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Abstract 

This thesis investigates the topic of the design, implementation and potential use of 

specialised hardware used to accelerate the recognition and translation of computer 

programs expressed in a range of computer languages. This investigation focuses 

specifically on the twin processes of parsing and lexical analysis. 

The research described was carried out in two areas namely, the feasibility of 

designing a specialised instruction set for a RISC like processor able to accelerate the 

parsing and lexical analysis process, and the physical implementation of a RISC 

processor in CMOS VLSI technology able to execute the designed instruction set. 

The feasibility of mapping the process of language recognition onto the instruction set 

of a RISC processor is investigated. This involves an assessment of the suitability of 

the LL(1) and LALR(1) algorithms, both of which are used for parsing, and other 

associated algorithms, used for lexical analysis, as a basis for an appropriate 

instruction set architecture. The feasibility of an instruction set design which uses 

fixed size instructions with variable size data fields to ensure scaleable operation is 

also investigated. The appropriate software mechanisms used to validate the 

instruction set architecture are outlined. 

The practical implementation using CMOS technology of a RISC processor able to 

execute the new instruction set is investigated. In particular the feasibility of using 

bit-slice technology to implement the processor having fixed size instructions with 

variable size data-paths and address ranges is investigated. 

The combination of novel instruction set with variable data-widths and the fabricated 

devices able to activate semantic actions directly from hardware together form an 

original contribution to the field of parsing and lexical analysis. 
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1. Introduction 
The use of high level languages such as PASCAL, C++, or Java to specify computer 

behaviour depends on the ability of computers to analyse the source text and translate 

the implied meaning (or semantic specification) into executable machine instructions. 

This research investigated the feasibility of designing a specialised processor having 

an instruction set aimed specifically at the problem of recognising computer programs 

written in a wide range of computer languages. The architecture of the RISC 

processor also had to provide interfaces to allow external hardware to implement the 

semantics implied by the computer program. This research, therefore provides a 

practical application of the theory of parsing and lexical analysis, two fundamental 

concepts of language theory extensively used within computer science. These theories 

of lexical analysis and parsing are well known. 

In the following sections of Chapter 1, the main concepts involved in parsing and 

lexical analysis are briefly described. This is needed to provide an informed 

background before discussing both the research objectives and the overview of the 

thesis. 

For more information refer to the literature on the theory of parsing and lexical 

analysis. The following is a partial list of useful references :- 

[Aho 1977] "Principles of Compiler Design" 

[Brown 1981] "Writing Interactive Compilers and Interpreters" 

[Denning 1978] "Machines, Language and Computation" 

[Fischer 1991] "Crafting a Compiler with C" 

[Hunter 1981] "The Design and Construction of Compilers" 

[McGettrick 1980] "The Definition of Programming Languages" 

[Minsky 1972] "Computation: Finite and Infinite Machines". 

192 



1.1 Parsing and Lexical Analysis - An Overview 
Just as the process of reading a book uses the twin processes of lexical analysis and 

parsing, so does the example of reading and translating a computer program. Firstly 

the sequences of characters are analysed into words (possibly requiring a dictionary). 

Next the combinations of words are analysed to see if they form correct sentences. 

The final stage is to recognise the meaning of the individual sentences and perform 

any actions implied by the meaning. 

Lexical Analysis is defined as being the process of recognising "words" from 

sequences of characters in the computer program source text. The dictionary (or 

lexicon) of words depends on the language being used. 

Parsing is defined as being the associated process of checking that the sequence of 

recognised "words" forms a valid sentence in the language. Different languages will 

have different structures for a legal sentence. 

Together these two processes recognise source code as belonging to a specific 

language and also provide hooks to allow the generation of executable code based on 

the semantics implied by the source text. The "definitions" provided describe the 

behaviour of a parser and lexical analyser as if they were "black boxes". Some 

awareness of the internal operations of a parser and lexical analyser is needed for an 

understanding of both the processor architecture (and its instruction set) and its 

practical implementation in hardware. The actual internals and concepts involved in 

both parsing and lexical analysis are introduced informally. To highlight the important 

concepts in parsing and lexical analysis, the example (mentioned above) of reading a 

sentence in a book will be used. 

1.2 Parsing - The Basic Concepts 

As indicated in the previous section, the parsing process checks that the tokens (or 

words) provided by the lexical analyser form a legal structure or sentence in the given 
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language. This section outlines some of the terminology used in parsing theory (as it 

relates to the research). 

1.2.1 Sentences and Language 

Informally, a sentence consists of a number of words with some constraints on the 

sequences of words allowed. There will be a fixed collection of words (known as a 

lexicon or dictionary). 

Each word (or token) in the lexicon will consist of a sequence of letters where each 

letter is taken from a fixed alphabet. 

A language will be defined by the combination of constraints on the word sequences 

and the lexicon. A language could therefore consist of many possible sentences. 

For example, given a dictionary D of tokens where 

D= {"a" , " on,,  , " cat", ''ball", ''sat", "the", ''threw" } 

then we could form the sequences R, S, T where 

lit = ''a" ''bal ''tlrev" 

S = ''a'' 

1' = ''the" ''cat" 

(Note that the full-stop is only used to indicate the end of the token sequence) 

We could define all three sequences to be a sentence and state that the language L 

only contained these three sentences. Thus we could formally define the language L to 

be a set of sequences. That is, 

L = { R, 5, T } where R, 5, T are defined above. 

- 11 - 



For a language containing many sequences (possibly an infinite number) it could be 

difficult to verif' if a particular sequence of tokens is a sentence due to the large 

number of sentences. 

1.2.2 Languages and Grammars 

Instead of defining a language by listing all its sentences, an alternative mechanism is 

to generate the sentences from a simple set of rules known variously as re-write or 

production rules. 

The following are all examples of productions. 

L = R "cat" 

L = X "ball" 

X= "a" S 

X = "the" T 

R = "a" "ball" Y 

S = "cat" Y 

'IT 	 ''on" 

Y = "threw" "a" 

A sequence of symbols can be used more than once as the left hand side of a 

production. Thus L and X each have two productions. 

Productions can also have more than one symbol on the left hand side. The following 

are also examples of productions. 

A B C = X "sat" 

A C B = X "saw" 

Grammars which have productions with rules having more than one symbol as part of 

the left-hand side are called context-sensitive. Grammars where all productions have 

- 12 - 



only one left-hand symbol are called context-free. Natural languages such as English 

or French can only be described by context-sensitive grammars. Computer languages 

such as Java or PASCAL can be described using context-free grammars. The research 

only investigated the acceleration of recognition of languages generated from context-

free grammars. Accordingly from this point, any grammar described will be context-

free. 

Also a production can have an empty right-hand side. That is the right hand side 

contains the null symbol, called epsilon. The production is also known as an epsilon 

production. 

x= 

x =  '0' 

This defines X as being null or '0' 

A symbol which appears on the left-hand side of a production is known as a non-

terminal symbol. A non-terminal symbol can appear on the right-hand side of a 

production. Thus L, X, R, S, T and Y are all non-terminal symbols. A symbol which 

only appears on the right-hand side of a production is known as a terminal symbol. 

Thus "cat", "ball", "a", "the", "sat", "on" and "threw" are all terminal symbols. The 

epsilon symbol is an example of a terminal symbol. A symbol can be either a terminal 

or non-terminal symbol. It cannot be both. 

Starting with the symbol L and using the productions 

L = R "cat" 

R = "a" "ball" Y 

= 

generates the chain 
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L 

=> R "cat" 

> "a" "ball" Y "cat" 

=> 	"ball" 

Similarly starting from the symbol L and using the productions, 

L = X "ball" etc. 

gives the two chains 

L 

> X "ball" 

> "a" S "ball" 

> "a" "cat" Y "ball" 

=> ''a'' ''cat'' 	''a" ''ball" 

L 

> X "ball" 

> "the" I "ball" 

> ''the'' 	''sat" ''on 	''ball" 

The generation of all possible chains from a starting expression or symbol (such as L) 

by means of the productions is known as a derivation. The derivation set is the set of 

sequences obtained when no further production can be used. 

Thus we can see that the three sequences 

"a'' 	 ''a" ''bal I'', 
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"on' 

are all derivations from the symbol L. Notice also that the set of derivations from the 

symbol L is identical to the set of sentences which represent the language L as defined 

earlier. 

We define a goal symbol to be a unique non-terminal symbol whose set of derivations 

forms the language or the set of sentences. 

A grammar is defined to be the combination of productions, goal symbol, non-

terminal and terminal symbols. The set of all derivations from the goal symbol (using 

the productions) gives the language defined by the grammar. 

Finally, grammars can be described using notation other than re-write rules. One such 

notation uses ? + and * to indicate repetition of symbols. 

Definea*={} u { a } u { aa } u { aaa } u  ... 	{ eps ilon, a, aa, aaa, ... }.Thatis,a* 

represents the repetition of "a" from 0 to many times. (Sometimes the notation [ a] is 

used instead of a*). 

Definea+={a}u{aa}u{aaa}u ... {a,aa,aaa, ... }.Thatis,a+representsthe 

repetition of"a" from 1 to many times. 

Define a? = { } u { a } = { epsilon, a }. That is, a? represents the repetition of "a" 

from 0 to 1 times. 

Note also that a*  is the same as a+?. 

Define "," to represent the choice between two sequences. 

Thus a , b = { a , b } 

A grammar expressed using the "?" " "+" and "," symbols can be easily converted 

to re-write rules. For example, A = C" can be converted to 
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A = X 

x = 

x=xc 

or 

A=X 

x= 

x=cx 

and A = C+ can be converted to 

A=X 

x=c 

x=xc 

or 

A=X 

x=c 

x=cx 

The "p", "+", "?" and "," notation is used extensively in the following chapters. 

1.2.3 Parsing and Grammars 

The use of grammars to define languages aids greatly in the process of recognising 

whether a sequence of tokens is a sentence. Grammars do this by converting the 

parsing process into a game of "syntactic dominoes". Each production becomes a 

domino where the tokens represent the domino spots. The game starts with the goal 

symbol on one side and the proposed sentence (or sequence of terminal symbols) on 

the other side. The two sides are then joined together by using the legal dominoes (or 

productions). If it is possible to join the goal symbol to the token sequence using only 

legal dominoes then the token sequence is a sentence of the language. The game is 

identical to finding a derivation of the goal symbol except that the end result is known 

from the start. 
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There are a number of strategies (or parsing methods) possible which can be used to 

play this game. Two of these are important for use as potential parsing mechanisms 

and are outlined below. The first strategy is where dominoes are always added from 

the goal symbol side down towards the token sequence side. This is known as a top-

down parse. The other strategy of interest is where dominoes are always added from 

the token sequence side up towards the goal symbol side. This is known as a bottom-

up parse. The pattern made by the dominoes is called the parse-tree. An example 

parse-tree is shown below. 

This example parse-tree is generated when recognising that the token sequence "10 + 

11" belongs to the language defined by the grammar with goal symbol E and 

productions, 

E=E+T 

E=T 

T=D 

T=TD 

D=0 

D=l 

This parse-tree could be created either bottom-up (from the token sequence 10+11) or 

top-down (from the goal symbol E). 
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Figure 1 - A Parse-Tree 

The following diagram shows a left to right traversal of the parse-tree starting from 

(and returning to) the top (or goal symbol) 
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E 	 4 
= 	 (10) 

E '+' T 

E 

i 	(5) 	 = 	(9) 
TO 

T T 
(4) 	

= 

T 
D4 D  

D 	(2) 	 (3 

= 	

(6) 

D 
= 	(1) 

Figure 2 - Parse-Tree Traversal 

A pre-order traversal of a parse-tree is a visit of the node N then a recursive visit of 

the sub-trees rooted at children N 1 ..k of a node N. A post-order traversal of a parse-

tree is a recursive visit of the sub-trees rooted at children N I ..k of a node N then a 

visit to N. 

For the above parse-tree the sequence of rules given by both post-order and pre-order 

traversals are shown. 

Parse Tree Label Pre-Order Traversal Parse Tree Label Post-order Traversal 
. ç.qacc.......... ....... ........................ eg3ence .... 

10 E=E+T 1 D1 
5 E=T 2 T=D 
4 T=TD 3 D=0 
2 T=D 4 T=TD 
1 D = 1 5 E=T 
3 D=0 6 D=l 
9 T=TD 7 T=D 
7 T=D 8 0=1 
6 D = 1 9 T=TD 
8 D = 1 10 E=E--T 

Table I - Pre and Post-order Traversal of Parse Trees 
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It is important to note that a pre-order traversal predicts the rule to be recognised, and 

that a post-order traversal is able to refer to data already recognised 

1.2.4 Grammars and Semantics 

The purpose of a language is to communicate meaning or semantics. A grammar with 

its productions can only define the structure of the sentence. It cannot normally 

indicate the semantics or meaning of a particular sentence. However, it is possible to 

attach semantic actions to the individual productions. That is each production can 

have an action to perform when the rule is recognised. 

The following example shows how binary numbers can be recognised from text and 

then added. This example uses the grammar and parse-tree shown in the previous 

section, where the following table shows the productions and associated actions to 

recognise binary numbers. The goal symbol of the grammar is E. 

Production 	Action 
ET E:T 
EE'+'T E:E+T 
D'O' D:0 
0='!' D:1 
TD T:D 
T=TD T:2*T+D 

Table 2 - Productions and semantic actions 

The semantic actions shown assume that there are three registers E, T and D. For the 

token sequence 10 + 11, we use the post-order traversal of the previously mentioned 

parse-tree. Writing the rules with associated semantic action in reverse order (starting 

from the token sequence to the goal symbol i.e. bottom up) (evaluating E,T,D as we 

go) 

Parse Tree Label Rule Action Value of D Value of T Value of E 
0=1 D:1 I 7 

2 TD T:=D I I 7 
3 D0 D:0 0 1 ? 

4 T=TD T:2*T+0 0 2 ? 

5 ET E:T 0 2 2 
6 D1 D:=l 1 2 2 
7 T0 T:D I I 2 
8 D1 0:1 1 1 2 
9 TTD T:2*T+D 1 3 2 
30 EE+T E:E+T I 3 5 

Table 3 - Semantic actions and Parse- Trees 
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Note that E contains the answer 5 (in decimal) which is the value of 10 + Ii in binary. 

Thus we can see that semantic actions can be attached to the syntax productions to 

obtain the desired meaning. In pre-order traversal the semantic action is triggered at 

the start of a predicted production. For post-order traversal the semantic action is 

triggered after the production has been recognised. The left-right post-order traversal 

emits the productions in a sequence where all information is acquired before using it. 

The left-right pre-order traversal of a parse-tree predicts but does not acquire the 

information required at the time of triggering of a semantic action. 

Therefore, the design of semantic actions to attach to productions works best when 

the rules are recognised in the order given by the post-order traversal of the parse-tree. 

It must be noted that the semantic actions are specific to the productions. Changes to 

the productions will require different semantic actions. 

1.2.5 Grammar Hierarchies 

For a given language there may be more than one grammar which can "generate" all 

the sentences in that language. However the converse of a grammar generating 

multiple languages is not possible. This is due to the uniqueness of the derivation set 

(or set of sentences in the language) obtained from the goal symbol. 

1.2.5.1 Ambiguous Grammars 

It is possible to have a grammar which allows a sentence to be derived in more than 

one way from the goal symbol. This is equivalent to stating that there is more than 

one parse-tree for at least one sentence in the language. An ambiguous grammar is 

defined to be a grammar with this property. The following is an example of an 

ambiguous grammar. 

Using E as the goal symbol with the following productions, 

E = E '-' E 

E = number 
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where number and '-' are both terminal symbols. '-' represents the arithmetic 

subtraction operator. 

The sentence "n '-' n '-' n" can be derived from E in two possible ways. Note that the 

two routes generate the same sequence or derivation. 

Parse Tree 1. 

E 

=> E '-' E 

> number '-' E 

> number '-' E '-' E 

> number '-' number '-' number 

This is equivalent to working out the value of number - (number - number) 

Parse Tree 2. 

E 

=> E '-' E 

> E '-' number 

> E '-' E '-' number 

=> number '-' number '-' number 

This is equivalent to working out the value of (number - number) - number. 

These values are not normally the same. They are only equivalent if the last number is 

zero or just one of the first two numbers is infinite. 

A parser for an ambiguous grammar could generate an incorrect sequence of actions. 

Therefore ambiguous grammars must not be used. 
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1.3 Parsing Methods 
The practicality of using productions to both define a language and also to assist as 

place-holders for semantic actions should have been demonstrated. What has not been 

shown are any algorithms which can recognise a token sequence as being a sentence, 

or how productions can be used in the process. The format of productions should 

indicate that state machines could be used to implement the parsing and lexical 

analysis processes. The following sections indicate the use of state machines to 

implement the parsing process which are based on productions. 

1.3.1 State Machines 
A state machine can be represented by a graph where each node corresponds to a state 

and the arcs linking the states represent the state transitions. Each transition is a 

directed are (or one-way street) from one state to another state and is tagged with the 

transition trigger. For the parsing process, state transitions are triggered by the 

currently visible terminal or non-terminal symbol. Each production could be mapped 

onto a number of states (depending on the number of symbols in the rules' right-hand 

side) where the transitions are triggered in sequence by the symbols of the production. 

For example, 

The production R = A '+' B could become the state machine S with states SI, S2, S3,S4 
where SI is the initial state and S4 the final state. 

Figure 3 - State Machine 

State machines can be classified depending on the transitions and number of states. 

Generally there can be many start states and many end states for a given machine. 

A deterministic state machine is one with many states (possibly infinite) where each 

input symbol has at most one transition from each state. Thus for each state and for 

each possible input symbol (terminal or non-terminal) it is possible to "determine" the 
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next state. This machine ensures that there is no ambiguity of transitions when 

reading a stream of input symbols. 

A finite-state state machine is one with a countable (finite) number of states. When 

used to implement a parser there will be a single start state with a single end state. 

The end state will indicate that the goal symbol has been recognised. This type of 

state machine just stores the current state as a single variable. State transitions are 

decided by noting the current state and current symbol in the input queue, using the 

state transition table to determine the next state, which becomes the new value of 

current state. The current symbol is consumed and the following symbol becomes the 

current symbol. This machine has two types of instructions, a shift to state instruction 

and an accept instruction attached to the end state. 

A finite-state machine with stack is similar to a finite-state machine except that a 

stack is used to store the current states. State transitions are decided by noting the 

state on the top of the state stack and next symbol from the input queue and using the 

transition table to determine the next state. This next state is then pushed onto the 

state stack. These transitions are shift instructions. There are some states where a 

production is recognised ossibly determined by the next input symbol). The 

production will be reduced at this point. The state stack is popped by the number of 

symbols in the right hand side of the rule and the top of the stack becomes the current 

state. The symbol on the left of the rule is inserted into the input queue to become the 

new next symbol. This has an additional reduce instruction as well as the shift and 

accept instructions. The top-down and bottom-up strategies can both be emulated 

using this type of state machine. 

In both types of finite state machines it is possible to have the state transition or 

reduce conditional on knowing more that just the current next symbol but the 

subsequent next n symbols. In practice n is either 0 or I. The next n symbols are 

known as the took-ahead symbols. 
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There are many algorithms to construct the transition (or goto) tables and the reduce 

tables are discussed next 

1.3.2 Algorithms 
There are a large number of parsing algorithms, however only the three most common 

will be outlined. Each algorithm involves creating a mechanism to decide which 

production to recognise. A grammar may have a non-terminal symbol which defines a 

number of productions. Deciding which rule to start to recognise requires knowing the 

set of symbols which can possibly start a rule. 

1.3.2.1 First and Follow Sets 

A parser needs to decide which rule to start recognising for those productions defined 

by a common non-terminal. Knowledge of which terminal symbols can be seen first 

when starting a production is then required. Also knowledge of which terminal 

symbols can be seen following after a rule is useful to decide whether to recognise a 

rule or continue shifting to other states. 

A first set for a non-terminal symbol N contains those terminal symbols which can be 

present at the start of the productions for the symbol. It is the set of those terminal 

symbols which appear first in the set of derived sequences from N. The epsilon (or 

null) symbol can also be in this first set. Note that the first set for a terminal symbol is 

the set containing itself. 



Example. 

Given the productions for a grammar as being 

S = AZ 1' 
A= 
A=B 
A=CA 
8='!' 
C = '0' 
Z= 
z='. ,  

then the derivatives D of A are 
D= { epsilon,'!', '0'... 'I', '0'... 'O'} 

The start set is therefore { epsilon, '0', '1' 

Figure 4 - Start Sets 

Elimination of the epsilon symbol from the first set of a non-terminal symbol N 

depends on where N is referenced in the other productions. One method is to augment 

the first set with the first set of each symbol immediately following N when N appears 

on the right-hand side of a production. Should there be no following symbol in the 

rule where R is the left-hand symbol then use the first sets of the symbols following 

references to R. Repeat this until epsilon is eliminated. 

Using this method for the above example gives the start set S for A where epsilon has 

been removed as , ., 	} 

A follow set for a non-terminal symbol contains those terminal symbols which can be 

legally expected to occur after the symbol. It can be generated by forming the set of 

non-terminal and terminal symbols which can follow the specified non-terminal 

symbol in all productions which reference it. The non-terminal symbols are 

repetitively replaced until no more terminal symbols can be added. Any non-terminal 

symbols are replaced by the non-terminal symbol starter set q.v. A non-terminal 

symbol which is defined by an epsilon rule is replaced by its own follower set. A non-

terminal symbol which is the last symbol in a production and is defined by an epsilon 

rule is replaced by the follower set of the non-terminal on the left of the production. 
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Example. 

Given the productions for a grammar as being 

A= 
A'l' 
A = '0' A 

then the follower set for A is ( '' } , since only '*' occurs after A 

Note. 
A has an epsilon rule, 

Figure 5 - First and Follow Sets 

First and Follow sets are used by the following three parsing algorithms. 

1.3.2.2 Recursive Descent 

This algorithm uses the grammar rules and involves writing a sub-routine for each 

production. The routine corresponding to the rule defining the goal symbol is the first 

to be called. The sub-routines are potentially recursive and use the top-down 

approach. For a non-terminal symbol which has many productions, deciding on the 

appropriate rule will require examining the current next symbol and comparison with 

the start set for the non-terminal. 

A recursive descent parser (in a PASCAL-like notation) based on the example 

grammar used above to demonstrate starter and follower set is given as an example. 

ORM 



(* next_token is a lookahead to the current next token *) 
(* read_token consumes the current next token from the input stream *) 
(S  this recognises all rules which define A 5)  

procedure A 
begin 

case next_token of 
'5 , . 

'0': read_token; 
'1': begin 

read_token; 
A; 

end 
else 

error; 
end 

end 

(5  this recognises all rules which define S 5)  

procedure S 
begin 

A 
if next_token = '' then 

read_token 
else 

error; 
end 

Figure 6- Recursive descent parser 

This algorithm does not check if the grammar is unambiguous and may require 

extensive manual re-work to alter the parser should the grammar be modified. 

1.3.2.3 A Top-down Algorithm using one Lookahead Symbol 
This algorithm is based on a finite-state automata with stack using a top-down (or 

predictive) approach and reading the source symbols from left to right, using one 

symbol of look-ahead to help decide on the appropriate state transition or rule 

recognition. The parse trees generated are traversed using a pre-order (or left hand) 

traversal. 

This algorithm is usually known as the LL(l) parsing algorithm, where :-

L - read the text from Left to right 

L - use a Left-hand (or pre-order) traversal of the parse tree 

(1) - always use one look-ahead symbol 
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The LL(1) algorithm can be generalised to use more than one look-ahead symbol 

when it is known as LL(n) (or LL), where n is the number of look-ahead symbols 

required. The LL algorithm requires the placing of constraints on the productions of 

the grammar which mean that many grammars cannot use this algorithm. 

The algorithm has two parts, the state table generation and the parser which uses the 

state table. The first and follow referred to in the algorithm are the first and follow 

sets for a non-terminal symbol. These sets will not have had the epsilon symbol 

removed. 

Input: Grammar G 
Output: Parse table (or array) M 

Note $ is used to denote end of input. 

Algorithm: 

For each production A -> rhs of the grammar 
1) for each terminal a in first(rhs), add A = rhs to the table M[A,a] 
2) If epsilon is in first(rhs), add A = rhs for each terminal b in follow(A). 

If epsilon is in first(rhs) and $ is in follow(A), add A = rhs to table M[A,$] 

Finally mark each undefined entry in M as error. 

If there is more than one entry in any M[A,x] then the grammar is not LL(l) 

Figure 7 - LL('I) Table Generation 

The following is the LL(1) parse table generated for the example grammar used to 

indicate recursive descent. 

Note: 

first(A '' ) = { epsilon, '0', '1' }, follow(A '*') = { $ } 

Terminals 
Non-terminals 1 0' IT '' $ 

S S=A'*' S=A*' S=A* S=A't' 

A A='O'A A='l' A= 

Table 4 - LL(I) Parse Table 
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The generated parse table M is used in the parser. This LL( I) parser is described using 

a pseudo-PASCAL notation. 

(* let X be the top stack symbol *) 
(* let a be the next input symbol ) 
push goal symbol 0 onto the stack 
repeat 
if X is a terminal or $ then 
begin 

if X = a then 
pop X from stack and consume a from input 

else 
error 

end 
else 
begin 
lfM[X,a] = X ->Yl Y2 Ykthen 
begin 

pop X from stack 
push Yk,Yk- I, ... Y 1 onto stack (Y I new stack top) 

end 
else 

error 
end 

until stack is empty 

Figure 8 - LL(J) parser 

For more details of this algorithm refer to [Aho 1977]. 

1.3.2.4 Parsing from the Bottom Up using Looka head symbols 

This algorithm (like the LL(I) algorithm) is also based on a finite-state automata with 

stack but it uses a bottom-up approach. It reads the source from left to right and 

generates a right-hand (or post-order) traversal of the parse tree using a number of 

look-ahead symbols to determine state transitions. 

The algorithm is known as LR(1), where 

L - read source from Left to right 

R - use a Right-hand traversal of the parse tree 

(I) - always use one look-ahead symbol 
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The LR(l) algorithm can be generalised to use more than one look-ahead symbol 

when it is known as LR(n) (or LR), where n is the number of look-ahead symbols 

required. 

The LR algorithm was first described in the paper [Knuth 1966] "On the Translation 

of Languages from Left to Right" and extended in the paper [DeRemer 1971] "Simple 

LR(k) Grammars". 

A variant of the LR algorithm which only uses one look-ahead symbol where 

necessary is known as the LALR(l) algorithm, where 

L - Look 

A - Ahead 

L - read source from Left to right 

R - use a Right-hand traversal of the parse tree 

(1) - with at most one look-ahead symbol 

The mechanism for generating LALR(l) parse tables is best shown in [Aho 1977] 

"The Principles of Compiler Design". The paper [Pager 1977] "The Lane-Tracing 

Algorithm for Constructing LR(k) Parsers and Ways of Enhancing Its Efficiency" 

improves on the algorithm in [Aho 1977]. 

It can be shown that a grammar which is LL(l) is also LALR(1). The converse is not 

true. Therefore LALR(1) can recognise more languages than LL(1). It can also be 

shown that the LALR(1) algorithm will detect ambiguous grammars. The LALR(I) 

parse table contains shift and reduce instructions. 

The example LALR(I) parse table, shown below, is generated from the grammar used 

to demonstrate the recursive descent parser. 
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States  
Symbols 	1 	2 	3 	4 	5 	6 

$   	accept  
S 
A 	s2 _ 	s6  
* 	r"A=" 	sS 	?'A=1" 	r"A="   
1 	s3 	53  
o 	s4 	54  

Table 5 - LALR(I) Parse Table 

Entries in the LALR(1) parse table M[X,t] contain shift, reduce or accept instructions, 

where X is a state and t is a symbol (terminal or non-terminal). Blank entries 

represent parse errors. 

The following is the pseudo PASCAL code used to operate the LALR(l) parsing 

algorithm. 

Let X be top of state stack, S next state, t next token 

repeat 
case M[X,t].instruction of 

shift: 
begin 

S = M[X,a].data 
push S onto state stack 
consume t from input queue 

end 
reduce: 

begin 
reduce rule = M[X,a].data 
R->RIR2 ... Rk 
pop k items from state stack 
insert R into input queue as head of queue 

end 
error: 

begin 
error 

end 
end 

until t = Goal Symbol 

Figure 9- LALR(I) Algorithm 

This algorithm is based on a table driven state machine with SHIFT and REDUCE 

instructions. 
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1.4 Lexical Analysis Methods 
Each parser will have an associated lexical analyser which reads the source text 

combining character sequences to form the parse tokens. 

1.4.1 Dictionary Lookup and Names 

As indicated earlier, lexical analysis is akin to looking up a word in a dictionary. For 

a language there is a finite set of parse tokens possible. However some of these parse 

tokens can have many forms. Keywords such as while or do have a fixed form. 

Examples of tokens that can have many forms are variable identifiers (akin to proper 

nouns in English) and also integers. These types of tokens can be defined by sets of 

simple rules. 

Most computer languages have an overlap in the rules for defining an identifier and a 

keyword. That is, a keyword could be regarded as an identifier. There are two 

alternate mechanisms to resolve this problem. When a character sequence is found 

which matches a keyword either accept the keyword or continue the sequence whilst 

the sequence obeys the format of an identifier. The first method does not allow an 

identifier to start with the text of a keyword, the second method does. 

1.4.2 Finite State Automata 
The concept of tokens being words in a dictionary leads to the possibility that each 

token can be detected by a finite state automata. The dictionary can be implemented 

as a non-deterministic automata q.v. which has a single start state and multiple end 

states, one for each token. 

A non-deterministic automata is a state machine which allows transitions to 

multiple states from a state for the same trigger (or character). That is, it may not be 

possible to determine the next state to reach if the trigger (or character) has a 

transition to more than one state. 

A deterministic automata is a state machine which has at most one transition from 

each state for a trigger. 
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It is possible to describe the format of tokens and have mechanisms to convert the 

token definitions into a format which represents a non-deterministic automata. Also, 

there are algorithms which can convert non-deterministic automata into deterministic 

automata. These algorithms are shown in [Aho 1977]. Both mechanisms can be 

implemented as computer software taking as input the set of token definitions for a 

language and outputting a description of a deterministic finite state automata. 

A deterministic finite state automata is another example of a state machine. This has 

two instructions, SHIFT and ACCEPT. Each SHIFT instruction knows of the 

transition trigger and the target state. Each ACCEPT instruction knows of the token 

just recognised for use by the associated parser. 

1.5 Compiler-Compilers 
The section on parsing mentioned that mechanisms existed which could automatically 

generate parsers from the language re-write rules, subject to constraints on the rules. 

A software tool known as a compiler-compiler is an example of such a mechanism. 

This type of tool has three mechanisms :- 

• one for generating parsers from grammars 

• one to allow semantics to be hooked in 

• one for generating a lexical analyser from the token definitions 

A compiler-compiler could generate recursive descent parser from a grammar but 

would need to ensure the grammar is unambiguous. However, most compiler-

compilers use either the LL or LR algorithms to validate the re-write rules and to also 

generate the appropriate parse tables. Using either the LL or LR algorithms means 

that a general purpose table-driven parser routine can be used. A compiler-compiler 

(based on the LALR( I) algorithm which is a variant of the LR algorithm) which was 

designed and implemented by the author was used as a background tool within the 

research. The implementation of the run-time parsing and lexical kernel formed the 

basis for the architecture of the hardware developed as part of the research. 
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1.6 Objectives of the Research 

The research had three objectives. 

Firstly, to investigate the possibility of accelerating the parsing and lexical analysis by 

using specialised hardware. This was to determine if it was possible to have hardware 

(specific to the recognition of languages) which was sufficiently general purpose to 

recognise most computer languages. An alternative was to have hardware specific to 

each individual language. Part of this work was to investigate the suitability of the 

various parsing and lexical analysis algorithms for implementation as hardware. 

Secondly, to verify if it was possible to design an appropriate instruction set which 

could be used for the lexical analysis and parsing processes in combination. 

Lastly, to implement a VLSI chip set capable of executing designed instruction set. 

This research is based on the authors own software implementation of a simple 

compiler-compiler. This compiler-compiler uses the LALR( I) algorithm to both 

validate the input grammar and to generate the parsing tables automatically. 

1.7 Overview of the Thesis 
This thesis describes current work in the field, and the results of the work carried out 

to thIfil the research objectives. 

Chapter 2 indicates the current status of work in the field. 

Chapter 3 describes the steps taken to design the instruction set. The use of the 

compiler-compiler system to validate the various designs of instruction sets is 

indicated. 

Chapter 4 describes the hardware design of the RISC processor to execute the 

instruction set. The further use of the compiler-compiler system to both derive, 

simulate and generate test vectors for the logic design is also shown. 

Chapter 5 indicates the potential applications of the hardware. 
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Finally, Chapter 6 indicates the scope for further research based on the implemented 

hardware. 

Also, there are a number of appendices attached which describe the logic design, its 

validation and a simple language that can be recognised by the processor. 

Appendix A describes the steps taken to validate the hardware design by using the 

software implementation of the parser to generate test-vectors. 

Appendix B details some of the logic design for the bit-slice device. 

Appendix C provides an example of a simple language (with grammar) which can be 

used to synthesise logic design from regular expressions. 
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2. Hardware Implementations 
The practical implementation of hardware to accelerate the parsing and lexical 

processes has not been widely considered or described in the literature. Most papers 

describe theoretical hardware implementations of either lexical analysers or parsers 

which use the LL(l) algorithm. The LALR(1) parsing algorithm which allows a wider 

range of languages to be recognised does not appear to have been considered. 

What follows is a discussion of the paper [Evans 1985] "Architectures for Language 

Recognition" which describes two hardware architectures, one used to implement 

recognisers for regular expressions suitable for a lexical analyser, and the second to 

implement an LL(l) parser. Also discussed is another paper [Kazuo et al. 1983] 

"Design and Evaluation of Parsing Chip" which describes the implementation of the 

LL(l) algorithm but is specifically targeted at implementing a parser for PASCAL. 

2.1 Recognising Regular Expressions in Hardware 
A regular expression is formed from mixing tokens with indicators showing token 

repetition. Thus the notation which uses "+", "", "?" , "," and also "[""]" (briefly 

described in the previous chapter) can be used to form regular expressions. Thus, in 

this notation, [a](d, b c) is an example of a regular expression. It could alternatively 

be written as at  (d, b c). This notation can be used to specif' both lexical analysers or 

parsers after transformation into re-write rules. 

2.1.1 Logic Design 
The following describes an architecture to recognise regular expressions where the 

individual tokens (for parsers) or characters (for lexical analysers) are input at regular 

clocked intervals 

2.1.1.1 Recognising a Token 

As shown in Figure 10 - Token reeogniser cell, this logic cell accepts as input signals 

the next character or token, the clock and the current result. It will output the new 

result for input to the next stage. The token to be recognised (or token reference) is 

compared for equality with the token input. The result of the comparison is logically 
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anded with the current result to form the value to be latched into a flip-flop to form 

the next result. 

Token bus 

New result 

result  

Clock  

Figure 10 - Token recogniser cell 

This logic could be implemented as a parameterised VLSI custom cell where the 

parameter is the token reference. 

2.1.1.2 String concatenation 

If two regular expressions El and E2 are to be recognised where E2 follows after El 

then this can be implemented as follows. The output result of El becomes the input 

result for E2. 

1E 1  

Figure 11 - String Concatenation Cell 

If El and E2 are composite VLSI cells then the use of cell abutment should 

automatically provide the required logic and power connections. 

2.1.1.3 String union 

String union is defined to be the new string formed by selecting either El or E2 where 

they are both regular expressions. This is simply the OR-ing together of the result 

signals ofEl and E2. 
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EI__H —aL 	_____ 

F-1 No 

Figure 12 - String union cell 

The above diagram shows the logical connections needed to form the "El , E2" 

expression. The diagram shows a layout which would create irregular shaped areas for 

cell layout. In VLSI semi-custom cell design a linear layout is preferable to allow 

logic connections by cell abutment. The following layout method (adapted from the 

paper under discussion) enables a uniform height to be used for the logic cells. 

Figure 13 - Linear layout ofstring union cell 

This layout requires an extra wiring channel for El and £2, with three extra types of 

cell. The first cell type splits the result signal channel to form an extra bypass routing 

channel. The second cell type switches the result and extra wiring channels over. The 

third cell type or's the result channel and the extra wiring channel to form the new 

result signal. The logic is equivalent to the previous layout except that the El and £2 

macro cells have been modified to be capable of being placed in lines. 

The paper [Evans 1985] describes the use of two wiring channels and two OR gates 

for the same end result, thus wasting silicon. The modified cell design, as shown in 

"Figure 13 - Linear layout of string union cell", is an improvement since the 

redundant or-gate and wiring channel are eliminated. 

2.1.1.4 Repetition 

Noting that the regular expressions A*  and (A+)? are equivalent then we need only 

consider mechanisms for A+ and A?. As A? means A is optional, then the new result 

is formed from the OR-ing of the current result with the result output from A 

(implying A has been detected). 
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Figure 14 - Optional Cell 

Notice that this uses the "split cell" and the "or cell" to select the extra wiring channel 

with the result channel. 

A+ means that A is concatenated at least once. Thus the input for A is either the 

prefix or the result output from A. 

01 F] 
Figure 15- Repeat In cell 

At first glimpse this seems to require two extra types of cells to cope with the 

reversed direction of use of the extra wiring channel. However, the original split and 

the or cells can both be used if the extra wiring channel extends the 11111 cell width in 

both cases. For the split cell there is an internal link joining the extra wiring channel 

to the result wiring channel. For the or cell the second input to the or gate is taken 

from extra wiring channel. It is important to note that all cells will need wiring 

channels for the token bus, clock and result signals. There may be many extra wiring 

channels required depending on the depth of nesting caused by use of the , * and? 

operators. 

All cells will need to have an associated parameter to indicate the number of extra 

wiring channels, with the or, split and switch cells having an extra parameter to 

indicate which extra channel is being used by the cell. 

2.1.2 Logic Synthesis from Regular Expressions 

The following set of re-write rules define a language which contains regular 

expressions, using the "s", "+", "?" and "," notation which also uses brackets. The 

language describes the definition of a single regular expression. 
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RegRule = LeflName '=' Exp';'; 
LeftName = identifier; 
Exp = Factor; 
Exp = Exp ',' Factor; 
Factor = Tenn; 
Factor = Factor Term; 
Term = Primary; 
Term = Primary '+'; 
Term = Primary '*'; 
Term = Primary '7; 
Primary = identifier; 
Primary = '(' Exp !)S; 

The following rules can have semantic actions attached so that the correct logic cells 

are generated to form the appropriate regular expression recogniser. 

Re-write Rule Semantic Action To Apply 
RegRule = LeftName 	Exp ';' write code for expression 
LeftName = identifier initialise and note expression name 
Exp = Exp ',' Factor code for A B 
Factor = Factor Term code for A B 
Term = Primary '+' code for A+ 
Term = Primary '*' code for A*  (== A+?) 
Term = Primary'? code for A? 
Primary = identifier recognise token 

Table 6- Regular Expression Semantic Actions 

These semantic actions will generate code or layout information for a single regular 

expression. 

2.1.3 Critique 

The architecture described above will successfully generate hardware to recognise 

regular expressions. A potential disadvantage of this approach is that each recogniser 

however can only recognise one expression which is defined at time of manufacture. 

The use of FPGA's only cuts down the time between design and implementation. 

Also, the architecture has no mechanism whereby a lexical string (defined as a regular 

expression) can be remembered and passed to parsing hardware. This is needed when 

passing on the value of parse tokens such as identifiers or numbers. 

A lexical analyser recognises a number of regular expressions and has to indicate 

which one has been found. This requires the architecture to be able to generate a 
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mechanism to detect which of a number of hardware recognisers is first to detect a 

token. There is no such mechanism available. 

In most computer languages there is a potential clash between the use of keywords 

such as "begin" or "end" and the form of an identifier. Some languages resolve this by 

not allowing an identifier to start with a reserved keyword, such as BASIC. The 

remaining languages allow identifiers to start with a keyword. 

The hardware architecture described will always signal that a keyword has been 

recognised in preference to an identifier. This is a severe constraint on the range of 

computer languages this system can be used with. 

Overall the architecture is not practical for recognising lexical tokens in hardware 

given the above problems. 

2.2 An Architecture to recognise LL(1) Grammars 
The paper [Evans 1985] "Architectures for Language Recognition" also describes a 

hardware architecture which recognises languages defined by LL(l) grammars. This 

architecture depends on the theorem that, if for each non-terminal Z and terminal a, 

then there is at most one re-write rule which takes one of three forms 

. Z=a 

• ZaX 

ZaXY 

where X, Y, Z are non-terminals and a is a terminal then the grammar is LL(l). 

The action to be taken by the three types of rule is shown in the following table. 

Rule Format Current Phase (Test) Next Phase (Action) 
Z=a rule = Z,tokena rule'= POP 
Z=aX ruleZ,tokena mle'X 
ZaXY ruleZ,tokena rule'X,PUSHY 

Table 7- LL(J) Actions 
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The re-write rules can be placed in a table of terminal versus non-terminal symbols, 

where each entry will be either a re-rewrite rule (in one of the three forms) or no entry 

indicating an error. The parsing algorithm works as follows 

Repeat the following until either both the stack and token input stream are empty or 

an error is detected. 

Using the current combination of rule and token access the table to see which re-write 

rule is being recognised. 

Depending on the table entry take the appropriate action. The POP and PUSH actions 

refer to the associated stack and rule' represents the next value of rule. In all cases the 

token from the input stream is consumed. 

Parse errors can arise in a number of ways. If there is no entry this represents a parse 

error. A POP command on an empty stack is also a parse error. 

The next section describes the logic to implement each of the three types of cell. 

2.2.1 Logic Design 

There are three types of cell corresponding to the three types of re-write rule. The 

three logic cells all have a common sub-unit which is used to recognise which rule 

and token combination triggers the action for that specific cell. This sub-unit is shown 

below. 

Figure 16- Rule and Token detection cell 

The rule and token detection cell uses a synchronous clock to latch the fact that the 

rule, token combination has been found for that particular clock cycle. The next clock 
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cycle will clear the flag (unless the same rule, token combination is present). The 

required action depends on the rule type and is carried out in the next cycle. 

The three different action cells corresponding to the three rule types are shown below. 

2.2.1.1 Cellfor rule "Z = a" 

Stack 

t 
rule 	

oken 
 

-.4 
[i] 	POP 

or 

Stack 	 Stack 
out pop' 

Figure 17- Cell for rule 2 = a' 

For the rule "Z = a", the stack is popped to give the next value for the rule bus. The 

"stack pop" command is rippled through the cells. An alternative mechanism would 

be to use a tn-state buffer to "or" the value onto the stack control signal. 

2.2.1.2 Cell for rule '7= a 

For this cell the action is to place the value of the X non-terminal onto the rule bus for 

the next clock cycle. The value of X is tri-stated onto the rule bus as shown below. 

This allows the rule bus to have the value X for the next clock. 

rule 

Figure 18- Cellfor rule 7 = a 

22.1.3 Cell for rule "Z = aX Y" 

For this cell the action is to place the value of the X non-tenninal onto the rule bus 

and also to push onto the stack the value of the Y non-terminal. This stack value will 

eventually be popped when a rule of the form "Z = a" is detected. 
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Figure 19 - Cellfor rule "Z = aX r 

2.2.1.4 Combined Cell 

The paper combines these three cells into one combined cell. The combined cell uses 

tn-state buffers extensively instead of the ripple-through logic as shown in the three 

cells described above. The combined cell uses two extra flags to indicate if non-

terminals X, Y are present. Extra logic is used to ensure that the tn-state buffers are 

correctly activated. The paper [Evans 1985] shows a logic diagram for the combined 

cell. 

2.2.2 Logic Synthesis 

The complete LL(l) recogniser is formed by instancing all rules present in the 

grammar as the appropriate logic cells. The cells are joined together so that the rule, 

token, stack input, stack output busses and the stack control signals are connected. A 

stack is also required which has its output connected to the rule bus and input 

connected to the tn-stated stack input bus from the rule cells. 
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Figure 20- Complete LL) recogniser 

2.2.3 Critique 

This architecture can be used to generate a large range of LL(1) parsers. Unfortunately 

most languages are not LL(l). Therefore this architecture will be unable to recognise 

a large range of computer languages of interest to programmers and computer 

scientists. 

This architecture fixes the implementation of the parsing hardware at time of 

manufacture, thus preventing rapid modification of a parser. Specialised FPGA's 

could be designed which contained the three (or single combined cell) as the basic 

logic element and therefore allow for device re-use. 

Also the architecture has no error recovery mechanism to allow the hardware to 

continue from a parse error. The hardware just reports the first error found. Most 

users would regard this as a serious failing. 

Thirdly, there is no mechanism to use the sequence of rules predicted (LL(l) is a top 

down parsing technique). This is needed to allow hooks for the semantic actions to be 

called. Associated with this is the problem that there is no mechanism to pass token 
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strings from the lexical analyser hardware to the semantic hardware at the appropriate 

parse state. 

Overall, the use of the LL(1) algorithm by this architecture is the main stumbling 

block to its practical use. 

2.3 Other Implementations 
The paper [Kazuo 1983] "Design and evaluation of parsing chip" describes the 

implementation of an LL(l) parser for PASCAL. The design used a number of PLA's 

to implement the parse state engine. The design was not able to perform lexical 

analysis. This design was successfully validated by being fabricated. The design, 

however, was not an example of a general purpose architecture able to synthesise 

general purpose parsers. Therefore this was of limited interest to this thesis. 

2.4 Summary 
To summarise, the LL(1) algorithm has been the main focus of research into the 

implementation of parsing techniques as hardware. The next chapters will describe 

the practical implementation of the LALR(1) algorithm with built-in support for the 

process of lexical analysis. 
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3. Instruction Set Design 
In the previous chapters, it is shown that the LALR( I) parsing algorithm is based on a 

finite state machine (with an associated state stack) which only uses shift and reduce 

actions. This strongly suggests that these two actions could be implemented as 

instructions for a VLSI RISC processor. This proposed processor would have a very 

specialised instruction set which could implement both the shift and reduce actions as 

required by the LALR(1) algorithm. Each computer language would be implemented 

as a different program to be run by the processor. Also, the parsing of a sentence for a 

given language would be carried out by the running of the appropriate program on the 

processor. 

It must also be noted that the lexical analysis algorithm also uses a finite state 

machine (without a state stack) where this machine also has shift and accept actions. 

These actions could be implemented by extending the processor instruction set with 

extra instructions to implement the shift and accept actions. 

The derivation of an instruction set able to implement both the LALR(1) and lexical 

analysis algorithms will now be described. The design and simulation of the 

combined instruction set was carried out using a compiler-compiler. This software 

was developed as part of the research. 

3.1 Parse Instructions 
The use of only shift and reduce actions by the LALR(1) algorithm indicates that a 

minimum of two instructions is required. Accordingly a description of the required 

behaviour of the shift and reduce actions as instructions will be given. Also a simple 

error recovery mechanism is described. 

3.1.1 States and Instruction Sequences 

As stated earlier the LALR(I) parsing algorithm is based on a finite state machine 

with state stack. The algorithm operates with shifts (or transitions) from one state to 

another state being triggered by the recognition of the next parse token (or word). 
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Each state may also recognise one or more rules of the grammar, where the 

recognition of the rule will again depend on the next parse token. If the current 

combination of state and token has no defined action then this indicates the detection 

of a parse error. 

One possible representation of a single parse state would be as a large array of entries 

implemented as a case statement. The current token would be used as the index to 

select the appropriate entry. Each entry would be one of the shift, reduce or error 

actions. In this state representation each state would need an entry for all possible 

tokens. This would create large sparsely populated arrays. This state representation 

has the benefit of ensuring all state transitions took the same time. This representation 

was investigated but quickly rejected as being an inefficient use of memory. 

An alternative state representation would implement a state as a list of conditionally 

triggered instructions. Thus, each shift or reduce action is a single conditional 

instruction which would be triggered by comparing the current token with the token 

needed to trigger the action. The final instruction for each state would implement the 

default action to take for that state (usually the error detection action). This 

representation would be more efficient in memory usage. It's main disadvantage is 

that each state would take a variable amount of time caused by the need to examine a 

number of instructions for the appropriate token. This state representation was chosen 

as the starting point for the design of the instruction set. 

3.1.2 Parser Registers 

The parser processor will require a number of registers to hold temporary data and to 

indicate which instruction is being executed. Also the parser processor uses a stack to 

hold states. The main parser registers are shown in the following table. 
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Register Purpose 
Program Counter Points to current Parse Instruction 
Instruction Register Contains current instruction 
Top Symbol Indicates immediate next token symbol in token input queue 
Next Symbol Indicates next symbol after "Top Symbol" (Could be undefined) 
Error Flags Used to record parse errors 
State Stack Pointer Points to Top of State Stack. 

Table 8 - Parser Registers 

As the individual states each consist of sequences of instructions, then each state can 

be represented by the address of the first instruction in the state. Thus the state stack 

can actually store addresses, where each stack entry (representing a state) is actually 

the address of the first instruction in a state. 

The initial instruction set is shown in the following table. 

Instruction Parameter I Parameter 2 Parameter 3 Parameter 4 

shift OnToken ToState UNUSED UNUSED 

reduce OnToken ByRule Ruleloken RuleCount 
shift-reduce OnToken ByRule RuleToken RuleCount 

Table 9 - Initial Parse Instruction Set 

The following sections describe the actions of the instructions in further detail. 

3.1.3 Shift Action 

The shift action represents the transition from one state to another state, where the 

transition is triggered by the recognition of a parse token. As an instruction this would 

be shown using a pseudo-assembler notation as 

On <Token> Shift To <State> 

3.1.3.1 Parameters 

The <Token> parameter denotes the triggering token for the shift action. 

The <State> parameter denotes the new state to go to. The parameter value is actually 

the address of the first instruction in the state. 

3.1.3.2 Instruction Actions 

Firstly, the current token is compared with the <Token> parameter. If there is no 

match then the processor executes the next instruction, otherwise the following steps 

are performed. 



The <State> parameter is pushed onto the state stack. 

The current token (which must be identical to the <Token> parameter) is consumed. 

If there is no value held in the next token buffer then the next token must be read. 

This is the appropriate time to activate the lexical analyser which scans the raw input 

text to recognise the next token. 

3.1.4 Reduce Action 

The reduce action represents the occasion when a grammar rule for the language has 

been recognised. As an instruction this would be shown using a pseudo-assembler 

notation as :- 

On <Token> Reduce By <Rule> New Token <Token> Pop <Count> 

3.1.4.1 Parameters 

The <Token> parameter denotes the triggering token for the reduce action. 

The <Rule> parameter denotes which rule has been recognised. This is used to 

indicate which semantic routine should be called. (See the section on "Semantic 

Interrupts"). 

The second <Token> parameter denotes the non-terminal token which is defined by 

the rule. 

The <Count> parameter indicates the number of states to pop from the state stack. 

3.1.4.2 Instruction Actions 

As with the shift instruction, the current token is compared with the <Token> 

parameter. If no match is detected then the next instruction is executed, otherwise the 

following steps are performed. 

Firstly the <Rule> parameter is used to indicate which semantic actions should be 

performed. See the following section on "Semantic Interrupts". 

Next, the rule's left-hand token symbol (the <Token> parameter) is inserted into the 

token input queue as the next token to be read. 

Finally, a number of states must be "popped" from the state stack. The <Count> 

parameter is used to determine how many states should be popped from the state 
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stack. For each item on the right-hand of the rule, one pop is done. Thus the <Count> 

parameter will equal to the number of items on the right-hand of the rule 

3.1.4.3 Semantic Interrupts 

The reduce action provides the opportunity or hook to allow semantic actions to be 

performed. Each individual rule can be regarded as an interrupt generated by the 

processor. Each interrupt will trigger an action or sequence of actions within 

additional hardware to implement the semantics of the particular language. Each 

language has its own associated semantic actions and therefore will require different 

hardware to implement these actions. 

It is important to note that the processor cannot have two semantic actions in progress 

simultaneously. That is each semantic action must complete before the next one can 

be started. To guarantee this, the processor should be constrained to only be able to 

continue with the parsing process when the current semantic interrupt has been 

completed. 

3.1.5 Halting 
The LALR(1) parsing process should halt when the unique rule, with the goal symbol 

as it's left-hand symbol, is recognised or reduced. Therefore, if the goal rule has a 

fixed value such as 1 then this can be detected by the reduce instruction and the 

processor halted accordingly. An alternative is to add a halt instruction to the 

instruction set. 

3.1.6 Error Handling 
The LALR(1) algorithm is able to detect a parsing error at the first possible 

opportunity and should halt at that point flagging the fact. However, this mechanism 

of halting for each error is not acceptable, since each parse would only reveal the first 

error detected and no more. The processor architecture needed a mechanism whereby 

a form of error recovery could be attempted. 
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In most software implementations of the LALR(l) algorithm this is achieved by a 

combination of popping the state stack and skipping tokens until it is possible to 

continue the parse process and successfully recognise a rule in the language grammar. 

The concept of a special token to assist in error-handling, denoted by Senor, was 

examined. The Senor token would be used to denote the presence of a parse error in 

the token input stream. The detection of a parse error would cause the Senor token to 

be inserted in the token input stream. The error-handling mechanism would then have 

the task of removing the Senor token and a limited number of tokens following the 

Senor token. Also, the Senor token could then be used as the trigger for a shift 

instruction. This would allow a grammar to be augmented with special enor rules 

each of which would contain the Senor token followed by one or more tokens as the 

rule's right-hand. The sequence of tokens following the Senor token would allow the 

parser to re-synchronise itself with that token sequence after an error was detected. 

The extra error rules would cause some parse states to contain shift instructions which 

would be triggered by the Senor token. Thus the enor recovery mechanism would be 

to pop the state stack until the state at the top of the state stack contained a shift 

instruction triggered by the Senor token. If there were no state found which satisfied 

that criteria before emptying the state stack then this would imply that no recovery 

was possible. The detection of the case that no recovery was possible should cause the 

processor to halt and the reason for the halt to be flagged. 

This mechanism will allow both tokens and states to be skipped until a valid rule can 

be recognised. Additionally the associated semantic hardware needs to be informed 

that a parse enor has been found. This can be solved by having a special rule which 

has as its left-hand token the Senor token and an empty right-hand side. 

Thus the instruction set can be extended to allow a reduce instruction to trigger the 

rule "Senor 

3.1.7 Default Actions for a Parse State 

The default action for a state will normally be the error action which is a modified 

reduce action. This error action, if reached, must be triggered irrespective of the next 
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token. The set of tokens can be extended by adding the concept of a wild-card token 

which matches any token and is denoted by $lambda. Thus the default action for a 

state can be triggered by the $lambda token. This ensures that all parse actions are 

triggered by a token match, even if the token to match is a wild-card. The $lambda 

token could be used to trigger either shift or reduce actions. 

3.1.8 State Table Minimisation 
The use of the $lambda token enables some minimisation of state tables to be 

achieved. 

3.1.8.1 Replacing the default action 

If a state contains at least one reduce action then one of these reduce actions can be 

chosen to replace the default error action. The reduce action could be triggered by 

many different tokens where each token requires one reduce instruction. Therefore 

this minimisation replaces all occurrences of the reduce instruction by a single 

instance of the reduce instruction. This replacement reduce instruction is triggered by 

the $lambda token and will be the final instruction for a given state. 

3.1.8.2 Single Reduce States 
Another possible minimisation occurs when a state consists of only one reduce action. 

That is, the state has no shift actions and contains one reduce action with the default 

error token. This type of state will only be reached by shift actions contained within 

other states. 

It is possible to eliminate the state and all its instructions by adding an instruction 

(shift-reduce) which combines the effects of the shift and reduce actions. Those shift 

instructions which point to the state being eliminated are replaced by the new shift-

reduce instruction. This shift-reduce instruction is described in the next section. 

3.1.9 Shift-Reduce Action 
The shift reduce action represents the combination of a shift action immediately 

followed by a reduce action. This action is triggered by the recognition of a parse 

token. As an instruction this would be shown using a pseudo-assembler notation as :- 

On <Token> Shift Reduce <Rule> New Token <Token> Pop <Count> 
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3.1.9.1 Parameters 

The <Token> parameter denotes the triggering token for the shift action. 

The <Rule> parameter denotes which rule has been recognised. 

The second <Token> parameter denotes the non-terminal token which is the left-hand 

symbol being defined by the rule. 

The <Count> parameter indicates the number of states to pop from the state stack. 

3.1.9.2 Instruction Actions 

Firstly, the current token is compared with the <Token> parameter. If there is no 

match then the processor executes the next instruction, otherwise the following steps 

are performed. 

Next, the current token (which must be identical to the <Token> panmeter) is 

consumed. 

The <Rule> parameter is used to indicate which semantic actions should be 

performed. See the section on "Semantic Interrupts". 

Next, the rule's left-hand token symbol (given by the <Token> parameter) is inserted 

into the token input queue as the next token to be read 

Finally, a number of states must be "popped" from the state stack. The <Count> 

parameter is used to determine how many states should be popped from the state 

stack. For each item on the right-hand of the rule, one pop is done. The value of the 

<Count> parameter is one less than the number of items on the rule right-hand side 

since the shift half of the shift-reduce action would normally push a state onto the 

state stack. This push to the state stack is not needed. 

3.2 Lexer Instructions 
A lexical analyser is another example of a finite state machine but does not use an 

associated state stack. However, the instructions for the lexical state machine will 

correspond to the parser shift and reduce actions. Also a simple mechanism which can 

recover from lexical errors such as incorrectly spelt language keywords is described. 
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3.2.1 States and Instruction Sequences 

The algorithm for a lexical analyser is based on a finite state machine which has 

transitions (or shifts) from state to state which are triggered by the next character 

present in the input stream. Some states will be "accept" states when a lexical token 

has been detected. For the lexical algorithm used by this research, it must be noted 

that each accept state only detects one token. This ensures that a character string can 

be an example ofjust one lexical token. Thus for the computer language PASCAL the 

string "begin" will be regarded as the begin keyword and not as a variable identifier. 

Each state will have a default action to be performed should there be no shift 

transition be defined for the next character present. As the lexical algorithm used by 

this research forces an accept state to have a single token this can be used to 

determine the default action for a state. Thus the default action for an accept state is 

the accept action for the token detected, and for a non-accept state it is the error 

action. 

The selected representation for each lexical state follows the representation used 

within the parser. That is, a lexical state is a list of conditionally triggered 

instructions. Each shift action is a single conditional instruction triggered by 

comparing the current character with the character (or range of characters) needed to 

trigger the instruction. The final instruction for the state implements the default action 

(accept or error) for that state. 

3.2.2 Lexical Analyser Registers 

The lexical analyser will also use some of the parser registers. These are shown in the 

following table. 

Register I Purpose 
Program Counter Points to current lexical instruction 
Instruction Register Contains current lexical instruction 
Top Symbol Indicates next character in input 

Table 10 - Lexical Registers 
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The lexical analyser must also store the character strings for the previous token, 

current token and next possible token that it is trying to recognise. These strings are 

used by the semantic actions associated with the parser. These character strings could 

be stored within three individual areas of memory where each character string needs a 

pair of start and end pointers. Both the software and hardware implementations 

actually used a cyclic buffer to hold the three character strings. 

Instruction Parameter I Parameter 2 Parameter 3 

shift MinChar MaxChar ToState 

accept AcceptToken UNUSED UNUSED 
test TestRoutine NextState (if passed) NextState AcceptToken 

Table / / - Initial Lexical Instruction Set 

3.2.3 Lexical Shift 

The shift action represents the transition from one state to another, where the 

transition is triggered by the recognition of a lexical character. As an instruction this 

would be shown using a pseudo-assembler notation as 

Shift <ToState> On Char Range <1> <hi> 

3.2.3.1 Parameters 

The <lo> and <hi> parameters indicate the contiguous range of characters which will 

trigger the lexical shift action. <lo> being the minimum and <hi> the maximum. 

The <ToState> parameter denotes the new state to go to. The parameter value is 

actually the address of the first instruction in the state. 

3.2.3.2 Instruction Actions 

Firstly, the input character buffer is examined to see if it is empty. If it is empty then a 

request to read the next character in the input stream is made. This causes the 

processor to wait until a character is supplied. 

If the input character buffer is not empty then the current next character (which is read 

from the buffer) is examined to see if it is in the range given by the <lo> and <hi> 

parameters. If there is no match then the processor will continue at the next 

instruction. 

If there is a match then the character is added to the buffer holding the next token 

character string and the program counter with the value of the <ToState> parameter. 
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3.2.4 Lexical Accept 

The lexical accept action is taken when a lexical token has been recognised. This 

action is triggered as the default action for some states. As an instruction this would 

be shown using a pseudo-assembler notation as 

Accept <Token> 

3.2.4.1 Parameters 

The <Token> parameter represents the token just recognised and corresponds to the 

value used by the parser for the language. 

3.2.4.2 Instruction Actions 
Firstly, the <Token> parameter is stored in the TopSymbol register. This provides a 

return link to the parser to indicate which token has been found. 

Next, the token string buffer pointers are adjusted so that the token strings are 

updated. Thus, the current token becomes the previous token, the possible next token 

becomes the current token. 

Finally, the Program Counter register is reset to point to the next parse instruction. As 

the lexical analyser is only entered from a parse shift instruction then the top of the 

state stack will contain the appropriate address 

3.2.5 Error Handling 

It cannot be assumed that the input stream of lexical characters will be free from 

"spelling mistakes". That is the character input stream could contain sub-sequences of 

characters which cannot be matched with the definitions of any lexical token. This 

could occur when attempting to find the longest matching sequence of characters that 

can be recognised as a token. 

For example 

In PASCAL a real number will contain a decimal point ('.') and an integer could be 

followed by the sub-range token '..'. Thus the sequence '12..' could be a miss-spelt 

decimal number or it could be twelve ('12') followed by the sub-range token ('..'). If 

the lexical analyser has the strategy of recognising the shortest sequence it will easily 

recognise '12' followed by '..' but will find it hard to recognise a decimal number, 
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since the digits before the decimal point will be regarded as an integer and the token 

sent to the parser. If the lexical analyser has the strategy of recognising the longest 

sequence it will attempt to recognise '12..' as starting a decimal number of the fonn 

I 2.D' (where D is a non-empty sequence of digits) and regard the next '.' as an error. 

This type of error will be detected when a lexical state has no transition defined for 

the next input character and the state does not default to recognising a token. Thus the 

lexical parsing algorithm implicitly uses the strategy of trying to recognise the longest 

stnng. 

Therefore a mechanism to detect and correct both genuine errors and errors caused by 

the maximal string strategy is needed. This mechanism will be triggered as the default 

action for those states which do not accept a token. 

Noting that, 

• each state has an associated default token (which could be the error token) 

• each character of the string corresponds to a state (the first character maps 
to the initial lexical state) 

then each character of the string will have a matching token. The sequence of tokens 

defined will be a mixture of legal and error tokens, where the last token should be an 

error token. For the example given above (of '12..') this would be the token sequence 

"integer integer error error". (This is assuming that a decimal number cannot end with 

a decimal point). Using the maximal string strategy, then the next token should be the 

maximal sub-sequence of characters which has a legal token corresponding to the last 

character. Thus, for the example given, the next token will be '12' which is the 

maximal string forming a legal token (an integer). The surplus characters following 

the maximal string will form the start point for the next token to be recognised. If 

there is no maximal string this implies that the first character seen cannot start any 

token and that it should be ignored (after flagging the fact by means of an error 

interrupt). The remaining characters should be used as the start point for the next 

token. Also, the lexical analyser should be restarted from its initial state. 
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Thus the error action would become an instruction having the form, 

Error <ErrorRoutine> 

The instruction actions would be as outlined above. 

Also each lexical state would need a new instruction to note the default token 

(possibly the error token) for that state. As an instruction this would be shown using 

the pseudo-assembler notation as 

Default <Token> 

where <Token> would indicate the value of the default token. 

This instruction would push the <Token> parameter onto a stack which would be 

initialised to be empty whenever the lexical analyser was started either from the 

parser or by the Default instruction. 

The combination of Error and Default instructions meant that the Accept instruction 

was redundant. Therefore all occurrences of the accept instruction were replaced by 

the error instruction which was renamed to be accept. 

3.2.6 Test Action 
Many computer languages allow identifiers (or names) to belong to different classes 

(or types) such as procedure identifiers, record identifiers or variable identifiers. 

These identifiers could be different types of token yet have the same lexical 

definition. Therefore a mechanism was required which could be used to split strings 

of the same format into different tokens. It would be a special variant of the shift 

instruction. This test instruction would raise an interrupt routine (able to read the 

current character sequence) and return a logical value whether to shift or not to 

another lexical state. 

Also most languages allow comments (which may be nested) which are not tokens but 

must be allowed as legal noise or whitespace. A mechanism to check for nesting 

levels and allow the external semantic engine to clear the whitespace was required. To 
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satisfy both requirements the test instruction was implemented. As an instruction this 

would be shown using a pseudo-assembler notation as 

Test <Routine> Goto <GotoState> 

3.2.6.1 Parameters 

The <Routine> parameter indicates which routine is to be called. 

The <GotoState> parameter indicates which state to go to depending on the status 

returned by the interrupt routine indicated by the <Routine> parameter 

3.26.2 Instruction Actions 

First, the <Routine> parameter is used to generate an interrupt to the required 

semantic routine. This routine may need to read the value of the string which is the 

possible next token. This will allow the routine to match the token string (a possible 

identifier) with other known token strings. The routine could return a status value 

formed from two flags. The subsequent actions depend on the values of the flags. One 

flag indicates if the current token string should be reset and the lexer reset to its initial 

state. This flag takes precedence over the second flag. The second flag indicates if the 

test was successful and the <GotoState> parameter can be used to indicate the next 

lexical state. If the test was not successful then the next instruction in the state is 

performed. 

3.3 Review of Initial Instruction Set 
The initial instruction set as described in the previous sections used an instruction size 

of 32 bits. Address 0 of the instruction address space was used to hold the address of 

the first lexical instruction (all lexical instructions followed the parser instructions) 

and also the address of the first parse state. 

The initialisation of the combined parser and lexer processor read address 0 to stack 

the first parser address and to start execution at the first lexical state. The initial 

instruction set design required every instance of the lexical test and parse shift 

instructions to need the address of the first lexical state. Storing it at address 0 

reduced the number of parameters needed for those instruction. 
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The following table shows the initial instruction set and indicates the instruction and 

parameter locations as bit string locations in the 32-bit instruction. 

Inst'n Inst'n <31:29> m  1<28:16> Param 2<12:0> 'aram 3<15:8> Param 4<7:0> 

Shift 0 en State  
Call I en Routine  

ShiftCall 2 en 
[eeft 

Routine  

Reduce 3 Symbol Count
LexShift 4  LoChar HiChar 

est  Routine  

Default 6  State  
Accept 7  Routine  

Table 12 - Initial Combined Instruction Set 

The original decision to use both a 32-bit instruction and 8-bit characters constrained 

the lexshifl instruction to have a 13-bit address space. 

The introduction of the 16-bit UNICODE standard for characters (an extension of the 

ASCII code) and also noting that some of the combined parse and lexical tables for 

languages could be larger than 8192 words (13-bit address range) forced the 

development of a new version of the instruction set which would avoid these 

limitations. This new version is describe in the next sections of this chapter. 

3.4 Micro-Instructions 
The similarities in behaviour of the lexical and parser instructions from the original 

design led to the concept of lexical and parser actions as macros. The new instruction 

set would therefore consist of a number of micro-instructions that could be combined 

to form the required actions for the parser and lexer. 

Another design goal of the new instruction set was to have a larger addressing range 

(bigger than 8192) and also to be able to use 8-bit or 16-bit characters. These goals 

implied that the instruction parameter size should be increased. 
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The mixture of parser and lexer actions as macros of micro-instructions having 

variable parameter width forced the adoption of the following instruction architecture. 

Each micro-instruction would consist of two parts, 3-bits describing the instruction 

and n-bits for the parameter. Each address location would consist of 4 micro-

instructions, a phase 0, phase 1, phase 2 and phase 3 micro-instruction. This would 

make each lexical and parser action into a Very Long Instruction Word (VLIW) 

format. 

The 3-bit instruction would have different actions depending on the phase of the 

instruction. Thus the complete instruction set would actually comprise of 32 micro-

instructions, 8 for each phase. The final micro-instruction set has some instructions 

which are identical in behaviour, but are in different phases. These instructions may 

not have identical values. 

The n-bit parameter would have to represent a state address (both parser and lexical), 

a parser token, a parser semantic action, a lexical test routine and also a lexical 

character. The value of n for the software emulation of the processor was set to be 13. 

The actual hardware implementation used a bit-slice architecture, where the 

parameters could be multiples of 8 bits. Thus the software emulation (using 13-bits) 

would require two bit-slices to allow 16-bit parameters. 

3.4.1 Registers and Flags 

The processor architecture uses a number of registers and flags to hold information 

about the progress of the parse and lexical state machines. 

3.4.1.1 Program Counter 

The current address is held in two registers. PC indicates the address of the current 

VLIW instruction and Phase thdicates which of the 4 micro-instructions is being 

executed. Pt is used to hold the parameter value of the current micro-instruction 

pointed to by PC and Phase. 
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3.4.1.2 Token Queue 
The token queue is used to store the parse token values. It is implemented as two 

registers, TopSymbol and LookAheadSymbol and an associated flag ValidQueue. 

TopSymbol is used to store the value of the next parse token. This is either read from 

the input stream of parse tokens, the LookAheadSymbol register or the left-hand 

symbol of a parse rule recognised by a parse reduce action. It is also available for use 

by the lexical instructions to return the next parse token detected by the lexical 

machine. 

LookAheadSymbol is also used to store the value of the next parse token. It is written 

to (from the TopSymbol) when a parse reduce inserts the rule left-hand symbol into 

the head of the parse token queue. The LookAheadSymbol register value (if it is 

valid) is returned to the TopSymbol register after a parse shift instruction has been 

executed. 

The ValidQueue flag indicates that the LookAheadSymbol register holds a valid 

token value. 

3.4.1.3 Lexical Buffer 
The lexical buffer is used to store the lexical values (as character strings) of the 

previous token and current token recognised. It also holds the lexical characters which 

should form the next token. 

The buffer is implemented in software as a cyclic buffer. It comprises of an area of 

memoiy and four pairs of registers. Each pair of registers acts as pointers to the start 

and end of the token character string. The fourth pair of registers is used when 

outputting one of the token strings for use by a semantic or lexical test action. The use 

of a cyclic buffer enables the memory space to be re-used but requires a decision on 

the appropriate size of memory to hold all the token strings. Each memory address 

location must be able to store a lexical character (either 8-bit ASCII or 16-bit 
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UNICODE). Also each register pair represents a start and end address (of the buffer 

memory) and so must be compatible with the buffer memory address range. 

The three main register pairs are TokenBuffer, Tokenls and TokenWas. 

TokenWas points to the previous token string. 

Tokerils points to the current token string. 

TokenBuffer points to the string which may form the next token. 

Finally the TokenRam register pair is used to point to one of the TokenWas, Tokenls 

or TokenBuffer strings as required. 

3.4.1.4 Stacks 

The software implementation of the processor architecture also uses two stacks. These 

being the parse state stack and the token stack. Both stacks require an area of memory 

and a stack pointer. 

The parse stack holds the parse state values which are implemented as instruction 

addresses. Thus each stack location must be able to store a processor instruction 

address. The maximum stack size required depends on the language grammar and the 

source input. 

The token stack holds the token values for return by the lexical machine. Thus each 

stack location must be able to store a parse token value. The maximal size of this 

stack is identical to the size of the longest token string. If the language grammar 

allows large size comments then a large token state buffer is required. 

3.4.1.5 Flags 
Most of the flags used by the processor architecture are used to report on the status of 

the parser/lexical processes. These types of flags are initialised as false and may only 

be set to true. 
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The EOIFound flag is used to indicate that the end of input token has been seen. This 

token is akin to a full-stop in an English sentence. 

The ParseDone flag indicates that the parsing process has finished. It could be caused 

by a successful parse of the input or by a fatal (and unrecoverable) error being 

detected. 

Also, a number of flags are used to indicate warnings and errors detected in the 

running of the parse and lexical processes. 

A warning flag indicates a fault that can be recovered from. These are 

. ParseSyntax - a parse syntax error 

. ParseSemantic - a semantic action error 

• LexSyntax - a lexical syntax error 

An error flag indicates that the fault cannot be recovered from. These are :- 

• SourceExhausted - attempting to read the input stream after the end of input 
token was seen. 

• NoErrorl-landler - no error handler rule has been specified 

• BufferOverfiow - the lexical buffer has overflowed (caused by a very long 
token) 

• StackOverfiow - the state or token stack has overflowed 

• StackUnderfiow - attempting to pop from an empty stack 

• Illegallnstruction - attempting to execute one of the undefined micro-
instructions 

If any error flag is set then this will cause the processor to halt. 

The remaining flags, which can be both set and reset, are the SynchroniseMode, 

SysResult and SysNullToken flags. 



The SynchroniseMode flag is set to show that a parse error has been detected and 

cleared when a non-error rule parse reduce has been performed. 

The SysResult flag is cleared before the start of each parse semantic action (or lexical 

test). It is set or cleared by the action routine to indicate success or failure. This is 

then used to either set other error flags or to select the next instruction address. 

The SysNullToken flag is cleared before the start of each lexical test. It is set by the 

test routine to indicate that the possible next lexical token is a comment and can be 

ignored. It causes the possible token buffer to be emptied and restarted with the next 

character in the character input stream. 
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3.4.2 The Micro-Instruction Set 

The following table lists the micro-instructions for each phase, giving the instruction 

name, code and parameter. Each phase can potentially have eight micro-instructions 

defined. Only phase one defines all eight micro-instructions. 

Name Phase Code <15:13> Parameter Usage <12:0> 
ifegual 0 0 token 
lambda 0 I not used 
illegal 0 2 not used 
nomatch 0 3 not used 
lexchar 0 4 character 
lexerror 0 5 token 
lexeoi 0 6 token 
lexaccept 0 7 token 
shift 1 0 state 
shift-reduce 1 1 nile 
reduce I 2 nile 
lambda 1 3 not used 
lexshift 1 4 character 
terror 1 5 rule 
lextest 1 6 rule 
perror 1 7 rule 
Ipush 2 0 token 
assign 2 I token 
push 2 2 token 
loadchar 2 3 not used 
halt 2 4 not used 
lambda 2 5 not used 
illegal 2 6 not used 
illegal 2 7 not used 
goto 3 0 state 
pop 3 1 not used 
readstack 3 2 not used 
illegal 3 3 not used 
illegal 3 4 not used 
illegal 3 5 not used 
illegal 3 6 not used 
illegal 3 7 not used 

Table 13 - Micro-Instructions 

The table indicates that some instructions have the same name despite having 

different values and different phases, in particular the lambda (or no-op) instruction. 

The use of the same name indicates that the behaviour of the instructions is identical. 

The following sub-sections describe each named micro-instruction detailing its 
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purpose, parameter and actions performed. Each instruction action is described using 

a PASCAL-like notation. 

3.4.21 ifequal 
Parameter Token 
Purpose used to check if the cunent top symbol triggers a parse shift or reduce action. 
Action 
if (P1 = TopSymbol) then 
begin 

Phase := Phase+ I; 
end 
else 
begin 
PC :PC-f 1; 
Phase := 0; 

end; 

3.4.2.2 lambda 
Parameter unused 
Purpose no-op used to jump to next phase 
Action 
Phase Phase + I; 

3.4.2.3 illegal 
Parameter unused 
Purpose undefined instruction 
Action 
IllegalinstructionFlag 	true; 

This will cause the processor to halt. 

3.4.2.4 nomatch 
Parameter unused 
Purpose no-op jump to next instruction address 
Action 
PC:PC± I; 
Phase 0; 

3.4.2.5 lexehar 
Parameter Character 
Purpose test if the character in the input is greater than or equal to the parameter character. 
Action 
if(Pl <= TopSymbol) then 
begin 
Phase Phase + 1; 

end 
else 
begin 
PC PC + I; 
Phase 0; 

end; 



3.4.2.6 lexerror 
Parameter Token 
Purpose Use the token stack to find the longest token possible from the lexical text just read. 
Action 
repeat 
TopSymbol : POP_TOKEN_STACK 
TokenlsEnd: Dec 13(TokenlsEnd); 

until (TokenlsStart = TokenisEnd) or (TopSymbol 0  0); 

if(TopSymbol = 0) then 
begin 
Phase Phase + I; 

end 
else 
begin 
TokenBufferStart TokenlsEnd; 
PC StateStack[StateSP]; 
Phase 0; 

end; 

3.4.2.7 lexeoi 
Parameter Token 
Purpose Note that the token denoting the end of lexical input has been seen. 
Action 
EOIFoundFlag true; 
TopSymbol := P1; 
TokenBufferStart TokenlsEnd; 
PC StateStack[StateSPJ; 
Phase 0; 

3.4.2.8 lexaccept 
Parameter Token 
Purpose Note that a valid token has been seen. 
Action 
TopSymbol P1; 
TokenBufferStart TokenisEnd; 
PC StateStack[StateSP]; 
Phase 0; 

3.4.2.9 shift 
Parameter State 
Purpose Note the parse state to be shifted to, depending on if the token queue is empty then 
goto that state otherwise next phase (ready to start the lexical machine). 
Action 
PUSH_STATE_STACK(P I) 
if ValidQueueFlag or EOIFoundFlag then 
begin 
TopSymbol LookAheadSymbol; 
ValidQueueFlag false; 
PC StateStack(StateSP]; 
Phase 0; 

end 
else 
begin 

get the lexical token 
TokenWasStart := TokenlsStart; 
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TokenWasEnd TokenisEnd; 
Phase Phase + 1; 

end; 

3.4.2.10 shift-reduce 

Parameter Rule 
Purpose Call up the rule specified as parameter to perform the associated semantic actions. 
(Remember to use the current token string) 
Action 
SynchioniseModeFlag false; 
TheAction cActionA; 
SysNullToken false; 
SysResult SemanticAction(TheParsePtr,TheSyntaxPtr,P 0; 
if not SysResult then 
begin 
ParseSemanticFlag true; 

end; 
Phase Phase + I; 

3.4.2.11 reduce 

Parameter Rule 
Purpose Call up the rule specified as parameter to perform the associated semantic actions. 
(Remember to use the previous token string) 
Action 
LookAheadSymbol TopSymbol; 
ValidQueueFlag true; 
SynchroniseModeFlag false; 
TheAction cActionB; 
SysNullToken false; 
SysResult SemanticAction(TheParsePtr,TheSyntaxPtr,P 0; 
if not SysResult then 
begin 
ParseSemanticFlag tme; 

end; 
Phase Phase + I; 

3.4.2.12 lexshift 

Parameter Character 
Purpose Check that the current lexical character is less than or equal to the expected character. 
Action 
if(TopSymbol <= P1) then 
begin 
TokenisEnd Inc 13(TokenlsEnd); 
Phase := Phase+ I; 

end 
else 
begin 
PC PC + 1; 
Phase 0; 

end; 

3.4.2.13 lerror 

Parameter Rule 
Purpose Call up a special semantic action to indicate that a lexical error has been detected. 
Action 
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TheAction := cActionD; 
SysNuliToken : false; 
SysResult SemanticAction(TheParsePtr,TheSyntaxPtr,P 1); 
LexSyntaxFlag true; 
TokenBufferStart Inc 1 3(TokenBufferStart); 
Phase Phase + 1; 

3.4.214 lextest 
Parameter Rule 
Purpose Call up a lexical test routine to check on the possible token string. 
Action 
TheAction := cActionC; 
SysNullToken : false; 
Syskesult := SemanticAction(TheParsePtr,TheSyntaxPtr,P 1); 
if SysNullToken then 
begin 
TokenBufferStart TokenlsEnd; 
PC PC + 1; 
Phase Phase + I; 

end 
else if SysResult then 
begin 

Phase := Phase + I; 
end 
else 
begin 
PC PC + 1; 
Phase 0; 

end; 

3.4.2.15 perror 
Parameter Rule 
Purpose Depending on if the end of input has been seen or attempting to re-synchronise caused by 
previous errors then possible call up a special semantic action to indicate that a new parse error has 
been seen. 
Action 
if EOIFoundFlag then 
begin 

SourceExhaustedFlag true; 
end 
else if SynchroniseModeFlag then 
begin 
ValidQueueFlag false; 
Phase Phase + 1; 

end 
else 
begin 
LookAheadSymbol TopSymbol; 
ValidQueueFlag true; 
SynchroniseModeFlag true; 
ParseSyntaxFlag true; 
TheAction cActionA; 
SysNullToken := false; 
SysResult:=SemanticAction(TheParsePtr,TheSyntaxPtr,P 1); 
if not SysResult then 
begin 
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ParseSemanticFlag tme; 
end; 

end; 
Phase Phase + 1; 

3.4.2.16 (push 
Parameter Token 
Purpose Initialise the lexical engine, clear the Tokeths string but point to the first possible character 
for the token string. 
Action 
PUSFI_TOKEN_STACK(Pl); 
TokenlsStart : TokenBufferStart; 
TokenlsEnd TokenBufferStart; 
Phase := Phase + 1; 

3.4.2.17 assign 
Parameter Token 
Purpose After a parse rule has been recognised then note the left-hand token of the rule. If attempting 
to re-synchronise input after a parse syntax error then pop the state stack to fmd a state which has a 
shift on the Senor (=0) token. 
Action 
if SynchroniseModeFlag then 
begin 

find an error handler) 
StateSP Inc 13(StateSP); 
repeat 
PC POP_STATE_STACK; 
Phase 0; 
TopSymbol ($lfff and ReadTable(4*PC+Phase)); 

until EMPTY_STATE_STACK or (TopSymbol = 0); 
if EMPTY_STATE_STACK then NoErrorHandlerFlag true; 

end 
else 
begin 
TopSymbol := P1; 
Phase Phase + 1; 

end; 

3.4.2.18 push 
Parameter Token 
Purpose Push the specified token value onto the token stack. 
Action 
PUSH_TOKEN_STACK(P 1); 
Phase Phase + I; 

3.4.2.19 loadehar 
Parameter not used 
Purpose Read the next character from the lexical input stream (only if the buffer is empty). 
Action 
TokenRamStart := TokeiilsEnd; 
TokenRamEnd TokenBufferEnd; 
if (TokenRamS tart = TokenRamEnd) then 
begin 

Read next char into buffer 
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LexRam[TokenRamStart] READ_NEXT_CHAR; 
TokensufferEnd : Inc I 3(TokenBufferEnd); 
if(TokenBufferStart = TokenBufferEnd) then 
begin 

BufferOverflowFlag true; 
end; 

end; 
TopSymbol LexRam[TokenRamStart]; 

PC PC + 1; 
Phase 0; 

3.4.2.20 halt 
Parameter not used 
Purpose Halt the processor 
Action 
ParseDoneFlag true; 
Phase 0; 

3.4.2.21 goto 
Parameter State 
Purpose Goto the specified instruction address. 
Action 
PC := P1; 
Phase 0; 

3.4.2.22 pop 
Parameter not used 
Purpose pop a single value from the state stack. 
Action 
if EMPTY_STATE_STACK then StackUnderflowFlag true; 
StateS? Dec 13(StateSP); 
PC PC + I; 
Phase 0; 

3.4.2.23 readstack 
Parameter not used 
Purpose goto the address specified by the top of the state stack. 
Action 
PC:= StateStack[StateSP]; 
Phase := 0; 

3.5 Combined Macros 
The individual micro-instructions for the new instruction set can be combined to form 

macro-instructions. These macro-instructions implement the parser and lexer 

instructions of the initial instruction set. As mentioned earlier these macros could be 

regarded as a form of Very Long Instruction Word (VLIW). 
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3.5.1 State Table Macro 

The state table macro or layout for the combined parse and lex states has the 

following structure (using the regular expression notation for grammars). 

Table = Initialisation ParseState+ ParsePop LexState+ 

The Initialisation, ParseState, ParsePop and LexState macro entities are defined in the 

next sections. The above indicates that there must be an initialisation macro, at least 

one parse state, that there must be a parse pop section and at least one lex state. The 

processor does not verifS' that a language table has the correct structure. The correct 

table structure should always be generated by the associated compiler-compiler 

system. 

3.5.2 Initialisation 

The processor starts with all registers and flags initialised to zero or false. For the 

parser machine to be initialised it needs a token value to be input. This is provided by 

the macro placed at address 0. 

Phase 0 = Iambda0 

Phase I = shift <parse stateO> 

Phase 2 = Ipush <lexstate0 default> 

Phase 3 = goto <lexstateO> 

3.5.3 ParseState 

The compiler-compiler used with the processor generates the processor code so that 

the parse states start at address 1. Each parse state will have the following structure 

(using the regular expression notation for grammars). 

ParseState = (Shift, Reduce, ShiftReduce)*  Default 

The Shift, Reduce, ShiftReduce and Default entities mentioned correspond to the 

ParseShift, ParseReduce, ParseShifiReduce and ParseDefault macros. 

3.5.4 ParsePop 

This is used to store the popping from the parse state stack which is required by the 

Parse Reduce action. It has the following structure. 
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ParsePop = Pop+ ReadStack 

Pop is a macro such that 

Phase 0 = lambda 

Phase I = lambda 

Phase 2 = lambda 

Phase 3 = pop 

ReadStack is a macro such that 

Phase 0 = lambda 

Phase 1 = Lambda 

Phase 2 = lambda 

Phase 3 = readstack 

The number of pop macros is given by the number of tokens in the rule with the 

largest number of tokens in the right-hand side of the grammar rule. 

3.5.5 LexState 

Each lexical state will have the following structure (using the regular expression 

notation for grammars). 

LexState = TestArc (LexLoadChar CharArc+)? LexAccept 

3.5.6 Parse Shift 

The ParseShift macro splits down to 

Phase 0 = IfEqual <Token> 

Phase I = Shift <ParseState> 

Phase 2 = Ipush <lexstate 0 default token> 

Phase 3 = goto <Iexstate 0> 

3.5.7 Parse Reduce 

The ParseReduce macro has three variants depending on the rule to be reduced. 
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If the rule is the goal rule then 

Phase 0 = IfEqual <Token> 

Phase 1 = lambda 

Phase 2 = halt 

Phase 3 = readstack 

else if the rule has no tokens on its right-hand side then 

Phase 0 = IfEqual <Token> 

Phase I = reduce <Rule> 

Phase 2 = assign <rule left-hand token> 

Phase 3 = readstack 

otherwise 

Phase 0 = ifequal <Token> 

Phase 1 = reduce <rule> 

Phase 2 = assign <rule left-hand symbol> 

Phase 3 = goto <address of pop = right-hand rule count> 

3.5.8 Parse Shift-Reduce 

The ParseShifiReduce macro has three variants depending on the rule to be reduced. 

If the rule is the goal rule then 

Phase 0 = ifequal <Token> 

Phase 1 = lambda 

Phase 2 = halt 

Phase 3 = readstack 

else if the rule has no tokens on its right-hand side then 

Phase 0 = ifequal <Token> 

Phase I = shiftreduce <Rule> 

Phase 2 = assign <rule left-hand token> 
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Phase 3 = readstack 

otherwise 

Phase 0 = ifequal <Token> 

Phase 1 = shiftreduce <rule> 

Phase 2 = assign <rule left-hand symbol> 

Phase 3 = goto <address of pop = right-hand rule count> 

3.5.9 Parse Default Reduce 
The ParseDefaultReduce macro has four variants depending on the default rule being 

recognised and the number of tokens in the rule right-hand side. 

If the rule is the error rule then 

Phase 0 = lambda 

Phase I = perror <Error Rule> 

Phase 2 = assign <Error Token> 

Phase 3 = readstack 

else if the rule is the goal rule then 

Phase 0 = lambda 

Phase I = lambda 

Phase 2 = halt 

Phase 3 = readstack 

else if the rule has no tokens on its right-hand side then 

Phase 0 = lambda 

Phase I = reduce <Rule> 

Phase 2 = assign <rule left-hand token> 

Phase 3 = readstack 

otherwise 

Phase 0 = lambda 

Phase 1 = reduce <rule> 
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Phase 2 = assign <rule left-hand symbol> 

Phase 3 = goto <address of pop = right-hand rule count> 

3.5.10 Lex Test 

Each instance of the LexTest macro takes up two address locations. 

AddressO: 

Phase 0 = lambda 

Phase 1 = lextest <test routine> 

Phase 2 = push <next lex state default token> 

Phase 3 = goto <next lex state> 

Address 1: 

Phase 0 = nomatch 

Phase I = lambda 

Phase 2 = Ipush <lex state 0 default token> 

Phase 3 = goto <lex state 0> 

3.5.11 Lex Load Char 

The LexLoadChar macro splits down to 

Phase 0 = lambda 

Phase 1 = lambda 

Phase 2 = loadchar 

Phase 3 = goto <next address = current address + I> 

3.5.12 Lex Shift 

The LexShift macro splits down to 

Phase 0 = Iexchar <lo character> 

Phase I = Iexshift <hi character> 

Phase 2 = push <next lex state default token> 

Phase 3 = goto <next lex state> 
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3.5.13 Lex Accept 
The LexAccept macro has three variants depending on the default token being 

recognised. 

If the recognised token is the error token (indicating a lexical syntax error) then 

Phase 0 = lexerror <ErrorToken> 

Phase I = lenor <Error Rule> 

Phase 2 = Ipush <lex state 0 default token> 

Phase 3 = goto <lex state 0> 

else if the token is the end of input token then 

Phase 0 = lexeoi <EOI Token> 

Phase I = lerror <error rule> 

Phase 2 = Ipush <lex state 0 default token> 

Phase 3 = goto <lex state 0> 

otherwise 

Phase 0 = lexaccept <token> 

Phase I = lerror <error rule> 

Phase 2 = Ipush <lex state 0 default token> 

Phase 3 = goto <lex state 0> 

3.5.14 State Size Reduction 
It can be observed that some language grammars have duplicated instructions in some 

parse states and also some lex states. Therefore, one further optimisation is to merge 

the overlap into a new state, removing the overlap from the two original states. The 

two original states would then each terminate with a new macro, the Continue macro. 

This would be implemented as, 

Phase 0 = lambda 

Phase 1 = lambda 

Phase 2 = lambda 

Phase 3 = goto <new merged state> 
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For a pair of parse states the merged state must contain the ParseDefault macro. 

For a pair of lex states the merged state must contain the LexAccept macro. 

This optimisation has been included in the compiler-compiler software suite which 

generates the instruction tables for a language. 

3.6 Sample Language Table Sizes 
The following table gives examples of the sizes of parse tables generated by the 

compiler-compiler using the original and new instruction sets. For a list of the original 

parse instructions refer to "Table 9 - Initial Parse Instruction Set", and for a list of the 

original lexer instructions refer to "Table 11 - Initial Lexical Instruction Set". For a 

list of the final instruction set refer to "Table 13 - Micro-Instructions". The following 

table also compares the size of parse tables for a number of computer language 

grammars. Also included is a comparison of the count of instructions executed to read 

the language grammars. 

It can be seen that the new micro-instruction count is less than double the old 

instruction count. This should not imply that the new instruction set will have longer 

execution times, since each new micro-instruction is simpler (and presumably faster) 

than the old instruction. 

Note also that the count of phaseO micro-instructions executed is consistently less 

than the number of instructions executed from the old instruction set. This may be 

caused by a different ordering of the triggers for parse and lex shift actions between 

the tables generated for the two instruction sets. 

Language Old 
Table Max 
Address 

Old 
Instruction 
Count 

New 
Table Max 
Address 

New 
Instruction 
Count 

New 
Phase0 
Count 

ACE 818 37509 701 60597 29723 
BASIC 1260 30658 1105 48912 23723 
M2 4177 107536 3326 177459 84728 
M2V 3915 97245 3134 158835 76489 
PCPASCAL 1 3924 100399 3470 169863 80133 

Table 14 - Comparison of Table Sizes 
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The following table shows some example counts of instruction executed for source 

text written in a range of languages, where 

ACE is a simple BASIC-like language. 

• BASIC is a grammar defining a variant of the original BASIC language. 

• M2 and M2V are both language grammars for MODULA-2. M2V is a 
grammar which was defined for use on the DEC VAX/VMS operating system. 

• PCPASCAL is a grammar derived from the PASCAL definition used for the 
Borland Turbo Pascal compiler. 

Language Input Instruction Count 
(Old Instruction Set) 

Instruction Count 
(New Instruction Set) 

PhaseO Count 
(New Instruction Set) 

ACE bad 248 5910 2771 

ACE badl 364 5508 2566 

ACE jdm 3167 5964 2789 

ACE test 6644 12348 5820 

ACE testl 7366 13771 5456 

BASIC bad 1019 1885 935 

BASIC test 788 1476 704 

M2 deb 6812 13689 6202 

M2 example 7450 15262 6708 

M2 examplel 9656 23720 9584 

M2 example2 3537 6690 3141 

M2V deb 6718 13521 6114 

M2V example 7357 15096 6621 

M2V example1 9630 23688 9564 

M2V example2 3484 6604 3094 

PCPASCAL test 12364 25007 11352 

Table 15 - Comparison of Parse Input 

The examples given within the table show that the new instruction set roughly 

doubles the number of instructions executed compared with the original instruction 

set. However due to the simpler actions for the new micro-instructions, the execution 

time of each new instruction should be less than that of the old instruction. 
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4. Hardware Design 
The instruction set architecture, which was designed to implement the combined 

LALR(l) and lexical analyser algorithms, did not impose any major constraints on the 

physical implementation of the processor. The software implementation of the 

processor, used within the compiler-compiler system suggested the main functional 

blocks to be implemented as hardware. These functional blocks are shown in the 

following diagram. 

Lexical Queue 

Token String 

At 
Semantic Rule 

State Stack 

Char Input 

Error Flags 

Control Logic 

SymbolQueue I Phase 

on 	
I Inst Reg.  

Pa PC IH 
Address 

Language ROM (Instructions) 	1 
Figure 21 - Processor Functional Blocks 

The PASCAL source code for the software emulation of the processor was 

interpreted as being a register transfer model for the hardware implementation. 

The following sections discuss the implementation of the various logic blocks within 

the processor. 
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4.1 State, Token Stacks and Token Queues 
The original idea was to implement the two token and state stacks and also the lexical 

queue as individual devices which would be controlled from the main processor 

device. This would have required the design of one stack device and a lexical 

character buffer device. The stack device would have been used twice, once for the 

state stack and once for the token stack. 

4.1.1 State and Token Stack 

The stack device was designed to have the architecture as shown in the diagram 

below. 

Stack Pointer 

Command (SP=O) 	(SPmax) 

IncSP 
DecSP 
WriteData 
ReadData 
NoOp 

RAM 

address 

Data In 	Data Out1 

Figure 22 - Stack Device 

As the software version of the processor used a 13-bit parameter this required the 

stack RAM data width to also be 13-bits. The silicon design tools were only able to 

provide memory holding up-to 8192 bits. Several attempts were made to have 

multiple memory blocks on a single device (so that a stack depth > 512) but due to 

restrictions on internal wire-lengths these attempts were unsuccessful. 

The stack chip was however fabricated and contained a RAM block of 13-bits width 

and address range of 512 locations. This device, using a 2 micron CMOS technology, 

was 4772 by 4656 microns in size and used a 40 pin dual in line package. 

4.1.2 Token Char Queue 

The token character (or lexical) buffer queue was designed to have the hardware 

implementation as shown in the following diagram. This implementation was also 
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derived from the processor software emulation, which acted as a register transfer 

model. The lexical buffer queue was not implemented as a standalone device. After 

the difficulties with the stack chip, the concept of incorporating internal RAM for the 

stacks and queues was abandoned. 

Data out 	Data in 

Figure 23 - Lexical Buffer 

Key:- 
+ implies that the register can be incremented by 1. (i.e. TRS, TBE, TBS, TIE) 
- implies the register can be decremented by 1. (i.e. TIE) 

Source Code 

TRS TokenRamStart 
TRE TokenRamEnd 
lBS TokenBufferStart 
TBE TokenBufferEnd 
TIS TokenlsStart 
TIE TokenlsEnd 
TWS TokenWasStart 
TWP TnknWncPnd 

Figure 24 - Lexical Buffer Registers 

The lexical buffer block also incorporated control logic to ensure the defined register 

to register transfers were possible, also to enable the increment and decrement by 1 of 

the specified registers. Finally the control logic ensured data could be written to and 

read from the attached RAM. 

The lexical buffer queue was implemented as a cyclic buffer. This is shown in the 

following diagram. 
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Figure 25 - Lexical Queue as Cyclic Buffer 

If any pair of associated registers (i.e. TxS, TxE) have the same value (that is, point to 

the same memory address) then the corresponding token string is empty. The TRS, 

TRE registers are only used when either reading from or writing to, the buffer RAM. 

The TRS register is also used as the current address pointer for the lexical memory. 

When the processor is "parsing", the values held in the TWS, TWE, TIS, TIE, TBS 

and TBE registers are not modified and are in the order shown in the diagram. 

When the processor is "lexical analysing", the values held in the TIS, TIE, TBS and 

TBE registers are being modified. Additionally, the value in the TIS and TBS 

registers are identical and TIE is guaranteed to have an inclusive value in the range 

between TBS + 1 and TBE. The source input supplies characters which are read into 

the lexical queue and appended into the memory location indicated by TBE 

(TokenBufferEnd). 

4.1.3 Token Symbol Queue 
The Token symbol queue is primarily used to store the next parse token. This has 

either been read from the source (by the lexical instructions) or been inserted from the 

left-hand side symbol of a grammar rule that has been recognised. 
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(TopSymbolO) 

ILoolead I 	ValidQiieueF1ag 

Figure 26- Symbol Queue 

The diagram shows the register to register data-paths. The comparison signal 

(TopSymbol = 0) is defined from the TopSymbol register value. The diagram omits 

the comparison signals (TopSymbol=P1), (TopSymbol>=Pl) and (TopSymbol<P1) 

where P1 represents the value of the instruction parameter register. The comparison 

signals are used by some of the PhaseO micro-instructions. 

4.1.4 Using Internal or External Memory 

The difficulties in having multiple memory blocks on a device, caused by the 

excessive wire-lengths involved forced a re-evaluation of the design of the processor 

hardware architecture. It was decided to move all memory required by the stacks and 

buffer queues off the processor to become external to the processor design. 

The use of external memory would enable the size of the stacks and buffer queues to 

be increased. It was noted that the size of the memory available for use by stack and 

queue logic units imposed some constraints on the run-time use of the processor. The 

size of the token stack memory constrained the size of tokens (especially comment 

tokens). Also the buffer queue had to contain three token strings, which would also 

restrict the size of tokens. 

The need for external RAM memory imposed a requirement for memory addressing 

additional to the instruction memory (assumed to be in a ROM). The use of three 

separate address spaces for the two stacks and one buffer queue was immediately 

discarded, since this would have required three address signal busses. The concept of 

one address space (and hence one address bus) which combined all address spaces 

(token stack, state stack, lexical queue and instruction memory) was utilised. 
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The software implementation of the processor (and hence the hardware version) also 

has to read from the source input stream the values of the lexical characters. The 

processor also is required to output (on demand) a token character string when a 

semantic action is in progress. That is, an 110 address space was also required. 

The various address spaces were therefore combined into one address space which 

was partitioned into eight segments. These segments are indicated in a following 

table. 

Segment Page Use/Purpose of Segment 
0 0 Phase 0 Instruction (ROM) 
1 1 Phase 1 Instruction (ROM) 
2 2 Phase 2 Instruction (ROM) 
3 3 Phase 3 Instruction (ROM) 
4 0 State Stack RAM 
5 1 Token Stack RAM 
6 2 Lexical Buffer RAM 
7 3 Unused (110 space) 

Table 16- Memory Segment Definition 

Segments 0 to 3 are used by the instruction memory (usually ROM) and correspond to 

the instructions for phase 0 to 3 respectively. The other four segments 4 to 7 are used 

by the various RAM address spaces, including the Input/Output (110) space. 

The segmented memory address space, which is able to address ROM, RAM and 110, 

forced some constraints on the legal combinations of the various memory enable and 

write signals. To enforce the legal combinations, the use of an internal 4-bit 

"lOMode" control bus (giving 16 legal combinations) was adopted. This is shown in 

the table below. The low three wires of the bus are input to the bit-slice device so the 

correct address register can be used. 



The instruction memory segments could be implemented as either ROM or RAM 

memory. If the instruction memory is RAM then a mechanism is needed to load the 

parse and lex instructions from an external source using a fixed message protocol. 

InstFlag is an internal signal used to indicate that the instruction memory segments 

are being written to (if RAM) and therefore is indirectly set and cleared by the 

protocol. This protocol will be described later. 

lOMode Meaning Enable Write Wanted  Address Page 
Inst Data  Inst Data DMA  

0 NoOp 0 0 0 0 0 0 PC 0 
DataWanted 0 0 0 0 I 0 PC 0 

2 DataDMA 0 I 0 0 0 I TRS 2 
3 Inst Wanted 0 0 0 I 0 0 PC 0 
4 ReadinstO 1 0 lnstFlag InstFlag 0 0 PC 0 
5 Readlnstl I 0 lnstFlag InstFlag 0 0 PC 
6 Read1nst2 I 0 lnstFlag InstFlag 0 0 PC 2 
7 Readlnst3 I 0 InstFlag InstFlag 0 0 PC 2 
8 ReadDatao 0 1 0 0 0 0 StateSP 0 
9 ReadDatal 0 1 0 0 0 0 TokenSP 1 
10 ReadData2 0 1 0 0 0 0 TRS 2 
II ReadData3 0 1 0 0 0 0 TRS 3 
12 WriteDataO 0 1 1 0 0 0 StateSP 0 
13 WriteDatal 0 1 1 0 0 0 TokenS? I 
14 WriteData2 0 1 1 0 0 0 TRS 2 
15 WriteData3 0 1 I 0 0 1 0 TRS 2 

Table / 7- lOMode Definition 

4.2 New Processor Architecture 
The use of external memory and also having the bit width of the instruction parameter 

the same size as the state address (state stack data), the token size, the character size 

and the rule size enabled the processor to be split into a control logic block and a data 

logic block. The control and data blocks have the connections as shown in the 

following diagram. 
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Figure 27- New Processor Architecture 

All registers and logic circuitry which depend on the width of the parameter, address, 

token and character buses are localised within the data block. Thus the data block 

could be implemented with different register widths (i.e. as a bit-slice). Also, the 

fixed size busses such as the instruction bus (3-bits) are embedded within the Control 

logic block. 

4.2.1 Cycle-based Simulation 

The modifications to the processor architecture (that is, the splitting of the control and 

data-path logic) required further changes to be made to the compiler-compiler 

software to emulate the new processor. Primarily the software was altered to provide 

cycle based simulation, unlike the previous version of software which only simulated 

the execution of instructions. Emulation results of the instruction execution variant of 

the software are indicated in a table of results in the previous chapter. Results for the 

cycle based emulation are listed in a table in a following section in this chapter. 

The software emulation of the processor (written in PASCAL) then formed the design 

specification for the two types of logic block. The PASCAL language has similar 

constructs to those present in the logic synthesis language LOLA which is part of the 

SOLO 1400 software tool set used to design and layout the logic. For more details 

about the design suite refer to the Solo 1400 User Guide [European Silicon Structures 

93]. The similarity of constructs (such as the case statement) enabled the PASCAL 
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source to be quickly converted into logic via the logic synthesis tool, once the 

PASCAL source was manually transformed into LOLA. 

The software emulation of the processor was also able to generate test-vectors (and 

the expected signal outputs) to validate the logic design. It was found that the signal 

outputs from the SOLO 1400 logic simulator, MADS and the expected results from 

the software emulation were in agreement. Refer to "Appendix A - Software 

Simulation" for part of an example simulation run. 

4.2.2 Processor Physical Implementation 

The data-path and control blocks were both designed and fabricated using 1.5 micron 

CMOS gate-array technology. 	The data-path block (logic 	and 	registers) was 

implemented as an 8-bit bit-slice device. Both devices are described in the next 

sections. 

4.3 Data-Path Bit Slice 
The bit slice device used a repeated logic cell with ripple-through logic. The top level 

block incorporated logic to decode the command bus signals and the repeated slice 

logic. 

Address 	Data out 	Ripple out 

Page Bus + 
Datat4emEnable 

\ 	
p. 

Command 

Bit-slice 	ISlice 8 

Slice 

Control 	Ripple 
decode 	I 

Slice 1 

Clock 	Data in 	
Ripple in 

Figure 28 - Bit-slice I/O 
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The operation of the bit-slice is controlled by the combined EngineCommand bus, the 

Page bus and the DataMemEnable signal. The combination of Page bus and 

DataMemEnable signal is used to select which register should be used to form the 

memory address register, one of PC, TokenSP, StateSP or TokenRAMStart. The 

EngineCommand bus controls the register to register transfers and also the increment 

or decrement (by one) of some of the registers. 

The devices can be combined in series as shown in the next diagram. 

address Data out 	laddress Data out 

ontrol 	 Slice 	 Slice 

Ripple- 	 Ripple-in 	 Ripple-in 

coand 	 command Data in 	1commandData in 

Figure 29 - Control and Bit-slice blocks 

Ripple-through logic was extensively used for simplicity of design. As the main 

objective of implementing the processor in silicon was to prove the concept, the 

penalty of long delay paths for signals (forcing a slower clock) was accepted. The list 

of ripple-through signals is listed in the following table. 

Ripple Signal Signal Purpose 
Carry Carry for Increment/Decrement by I 
TokenRamEgual (TRS = TRE) 
TokenBufferEgual (TBS = TBE) 
TokenlsEgual (TIS = TIE) 
TokenSPlsZero (TokenSP = 0) 
StateSPlsZero (StateSP = 0) 
PIIsZero (P1 =0) 
SymbolGreaterOrEgual (TopSymbol >= P1) 
SymbolEgual (TopSymbol = P1) 

Table IS - Bit-Slice Ripple Signals 

The logic for the individual ripple signals is of 4 basic types. These are :-

• to test if the register is zero 

• to compare two registers for equality 

• to propagate a carry/borrow signal for the incrementldecrement by 1 of a 
register 

• to test if a register is greater than or equal to another register. 
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Using the MODEL hardware description language this becomes, 

or[and[a,not[b]],and[eqv[a,b],r_in]] -> r_out 

Thus one slice will require an or gate, two and gates, an equivalence gate and an 

inverter. 

4.3.1.4 Carry/Borrow for Increment/Decrement by I 

If a[i] represents the i'th bit for register a, and c[i] is the i'th carry/borrow input signal 

and inc represents a signal indicating the number is to be incremented (if at logic 1) 

and indicates a decrement (if at logic 0) then we have the following table 

inc 
(+1 if 1,4 if 0) 

cEll 
carty/borrow in 

a[i] 
register 

a'[i] 
New value of a[i] 

c[i+l] 
cany/borrow out 

o 0 0 0 0 
o 0 I I 0 
o I 0 1 
o  i o 0 

1 0 0 0 0 

0 

1 1 0 I 0 

1 0 1 

Table 19- Carrylsorrowfor + ]/-I 

a'[i] is (a[i] 0 c[i]), i.e. the exclusive-or of a[i] with c[i] 

and one expression for c[i+l] can be optimised to be, 

c[i+1] is (inc = a[I]) and (c[I] = 1) 

The carry/borrow value of the most significant bit of an increment/decrement is 

ignored by the control logic since underfiow or overflow is permitted. 

Using the MODEL hardware description language this becomes, 

eqv[a,c_in] -> a_new 

and[eqv[inc,a],c_in] -> c_out 

4.3.2 Register To Register Transfer 

The register to register transfer is carried out using a number of internal busses. An 

increase in silicon area (caused by wiring and extra gates needed to form individual 

increment and decrement logic for the TRS, TBS, TBE and TIE registers) was 
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avoided by using a single increment/decrement logic block with the internal busses. 

This is shown in the next diagram. 

Figure 30 - Bit-slice Register Transfer 

The individual registers each have an associated command signal indicating when to 

load data values (from either the sbus or ebus) or to reload the current register value. 

The load command is decoded from the command bus input to the bit-slice at the top 

level of the device. 

clock 

a! 

load 

ip- flop 

qbar 

Figure 31 - Register Transfer 

The q and qbar register outputs are both used so as to minimise both logic used and 

path delay times. 

- 95 - 



4.3.3 Bit-Slice Commands 
The operation of each bit-slice device is decided by the EngineCommand bus. This is 

5-bits wide giving a total of 32 possible commands. The individual commands are 

listed in the following table. 

Command Bus Command Name Command Actions 

0 NoOp None 
I TokenSetBusMayBe TRS 	TIE, TRE:= IDE 

2 TokenSetBusBuffer IRS 	IBS, TRE:= IBE 

3 TokenSetBusis TRS 	TIS, TRE 	TIE 

4 TokenSetllusWas TRS 	TWS, IRE 	TWE 

5 TokenSctlsEmpty TIS 	185, TIE 	185 

6 TokenLoadWasls IWS 	115, TWE 	TIE 

7 Zero Clear all registers 

8 TokenSPZero TokenSP 	0 
9 SymbolLoadPC PC 	P1 
10 TokenAccept IRS 	TIE 
II SymbolPiLoad P1 	MEMORY (Dataln) 
12 SymbolLoadLAS LookAhead 	0 
13 SymbolPop TopSymbol 	LookAhead 
14 SymbolPush LookAhead 	TopSymbol 

15 SymbolLoadlS TopSymbol := P1 
16 1 StateSPlnc StateSP 	StateSP + 1 

17 TokenSPlnc TokenSP 	TokenSP + I 

18 TokenlncRamStart TRS 	TRS + 1 
19 Symbollnc PC 	PC + I 
20 TokenlncBufferStart TBS 	TBS + I 
21 TokenlncBufferEnd TBE 	ThE + 1 
22 TokenlnclsStart 115 	TIS + I 
23 TokenlnclsEnd TIE 	TIE + I 
24 1 StateSPDec StateSP 	StateSP - 
25 TokenSPDec TokenSP := TokenSP - 1 

26 TokenDecRamStart IRS 	TRS - I 
27 SymbolDec PC 	PC - 
28 TokenDecBufferStart lBS 	lBS - 
29 TokenDecBufferEnd TBE 	IDE - 

30 TokenDeclsStart TIS := TIS - 
31 TokenDecisEnd TIE := TIE - 1 

Table 20 - Bit-Slice Commands 

All the commands are implemented and available for use, however the control device 

uses a subset of the commands to implement the instruction set for the processor. 

4.3.4 Fabrication Details 

The bit-slice device was fabricated using a 1.5 micron CMOS gate array technology. 

The actual device size was 3777 by 3244 microns. It used 6664 stages where each 

stage consisted of a pair of NFET and PFET devices and so the bit-slice logic was 
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implemented using 13328 transistors. The device was packaged in an 84 pin grid 

array where 16 pins were reserved for power and ground connections (8 power and 8 

ground) and 15 pins were unconnected. 

The diagram on the next page shows the physical design layout for the bit-slice 

device. 
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4.3.5 Device Pinout 

The diagram shows the pin layout of the 84 pin grid array used by the bit-slice device. 

The package has 85 pins where pin C9 is used for alignment or package orientation 

when inserting onto a circuit board. 

12... 	11 
••••••••••• A 
•SSS•SSS••S B 
.. ... 	S.. 	C 
.. .. 	ID 
... ••• 	B 
S.. ••• 	F 
S.. ••• G 
.. •• H 
.. S.. 	•S 
••••••••••• K 
••••••••••• L 
Back Side Pattern 

Figure 33 - PGA Pin Layout 

The pinout of the device is given by the following table. NC indicates that the pin is 

Not Connected to the encapsulated chip. Also the Pad number indicates the internal 

pin for connection to the device bond pads. 

Pad Pin Signal Pad Pin Signal Pad Pin Signal Pad Pin Signal 
I B2 NC 22 K2 NC 43 Kl0 NC 64 BlO NC 
2 C2 address8 23 1(3 NC 44 J10 clock 65 B9 NC 
3 BI address7 24 L2 NC 45 K!! mcodeo 66 A10 NC 
4 Cl addressó 25 L3 gnd 46 JI 1 mcodel 67 A9 seout 
5 02 address5 26 K4 gnd 47 H10 mcode2 68 138 sgeout 
6 Dl address4 27 L4 gnd 48 HIt mcode3 69 A8 plizout 
7 E3 address3 28 J5 vdd 49 FlO mcode4 70 86 sspizout 
8 E2 address2 29 KS vdd 50 1 010 I iomcodeO 71 B7 tspizout 
9 El addressl 30 L5 vdd SI 011 iomcodel 72 A7 tieout 
10 F2 gnd 31 K6 carryin 52 09 iomcode2 73 C7 tbeout 
11 F3 vdd 32 J6 trein 53 F9 datainl 74 E6 ireout 
12 03 dataout8 33 J7 tbein 54 Fl I datain2 75 A6 carryout 
13 01 dataout7 34 L7 tiein 55 ElI datain3 76 AS gnd 
14 02 dataout6 35 K7 tspizin 56 ElO datain4 77 85 gnd 
15 Fl dataoutS 36 L6 sspizin 57 £9 datains 78 CS gnd 
16 HI dataout4 37 L8 plizin 58 DII datainó 79 A4 vdd 
17 H2 dataout3 38 1 K8 sgein 59 010 datain7 80 B4 vdd 
18 JI dataout2 39 L9 seth 60 CII datain8 81 A3 vdd 
19 KI dataoutl 40 Ll0 NC 61 BIl vdd 82 A2 NC 
20 12 NC 41 K9 NC 62 ClO gnd 83 83 NC 
21 LI NC 42 LII NC 63 All NC 84 Al NC 

Table 21 - Bit Slice Pinout 
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4.4 Control Device 
The logic for the control device is implemented as a finite state machine, whose state 

changes depend on internal and external signals and also on the current state. Each 

state also outputs a number of signal values to operate external logic such as the bit-

slice devices (via the EngineCommand signals), memory (via the enable, write, 

address and data bus signals) and the semantic logic (via the irq and dataout bus 

signals). 

4.4.1 Internal Logic 

The top level logic design of the control device is outlined in the next diagram. This 

diagram shows that the major logic unit is the 'next state and commands' block 

where each connection from this block represents a signal bus sending commands to 

the associated logic. 

lError Flags I 

t State + 

inst reg 

reset clock Phase reg, 1 Ripple in 	eoifound flag, 
sync mode flag, 

syscomrnand 	valid queue flag 

Figure 34 . Control Logic Internals 

The possible commands that can be sent to the lOMode decoder are defined in "Table 

17 - JOMode Defmition". Note that the InstWrite flag also is an input to the decoder. 

The implementation of the InstWrite, Sync Mode, Valid Queue and IRQ flags is 

detailed in the following section 4.4.1.1 titled "Flag Logic". 

rq 
lag 

1 
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4.4.1.1 Flag Logic 

All flags use a dual wire command bus which allows 4 possible commands to be 

defined. Using Flag to denote the current flag value and NewFlag to denote the next 

value for Flag, the commands and actions are 

Command Value Command I CommandO Action 
FlagNoOp 0 0 0 NewFlag 	Flag 
FlagUnused 1 0 1 NewFlag 	Flag 
FlagClear 2 1 0 NewFlag : 	 false 
FlagSet 3 1 1 NewFlag 	true 

Table 22 - Flag Commands 

This set of commands could be implemented in two ways. One method is to "gate the 

clock" such that the FlagSet and FlagClear commands are gated with the system clock 

to give the clock input to the latch. The other method is to always ensure that the latch 

data input has a legal value and that the system clock directly feeds the latch clock. 

The technique of "Gating the clock" causes extra loading on the clock wiring which 

then slows down the clock. This method was therefore not used. 

The second method imposes extra loading on the conmiand signals. This extra 

loading can be ignored as it is comparatively local, and not global like the system 

clock. It is implemented as shown in the next diagram. 

clock 

flag 

commandl 

CommandO 

Figure 35 - Control Flag Logic 

4.4.1.2 Error Flags 

The error flags block contains the 9 error flags and also includes the EOIFound flag. 

All of these flags are cleared at system reset and only set individually when the error 

condition has been detected. Thus the command bus need only have 4 wires allowing 

16 possible commands which are listed in the next table. 
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Name Value Action 
ErrorNoOp 0 None 
ErrorSourceExhausted I SourceExhausted 	true 
ErrorParseSyntax 2 ParseSyntax 	true 
ErrorParseSemantic 3 ParseSemantic 	true 
ErrorLexSyntax 4 LexSyntax 	true 
ErrorStackUnderfiow 5 StackUnderfiow := true 
ErrorStackOvertlow 6 StackOverfiow 	true 
Errorillegallnstruction 7 fliegallnstruction 	true 
ErrorNoEnorilandler 8 NoErrorflandler 	true 
ErrorBufferOverfiow 9 BufferOverflow 	true 
ErrorUnusedl0 10  
ErrorUnusedll 11  
ErrorUnusedl2 12  
ErrorUnusedl3 13 
ErrorundEOl Fo 14 EOIFound 	true 
ErrorReset 15 All flags set to false 

Table 23 - Commands for Error Logic 

Each flag was implemented as described in section 4.4.1.1 titled "Flag Logic", so 

each value of the ErrorCommand bus is able to set values for the individual control 

busses for the ten flags. 

4.4.1.3 Phase Register 

The phase register is two bits wide and can be left unchanged or set to a value from 0 

to 3. This requires 5 possible commands which mandates the use of 3 command 

wires. The commands to modify this register are given below. Each command then 

generated a flag command to leave unchanged, clear or set the two latches forming 

the phase register. 

Command Value Action HighBit Flag Action LowBit Flag Action 
SemNoOp 0  FlagNoOp FlagNoOp 
SemUnusedl I  FlagNoOp FlagNoOp 
SemUnused2 2  FlagNoOp FlagNoOp 
SemUnused3 3  FlagNoOp FlagNoOp 
SemSetO 4 Phase 	0 FlagClear FlagClear 
SemSetl 5 Phase 	I FlagClear FlagSet 
SemSet2 6 Phase : 	 2 FlagSet FlagClear 
SemSet3 7 Phase := 3 FlagSet I FlagSet 

Table 24 - Phase Register Commands 

4.4.2 Processor Internal States 
The control device executes each micro-instruction of the processor as a sequence of 

steps, where each step will perform some actions in the bit-slice, associated memory, 

source input logic or semantic logic. Each step is a single state which in combination 

form the state machine that is the processor. 
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The processor control logic uses 48 states. The state machine could be implemented 

using the concept of "one hot" encoding with 48 latches (one per state). In "one hot" 

encoding only one latch should ever be set (representing the current state) and all 

others latches are clear. This requires the next state logic to ensure that there is no 

possibility of more than one state latch being set simultaneously. Also extensive re-

design is needed using this approach if extra states need to be added. The actual 

implementation used 6 latches to form a state register which allows 64 possible states. 

As only 48 states are used this left sufficient unused states for later expansion of the 

state machine. 

A simplified version of the state machine is shown in the next diagram 

Figure 36- Processor State Machine 

After the processor has reset, the processor loops through a fetch and execute cycle 

using many states until it halts either because the parse and lexical analysis has 

completed or an error has been found. The processor then goes to the halt state. In this 

state the error flags are available for use by external hardware. The halt state is only 

exited by applying the external reset. 

Each micro-instruction starts with the fetch state. This latches in the instruction and 

parameter to be executed next. (The memory control signals InstMemEnable will be 

cleared at the end of this state). Depending on which phase 0 -. 3 is being executed, 

the next state will be one of ExecuteQ .. Exeeute3. The ExecuteX states decode the 
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micro-instruction to be executed and jump to the sequence of states needed by each 

micro-instruction to implement the required actions. Some instructions have common 

actions and therefore have states in common. 

4.4.3 Interfaces and Protocols 

The control device has a number of input and output signals which are used to 

interface to external logic. The interfaces are implemented using a number of 

protocols for the following purposes, 

• To read or write to memory 

Logic to implement language semantics 

Logic to input source text 

• Logic to read Token character strings 

The protocols and signals used are described in the next sections. 

Some of the protocols use the SysCommand input bus to send status information back 

to the processor from the external logic. Each SysCommand bus value is used and is 

indicated in the next table. 

SysCommand SysCommand2 SysCommand 1 SysCommandO 

SysNoOp 0 0 0 
StateWanted 0 0 1 
TokenWanted 0 1 0 
IRQ_Nullloken 0 1 1 
IRQ_OK 1 0 0 
IRQ_Err 1 0 
DataAvailable 1 1 0 
InstAvailable I I 

Table 25 - Sys Command Bus Definitions 

4.4.3.1 System Reset 

The processor could power up into any of the possible internal states. The logic of the 

state machine has been designed so that if the external reset (sysreset) is true then the 

state machine will goto the reset state. While in the reset state the processor internal 

registers will be initialised, usually to zero. The reset state is only exited when the 

external reset goes low. 
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4.4.3.2 Accessing Memory 
The processor memory space is split into instruction memory or data memory for the 

stacks and lexical buffer. Refer to "Table 17 - lOMode Definition" for more 

information. 

Memory access is controlled by the InstMemEnable, DataMemEnable and 

MemoryWrite output signals. The instruction memory is accessed when 

InstMemEnable is high and data memory when DataMemEnable is high. The 

combination of InstMemEnable, DataMemEnable, MemoryPageO, MemoryPagel 

help to select which of the eight memory segments is being accessed. 

Memory access takes two clock cycles. The first clock cycle sets the memory enable 

signals, memory page signals and memory write signal to a legal combination to read 

or write to a memory segment. The second clock cycle will clear the enable signal. 

4.4.3.3 Reading the Source Text 

The processor needs to read the source text to be able to parse it. A request for the 

next character in the source input is indicated by SysDataWanted going high. This 

output stays high until the external logic has a character available which is indicated 

by SysCommand having the value SysDataAvailable. At this point the character is 

loaded into the bit-slice and SysDataWanted will go low from the next clock cycle. It 

must be noted that each character of source text is read individually and only 

requested when the processor needs it. 

4.4.3.4 Interrupts (Rule Recognition and Test Routines) 

The processor needs to indicate an interrupt to the external logic which handles 

language semantics and lexical tests that a grammar rule or test must be handled. This 

is signalled by the SysIRQ output going high and staying high until the external logic 

acknowledges interrupt completion. For a parse semantic action, the grammar rule 

being recognised is output on the dataout bus. For a lexical text routine, the lexical 

test being checked is also output on the dataout bus. Interrupt completion is indicated 

by the SysCommand input bus having one of the values 

• SysIRQ_OK 

• SysIRQ_Err 

• SysIRQ_NullToken. 
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Whilst the interrupt is in progress, which could take many clock-cycles, the 

SysCommand bus must have the value of SysIRQ_NoOp. This value is used to 

indicate that the external logic has not completed. 

The legal values to indicate completion are :- 

. SysIRQ_OK indicates that the interrupt has been successful. 

• SysIRQ_Err indicates that the interrupt detected a parse semantic error. This 
should only be used when the interrupt triggered is one to recognise a grammar 
rule. That is the interrupt is not a lexical test routine. 

• SysIRQ_NullToken should only be used by a lexical test routine to indicate 
that the potential next token being recognised can be discarded, probably since it 
is a whitespace (or comment) token. 

4.4.3.5 Outputting Current Parse State 

During the interrupt raised by the processor (i.e. SysIRQ is high), the external logic 

may need to request the value of the current parse state for use in error reporting. This 

is indicated by SysCommand having the value SysStateWanted for a single clock-

cycle. The value of the current parse state is output on the bit-slice data output bus for 

the next clock cycle for use by the external logic. 

4.4.3.6 Outputting Tokens 

During the interrupt raised by the processor, the external logic may need to request the 

complete value of one of the token strings held in the lexical buffer 

This is triggered by SysCommand having the value SysTokenWanted for one clock-

cycle whilst SysIRQ is true. From the next clock-cycle the individual characters of the 

token string are output from the data memory, one character per clock-cycle until the 

complete token string has been send. Valid characters are indicated by the values 

being both true for the output SysDataDMA and of the TREIn input. 

4.4.4 Error Detection and Handling 

The control device also has a limited capability to detect and handle errors. The 

control device has 9 internal latches which are used to indicate a range of detected 

errors and warnings (3 warnings and 6 errors). The latch outputs are connected to chip 

bond pads for use by external logic. The ParseDone flag (available as an output pin) 

indicates when the parsing process has terminated. At that moment the error flags can 

be examined to determine if the parse was successful. 
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The three warnings detected are ParseSemanticError (pin 7), LexSyntaxError (pin 8) 

and ParseSyntaxError (pin 32). Detection of one of these warnings will not cause the 

processor to halt. LexSyntax and ParseSyntax errors indicate that the lexical tokens 

and parse tokens respectively do not follow the structure given by the language 

grammar. ParseSyntaxError could trigger a NoErrorHandlerError if the grammar does 

not contain any error rules (or error handler routines). 

The six errors detected will cause the processor to halt since continuation could cause 

unexpected behaviour. 

The SourceUsedError (pin 31) flags the situation that an attempt has been made to 

read more source input after the end of input token has been recognised. 

The IllegallnstructionError (pin 13) flags the situation when an illegal or undefined 

instruction has been read and the processor is attempting to execute it. 

The NoErrorHandlerError (pin 14) flags the situation when a parse error has been 

detected and the state stack contains no state which has a shift instruction triggered by 

the error token. Error handlers can only be defined by adding error rules to the 

grammar definition. 

The BufferOverfiowError (pin 15) flags the situation when appending a character 

from the source input to the TokenBuffer (hence incrementing TokenBufferEnd) it is 

found that TokenBufferStart and TokenBufferEnd have the same value. This indicates 

the buffer has overflowed. The TBE signal from the bit-slice device indicates when 

TokenBufferStart and TokenBufferEnd are identical, the control logic uses this signal 

at the instance when this becomes a fatal error. 

Bounds checks are also performed on the two stack pointers (TokenSP and StateSP). 

Underfiow and overflow of these stacks are fatal errors causing unexpected processor 

behaviour and are flagged by StackUnderfiowError (pin 11) and StackOverfiowError 

(pin 12). 

The TSP[Z (TokenStackPointerlsZero) and SSPIZ (StateStackPointerlsZero) signals 

from the bit-slice are used to detect these occurrences by the control logic. Underfiow 
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is detected when the StackPointer (SP) is zero and a StackPop (or SP 	SP - 1) 

command is requested. Overflow is detected when the StackPointer is zero and a 

StackPush (or SP SP + 1) has just been executed. 

4.4.5 Fabrication Details 

The control device was also fabricated using a 1.5 micron CMOS gate-array 

technology. The actual device size was 3317 by 3076 microns. It used 5201 stages 

which is equivalent to 10402 transistors. The device was packaged into a 48 pin dual 

in line where 8 pins were reserved for power and ground connections (4 power and 4 

ground). 

The diagram on the next page shows the physical design layout for the control device. 
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4.4.6 Device Pinout 

Items marked with * are input signals from the most significant bit-slice device. Items 

marked ** indicate those signals which are outputs and go to all bit-slice devices. 

Items marked + indicate those signals which are output to all bit-slice devices and 

also the external memory devices. 

Pin Number Signal Pin Number Signal 
syscommandl 48 syscommandO 

2 syscomniand2 47 inst2 
3 datawanted 46 inst 
4 datadma 45 SW 
5 parsedone 44 vdd 
6 irg 43 grid 
7 parsesemanticerror 42 sysreset 
8 lexsyntaxerror 41 clock 
9 gnd 40 *tbe 

10 vdd 39 
11 stackunderflowerror 38 *tie 

12 stackoverfiowerror 37 pliz 
13 illegalinstructionerror 36 
14 noerrorhandlererror 35 *tspiz 

15 bufferoverfiowerror 34 *symbolge 

16 instmenenable 33 *symbolegual 

17 datamemenable 32 parsyntaxerror 
18 instwanted 31 sourceusederror 
19 grid 30 vdd 
20 vdd 29 gnd 
21 **engconmiand4 28 memorywrite 
22 tengcommand3 27 +memorypage0 
23 * *engconand2 26 +memorypage I 
24 **engconl.mandl 25 **engcommandO 

Table 26- Control Device Pinout 

The signals named XXXerror (e.g. stackunderfiowerror) indicate the error flags which 

show the final parse status. 

4.5 Testing and Emulation Results 
The software emulation of the processor was not only able to generate the test vectors 

(and the expected results) for the two types of devices but it was also able to estimate 

the number of clock cycles required for a parse and lexical analysis. Accordingly no 

detailed analysis of the required minimal set of test vectors to validate the processor 

was deemed to be required. The two chip designs were validated by using the test 

vectors generated from the software emulation runs and comparing the actual results 
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from the MADS hardware simulation software (provided as part of the SOLO 1400 

chip design suite) with the expected results provided by the software emulation. 

The following table details some sample runs. The table is used to indicate the range 

of tests performed and also to help indicate processor performance. A number of 

source files (in different languages) were used as input to the processor. The 

instruction counts match those recorded for the emulation runs used to compare the 

original 32-bit instruction set with the new 4-phase instruction set, with the exception 

of those for the LALR language. The LALR language is a language definition to 

define language definitions (and is therefore self-referential). This language was 

changed slightly between the two sets of test runs and therefore the mn-times and 

instructions counts were different. The individual language grammars were not 

affected by the LALR grammar alteration and were not altered. Thus no change was 

expected in the count of instructions executed for the language test runs. 

Language File Clock 
Cycle 

Instruction 
Count 

Count  

Chars 
Read 

Line Count Cycles/Line Interrupts 

LALR ACE 165579 60621 1758 47 3523 1670 
LALR BASIC 136128 48931 1568 51 2669 1546 
LALR M2 497166 177537 6429 144 3453 4907 
LALR M2V 442626 158906 5552 130 3405 4334 
LALR !'CPASCAL 478590 1 	169947 6615 1 	144 3324 4331 
ACE bad 16274 *5910 147 8 2034 197 
ACE bad! 15192 *5508 143 8 1899 173 
ACE jdm 16408 5964 148 8 2051 199 
ACE test 33871 12348 294 16 2117 410 
ACE test! 37852 13771 345 18 2103 548 
BASIC bad 5353 *1885 66 5 1071 53 
BASIC test 4238 *1476 63 4 1060 1 	35 

deb 36572 13689 452 16 2286 284 
example 41695 15262 546 27 1544 412 
example! 68487 23720 1538 69 993 25 
example2 17714 6690 193 12 1476 159 

U 

deb 36200 1352! 452 !6 2263 283 
example 4!332 15096 546 27 1531 4!I 
example! 68370 23688 1538 69 991 24 
example2 17522 6604 193 12 1460 158 
test 76122 25007 1241 67 1136 793 

Table 2 7 - Clock cycles for Parse Input 

The examples marked with an asterisk (in the instruction count column) represent 

those parse runs used to test the processors ability to detect invalid input. 
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It must be noted that a pseudo-random number generation was used to add in 

estimated delays caused by semantic actions and characters being read from the 

source stream 

Noting the variations caused by the random numbers and using the results from the 

larger source files tested, this gives a range of 2669 to 3523 clock cycles per line of 

source. The clock cycle depends on the worst case delay times for the bit-slice and 

control devices. These were given as being 25ns and 40ns respectively. For the 

fabricated devices and using two bit-slices this would give a clock cycle of 90ns. Best 

case delay times were given as 1 6ns and 25ns for the bit-slice and control devices 

respectively, giving a best case clock cycle time of 57ns. 

Accordingly, the processor can compile an estimated 3154 to 4163 lines per second 

(using worst case delay) and 4980 to 6573 lines per second (using best case delays). 
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5. Real Applications 
The processor can be used in most situations where there is a need for communication 

using a formal language. This does imply that the processor is restricted to compiling 

computer languages. The next sections will briefly outline some possible applications 

which are not implementations of compilers in hardware but do involve language 

recognition. The first, second and third sections describe potential uses of the 

processor which has been investigated using the software simulation. The later 

sections describe other possible applications which have been investigated in less 

detail. 

5.1 Logic Synthesis 
One possible application is to use the processor to parse regular expressions so that a 

logic block which recognises the regular expression can be synthesised. The 

"Appendix C - Synthesis Software" provides details of an appropriate grammar, the 

corresponding processor instruction table, and the required semantic actions needed to 

convert the regular expression into MODEL source code. 

The first example expression, A = a b+ c will be used to demonstrate the synthesis 

process. 

The parse tree for the example expression using the grammar from the appendix is 

shown below. The following table relates the actions attached to the grammar rules to 

the PASCAL functions which implement the semantics of the actions. 

Rule Action PASCAL Routine 

Al leftnameis 

A2 primaryisid 

A3 repeatisstar 

A4 factoragain 

A5 nileis 

Table 28 - Logic Synthesis Routines 

The source code for the PASCAL routines can be seen in the appendix. 

Note that the order in which the routines are called is given by the left-right post-

traversal of the parse tree, which is implied by the LALR(1) algorithm. 
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Reg = RegExpRule 

egExpRule = $I'=' Exp'; <A5> 

1 =identifier<At> I xp = Factor 

actor = Factor Term <A4> 

actor = Factor Term <A4> 	erm = Primary 

actor = Term 	[Ferm = Primary '+' <A3> 	 ma13' = identifier <A2> 

erm = Pary 	
rimary =  identifier  

b 

rimary  = identifier <A2> 

Figure 38 - Logic Synthesis Parse Tree 

Using the parse table for the grammar (given in the appendix), the input source text 

and referring to the definitions for the micro-instructions given in Chapter 3 

"Instruction Set Design" it is possible to determine the sequence of calling the 

semantic actions. 

For the given example the sequence of semantic routines will generate the following 

MODEL source code. 

Part A[ clk,tokin] -> res 
Signal ni; 
Signal n2; 
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Signal n3; 
Signal n4; 
Signal n5; 
Signal n6; 
Signal n7; 
ONE-> ni 
token("a")[clk,tokin,nl ]-> n2 
n2 -> n5 
or[ n5,n4] -> n3 
token("b')[ clk,tokin,n3] -> n4 
n4 -> n6 
token'c")[ clk,tokin,n6] -> n7 
n7 -> res 

End 

After eliminating wires with duplicate names, this can be written as 

Part A [clk,tokin] -> res 
Signal n3; 
Signal n5; 
Signal n6; 

token("a")[ clk,tokin,ONE] -> n5 
on n5,n6] -> n3 
token("b")[clk,tokin,n3] -> n6 
token("c")[ clk,tokin,n6] -> res 

End; 

This can be represented by the following logic diagram. 

c] 

tc 

 

ONE 

es 

=: 

Figure 39- Synthesised Logic 

Identical logic to recognise the expression A = a b+ c could also have been generated 

using the algorithm discussed in Chapter 2 "Hardware Implementations". Thus it is 

possible that a simple logic synthesis tool could be implemented using the processor. 

5.2 Device Mask Generation 
The manufacture of most integrated circuits depends on the use of photo-lithography 

to generate the masks describing the physical layout of integrated circuits. Each mask 
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consists of a collection of geometric shapes, where the shapes can be formed from the 

combination of primitive geometric shapes such as a circle, rectangle or trapezium. 

This physical layout can be described using a number of specially designed languages. 

One of these languages is the Caltech Intermediate Form (CIF), which is widely used. 

CIF can be easily defined using an LALR(l) grammar and thus can be parsed by the 

processor using the tables generated by the compiler-compiler. For a simple example 

CIF file, the processor took an estimated 24110 clock-cycles whilst executing 10112 

instructions and 208 semantic actions when reading 105 characters. 

The processor could control the photo-lithography machine, by operating the photo-

lithography camera aperture size and location directly from the semantic actions thus 

generating the appropriate shapes. 

The use of direct write X-ray etching machines instead of photo-lithography for some 

masks could also be enhanced by the use of this processor. In this case the semantic 

actions control the operation of the X-ray beam directly 

53 JAVA 
The use of the processor to accelerate the compilation of Java would also be an 

example of the potential for this device. The Java Language Specification described 

within [Gosling et al. 1996] includes an LALR(l) grammar for the Java language. 

This was converted into the regular grammar notation used for input to the Compiler-

Compiler system. Initially, the size of the resulting JAVA grammar caused problems 

for the MS-DOS based compiler-compiler. This was caused by the memory required 

to store the parse and lex states being greater than that available under MS-DOS. The 

compiler-compiler was modified to use a different run-time environment which 

provided a larger memory range than MS-DOS. This modification enabled the 

compiler-compiler to generate a table of instructions for the processor which would 

allow JAVA source to be recognised. 

The use of the RISC processor to recognise JAVA source code would reduce or 

possibly remove the need to transfer large files of pre-compiled JAVA byte code over 

the Internet. Noting that JAVA source code is smaller in size than the corresponding 
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JAVA byte code, this would reduce the data bandwidth needed by the Internet to 

support JAVA. 

Further improvements in the speed of recognition of computer source code such as 

JAVA or PASCAL could be gained by extending the INTEL Pentium instruction set 

with the instruction set described by this thesis. Merging the instruction sets would 

not be expensive in terms of silicon area, since the first implementation of the RISC 

processor was in 1.5 micron and current Pentium processors use 0.25 micron 

technology. Using a system architecture of a single control device (3317 by 3076 

microns) with two bit-slice devices (each 3777 by 3244 microns), where the given 

sizes are for a geometry of 1.5 micron would give an approximate increase of 1600 by 

580 microns for a Pentium implemented in 0.25 micron geometry. 

5.4 Pen Plotters 
Pen plotters are examples of devices which can have a simple language to control 

their operation. A pen plotter has a range of simple commands which are used in 

combination to draw pictures (including text). Some of these commands are 

• PenUp 

• Pen Down 

• MoveTo 

• Reset 

• Home 

• EndOfinput 

• SelectPen 

• LoadPaper 

• EjectPaper 

The structure of allowed conmrnnd sequences could then be defined by an appropriate 

language LALR( I) grammar. Some of the re-write rules of the grammar will require 

actions to be performed. These actions, in turn, will interact with the physical world; 

such as, causing the movement of the pen from one location to another location. For 

the pen plotter, the recognition of a rule will cause an interrupt which will set/clear 

the signal values on the dataout bus of the processor. Thus the source text describing 
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the diagram can interact with the plotter mechanisms and its logic circuitry via the 

processor. 

5.5 Disk Controllers 

Disk controllers provide an interface between a computer and the electronic hardware 

used to read and write the digital data on magnetic media. The behaviour of a disk 

controller is similar to that of the pen plotter described previously. The disk controller 

operates the movement across the disk surface of the disk read/write heads usually via 

a stepper motor. This corresponds to the MoveTo, HeadUp and HeadDown pen 

plotter commands. 

5.6 Machine Tools (DNC) 

Machine tools in engineering are used to drill holes and grind and route surfaces for 

sheet materials such as steel, titanium, tin or even plastic. The operation of a modem 

machine tool is usually controlled by a computer-like device with files written in a 

special Numerical Control (NC) language being used as source. The NC source data 

(usually referred to as a "tape") describes the tool operations in a similar notation to 

that used by a pen plotter. Each tool can be regarded as being equivalent to a pen, 

which can be selected, moved to a given set of co-ordinates (x, y, z) and have the 

speed of the tool also selected. 
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6. Concluding Remarks and Future Work 
The research project reported on in this thesis was dedicated to the problem of 

accelerating the process of parsing and lexical analysis. Almost all parsing and lexical 

analysis is performed on general purpose computers which add time overheads to the 

joint processes. The main objective of this PhD research was to develop new 

mechanisms by which the parsing and lexical processes could be accelerated. The 

research was carried out in two main areas, namely the investigation of appropriate 

algorithms to form the basis of a hardware accelerator and the physical 

implementation of the hardware accelerator. In this chapter of the thesis, a summary 

of the original contributions of the thesis is presented. Also, possible research areas in 

which future work could be carried out are discussed. 

6.1 Summary of Contributions Made by This Thesis 
This thesis has presented the following contributions to the field of parsing and 

lexical analysis: 

1) A novel processor instruction set (containing 24 instructions) has been defined 

which has sufficient instructions to be able to execute a combined parsing and 

lexical analysis. A novel feature of the instruction set is its ability to extend the 

size of instructions parameters. The design of the instruction set involved 

investigation of the LALR(l) parsing algorithm and finite state machine lexical 

analysis algorithms to determine the primitive operations which could be 

implemented as instructions. 

2) A VLSI chip set has been fabricated which is able to execute the defined 

instruction set. A novel feature of this chip set is its ability to activate the semantic 

actions (required by a language) directly from the hardware. The chip set is 

implemented in 1.5 micron CMOS technology with the data-paths implemented 

using the bit-slice technique. 
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6.2 Future Work 
In this PhD project, a specialised processor has been implemented which can be used 

to accelerate the combined process of parsing and lexical analysis. However parsing 

and lexical analysis are front-end mechanisms used to trigger the correct sequence of 

semantic actions. The author believes that further research opportunities could result 

from investigations into the design of general purpose logic able to perform special 

semantic actions in co-operation with the processor. Research areas which could be 

worth investigation are outlined below. 

6.2.1 Semantic Hardware 

One feature of the processor is its ability to directly trigger semantic actions using the 

combination of SysIRQ signal and DataOut bus signals and also its ability to output 

the relevant token string as a character sequence. This provides opportunities to 

investigate the design and use of specific hardware able to work in co-operation with 

the processor. 

6.21.1 Symbol Tables 

A symbol table is used by a compiler to hold information about the identifiers or 

variables defined by a program, where the information usually includes the identifier 

name, its type (whether integer, character, record, etc.) and scope of visibility. 

Possible research would investigate if a general purpose symbol table was possible 

and if so, to then design appropriate logic to implement it. 

The symbol table implemented as hardware would be an example of a sub-unit of 

semantic hardware directly controlled by the processor. 

6.2.1.2 Code Generators 

Most compilers are used to convert source text expressed in a given language into 

executable code for a target machine. Research has already been carried out into 

general purpose mechanisms for converting intermediate code generated by a 

language parser into machine specific executable code. 

Possible further research could involve investigations using the processor to generate 

the intermediate code. Further research could investigate if hardware could be 

implemented to transform intermediate code into true machine code. 
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6.2.2 Software 

Although the processor is a hardware device it depends heavily on the compiler- 

compiler software to generate the parse and lexical analysis tables for each formal 

language being recognised. The following areas of research relate to the software 

aspects of the processor. 

6.2.2.1 Optiinisations 

The state tables which form the processor instructions are generated without regard 

for optimisation. The ordering of the instructions within the tables could be altered by 

analysis of the grammar taking into account the range of possible language sentences, 

or possible programs. The re-ordering would be focused on the possible optimisations 

which would reduce the time taken by the processor to parse a range of sentences. 

Another possible optimisation would involve the reduction of the table sizes 

One possible future research topic could investigate this possibility. 

6.2.2.2 Re-ordering the Rules 

The grammar rules for a language are defined in numerical order and the values 

passed out to the DataOut bus when SysIRQ is active reflect that fact. Thus the 

associated semantic hardware has to decode the complete set of DataOut signals to 

determine which logic sub-block is to be activated. A possible re-ordering of the rules 

by associated function, such as grouping all rules which refer to the symbol table logic 

could be performed. 

Investigating this possibility could be a further research topic carried out in 

conjunction with the research into symbol table hardware. 

6.2.2.3 Allowing larger grammars 

Further work is needed on the current version of the compiler-compiler software to 

overcome the memory limitations imposed by MS-DOS which limits the size of 

grammars which can be read. As the compiler-compiler uses a software emulation of 

the processor, instead of re-writing the software, it may be possible to research the 

conversion of the compiler-compiler software into hardware, thus providing a 

universal compiler-compiler system. 
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7. Appendix A - Software Simulation 

Each run of the software emulation of the processor is capable of generating a set of 

test vectors and expected outputs. A number of sets of these test vectors were used to 

drive the SOLO 1400 MADS logic simulator. The waveform results from each run 

(only examining the values at the time of clock rise and fall) were compared with the 

expected results. The simulator results and the predicted results from the processor 

emulation were found to match, giving a high level of confidence in the implemented 

logic design. Part of a sample simulation run for the control chip is shown below. 

7.1 Main Simulation File - The Template 
The following is the contents of the main file used to drive the MADS simulator. The 

include file "control.vec" contains the output from the processor emulation providing 

test vectors and predicted outputs. This file will be different for each run of the 

processor emulation. The include file "sim.h" contains utility code to convert the data 

in the control.vec file into commands which can drive the simulator. 

#include sim.h' 
#include "control.vec" 

maino 

vector_step = 1000; 
tick = 0; 

Set_Cycle(vector_step); 

extclock = I; 
extsysreset = 1; 
extsyscommandO = 0; 
extsyscommand 1 = 0; 
extsyscomntand2 = 0; 
extsymbolequal = 0; 
extsymbolge = 0; 
exttspiz = 0; 
cxtsspiz = 0; 
extpliz = 0; 
exttie = 0; 
exttre = 0; 
exitbe = 0; 
extinstO = 0; 
extinstl =0; 
extinst2 = 0; 
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testdevice; 

Simulate; 

7.2 Simulator Utility Code 
This file contains utility functions to convert the data from a processor simulation run 

into commands to drive the MADS simulator. The file also holds information about 

the names of the external pins, if they are inputs or outputs, and the legal values of the 

various command signals. 

Input extclock; 
Input extsysreset; 
Input extsyscommandO; 
Input extsyscommand I; 
Input extsyscommand2; 
Input extsymbolequal; 
Input extsymbolge; 
Input exttspiz; 
Input extsspiz; 
Input ext liz; 
Input exttie; 
Input exttre; 
Input extibe; 
Input extinstO; 
Input extinst 1; 
Input extinst2; 
Output extengcommandO; 
Output extengcommandl; 
Output extengcommand2; 
Output extengcommand3; 
Output extengcommand4; 
Output extmemorypageO; 
Output extmemorypage I; 
Output extinstmemen; 
Output extdatamemen; 
Output extmemotywrite; 
Output extinstwanted; 
Output extdatawanted; 
Output extdatadma; 
Output extparsedone; 
Output extirq; 
Output extsourceused; 
Output extparsyntax; 
Output extparsemantic; 
Output extlexsyntax; 
Output extstackunder; 
Output extstackover; 
Output extillegalinst; 
Output extnoerrhandle; 
Output extbufferover; 

mt vector_step; 
mt tick; 

mt cSysNoOp 	= 0; 
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mt cSysStateWanted = I; 
mt eSysTokenWanted = 2; 
mt cSysIRQNullToken = 3; 
hit cSyslRQ_OK = 4; 
mt cSysIRQERR = 5; 
mt cSysDataAvailable = 6; 
mt cSyslnstAvailable = 7; 

mt cEngineNoOp 	= 0; 
mt cEngineTokenSetBusMayBe = 1; 
mt cEngineTokenSetflusBuffer = 2; 
mt cEngmnelokenSetBusls = 3; 
mt cEnginelokenSetBusWas = 4; 
mat cEngineTokenSetlsEmpty = 5; 
mt cEnginelokenLoadWasis = 6; 
mt cEngineZero = 7; 
mt cEngineTokenSPZero 	= 8; 
mt cEngineSymbolLoadPC 	= 9; 
mt cEngineTokenAccept 	= 10; 
intcEnginePlLoad 	= 11; 
mt cEngineSymbolLoadLAS 	= 12; 
mt cEngineSymbolPop 	= 13; 
mt cEngineSymbolPush 	= 14; 
mt cEngineSymbolLoadTS 	= 15; 
mt cEngineStateSPlnc 	= 16; 
mt cEngineTokenSPlnc 	= 17; 
mt cEngineTokenlncRamStart = 18; 
mt cEngineSymbollnc 	= 19; 
mt cEngineTokenlncBufferStart = 20; 
mt cEngineTokenlncBufferEnd = 21; 
mt cEngineTokenlnclsStart = 22; 
mt cEngmneTokenincisEnd 	= 23; 
mt cEngineStateSPDec 	= 24; 
mt cEngineTokenSPDec 	= 25; 
tht cEngineTokenDecRamStart = 26; 
mt cEngineSymbolDec 	= 27; 
mt cEngineTokenDecBufferStart = 28; 
mt cEngineTokenDecBufferEnd = 29; 
mt cEnginelokenDeclsStart = 30; 
mt cEnginelokenDeclsEnd 	= 31; 

/* simple simulation step / 
void simstepØ 

Toggle(extclock); 
Next_Cycle; 

Toggle(extclock); 
Next_Cycle; 

/* General purpose command line set-up 1 
void setcominand( mt syscommand) 

extsyscominand0 = ((syscommand ) & 0; 
extsyscommandl = ((syscommand>> I) & I); 
extsyscommand2 = ((syscommand>> 2) & I); 
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/* General purpose mode line set-up / 
void setinst( mt inst) 

extinstO = ((inst ) & I); 
extinsti = ((inst>> 1) & I); 
extinst2 = ((inst>> 2) & 1); 

/* General purpose command line set-up / 
void docommand( mt syscommand, 

mt inst, 
mt sysreset, 
hit symbolequal, 
hit symbolge, 
hit tokenspiszero, 
hit statespiszero, 
hit pliszero, 
mt tokenisequal, 
int tokenramequal, 
mt tokenbufferequal) 

ticktick+ I; 
setcommand( syscommand); 
setinst( inst); 
extsysreset = ((sysreset) & 1); 
extsymbolequal = ((symbolequal) & 1); 
extsymbolge = ((symbolge) & I); 
exttspiz 	= ((tokenspiszero) & I); 
extsspiz 	= ((statespiszero) & 1); 
extpliz 	= ((pliszero)& 1); 
exttie 	= ((tokenisequal) & 1); 
exttre 	= ((tokenramequal) & 1); 
exftbe 	= ((tokenbufferequal) & U; 

simstep; 

int SigTolnt( Output a) 

return a; 

void cb( char *mess,  Output actual, int expected) 

mt actualbar; 
/* code doe NOT correctly check the expected v actual signal values */ 
I dorn't know if signal values are set up correctly or what */ 
/* hence this code is commented out / 

1* 
actualbar = (-(SigTolnt(actual) & 1) & I); 

if (aetualbar == expected) 

{ 

printf(Mis-match at tick %d for ",tick); 
printf(mess); 
printf("\n); 
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*1 

/* Test Vector Check Routines / 
void checkvectors(int enginecommand, 

mt memorypage, 
mt instmemenable, 
mt datamemenable, 
hit memorywrite, 
mt instwanted, 
hit datawanted, 
hit datadma, 
mt parsedone, 
hit irq, 
hit sourceexhausted, 
hit parsesyntax, 
mt parsesemantic, 
hit lexsyntax, 
mt stackunderfiow, 
mt stackoverfiow, 
mt illegalinstruction, 
mt noerrorhandler, 
mt bufferoverfiow) 

{ 

cb(enginecommandO",extengcommandO, ((engmnecominand ) & 1)); 
cb("engmnecommandl',extengcommandl, ((engmnecommand>> 1) &l)); 
cb("engmnecominand2",extengcominand2, ((engmnecommand>> 2) &l); 
cb("engmnecommand3",extengcominand3, ((engmnecominand>> 3) &l); 
cb("engmnecommand4°,extengcommand4, ((engmnecominand >> 4) &l); 

cb("memorypageo",extmemorypageO, ((memorypage ) & 1)); 
cb("memorypagel",extmemorypagel, ((memorypage>> 1) &l); 

cb( "InstMemEnable", extinstmemen, mnstmemenable); 
cb( "DataMemEnable", extdatamemen, datamemenable); 
cb( "MemoiyWrite", extmemorywrite, memorywrite); 
cb( "InstWanted", extinstwanted, instwanted); 
cb( "DataWanted", extdatawanted, datawanted); 
cb( "DataDMA", extdatadma, datadma); 
cb( "ParseDone", extparsedone, parsedone); 
cb( "IRQ", extirq, irq); 
cb( "SourceExhausted", extsourceused, sourceexhausted); 
cb( " arseSyntax", extparsyntax, parsesyntax); 
cb( "ParseSemantic", extparsemantic, parsesemantic); 
cb( "LexSyntax", extlexsyntax, lexsyntax); 
cb( "StackUnderfloW', extstackunder, stackunderfiow); 
cb( "StackOverfiow", extstackover, stackoverfiow); 
cb( "Illegatinstruction", extillegatinst, illegalinstruction); 
cb( "NoErrorHandler", extnoerrhandle, noerrorhandler); 
cb( "BufferOverfiow", extbufferover, bufferoverfiow); 

7.3 Processor Emulation Data 
The include file "control.vec" contains the actual test vector and expected results. 

The following is a small fragment of an actual file. 

- 129 - 



I exercise the device / 
void testdeviceO 
{ 

/ At tick I I 

docommand( cSysNoOp,0, 1,1,1,0,0,1,0,0,0); 
checkvectors( cEngineP I Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 

I At tick 2 */ 
docommand(cSysNoOp,0,I,1,1,I,I,I,1,l,1 ); 
checkvectors( cEngineP I Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 

/ At tick 3 f 

docommand( cSysNoOp,0,l,l,l,1,1,l,l,1,I ); 
checkvectors( cEngine? lLoad,0,0,0,0,0,O,0,O,O,0,0,0,O,0,O,0,0,0); 

/ At tick 4 I 

docommand(cSysNoOp,0,l,l,I,1,1,l,I,l,I ); 
checkvectors( cEngineP I Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 

/ At tick 5 */ 
docominand(cSysNoOp,0,I,l,l,l,I,I,l,I,l ); 
checkvectors( cEngineP I Load,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 

1' At tick 6 / 
docommand( cSysNoOp,0,0,I,1,1,1,1,1,1,I ); 
checkvectors( cEngineNoOp,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 

At tick 7 
doconnnand( cSysNoOp,0,0,1,I,1,1,1,I,1,1 ); 
checkvectors( cEngineP ILoad, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 

/ At tick 8 */ 
docominand( cSysNoOp,0,0,1,1,I,1,1,1,1,I ); 
checkvectors( cEngineStateSPlnc,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 

/* At tick 9 */ 
docominand( cSysNoOp,0,0,0,0, 1,1,0,1,1,1); 
checkvectors( cEngineNoOp,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 

/ At tick 10 */ 
docommand( cSysNoOp,0,0,0,0, 1,0,0,1,1,1); 
checkvectors( cEngineTokenLoadWasls,0,0, 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 

/ At tick 11 / 
docommand( cSysNoOp,0,0,0,0, 1,0,0,1,1,1); 
checkvectors( cEngineP lLoad,2, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 

/ At tick 12 / 
docommand( cSysNoOp,0,0,0,0, 1,0,0,1,1,1 ); 
checkvectors( cEngineTokenSPZero,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); 

/* Values after tick 12 have been deleted from the file / 

7.4 Simulator results 
The following is a fragment from the MADS simulator waveform output file which 

corresponds to the control.vec file fragment given in the previous section. 

The MADS simulator is an event driven simulator and hence the output file shows 

when the output signals changed. However the information provided by the processor 
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emulation software is based on a cycle based emulation. Therefore only those lines 

where the clock edge goes high or low will be of interest. 

Note that the column headings have been removed and are indicated in the following 

table. 

Pin Signal Pin Signal Pin Signal Pin Signal 

I extelock II exttie 21 extengcommand4 31 extirg 

2 extsysreset 12 exttre 22 exhnemorypage0 32 extsourceused 

3 extsyscommand0 13 exttbe 23 exflemorypage I 33 extpamflax 

4 extsyscommand 1 14 extinstO 24 extinsftnemen 34 extparsemantic 

5 extsyscommand2 IS extinst 1 25 extdatamemen 35 extlexsyntax 

6 extsymbolegual 16 extinst2 26 extmemorywrite 36 extstackunder 

7 extsymbolge 17 extengcommandO 27 extinstwanted 37 extstackover 

8 exttspiz 18 extengcommandl 28 extdatawanted 38 extillegalinst 

9 extsspiz 19 extengcommand2 29 extdatadma 39 extnoerrhandle 

10 extp liz 20 extengcominand3 30 extparsedone 40 extbufferover 

Timing diagram of Iooded/ecpdlO/ind/mox/chip.trc 

1 	 2 	 3 	 4 
1234567890123456789012345678901234 567890 

	

0.00 	010001 I001000000XXXXXXXXXXXXXXXXXXXXXXXX 

	

1.00 	0100011 0 0 1000000 X X X XXX X XXX XXX X X X X X X XX X XX 
0100011001 000000XXXXXXXXXXXXXXXXXXXXXXXX 

	

12.00 	0100011001 000000XXXXXXXXXXXXX0XXXXXXXXXX 

	

13.00 	010001 1001000000XXXXXXXXXXXXX0XXXXXXXXXX 
0100011001 000000XXXXXXXXXXXXX0XXXX XXXXXX 

	

20.00 	0100011001 0 0 0 0 0 0 X 1 XXXXXXXXXXXOXXXXXXXXXX 

	

21.00 	0100011001000000 X1X X X X X X XX X X X OX X X X X X X X X X 
0100011001 000000X 1 XXXXXXXXXXXOXXXXXXXXXX 

	

24.00 	0100011001000000111 XXXXXXXXXXOXXXXXXXXXX 

	

25.00 	010001100100000011 1XXXXXXXXXX0XXXXXXXXXX 
0100011001000000111XXXXXXXXXX0XXXXXXXXXX 

	

27.00 	0100011001000000111 XOXXXXXXXXOXXXXXXXXXX 

	

28.00 	010001100100000011 100XXXXXXXX0XXXXXXXXXX 

	

29.00 	010001 100100000011 100XXXXXXXX0XXXXXXXXXX 
01000 I100100000011100XXXXXXXX0XXXXXXXXXX 

	

1000.00 	110001100100000011 100XXXXXXXX0XXXXXXXXXX 

	

1001.00 	110 00 11 00 100 000 01110 0 XXX X XXX X 0 XX X X X XXX XX 
1100011001000000111 OOXXXXXXXXOXXXXXXXXXX 

	

1011.00 	110001100100000011 100XXXXXXXX0XXX00XXXXX 

	

1012.00 	1100011 0 010000 0 011100 X X X X X X X X 00 X X 0 000000 

	

1013.00 	110001 1001000000111 00XXXXXXXX00000000000 

	

1014.00 	1100011001000000111 0 0 0 0 X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 

	

1015.00 	1100011001000000111 00000XXX0000000000000 

	

1016.00 	11 0 00110010000 0 01110 00 000 00 0 00 00 00 0 000 0 0 

	

1017.00 	11 0 0 0 110 0 1000 0 001110 0 000 0 00 000 0 0 0 0 0 0 0 0 0 0 
1100011001000000111000000000000000000000 

	

2000.00 	0100011111111000111000000000000000000000 
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2001.00 010001 	1111111000111000000000000000000000 
0100011111111000111000000000000000000000 

3000.00 1100011111111000111000000000000000000000 
3001.00 11000111111110001110 0 0000000000000 0 0 0 0 0 0 

1100011111111000111000000000000000000000 
4000.00 0100011111111000111000000000000000000000 
4001.00 0100011111111000111000000000000000000000 

010001 	1111111000111000000000000000000000 
5000.00 1100011111111000111000000000000000000000 
5001.00 1 	10001 	111 1 	1 	1 	1 	0 0 0 	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11000111111110001 11000000000000000000000 
6000.00 0100011111111000111000000000000000000000 
6001.00 010001111111100011100000000000000 0 000000 

01000111111110001 11000000000000000000000 
7000.00 1100011111111000111000000000000000000000 
7001.00 11000111111110001 110000000000 00000000000 

1100011111111000111000000000000000000000 
8000.00 0100011111111000111000000000000000000000 
8001.00 0 	10001111111100 0 111000000000000000000000 

0100011111111000111000000000000000000000 
9000.00 1100011111111000111000000000000000000000 
9001.00 1 	10001 	11 	1 1 	1 	1 	100 0 	1 1 10 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 

1100011111111000111000000000000000000000 
10000.00 0000011111111000111000000000000000000000 
10001.00 000001 	1111111000111000000000000000000000 

000001 	1111111000111000000000000000000000 
10020.00 0000011111111000111 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10021.00 0 00001 	1111111000111 X 00000000000000000000 

000001 	1111111000111 X00000000000000000000 
10025.00 000001 	11111110001101 0 0000 0 000 0 000 0 00 0 0 0 0 
10026.00 000001 	111111100011010000000000 0 000000000 

000001 	1111111000110100000000000000000000 
11000.00 100001 	1111111000110100000000000000000000 
11001.00 1 00001 	1111111000110100000000000000000000 

100001 	1111111000110100000000000000000000 
11025.00 100001 	1111111000100100000000000000000000 
11026.00 100001 	111111 1000100100000000000000000000 

100001 	1111111000100100000000000000000000 
11028.00 1000011111111000000100000000000000000000 
11029,00 100001 	111 1111000000000000000000000000000 
11030.00 1000011111111000000000000000000000000000 

100001111111 1000000000000000000000000000 
12000.00 000001 	1111111000000000000000000000000000 
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8. Appendix B - Processor Implementation 

The logic for the control device was generated using the logic synthesis tools 

provided within the Solo 1400 design system. The PASCAL source code for the 

control state machine was modified to become valid input text for the logic synthesis 

tool LOLA. 

The following MODEL code defines an individual bit-slice element which is repeated 

eight times within the actual bit-slice device. For reasons of clarity, the code has been 

altered to remove any buffer logic which was only added to reduce excessive gate 

loading. Also not shown is the decode logic which generates the appropriate 

loadXXX signals from the mcode signal bus. 

Part loadbit[clk,d,load] -> q 
bdffc1k,or[and[1oad,d],and[not[1oad],q]]] -> q 

End 

Part slice[clock, 
mcocleO,mcodel ,mcode2,mcode3,mcode4, 
iomcodeO,iomcode 1 ,iomcode2, 
loadtrs, 
loadtre, 
loadtbs, 
loadtbe, 
loadtis, 
loadtie, 
loadtws, 
Ioadtwe, 
Ioadpc, 
loadpl, 
loadtopsymbol, 
loadlookaheadsymbol, 
loadstatesp, 
loadtokensp, 
carryin, 
trein,tbein,tiein,tspizin,sspizin, 
p1 izin,sgein,sein, 
memorydataJ -> carryout, 

treout,tbeout,tieout, 
tspizout, 
sspizout, 
p1 izout,sgeout,seout, 
data out , a ddre ss 

Signal trs,tre, 
tbs,tbe, 
tis,tie, 
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tws,twe, 
PC, 

pi' 
topsymbol, 
lookaheadsymbol, 
tokensp, 
statesp, 
ebus, 
cbus, 
sbus, 
sumbus, 
datainbus, 
tops ymbo Imatch, 
tokenismatch, 
tokenbuffermatch, 
tokenrammatch 

data[mcodeO,mcode 1 ,mcode2,mcode3,mcode4,memorydata] -> datainbus 
ebit[pl, mcodeO, mcodel, mcode2, mcode3, mcode4, 

lookaheadsymbol, pc, statesp, tbe, 
tbs, tie, tis, trs, 
tokensp, live, topsymbol] -> ebus 

cbit[mcode3, mcode4, ebus] -> thus 
exor[canyin,ebus] -> sumbus 

sbit[p 1, mcodeO, mcode 1, mcode2, mcode3, mcode4, 
datainbus, sumbus, tbs, tie, tis,tws] -> sbus 

loadbit[clock,sbus,loadtrs] -> trs 
loadbit[clock,ebus,loadtre] -> tre 
loadbit[clock,sbus,loadtbs] -> tbs 
loadbit[clock,sbus,loadtbe] -> the 
loadbit[cloCk,sbus,loadtis] -> tis 
loadbit[clock,sbus,loadtie] -> tie 
loadbit[clock,sbus,loadtws] -> tws 
loadbit[clock,ebus,loadtwe] -> twe 
loadbit[clock,sbus,loadpc] -> pc 
loadbit[clock,sbus,loadpl] -> p1 
loadbit[clock,ebus,loadtopsymbol] -> topsymbol 
loadbit[clock,ebus,loadlookaheadsymbol] -> lookaheadsymbol 
loadbit[clock,sbus,loadstatesp] -> statesp 
loadbit[clock,sbus,loadtokensp] -> tokensp 

Ripple through logic 
and[carryin,cbus] -> canyout 

eqv[topsymbol,p 1] -> topsymbolmatch 
eqv[tis,tie] -> tokenismatch 
eqv[tbs,tbe] -> tokenbuffermatch 
eqv{trs,tre] -> tokenrammatch 

and[not[pl],plizin] -> plizout 
and[not[statesp],sspizin] -> sspizout 
and[not[tokenspj,tspizin] -> Ispizout 
or[and[topsymbol,not[p 1]],and[topsymbolmatch,sgein]] -> sgeout 
and{topsymbolmatch,sein] -> seoul 
and[tokenismatch,tiein] -> tieout 
and[tokenbuffermatch,tbein] -> tbeout 
and[tokenrammatch,trein] -> treout 
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iocode[iomcodeO,iomcode 1,iomcode2, 
pc,statesp,trs,tokensp] -> address 

p1 -> dataout 
End 

Endoffile 
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9. Appendix C - Synthesis Software 

This appendix contains further details about the logic synthesis language which was 

referenced in section 5.1 "Logic Synthesis". 

9.1 Examples of Regular Expressions 
The following are examples of regular expressions which have been used as input to 

the software emulation of the processor. 

Note :- 

the + operator is used to indicate repetition at least once, 

the ? operator is used to denote optional inclusion, 

the * operator is equivalent to the *9  operators in combination, 

the ,operator indicates choice between two alternatives. 

Also the use of brackets 0 is used to change priority of operations. 

9.1.1 Example 1 
A = a b+ C; 

This describes a regular expression A which is shorthand for 

A{abc,abbc,abbbc, ...} 

The b+ represents the repetition of b at least once. 

9.1.2 Example 2 
A = a b* C; 

B = c m+ (a,d+)?; 

This describes two separate regular expressions A and B which are shorthand for 

A= {ac,abc,abbc, ...} 

B= {cm,cma,cmd,cmdd, ... ,cmm,cmma,cmmd,cmmdd, ...} 
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9.2 Grammar for Synthesis Language 
The examples of regular expressions in the previous section can be described by an 

LALR(l) grammar. The following text, using the regular expression notation, defines 

such a grammar. This grammar can and has been input to the compiler-compiler 

software to generate tables for use with the processor. 

Note that the parse grammar is defined by the section commencing $parser and 

terminated by $lexer. The lexical structure of tokens is described from the Slexer to 

the end of file. 

*1 
!{ * Copyright (c) 1996 J.D.McMuIIin. All rights reserved. * 

*} 

********************************************} 

$parser Reg 
Reg = RegExpRule +; 
RegExpRule = identifier <leftnameis> '=' Exp ';' <ruleis>; 
Exp = Factor (',' Factor <expagai n>)* 
Factor = Term (Term <factoraga i n>)* 
Term = Primary, 

Primary +' crepeatisplus> 
Primary 1*1  <repeatisstar>, 
Primary 1' <repeatisquery>; 

Primary = identifier <primaryisid> 
'(' Exp ')' 

now to define the lexical items 
remember $eoi MUST be present and also $whitespace MAY be present 

$lexer 
eaf = 26 
rs = 30; 
tab = 9; 
$eoi = eof; 
$whitespace = (space, 1' commentchar rs) <commentfound>; 
space = ('', tab, rs)+ 
commentchar = tab, 
identifier = idchar (idchar, "', 
idchar = ["A ...... Z"], ["a ...... z'] 

9.3 Semantic Actions 
The following text is the full Turbo Pascal source used to implement the semantic 

actions referenced in the grammar defined in the previous section. This code was 

generated as a template by the compiler-compiler. The semantic actions have been 

manually added. 
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The semantic actions are used to convert regular expressions into MODEL logic 

descriptions. This MODEL code can then be input to the SOLO 1400 design suite (as 

was used to design the processor) to form a logic design. 

** *** ** * * * } 

(* This software was generated by J.D.McMullin as an * 
( integral part of his M.Phil, Ph.D research. 	* **********************

**} 
unit regAct; 
interface 
uses share,parser; 
type 

ErrStringfn = function ( errno:integerl 6 ): lexstring; 

function RegGetChar( h:pointer): char; 
function RegParseFile( 

FileName,Extension : Iexstring; 
var ParseHandle pointer; 
ReadTable Readfn; 
ReadTableMax ReadMaxfn; 
DoAction SemanticActionfn; 
Readchar : GetCharfn; 
ReadErrstring ErrStringfn) boolean; 

function RegParseError( h,hl :pointer ):boolean; 
function RegLexError( h,h 1 pointer ):boolean; 
function LeftNamels( h,hl :pointer ):boolean; 
function Rulels( h,hl :pointer ):boolean; 
function ExpAgain( h,hl pointer ):boolean; 
function FactorAgain( h,hl :pointer ):boolean; 
function RepeatlsPlus( h,hl pointer ):boolean; 
function RepeatlsQuery( h,hl :pointer ):boolean; 
function RepeatlsStar( h,hl :pointer ):boolean; 
function Primarylsld( h,hl :pointer ):boolean; 

function CommentFound( h,hl :pointer ):boolean; 

implementation 
type 

cType = (cToken,cOr,cRename); 
RegPtr = ARegparsestate; 
RegParseState = record 

(lexical input/output stream variables 
StreamPo& 
Stream LineNu mber : integer32; 
StreamlnName, 
StreamlnExt, 
StreamOutName, 
StreamOutExt, 
StreamBuffer : lexstring; 
Streamin, 
StreamOut : text; 
ErrorLineNumber: integer32; 
(Error Flags to indicate Parse Error has occurred 
ErrorDetected : boolean; 
("class method" 
FetchErrString : ErrStringfn; 
(User-defined variables below 
lexsp : integer; 
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lexstack array [1.. 100] of record 
ni, 
n2, 
ci, 
c2 : integer32; 

end; 
celicount integer; 
cellstack array [1.200] of record 

t cType; 
r: integer32; 
n lexstring; 
ii, 
i2, 
oi : integer32; 

end; 
TheGlobalNode : integer32; 
TheGlobalCell integer32; 
LeftSymbol lexstring; 

end; 

Global Action Routine variables 

routine to read lexical token string 
procedure CurrentToken( h:pointer; var s:lexstring); 
var 

ch : char; 
begin 
clearstring( s); 
TokenWanted( h); 

while ValidTokenChar( h, ch ) do 
begin 

DMA read of LexCache to form LexToken 
appendstringchar( s, ch); 

end; 
TokenAccepted( h); 

end; 

Routine to read individual chars from the input file 
function RegGetChar( h:pointer ): char; 
var 

p : RegPtr; 
ch : char; 

begin 
p := h; 
with pA  do 
begin 
while (stringlength(StreamBuffer) < 1) do 
begin 

Stream LineNu mber StreamLineNumber + 1; 
readstring( Streamln, StreamBufter); 
readln( Streamln); 
StreamPos := 1; 
WriteString( StreamOut,'['); 
Writelnteger( StreamOut, StrearnLineNumber,  , 4); 
WriteString( StreamOut, ']'); 
WriteString( StreamOut, StreamBuffer); 
WriteLn( StreamOut); 
appendstringchar( StreamBuffer, rs); 
if eof( Streamln ) then 
begin 
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appendstringchar( StreamBuffer eoi); 
end; 

end; 

ch := StreamBuffer[StreamPos]; 
if (ch oeoi) then 
begin 
StreamPos StreamPos + 1; 
if (StreamPos > stringlength(StreamBuffer)) then 
clearstring( StreamBuffer); 

end; 
end; { with 
RegGetChar := ch; 

end; 

function RegParseFile( 
FileName,Extension Iexstring; 
var ParseHandle pointer; 
Readlable Readfn; 
ReadTableMax : ReadMaxfn; 
DoAction : SemanticActionfn; 
ReadChar: GetCharfn; 
ReadErrString : ErrStringfn) : boolean; 

var 
p RegPtr; 
status integerl 6; 
flag boolean; 

begin 
new(p); 
ParseHandle p; 

with pA  do 
begin 

User defined initialisation code for this parse pass 

Parser system initialisation code 
MODIFY WITH CAUTION 

FetchErrString ReadErrString; 
ErrorDetected false; 
ErrorLineNumber 0; 

clearstring( StreamBuffer); 
StreamLineNumber 0; 

StreaminName := FileName; 
StreamlnExt := Extension; 
StreamOutName FileName; 
StreamOutExt := deb; 

openoldfile( Streamln, StreaminName, StreamlnExt); 
reset( Streamin); 

opennewfile( StreamOut, StreamOutName, StreamOutExt); 
rewrite( StreamOut); 

Status SyntaxEngine( ParseHandle, ReadTable, ReadTableMax, DoAction, ReadChar); 
if (Status = 0) then 
begin 

if ErrorDetected then 
begin 
write(**** Warning 	File '); 
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writestring(output,StreamlnName); 
writeln(' contained a semantic or lexical error'); 
flag 	false: 

end 
else 
begin 

write('File '): 
writestring(output,StreamlnName); 
writeln(' parsed OK'); 
flag 	true: 

end: 
end 
else 
begin 
write(********WARNING **** File '); 
writestring(output,FileName); 
writeln(' contained at least one Syntax Error'); 
writeparsestatus( output, Status): 
flag := false; 

end; 

closefile( Streamln ); 
WriteString( StreamOut,'"" EOF 
WriteLn( StreamOut); 
closefile( StreamOut); 

end: with 

RegParseFile flag; 
end: 

function RegParseError( h,hl :pointer ):boolean; 
var 

p : RegPtr: 
5 texstring: 

integer32; 
begin 

p 	h; 
CurrentToken( his): 
with pA  do 
begin 
ErrorDetected true; 

WriteString( StreamOut,' 
for i := ito StreamPos - 1 do 
begin 

if (StreamBuffer[i] = tab) then 
WriteString( StreamOut, tab) 

else 
WriteString( StreamOut, 

end; 

WriteString( StreamOut,'A " ERROR"" Found token'); 
WriteString( StrearnOut,$): 
WriteString( StreamOut,' but expecting '); 
WriteString( StreamOut,fetcherrstring( CurrentState(hl) ) ); 
WriteLn( StreamOut): 

if (ErrorLineNumber = 0) then 
begin 

ErrorLineNuruber StreamLineNurnber: 
end; 
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end; (with 

RegParseError true; 
end; 

function RegLexError( h,hl :pointer ):boolean; 
var 

p RegPtr; 
S : lexstring; 

integer32; 
begin 

p 	h; 
CurrentToken( hi,$); 
with pA  do 
begin 

ErrorDetected := true; 

WriteString( StreamOut, 
for i ito StreamPos - 1 do 
begin 

if (StreamBufferfi] = tab) then 
WriteString( StreamOut, tab) 

else 
WriteString( StreamOut, 

end; 

WriteString( StreamOut,'**********ERROR **** Found token'); 
WriteString( StreamOut,$); 
WriteString( StreamOut,' but expecting a legal token'); 
WriteLn( StreamOut); 

if (ErrorLineNumber = 0) then 
begin 

ErrorLineNumber := StreamLineNumber; 
end; 

end; (with 

RegLexError true; 
end; 

(Semantic Actions to be coded below 

(Dont forget to add each one to the Turbo Pascal 
(interface definition 
(Also, all semantic routines are defined as follows 

(function xx( h,hi :pointer ):boolean; 
(var 
( p : LALRPointer; 	 } 
( 5 : lexstring; 	 } 

flag boolean; 
(begin 
( p:=h; 	 } 
( CurrentToken( hi ,$); 	 } 

flag := true; 
( 	 } 

User-developed Code (may alter flag/PA  values) 
( 	 } 

xx 	flag; 
(end; 
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Also remember about WhiteSpace(h:pointer) when 
removing $whitespace / comments 

function newcell( h:pointer ):integer32; 
var 
p RegPtr; 

begin 
p := 
with pA  do 
begin 
TheGlobalCell TheGlobalCell + 1; 
newcell := TheGlobatCell; 

end; 
end; 

function newnode( h:pointer ):integer32; 
var 

p RegPtr; 
begin 

p 	h; 
with pA  do 
begin 
TheGlobalNode := TheGlobalNode + 1; 
newnode TheGlobalNode; 

end; 
end; 

function tokencell( h:pointer; s : Iexstring; ni ,n2 integer32 ):integer32; 
var 

p: RegPtr; 
begin 
p:= h; 
with pA  do 
begin 
CeliCount := CellCount + 1; 
with CellStack[CellCount] do 
begin 
t cToken; 
r CeliCount; 
n 	5; 

it :=nl; 
i2 =0; 
ol 	n2; 

end; 
tokencell 	CellCount; 

end; 
end; 

function orcell( h:pointer; ni ,n2,n3 integer32 ): integer32; 
var 
p RegPtr; 

begin 
p := h; 
with pA  do 
begin 
CeilCount := CellCount + 1; 
with CelIstackiCelICounti do 
begin 
t cOr; 
r CeliCount; 
n := 
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it :=ni; 
12 := n2; 
ol n3; 

end; 
orcell := CeliCount; 

end; 
end; 

function renamecell( h:pointer; ni,n2 : integer32 ): integer32; 
var 
p RegPtr; 

begin 
p 	h; 
with pA  do 
begin 
CeliCount := CeilCount + 1; 
with CellStack[CellCount] do 
begin 
t cRename; 
r CeliCount; 
n 
it :=nl; 
12 =0; 
ol 	n2; 

end; 
renamecell := CeliCount; 

end; 
end; 

procedure push( h:pointer; ni,n2,ci,c2 integer32); 
var 
p RegPtr; 

begin 
p 	h; 
with pA  do 
begin 

Iexsp := Iexsp + 1; 
Iexstack[Iexsp].ni 	ni; 
Iexstack[Iexsp].n2 := n2; 
Iexstack[Iexsp].ci 	ci; 
Iexstack[Iexsp].c2 	c2; 

end; 
end; 

procedure pop( h:pointer; var ni,n2,ci,c2 integer32); 
var 

p: RegPtr; 
begin 
p h; 
with p" do 
begin 
ni := Iexstack[Iexsp].ni; 
n2 := Iexstack[Iexsp].n2; 
ci Iexstack[Iexspl.ci; 
c2 := Iexstack[Iexspl.c2; 
Iexsp := Iexsp - 1; 

end; 
end; 

function LeftNaniels( h,hi :pointer ):boolean; 
var 
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p: RegPtr; 
S : lexstring; 

begin 
p := h; 
with pA  do 
begin 
CurrentToken( hi, s); 
(initialise all data for this regular expression 
LeftSymbol := s; 
TheGlobalNode := 0; 
TheGlobalCell := 0; 
CellCount := 0; 
lexsp := 0; 

end; 
LeftNamels := true; 

end; 

procedure writecell( h : pointer; c : integer32 ); 
var 

p : RegPtr; 
begin 

p := 
with pA  do 
begin 
with CellStack[c] do 
begin 
write(StreamOut,' 
case t of 

car: write(StreamOut,'or[  
cRename: write(StreamOut,'n,ii :1); 
cToken: write(StreamOut,'token(",n,")[ clk,tokin,n',ii :i ,' ]'); 

end; 
writeln(StreamOut,' -> n,oi :1); 

end; 
end; 

end; 

function Rulels( h,hi pointer ):boolean; 
var 

p: RegPtr; 
n1,n2 : integer32; 
ci ,c2,c : integer32; 

integer32; 
begin 

p 	h; 
with pA  do 
begin 

pop( h, ni ,n2,ci ,c2); 
writeln(Streamcut,'Part ',LeftSymbol, [clk,tokin] -> res'); 
for i := i to TheGlobalNode do 
begin 
writeln(StreamOut,' Signal n,i:i ,';'); 

end; 
writeln(StreamOut,' ONE-> n',ni:l); 
C := ci; 
while (c <> c2) do 
begin 
writecell(h,c); 
c := cellstack[c].r; 

end; 
if (ci oc2) then writecell(h,c2); 
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writeln(StreamOut,' n',n2:1,' -> res'); 
writeln(StreamOut,'End;'); 
(reset the system for the next expression) 
TheGlobalNode := 0; 
TheGlobalCell 0; 
CeliCount := 0; 
Iexsp := 0; 

end; 
Rulels 	true; 

end; 

function ExpAgain( h,hi :pointer ):boolean; 
var 
p RegPtr; 
nl,n2,n3,n4,n5 integer32; 
ci ,c2,c3,c4,c5,c6 integer32; 

begin 
p 	h; 
with pA  do 
begin 
{E=F','F} 
pop( h, n3,n4c3,c4); 
pop( h, nl,n2,ci,c2); 
n5 newnode(h); 
c5 := renamecell(h,nln3); 
c6 	orcell(h,n2,n4,n5); 

cellstack[c5].r := ci; 
cellstack[c2].r 	c3; 
cellstack[c4].r 	c6; 

push( h, ni ,nS,c5,c6); 
end; 
ExpAgain true; 

end; 

function FactorAgain( h,hl :pointer ):boolean; 
var 

p: RegPtr; 
ni ,n2,n3,n4 integer32; 
ci,c2,c3,c4,c5 integer32; 

begin 
p := h; 
with pA  do 
begin 
(F=TT} 
pop( h, n3,n4,c3,c4); 
pop( h, nl,n2,ci,c2); 
c5 renamecell(h,n2,n3); 

cellstack[c2].r 	c5; 
cellstack[c5].r 	c3; 

push( h, nl,n4,ci,c4); 
end; 
FactorAgain := true; 

end; 

function Primarylsld( h,hl :pointer ):boolean; 
var 
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p: RegPtr; 
ni ,n2 : integer32; 
ci: integer32; 
S : Iexstring; 

begin 
p 
with pA  do 
begin 
CurrentToken( hi,$); 
ni := newnode(h); 
n2 := newnode(h); 
ci := tokencell(h,snin2); 
push( h, ni ,n2,cl ci ); 

end; 
Primarylsid := true; 

end; 

function RepeatlsPlus( h,hi :pointer ):boolean; 
var 

p : RegPtr; 
ni,n2,n3 integer32; 
ci,c2,c3 : integer32; 

begin 
p := h; 
with pA  do 
begin 
{F=T+} 
ni := newnode(h); 
pop( h, n2,n3c2,c3); 
ci := orcell(h,ni,n3,n2); 
cellstack[ci].r 	c2; 
push( h, ni ,n3,ci ,c3); 

end; 
RepeatisPlus := true; 

end; 

function Repeatlsouery( h,hi :pointer ):boolean; 
var 

p : RegPtr; 
ni,n2,n3 : integer32; 
ci ,c2,c3 : integer32; 

begin 
p := h; 
with pA  do 
begin 

ni := newnode(h); 
pop( h, n2,n3,c2,c3); 
ci 	orcell(h,n2,n3,ni); 
cellstack[c3].r := ci; 
push( h, n2,nl,c2,ci ); 

end; 
Repeatisouery := true; 

end; 

function RepeatlsStar( h,hi :pointer ):boolean; 
var 
p: RegPtr; 
ni n2,n3,n4 integer32; 
ci,c2,c3,c4 : integer32; 

begin 
p := h; 
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with pA  do 
begin 

ni := newnode(h); 
n2 newnode(h); 
pop( h, n3,n4,c3,c4); 
ci := orceil(h,ni ,n4,n3); 
c2 	orcell(h,n3n4,n2); 
ceilstack(cl].r := c3; 
ceilstack[c4].r 	c2; 
push(h,nl ,n2,cl ,c2); 

end; 
RepeatisStar := true; 

end; 

function CommentFound( h,hi :pointer): boolean; 
begin 
WhiteSpace( hi ); 
CommentFound := true; 

end; 

end. 

9.4 LALR(1) Parser and Lexer Tables 
If the grammar definition is LALR(1) then the compiler-compiler automatically 

generates the combined parse and lex tables for use with the processor software 

emulation. 

The example table, given next, has been generated from the grammar describing 

regular expressions. Note that the individual parse and lexical states are indicated. 

Also note that each entry consists of four micro-instructions and has an associated 

comment. 

} 

( This software was generated by J.D.McMuthn as an 
* integral part of his M.PhiI, Ph.D research. 	* 
* ************************************************************** 

unit Regtab; 

interface 
type 

integeri 6 = integer; 
function Regtableread( a:integerl6) : word; 
function Regtablemax:integerl 6; 

implementation 

const 
addrmax = 152; 
instmin = 0; 
instmax = 611; 
pit array [instmin..instmax] of word = 

$20005000i $0000,$003D, 
{ 

0 PSHIFT $iambda 1 ** lex reset 61 push $error 
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Parse State 1 
$0003,$2005,$2013,$4000, (1 PSC identifier _$2 = identifier 'cleftnameis> 
$000F$0007,$0000,$003D, ( 2 Ps Reg 7} 
$001 0,$2003,$201 2,$4000, (3 PSC RegExpRule _$1 = RegExpRule 
$0012,$0009,$0000,$003D,(4 PS_$i 91 
$0013,$000D,$0000,$003D, (5 PS_$2 131 
$2000,$E000,$2000,$4000, ( 6 ELSE **** PARSE ERROR HANDLER +*t* 

Parse State 3) 
$0002,$6001 ,$8001 ,$0038, ( 7 PSC $eoi $goal = Reg $eoi } 
$2000,$E000,$2000,$4000, ( 8 ELSE 	PARSE ERROR HANDLER **** 

(Parse State 5) 
$0003,$2005,$2013,$4000, (9 PSC identifier _$2 = identifier <Ieftnameis> 
$001 0,$2002,$2012,$003B, (10 PSC RegExpRule _$1 =_$1 RegExpRule 
$0013,$000D,$0000,$003D, (11 PS_$2 13) 
$2000,$4004,$200F,$003B, (12 ELSE Reg =_$1 

(Parse State 6) 
$000A,$000F,$0000$003D, (13 PS'=' 15) 
$2000,$E000,$2000,$4000, { 14 ELSE ***t  PARSE ERROR HANDLER) 

(Parse State 9 
$0003,$2014,$200E,$4000, (15 PSC identifier Primary = identifier <primaryisid> 
$0004,$0016,$0000,$003D, (16 PS'f 22 
$000C,$001 D,$0000,$003D, (17 PS Exp 291 
$000D,$001 F,$0000,$003D, (18 PS Factor 311 
$000E,$0021 ,$0000,$003D, (19 PS Primary 33) 
$0011 $0025,$0000,$003D, ( 20 PS Term 371 
$2000,$E000,$2000,$4000, ( 21 ELSE **** PARSE ERROR HANDLER "" 

Parse State 11) 
$0003,$2014,$200E,$4000, (22 PSC identifier Primary = identifier <primaryisid> 
$0004,$001 6,$0000,$003D, ( 23 PS '('22) 
$000C,$0027,$0000,$003D, (24 PS Exp 391 
$000D,$001 F,$0000,$003D, (25 PS Factor 311 
$000E,$0021 ,$0000,$003D, ( 26 PS Primary 33) 
$0011 ,$0025,$0000$003D, (27 PS Term 37) 
$2000$E000,$2000,$4000, (28 ELSE **** PARSE ERROR HANDLER t*** 

(Parse State 12) 
$0009,$2006,$201 0,$0039, (29 PSC ';' RegExpRule = _$2 =' Exp ';' cruleis> 
$2000,$E000,$2000,$4000, (30 ELSE **** PARSE ERROR HANDLER 

(Parse State 13) 
$001 6,$0029,$0000,$003D, (31 PS_$4 41 
$2000$4009,$2016,$4000, (32 ELSE _$4 = 

(Parse State 14 
$0006,$2010,$201 1 ,$003B, (33 PSC '*' Term = Primary t*t  crepeatisstar> 
$0007,$201 1 ,$201 1 ,$003B, (34 PSC '+' Term = Primary '1-' <repeatisplus> 
$000B,$200F,$201 1 $003B, ( 35 PSC'T Term = Primary'?' <repeatisquery> 
$2000,$401 2,$201 1 ,$003B, (36 ELSE Term = Primary 

(Parse State 15) 
$001 7,$002C,$0000,$003D, (37 PS _$6 44) 
$2000,$400D,$2017,$4000, (38 ELSE _$6 = 

(Parse State 16) 
$0005,$201 3,$200E,$003A, ( 39 PSC ')' Primary = '(' Exp ')' 
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$2000,$E000,$2000,$4000, (40 ELSE **** PARSE ERROR HANDLER 

Parse Slate 18 
$0008,$0032,$0000,$003D, (41 PS','SO } 
$0014,$2008,$201 6,$003B, (42 PSC _$3 _$4 = _$4 _$3 } 
$2000,$400A,$200C,$003A, (43 ELSE Exp = Factor _$4 

(Parse State 22 
$0003$2014,$200E,$4000, (44 PSC identifier Primary = identitier cprimaryisid> 
$0004,$001 6,$0000,$0030, (45 PS ( 22) 
$000E,$0021 ,$0000,$003D, (46 PS Primary 33) 
$0011 ,$200B,$2015,$4000, (47 PSC Term _$5 = Term <factoragain> 
$0015,$2000$2017,$003B, (48 PSC_$5 _$6 =_$6_$5 ) 
$2000,$400E,$200D,$003A, { 49 ELSE Factor = Term _$6 

Parse State 24) 
$0003,$2014,$200E,$4000, { 50 PSC identifier Primary = identifier <primaryisid> 
$0004,$0016,$0000,$003D, (51 PS '(' 22) 
$000D,$2007,$2014,$003B, (52 PSC Factor _$3 = Factor <expagain> 
$000E,$0021 ,$0000,$003D, (53 PS Primary 33) 
$0011 ,$0025,$0000,$003D, { 54 PS Term 371 

	

$2000,$E000,$2000$4000, (55 ELSE 	PARSE ERROR HANDLER 

(Max Symbols in a rule = 4 
$2000,$6000,$A000,$2000, (56 POP 
$2000,$6000,$A000,$2000, ( 57 POP } 
$2000,$6000,$A000$2000, ( 58 POP) 
$2000,$6000,$A000,$2000, ( 59 POP } 
$2000,$6000,$A000,$4000, (60 REDUCE) 

(Lex State 1 
$2000,$6000,$6000,$003E, (61 LC } 
$8009,$8009,$4000,$005C, ( 62 IF 9 .. 9 LS 92 push $error 
$801A$801A$4002,$0056, (63 IF 26 .. 26 LS 86 push $eoi 
$801 E,$801 E,$4000,$005C, ( 64 IF 30 .. 30 LS 92 push $error 
$8020,$8020,$4000,$005C, (65 IF .. LS 92 push $error I 

	

$8021 ,$8021 ,$4000,$0057, (66 IF 	! LS 87 push $error) 
$8028,$8028$4004,$004E, ( 67 IF ( .. ( LS 78 push '(' 
$8029,$8029,$4005,$004F, (68 IF .. ) LS 79 push )' 
$802A,$802A,$4006,$0050, (69 IF * * LS 80 push '*1 

$802B,$802B,$4007,$0051, (70 IF + .. + LS 81 push +' 
$802C,$802C,$4008,$0052, ( 71 IF .., LS 82 push 
$803B,$803B,$4009,$0053, ( 72 IF;.. ; LS 83 push 
$803D,$803D,$400A,$0054, ( 73 IF =.. = LS 84 push '=) 
$803F$803F,$400B,$0055, (74 IF? .. ? LS 85 push '7) 
$8041 ,$805A,$4003,$0064,(75 IFA .. Z LS 100 push identifier) 
$8061 ,$807A,$4003,$0064, ( 76 IF a .. z LS 100 push identifier 
$A000,$A000,$0000,$0030, (77 LA $error ** lex reset 61 push $error 

(Lex State 13 
$E004,$A000,$0000,$0030, (78 LA'('" lex reset 61 push $error 

(Lex State 12 
$E005,$A000,$0000,$003D, (79 LA ')' Iex reset 61 push $error) 

Lex State 11) 
$E006,$A000,$0000,$003D, (80 LA '' ** lex reset 61 push $error 

(Lex State 10) 
$E007,$A000,$0000,$003D, 181 LA Y ** lex reset 61 push $error 

) 
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(Lex State 9 
$E008,$A000,$0000,$003D, (82 LA ',' ** Iex reset 61 push $error 

(Lex State 8 
$E009,$A000,$0000,$003D, (83 LA ';' lex reset 61 push $error 

(Lex State 7 
$E0OA,$A000,$0000,$003D, (84 LA '=' ** lex reset 61 push $error) 

(Lex State 6 
$EOOB,$A000,$0000,$003D, 185 LA '?' ** lex reset 61 push $error 

(Lex State 5 
$C002,$A000,$0000,$003D, (86 LA $eoi lex reset 61 push $error 

(Lex State 4 
$2000,$6000,$6000,$0058, (87 LC } 
$8009,$8009,$4000,$0057, (88 IF 9 .. 9 LS 87 push $error 
$801 E,$801 E,$4000,$005C, ( 89 IF 30 .. 30 LS 92 push $error 
$8020,$807E,$4000,$0057, (90 IF .. LS 87 push $error 
$A000,$A000,$0000,$003D, ( 91 LA $error ** lex reset 61 push $error 

(Lex State 3 
$2000,$C01 5,$4000,$006A, ( 92 LI commentfound to 106 push $error 
$6000,$6000,$0000,$0030, ( 93 lex reset 61 push $error 
$2000,$6000,$6000,$005F, (94 LC } 
$8009,$8009,$4000,$005C, (95 IF 9 .. 9 LS 92 push $error 
$801 E,$801 E,$4000,$005C, ( 96 IF 30 .. 30 LS 92 push $error 
$8020,$8020,$4000,$005C, (97 IF .. LS 92 push $error 
$8021 $8021 ,$4000,$0057, (98 IF!.. ! LS 87 push $error 
$A000,$A000,$0000,$003D, ( 99 LA $error lex reset 61 push $error) 

(Lex State 2) 
$2000,$6000,$6000,$0065, (100 LC 
$8030,$8039,$4003,$0064, (101 IF 0 .. 9 LS 100 push identifier) 
$8041 ,$805A,$4003,$0064, (102 IF A .. Z LS 100 push identifier 
$805F,$805F,$4003,$0064, (103 IF - .. - LS 100 push identifier 
$8061 ,$807A,$4003,$0064, (104 IF a .. z LS 100 push identifier) 
$E003,$A000,$0000,$003D, (105 LA identifier lex reset 61 push $error 

(Lex State 141 
$2000,$6000,$6000,$006B, (106 LC 
$8009,$8009,$4000,$0080, (107 IF 9 .. 9 LS 128 push $error 
$801A,$801A,$4002,$0056, (108 IF 26.. 26 LS 86 push $eoi 
$801 E,$801 E,$4000,$0080, (109 IF 30 .. 30 LS 128 push $error 
$8020,$8020,$4000,$0080, (110 IF .. LS 128 push $error} 
$8021 $8021 ,$4000,$007B, (111 IF!.. ! LS 123 push $error) 
$8028,$8028,$4004,$004E, (112 IF ( .. (LS 78 push '(' 
$8029,$8029,$4005,$004F, (113 IF) .. ) LS 79 push')') 
$802A,$802A,$4006,$0050, (114 IF * * LS 80 push 
$802B,$802B,$4007,$0051, (115 IF + .. + LS 81 push '+' 
$802C,$802C,$4008,$0052, (116 IF,.. , LS 82 push',') 
$8036,$803B,$4009,$0053, (117 IF 	; LS 83 push';') 
$803D,$803D,$400A,$0054, (118 IF = .. = LS 84 push '=') 
$803F,$803F,$400B,$0055, (119 IF?.. ? LS 85 push'?') 
$8041 ,$805A,$4003,$0064, (120 IF A .. Z LS 100 push identifier) 
$8061 ,$807A,$4003,$0064, (121 IF a.. z LS 100 push identifier 
$A000,$A000,$0000,$003D, (122 LA $error lex reset 61 push $error) 

(Lex State 16) 
$2000,$6000,$6000,$007C, (123 LC) 

stir 



$8009,$8009,$4000,$007B, (124 IF 9 .. 9 LS 123 push $error 
$801 E,$801 E,$4000,$0080, (125 IF 30.. 30 LS 128 push $error) 
$8020,$807E,$4000,$007B, (126 IF 	.. LS 123 push $error} 
$A000,$A000,$0000,$003D, (127 LA $error ** lex reset 61 push $error 

(Lex State 15 
$2000,$C015,$4000,$0093, (128 LT commentfound to 147 push $error) 
$6000,$6000,$0000,$003D, 

( 
129" lex reset 61 push $err& 

$2000,$6000,$6000,$0083, (130 LC 
$8009,$8009,$4000,$0080, (131 IF 9.. 9 LS 128 push $error 
$801 A,$801A,$4002,$0056, (132 IF 26.. 26 LS 86 push $eoi 
$801 E,$801 E,$4000,$0080, (133 IF 30 .. 30 LS 128 push $error 
$8020,$8020,$4000,$0080,( 134 IF 	.. LS 128 push $error} 
$8021 $8021 ,$4000,$007B, (135 IF!..! LS 123 push $error} 
$8028,$8028,$4004,$004E, (136 IF 

(.. ( 
LS 78 push '(' 

$8029,$8029,$4005,$004F, (137 IF 	.. ) 
LS 79 push ')' 

$802A,$802A,$4006,$0050, (138 IF * .. * LS 80 push 
$802B,$802B,$4007,$0051, (139 IF + .. + LS 81 push +' 
$802C,$802C,$4008,$0052, (140 IF, .. , LS 82 push 
$803B,$803B,$4009,$0053, (141 IF ; LS 83 push 
$803D,$803D,$400A,$0054, (142 IF = .. = LS 84 push '=' 
$803F,$803F,$400B,$0055, (143 IF ? .. ? LS 85 push '?' 
$8041 ,$805A,$4003,$0064, (144 IF A .. Z LS 100 push identifier) 
$8061 ,$807A,$4003,$0064, (145 IF a .. z LS 100 push identifier 
$A000,$A000,$0000,$0030, (146 LA $error ** lex reset 61 push $error 

(Lex State 17 
$2000,$6000,$6000,$0094, (147 LC 
$8009,$8009,$4000,$005C, (148 IF 9.. 9 LS 92 push $error 
$801 E,$801 E,$4000,$005C, (149 IF 30 .. 30 LS 92 push $error 
$8020,$8020,$4000,$005C, (150 IF 	.. LS 92 push $error 
$8021 ,$8021 ,$4000,$0057, (151 IF ! .. ! LS 87 push $error 
$A000,$A000,$0000,$003D (152 LA $error ** lex reset 61 push $error 

function Regtableread( a:integerl6) 	word; 
begin 

it (instmin<=a) and (a<=instmax) then 
begin 

Regtableread 	plt[a]; 
end 
else 
begin 
write('lllegal Instruction Address ,a); 
writeln(' legal range [',instmin,'..',instmax,']'); 
Reglableread 	plt[a mod 4]; 

end; 
end; 

function Regtablemax:integerl 6; 
begin 

Regtablemax := addrmax; 
end; 

end. 

9.5 Examples of Parses 
The section "Examples of Regular Expressions" in this chapter gave some regular 

expressions suitable for input to the software emulation of the processor. The 
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resulting output is given in the corresponding sections. The output also includes 

MODEL source code intended to generate logic to recognise the expression. The 

MODEL code generated follows the algorithm described in section 2 "Hardware 

Implementations". The logic to recognise a given token, such as "a" is referenced but 

not defined. It will be similar to that defined in section 2.1.1.1 "Recognising a 

Token". 

9.5.1 Example 1 

The regular expression A = a b+ c generated the following debug information which 

also included some MODEL source code for logic to recognise the expression. The 

logic to detect tokens a, b and c is not defined. 

1]A=ab+c; 
Part A [clk,tokin] -> res 
Signal ni; 
Signal n2; 
Signal n3; 
Signal n4; 
Signal n5; 
Signal n6; 
Signal n7; 
ONE-> ni 
token("a")[ clk,tokin,nl )-> n2 
n2 -> n5 
orf n5,n4] -> n3 
tokenb")( clk,tokin,n3] -> n4 
n4 -> n6 
token'c")[ clk,tokin,n6] -> n7 
n7 -> res 

End; 
2] 

1 3] 
EOF 

9.5.2 Example 2 

The regular expressions A = a bt c and B = c m+ (a, d+)? Gave the following 

fragments of MODEL source code. 

1]A= a b* c;  
Part A( clk,tokin] -> res 
Signal ni; 
Signal n2; 
Signal n3; 
Signal n4; 
Signal n5; 
Signal n6; 
Signal n7; 
Signal nB; 
ONE-> ni 
token("a")[ clk,tokin,nl ] -> n2 
n2 -> n5 
04 n5,n4 I -> n3 
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token("b")[clk,tokin,n3J -> n4 
orj n3,n4] -> n6 
nB -> n7 
token("c")[ clk,tokin,n7] -> n8 
n8 -> res 

End; 
2]B=cm-i-(a,d+)?; 

Part B [clk,tokin] -> res 
Signal ni; 
Signal n2; 
Signal n3; 
Signal n4; 
Signal n5; 
Signal n6; 
Signal n7; 
Signal n8; 
Signal nS; 
Signal nb; 
Signal nil; 
Signal n12; 
ONE-> ni 
token("c')L clk,tokinnl ] -> n2 
n2 -> n5 
orf n5n4] -> n3 
token("m")[ clk,tokin,n3] -> n4 
n4 -> n6 
n6 -> nlO 
token("a")[ clk,tokin,n6] -> n7 
orf n1O,n9] -> n8 
token("d")[clk,tokin,n8] -> n9 
orf n7,n9] -> nll 
orfnG,nil]->n12 
n12 -> res 

End; 
EOF 
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