitions are decided by noting the

state on the top of the state stack and next symbol from the input queue and using the

transition table to determine the next state. This next state is then pushed onto the

state stack. These transitions are shift instructions. There are some states where a

production is recognised ossibly determined by the next input symbol). The

production will be reduced at this point. The state stack is popped by the number of

symbols in the right hand side of the rule and the top of the stack becomes the current

state. The symbol on the left of the rule is inserted into the input queue to become the

new next symbol. This has an additional reduce instruction as well as the shift and

accept instructions. The top-down and bottom-up strategies can both be emulated

using this type of state machine.

In both types of finite state machines it is possible to have the state transition or

reduce conditional on knowing more that just the current next symbol but the

subsequent next n symbols. In practice n is either 0 or I. The next n symbols are

known as the took-ahead symbols.

- 24 -

There are many algorithms to construct the transition (or goto) tables and the reduce

tables are discussed next

1.3.2 Algorithms
There are a large number of parsing algorithms, however only the three most common

will be outlined. Each algorithm involves creating a mechanism to decide which

production to recognise. A grammar may have a non-terminal symbol which defines a

number of productions. Deciding which rule to start to recognise requires knowing the

set of symbols which can possibly start a rule.

1.3.2.1 First and Follow Sets

A parser needs to decide which rule to start recognising for those productions defined

by a common non-terminal. Knowledge of which terminal symbols can be seen first

when starting a production is then required. Also knowledge of which terminal

symbols can be seen following after a rule is useful to decide whether to recognise a

rule or continue shifting to other states.

A first set for a non-terminal symbol N contains those terminal symbols which can be

present at the start of the productions for the symbol. It is the set of those terminal

symbols which appear first in the set of derived sequences from N. The epsilon (or

null) symbol can also be in this first set. Note that the first set for a terminal symbol is

the set containing itself.

Example.

Given the productions for a grammar as being

S = AZ 1'
A=
A=B
A=CA
8='!'
C = '0'
Z=
z='. ,

then the derivatives D of A are
D= { epsilon,'!', '0'... 'I', '0'... 'O'}

The start set is therefore { epsilon, '0', '1'

Figure 4 - Start Sets

Elimination of the epsilon symbol from the first set of a non-terminal symbol N

depends on where N is referenced in the other productions. One method is to augment

the first set with the first set of each symbol immediately following N when N appears

on the right-hand side of a production. Should there be no following symbol in the

rule where R is the left-hand symbol then use the first sets of the symbols following

references to R. Repeat this until epsilon is eliminated.

Using this method for the above example gives the start set S for A where epsilon has

been removed as , ., 	}

A follow set for a non-terminal symbol contains those terminal symbols which can be

legally expected to occur after the symbol. It can be generated by forming the set of

non-terminal and terminal symbols which can follow the specified non-terminal

symbol in all productions which reference it. The non-terminal symbols are

repetitively replaced until no more terminal symbols can be added. Any non-terminal

symbols are replaced by the non-terminal symbol starter set q.v. A non-terminal

symbol which is defined by an epsilon rule is replaced by its own follower set. A non-

terminal symbol which is the last symbol in a production and is defined by an epsilon

rule is replaced by the follower set of the non-terminal on the left of the production.

- 26 -

Example.

Given the productions for a grammar as being

A=
A'l'
A = '0' A

then the follower set for A is ('' } , since only '*' occurs after A

Note.
A has an epsilon rule,

Figure 5 - First and Follow Sets

First and Follow sets are used by the following three parsing algorithms.

1.3.2.2 Recursive Descent

This algorithm uses the grammar rules and involves writing a sub-routine for each

production. The routine corresponding to the rule defining the goal symbol is the first

to be called. The sub-routines are potentially recursive and use the top-down

approach. For a non-terminal symbol which has many productions, deciding on the

appropriate rule will require examining the current next symbol and comparison with

the start set for the non-terminal.

A recursive descent parser (in a PASCAL-like notation) based on the example

grammar used above to demonstrate starter and follower set is given as an example.

ORM

(* next_token is a lookahead to the current next token *)
(* read_token consumes the current next token from the input stream *)
(S this recognises all rules which define A 5)

procedure A
begin

case next_token of
'5 , .

'0': read_token;
'1': begin

read_token;
A;

end
else

error;
end

end

(5 this recognises all rules which define S 5)

procedure S
begin

A
if next_token = '' then

read_token
else

error;
end

Figure 6- Recursive descent parser

This algorithm does not check if the grammar is unambiguous and may require

extensive manual re-work to alter the parser should the grammar be modified.

1.3.2.3 A Top-down Algorithm using one Lookahead Symbol
This algorithm is based on a finite-state automata with stack using a top-down (or

predictive) approach and reading the source symbols from left to right, using one

symbol of look-ahead to help decide on the appropriate state transition or rule

recognition. The parse trees generated are traversed using a pre-order (or left hand)

traversal.

This algorithm is usually known as the LL(l) parsing algorithm, where :-

L - read the text from Left to right

L - use a Left-hand (or pre-order) traversal of the parse tree

(1) - always use one look-ahead symbol

- 28 -

The LL(1) algorithm can be generalised to use more than one look-ahead symbol

when it is known as LL(n) (or LL), where n is the number of look-ahead symbols

required. The LL algorithm requires the placing of constraints on the productions of

the grammar which mean that many grammars cannot use this algorithm.

The algorithm has two parts, the state table generation and the parser which uses the

state table. The first and follow referred to in the algorithm are the first and follow

sets for a non-terminal symbol. These sets will not have had the epsilon symbol

removed.

Input: Grammar G
Output: Parse table (or array) M

Note $ is used to denote end of input.

Algorithm:

For each production A -> rhs of the grammar
1) for each terminal a in first(rhs), add A = rhs to the table M[A,a]
2) If epsilon is in first(rhs), add A = rhs for each terminal b in follow(A).

If epsilon is in first(rhs) and $ is in follow(A), add A = rhs to table M[A,$]

Finally mark each undefined entry in M as error.

If there is more than one entry in any M[A,x] then the grammar is not LL(l)

Figure 7 - LL('I) Table Generation

The following is the LL(1) parse table generated for the example grammar used to

indicate recursive descent.

Note:

first(A '') = { epsilon, '0', '1' }, follow(A '*') = { $ }

Terminals
Non-terminals 1 0' IT '' $

S S=A'*' S=A*' S=A* S=A't'

A A='O'A A='l' A=

Table 4 - LL(I) Parse Table

- 29 -

The generated parse table M is used in the parser. This LL(I) parser is described using

a pseudo-PASCAL notation.

(* let X be the top stack symbol *)
(* let a be the next input symbol)
push goal symbol 0 onto the stack
repeat
if X is a terminal or $ then
begin

if X = a then
pop X from stack and consume a from input

else
error

end
else
begin
lfM[X,a] = X ->Yl Y2 Ykthen
begin

pop X from stack
push Yk,Yk- I, ... Y 1 onto stack (Y I new stack top)

end
else

error
end

until stack is empty

Figure 8 - LL(J) parser

For more details of this algorithm refer to [Aho 1977].

1.3.2.4 Parsing from the Bottom Up using Looka head symbols

This algorithm (like the LL(I) algorithm) is also based on a finite-state automata with

stack but it uses a bottom-up approach. It reads the source from left to right and

generates a right-hand (or post-order) traversal of the parse tree using a number of

look-ahead symbols to determine state transitions.

The algorithm is known as LR(1), where

L - read source from Left to right

R - use a Right-hand traversal of the parse tree

(I) - always use one look-ahead symbol

- 30 -

The LR(l) algorithm can be generalised to use more than one look-ahead symbol

when it is known as LR(n) (or LR), where n is the number of look-ahead symbols

required.

The LR algorithm was first described in the paper [Knuth 1966] "On the Translation

of Languages from Left to Right" and extended in the paper [DeRemer 1971] "Simple

LR(k) Grammars".

A variant of the LR algorithm which only uses one look-ahead symbol where

necessary is known as the LALR(l) algorithm, where

L - Look

A - Ahead

L - read source from Left to right

R - use a Right-hand traversal of the parse tree

(1) - with at most one look-ahead symbol

The mechanism for generating LALR(l) parse tables is best shown in [Aho 1977]

"The Principles of Compiler Design". The paper [Pager 1977] "The Lane-Tracing

Algorithm for Constructing LR(k) Parsers and Ways of Enhancing Its Efficiency"

improves on the algorithm in [Aho 1977].

It can be shown that a grammar which is LL(l) is also LALR(1). The converse is not

true. Therefore LALR(1) can recognise more languages than LL(1). It can also be

shown that the LALR(1) algorithm will detect ambiguous grammars. The LALR(I)

parse table contains shift and reduce instructions.

The example LALR(I) parse table, shown below, is generated from the grammar used

to demonstrate the recursive descent parser.

- 31 -

States
Symbols 	1 	2 	3 	4 	5 	6

$ 	accept
S
A 	s2 _ 	s6
* 	r"A=" 	sS 	?'A=1" 	r"A="
1 	s3 	53
o 	s4 	54

Table 5 - LALR(I) Parse Table

Entries in the LALR(1) parse table M[X,t] contain shift, reduce or accept instructions,

where X is a state and t is a symbol (terminal or non-terminal). Blank entries

represent parse errors.

The following is the pseudo PASCAL code used to operate the LALR(l) parsing

algorithm.

Let X be top of state stack, S next state, t next token

repeat
case M[X,t].instruction of

shift:
begin

S = M[X,a].data
push S onto state stack
consume t from input queue

end
reduce:

begin
reduce rule = M[X,a].data
R->RIR2 ... Rk
pop k items from state stack
insert R into input queue as head of queue

end
error:

begin
error

end
end

until t = Goal Symbol

Figure 9- LALR(I) Algorithm

This algorithm is based on a table driven state machine with SHIFT and REDUCE

instructions.

- 32 -

1.4 Lexical Analysis Methods
Each parser will have an associated lexical analyser which reads the source text

combining character sequences to form the parse tokens.

1.4.1 Dictionary Lookup and Names

As indicated earlier, lexical analysis is akin to looking up a word in a dictionary. For

a language there is a finite set of parse tokens possible. However some of these parse

tokens can have many forms. Keywords such as while or do have a fixed form.

Examples of tokens that can have many forms are variable identifiers (akin to proper

nouns in English) and also integers. These types of tokens can be defined by sets of

simple rules.

Most computer languages have an overlap in the rules for defining an identifier and a

keyword. That is, a keyword could be regarded as an identifier. There are two

alternate mechanisms to resolve this problem. When a character sequence is found

which matches a keyword either accept the keyword or continue the sequence whilst

the sequence obeys the format of an identifier. The first method does not allow an

identifier to start with the text of a keyword, the second method does.

1.4.2 Finite State Automata
The concept of tokens being words in a dictionary leads to the possibility that each

token can be detected by a finite state automata. The dictionary can be implemented

as a non-deterministic automata q.v. which has a single start state and multiple end

states, one for each token.

A non-deterministic automata is a state machine which allows transitions to

multiple states from a state for the same trigger (or character). That is, it may not be

possible to determine the next state to reach if the trigger (or character) has a

transition to more than one state.

A deterministic automata is a state machine which has at most one transition from

each state for a trigger.
- 33 -

It is possible to describe the format of tokens and have mechanisms to convert the

token definitions into a format which represents a non-deterministic automata. Also,

there are algorithms which can convert non-deterministic automata into deterministic

automata. These algorithms are shown in [Aho 1977]. Both mechanisms can be

implemented as computer software taking as input the set of token definitions for a

language and outputting a description of a deterministic finite state automata.

A deterministic finite state automata is another example of a state machine. This has

two instructions, SHIFT and ACCEPT. Each SHIFT instruction knows of the

transition trigger and the target state. Each ACCEPT instruction knows of the token

just recognised for use by the associated parser.

1.5 Compiler-Compilers
The section on parsing mentioned that mechanisms existed which could automatically

generate parsers from the language re-write rules, subject to constraints on the rules.

A software tool known as a compiler-compiler is an example of such a mechanism.

This type of tool has three mechanisms :-

• one for generating parsers from grammars

• one to allow semantics to be hooked in

• one for generating a lexical analyser from the token definitions

A compiler-compiler could generate recursive descent parser from a grammar but

would need to ensure the grammar is unambiguous. However, most compiler-

compilers use either the LL or LR algorithms to validate the re-write rules and to also

generate the appropriate parse tables. Using either the LL or LR algorithms means

that a general purpose table-driven parser routine can be used. A compiler-compiler

(based on the LALR(I) algorithm which is a variant of the LR algorithm) which was

designed and implemented by the author was used as a background tool within the

research. The implementation of the run-time parsing and lexical kernel formed the

basis for the architecture of the hardware developed as part of the research.

-34-

1.6 Objectives of the Research

The research had three objectives.

Firstly, to investigate the possibility of accelerating the parsing and lexical analysis by

using specialised hardware. This was to determine if it was possible to have hardware

(specific to the recognition of languages) which was sufficiently general purpose to

recognise most computer languages. An alternative was to have hardware specific to

each individual language. Part of this work was to investigate the suitability of the

various parsing and lexical analysis algorithms for implementation as hardware.

Secondly, to verify if it was possible to design an appropriate instruction set which

could be used for the lexical analysis and parsing processes in combination.

Lastly, to implement a VLSI chip set capable of executing designed instruction set.

This research is based on the authors own software implementation of a simple

compiler-compiler. This compiler-compiler uses the LALR(I) algorithm to both

validate the input grammar and to generate the parsing tables automatically.

1.7 Overview of the Thesis
This thesis describes current work in the field, and the results of the work carried out

to thIfil the research objectives.

Chapter 2 indicates the current status of work in the field.

Chapter 3 describes the steps taken to design the instruction set. The use of the

compiler-compiler system to validate the various designs of instruction sets is

indicated.

Chapter 4 describes the hardware design of the RISC processor to execute the

instruction set. The further use of the compiler-compiler system to both derive,

simulate and generate test vectors for the logic design is also shown.

Chapter 5 indicates the potential applications of the hardware.

- 35 -

Finally, Chapter 6 indicates the scope for further research based on the implemented

hardware.

Also, there are a number of appendices attached which describe the logic design, its

validation and a simple language that can be recognised by the processor.

Appendix A describes the steps taken to validate the hardware design by using the

software implementation of the parser to generate test-vectors.

Appendix B details some of the logic design for the bit-slice device.

Appendix C provides an example of a simple language (with grammar) which can be

used to synthesise logic design from regular expressions.

- 36 -

2. Hardware Implementations
The practical implementation of hardware to accelerate the parsing and lexical

processes has not been widely considered or described in the literature. Most papers

describe theoretical hardware implementations of either lexical analysers or parsers

which use the LL(l) algorithm. The LALR(1) parsing algorithm which allows a wider

range of languages to be recognised does not appear to have been considered.

What follows is a discussion of the paper [Evans 1985] "Architectures for Language

Recognition" which describes two hardware architectures, one used to implement

recognisers for regular expressions suitable for a lexical analyser, and the second to

implement an LL(l) parser. Also discussed is another paper [Kazuo et al. 1983]

"Design and Evaluation of Parsing Chip" which describes the implementation of the

LL(l) algorithm but is specifically targeted at implementing a parser for PASCAL.

2.1 Recognising Regular Expressions in Hardware
A regular expression is formed from mixing tokens with indicators showing token

repetition. Thus the notation which uses "+", "", "?" , "," and also "[""]" (briefly

described in the previous chapter) can be used to form regular expressions. Thus, in

this notation, [a](d, b c) is an example of a regular expression. It could alternatively

be written as at (d, b c). This notation can be used to specif' both lexical analysers or

parsers after transformation into re-write rules.

2.1.1 Logic Design
The following describes an architecture to recognise regular expressions where the

individual tokens (for parsers) or characters (for lexical analysers) are input at regular

clocked intervals

2.1.1.1 Recognising a Token

As shown in Figure 10 - Token reeogniser cell, this logic cell accepts as input signals

the next character or token, the clock and the current result. It will output the new

result for input to the next stage. The token to be recognised (or token reference) is

compared for equality with the token input. The result of the comparison is logically

- 37 -

anded with the current result to form the value to be latched into a flip-flop to form

the next result.

Token bus

New result

result

Clock

Figure 10 - Token recogniser cell

This logic could be implemented as a parameterised VLSI custom cell where the

parameter is the token reference.

2.1.1.2 String concatenation

If two regular expressions El and E2 are to be recognised where E2 follows after El

then this can be implemented as follows. The output result of El becomes the input

result for E2.

1E 1

Figure 11 - String Concatenation Cell

If El and E2 are composite VLSI cells then the use of cell abutment should

automatically provide the required logic and power connections.

2.1.1.3 String union

String union is defined to be the new string formed by selecting either El or E2 where

they are both regular expressions. This is simply the OR-ing together of the result

signals ofEl and E2.

-38-

EI__H —aL 	_____

F-1 No

Figure 12 - String union cell

The above diagram shows the logical connections needed to form the "El , E2"

expression. The diagram shows a layout which would create irregular shaped areas for

cell layout. In VLSI semi-custom cell design a linear layout is preferable to allow

logic connections by cell abutment. The following layout method (adapted from the

paper under discussion) enables a uniform height to be used for the logic cells.

Figure 13 - Linear layout ofstring union cell

This layout requires an extra wiring channel for El and £2, with three extra types of

cell. The first cell type splits the result signal channel to form an extra bypass routing

channel. The second cell type switches the result and extra wiring channels over. The

third cell type or's the result channel and the extra wiring channel to form the new

result signal. The logic is equivalent to the previous layout except that the El and £2

macro cells have been modified to be capable of being placed in lines.

The paper [Evans 1985] describes the use of two wiring channels and two OR gates

for the same end result, thus wasting silicon. The modified cell design, as shown in

"Figure 13 - Linear layout of string union cell", is an improvement since the

redundant or-gate and wiring channel are eliminated.

2.1.1.4 Repetition

Noting that the regular expressions A* and (A+)? are equivalent then we need only

consider mechanisms for A+ and A?. As A? means A is optional, then the new result

is formed from the OR-ing of the current result with the result output from A

(implying A has been detected).

-39-

Figure 14 - Optional Cell

Notice that this uses the "split cell" and the "or cell" to select the extra wiring channel

with the result channel.

A+ means that A is concatenated at least once. Thus the input for A is either the

prefix or the result output from A.

01 F]
Figure 15- Repeat In cell

At first glimpse this seems to require two extra types of cells to cope with the

reversed direction of use of the extra wiring channel. However, the original split and

the or cells can both be used if the extra wiring channel extends the 11111 cell width in

both cases. For the split cell there is an internal link joining the extra wiring channel

to the result wiring channel. For the or cell the second input to the or gate is taken

from extra wiring channel. It is important to note that all cells will need wiring

channels for the token bus, clock and result signals. There may be many extra wiring

channels required depending on the depth of nesting caused by use of the , * and?

operators.

All cells will need to have an associated parameter to indicate the number of extra

wiring channels, with the or, split and switch cells having an extra parameter to

indicate which extra channel is being used by the cell.

2.1.2 Logic Synthesis from Regular Expressions

The following set of re-write rules define a language which contains regular

expressions, using the "s", "+", "?" and "," notation which also uses brackets. The

language describes the definition of a single regular expression.

- 40 -

RegRule = LeflName '=' Exp';';
LeftName = identifier;
Exp = Factor;
Exp = Exp ',' Factor;
Factor = Tenn;
Factor = Factor Term;
Term = Primary;
Term = Primary '+';
Term = Primary '*';
Term = Primary '7;
Primary = identifier;
Primary = '(' Exp !)S;

The following rules can have semantic actions attached so that the correct logic cells

are generated to form the appropriate regular expression recogniser.

Re-write Rule Semantic Action To Apply
RegRule = LeftName 	Exp ';' write code for expression
LeftName = identifier initialise and note expression name
Exp = Exp ',' Factor code for A B
Factor = Factor Term code for A B
Term = Primary '+' code for A+
Term = Primary '*' code for A* (== A+?)
Term = Primary'? code for A?
Primary = identifier recognise token

Table 6- Regular Expression Semantic Actions

These semantic actions will generate code or layout information for a single regular

expression.

2.1.3 Critique

The architecture described above will successfully generate hardware to recognise

regular expressions. A potential disadvantage of this approach is that each recogniser

however can only recognise one expression which is defined at time of manufacture.

The use of FPGA's only cuts down the time between design and implementation.

Also, the architecture has no mechanism whereby a lexical string (defined as a regular

expression) can be remembered and passed to parsing hardware. This is needed when

passing on the value of parse tokens such as identifiers or numbers.

A lexical analyser recognises a number of regular expressions and has to indicate

which one has been found. This requires the architecture to be able to generate a

-41-

mechanism to detect which of a number of hardware recognisers is first to detect a

token. There is no such mechanism available.

In most computer languages there is a potential clash between the use of keywords

such as "begin" or "end" and the form of an identifier. Some languages resolve this by

not allowing an identifier to start with a reserved keyword, such as BASIC. The

remaining languages allow identifiers to start with a keyword.

The hardware architecture described will always signal that a keyword has been

recognised in preference to an identifier. This is a severe constraint on the range of

computer languages this system can be used with.

Overall the architecture is not practical for recognising lexical tokens in hardware

given the above problems.

2.2 An Architecture to recognise LL(1) Grammars
The paper [Evans 1985] "Architectures for Language Recognition" also describes a

hardware architecture which recognises languages defined by LL(l) grammars. This

architecture depends on the theorem that, if for each non-terminal Z and terminal a,

then there is at most one re-write rule which takes one of three forms

. Z=a

• ZaX

ZaXY

where X, Y, Z are non-terminals and a is a terminal then the grammar is LL(l).

The action to be taken by the three types of rule is shown in the following table.

Rule Format Current Phase (Test) Next Phase (Action)
Z=a rule = Z,tokena rule'= POP
Z=aX ruleZ,tokena mle'X
ZaXY ruleZ,tokena rule'X,PUSHY

Table 7- LL(J) Actions

- 42 -

at
r~] ITok 	f(a)

token

detected

clock

I 	 I

r
________________ lag 	

p1ll

Rule bus I Token bus

The re-write rules can be placed in a table of terminal versus non-terminal symbols,

where each entry will be either a re-rewrite rule (in one of the three forms) or no entry

indicating an error. The parsing algorithm works as follows

Repeat the following until either both the stack and token input stream are empty or

an error is detected.

Using the current combination of rule and token access the table to see which re-write

rule is being recognised.

Depending on the table entry take the appropriate action. The POP and PUSH actions

refer to the associated stack and rule' represents the next value of rule. In all cases the

token from the input stream is consumed.

Parse errors can arise in a number of ways. If there is no entry this represents a parse

error. A POP command on an empty stack is also a parse error.

The next section describes the logic to implement each of the three types of cell.

2.2.1 Logic Design

There are three types of cell corresponding to the three types of re-write rule. The

three logic cells all have a common sub-unit which is used to recognise which rule

and token combination triggers the action for that specific cell. This sub-unit is shown

below.

Figure 16- Rule and Token detection cell

The rule and token detection cell uses a synchronous clock to latch the fact that the

rule, token combination has been found for that particular clock cycle. The next clock

- 43 -

cycle will clear the flag (unless the same rule, token combination is present). The

required action depends on the rule type and is carried out in the next cycle.

The three different action cells corresponding to the three rule types are shown below.

2.2.1.1 Cellfor rule "Z = a"

Stack

t
rule 	

oken

-.4
[i] 	POP

or

Stack 	 Stack
out pop'

Figure 17- Cell for rule 2 = a'

For the rule "Z = a", the stack is popped to give the next value for the rule bus. The

"stack pop" command is rippled through the cells. An alternative mechanism would

be to use a tn-state buffer to "or" the value onto the stack control signal.

2.2.1.2 Cell for rule '7= a

For this cell the action is to place the value of the X non-terminal onto the rule bus for

the next clock cycle. The value of X is tri-stated onto the rule bus as shown below.

This allows the rule bus to have the value X for the next clock.

rule

Figure 18- Cellfor rule 7 = a

22.1.3 Cell for rule "Z = aX Y"

For this cell the action is to place the value of the X non-tenninal onto the rule bus

and also to push onto the stack the value of the Y non-terminal. This stack value will

eventually be popped when a rule of the form "Z = a" is detected.
- 44 -

Stack push

Stack input 	
\\\\\

+ token I 	I ITri-state buffer I ITri-state buffer

Stack
push'

I

rule 	

token 	 ly 	I
I 	I

Figure 19 - Cellfor rule "Z = aX r

2.2.1.4 Combined Cell

The paper combines these three cells into one combined cell. The combined cell uses

tn-state buffers extensively instead of the ripple-through logic as shown in the three

cells described above. The combined cell uses two extra flags to indicate if non-

terminals X, Y are present. Extra logic is used to ensure that the tn-state buffers are

correctly activated. The paper [Evans 1985] shows a logic diagram for the combined

cell.

2.2.2 Logic Synthesis

The complete LL(l) recogniser is formed by instancing all rules present in the

grammar as the appropriate logic cells. The cells are joined together so that the rule,

token, stack input, stack output busses and the stack control signals are connected. A

stack is also required which has its output connected to the rule bus and input

connected to the tn-stated stack input bus from the rule cells.

- 45 -

	

44 	I r e rell..Za

R

Rule bus 	 Stack 	Stack
(stack output) I 	I 	input 	control

token bus

Figure 20- Complete LL) recogniser

2.2.3 Critique

This architecture can be used to generate a large range of LL(1) parsers. Unfortunately

most languages are not LL(l). Therefore this architecture will be unable to recognise

a large range of computer languages of interest to programmers and computer

scientists.

This architecture fixes the implementation of the parsing hardware at time of

manufacture, thus preventing rapid modification of a parser. Specialised FPGA's

could be designed which contained the three (or single combined cell) as the basic

logic element and therefore allow for device re-use.

Also the architecture has no error recovery mechanism to allow the hardware to

continue from a parse error. The hardware just reports the first error found. Most

users would regard this as a serious failing.

Thirdly, there is no mechanism to use the sequence of rules predicted (LL(l) is a top

down parsing technique). This is needed to allow hooks for the semantic actions to be

called. Associated with this is the problem that there is no mechanism to pass token

-46-

strings from the lexical analyser hardware to the semantic hardware at the appropriate

parse state.

Overall, the use of the LL(1) algorithm by this architecture is the main stumbling

block to its practical use.

2.3 Other Implementations
The paper [Kazuo 1983] "Design and evaluation of parsing chip" describes the

implementation of an LL(l) parser for PASCAL. The design used a number of PLA's

to implement the parse state engine. The design was not able to perform lexical

analysis. This design was successfully validated by being fabricated. The design,

however, was not an example of a general purpose architecture able to synthesise

general purpose parsers. Therefore this was of limited interest to this thesis.

2.4 Summary
To summarise, the LL(1) algorithm has been the main focus of research into the

implementation of parsing techniques as hardware. The next chapters will describe

the practical implementation of the LALR(1) algorithm with built-in support for the

process of lexical analysis.

- 47 -

3. Instruction Set Design
In the previous chapters, it is shown that the LALR(I) parsing algorithm is based on a

finite state machine (with an associated state stack) which only uses shift and reduce

actions. This strongly suggests that these two actions could be implemented as

instructions for a VLSI RISC processor. This proposed processor would have a very

specialised instruction set which could implement both the shift and reduce actions as

required by the LALR(1) algorithm. Each computer language would be implemented

as a different program to be run by the processor. Also, the parsing of a sentence for a

given language would be carried out by the running of the appropriate program on the

processor.

It must also be noted that the lexical analysis algorithm also uses a finite state

machine (without a state stack) where this machine also has shift and accept actions.

These actions could be implemented by extending the processor instruction set with

extra instructions to implement the shift and accept actions.

The derivation of an instruction set able to implement both the LALR(1) and lexical

analysis algorithms will now be described. The design and simulation of the

combined instruction set was carried out using a compiler-compiler. This software

was developed as part of the research.

3.1 Parse Instructions
The use of only shift and reduce actions by the LALR(1) algorithm indicates that a

minimum of two instructions is required. Accordingly a description of the required

behaviour of the shift and reduce actions as instructions will be given. Also a simple

error recovery mechanism is described.

3.1.1 States and Instruction Sequences

As stated earlier the LALR(I) parsing algorithm is based on a finite state machine

with state stack. The algorithm operates with shifts (or transitions) from one state to

another state being triggered by the recognition of the next parse token (or word).

- 48 -

Each state may also recognise one or more rules of the grammar, where the

recognition of the rule will again depend on the next parse token. If the current

combination of state and token has no defined action then this indicates the detection

of a parse error.

One possible representation of a single parse state would be as a large array of entries

implemented as a case statement. The current token would be used as the index to

select the appropriate entry. Each entry would be one of the shift, reduce or error

actions. In this state representation each state would need an entry for all possible

tokens. This would create large sparsely populated arrays. This state representation

has the benefit of ensuring all state transitions took the same time. This representation

was investigated but quickly rejected as being an inefficient use of memory.

An alternative state representation would implement a state as a list of conditionally

triggered instructions. Thus, each shift or reduce action is a single conditional

instruction which would be triggered by comparing the current token with the token

needed to trigger the action. The final instruction for each state would implement the

default action to take for that state (usually the error detection action). This

representation would be more efficient in memory usage. It's main disadvantage is

that each state would take a variable amount of time caused by the need to examine a

number of instructions for the appropriate token. This state representation was chosen

as the starting point for the design of the instruction set.

3.1.2 Parser Registers

The parser processor will require a number of registers to hold temporary data and to

indicate which instruction is being executed. Also the parser processor uses a stack to

hold states. The main parser registers are shown in the following table.

- 49 -

Register Purpose
Program Counter Points to current Parse Instruction
Instruction Register Contains current instruction
Top Symbol Indicates immediate next token symbol in token input queue
Next Symbol Indicates next symbol after "Top Symbol" (Could be undefined)
Error Flags Used to record parse errors
State Stack Pointer Points to Top of State Stack.

Table 8 - Parser Registers

As the individual states each consist of sequences of instructions, then each state can

be represented by the address of the first instruction in the state. Thus the state stack

can actually store addresses, where each stack entry (representing a state) is actually

the address of the first instruction in a state.

The initial instruction set is shown in the following table.

Instruction Parameter I Parameter 2 Parameter 3 Parameter 4

shift OnToken ToState UNUSED UNUSED

reduce OnToken ByRule Ruleloken RuleCount
shift-reduce OnToken ByRule RuleToken RuleCount

Table 9 - Initial Parse Instruction Set

The following sections describe the actions of the instructions in further detail.

3.1.3 Shift Action

The shift action represents the transition from one state to another state, where the

transition is triggered by the recognition of a parse token. As an instruction this would

be shown using a pseudo-assembler notation as

On <Token> Shift To <State>

3.1.3.1 Parameters

The <Token> parameter denotes the triggering token for the shift action.

The <State> parameter denotes the new state to go to. The parameter value is actually

the address of the first instruction in the state.

3.1.3.2 Instruction Actions

Firstly, the current token is compared with the <Token> parameter. If there is no

match then the processor executes the next instruction, otherwise the following steps

are performed.

The <State> parameter is pushed onto the state stack.

The current token (which must be identical to the <Token> parameter) is consumed.

If there is no value held in the next token buffer then the next token must be read.

This is the appropriate time to activate the lexical analyser which scans the raw input

text to recognise the next token.

3.1.4 Reduce Action

The reduce action represents the occasion when a grammar rule for the language has

been recognised. As an instruction this would be shown using a pseudo-assembler

notation as :-

On <Token> Reduce By <Rule> New Token <Token> Pop <Count>

3.1.4.1 Parameters

The <Token> parameter denotes the triggering token for the reduce action.

The <Rule> parameter denotes which rule has been recognised. This is used to

indicate which semantic routine should be called. (See the section on "Semantic

Interrupts").

The second <Token> parameter denotes the non-terminal token which is defined by

the rule.

The <Count> parameter indicates the number of states to pop from the state stack.

3.1.4.2 Instruction Actions

As with the shift instruction, the current token is compared with the <Token>

parameter. If no match is detected then the next instruction is executed, otherwise the

following steps are performed.

Firstly the <Rule> parameter is used to indicate which semantic actions should be

performed. See the following section on "Semantic Interrupts".

Next, the rule's left-hand token symbol (the <Token> parameter) is inserted into the

token input queue as the next token to be read.

Finally, a number of states must be "popped" from the state stack. The <Count>

parameter is used to determine how many states should be popped from the state

- 51 -

stack. For each item on the right-hand of the rule, one pop is done. Thus the <Count>

parameter will equal to the number of items on the right-hand of the rule

3.1.4.3 Semantic Interrupts

The reduce action provides the opportunity or hook to allow semantic actions to be

performed. Each individual rule can be regarded as an interrupt generated by the

processor. Each interrupt will trigger an action or sequence of actions within

additional hardware to implement the semantics of the particular language. Each

language has its own associated semantic actions and therefore will require different

hardware to implement these actions.

It is important to note that the processor cannot have two semantic actions in progress

simultaneously. That is each semantic action must complete before the next one can

be started. To guarantee this, the processor should be constrained to only be able to

continue with the parsing process when the current semantic interrupt has been

completed.

3.1.5 Halting
The LALR(1) parsing process should halt when the unique rule, with the goal symbol

as it's left-hand symbol, is recognised or reduced. Therefore, if the goal rule has a

fixed value such as 1 then this can be detected by the reduce instruction and the

processor halted accordingly. An alternative is to add a halt instruction to the

instruction set.

3.1.6 Error Handling
The LALR(1) algorithm is able to detect a parsing error at the first possible

opportunity and should halt at that point flagging the fact. However, this mechanism

of halting for each error is not acceptable, since each parse would only reveal the first

error detected and no more. The processor architecture needed a mechanism whereby

a form of error recovery could be attempted.

- 52 -

In most software implementations of the LALR(l) algorithm this is achieved by a

combination of popping the state stack and skipping tokens until it is possible to

continue the parse process and successfully recognise a rule in the language grammar.

The concept of a special token to assist in error-handling, denoted by Senor, was

examined. The Senor token would be used to denote the presence of a parse error in

the token input stream. The detection of a parse error would cause the Senor token to

be inserted in the token input stream. The error-handling mechanism would then have

the task of removing the Senor token and a limited number of tokens following the

Senor token. Also, the Senor token could then be used as the trigger for a shift

instruction. This would allow a grammar to be augmented with special enor rules

each of which would contain the Senor token followed by one or more tokens as the

rule's right-hand. The sequence of tokens following the Senor token would allow the

parser to re-synchronise itself with that token sequence after an error was detected.

The extra error rules would cause some parse states to contain shift instructions which

would be triggered by the Senor token. Thus the enor recovery mechanism would be

to pop the state stack until the state at the top of the state stack contained a shift

instruction triggered by the Senor token. If there were no state found which satisfied

that criteria before emptying the state stack then this would imply that no recovery

was possible. The detection of the case that no recovery was possible should cause the

processor to halt and the reason for the halt to be flagged.

This mechanism will allow both tokens and states to be skipped until a valid rule can

be recognised. Additionally the associated semantic hardware needs to be informed

that a parse enor has been found. This can be solved by having a special rule which

has as its left-hand token the Senor token and an empty right-hand side.

Thus the instruction set can be extended to allow a reduce instruction to trigger the

rule "Senor

3.1.7 Default Actions for a Parse State

The default action for a state will normally be the error action which is a modified

reduce action. This error action, if reached, must be triggered irrespective of the next
- 53 -

token. The set of tokens can be extended by adding the concept of a wild-card token

which matches any token and is denoted by $lambda. Thus the default action for a

state can be triggered by the $lambda token. This ensures that all parse actions are

triggered by a token match, even if the token to match is a wild-card. The $lambda

token could be used to trigger either shift or reduce actions.

3.1.8 State Table Minimisation
The use of the $lambda token enables some minimisation of state tables to be

achieved.

3.1.8.1 Replacing the default action

If a state contains at least one reduce action then one of these reduce actions can be

chosen to replace the default error action. The reduce action could be triggered by

many different tokens where each token requires one reduce instruction. Therefore

this minimisation replaces all occurrences of the reduce instruction by a single

instance of the reduce instruction. This replacement reduce instruction is triggered by

the $lambda token and will be the final instruction for a given state.

3.1.8.2 Single Reduce States
Another possible minimisation occurs when a state consists of only one reduce action.

That is, the state has no shift actions and contains one reduce action with the default

error token. This type of state will only be reached by shift actions contained within

other states.

It is possible to eliminate the state and all its instructions by adding an instruction

(shift-reduce) which combines the effects of the shift and reduce actions. Those shift

instructions which point to the state being eliminated are replaced by the new shift-

reduce instruction. This shift-reduce instruction is described in the next section.

3.1.9 Shift-Reduce Action
The shift reduce action represents the combination of a shift action immediately

followed by a reduce action. This action is triggered by the recognition of a parse

token. As an instruction this would be shown using a pseudo-assembler notation as :-

On <Token> Shift Reduce <Rule> New Token <Token> Pop <Count>

- 54 -

3.1.9.1 Parameters

The <Token> parameter denotes the triggering token for the shift action.

The <Rule> parameter denotes which rule has been recognised.

The second <Token> parameter denotes the non-terminal token which is the left-hand

symbol being defined by the rule.

The <Count> parameter indicates the number of states to pop from the state stack.

3.1.9.2 Instruction Actions

Firstly, the current token is compared with the <Token> parameter. If there is no

match then the processor executes the next instruction, otherwise the following steps

are performed.

Next, the current token (which must be identical to the <Token> panmeter) is

consumed.

The <Rule> parameter is used to indicate which semantic actions should be

performed. See the section on "Semantic Interrupts".

Next, the rule's left-hand token symbol (given by the <Token> parameter) is inserted

into the token input queue as the next token to be read

Finally, a number of states must be "popped" from the state stack. The <Count>

parameter is used to determine how many states should be popped from the state

stack. For each item on the right-hand of the rule, one pop is done. The value of the

<Count> parameter is one less than the number of items on the rule right-hand side

since the shift half of the shift-reduce action would normally push a state onto the

state stack. This push to the state stack is not needed.

3.2 Lexer Instructions
A lexical analyser is another example of a finite state machine but does not use an

associated state stack. However, the instructions for the lexical state machine will

correspond to the parser shift and reduce actions. Also a simple mechanism which can

recover from lexical errors such as incorrectly spelt language keywords is described.

- 55 -

3.2.1 States and Instruction Sequences

The algorithm for a lexical analyser is based on a finite state machine which has

transitions (or shifts) from state to state which are triggered by the next character

present in the input stream. Some states will be "accept" states when a lexical token

has been detected. For the lexical algorithm used by this research, it must be noted

that each accept state only detects one token. This ensures that a character string can

be an example ofjust one lexical token. Thus for the computer language PASCAL the

string "begin" will be regarded as the begin keyword and not as a variable identifier.

Each state will have a default action to be performed should there be no shift

transition be defined for the next character present. As the lexical algorithm used by

this research forces an accept state to have a single token this can be used to

determine the default action for a state. Thus the default action for an accept state is

the accept action for the token detected, and for a non-accept state it is the error

action.

The selected representation for each lexical state follows the representation used

within the parser. That is, a lexical state is a list of conditionally triggered

instructions. Each shift action is a single conditional instruction triggered by

comparing the current character with the character (or range of characters) needed to

trigger the instruction. The final instruction for the state implements the default action

(accept or error) for that state.

3.2.2 Lexical Analyser Registers

The lexical analyser will also use some of the parser registers. These are shown in the

following table.

Register I Purpose
Program Counter Points to current lexical instruction
Instruction Register Contains current lexical instruction
Top Symbol Indicates next character in input

Table 10 - Lexical Registers

- 56 -

The lexical analyser must also store the character strings for the previous token,

current token and next possible token that it is trying to recognise. These strings are

used by the semantic actions associated with the parser. These character strings could

be stored within three individual areas of memory where each character string needs a

pair of start and end pointers. Both the software and hardware implementations

actually used a cyclic buffer to hold the three character strings.

Instruction Parameter I Parameter 2 Parameter 3

shift MinChar MaxChar ToState

accept AcceptToken UNUSED UNUSED
test TestRoutine NextState (if passed) NextState AcceptToken

Table / / - Initial Lexical Instruction Set

3.2.3 Lexical Shift

The shift action represents the transition from one state to another, where the

transition is triggered by the recognition of a lexical character. As an instruction this

would be shown using a pseudo-assembler notation as

Shift <ToState> On Char Range <1> <hi>

3.2.3.1 Parameters

The <lo> and <hi> parameters indicate the contiguous range of characters which will

trigger the lexical shift action. <lo> being the minimum and <hi> the maximum.

The <ToState> parameter denotes the new state to go to. The parameter value is

actually the address of the first instruction in the state.

3.2.3.2 Instruction Actions

Firstly, the input character buffer is examined to see if it is empty. If it is empty then a

request to read the next character in the input stream is made. This causes the

processor to wait until a character is supplied.

If the input character buffer is not empty then the current next character (which is read

from the buffer) is examined to see if it is in the range given by the <lo> and <hi>

parameters. If there is no match then the processor will continue at the next

instruction.

If there is a match then the character is added to the buffer holding the next token

character string and the program counter with the value of the <ToState> parameter.

-57-

3.2.4 Lexical Accept

The lexical accept action is taken when a lexical token has been recognised. This

action is triggered as the default action for some states. As an instruction this would

be shown using a pseudo-assembler notation as

Accept <Token>

3.2.4.1 Parameters

The <Token> parameter represents the token just recognised and corresponds to the

value used by the parser for the language.

3.2.4.2 Instruction Actions
Firstly, the <Token> parameter is stored in the TopSymbol register. This provides a

return link to the parser to indicate which token has been found.

Next, the token string buffer pointers are adjusted so that the token strings are

updated. Thus, the current token becomes the previous token, the possible next token

becomes the current token.

Finally, the Program Counter register is reset to point to the next parse instruction. As

the lexical analyser is only entered from a parse shift instruction then the top of the

state stack will contain the appropriate address

3.2.5 Error Handling

It cannot be assumed that the input stream of lexical characters will be free from

"spelling mistakes". That is the character input stream could contain sub-sequences of

characters which cannot be matched with the definitions of any lexical token. This

could occur when attempting to find the longest matching sequence of characters that

can be recognised as a token.

For example

In PASCAL a real number will contain a decimal point ('.') and an integer could be

followed by the sub-range token '..'. Thus the sequence '12..' could be a miss-spelt

decimal number or it could be twelve ('12') followed by the sub-range token ('..'). If

the lexical analyser has the strategy of recognising the shortest sequence it will easily

recognise '12' followed by '..' but will find it hard to recognise a decimal number,
- 58 -

since the digits before the decimal point will be regarded as an integer and the token

sent to the parser. If the lexical analyser has the strategy of recognising the longest

sequence it will attempt to recognise '12..' as starting a decimal number of the fonn

I 2.D' (where D is a non-empty sequence of digits) and regard the next '.' as an error.

This type of error will be detected when a lexical state has no transition defined for

the next input character and the state does not default to recognising a token. Thus the

lexical parsing algorithm implicitly uses the strategy of trying to recognise the longest

stnng.

Therefore a mechanism to detect and correct both genuine errors and errors caused by

the maximal string strategy is needed. This mechanism will be triggered as the default

action for those states which do not accept a token.

Noting that,

• each state has an associated default token (which could be the error token)

• each character of the string corresponds to a state (the first character maps
to the initial lexical state)

then each character of the string will have a matching token. The sequence of tokens

defined will be a mixture of legal and error tokens, where the last token should be an

error token. For the example given above (of '12..') this would be the token sequence

"integer integer error error". (This is assuming that a decimal number cannot end with

a decimal point). Using the maximal string strategy, then the next token should be the

maximal sub-sequence of characters which has a legal token corresponding to the last

character. Thus, for the example given, the next token will be '12' which is the

maximal string forming a legal token (an integer). The surplus characters following

the maximal string will form the start point for the next token to be recognised. If

there is no maximal string this implies that the first character seen cannot start any

token and that it should be ignored (after flagging the fact by means of an error

interrupt). The remaining characters should be used as the start point for the next

token. Also, the lexical analyser should be restarted from its initial state.
- 59 -

Thus the error action would become an instruction having the form,

Error <ErrorRoutine>

The instruction actions would be as outlined above.

Also each lexical state would need a new instruction to note the default token

(possibly the error token) for that state. As an instruction this would be shown using

the pseudo-assembler notation as

Default <Token>

where <Token> would indicate the value of the default token.

This instruction would push the <Token> parameter onto a stack which would be

initialised to be empty whenever the lexical analyser was started either from the

parser or by the Default instruction.

The combination of Error and Default instructions meant that the Accept instruction

was redundant. Therefore all occurrences of the accept instruction were replaced by

the error instruction which was renamed to be accept.

3.2.6 Test Action
Many computer languages allow identifiers (or names) to belong to different classes

(or types) such as procedure identifiers, record identifiers or variable identifiers.

These identifiers could be different types of token yet have the same lexical

definition. Therefore a mechanism was required which could be used to split strings

of the same format into different tokens. It would be a special variant of the shift

instruction. This test instruction would raise an interrupt routine (able to read the

current character sequence) and return a logical value whether to shift or not to

another lexical state.

Also most languages allow comments (which may be nested) which are not tokens but

must be allowed as legal noise or whitespace. A mechanism to check for nesting

levels and allow the external semantic engine to clear the whitespace was required. To
- 60 -

satisfy both requirements the test instruction was implemented. As an instruction this

would be shown using a pseudo-assembler notation as

Test <Routine> Goto <GotoState>

3.2.6.1 Parameters

The <Routine> parameter indicates which routine is to be called.

The <GotoState> parameter indicates which state to go to depending on the status

returned by the interrupt routine indicated by the <Routine> parameter

3.26.2 Instruction Actions

First, the <Routine> parameter is used to generate an interrupt to the required

semantic routine. This routine may need to read the value of the string which is the

possible next token. This will allow the routine to match the token string (a possible

identifier) with other known token strings. The routine could return a status value

formed from two flags. The subsequent actions depend on the values of the flags. One

flag indicates if the current token string should be reset and the lexer reset to its initial

state. This flag takes precedence over the second flag. The second flag indicates if the

test was successful and the <GotoState> parameter can be used to indicate the next

lexical state. If the test was not successful then the next instruction in the state is

performed.

3.3 Review of Initial Instruction Set
The initial instruction set as described in the previous sections used an instruction size

of 32 bits. Address 0 of the instruction address space was used to hold the address of

the first lexical instruction (all lexical instructions followed the parser instructions)

and also the address of the first parse state.

The initialisation of the combined parser and lexer processor read address 0 to stack

the first parser address and to start execution at the first lexical state. The initial

instruction set design required every instance of the lexical test and parse shift

instructions to need the address of the first lexical state. Storing it at address 0

reduced the number of parameters needed for those instruction.

-61 -

The following table shows the initial instruction set and indicates the instruction and

parameter locations as bit string locations in the 32-bit instruction.

Inst'n Inst'n <31:29> m 1<28:16> Param 2<12:0> 'aram 3<15:8> Param 4<7:0>

Shift 0 en State
Call I en Routine

ShiftCall 2 en
[eeft

Routine

Reduce 3 Symbol Count
LexShift 4 LoChar HiChar

est Routine

Default 6 State
Accept 7 Routine

Table 12 - Initial Combined Instruction Set

The original decision to use both a 32-bit instruction and 8-bit characters constrained

the lexshifl instruction to have a 13-bit address space.

The introduction of the 16-bit UNICODE standard for characters (an extension of the

ASCII code) and also noting that some of the combined parse and lexical tables for

languages could be larger than 8192 words (13-bit address range) forced the

development of a new version of the instruction set which would avoid these

limitations. This new version is describe in the next sections of this chapter.

3.4 Micro-Instructions
The similarities in behaviour of the lexical and parser instructions from the original

design led to the concept of lexical and parser actions as macros. The new instruction

set would therefore consist of a number of micro-instructions that could be combined

to form the required actions for the parser and lexer.

Another design goal of the new instruction set was to have a larger addressing range

(bigger than 8192) and also to be able to use 8-bit or 16-bit characters. These goals

implied that the instruction parameter size should be increased.

- 62 -

The mixture of parser and lexer actions as macros of micro-instructions having

variable parameter width forced the adoption of the following instruction architecture.

Each micro-instruction would consist of two parts, 3-bits describing the instruction

and n-bits for the parameter. Each address location would consist of 4 micro-

instructions, a phase 0, phase 1, phase 2 and phase 3 micro-instruction. This would

make each lexical and parser action into a Very Long Instruction Word (VLIW)

format.

The 3-bit instruction would have different actions depending on the phase of the

instruction. Thus the complete instruction set would actually comprise of 32 micro-

instructions, 8 for each phase. The final micro-instruction set has some instructions

which are identical in behaviour, but are in different phases. These instructions may

not have identical values.

The n-bit parameter would have to represent a state address (both parser and lexical),

a parser token, a parser semantic action, a lexical test routine and also a lexical

character. The value of n for the software emulation of the processor was set to be 13.

The actual hardware implementation used a bit-slice architecture, where the

parameters could be multiples of 8 bits. Thus the software emulation (using 13-bits)

would require two bit-slices to allow 16-bit parameters.

3.4.1 Registers and Flags

The processor architecture uses a number of registers and flags to hold information

about the progress of the parse and lexical state machines.

3.4.1.1 Program Counter

The current address is held in two registers. PC indicates the address of the current

VLIW instruction and Phase thdicates which of the 4 micro-instructions is being

executed. Pt is used to hold the parameter value of the current micro-instruction

pointed to by PC and Phase.

- 63 -

3.4.1.2 Token Queue
The token queue is used to store the parse token values. It is implemented as two

registers, TopSymbol and LookAheadSymbol and an associated flag ValidQueue.

TopSymbol is used to store the value of the next parse token. This is either read from

the input stream of parse tokens, the LookAheadSymbol register or the left-hand

symbol of a parse rule recognised by a parse reduce action. It is also available for use

by the lexical instructions to return the next parse token detected by the lexical

machine.

LookAheadSymbol is also used to store the value of the next parse token. It is written

to (from the TopSymbol) when a parse reduce inserts the rule left-hand symbol into

the head of the parse token queue. The LookAheadSymbol register value (if it is

valid) is returned to the TopSymbol register after a parse shift instruction has been

executed.

The ValidQueue flag indicates that the LookAheadSymbol register holds a valid

token value.

3.4.1.3 Lexical Buffer
The lexical buffer is used to store the lexical values (as character strings) of the

previous token and current token recognised. It also holds the lexical characters which

should form the next token.

The buffer is implemented in software as a cyclic buffer. It comprises of an area of

memoiy and four pairs of registers. Each pair of registers acts as pointers to the start

and end of the token character string. The fourth pair of registers is used when

outputting one of the token strings for use by a semantic or lexical test action. The use

of a cyclic buffer enables the memory space to be re-used but requires a decision on

the appropriate size of memory to hold all the token strings. Each memory address

location must be able to store a lexical character (either 8-bit ASCII or 16-bit
-64-

UNICODE). Also each register pair represents a start and end address (of the buffer

memory) and so must be compatible with the buffer memory address range.

The three main register pairs are TokenBuffer, Tokenls and TokenWas.

TokenWas points to the previous token string.

Tokerils points to the current token string.

TokenBuffer points to the string which may form the next token.

Finally the TokenRam register pair is used to point to one of the TokenWas, Tokenls

or TokenBuffer strings as required.

3.4.1.4 Stacks

The software implementation of the processor architecture also uses two stacks. These

being the parse state stack and the token stack. Both stacks require an area of memory

and a stack pointer.

The parse stack holds the parse state values which are implemented as instruction

addresses. Thus each stack location must be able to store a processor instruction

address. The maximum stack size required depends on the language grammar and the

source input.

The token stack holds the token values for return by the lexical machine. Thus each

stack location must be able to store a parse token value. The maximal size of this

stack is identical to the size of the longest token string. If the language grammar

allows large size comments then a large token state buffer is required.

3.4.1.5 Flags
Most of the flags used by the processor architecture are used to report on the status of

the parser/lexical processes. These types of flags are initialised as false and may only

be set to true.

- 65 -

The EOIFound flag is used to indicate that the end of input token has been seen. This

token is akin to a full-stop in an English sentence.

The ParseDone flag indicates that the parsing process has finished. It could be caused

by a successful parse of the input or by a fatal (and unrecoverable) error being

detected.

Also, a number of flags are used to indicate warnings and errors detected in the

running of the parse and lexical processes.

A warning flag indicates a fault that can be recovered from. These are

. ParseSyntax - a parse syntax error

. ParseSemantic - a semantic action error

• LexSyntax - a lexical syntax error

An error flag indicates that the fault cannot be recovered from. These are :-

• SourceExhausted - attempting to read the input stream after the end of input
token was seen.

• NoErrorl-landler - no error handler rule has been specified

• BufferOverfiow - the lexical buffer has overflowed (caused by a very long
token)

• StackOverfiow - the state or token stack has overflowed

• StackUnderfiow - attempting to pop from an empty stack

• Illegallnstruction - attempting to execute one of the undefined micro-
instructions

If any error flag is set then this will cause the processor to halt.

The remaining flags, which can be both set and reset, are the SynchroniseMode,

SysResult and SysNullToken flags.

The SynchroniseMode flag is set to show that a parse error has been detected and

cleared when a non-error rule parse reduce has been performed.

The SysResult flag is cleared before the start of each parse semantic action (or lexical

test). It is set or cleared by the action routine to indicate success or failure. This is

then used to either set other error flags or to select the next instruction address.

The SysNullToken flag is cleared before the start of each lexical test. It is set by the

test routine to indicate that the possible next lexical token is a comment and can be

ignored. It causes the possible token buffer to be emptied and restarted with the next

character in the character input stream.

- 67 -

3.4.2 The Micro-Instruction Set

The following table lists the micro-instructions for each phase, giving the instruction

name, code and parameter. Each phase can potentially have eight micro-instructions

defined. Only phase one defines all eight micro-instructions.

Name Phase Code <15:13> Parameter Usage <12:0>
ifegual 0 0 token
lambda 0 I not used
illegal 0 2 not used
nomatch 0 3 not used
lexchar 0 4 character
lexerror 0 5 token
lexeoi 0 6 token
lexaccept 0 7 token
shift 1 0 state
shift-reduce 1 1 nile
reduce I 2 nile
lambda 1 3 not used
lexshift 1 4 character
terror 1 5 rule
lextest 1 6 rule
perror 1 7 rule
Ipush 2 0 token
assign 2 I token
push 2 2 token
loadchar 2 3 not used
halt 2 4 not used
lambda 2 5 not used
illegal 2 6 not used
illegal 2 7 not used
goto 3 0 state
pop 3 1 not used
readstack 3 2 not used
illegal 3 3 not used
illegal 3 4 not used
illegal 3 5 not used
illegal 3 6 not used
illegal 3 7 not used

Table 13 - Micro-Instructions

The table indicates that some instructions have the same name despite having

different values and different phases, in particular the lambda (or no-op) instruction.

The use of the same name indicates that the behaviour of the instructions is identical.

The following sub-sections describe each named micro-instruction detailing its

WIVIS

purpose, parameter and actions performed. Each instruction action is described using

a PASCAL-like notation.

3.4.21 ifequal
Parameter Token
Purpose used to check if the cunent top symbol triggers a parse shift or reduce action.
Action
if (P1 = TopSymbol) then
begin

Phase := Phase+ I;
end
else
begin
PC :PC-f 1;
Phase := 0;

end;

3.4.2.2 lambda
Parameter unused
Purpose no-op used to jump to next phase
Action
Phase Phase + I;

3.4.2.3 illegal
Parameter unused
Purpose undefined instruction
Action
IllegalinstructionFlag 	true;

This will cause the processor to halt.

3.4.2.4 nomatch
Parameter unused
Purpose no-op jump to next instruction address
Action
PC:PC± I;
Phase 0;

3.4.2.5 lexehar
Parameter Character
Purpose test if the character in the input is greater than or equal to the parameter character.
Action
if(Pl <= TopSymbol) then
begin
Phase Phase + 1;

end
else
begin
PC PC + I;
Phase 0;

end;

3.4.2.6 lexerror
Parameter Token
Purpose Use the token stack to find the longest token possible from the lexical text just read.
Action
repeat
TopSymbol : POP_TOKEN_STACK
TokenlsEnd: Dec 13(TokenlsEnd);

until (TokenlsStart = TokenisEnd) or (TopSymbol 0 0);

if(TopSymbol = 0) then
begin
Phase Phase + I;

end
else
begin
TokenBufferStart TokenlsEnd;
PC StateStack[StateSP];
Phase 0;

end;

3.4.2.7 lexeoi
Parameter Token
Purpose Note that the token denoting the end of lexical input has been seen.
Action
EOIFoundFlag true;
TopSymbol := P1;
TokenBufferStart TokenlsEnd;
PC StateStack[StateSPJ;
Phase 0;

3.4.2.8 lexaccept
Parameter Token
Purpose Note that a valid token has been seen.
Action
TopSymbol P1;
TokenBufferStart TokenisEnd;
PC StateStack[StateSP];
Phase 0;

3.4.2.9 shift
Parameter State
Purpose Note the parse state to be shifted to, depending on if the token queue is empty then
goto that state otherwise next phase (ready to start the lexical machine).
Action
PUSH_STATE_STACK(P I)
if ValidQueueFlag or EOIFoundFlag then
begin
TopSymbol LookAheadSymbol;
ValidQueueFlag false;
PC StateStack(StateSP];
Phase 0;

end
else
begin

get the lexical token
TokenWasStart := TokenlsStart;

- 70 -

TokenWasEnd TokenisEnd;
Phase Phase + 1;

end;

3.4.2.10 shift-reduce

Parameter Rule
Purpose Call up the rule specified as parameter to perform the associated semantic actions.
(Remember to use the current token string)
Action
SynchioniseModeFlag false;
TheAction cActionA;
SysNullToken false;
SysResult SemanticAction(TheParsePtr,TheSyntaxPtr,P 0;
if not SysResult then
begin
ParseSemanticFlag true;

end;
Phase Phase + I;

3.4.2.11 reduce

Parameter Rule
Purpose Call up the rule specified as parameter to perform the associated semantic actions.
(Remember to use the previous token string)
Action
LookAheadSymbol TopSymbol;
ValidQueueFlag true;
SynchroniseModeFlag false;
TheAction cActionB;
SysNullToken false;
SysResult SemanticAction(TheParsePtr,TheSyntaxPtr,P 0;
if not SysResult then
begin
ParseSemanticFlag tme;

end;
Phase Phase + I;

3.4.2.12 lexshift

Parameter Character
Purpose Check that the current lexical character is less than or equal to the expected character.
Action
if(TopSymbol <= P1) then
begin
TokenisEnd Inc 13(TokenlsEnd);
Phase := Phase+ I;

end
else
begin
PC PC + 1;
Phase 0;

end;

3.4.2.13 lerror

Parameter Rule
Purpose Call up a special semantic action to indicate that a lexical error has been detected.
Action

- 71 -

TheAction := cActionD;
SysNuliToken : false;
SysResult SemanticAction(TheParsePtr,TheSyntaxPtr,P 1);
LexSyntaxFlag true;
TokenBufferStart Inc 1 3(TokenBufferStart);
Phase Phase + 1;

3.4.214 lextest
Parameter Rule
Purpose Call up a lexical test routine to check on the possible token string.
Action
TheAction := cActionC;
SysNullToken : false;
Syskesult := SemanticAction(TheParsePtr,TheSyntaxPtr,P 1);
if SysNullToken then
begin
TokenBufferStart TokenlsEnd;
PC PC + 1;
Phase Phase + I;

end
else if SysResult then
begin

Phase := Phase + I;
end
else
begin
PC PC + 1;
Phase 0;

end;

3.4.2.15 perror
Parameter Rule
Purpose Depending on if the end of input has been seen or attempting to re-synchronise caused by
previous errors then possible call up a special semantic action to indicate that a new parse error has
been seen.
Action
if EOIFoundFlag then
begin

SourceExhaustedFlag true;
end
else if SynchroniseModeFlag then
begin
ValidQueueFlag false;
Phase Phase + 1;

end
else
begin
LookAheadSymbol TopSymbol;
ValidQueueFlag true;
SynchroniseModeFlag true;
ParseSyntaxFlag true;
TheAction cActionA;
SysNullToken := false;
SysResult:=SemanticAction(TheParsePtr,TheSyntaxPtr,P 1);
if not SysResult then
begin

- 72 -

ParseSemanticFlag tme;
end;

end;
Phase Phase + 1;

3.4.2.16 (push
Parameter Token
Purpose Initialise the lexical engine, clear the Tokeths string but point to the first possible character
for the token string.
Action
PUSFI_TOKEN_STACK(Pl);
TokenlsStart : TokenBufferStart;
TokenlsEnd TokenBufferStart;
Phase := Phase + 1;

3.4.2.17 assign
Parameter Token
Purpose After a parse rule has been recognised then note the left-hand token of the rule. If attempting
to re-synchronise input after a parse syntax error then pop the state stack to fmd a state which has a
shift on the Senor (=0) token.
Action
if SynchroniseModeFlag then
begin

find an error handler)
StateSP Inc 13(StateSP);
repeat
PC POP_STATE_STACK;
Phase 0;
TopSymbol ($lfff and ReadTable(4*PC+Phase));

until EMPTY_STATE_STACK or (TopSymbol = 0);
if EMPTY_STATE_STACK then NoErrorHandlerFlag true;

end
else
begin
TopSymbol := P1;
Phase Phase + 1;

end;

3.4.2.18 push
Parameter Token
Purpose Push the specified token value onto the token stack.
Action
PUSH_TOKEN_STACK(P 1);
Phase Phase + I;

3.4.2.19 loadehar
Parameter not used
Purpose Read the next character from the lexical input stream (only if the buffer is empty).
Action
TokenRamStart := TokeiilsEnd;
TokenRamEnd TokenBufferEnd;
if (TokenRamS tart = TokenRamEnd) then
begin

Read next char into buffer

- 73 -

LexRam[TokenRamStart] READ_NEXT_CHAR;
TokensufferEnd : Inc I 3(TokenBufferEnd);
if(TokenBufferStart = TokenBufferEnd) then
begin

BufferOverflowFlag true;
end;

end;
TopSymbol LexRam[TokenRamStart];

PC PC + 1;
Phase 0;

3.4.2.20 halt
Parameter not used
Purpose Halt the processor
Action
ParseDoneFlag true;
Phase 0;

3.4.2.21 goto
Parameter State
Purpose Goto the specified instruction address.
Action
PC := P1;
Phase 0;

3.4.2.22 pop
Parameter not used
Purpose pop a single value from the state stack.
Action
if EMPTY_STATE_STACK then StackUnderflowFlag true;
StateS? Dec 13(StateSP);
PC PC + I;
Phase 0;

3.4.2.23 readstack
Parameter not used
Purpose goto the address specified by the top of the state stack.
Action
PC:= StateStack[StateSP];
Phase := 0;

3.5 Combined Macros
The individual micro-instructions for the new instruction set can be combined to form

macro-instructions. These macro-instructions implement the parser and lexer

instructions of the initial instruction set. As mentioned earlier these macros could be

regarded as a form of Very Long Instruction Word (VLIW).

- 74 -

3.5.1 State Table Macro

The state table macro or layout for the combined parse and lex states has the

following structure (using the regular expression notation for grammars).

Table = Initialisation ParseState+ ParsePop LexState+

The Initialisation, ParseState, ParsePop and LexState macro entities are defined in the

next sections. The above indicates that there must be an initialisation macro, at least

one parse state, that there must be a parse pop section and at least one lex state. The

processor does not verifS' that a language table has the correct structure. The correct

table structure should always be generated by the associated compiler-compiler

system.

3.5.2 Initialisation

The processor starts with all registers and flags initialised to zero or false. For the

parser machine to be initialised it needs a token value to be input. This is provided by

the macro placed at address 0.

Phase 0 = Iambda0

Phase I = shift <parse stateO>

Phase 2 = Ipush <lexstate0 default>

Phase 3 = goto <lexstateO>

3.5.3 ParseState

The compiler-compiler used with the processor generates the processor code so that

the parse states start at address 1. Each parse state will have the following structure

(using the regular expression notation for grammars).

ParseState = (Shift, Reduce, ShiftReduce)* Default

The Shift, Reduce, ShiftReduce and Default entities mentioned correspond to the

ParseShift, ParseReduce, ParseShifiReduce and ParseDefault macros.

3.5.4 ParsePop

This is used to store the popping from the parse state stack which is required by the

Parse Reduce action. It has the following structure.

- 75 -

ParsePop = Pop+ ReadStack

Pop is a macro such that

Phase 0 = lambda

Phase I = lambda

Phase 2 = lambda

Phase 3 = pop

ReadStack is a macro such that

Phase 0 = lambda

Phase 1 = Lambda

Phase 2 = lambda

Phase 3 = readstack

The number of pop macros is given by the number of tokens in the rule with the

largest number of tokens in the right-hand side of the grammar rule.

3.5.5 LexState

Each lexical state will have the following structure (using the regular expression

notation for grammars).

LexState = TestArc (LexLoadChar CharArc+)? LexAccept

3.5.6 Parse Shift

The ParseShift macro splits down to

Phase 0 = IfEqual <Token>

Phase I = Shift <ParseState>

Phase 2 = Ipush <lexstate 0 default token>

Phase 3 = goto <Iexstate 0>

3.5.7 Parse Reduce

The ParseReduce macro has three variants depending on the rule to be reduced.

- 76 -

If the rule is the goal rule then

Phase 0 = IfEqual <Token>

Phase 1 = lambda

Phase 2 = halt

Phase 3 = readstack

else if the rule has no tokens on its right-hand side then

Phase 0 = IfEqual <Token>

Phase I = reduce <Rule>

Phase 2 = assign <rule left-hand token>

Phase 3 = readstack

otherwise

Phase 0 = ifequal <Token>

Phase 1 = reduce <rule>

Phase 2 = assign <rule left-hand symbol>

Phase 3 = goto <address of pop = right-hand rule count>

3.5.8 Parse Shift-Reduce

The ParseShifiReduce macro has three variants depending on the rule to be reduced.

If the rule is the goal rule then

Phase 0 = ifequal <Token>

Phase 1 = lambda

Phase 2 = halt

Phase 3 = readstack

else if the rule has no tokens on its right-hand side then

Phase 0 = ifequal <Token>

Phase I = shiftreduce <Rule>

Phase 2 = assign <rule left-hand token>

- 77 -

Phase 3 = readstack

otherwise

Phase 0 = ifequal <Token>

Phase 1 = shiftreduce <rule>

Phase 2 = assign <rule left-hand symbol>

Phase 3 = goto <address of pop = right-hand rule count>

3.5.9 Parse Default Reduce
The ParseDefaultReduce macro has four variants depending on the default rule being

recognised and the number of tokens in the rule right-hand side.

If the rule is the error rule then

Phase 0 = lambda

Phase I = perror <Error Rule>

Phase 2 = assign <Error Token>

Phase 3 = readstack

else if the rule is the goal rule then

Phase 0 = lambda

Phase I = lambda

Phase 2 = halt

Phase 3 = readstack

else if the rule has no tokens on its right-hand side then

Phase 0 = lambda

Phase I = reduce <Rule>

Phase 2 = assign <rule left-hand token>

Phase 3 = readstack

otherwise

Phase 0 = lambda

Phase 1 = reduce <rule>

- 78 -

Phase 2 = assign <rule left-hand symbol>

Phase 3 = goto <address of pop = right-hand rule count>

3.5.10 Lex Test

Each instance of the LexTest macro takes up two address locations.

AddressO:

Phase 0 = lambda

Phase 1 = lextest <test routine>

Phase 2 = push <next lex state default token>

Phase 3 = goto <next lex state>

Address 1:

Phase 0 = nomatch

Phase I = lambda

Phase 2 = Ipush <lex state 0 default token>

Phase 3 = goto <lex state 0>

3.5.11 Lex Load Char

The LexLoadChar macro splits down to

Phase 0 = lambda

Phase 1 = lambda

Phase 2 = loadchar

Phase 3 = goto <next address = current address + I>

3.5.12 Lex Shift

The LexShift macro splits down to

Phase 0 = Iexchar <lo character>

Phase I = Iexshift <hi character>

Phase 2 = push <next lex state default token>

Phase 3 = goto <next lex state>

- 79 -

3.5.13 Lex Accept
The LexAccept macro has three variants depending on the default token being

recognised.

If the recognised token is the error token (indicating a lexical syntax error) then

Phase 0 = lexerror <ErrorToken>

Phase I = lenor <Error Rule>

Phase 2 = Ipush <lex state 0 default token>

Phase 3 = goto <lex state 0>

else if the token is the end of input token then

Phase 0 = lexeoi <EOI Token>

Phase I = lerror <error rule>

Phase 2 = Ipush <lex state 0 default token>

Phase 3 = goto <lex state 0>

otherwise

Phase 0 = lexaccept <token>

Phase I = lerror <error rule>

Phase 2 = Ipush <lex state 0 default token>

Phase 3 = goto <lex state 0>

3.5.14 State Size Reduction
It can be observed that some language grammars have duplicated instructions in some

parse states and also some lex states. Therefore, one further optimisation is to merge

the overlap into a new state, removing the overlap from the two original states. The

two original states would then each terminate with a new macro, the Continue macro.

This would be implemented as,

Phase 0 = lambda

Phase 1 = lambda

Phase 2 = lambda

Phase 3 = goto <new merged state>

- 80 -

For a pair of parse states the merged state must contain the ParseDefault macro.

For a pair of lex states the merged state must contain the LexAccept macro.

This optimisation has been included in the compiler-compiler software suite which

generates the instruction tables for a language.

3.6 Sample Language Table Sizes
The following table gives examples of the sizes of parse tables generated by the

compiler-compiler using the original and new instruction sets. For a list of the original

parse instructions refer to "Table 9 - Initial Parse Instruction Set", and for a list of the

original lexer instructions refer to "Table 11 - Initial Lexical Instruction Set". For a

list of the final instruction set refer to "Table 13 - Micro-Instructions". The following

table also compares the size of parse tables for a number of computer language

grammars. Also included is a comparison of the count of instructions executed to read

the language grammars.

It can be seen that the new micro-instruction count is less than double the old

instruction count. This should not imply that the new instruction set will have longer

execution times, since each new micro-instruction is simpler (and presumably faster)

than the old instruction.

Note also that the count of phaseO micro-instructions executed is consistently less

than the number of instructions executed from the old instruction set. This may be

caused by a different ordering of the triggers for parse and lex shift actions between

the tables generated for the two instruction sets.

Language Old
Table Max
Address

Old
Instruction
Count

New
Table Max
Address

New
Instruction
Count

New
Phase0
Count

ACE 818 37509 701 60597 29723
BASIC 1260 30658 1105 48912 23723
M2 4177 107536 3326 177459 84728
M2V 3915 97245 3134 158835 76489
PCPASCAL 1 3924 100399 3470 169863 80133

Table 14 - Comparison of Table Sizes

- 81 -

The following table shows some example counts of instruction executed for source

text written in a range of languages, where

ACE is a simple BASIC-like language.

• BASIC is a grammar defining a variant of the original BASIC language.

• M2 and M2V are both language grammars for MODULA-2. M2V is a
grammar which was defined for use on the DEC VAX/VMS operating system.

• PCPASCAL is a grammar derived from the PASCAL definition used for the
Borland Turbo Pascal compiler.

Language Input Instruction Count
(Old Instruction Set)

Instruction Count
(New Instruction Set)

PhaseO Count
(New Instruction Set)

ACE bad 248 5910 2771

ACE badl 364 5508 2566

ACE jdm 3167 5964 2789

ACE test 6644 12348 5820

ACE testl 7366 13771 5456

BASIC bad 1019 1885 935

BASIC test 788 1476 704

M2 deb 6812 13689 6202

M2 example 7450 15262 6708

M2 examplel 9656 23720 9584

M2 example2 3537 6690 3141

M2V deb 6718 13521 6114

M2V example 7357 15096 6621

M2V example1 9630 23688 9564

M2V example2 3484 6604 3094

PCPASCAL test 12364 25007 11352

Table 15 - Comparison of Parse Input

The examples given within the table show that the new instruction set roughly

doubles the number of instructions executed compared with the original instruction

set. However due to the simpler actions for the new micro-instructions, the execution

time of each new instruction should be less than that of the old instruction.

- 82 -

4. Hardware Design
The instruction set architecture, which was designed to implement the combined

LALR(l) and lexical analyser algorithms, did not impose any major constraints on the

physical implementation of the processor. The software implementation of the

processor, used within the compiler-compiler system suggested the main functional

blocks to be implemented as hardware. These functional blocks are shown in the

following diagram.

Lexical Queue

Token String

At
Semantic Rule

State Stack

Char Input

Error Flags

Control Logic

SymbolQueue I Phase

on 	
I Inst Reg.

Pa PC IH
Address

Language ROM (Instructions) 	1
Figure 21 - Processor Functional Blocks

The PASCAL source code for the software emulation of the processor was

interpreted as being a register transfer model for the hardware implementation.

The following sections discuss the implementation of the various logic blocks within

the processor.

- 83 -

4.1 State, Token Stacks and Token Queues
The original idea was to implement the two token and state stacks and also the lexical

queue as individual devices which would be controlled from the main processor

device. This would have required the design of one stack device and a lexical

character buffer device. The stack device would have been used twice, once for the

state stack and once for the token stack.

4.1.1 State and Token Stack

The stack device was designed to have the architecture as shown in the diagram

below.

Stack Pointer

Command (SP=O) 	(SPmax)

IncSP
DecSP
WriteData
ReadData
NoOp

RAM

address

Data In 	Data Out1

Figure 22 - Stack Device

As the software version of the processor used a 13-bit parameter this required the

stack RAM data width to also be 13-bits. The silicon design tools were only able to

provide memory holding up-to 8192 bits. Several attempts were made to have

multiple memory blocks on a single device (so that a stack depth > 512) but due to

restrictions on internal wire-lengths these attempts were unsuccessful.

The stack chip was however fabricated and contained a RAM block of 13-bits width

and address range of 512 locations. This device, using a 2 micron CMOS technology,

was 4772 by 4656 microns in size and used a 40 pin dual in line package.

4.1.2 Token Char Queue

The token character (or lexical) buffer queue was designed to have the hardware

implementation as shown in the following diagram. This implementation was also
- 84 -

derived from the processor software emulation, which acted as a register transfer

model. The lexical buffer queue was not implemented as a standalone device. After

the difficulties with the stack chip, the concept of incorporating internal RAM for the

stacks and queues was abandoned.

Data out 	Data in

Figure 23 - Lexical Buffer

Key:-
+ implies that the register can be incremented by 1. (i.e. TRS, TBE, TBS, TIE)
- implies the register can be decremented by 1. (i.e. TIE)

Source Code

TRS TokenRamStart
TRE TokenRamEnd
lBS TokenBufferStart
TBE TokenBufferEnd
TIS TokenlsStart
TIE TokenlsEnd
TWS TokenWasStart
TWP TnknWncPnd

Figure 24 - Lexical Buffer Registers

The lexical buffer block also incorporated control logic to ensure the defined register

to register transfers were possible, also to enable the increment and decrement by 1 of

the specified registers. Finally the control logic ensured data could be written to and

read from the attached RAM.

The lexical buffer queue was implemented as a cyclic buffer. This is shown in the

following diagram.

- 85 -

TIE

TWE

S

dUress =0

ddress

TBS 	
THE

Figure 25 - Lexical Queue as Cyclic Buffer

If any pair of associated registers (i.e. TxS, TxE) have the same value (that is, point to

the same memory address) then the corresponding token string is empty. The TRS,

TRE registers are only used when either reading from or writing to, the buffer RAM.

The TRS register is also used as the current address pointer for the lexical memory.

When the processor is "parsing", the values held in the TWS, TWE, TIS, TIE, TBS

and TBE registers are not modified and are in the order shown in the diagram.

When the processor is "lexical analysing", the values held in the TIS, TIE, TBS and

TBE registers are being modified. Additionally, the value in the TIS and TBS

registers are identical and TIE is guaranteed to have an inclusive value in the range

between TBS + 1 and TBE. The source input supplies characters which are read into

the lexical queue and appended into the memory location indicated by TBE

(TokenBufferEnd).

4.1.3 Token Symbol Queue
The Token symbol queue is primarily used to store the next parse token. This has

either been read from the source (by the lexical instructions) or been inserted from the

left-hand side symbol of a grammar rule that has been recognised.

86 -

I I _
TopSymbol

(TopSymbolO)

ILoolead I 	ValidQiieueF1ag

Figure 26- Symbol Queue

The diagram shows the register to register data-paths. The comparison signal

(TopSymbol = 0) is defined from the TopSymbol register value. The diagram omits

the comparison signals (TopSymbol=P1), (TopSymbol>=Pl) and (TopSymbol<P1)

where P1 represents the value of the instruction parameter register. The comparison

signals are used by some of the PhaseO micro-instructions.

4.1.4 Using Internal or External Memory

The difficulties in having multiple memory blocks on a device, caused by the

excessive wire-lengths involved forced a re-evaluation of the design of the processor

hardware architecture. It was decided to move all memory required by the stacks and

buffer queues off the processor to become external to the processor design.

The use of external memory would enable the size of the stacks and buffer queues to

be increased. It was noted that the size of the memory available for use by stack and

queue logic units imposed some constraints on the run-time use of the processor. The

size of the token stack memory constrained the size of tokens (especially comment

tokens). Also the buffer queue had to contain three token strings, which would also

restrict the size of tokens.

The need for external RAM memory imposed a requirement for memory addressing

additional to the instruction memory (assumed to be in a ROM). The use of three

separate address spaces for the two stacks and one buffer queue was immediately

discarded, since this would have required three address signal busses. The concept of

one address space (and hence one address bus) which combined all address spaces

(token stack, state stack, lexical queue and instruction memory) was utilised.

- 87 -

The software implementation of the processor (and hence the hardware version) also

has to read from the source input stream the values of the lexical characters. The

processor also is required to output (on demand) a token character string when a

semantic action is in progress. That is, an 110 address space was also required.

The various address spaces were therefore combined into one address space which

was partitioned into eight segments. These segments are indicated in a following

table.

Segment Page Use/Purpose of Segment
0 0 Phase 0 Instruction (ROM)
1 1 Phase 1 Instruction (ROM)
2 2 Phase 2 Instruction (ROM)
3 3 Phase 3 Instruction (ROM)
4 0 State Stack RAM
5 1 Token Stack RAM
6 2 Lexical Buffer RAM
7 3 Unused (110 space)

Table 16- Memory Segment Definition

Segments 0 to 3 are used by the instruction memory (usually ROM) and correspond to

the instructions for phase 0 to 3 respectively. The other four segments 4 to 7 are used

by the various RAM address spaces, including the Input/Output (110) space.

The segmented memory address space, which is able to address ROM, RAM and 110,

forced some constraints on the legal combinations of the various memory enable and

write signals. To enforce the legal combinations, the use of an internal 4-bit

"lOMode" control bus (giving 16 legal combinations) was adopted. This is shown in

the table below. The low three wires of the bus are input to the bit-slice device so the

correct address register can be used.

The instruction memory segments could be implemented as either ROM or RAM

memory. If the instruction memory is RAM then a mechanism is needed to load the

parse and lex instructions from an external source using a fixed message protocol.

InstFlag is an internal signal used to indicate that the instruction memory segments

are being written to (if RAM) and therefore is indirectly set and cleared by the

protocol. This protocol will be described later.

lOMode Meaning Enable Write Wanted Address Page
Inst Data Inst Data DMA

0 NoOp 0 0 0 0 0 0 PC 0
DataWanted 0 0 0 0 I 0 PC 0

2 DataDMA 0 I 0 0 0 I TRS 2
3 Inst Wanted 0 0 0 I 0 0 PC 0
4 ReadinstO 1 0 lnstFlag InstFlag 0 0 PC 0
5 Readlnstl I 0 lnstFlag InstFlag 0 0 PC
6 Read1nst2 I 0 lnstFlag InstFlag 0 0 PC 2
7 Readlnst3 I 0 InstFlag InstFlag 0 0 PC 2
8 ReadDatao 0 1 0 0 0 0 StateSP 0
9 ReadDatal 0 1 0 0 0 0 TokenSP 1
10 ReadData2 0 1 0 0 0 0 TRS 2
II ReadData3 0 1 0 0 0 0 TRS 3
12 WriteDataO 0 1 1 0 0 0 StateSP 0
13 WriteDatal 0 1 1 0 0 0 TokenS? I
14 WriteData2 0 1 1 0 0 0 TRS 2
15 WriteData3 0 1 I 0 0 1 0 TRS 2

Table / 7- lOMode Definition

4.2 New Processor Architecture
The use of external memory and also having the bit width of the instruction parameter

the same size as the state address (state stack data), the token size, the character size

and the rule size enabled the processor to be split into a control logic block and a data

logic block. The control and data blocks have the connections as shown in the

following diagram.

Wliz

I Enor +
 Status
Memory

I
Control 	 Command

Signals
/

:ontrol Logic 	 I

IEnorFlagsi ,

Iinstmction I 	I 	Status
Signals

lnstructio 	I
I 110 Status

Address 	
Data

Data Logic 	 I
ITokenSPI I

FPFI

State SP 	I 1 S'mbol Queue

I parameter(Pl) I

ara meter

Figure 27- New Processor Architecture

All registers and logic circuitry which depend on the width of the parameter, address,

token and character buses are localised within the data block. Thus the data block

could be implemented with different register widths (i.e. as a bit-slice). Also, the

fixed size busses such as the instruction bus (3-bits) are embedded within the Control

logic block.

4.2.1 Cycle-based Simulation

The modifications to the processor architecture (that is, the splitting of the control and

data-path logic) required further changes to be made to the compiler-compiler

software to emulate the new processor. Primarily the software was altered to provide

cycle based simulation, unlike the previous version of software which only simulated

the execution of instructions. Emulation results of the instruction execution variant of

the software are indicated in a table of results in the previous chapter. Results for the

cycle based emulation are listed in a table in a following section in this chapter.

The software emulation of the processor (written in PASCAL) then formed the design

specification for the two types of logic block. The PASCAL language has similar

constructs to those present in the logic synthesis language LOLA which is part of the

SOLO 1400 software tool set used to design and layout the logic. For more details

about the design suite refer to the Solo 1400 User Guide [European Silicon Structures

93]. The similarity of constructs (such as the case statement) enabled the PASCAL

- 90 -

source to be quickly converted into logic via the logic synthesis tool, once the

PASCAL source was manually transformed into LOLA.

The software emulation of the processor was also able to generate test-vectors (and

the expected signal outputs) to validate the logic design. It was found that the signal

outputs from the SOLO 1400 logic simulator, MADS and the expected results from

the software emulation were in agreement. Refer to "Appendix A - Software

Simulation" for part of an example simulation run.

4.2.2 Processor Physical Implementation

The data-path and control blocks were both designed and fabricated using 1.5 micron

CMOS gate-array technology. 	The data-path block (logic 	and 	registers) was

implemented as an 8-bit bit-slice device. Both devices are described in the next

sections.

4.3 Data-Path Bit Slice
The bit slice device used a repeated logic cell with ripple-through logic. The top level

block incorporated logic to decode the command bus signals and the repeated slice

logic.

Address 	Data out 	Ripple out

Page Bus +
Datat4emEnable

\ 	
p.

Command

Bit-slice 	ISlice 8

Slice

Control 	Ripple
decode 	I

Slice 1

Clock 	Data in 	
Ripple in

Figure 28 - Bit-slice I/O

91 -

The operation of the bit-slice is controlled by the combined EngineCommand bus, the

Page bus and the DataMemEnable signal. The combination of Page bus and

DataMemEnable signal is used to select which register should be used to form the

memory address register, one of PC, TokenSP, StateSP or TokenRAMStart. The

EngineCommand bus controls the register to register transfers and also the increment

or decrement (by one) of some of the registers.

The devices can be combined in series as shown in the next diagram.

address Data out 	laddress Data out

ontrol 	 Slice 	 Slice

Ripple- 	 Ripple-in 	 Ripple-in

coand 	 command Data in 	1commandData in

Figure 29 - Control and Bit-slice blocks

Ripple-through logic was extensively used for simplicity of design. As the main

objective of implementing the processor in silicon was to prove the concept, the

penalty of long delay paths for signals (forcing a slower clock) was accepted. The list

of ripple-through signals is listed in the following table.

Ripple Signal Signal Purpose
Carry Carry for Increment/Decrement by I
TokenRamEgual (TRS = TRE)
TokenBufferEgual (TBS = TBE)
TokenlsEgual (TIS = TIE)
TokenSPlsZero (TokenSP = 0)
StateSPlsZero (StateSP = 0)
PIIsZero (P1 =0)
SymbolGreaterOrEgual (TopSymbol >= P1)
SymbolEgual (TopSymbol = P1)

Table IS - Bit-Slice Ripple Signals

The logic for the individual ripple signals is of 4 basic types. These are :-

• to test if the register is zero

• to compare two registers for equality

• to propagate a carry/borrow signal for the incrementldecrement by 1 of a
register

• to test if a register is greater than or equal to another register.
- 92 -

Using the MODEL hardware description language this becomes,

or[and[a,not[b]],and[eqv[a,b],r_in]] -> r_out

Thus one slice will require an or gate, two and gates, an equivalence gate and an

inverter.

4.3.1.4 Carry/Borrow for Increment/Decrement by I

If a[i] represents the i'th bit for register a, and c[i] is the i'th carry/borrow input signal

and inc represents a signal indicating the number is to be incremented (if at logic 1)

and indicates a decrement (if at logic 0) then we have the following table

inc
(+1 if 1,4 if 0)

cEll
carty/borrow in

a[i]
register

a'[i]
New value of a[i]

c[i+l]
cany/borrow out

o 0 0 0 0
o 0 I I 0
o I 0 1
o i o 0

1 0 0 0 0

0

1 1 0 I 0

1 0 1

Table 19- Carrylsorrowfor +]/-I

a'[i] is (a[i] 0 c[i]), i.e. the exclusive-or of a[i] with c[i]

and one expression for c[i+l] can be optimised to be,

c[i+1] is (inc = a[I]) and (c[I] = 1)

The carry/borrow value of the most significant bit of an increment/decrement is

ignored by the control logic since underfiow or overflow is permitted.

Using the MODEL hardware description language this becomes,

eqv[a,c_in] -> a_new

and[eqv[inc,a],c_in] -> c_out

4.3.2 Register To Register Transfer

The register to register transfer is carried out using a number of internal busses. An

increase in silicon area (caused by wiring and extra gates needed to form individual

increment and decrement logic for the TRS, TBS, TBE and TIE registers) was

- 94 -

avoided by using a single increment/decrement logic block with the internal busses.

This is shown in the next diagram.

Figure 30 - Bit-slice Register Transfer

The individual registers each have an associated command signal indicating when to

load data values (from either the sbus or ebus) or to reload the current register value.

The load command is decoded from the command bus input to the bit-slice at the top

level of the device.

clock

a!

load

ip- flop

qbar

Figure 31 - Register Transfer

The q and qbar register outputs are both used so as to minimise both logic used and

path delay times.

- 95 -

4.3.3 Bit-Slice Commands
The operation of each bit-slice device is decided by the EngineCommand bus. This is

5-bits wide giving a total of 32 possible commands. The individual commands are

listed in the following table.

Command Bus Command Name Command Actions

0 NoOp None
I TokenSetBusMayBe TRS 	TIE, TRE:= IDE

2 TokenSetBusBuffer IRS 	IBS, TRE:= IBE

3 TokenSetBusis TRS 	TIS, TRE 	TIE

4 TokenSetllusWas TRS 	TWS, IRE 	TWE

5 TokenSctlsEmpty TIS 	185, TIE 	185

6 TokenLoadWasls IWS 	115, TWE 	TIE

7 Zero Clear all registers

8 TokenSPZero TokenSP 	0
9 SymbolLoadPC PC 	P1
10 TokenAccept IRS 	TIE
II SymbolPiLoad P1 	MEMORY (Dataln)
12 SymbolLoadLAS LookAhead 	0
13 SymbolPop TopSymbol 	LookAhead
14 SymbolPush LookAhead 	TopSymbol

15 SymbolLoadlS TopSymbol := P1
16 1 StateSPlnc StateSP 	StateSP + 1

17 TokenSPlnc TokenSP 	TokenSP + I

18 TokenlncRamStart TRS 	TRS + 1
19 Symbollnc PC 	PC + I
20 TokenlncBufferStart TBS 	TBS + I
21 TokenlncBufferEnd TBE 	ThE + 1
22 TokenlnclsStart 115 	TIS + I
23 TokenlnclsEnd TIE 	TIE + I
24 1 StateSPDec StateSP 	StateSP -
25 TokenSPDec TokenSP := TokenSP - 1

26 TokenDecRamStart IRS 	TRS - I
27 SymbolDec PC 	PC -
28 TokenDecBufferStart lBS 	lBS -
29 TokenDecBufferEnd TBE 	IDE -

30 TokenDeclsStart TIS := TIS -
31 TokenDecisEnd TIE := TIE - 1

Table 20 - Bit-Slice Commands

All the commands are implemented and available for use, however the control device

uses a subset of the commands to implement the instruction set for the processor.

4.3.4 Fabrication Details

The bit-slice device was fabricated using a 1.5 micron CMOS gate array technology.

The actual device size was 3777 by 3244 microns. It used 6664 stages where each

stage consisted of a pair of NFET and PFET devices and so the bit-slice logic was
- 96 -

implemented using 13328 transistors. The device was packaged in an 84 pin grid

array where 16 pins were reserved for power and ground connections (8 power and 8

ground) and 15 pins were unconnected.

The diagram on the next page shows the physical design layout for the bit-slice

device.

-97-

.

ji •.u.i'.•rn- --.-. •
aiSl II

11 • 	 .,

iIIo 	. 	 d

j 	'Iii! 	 •1 	- 	-

j
1It_: 	III '

	

II 	 I I 	•

IIIIIIll.. 	-'.: r Ii
.

• 	i_

4.3.5 Device Pinout

The diagram shows the pin layout of the 84 pin grid array used by the bit-slice device.

The package has 85 pins where pin C9 is used for alignment or package orientation

when inserting onto a circuit board.

12... 	11
••••••••••• A
•SSS•SSS••S B
.. ... 	S.. 	C
.. .. 	ID
... ••• 	B
S.. ••• 	F
S.. ••• G
.. •• H
.. S.. 	•S
••••••••••• K
••••••••••• L
Back Side Pattern

Figure 33 - PGA Pin Layout

The pinout of the device is given by the following table. NC indicates that the pin is

Not Connected to the encapsulated chip. Also the Pad number indicates the internal

pin for connection to the device bond pads.

Pad Pin Signal Pad Pin Signal Pad Pin Signal Pad Pin Signal
I B2 NC 22 K2 NC 43 Kl0 NC 64 BlO NC
2 C2 address8 23 1(3 NC 44 J10 clock 65 B9 NC
3 BI address7 24 L2 NC 45 K!! mcodeo 66 A10 NC
4 Cl addressó 25 L3 gnd 46 JI 1 mcodel 67 A9 seout
5 02 address5 26 K4 gnd 47 H10 mcode2 68 138 sgeout
6 Dl address4 27 L4 gnd 48 HIt mcode3 69 A8 plizout
7 E3 address3 28 J5 vdd 49 FlO mcode4 70 86 sspizout
8 E2 address2 29 KS vdd 50 1 010 I iomcodeO 71 B7 tspizout
9 El addressl 30 L5 vdd SI 011 iomcodel 72 A7 tieout
10 F2 gnd 31 K6 carryin 52 09 iomcode2 73 C7 tbeout
11 F3 vdd 32 J6 trein 53 F9 datainl 74 E6 ireout
12 03 dataout8 33 J7 tbein 54 Fl I datain2 75 A6 carryout
13 01 dataout7 34 L7 tiein 55 ElI datain3 76 AS gnd
14 02 dataout6 35 K7 tspizin 56 ElO datain4 77 85 gnd
15 Fl dataoutS 36 L6 sspizin 57 £9 datains 78 CS gnd
16 HI dataout4 37 L8 plizin 58 DII datainó 79 A4 vdd
17 H2 dataout3 38 1 K8 sgein 59 010 datain7 80 B4 vdd
18 JI dataout2 39 L9 seth 60 CII datain8 81 A3 vdd
19 KI dataoutl 40 Ll0 NC 61 BIl vdd 82 A2 NC
20 12 NC 41 K9 NC 62 ClO gnd 83 83 NC
21 LI NC 42 LII NC 63 All NC 84 Al NC

Table 21 - Bit Slice Pinout

- 99 -

4.4 Control Device
The logic for the control device is implemented as a finite state machine, whose state

changes depend on internal and external signals and also on the current state. Each

state also outputs a number of signal values to operate external logic such as the bit-

slice devices (via the EngineCommand signals), memory (via the enable, write,

address and data bus signals) and the semantic logic (via the irq and dataout bus

signals).

4.4.1 Internal Logic

The top level logic design of the control device is outlined in the next diagram. This

diagram shows that the major logic unit is the 'next state and commands' block

where each connection from this block represents a signal bus sending commands to

the associated logic.

lError Flags I

t State +

inst reg

reset clock Phase reg, 1 Ripple in 	eoifound flag,
sync mode flag,

syscomrnand 	valid queue flag

Figure 34 . Control Logic Internals

The possible commands that can be sent to the lOMode decoder are defined in "Table

17 - JOMode Defmition". Note that the InstWrite flag also is an input to the decoder.

The implementation of the InstWrite, Sync Mode, Valid Queue and IRQ flags is

detailed in the following section 4.4.1.1 titled "Flag Logic".

rq
lag

1

- 100-

4.4.1.1 Flag Logic

All flags use a dual wire command bus which allows 4 possible commands to be

defined. Using Flag to denote the current flag value and NewFlag to denote the next

value for Flag, the commands and actions are

Command Value Command I CommandO Action
FlagNoOp 0 0 0 NewFlag 	Flag
FlagUnused 1 0 1 NewFlag 	Flag
FlagClear 2 1 0 NewFlag : 	 false
FlagSet 3 1 1 NewFlag 	true

Table 22 - Flag Commands

This set of commands could be implemented in two ways. One method is to "gate the

clock" such that the FlagSet and FlagClear commands are gated with the system clock

to give the clock input to the latch. The other method is to always ensure that the latch

data input has a legal value and that the system clock directly feeds the latch clock.

The technique of "Gating the clock" causes extra loading on the clock wiring which

then slows down the clock. This method was therefore not used.

The second method imposes extra loading on the conmiand signals. This extra

loading can be ignored as it is comparatively local, and not global like the system

clock. It is implemented as shown in the next diagram.

clock

flag

commandl

CommandO

Figure 35 - Control Flag Logic

4.4.1.2 Error Flags

The error flags block contains the 9 error flags and also includes the EOIFound flag.

All of these flags are cleared at system reset and only set individually when the error

condition has been detected. Thus the command bus need only have 4 wires allowing

16 possible commands which are listed in the next table.

-101 -

Name Value Action
ErrorNoOp 0 None
ErrorSourceExhausted I SourceExhausted 	true
ErrorParseSyntax 2 ParseSyntax 	true
ErrorParseSemantic 3 ParseSemantic 	true
ErrorLexSyntax 4 LexSyntax 	true
ErrorStackUnderfiow 5 StackUnderfiow := true
ErrorStackOvertlow 6 StackOverfiow 	true
Errorillegallnstruction 7 fliegallnstruction 	true
ErrorNoEnorilandler 8 NoErrorflandler 	true
ErrorBufferOverfiow 9 BufferOverflow 	true
ErrorUnusedl0 10
ErrorUnusedll 11
ErrorUnusedl2 12
ErrorUnusedl3 13
ErrorundEOl Fo 14 EOIFound 	true
ErrorReset 15 All flags set to false

Table 23 - Commands for Error Logic

Each flag was implemented as described in section 4.4.1.1 titled "Flag Logic", so

each value of the ErrorCommand bus is able to set values for the individual control

busses for the ten flags.

4.4.1.3 Phase Register

The phase register is two bits wide and can be left unchanged or set to a value from 0

to 3. This requires 5 possible commands which mandates the use of 3 command

wires. The commands to modify this register are given below. Each command then

generated a flag command to leave unchanged, clear or set the two latches forming

the phase register.

Command Value Action HighBit Flag Action LowBit Flag Action
SemNoOp 0 FlagNoOp FlagNoOp
SemUnusedl I FlagNoOp FlagNoOp
SemUnused2 2 FlagNoOp FlagNoOp
SemUnused3 3 FlagNoOp FlagNoOp
SemSetO 4 Phase 	0 FlagClear FlagClear
SemSetl 5 Phase 	I FlagClear FlagSet
SemSet2 6 Phase : 	 2 FlagSet FlagClear
SemSet3 7 Phase := 3 FlagSet I FlagSet

Table 24 - Phase Register Commands

4.4.2 Processor Internal States
The control device executes each micro-instruction of the processor as a sequence of

steps, where each step will perform some actions in the bit-slice, associated memory,

source input logic or semantic logic. Each step is a single state which in combination

form the state machine that is the processor.

- 102 -

The processor control logic uses 48 states. The state machine could be implemented

using the concept of "one hot" encoding with 48 latches (one per state). In "one hot"

encoding only one latch should ever be set (representing the current state) and all

others latches are clear. This requires the next state logic to ensure that there is no

possibility of more than one state latch being set simultaneously. Also extensive re-

design is needed using this approach if extra states need to be added. The actual

implementation used 6 latches to form a state register which allows 64 possible states.

As only 48 states are used this left sufficient unused states for later expansion of the

state machine.

A simplified version of the state machine is shown in the next diagram

Figure 36- Processor State Machine

After the processor has reset, the processor loops through a fetch and execute cycle

using many states until it halts either because the parse and lexical analysis has

completed or an error has been found. The processor then goes to the halt state. In this

state the error flags are available for use by external hardware. The halt state is only

exited by applying the external reset.

Each micro-instruction starts with the fetch state. This latches in the instruction and

parameter to be executed next. (The memory control signals InstMemEnable will be

cleared at the end of this state). Depending on which phase 0 -. 3 is being executed,

the next state will be one of ExecuteQ .. Exeeute3. The ExecuteX states decode the

- 103 -

micro-instruction to be executed and jump to the sequence of states needed by each

micro-instruction to implement the required actions. Some instructions have common

actions and therefore have states in common.

4.4.3 Interfaces and Protocols

The control device has a number of input and output signals which are used to

interface to external logic. The interfaces are implemented using a number of

protocols for the following purposes,

• To read or write to memory

Logic to implement language semantics

Logic to input source text

• Logic to read Token character strings

The protocols and signals used are described in the next sections.

Some of the protocols use the SysCommand input bus to send status information back

to the processor from the external logic. Each SysCommand bus value is used and is

indicated in the next table.

SysCommand SysCommand2 SysCommand 1 SysCommandO

SysNoOp 0 0 0
StateWanted 0 0 1
TokenWanted 0 1 0
IRQ_Nullloken 0 1 1
IRQ_OK 1 0 0
IRQ_Err 1 0
DataAvailable 1 1 0
InstAvailable I I

Table 25 - Sys Command Bus Definitions

4.4.3.1 System Reset

The processor could power up into any of the possible internal states. The logic of the

state machine has been designed so that if the external reset (sysreset) is true then the

state machine will goto the reset state. While in the reset state the processor internal

registers will be initialised, usually to zero. The reset state is only exited when the

external reset goes low.

- 104 -

4.4.3.2 Accessing Memory
The processor memory space is split into instruction memory or data memory for the

stacks and lexical buffer. Refer to "Table 17 - lOMode Definition" for more

information.

Memory access is controlled by the InstMemEnable, DataMemEnable and

MemoryWrite output signals. The instruction memory is accessed when

InstMemEnable is high and data memory when DataMemEnable is high. The

combination of InstMemEnable, DataMemEnable, MemoryPageO, MemoryPagel

help to select which of the eight memory segments is being accessed.

Memory access takes two clock cycles. The first clock cycle sets the memory enable

signals, memory page signals and memory write signal to a legal combination to read

or write to a memory segment. The second clock cycle will clear the enable signal.

4.4.3.3 Reading the Source Text

The processor needs to read the source text to be able to parse it. A request for the

next character in the source input is indicated by SysDataWanted going high. This

output stays high until the external logic has a character available which is indicated

by SysCommand having the value SysDataAvailable. At this point the character is

loaded into the bit-slice and SysDataWanted will go low from the next clock cycle. It

must be noted that each character of source text is read individually and only

requested when the processor needs it.

4.4.3.4 Interrupts (Rule Recognition and Test Routines)

The processor needs to indicate an interrupt to the external logic which handles

language semantics and lexical tests that a grammar rule or test must be handled. This

is signalled by the SysIRQ output going high and staying high until the external logic

acknowledges interrupt completion. For a parse semantic action, the grammar rule

being recognised is output on the dataout bus. For a lexical text routine, the lexical

test being checked is also output on the dataout bus. Interrupt completion is indicated

by the SysCommand input bus having one of the values

• SysIRQ_OK

• SysIRQ_Err

• SysIRQ_NullToken.

- 105 -

Whilst the interrupt is in progress, which could take many clock-cycles, the

SysCommand bus must have the value of SysIRQ_NoOp. This value is used to

indicate that the external logic has not completed.

The legal values to indicate completion are :-

. SysIRQ_OK indicates that the interrupt has been successful.

• SysIRQ_Err indicates that the interrupt detected a parse semantic error. This
should only be used when the interrupt triggered is one to recognise a grammar
rule. That is the interrupt is not a lexical test routine.

• SysIRQ_NullToken should only be used by a lexical test routine to indicate
that the potential next token being recognised can be discarded, probably since it
is a whitespace (or comment) token.

4.4.3.5 Outputting Current Parse State

During the interrupt raised by the processor (i.e. SysIRQ is high), the external logic

may need to request the value of the current parse state for use in error reporting. This

is indicated by SysCommand having the value SysStateWanted for a single clock-

cycle. The value of the current parse state is output on the bit-slice data output bus for

the next clock cycle for use by the external logic.

4.4.3.6 Outputting Tokens

During the interrupt raised by the processor, the external logic may need to request the

complete value of one of the token strings held in the lexical buffer

This is triggered by SysCommand having the value SysTokenWanted for one clock-

cycle whilst SysIRQ is true. From the next clock-cycle the individual characters of the

token string are output from the data memory, one character per clock-cycle until the

complete token string has been send. Valid characters are indicated by the values

being both true for the output SysDataDMA and of the TREIn input.

4.4.4 Error Detection and Handling

The control device also has a limited capability to detect and handle errors. The

control device has 9 internal latches which are used to indicate a range of detected

errors and warnings (3 warnings and 6 errors). The latch outputs are connected to chip

bond pads for use by external logic. The ParseDone flag (available as an output pin)

indicates when the parsing process has terminated. At that moment the error flags can

be examined to determine if the parse was successful.

-106-

The three warnings detected are ParseSemanticError (pin 7), LexSyntaxError (pin 8)

and ParseSyntaxError (pin 32). Detection of one of these warnings will not cause the

processor to halt. LexSyntax and ParseSyntax errors indicate that the lexical tokens

and parse tokens respectively do not follow the structure given by the language

grammar. ParseSyntaxError could trigger a NoErrorHandlerError if the grammar does

not contain any error rules (or error handler routines).

The six errors detected will cause the processor to halt since continuation could cause

unexpected behaviour.

The SourceUsedError (pin 31) flags the situation that an attempt has been made to

read more source input after the end of input token has been recognised.

The IllegallnstructionError (pin 13) flags the situation when an illegal or undefined

instruction has been read and the processor is attempting to execute it.

The NoErrorHandlerError (pin 14) flags the situation when a parse error has been

detected and the state stack contains no state which has a shift instruction triggered by

the error token. Error handlers can only be defined by adding error rules to the

grammar definition.

The BufferOverfiowError (pin 15) flags the situation when appending a character

from the source input to the TokenBuffer (hence incrementing TokenBufferEnd) it is

found that TokenBufferStart and TokenBufferEnd have the same value. This indicates

the buffer has overflowed. The TBE signal from the bit-slice device indicates when

TokenBufferStart and TokenBufferEnd are identical, the control logic uses this signal

at the instance when this becomes a fatal error.

Bounds checks are also performed on the two stack pointers (TokenSP and StateSP).

Underfiow and overflow of these stacks are fatal errors causing unexpected processor

behaviour and are flagged by StackUnderfiowError (pin 11) and StackOverfiowError

(pin 12).

The TSP[Z (TokenStackPointerlsZero) and SSPIZ (StateStackPointerlsZero) signals

from the bit-slice are used to detect these occurrences by the control logic. Underfiow
-107-

is detected when the StackPointer (SP) is zero and a StackPop (or SP 	SP - 1)

command is requested. Overflow is detected when the StackPointer is zero and a

StackPush (or SP SP + 1) has just been executed.

4.4.5 Fabrication Details

The control device was also fabricated using a 1.5 micron CMOS gate-array

technology. The actual device size was 3317 by 3076 microns. It used 5201 stages

which is equivalent to 10402 transistors. The device was packaged into a 48 pin dual

in line where 8 pins were reserved for power and ground connections (4 power and 4

ground).

The diagram on the next page shows the physical design layout for the control device.

- 108 -

-- - - .,.
Ililul

rL 1
! L_ 	._a'L'. 	_i

IIUPWt!ja . rdIllIL!IIfttlII

Pip rp r"

2 	 .

• 	 I 	 4. 	J
- 	

- 	 L

	

'Ito' •ii; 	 uifluiiiiI illillE
is

- 	 I - 	- 	- 	 - 	--
I 	

i

A 	t - 	•. 	 -
" 	 I

- -. 	•..Il.iHI'iuiiiII•

4.4.6 Device Pinout

Items marked with * are input signals from the most significant bit-slice device. Items

marked ** indicate those signals which are outputs and go to all bit-slice devices.

Items marked + indicate those signals which are output to all bit-slice devices and

also the external memory devices.

Pin Number Signal Pin Number Signal
syscommandl 48 syscommandO

2 syscomniand2 47 inst2
3 datawanted 46 inst
4 datadma 45 SW
5 parsedone 44 vdd
6 irg 43 grid
7 parsesemanticerror 42 sysreset
8 lexsyntaxerror 41 clock
9 gnd 40 *tbe

10 vdd 39
11 stackunderflowerror 38 *tie

12 stackoverfiowerror 37 pliz
13 illegalinstructionerror 36
14 noerrorhandlererror 35 *tspiz

15 bufferoverfiowerror 34 *symbolge

16 instmenenable 33 *symbolegual

17 datamemenable 32 parsyntaxerror
18 instwanted 31 sourceusederror
19 grid 30 vdd
20 vdd 29 gnd
21 **engconmiand4 28 memorywrite
22 tengcommand3 27 +memorypage0
23 * *engconand2 26 +memorypage I
24 **engconl.mandl 25 **engcommandO

Table 26- Control Device Pinout

The signals named XXXerror (e.g. stackunderfiowerror) indicate the error flags which

show the final parse status.

4.5 Testing and Emulation Results
The software emulation of the processor was not only able to generate the test vectors

(and the expected results) for the two types of devices but it was also able to estimate

the number of clock cycles required for a parse and lexical analysis. Accordingly no

detailed analysis of the required minimal set of test vectors to validate the processor

was deemed to be required. The two chip designs were validated by using the test

vectors generated from the software emulation runs and comparing the actual results

- 110-

from the MADS hardware simulation software (provided as part of the SOLO 1400

chip design suite) with the expected results provided by the software emulation.

The following table details some sample runs. The table is used to indicate the range

of tests performed and also to help indicate processor performance. A number of

source files (in different languages) were used as input to the processor. The

instruction counts match those recorded for the emulation runs used to compare the

original 32-bit instruction set with the new 4-phase instruction set, with the exception

of those for the LALR language. The LALR language is a language definition to

define language definitions (and is therefore self-referential). This language was

changed slightly between the two sets of test runs and therefore the mn-times and

instructions counts were different. The individual language grammars were not

affected by the LALR grammar alteration and were not altered. Thus no change was

expected in the count of instructions executed for the language test runs.

Language File Clock
Cycle

Instruction
Count

Count

Chars
Read

Line Count Cycles/Line Interrupts

LALR ACE 165579 60621 1758 47 3523 1670
LALR BASIC 136128 48931 1568 51 2669 1546
LALR M2 497166 177537 6429 144 3453 4907
LALR M2V 442626 158906 5552 130 3405 4334
LALR !'CPASCAL 478590 1 	169947 6615 1 	144 3324 4331
ACE bad 16274 *5910 147 8 2034 197
ACE bad! 15192 *5508 143 8 1899 173
ACE jdm 16408 5964 148 8 2051 199
ACE test 33871 12348 294 16 2117 410
ACE test! 37852 13771 345 18 2103 548
BASIC bad 5353 *1885 66 5 1071 53
BASIC test 4238 *1476 63 4 1060 1 	35

deb 36572 13689 452 16 2286 284
example 41695 15262 546 27 1544 412
example! 68487 23720 1538 69 993 25
example2 17714 6690 193 12 1476 159

U

deb 36200 1352! 452 !6 2263 283
example 4!332 15096 546 27 1531 4!I
example! 68370 23688 1538 69 991 24
example2 17522 6604 193 12 1460 158
test 76122 25007 1241 67 1136 793

Table 2 7 - Clock cycles for Parse Input

The examples marked with an asterisk (in the instruction count column) represent

those parse runs used to test the processors ability to detect invalid input.

-111-

It must be noted that a pseudo-random number generation was used to add in

estimated delays caused by semantic actions and characters being read from the

source stream

Noting the variations caused by the random numbers and using the results from the

larger source files tested, this gives a range of 2669 to 3523 clock cycles per line of

source. The clock cycle depends on the worst case delay times for the bit-slice and

control devices. These were given as being 25ns and 40ns respectively. For the

fabricated devices and using two bit-slices this would give a clock cycle of 90ns. Best

case delay times were given as 1 6ns and 25ns for the bit-slice and control devices

respectively, giving a best case clock cycle time of 57ns.

Accordingly, the processor can compile an estimated 3154 to 4163 lines per second

(using worst case delay) and 4980 to 6573 lines per second (using best case delays).

- 112-

5. Real Applications
The processor can be used in most situations where there is a need for communication

using a formal language. This does imply that the processor is restricted to compiling

computer languages. The next sections will briefly outline some possible applications

which are not implementations of compilers in hardware but do involve language

recognition. The first, second and third sections describe potential uses of the

processor which has been investigated using the software simulation. The later

sections describe other possible applications which have been investigated in less

detail.

5.1 Logic Synthesis
One possible application is to use the processor to parse regular expressions so that a

logic block which recognises the regular expression can be synthesised. The

"Appendix C - Synthesis Software" provides details of an appropriate grammar, the

corresponding processor instruction table, and the required semantic actions needed to

convert the regular expression into MODEL source code.

The first example expression, A = a b+ c will be used to demonstrate the synthesis

process.

The parse tree for the example expression using the grammar from the appendix is

shown below. The following table relates the actions attached to the grammar rules to

the PASCAL functions which implement the semantics of the actions.

Rule Action PASCAL Routine

Al leftnameis

A2 primaryisid

A3 repeatisstar

A4 factoragain

A5 nileis

Table 28 - Logic Synthesis Routines

The source code for the PASCAL routines can be seen in the appendix.

Note that the order in which the routines are called is given by the left-right post-

traversal of the parse tree, which is implied by the LALR(1) algorithm.

-113-

Reg = RegExpRule

egExpRule = $I'=' Exp'; <A5>

1 =identifier<At> I xp = Factor

actor = Factor Term <A4>

actor = Factor Term <A4> 	erm = Primary

actor = Term 	[Ferm = Primary '+' <A3> 	 ma13' = identifier <A2>

erm = Pary 	
rimary = identifier

b

rimary = identifier <A2>

Figure 38 - Logic Synthesis Parse Tree

Using the parse table for the grammar (given in the appendix), the input source text

and referring to the definitions for the micro-instructions given in Chapter 3

"Instruction Set Design" it is possible to determine the sequence of calling the

semantic actions.

For the given example the sequence of semantic routines will generate the following

MODEL source code.

Part A[clk,tokin] -> res
Signal ni;
Signal n2;

-114-

Signal n3;
Signal n4;
Signal n5;
Signal n6;
Signal n7;
ONE-> ni
token("a")[clk,tokin,nl]-> n2
n2 -> n5
or[n5,n4] -> n3
token("b')[clk,tokin,n3] -> n4
n4 -> n6
token'c")[clk,tokin,n6] -> n7
n7 -> res

End

After eliminating wires with duplicate names, this can be written as

Part A [clk,tokin] -> res
Signal n3;
Signal n5;
Signal n6;

token("a")[clk,tokin,ONE] -> n5
on n5,n6] -> n3
token("b")[clk,tokin,n3] -> n6
token("c")[clk,tokin,n6] -> res

End;

This can be represented by the following logic diagram.

c]

tc

ONE

es

=:

Figure 39- Synthesised Logic

Identical logic to recognise the expression A = a b+ c could also have been generated

using the algorithm discussed in Chapter 2 "Hardware Implementations". Thus it is

possible that a simple logic synthesis tool could be implemented using the processor.

5.2 Device Mask Generation
The manufacture of most integrated circuits depends on the use of photo-lithography

to generate the masks describing the physical layout of integrated circuits. Each mask

- 115-

consists of a collection of geometric shapes, where the shapes can be formed from the

combination of primitive geometric shapes such as a circle, rectangle or trapezium.

This physical layout can be described using a number of specially designed languages.

One of these languages is the Caltech Intermediate Form (CIF), which is widely used.

CIF can be easily defined using an LALR(l) grammar and thus can be parsed by the

processor using the tables generated by the compiler-compiler. For a simple example

CIF file, the processor took an estimated 24110 clock-cycles whilst executing 10112

instructions and 208 semantic actions when reading 105 characters.

The processor could control the photo-lithography machine, by operating the photo-

lithography camera aperture size and location directly from the semantic actions thus

generating the appropriate shapes.

The use of direct write X-ray etching machines instead of photo-lithography for some

masks could also be enhanced by the use of this processor. In this case the semantic

actions control the operation of the X-ray beam directly

53 JAVA
The use of the processor to accelerate the compilation of Java would also be an

example of the potential for this device. The Java Language Specification described

within [Gosling et al. 1996] includes an LALR(l) grammar for the Java language.

This was converted into the regular grammar notation used for input to the Compiler-

Compiler system. Initially, the size of the resulting JAVA grammar caused problems

for the MS-DOS based compiler-compiler. This was caused by the memory required

to store the parse and lex states being greater than that available under MS-DOS. The

compiler-compiler was modified to use a different run-time environment which

provided a larger memory range than MS-DOS. This modification enabled the

compiler-compiler to generate a table of instructions for the processor which would

allow JAVA source to be recognised.

The use of the RISC processor to recognise JAVA source code would reduce or

possibly remove the need to transfer large files of pre-compiled JAVA byte code over

the Internet. Noting that JAVA source code is smaller in size than the corresponding

SILT

JAVA byte code, this would reduce the data bandwidth needed by the Internet to

support JAVA.

Further improvements in the speed of recognition of computer source code such as

JAVA or PASCAL could be gained by extending the INTEL Pentium instruction set

with the instruction set described by this thesis. Merging the instruction sets would

not be expensive in terms of silicon area, since the first implementation of the RISC

processor was in 1.5 micron and current Pentium processors use 0.25 micron

technology. Using a system architecture of a single control device (3317 by 3076

microns) with two bit-slice devices (each 3777 by 3244 microns), where the given

sizes are for a geometry of 1.5 micron would give an approximate increase of 1600 by

580 microns for a Pentium implemented in 0.25 micron geometry.

5.4 Pen Plotters
Pen plotters are examples of devices which can have a simple language to control

their operation. A pen plotter has a range of simple commands which are used in

combination to draw pictures (including text). Some of these commands are

• PenUp

• Pen Down

• MoveTo

• Reset

• Home

• EndOfinput

• SelectPen

• LoadPaper

• EjectPaper

The structure of allowed conmrnnd sequences could then be defined by an appropriate

language LALR(I) grammar. Some of the re-write rules of the grammar will require

actions to be performed. These actions, in turn, will interact with the physical world;

such as, causing the movement of the pen from one location to another location. For

the pen plotter, the recognition of a rule will cause an interrupt which will set/clear

the signal values on the dataout bus of the processor. Thus the source text describing

-117-

the diagram can interact with the plotter mechanisms and its logic circuitry via the

processor.

5.5 Disk Controllers

Disk controllers provide an interface between a computer and the electronic hardware

used to read and write the digital data on magnetic media. The behaviour of a disk

controller is similar to that of the pen plotter described previously. The disk controller

operates the movement across the disk surface of the disk read/write heads usually via

a stepper motor. This corresponds to the MoveTo, HeadUp and HeadDown pen

plotter commands.

5.6 Machine Tools (DNC)

Machine tools in engineering are used to drill holes and grind and route surfaces for

sheet materials such as steel, titanium, tin or even plastic. The operation of a modem

machine tool is usually controlled by a computer-like device with files written in a

special Numerical Control (NC) language being used as source. The NC source data

(usually referred to as a "tape") describes the tool operations in a similar notation to

that used by a pen plotter. Each tool can be regarded as being equivalent to a pen,

which can be selected, moved to a given set of co-ordinates (x, y, z) and have the

speed of the tool also selected.

-118-

6. Concluding Remarks and Future Work
The research project reported on in this thesis was dedicated to the problem of

accelerating the process of parsing and lexical analysis. Almost all parsing and lexical

analysis is performed on general purpose computers which add time overheads to the

joint processes. The main objective of this PhD research was to develop new

mechanisms by which the parsing and lexical processes could be accelerated. The

research was carried out in two main areas, namely the investigation of appropriate

algorithms to form the basis of a hardware accelerator and the physical

implementation of the hardware accelerator. In this chapter of the thesis, a summary

of the original contributions of the thesis is presented. Also, possible research areas in

which future work could be carried out are discussed.

6.1 Summary of Contributions Made by This Thesis
This thesis has presented the following contributions to the field of parsing and

lexical analysis:

1) A novel processor instruction set (containing 24 instructions) has been defined

which has sufficient instructions to be able to execute a combined parsing and

lexical analysis. A novel feature of the instruction set is its ability to extend the

size of instructions parameters. The design of the instruction set involved

investigation of the LALR(l) parsing algorithm and finite state machine lexical

analysis algorithms to determine the primitive operations which could be

implemented as instructions.

2) A VLSI chip set has been fabricated which is able to execute the defined

instruction set. A novel feature of this chip set is its ability to activate the semantic

actions (required by a language) directly from the hardware. The chip set is

implemented in 1.5 micron CMOS technology with the data-paths implemented

using the bit-slice technique.

-119-

6.2 Future Work
In this PhD project, a specialised processor has been implemented which can be used

to accelerate the combined process of parsing and lexical analysis. However parsing

and lexical analysis are front-end mechanisms used to trigger the correct sequence of

semantic actions. The author believes that further research opportunities could result

from investigations into the design of general purpose logic able to perform special

semantic actions in co-operation with the processor. Research areas which could be

worth investigation are outlined below.

6.2.1 Semantic Hardware

One feature of the processor is its ability to directly trigger semantic actions using the

combination of SysIRQ signal and DataOut bus signals and also its ability to output

the relevant token string as a character sequence. This provides opportunities to

investigate the design and use of specific hardware able to work in co-operation with

the processor.

6.21.1 Symbol Tables

A symbol table is used by a compiler to hold information about the identifiers or

variables defined by a program, where the information usually includes the identifier

name, its type (whether integer, character, record, etc.) and scope of visibility.

Possible research would investigate if a general purpose symbol table was possible

and if so, to then design appropriate logic to implement it.

The symbol table implemented as hardware would be an example of a sub-unit of

semantic hardware directly controlled by the processor.

6.2.1.2 Code Generators

Most compilers are used to convert source text expressed in a given language into

executable code for a target machine. Research has already been carried out into

general purpose mechanisms for converting intermediate code generated by a

language parser into machine specific executable code.

Possible further research could involve investigations using the processor to generate

the intermediate code. Further research could investigate if hardware could be

implemented to transform intermediate code into true machine code.

- 120 -

6.2.2 Software

Although the processor is a hardware device it depends heavily on the compiler-

compiler software to generate the parse and lexical analysis tables for each formal

language being recognised. The following areas of research relate to the software

aspects of the processor.

6.2.2.1 Optiinisations

The state tables which form the processor instructions are generated without regard

for optimisation. The ordering of the instructions within the tables could be altered by

analysis of the grammar taking into account the range of possible language sentences,

or possible programs. The re-ordering would be focused on the possible optimisations

which would reduce the time taken by the processor to parse a range of sentences.

Another possible optimisation would involve the reduction of the table sizes

One possible future research topic could investigate this possibility.

6.2.2.2 Re-ordering the Rules

The grammar rules for a language are defined in numerical order and the values

passed out to the DataOut bus when SysIRQ is active reflect that fact. Thus the

associated semantic hardware has to decode the complete set of DataOut signals to

determine which logic sub-block is to be activated. A possible re-ordering of the rules

by associated function, such as grouping all rules which refer to the symbol table logic

could be performed.

Investigating this possibility could be a further research topic carried out in

conjunction with the research into symbol table hardware.

6.2.2.3 Allowing larger grammars

Further work is needed on the current version of the compiler-compiler software to

overcome the memory limitations imposed by MS-DOS which limits the size of

grammars which can be read. As the compiler-compiler uses a software emulation of

the processor, instead of re-writing the software, it may be possible to research the

conversion of the compiler-compiler software into hardware, thus providing a

universal compiler-compiler system.

- 121 -

References

1. Aho, A. V. and UlIman, J. D., 1977, "Principles of Compiler Design", (Addison-

Wesley)

2. Altera Corporation, 1995, "MAX+PLUS II: Getting Started", (Altera)

3. Altera Corporation, 1995, "MAX+PLUS IT: AHDL", (Altera)

4. Altera Corporation, 1996,"1996 Data Book", (Altera)

5. Ayres, R., 1983, "VLSI Silicon Compilation and the Art of Automatic MicroChip

Design", (Prentice-Hall)

6. Brown, P. J., 1981, "Writing Interactive Compilers and Interpreters", (John

Wiley and Sons)

7. Chinitz, M., 1981, "The Logic Design of Computers", (Howard Sams)

8. Chu, Y., ed., 1975, "High Level Language Computer Architecture", (Academic

Press)

9. Denning, P., Dennis, J., and Qualitz J., 1978, "Machines, Languages, and

Computation", (Prentice-Hall)

10. DeRemer, F., 1971, "Simple LR(k) Grammars",Communications of the ACM,

14, P453-460

11. Downs, T., and Shultz, M., 1988, "Logic Design with Pascal, Computer-Aided

Design Teclmiques",(Van Nostrand Reinhold)

12. European Silicon Structures, 1993, "Solo 1400 User Guide", (European Silicon

Structures)

13. Evans, R. A. and Morrison J. D., 1985, "Architectures for Language

Recognition", Integration, the VLSI journal, 3, P175-187, (North-Holland)

14. Fischer, C. N. and LeBlanc, R. J., 1991, "Crafting a Compiler with C",

(Benjamin/Cummings Publishing)

15. Gosling, J., Joy, B. and Steele, G., 1996, "The Java Language Specification",

(Prentice-Hall)

- 122 -

16. Harbison, S. P. and Steele, G., 1984, "C, A Reference Manual", (Prentice-Hall)

17. Hunter, R., 1981, "The Design and Construction of Compilers", (Joim Wiley and

Sons)

18. Iliffe, J. K., 1982, "Advanced Computer Design", (Prentice-Hall)

19. Johnson, S., and Lesk, M., 1978, "Unix Time-Sharing System: Language

Development Tools", The Bell System Technical Journal, 57, P2155-2175

20. Kazuo Seo, Masaharu Hirayama and Akira Fusaoka, 1983, "Design and

Evaluation of Parsing Chip", VLSI-83, P317-326, (North-Holland, Amsterdam)

21. }thuth, D., 1966, "On the Translation of Languages from Left to Right",

Information and Control, 8, P607-639

22. Lewin, D., 1974, "Logical Design of Switching Circuits", (Nelson)

23. McCluskey, E. J., 1986, "Logic Design Principles: with emphasis on testable

semicustom circuits", (Prentice-Hall)

24. McGettrick, A. D., 1980, "The Definition of Programming Languages",

(Cambridge University Press)

25. McMullin, J. D., 1996, "Implementing a Parser and Lexical Analyser using

FPGA technology", Electronic Engineering, 68, P44.

26. Mead, C. and Conway, L., 1980, "Introduction to VLSI Systems", (Addison-

Wesley)

27. Miczo, A., 1987, "Digital Logic Testing and Simulation", (John Wiley)

28. Minsky, M., 1972, "Computation: Finite and Infinite Machines", (Prentice-Hall)

29. Pager, D., 1977, "The Lane-Tracing Algorithm for Constructing LR(k) Parsers

and Ways of Enhancing Its Efficiency", Journal of Information Sciences, 12,

P19-42, (North-Holland)

30. Patterson, D., and Hennessy, J., 1990, "Computer Architecture. A Quantative

Approach", (Morgan Kaufmnann)

31. Pollard, L., 1990, "Computer Design and Architecture", (Prentice-Hall)

- 123 -

32. Preston, J. V. and Lofgren, J. D., 1994, "FPGA Macros Simplify State Machine

Design", Electronic Design, December, P109-118.

33. Pucknell, D. A., 1990, "Fundamentals of Digital Logic Design: with VLSI Circuit

Applications", (Prentice-Hall)

34. Staken, P., 1996, "A Practitioner's Guide to RISC Microprocessor Architecture",

(John Wiley)

35. Sze, S. M., ed., 1983, "VLSI Technology", (McGraw-Hill)

36. van Eekelen, M., Huitema, H., Nocker, E., Smetsers, S. and Plasmeijer, R., 1993,

"Concurrent Clean, Language Manual", Technical Report 93-13, (Katholieke

Universteit Nijmegen)

37. Weste, N., and Eshraghian K., 1985, "Principles of CMOS VLSI Design: A

Systems Perspective", (Addison-Wesley)

124-

7. Appendix A - Software Simulation

Each run of the software emulation of the processor is capable of generating a set of

test vectors and expected outputs. A number of sets of these test vectors were used to

drive the SOLO 1400 MADS logic simulator. The waveform results from each run

(only examining the values at the time of clock rise and fall) were compared with the

expected results. The simulator results and the predicted results from the processor

emulation were found to match, giving a high level of confidence in the implemented

logic design. Part of a sample simulation run for the control chip is shown below.

7.1 Main Simulation File - The Template
The following is the contents of the main file used to drive the MADS simulator. The

include file "control.vec" contains the output from the processor emulation providing

test vectors and predicted outputs. This file will be different for each run of the

processor emulation. The include file "sim.h" contains utility code to convert the data

in the control.vec file into commands which can drive the simulator.

#include sim.h'
#include "control.vec"

maino

vector_step = 1000;
tick = 0;

Set_Cycle(vector_step);

extclock = I;
extsysreset = 1;
extsyscommandO = 0;
extsyscommand 1 = 0;
extsyscomntand2 = 0;
extsymbolequal = 0;
extsymbolge = 0;
exttspiz = 0;
cxtsspiz = 0;
extpliz = 0;
exttie = 0;
exttre = 0;
exitbe = 0;
extinstO = 0;
extinstl =0;
extinst2 = 0;

- 125-

testdevice;

Simulate;

7.2 Simulator Utility Code
This file contains utility functions to convert the data from a processor simulation run

into commands to drive the MADS simulator. The file also holds information about

the names of the external pins, if they are inputs or outputs, and the legal values of the

various command signals.

Input extclock;
Input extsysreset;
Input extsyscommandO;
Input extsyscommand I;
Input extsyscommand2;
Input extsymbolequal;
Input extsymbolge;
Input exttspiz;
Input extsspiz;
Input ext liz;
Input exttie;
Input exttre;
Input extibe;
Input extinstO;
Input extinst 1;
Input extinst2;
Output extengcommandO;
Output extengcommandl;
Output extengcommand2;
Output extengcommand3;
Output extengcommand4;
Output extmemorypageO;
Output extmemorypage I;
Output extinstmemen;
Output extdatamemen;
Output extmemotywrite;
Output extinstwanted;
Output extdatawanted;
Output extdatadma;
Output extparsedone;
Output extirq;
Output extsourceused;
Output extparsyntax;
Output extparsemantic;
Output extlexsyntax;
Output extstackunder;
Output extstackover;
Output extillegalinst;
Output extnoerrhandle;
Output extbufferover;

mt vector_step;
mt tick;

mt cSysNoOp 	= 0;

-126-

mt cSysStateWanted = I;
mt eSysTokenWanted = 2;
mt cSysIRQNullToken = 3;
hit cSyslRQ_OK = 4;
mt cSysIRQERR = 5;
mt cSysDataAvailable = 6;
mt cSyslnstAvailable = 7;

mt cEngineNoOp 	= 0;
mt cEngineTokenSetBusMayBe = 1;
mt cEngineTokenSetflusBuffer = 2;
mt cEngmnelokenSetBusls = 3;
mt cEnginelokenSetBusWas = 4;
mat cEngineTokenSetlsEmpty = 5;
mt cEnginelokenLoadWasis = 6;
mt cEngineZero = 7;
mt cEngineTokenSPZero 	= 8;
mt cEngineSymbolLoadPC 	= 9;
mt cEngineTokenAccept 	= 10;
intcEnginePlLoad 	= 11;
mt cEngineSymbolLoadLAS 	= 12;
mt cEngineSymbolPop 	= 13;
mt cEngineSymbolPush 	= 14;
mt cEngineSymbolLoadTS 	= 15;
mt cEngineStateSPlnc 	= 16;
mt cEngineTokenSPlnc 	= 17;
mt cEngineTokenlncRamStart = 18;
mt cEngineSymbollnc 	= 19;
mt cEngineTokenlncBufferStart = 20;
mt cEngineTokenlncBufferEnd = 21;
mt cEngineTokenlnclsStart = 22;
mt cEngmneTokenincisEnd 	= 23;
mt cEngineStateSPDec 	= 24;
mt cEngineTokenSPDec 	= 25;
tht cEngineTokenDecRamStart = 26;
mt cEngineSymbolDec 	= 27;
mt cEngineTokenDecBufferStart = 28;
mt cEngineTokenDecBufferEnd = 29;
mt cEnginelokenDeclsStart = 30;
mt cEnginelokenDeclsEnd 	= 31;

/* simple simulation step /
void simstepØ

Toggle(extclock);
Next_Cycle;

Toggle(extclock);
Next_Cycle;

/* General purpose command line set-up 1
void setcominand(mt syscommand)

extsyscominand0 = ((syscommand) & 0;
extsyscommandl = ((syscommand>> I) & I);
extsyscommand2 = ((syscommand>> 2) & I);

- 127 -

/* General purpose mode line set-up /
void setinst(mt inst)

extinstO = ((inst) & I);
extinsti = ((inst>> 1) & I);
extinst2 = ((inst>> 2) & 1);

/* General purpose command line set-up /
void docommand(mt syscommand,

mt inst,
mt sysreset,
hit symbolequal,
hit symbolge,
hit tokenspiszero,
hit statespiszero,
hit pliszero,
mt tokenisequal,
int tokenramequal,
mt tokenbufferequal)

ticktick+ I;
setcommand(syscommand);
setinst(inst);
extsysreset = ((sysreset) & 1);
extsymbolequal = ((symbolequal) & 1);
extsymbolge = ((symbolge) & I);
exttspiz 	= ((tokenspiszero) & I);
extsspiz 	= ((statespiszero) & 1);
extpliz 	= ((pliszero)& 1);
exttie 	= ((tokenisequal) & 1);
exttre 	= ((tokenramequal) & 1);
exftbe 	= ((tokenbufferequal) & U;

simstep;

int SigTolnt(Output a)

return a;

void cb(char *mess, Output actual, int expected)

mt actualbar;
/* code doe NOT correctly check the expected v actual signal values */
I dorn't know if signal values are set up correctly or what */
/* hence this code is commented out /

1*
actualbar = (-(SigTolnt(actual) & 1) & I);

if (aetualbar == expected)

{

printf(Mis-match at tick %d for ",tick);
printf(mess);
printf("\n);

-128-

*1

/* Test Vector Check Routines /
void checkvectors(int enginecommand,

mt memorypage,
mt instmemenable,
mt datamemenable,
hit memorywrite,
mt instwanted,
hit datawanted,
hit datadma,
mt parsedone,
hit irq,
hit sourceexhausted,
hit parsesyntax,
mt parsesemantic,
hit lexsyntax,
mt stackunderfiow,
mt stackoverfiow,
mt illegalinstruction,
mt noerrorhandler,
mt bufferoverfiow)

{

cb(enginecommandO",extengcommandO, ((engmnecominand) & 1));
cb("engmnecommandl',extengcommandl, ((engmnecommand>> 1) &l));
cb("engmnecominand2",extengcominand2, ((engmnecommand>> 2) &l);
cb("engmnecommand3",extengcominand3, ((engmnecominand>> 3) &l);
cb("engmnecommand4°,extengcommand4, ((engmnecominand >> 4) &l);

cb("memorypageo",extmemorypageO, ((memorypage) & 1));
cb("memorypagel",extmemorypagel, ((memorypage>> 1) &l);

cb("InstMemEnable", extinstmemen, mnstmemenable);
cb("DataMemEnable", extdatamemen, datamemenable);
cb("MemoiyWrite", extmemorywrite, memorywrite);
cb("InstWanted", extinstwanted, instwanted);
cb("DataWanted", extdatawanted, datawanted);
cb("DataDMA", extdatadma, datadma);
cb("ParseDone", extparsedone, parsedone);
cb("IRQ", extirq, irq);
cb("SourceExhausted", extsourceused, sourceexhausted);
cb(" arseSyntax", extparsyntax, parsesyntax);
cb("ParseSemantic", extparsemantic, parsesemantic);
cb("LexSyntax", extlexsyntax, lexsyntax);
cb("StackUnderfloW', extstackunder, stackunderfiow);
cb("StackOverfiow", extstackover, stackoverfiow);
cb("Illegatinstruction", extillegatinst, illegalinstruction);
cb("NoErrorHandler", extnoerrhandle, noerrorhandler);
cb("BufferOverfiow", extbufferover, bufferoverfiow);

7.3 Processor Emulation Data
The include file "control.vec" contains the actual test vector and expected results.

The following is a small fragment of an actual file.

- 129 -

I exercise the device /
void testdeviceO
{

/ At tick I I

docommand(cSysNoOp,0, 1,1,1,0,0,1,0,0,0);
checkvectors(cEngineP I Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

I At tick 2 */
docommand(cSysNoOp,0,I,1,1,I,I,I,1,l,1);
checkvectors(cEngineP I Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

/ At tick 3 f

docommand(cSysNoOp,0,l,l,l,1,1,l,l,1,I);
checkvectors(cEngine? lLoad,0,0,0,0,0,O,0,O,O,0,0,0,O,0,O,0,0,0);

/ At tick 4 I

docommand(cSysNoOp,0,l,l,I,1,1,l,I,l,I);
checkvectors(cEngineP I Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

/ At tick 5 */
docominand(cSysNoOp,0,I,l,l,l,I,I,l,I,l);
checkvectors(cEngineP I Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

1' At tick 6 /
docommand(cSysNoOp,0,0,I,1,1,1,1,1,1,I);
checkvectors(cEngineNoOp,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

At tick 7
doconnnand(cSysNoOp,0,0,1,I,1,1,1,I,1,1);
checkvectors(cEngineP ILoad, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

/ At tick 8 */
docominand(cSysNoOp,0,0,1,1,I,1,1,1,1,I);
checkvectors(cEngineStateSPlnc,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

/* At tick 9 */
docominand(cSysNoOp,0,0,0,0, 1,1,0,1,1,1);
checkvectors(cEngineNoOp,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

/ At tick 10 */
docommand(cSysNoOp,0,0,0,0, 1,0,0,1,1,1);
checkvectors(cEngineTokenLoadWasls,0,0, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

/ At tick 11 /
docommand(cSysNoOp,0,0,0,0, 1,0,0,1,1,1);
checkvectors(cEngineP lLoad,2, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

/ At tick 12 /
docommand(cSysNoOp,0,0,0,0, 1,0,0,1,1,1);
checkvectors(cEngineTokenSPZero,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

/* Values after tick 12 have been deleted from the file /

7.4 Simulator results
The following is a fragment from the MADS simulator waveform output file which

corresponds to the control.vec file fragment given in the previous section.

The MADS simulator is an event driven simulator and hence the output file shows

when the output signals changed. However the information provided by the processor

- 130 -

emulation software is based on a cycle based emulation. Therefore only those lines

where the clock edge goes high or low will be of interest.

Note that the column headings have been removed and are indicated in the following

table.

Pin Signal Pin Signal Pin Signal Pin Signal

I extelock II exttie 21 extengcommand4 31 extirg

2 extsysreset 12 exttre 22 exhnemorypage0 32 extsourceused

3 extsyscommand0 13 exttbe 23 exflemorypage I 33 extpamflax

4 extsyscommand 1 14 extinstO 24 extinsftnemen 34 extparsemantic

5 extsyscommand2 IS extinst 1 25 extdatamemen 35 extlexsyntax

6 extsymbolegual 16 extinst2 26 extmemorywrite 36 extstackunder

7 extsymbolge 17 extengcommandO 27 extinstwanted 37 extstackover

8 exttspiz 18 extengcommandl 28 extdatawanted 38 extillegalinst

9 extsspiz 19 extengcommand2 29 extdatadma 39 extnoerrhandle

10 extp liz 20 extengcominand3 30 extparsedone 40 extbufferover

Timing diagram of Iooded/ecpdlO/ind/mox/chip.trc

1 	 2 	 3 	 4
1234567890123456789012345678901234 567890

	

0.00 	010001 I001000000XXXXXXXXXXXXXXXXXXXXXXXX

	

1.00 	0100011 0 0 1000000 X X X XXX X XXX XXX X X X X X X XX X XX
0100011001 000000XXXXXXXXXXXXXXXXXXXXXXXX

	

12.00 	0100011001 000000XXXXXXXXXXXXX0XXXXXXXXXX

	

13.00 	010001 1001000000XXXXXXXXXXXXX0XXXXXXXXXX
0100011001 000000XXXXXXXXXXXXX0XXXX XXXXXX

	

20.00 	0100011001 0 0 0 0 0 0 X 1 XXXXXXXXXXXOXXXXXXXXXX

	

21.00 	0100011001000000 X1X X X X X X XX X X X OX X X X X X X X X X
0100011001 000000X 1 XXXXXXXXXXXOXXXXXXXXXX

	

24.00 	0100011001000000111 XXXXXXXXXXOXXXXXXXXXX

	

25.00 	010001100100000011 1XXXXXXXXXX0XXXXXXXXXX
0100011001000000111XXXXXXXXXX0XXXXXXXXXX

	

27.00 	0100011001000000111 XOXXXXXXXXOXXXXXXXXXX

	

28.00 	010001100100000011 100XXXXXXXX0XXXXXXXXXX

	

29.00 	010001 100100000011 100XXXXXXXX0XXXXXXXXXX
01000 I100100000011100XXXXXXXX0XXXXXXXXXX

	

1000.00 	110001100100000011 100XXXXXXXX0XXXXXXXXXX

	

1001.00 	110 00 11 00 100 000 01110 0 XXX X XXX X 0 XX X X X XXX XX
1100011001000000111 OOXXXXXXXXOXXXXXXXXXX

	

1011.00 	110001100100000011 100XXXXXXXX0XXX00XXXXX

	

1012.00 	1100011 0 010000 0 011100 X X X X X X X X 00 X X 0 000000

	

1013.00 	110001 1001000000111 00XXXXXXXX00000000000

	

1014.00 	1100011001000000111 0 0 0 0 X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0

	

1015.00 	1100011001000000111 00000XXX0000000000000

	

1016.00 	11 0 00110010000 0 01110 00 000 00 0 00 00 00 0 000 0 0

	

1017.00 	11 0 0 0 110 0 1000 0 001110 0 000 0 00 000 0 0 0 0 0 0 0 0 0 0
1100011001000000111000000000000000000000

	

2000.00 	0100011111111000111000000000000000000000

- 131 -

2001.00 010001 	1111111000111000000000000000000000
0100011111111000111000000000000000000000

3000.00 1100011111111000111000000000000000000000
3001.00 11000111111110001110 0 0000000000000 0 0 0 0 0 0

1100011111111000111000000000000000000000
4000.00 0100011111111000111000000000000000000000
4001.00 0100011111111000111000000000000000000000

010001 	1111111000111000000000000000000000
5000.00 1100011111111000111000000000000000000000
5001.00 1 	10001 	111 1 	1 	1 	1 	0 0 0 	1 1 1 0

11000111111110001 11000000000000000000000
6000.00 0100011111111000111000000000000000000000
6001.00 010001111111100011100000000000000 0 000000

01000111111110001 11000000000000000000000
7000.00 1100011111111000111000000000000000000000
7001.00 11000111111110001 110000000000 00000000000

1100011111111000111000000000000000000000
8000.00 0100011111111000111000000000000000000000
8001.00 0 	10001111111100 0 111000000000000000000000

0100011111111000111000000000000000000000
9000.00 1100011111111000111000000000000000000000
9001.00 1 	10001 	11 	1 1 	1 	1 	100 0 	1 1 10 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0

1100011111111000111000000000000000000000
10000.00 0000011111111000111000000000000000000000
10001.00 000001 	1111111000111000000000000000000000

000001 	1111111000111000000000000000000000
10020.00 0000011111111000111 X 0
10021.00 0 00001 	1111111000111 X 00000000000000000000

000001 	1111111000111 X00000000000000000000
10025.00 000001 	11111110001101 0 0000 0 000 0 000 0 00 0 0 0 0
10026.00 000001 	111111100011010000000000 0 000000000

000001 	1111111000110100000000000000000000
11000.00 100001 	1111111000110100000000000000000000
11001.00 1 00001 	1111111000110100000000000000000000

100001 	1111111000110100000000000000000000
11025.00 100001 	1111111000100100000000000000000000
11026.00 100001 	111111 1000100100000000000000000000

100001 	1111111000100100000000000000000000
11028.00 1000011111111000000100000000000000000000
11029,00 100001 	111 1111000000000000000000000000000
11030.00 1000011111111000000000000000000000000000

100001111111 1000000000000000000000000000
12000.00 000001 	1111111000000000000000000000000000

- 132 -

8. Appendix B - Processor Implementation

The logic for the control device was generated using the logic synthesis tools

provided within the Solo 1400 design system. The PASCAL source code for the

control state machine was modified to become valid input text for the logic synthesis

tool LOLA.

The following MODEL code defines an individual bit-slice element which is repeated

eight times within the actual bit-slice device. For reasons of clarity, the code has been

altered to remove any buffer logic which was only added to reduce excessive gate

loading. Also not shown is the decode logic which generates the appropriate

loadXXX signals from the mcode signal bus.

Part loadbit[clk,d,load] -> q
bdffc1k,or[and[1oad,d],and[not[1oad],q]]] -> q

End

Part slice[clock,
mcocleO,mcodel ,mcode2,mcode3,mcode4,
iomcodeO,iomcode 1 ,iomcode2,
loadtrs,
loadtre,
loadtbs,
loadtbe,
loadtis,
loadtie,
loadtws,
Ioadtwe,
Ioadpc,
loadpl,
loadtopsymbol,
loadlookaheadsymbol,
loadstatesp,
loadtokensp,
carryin,
trein,tbein,tiein,tspizin,sspizin,
p1 izin,sgein,sein,
memorydataJ -> carryout,

treout,tbeout,tieout,
tspizout,
sspizout,
p1 izout,sgeout,seout,
data out , a ddre ss

Signal trs,tre,
tbs,tbe,
tis,tie,

- 133 -

tws,twe,
PC,

pi'
topsymbol,
lookaheadsymbol,
tokensp,
statesp,
ebus,
cbus,
sbus,
sumbus,
datainbus,
tops ymbo Imatch,
tokenismatch,
tokenbuffermatch,
tokenrammatch

data[mcodeO,mcode 1 ,mcode2,mcode3,mcode4,memorydata] -> datainbus
ebit[pl, mcodeO, mcodel, mcode2, mcode3, mcode4,

lookaheadsymbol, pc, statesp, tbe,
tbs, tie, tis, trs,
tokensp, live, topsymbol] -> ebus

cbit[mcode3, mcode4, ebus] -> thus
exor[canyin,ebus] -> sumbus

sbit[p 1, mcodeO, mcode 1, mcode2, mcode3, mcode4,
datainbus, sumbus, tbs, tie, tis,tws] -> sbus

loadbit[clock,sbus,loadtrs] -> trs
loadbit[clock,ebus,loadtre] -> tre
loadbit[clock,sbus,loadtbs] -> tbs
loadbit[clock,sbus,loadtbe] -> the
loadbit[cloCk,sbus,loadtis] -> tis
loadbit[clock,sbus,loadtie] -> tie
loadbit[clock,sbus,loadtws] -> tws
loadbit[clock,ebus,loadtwe] -> twe
loadbit[clock,sbus,loadpc] -> pc
loadbit[clock,sbus,loadpl] -> p1
loadbit[clock,ebus,loadtopsymbol] -> topsymbol
loadbit[clock,ebus,loadlookaheadsymbol] -> lookaheadsymbol
loadbit[clock,sbus,loadstatesp] -> statesp
loadbit[clock,sbus,loadtokensp] -> tokensp

Ripple through logic
and[carryin,cbus] -> canyout

eqv[topsymbol,p 1] -> topsymbolmatch
eqv[tis,tie] -> tokenismatch
eqv[tbs,tbe] -> tokenbuffermatch
eqv{trs,tre] -> tokenrammatch

and[not[pl],plizin] -> plizout
and[not[statesp],sspizin] -> sspizout
and[not[tokenspj,tspizin] -> Ispizout
or[and[topsymbol,not[p 1]],and[topsymbolmatch,sgein]] -> sgeout
and{topsymbolmatch,sein] -> seoul
and[tokenismatch,tiein] -> tieout
and[tokenbuffermatch,tbein] -> tbeout
and[tokenrammatch,trein] -> treout

-134-

iocode[iomcodeO,iomcode 1,iomcode2,
pc,statesp,trs,tokensp] -> address

p1 -> dataout
End

Endoffile

- 135-

9. Appendix C - Synthesis Software

This appendix contains further details about the logic synthesis language which was

referenced in section 5.1 "Logic Synthesis".

9.1 Examples of Regular Expressions
The following are examples of regular expressions which have been used as input to

the software emulation of the processor.

Note :-

the + operator is used to indicate repetition at least once,

the ? operator is used to denote optional inclusion,

the * operator is equivalent to the *9 operators in combination,

the ,operator indicates choice between two alternatives.

Also the use of brackets 0 is used to change priority of operations.

9.1.1 Example 1
A = a b+ C;

This describes a regular expression A which is shorthand for

A{abc,abbc,abbbc, ...}

The b+ represents the repetition of b at least once.

9.1.2 Example 2
A = a b* C;

B = c m+ (a,d+)?;

This describes two separate regular expressions A and B which are shorthand for

A= {ac,abc,abbc, ...}

B= {cm,cma,cmd,cmdd, ... ,cmm,cmma,cmmd,cmmdd, ...}

-136-

9.2 Grammar for Synthesis Language
The examples of regular expressions in the previous section can be described by an

LALR(l) grammar. The following text, using the regular expression notation, defines

such a grammar. This grammar can and has been input to the compiler-compiler

software to generate tables for use with the processor.

Note that the parse grammar is defined by the section commencing $parser and

terminated by $lexer. The lexical structure of tokens is described from the Slexer to

the end of file.

*1
!{ * Copyright (c) 1996 J.D.McMuIIin. All rights reserved. *

*}

**}

$parser Reg
Reg = RegExpRule +;
RegExpRule = identifier <leftnameis> '=' Exp ';' <ruleis>;
Exp = Factor (',' Factor <expagai n>)*
Factor = Term (Term <factoraga i n>)*
Term = Primary,

Primary +' crepeatisplus>
Primary 1*1 <repeatisstar>,
Primary 1' <repeatisquery>;

Primary = identifier <primaryisid>
'(' Exp ')'

now to define the lexical items
remember $eoi MUST be present and also $whitespace MAY be present

$lexer
eaf = 26
rs = 30;
tab = 9;
$eoi = eof;
$whitespace = (space, 1' commentchar rs) <commentfound>;
space = ('', tab, rs)+
commentchar = tab,
identifier = idchar (idchar, "',
idchar = ["A Z"], ["a z']

9.3 Semantic Actions
The following text is the full Turbo Pascal source used to implement the semantic

actions referenced in the grammar defined in the previous section. This code was

generated as a template by the compiler-compiler. The semantic actions have been

manually added.

137-

The semantic actions are used to convert regular expressions into MODEL logic

descriptions. This MODEL code can then be input to the SOLO 1400 design suite (as

was used to design the processor) to form a logic design.

** *** ** * * * }

(* This software was generated by J.D.McMullin as an *
(integral part of his M.Phil, Ph.D research. 	* **********************

**}
unit regAct;
interface
uses share,parser;
type

ErrStringfn = function (errno:integerl 6): lexstring;

function RegGetChar(h:pointer): char;
function RegParseFile(

FileName,Extension : Iexstring;
var ParseHandle pointer;
ReadTable Readfn;
ReadTableMax ReadMaxfn;
DoAction SemanticActionfn;
Readchar : GetCharfn;
ReadErrstring ErrStringfn) boolean;

function RegParseError(h,hl :pointer):boolean;
function RegLexError(h,h 1 pointer):boolean;
function LeftNamels(h,hl :pointer):boolean;
function Rulels(h,hl :pointer):boolean;
function ExpAgain(h,hl pointer):boolean;
function FactorAgain(h,hl :pointer):boolean;
function RepeatlsPlus(h,hl pointer):boolean;
function RepeatlsQuery(h,hl :pointer):boolean;
function RepeatlsStar(h,hl :pointer):boolean;
function Primarylsld(h,hl :pointer):boolean;

function CommentFound(h,hl :pointer):boolean;

implementation
type

cType = (cToken,cOr,cRename);
RegPtr = ARegparsestate;
RegParseState = record

(lexical input/output stream variables
StreamPo&
Stream LineNu mber : integer32;
StreamlnName,
StreamlnExt,
StreamOutName,
StreamOutExt,
StreamBuffer : lexstring;
Streamin,
StreamOut : text;
ErrorLineNumber: integer32;
(Error Flags to indicate Parse Error has occurred
ErrorDetected : boolean;
("class method"
FetchErrString : ErrStringfn;
(User-defined variables below
lexsp : integer;

- 138-

lexstack array [1.. 100] of record
ni,
n2,
ci,
c2 : integer32;

end;
celicount integer;
cellstack array [1.200] of record

t cType;
r: integer32;
n lexstring;
ii,
i2,
oi : integer32;

end;
TheGlobalNode : integer32;
TheGlobalCell integer32;
LeftSymbol lexstring;

end;

Global Action Routine variables

routine to read lexical token string
procedure CurrentToken(h:pointer; var s:lexstring);
var

ch : char;
begin
clearstring(s);
TokenWanted(h);

while ValidTokenChar(h, ch) do
begin

DMA read of LexCache to form LexToken
appendstringchar(s, ch);

end;
TokenAccepted(h);

end;

Routine to read individual chars from the input file
function RegGetChar(h:pointer): char;
var

p : RegPtr;
ch : char;

begin
p := h;
with pA do
begin
while (stringlength(StreamBuffer) < 1) do
begin

Stream LineNu mber StreamLineNumber + 1;
readstring(Streamln, StreamBufter);
readln(Streamln);
StreamPos := 1;
WriteString(StreamOut,'[');
Writelnteger(StreamOut, StrearnLineNumber, , 4);
WriteString(StreamOut, ']');
WriteString(StreamOut, StreamBuffer);
WriteLn(StreamOut);
appendstringchar(StreamBuffer, rs);
if eof(Streamln) then
begin

- 139-

appendstringchar(StreamBuffer eoi);
end;

end;

ch := StreamBuffer[StreamPos];
if (ch oeoi) then
begin
StreamPos StreamPos + 1;
if (StreamPos > stringlength(StreamBuffer)) then
clearstring(StreamBuffer);

end;
end; { with
RegGetChar := ch;

end;

function RegParseFile(
FileName,Extension Iexstring;
var ParseHandle pointer;
Readlable Readfn;
ReadTableMax : ReadMaxfn;
DoAction : SemanticActionfn;
ReadChar: GetCharfn;
ReadErrString : ErrStringfn) : boolean;

var
p RegPtr;
status integerl 6;
flag boolean;

begin
new(p);
ParseHandle p;

with pA do
begin

User defined initialisation code for this parse pass

Parser system initialisation code
MODIFY WITH CAUTION

FetchErrString ReadErrString;
ErrorDetected false;
ErrorLineNumber 0;

clearstring(StreamBuffer);
StreamLineNumber 0;

StreaminName := FileName;
StreamlnExt := Extension;
StreamOutName FileName;
StreamOutExt := deb;

openoldfile(Streamln, StreaminName, StreamlnExt);
reset(Streamin);

opennewfile(StreamOut, StreamOutName, StreamOutExt);
rewrite(StreamOut);

Status SyntaxEngine(ParseHandle, ReadTable, ReadTableMax, DoAction, ReadChar);
if (Status = 0) then
begin

if ErrorDetected then
begin
write(**** Warning 	File ');

- 140 -

writestring(output,StreamlnName);
writeln(' contained a semantic or lexical error');
flag 	false:

end
else
begin

write('File '):
writestring(output,StreamlnName);
writeln(' parsed OK');
flag 	true:

end:
end
else
begin
write(********WARNING **** File ');
writestring(output,FileName);
writeln(' contained at least one Syntax Error');
writeparsestatus(output, Status):
flag := false;

end;

closefile(Streamln);
WriteString(StreamOut,'"" EOF
WriteLn(StreamOut);
closefile(StreamOut);

end: with

RegParseFile flag;
end:

function RegParseError(h,hl :pointer):boolean;
var

p : RegPtr:
5 texstring:

integer32;
begin

p 	h;
CurrentToken(his):
with pA do
begin
ErrorDetected true;

WriteString(StreamOut,'
for i := ito StreamPos - 1 do
begin

if (StreamBuffer[i] = tab) then
WriteString(StreamOut, tab)

else
WriteString(StreamOut,

end;

WriteString(StreamOut,'A " ERROR"" Found token');
WriteString(StrearnOut,$):
WriteString(StreamOut,' but expecting ');
WriteString(StreamOut,fetcherrstring(CurrentState(hl)));
WriteLn(StreamOut):

if (ErrorLineNumber = 0) then
begin

ErrorLineNuruber StreamLineNurnber:
end;

- 141 -

end; (with

RegParseError true;
end;

function RegLexError(h,hl :pointer):boolean;
var

p RegPtr;
S : lexstring;

integer32;
begin

p 	h;
CurrentToken(hi,$);
with pA do
begin

ErrorDetected := true;

WriteString(StreamOut,
for i ito StreamPos - 1 do
begin

if (StreamBufferfi] = tab) then
WriteString(StreamOut, tab)

else
WriteString(StreamOut,

end;

WriteString(StreamOut,'**********ERROR **** Found token');
WriteString(StreamOut,$);
WriteString(StreamOut,' but expecting a legal token');
WriteLn(StreamOut);

if (ErrorLineNumber = 0) then
begin

ErrorLineNumber := StreamLineNumber;
end;

end; (with

RegLexError true;
end;

(Semantic Actions to be coded below

(Dont forget to add each one to the Turbo Pascal
(interface definition
(Also, all semantic routines are defined as follows

(function xx(h,hi :pointer):boolean;
(var
(p : LALRPointer; 	 }
(5 : lexstring; 	 }

flag boolean;
(begin
(p:=h; 	 }
(CurrentToken(hi ,$); 	 }

flag := true;
(}

User-developed Code (may alter flag/PA values)
(}

xx 	flag;
(end;

- 142 -

Also remember about WhiteSpace(h:pointer) when
removing $whitespace / comments

function newcell(h:pointer):integer32;
var
p RegPtr;

begin
p :=
with pA do
begin
TheGlobalCell TheGlobalCell + 1;
newcell := TheGlobatCell;

end;
end;

function newnode(h:pointer):integer32;
var

p RegPtr;
begin

p 	h;
with pA do
begin
TheGlobalNode := TheGlobalNode + 1;
newnode TheGlobalNode;

end;
end;

function tokencell(h:pointer; s : Iexstring; ni ,n2 integer32):integer32;
var

p: RegPtr;
begin
p:= h;
with pA do
begin
CeliCount := CellCount + 1;
with CellStack[CellCount] do
begin
t cToken;
r CeliCount;
n 	5;

it :=nl;
i2 =0;
ol 	n2;

end;
tokencell 	CellCount;

end;
end;

function orcell(h:pointer; ni ,n2,n3 integer32): integer32;
var
p RegPtr;

begin
p := h;
with pA do
begin
CeilCount := CellCount + 1;
with CelIstackiCelICounti do
begin
t cOr;
r CeliCount;
n :=

-143-

it :=ni;
12 := n2;
ol n3;

end;
orcell := CeliCount;

end;
end;

function renamecell(h:pointer; ni,n2 : integer32): integer32;
var
p RegPtr;

begin
p 	h;
with pA do
begin
CeliCount := CeilCount + 1;
with CellStack[CellCount] do
begin
t cRename;
r CeliCount;
n
it :=nl;
12 =0;
ol 	n2;

end;
renamecell := CeliCount;

end;
end;

procedure push(h:pointer; ni,n2,ci,c2 integer32);
var
p RegPtr;

begin
p 	h;
with pA do
begin

Iexsp := Iexsp + 1;
Iexstack[Iexsp].ni 	ni;
Iexstack[Iexsp].n2 := n2;
Iexstack[Iexsp].ci 	ci;
Iexstack[Iexsp].c2 	c2;

end;
end;

procedure pop(h:pointer; var ni,n2,ci,c2 integer32);
var

p: RegPtr;
begin
p h;
with p" do
begin
ni := Iexstack[Iexsp].ni;
n2 := Iexstack[Iexsp].n2;
ci Iexstack[Iexspl.ci;
c2 := Iexstack[Iexspl.c2;
Iexsp := Iexsp - 1;

end;
end;

function LeftNaniels(h,hi :pointer):boolean;
var

-144-

p: RegPtr;
S : lexstring;

begin
p := h;
with pA do
begin
CurrentToken(hi, s);
(initialise all data for this regular expression
LeftSymbol := s;
TheGlobalNode := 0;
TheGlobalCell := 0;
CellCount := 0;
lexsp := 0;

end;
LeftNamels := true;

end;

procedure writecell(h : pointer; c : integer32);
var

p : RegPtr;
begin

p :=
with pA do
begin
with CellStack[c] do
begin
write(StreamOut,'
case t of

car: write(StreamOut,'or[
cRename: write(StreamOut,'n,ii :1);
cToken: write(StreamOut,'token(",n,")[clk,tokin,n',ii :i ,']');

end;
writeln(StreamOut,' -> n,oi :1);

end;
end;

end;

function Rulels(h,hi pointer):boolean;
var

p: RegPtr;
n1,n2 : integer32;
ci ,c2,c : integer32;

integer32;
begin

p 	h;
with pA do
begin

pop(h, ni ,n2,ci ,c2);
writeln(Streamcut,'Part ',LeftSymbol, [clk,tokin] -> res');
for i := i to TheGlobalNode do
begin
writeln(StreamOut,' Signal n,i:i ,';');

end;
writeln(StreamOut,' ONE-> n',ni:l);
C := ci;
while (c <> c2) do
begin
writecell(h,c);
c := cellstack[c].r;

end;
if (ci oc2) then writecell(h,c2);

145-

writeln(StreamOut,' n',n2:1,' -> res');
writeln(StreamOut,'End;');
(reset the system for the next expression)
TheGlobalNode := 0;
TheGlobalCell 0;
CeliCount := 0;
Iexsp := 0;

end;
Rulels 	true;

end;

function ExpAgain(h,hi :pointer):boolean;
var
p RegPtr;
nl,n2,n3,n4,n5 integer32;
ci ,c2,c3,c4,c5,c6 integer32;

begin
p 	h;
with pA do
begin
{E=F','F}
pop(h, n3,n4c3,c4);
pop(h, nl,n2,ci,c2);
n5 newnode(h);
c5 := renamecell(h,nln3);
c6 	orcell(h,n2,n4,n5);

cellstack[c5].r := ci;
cellstack[c2].r 	c3;
cellstack[c4].r 	c6;

push(h, ni ,nS,c5,c6);
end;
ExpAgain true;

end;

function FactorAgain(h,hl :pointer):boolean;
var

p: RegPtr;
ni ,n2,n3,n4 integer32;
ci,c2,c3,c4,c5 integer32;

begin
p := h;
with pA do
begin
(F=TT}
pop(h, n3,n4,c3,c4);
pop(h, nl,n2,ci,c2);
c5 renamecell(h,n2,n3);

cellstack[c2].r 	c5;
cellstack[c5].r 	c3;

push(h, nl,n4,ci,c4);
end;
FactorAgain := true;

end;

function Primarylsld(h,hl :pointer):boolean;
var

-146-

p: RegPtr;
ni ,n2 : integer32;
ci: integer32;
S : Iexstring;

begin
p
with pA do
begin
CurrentToken(hi,$);
ni := newnode(h);
n2 := newnode(h);
ci := tokencell(h,snin2);
push(h, ni ,n2,cl ci);

end;
Primarylsid := true;

end;

function RepeatlsPlus(h,hi :pointer):boolean;
var

p : RegPtr;
ni,n2,n3 integer32;
ci,c2,c3 : integer32;

begin
p := h;
with pA do
begin
{F=T+}
ni := newnode(h);
pop(h, n2,n3c2,c3);
ci := orcell(h,ni,n3,n2);
cellstack[ci].r 	c2;
push(h, ni ,n3,ci ,c3);

end;
RepeatisPlus := true;

end;

function Repeatlsouery(h,hi :pointer):boolean;
var

p : RegPtr;
ni,n2,n3 : integer32;
ci ,c2,c3 : integer32;

begin
p := h;
with pA do
begin

ni := newnode(h);
pop(h, n2,n3,c2,c3);
ci 	orcell(h,n2,n3,ni);
cellstack[c3].r := ci;
push(h, n2,nl,c2,ci);

end;
Repeatisouery := true;

end;

function RepeatlsStar(h,hi :pointer):boolean;
var
p: RegPtr;
ni n2,n3,n4 integer32;
ci,c2,c3,c4 : integer32;

begin
p := h;

- 147 -

with pA do
begin

ni := newnode(h);
n2 newnode(h);
pop(h, n3,n4,c3,c4);
ci := orceil(h,ni ,n4,n3);
c2 	orcell(h,n3n4,n2);
ceilstack(cl].r := c3;
ceilstack[c4].r 	c2;
push(h,nl ,n2,cl ,c2);

end;
RepeatisStar := true;

end;

function CommentFound(h,hi :pointer): boolean;
begin
WhiteSpace(hi);
CommentFound := true;

end;

end.

9.4 LALR(1) Parser and Lexer Tables
If the grammar definition is LALR(1) then the compiler-compiler automatically

generates the combined parse and lex tables for use with the processor software

emulation.

The example table, given next, has been generated from the grammar describing

regular expressions. Note that the individual parse and lexical states are indicated.

Also note that each entry consists of four micro-instructions and has an associated

comment.

}

(This software was generated by J.D.McMuthn as an
* integral part of his M.PhiI, Ph.D research. 	*
* **

unit Regtab;

interface
type

integeri 6 = integer;
function Regtableread(a:integerl6) : word;
function Regtablemax:integerl 6;

implementation

const
addrmax = 152;
instmin = 0;
instmax = 611;
pit array [instmin..instmax] of word =

$20005000i $0000,$003D,
{

0 PSHIFT $iambda 1 ** lex reset 61 push $error

-148-

Parse State 1
$0003,$2005,$2013,$4000, (1 PSC identifier _$2 = identifier 'cleftnameis>
$000F$0007,$0000,$003D, (2 Ps Reg 7}
$001 0,$2003,$201 2,$4000, (3 PSC RegExpRule _$1 = RegExpRule
$0012,$0009,$0000,$003D,(4 PS_$i 91
$0013,$000D,$0000,$003D, (5 PS_$2 131
$2000,$E000,$2000,$4000, (6 ELSE **** PARSE ERROR HANDLER +*t*

Parse State 3)
$0002,$6001 ,$8001 ,$0038, (7 PSC $eoi $goal = Reg $eoi }
$2000,$E000,$2000,$4000, (8 ELSE 	PARSE ERROR HANDLER ****

(Parse State 5)
$0003,$2005,$2013,$4000, (9 PSC identifier _$2 = identifier <Ieftnameis>
$001 0,$2002,$2012,$003B, (10 PSC RegExpRule _$1 =_$1 RegExpRule
$0013,$000D,$0000,$003D, (11 PS_$2 13)
$2000,$4004,$200F,$003B, (12 ELSE Reg =_$1

(Parse State 6)
$000A,$000F,$0000$003D, (13 PS'=' 15)
$2000,$E000,$2000,$4000, { 14 ELSE ***t PARSE ERROR HANDLER)

(Parse State 9
$0003,$2014,$200E,$4000, (15 PSC identifier Primary = identifier <primaryisid>
$0004,$0016,$0000,$003D, (16 PS'f 22
$000C,$001 D,$0000,$003D, (17 PS Exp 291
$000D,$001 F,$0000,$003D, (18 PS Factor 311
$000E,$0021 ,$0000,$003D, (19 PS Primary 33)
$0011 $0025,$0000,$003D, (20 PS Term 371
$2000,$E000,$2000,$4000, (21 ELSE **** PARSE ERROR HANDLER ""

Parse State 11)
$0003,$2014,$200E,$4000, (22 PSC identifier Primary = identifier <primaryisid>
$0004,$001 6,$0000,$003D, (23 PS '('22)
$000C,$0027,$0000,$003D, (24 PS Exp 391
$000D,$001 F,$0000,$003D, (25 PS Factor 311
$000E,$0021 ,$0000,$003D, (26 PS Primary 33)
$0011 ,$0025,$0000$003D, (27 PS Term 37)
2000E000,$2000,$4000, (28 ELSE **** PARSE ERROR HANDLER t***

(Parse State 12)
$0009,$2006,$201 0,$0039, (29 PSC ';' RegExpRule = _$2 =' Exp ';' cruleis>
$2000,$E000,$2000,$4000, (30 ELSE **** PARSE ERROR HANDLER

(Parse State 13)
$001 6,$0029,$0000,$003D, (31 PS_$4 41
$2000$4009,$2016,$4000, (32 ELSE _$4 =

(Parse State 14
$0006,$2010,$201 1 ,$003B, (33 PSC '*' Term = Primary t*t crepeatisstar>
$0007,$201 1 ,$201 1 ,$003B, (34 PSC '+' Term = Primary '1-' <repeatisplus>
$000B,$200F,$201 1 $003B, (35 PSC'T Term = Primary'?' <repeatisquery>
$2000,$401 2,$201 1 ,$003B, (36 ELSE Term = Primary

(Parse State 15)
$001 7,$002C,$0000,$003D, (37 PS _$6 44)
$2000,$400D,$2017,$4000, (38 ELSE _$6 =

(Parse State 16)
$0005,$201 3,$200E,$003A, (39 PSC ')' Primary = '(' Exp ')'

- 149 -

$2000,$E000,$2000,$4000, (40 ELSE **** PARSE ERROR HANDLER

Parse Slate 18
$0008,$0032,$0000,$003D, (41 PS','SO }
$0014,$2008,$201 6,$003B, (42 PSC _$3 _$4 = _$4 _$3 }
$2000,$400A,$200C,$003A, (43 ELSE Exp = Factor _$4

(Parse State 22
$0003$2014,$200E,$4000, (44 PSC identifier Primary = identitier cprimaryisid>
$0004,$001 6,$0000,$0030, (45 PS (22)
$000E,$0021 ,$0000,$003D, (46 PS Primary 33)
$0011 ,$200B,$2015,$4000, (47 PSC Term _$5 = Term <factoragain>
$0015,$2000$2017,$003B, (48 PSC_$5 _$6 =_$6_$5)
$2000,$400E,$200D,$003A, { 49 ELSE Factor = Term _$6

Parse State 24)
$0003,$2014,$200E,$4000, { 50 PSC identifier Primary = identifier <primaryisid>
$0004,$0016,$0000,$003D, (51 PS '(' 22)
$000D,$2007,$2014,$003B, (52 PSC Factor _$3 = Factor <expagain>
$000E,$0021 ,$0000,$003D, (53 PS Primary 33)
$0011 ,$0025,$0000,$003D, { 54 PS Term 371

	

$2000,$E000,$2000$4000, (55 ELSE 	PARSE ERROR HANDLER

(Max Symbols in a rule = 4
$2000,$6000,$A000,$2000, (56 POP
$2000,$6000,$A000,$2000, (57 POP }
$2000,$6000,$A000$2000, (58 POP)
$2000,$6000,$A000,$2000, (59 POP }
$2000,$6000,$A000,$4000, (60 REDUCE)

(Lex State 1
$2000,$6000,$6000,$003E, (61 LC }
$8009,$8009,$4000,$005C, (62 IF 9 .. 9 LS 92 push $error
$801A$801A$4002,$0056, (63 IF 26 .. 26 LS 86 push $eoi
$801 E,$801 E,$4000,$005C, (64 IF 30 .. 30 LS 92 push $error
$8020,$8020,$4000,$005C, (65 IF .. LS 92 push $error I

	

$8021 ,$8021 ,$4000,$0057, (66 IF 	! LS 87 push $error)
$8028,$8028$4004,$004E, (67 IF (.. (LS 78 push '('
$8029,$8029,$4005,$004F, (68 IF ..) LS 79 push)'
$802A,$802A,$4006,$0050, (69 IF * * LS 80 push '*1

$802B,$802B,$4007,$0051, (70 IF + .. + LS 81 push +'
$802C,$802C,$4008,$0052, (71 IF .., LS 82 push
$803B,$803B,$4009,$0053, (72 IF;.. ; LS 83 push
$803D,$803D,$400A,$0054, (73 IF =.. = LS 84 push '=)
$803F$803F,$400B,$0055, (74 IF? .. ? LS 85 push '7)
$8041 ,$805A,$4003,$0064,(75 IFA .. Z LS 100 push identifier)
$8061 ,$807A,$4003,$0064, (76 IF a .. z LS 100 push identifier
$A000,$A000,$0000,$0030, (77 LA $error ** lex reset 61 push $error

(Lex State 13
$E004,$A000,$0000,$0030, (78 LA'('" lex reset 61 push $error

(Lex State 12
$E005,$A000,$0000,$003D, (79 LA ')' Iex reset 61 push $error)

Lex State 11)
$E006,$A000,$0000,$003D, (80 LA '' ** lex reset 61 push $error

(Lex State 10)
$E007,$A000,$0000,$003D, 181 LA Y ** lex reset 61 push $error

)

- 150 -

(Lex State 9
$E008,$A000,$0000,$003D, (82 LA ',' ** Iex reset 61 push $error

(Lex State 8
$E009,$A000,$0000,$003D, (83 LA ';' lex reset 61 push $error

(Lex State 7
$E0OA,$A000,$0000,$003D, (84 LA '=' ** lex reset 61 push $error)

(Lex State 6
$EOOB,$A000,$0000,$003D, 185 LA '?' ** lex reset 61 push $error

(Lex State 5
$C002,$A000,$0000,$003D, (86 LA $eoi lex reset 61 push $error

(Lex State 4
$2000,$6000,$6000,$0058, (87 LC }
$8009,$8009,$4000,$0057, (88 IF 9 .. 9 LS 87 push $error
$801 E,$801 E,$4000,$005C, (89 IF 30 .. 30 LS 92 push $error
$8020,$807E,$4000,$0057, (90 IF .. LS 87 push $error
$A000,$A000,$0000,$003D, (91 LA $error ** lex reset 61 push $error

(Lex State 3
$2000,$C01 5,$4000,$006A, (92 LI commentfound to 106 push $error
$6000,$6000,$0000,$0030, (93 lex reset 61 push $error
$2000,$6000,$6000,$005F, (94 LC }
$8009,$8009,$4000,$005C, (95 IF 9 .. 9 LS 92 push $error
$801 E,$801 E,$4000,$005C, (96 IF 30 .. 30 LS 92 push $error
$8020,$8020,$4000,$005C, (97 IF .. LS 92 push $error
$8021 $8021 ,$4000,$0057, (98 IF!.. ! LS 87 push $error
$A000,$A000,$0000,$003D, (99 LA $error lex reset 61 push $error)

(Lex State 2)
$2000,$6000,$6000,$0065, (100 LC
$8030,$8039,$4003,$0064, (101 IF 0 .. 9 LS 100 push identifier)
$8041 ,$805A,$4003,$0064, (102 IF A .. Z LS 100 push identifier
$805F,$805F,$4003,$0064, (103 IF - .. - LS 100 push identifier
$8061 ,$807A,$4003,$0064, (104 IF a .. z LS 100 push identifier)
$E003,$A000,$0000,$003D, (105 LA identifier lex reset 61 push $error

(Lex State 141
$2000,$6000,$6000,$006B, (106 LC
$8009,$8009,$4000,$0080, (107 IF 9 .. 9 LS 128 push $error
$801A,$801A,$4002,$0056, (108 IF 26.. 26 LS 86 push $eoi
$801 E,$801 E,$4000,$0080, (109 IF 30 .. 30 LS 128 push $error
$8020,$8020,$4000,$0080, (110 IF .. LS 128 push $error}
$8021 $8021 ,$4000,$007B, (111 IF!.. ! LS 123 push $error)
$8028,$8028,$4004,$004E, (112 IF (.. (LS 78 push '('
$8029,$8029,$4005,$004F, (113 IF) ..) LS 79 push')')
$802A,$802A,$4006,$0050, (114 IF * * LS 80 push
$802B,$802B,$4007,$0051, (115 IF + .. + LS 81 push '+'
$802C,$802C,$4008,$0052, (116 IF,.. , LS 82 push',')
$8036,$803B,$4009,$0053, (117 IF 	; LS 83 push';')
$803D,$803D,$400A,$0054, (118 IF = .. = LS 84 push '=')
$803F,$803F,$400B,$0055, (119 IF?.. ? LS 85 push'?')
$8041 ,$805A,$4003,$0064, (120 IF A .. Z LS 100 push identifier)
$8061 ,$807A,$4003,$0064, (121 IF a.. z LS 100 push identifier
$A000,$A000,$0000,$003D, (122 LA $error lex reset 61 push $error)

(Lex State 16)
$2000,$6000,$6000,$007C, (123 LC)

stir

$8009,$8009,$4000,$007B, (124 IF 9 .. 9 LS 123 push $error
$801 E,$801 E,$4000,$0080, (125 IF 30.. 30 LS 128 push $error)
$8020,$807E,$4000,$007B, (126 IF 	.. LS 123 push $error}
$A000,$A000,$0000,$003D, (127 LA $error ** lex reset 61 push $error

(Lex State 15
$2000,$C015,$4000,$0093, (128 LT commentfound to 147 push $error)
$6000,$6000,$0000,$003D,

(
129" lex reset 61 push $err&

$2000,$6000,$6000,$0083, (130 LC
$8009,$8009,$4000,$0080, (131 IF 9.. 9 LS 128 push $error
$801 A,$801A,$4002,$0056, (132 IF 26.. 26 LS 86 push $eoi
$801 E,$801 E,$4000,$0080, (133 IF 30 .. 30 LS 128 push $error
$8020,$8020,$4000,$0080,(134 IF 	.. LS 128 push $error}
$8021 $8021 ,$4000,$007B, (135 IF!..! LS 123 push $error}
$8028,$8028,$4004,$004E, (136 IF

(.. (
LS 78 push '('

$8029,$8029,$4005,$004F, (137 IF 	..)
LS 79 push ')'

$802A,$802A,$4006,$0050, (138 IF * .. * LS 80 push
$802B,$802B,$4007,$0051, (139 IF + .. + LS 81 push +'
$802C,$802C,$4008,$0052, (140 IF, .. , LS 82 push
$803B,$803B,$4009,$0053, (141 IF ; LS 83 push
$803D,$803D,$400A,$0054, (142 IF = .. = LS 84 push '='
$803F,$803F,$400B,$0055, (143 IF ? .. ? LS 85 push '?'
$8041 ,$805A,$4003,$0064, (144 IF A .. Z LS 100 push identifier)
$8061 ,$807A,$4003,$0064, (145 IF a .. z LS 100 push identifier
$A000,$A000,$0000,$0030, (146 LA $error ** lex reset 61 push $error

(Lex State 17
$2000,$6000,$6000,$0094, (147 LC
$8009,$8009,$4000,$005C, (148 IF 9.. 9 LS 92 push $error
$801 E,$801 E,$4000,$005C, (149 IF 30 .. 30 LS 92 push $error
$8020,$8020,$4000,$005C, (150 IF 	.. LS 92 push $error
$8021 ,$8021 ,$4000,$0057, (151 IF ! .. ! LS 87 push $error
$A000,$A000,$0000,$003D (152 LA $error ** lex reset 61 push $error

function Regtableread(a:integerl6) 	word;
begin

it (instmin<=a) and (a<=instmax) then
begin

Regtableread 	plt[a];
end
else
begin
write('lllegal Instruction Address ,a);
writeln(' legal range [',instmin,'..',instmax,']');
Reglableread 	plt[a mod 4];

end;
end;

function Regtablemax:integerl 6;
begin

Regtablemax := addrmax;
end;

end.

9.5 Examples of Parses
The section "Examples of Regular Expressions" in this chapter gave some regular

expressions suitable for input to the software emulation of the processor. The

- 152 -

resulting output is given in the corresponding sections. The output also includes

MODEL source code intended to generate logic to recognise the expression. The

MODEL code generated follows the algorithm described in section 2 "Hardware

Implementations". The logic to recognise a given token, such as "a" is referenced but

not defined. It will be similar to that defined in section 2.1.1.1 "Recognising a

Token".

9.5.1 Example 1

The regular expression A = a b+ c generated the following debug information which

also included some MODEL source code for logic to recognise the expression. The

logic to detect tokens a, b and c is not defined.

1]A=ab+c;
Part A [clk,tokin] -> res
Signal ni;
Signal n2;
Signal n3;
Signal n4;
Signal n5;
Signal n6;
Signal n7;
ONE-> ni
token("a")[clk,tokin,nl)-> n2
n2 -> n5
orf n5,n4] -> n3
tokenb")(clk,tokin,n3] -> n4
n4 -> n6
token'c")[clk,tokin,n6] -> n7
n7 -> res

End;
2]

1 3]
EOF

9.5.2 Example 2

The regular expressions A = a bt c and B = c m+ (a, d+)? Gave the following

fragments of MODEL source code.

1]A= a b* c;
Part A(clk,tokin] -> res
Signal ni;
Signal n2;
Signal n3;
Signal n4;
Signal n5;
Signal n6;
Signal n7;
Signal nB;
ONE-> ni
token("a")[clk,tokin,nl] -> n2
n2 -> n5
04 n5,n4 I -> n3

- 153 -

token("b")[clk,tokin,n3J -> n4
orj n3,n4] -> n6
nB -> n7
token("c")[clk,tokin,n7] -> n8
n8 -> res

End;
2]B=cm-i-(a,d+)?;

Part B [clk,tokin] -> res
Signal ni;
Signal n2;
Signal n3;
Signal n4;
Signal n5;
Signal n6;
Signal n7;
Signal n8;
Signal nS;
Signal nb;
Signal nil;
Signal n12;
ONE-> ni
token("c')L clk,tokinnl] -> n2
n2 -> n5
orf n5n4] -> n3
token("m")[clk,tokin,n3] -> n4
n4 -> n6
n6 -> nlO
token("a")[clk,tokin,n6] -> n7
orf n1O,n9] -> n8
token("d")[clk,tokin,n8] -> n9
orf n7,n9] -> nll
orfnG,nil]->n12
n12 -> res

End;
EOF

- 154 -

