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Abstract 

A Hybrid Neural Network 

Architecture for Texture Analysis in 

Digital Image Processing Applications 

By 

Michael John Arrowsmith 

A new hybrid neural network model capable of texture analysis in a digital image 

processing environment is presented in this thesis. This model is constructed from two 

different types of neural network, self-organisation and back-propagation. Along with a 

brief resume of digital image processing concepts, an introduction to neural networks is 

provided. This contains appropriate documentation of the neural networks and test 

evidence is also presented to highlight the relative strengths and weaknesses of both 

neural networks. The hybrid neural network is proposed from this evidence along with 

methods of training and operation. This is supported by practical examples of the 

system's operation with digital images. Through this process two modes of operation 

are explored, classification and segmentation of texture content within images. 

Some common methods of texture analysis are also documented, with spatial grey level 

dependence matrices being chosen to act as a feature generator for classification by a 

back-propagation neural network, this provides a benchmark to assess the performance 

of the hybrid neural network. This takes the form of descriptive comparison, pictorial 

results, and mathematical analysis when using aerial survey images. 

Other novel approaches using the hybrid neural network are presented with concluding 

comments outlining the findings presented within this thesis. 
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Chapter 1 Introduction 

The term digital image processing is distilled by Jahne [Jahne 951 "Human beings 

perceive most of the information about their environment through their visual sense. 

While for a long time images could only be captured by photography, we are now at the 

edge of another technological revolution which allows image data to be captured, 

manipulated, and evaluated electronically by computers. " 

This project concentrates its focus upon the area of identifying textures within images 

and the ability to segment textures out of images via the implementation of artificial 

neural networks, often referred to as neural networks. 

Kulkami [Kulkami 1994] identifies the capabilities of neural networks when acting in 

the digital image processing realm: - 

9 Remote Sensing, segmentation of Landsat images for various purposes such as 

agriculture, forestry, mineral resources, meteorology and military. 

* Medical Image Processing, classification and segmentation of X-ray and magnetic 

resonance (MR) images. 

9 Fingerprint Processing, feature extraction and pattern recognition. 

9 Character Recognition, automatic data entry from print and script. 

9 Characterisation of Faces, optical recognition for security applications. 

9 Data Compression, acting as encoders and decoders for compressing images or data 

streams. 
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Section 1.1 provides a brief overview of the image processing term-inology and image 

formats. It addresses how images are stored in computer memory and the type of image 

storage fonnat commonly used. The common process of histogram equalisatIon used 

within this thesis to ensure all images have a commonality across them is also 

documented. 

The aims of the research required to produce this thesis are identified in Section 1.2. 

The primary goals and activities of this research are also documented. 

This chapter concludes with Section 1.3, which contains an overview of the thesis. A 

brief resume of each chapter is documented to give a concise description of their 

contents. 
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1.1 Introduction To Digital Image Processing 

Images are made up from pixels (picture elements), each pixel donates a single point of 

light intensity in the image. The resolution defines the number of pixels in the image 

and the range of light intensities that each pixel can represent. Typically in most image 

processing a pixel is represented by a single byte, therefore the number of light 

intensities available is 2', which is 256, giving a range of 0 to 255 grey levels. 

Although not used in this research, larger formats using a word or long word 

representing the value of a pixel can give grey scale range of 0 to 65,535 and 0 to 

4,294,967,295 respectively. A majority of images available in the research domain are 

standardised on two image sizes: 256 by 256 pixels and 512 by 512 pixels, with both of 

them using a single byte to store pixel information. This file format is often referred to 

as a raw image. There is no information stored in the file about the dimensions or 

resolution of the image, so it is only possible to store monochrome images because of 

the lack of descriptive information within the file format that would be needed to hold a 

colour palette. The images chosen for presentation in this thesis use the characteristics 

from the above to allow readers familiar with this image format to make meaningful 

comparisons of the hybrid neural network to previous work carried out by other 

methodologies. 

All processing and manipulation of images carried out in the project was done via 

sampling the image from the video memory of the personal computer displaying them 

through custom software that has been developed. Appendix A explores some of the 

issues discovered dunng the development process. 
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Images are constructed from a matrix of co-ordinates made up from rows and columns. 

these are referred to as the x dimension for rows and y dimension for columns. 

Equation (1.1.1) shows the construction of an image. Pixel intensity P is represented in 

the spatial domain by p (y, 

p(l, l) p(1,2) p(l, X max 
) 

P(Y, X) 
p(2,1) p(2,2) p(2, x max 

) 

-P(Ymax 91) P(Ymax, 2) P(YmaxýXmax)- 

(1.1.1) 

This method of representing an image as a matrix of pixels is common throughout all 

realms of digital image display. 

A large amount of imagery is presented in this thesis and to ensure that all the images 

have the same qualities before they are processed, a pre-process operation of grey scale 

equalisation is applied to them. This ensures that all the images contain the same grey 

scale range. 

This operation relies upon manipulating the order of pixel values against the theoretical 

maximum value they can possess. Take for example an image of 256 by 256 pixels with 

grey scales being represented from 0 to 255, if the majority of pixels had a grey scale 

value that was below 100 then the image would look dark. A statistical operation that 

could be carried out to improve the brightness of the image would be to artificially alter 

the histogram of grey scale values [James 1987]. 
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The process would be to determine the ideal average (z) for the number of pixels 

assigned to each grey level, with Xmax and ym,, x 
being the maximum number of rows 

and columns in the image, and g -levels 
being the number of grey scales used in the 

image. 

Xmax Y 
max 

g levels 

(1.1.2) 

Using this average, the number of pixels assigned to each grey level could be equallsed. 

If the number of grey levels is less than the average some are added to this level from 

the next highest grey level until the average is reached. If however the number is greater 

than the average then the next grey level is skipped and those pixels assigned to a higher 

grey scale. 

Developing this process further, Low [Low 1991] depicts the use of the cumulative 

frequency in adjusting the histogram of grey scale values. The cumulative frequency 

t(g) is used in equation (1.1.3) to determine which grey levels are to be used in the 

corrected image. 

F(g) = max (0, round 
g- levels - t(g) 

Xmax Ymax 

(1.1.3) 

Where F(g) is the grey level in the corrected image. 

is the current grey scale. 

Round, is the result rounded to the nearest valid grey scale. 
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For example, the following histogram (Figure 1.1) is constructed from a image of 

dimensions of 5 by 6 pixels. It is equalised using equation (1.1.3) to produce the results 

shown below in Figure 1.2 and in Table IA- 
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Figure 1.1 Histogram of 5 by 6 Image before Equalisation 
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Figure 1.2 Histogram of 5 by 6 Image after Equalisation 

9 t(g) F(g) 
0 2 0 
1 7 1 
2 16 4 
3 22 6 
4 24 7 
5 25 7 
6 26 8 
7 27 8 
8 30 9 
9 30 9 

Table 1.1 New Grey Scale Values of 5 by 6 image after Equalisation 
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A practical example of this can be seen in the following image Figure 1.3. The image 

could be considered to be very bright, with its grey scale histogram skewed to towards 

the higher values. Performing histogram equalisation upon it results in Figure 1.4. 

Figure 1.3 Airplane Image before Equalisation 

Figure 1.4 Airplane Image after Equalisation 

8 



The change can be seen from the histograms shown in Figure 1.5. The majority of grey 

scales were originally clustered around the grey scale level of 200. However after 

equalisation this cluster has decreased in brightness to around 150. Note that the shape 

of the distribution of grey scales is still the same as before but is elongated by the 

equalisation process. 

2500 

2000 

1500 

1000 

500 

0 

Grey Scales 

Before 
After 

Figure 1.5 Histogram of grey scale intensities for Airplane Image 
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1.2 Aims of the Research 

The primary goal of the research presented in this thesis, is to provide evidence of 

capabilities of neural networks in the realm of texture analysis in digital image 

processing and to assess their performance against existing documented conventional 

methodologies. 

Neural networks were to be evaluated, with their relative strengths and weakness 

investigated. Practical examples of the operation in a digital image processing 

environment were to be recorded. 

Upon completion of this evaluation, new and novel neural network architectures were to 

be identified for use in the realm of texture analysis in digital images. 

A critical comparison of the new neural network architectures against those of 

conventional methods concluded the research programme activities. This comparison 

gives an in-depth evaluation of the performance of the systems under test. 
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1.3 Overview of the Thesis 

* Chapter Two provides a literature review of the work carried out in the field of 

texture analysis and the methodologies applied. 

* Chapter Three introduces the concept of texture within a digital image processing 

environment. Some common methodologies that are able to perform texture analysis 

are examined. 

e Chapter Four examines neural networks, with both natural and artificial networks 

being discussed. Two neural networks are investigated in detail with practical 

demonstrations of them working upon digital images included. 

9 Chapter Five brings together the two neural network models discussed in Chapter 

Four and proposes a new hybrid neural network system. A description of the 

architecture is given along side the training processes required to allow the operation 

within a digital image processing environment. Again a practical demonstration is 

given of the hybrid neural network architecture in operation. 

* Chapter Six demonstrates the capabilities of the hybrid neural network with two 

modes of operation. The first mode of operation is classification of benchmark 

textures. The second mode shows the hybrid neural network to be capable of 

segmenting real world images. The hybrid neural network is compared with another 

method of texture analysis, a spatial grey level dependence matrix feature generator 

acting in conjunction with a back-propagation neural network classifier. The results 

are documented and supported by analysis. 
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Chapter Seven highlights the novel aspects contained within this thesis and the 

original contributions to knowledge. Some conclusions are drawn with regards to 

the work carried out over this research project. This chapter concludes by proposing 

some new concepts based upon the hybrid neural network that could lead to further 

work and research. 

* Appendix A reviews the processes that were used to generate the neural network 

models used in this thesis. A brief discussion of the software development life cycle 

is given with a description of some of the data structures developed to implement a 

neural network in software. 

9 Appendix B gives some insight into the use of cross-correlation coefficients from 

chapter three when implementing them in software. This is accompanied by an 

example. 

* Appendix C provides details on the benchmarking process used of classifying 

spatial grey level dependence matrices with a back-propagation neural network, this 

is used to asses the performance of the hybrid neural network 

9 Appendix D includes an accompanying paper to the thesis published during this 

research project. 

9 Appendix E shows the real world imagery and results generated by testing the 

hybrid neural network and spatial grey level dependence matrices in chapter six. 
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Chapter 2 Literature Review 

This chapter offers a literature review of the work carried out in the field of texture 

analysis. It examines applications and methodologies applied to texture analysis using 

digital image processing. It is presented in four sections, each section based upon a 

particular grouping of methodologies. 

Section 2.1 presents statistical methods such as first and second order statistics. 

Section 2.2 highlights model based approaches such as Markov Random Fields and 

Fractals. 

Section 2.3 covers signal processing approaches to texture analysis, methods such as 

spatial domain, Fourier, Gabor and Wavelets are presented. 

Section 2.4 explores all aspects of the application of neural networks. 

13 



2.1 Statistical Methods 

A popular statistical method of texture analysis is the use of Spatial Grey Level 

Dependence Matrices (SGLDMs) or co-occurrence matrices. Functions generated from 

these matrices have been used for various applications, Parkkinen et al, Starovoitov et 

a], and Oh et al [Parkkinen et al 90, Starovoitov et al 1998, Oh et al 1999] have used 

them to generate measures of periodicity held with textures. Jan and Hsueh [Jan and 

Hsueh 1998] provide a method of deriving the optimum window size for using matrices 

to generate a measure of periodicity. Various optinlisations to the original co-occurrence 

functions initially proposed by Haralick et al [Haralick et al 1973] have been explored. 

Walker et al [Walker et al 1995] cross validates the functions to increase their 

performance. Laws [Laws 1980] uses them to validate a new suite of functions that can 

apply labels to texture, these being uniformity, density, coarseness, roughness, 

regularity, linearity, directionality, frequency and phase. Gotlieb and KreyszIg [Gotlieb 

and Kreyszlg 19901 also generate a suite of texture descriptors using Haralick's olnginal 

functions when considering the Brodatz [Brodatz 1966] series of textures. He and 

Wang [He and Wang 1991] derive texture units produced from Haralick's functions to 

classify Synthetic Aperture Radar (SAR) images. Practical aspects of the matrices are 

addressed by Clausi and Jernigan [Clausi and Jernigan 19981 by reducing the 

computational overhead of large co-occurrence matrices by using linked lists to extract 

data from the matrices. Jawahar and Ray [Jawahar and Ray 19961 propose using the co- 

occurrence functions in conjunction with first order statistics as a texture classifier. A 

similar approach is used by AI-Janobi [Al-Janobi 2001] to use matrix functions with 

texture descriptors to classify Brodatz images. The data held within the matrices can be 

used to find structure within textures as shown by Zucker and Terzopoulos [Zucker and 

Terzopoulos 1980] using a chi square test upon the matrices. Second order statistics are 
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not just limited to functions applied to spatial grey level dependence matrices, to detect 

orientated texture Chaudhuri et al [Chaudhur, et al 19931 use Hough transforms. 

The use of first order statistics are also applied in texture analysis as depicted by De 

Natale [De Natale 1996] who examines the use of histograms. 

Another method of statistical analysis is the use of cross-correlation. Lin et al [Lin et al 

1997] use cross-correlation in conjunction with a Hough transforin. to detect periodicity 

within textures. Colour textures are considered by Paschos [Paschos 1998] who uses 

cross-correlation to produce chromatic correlations with luminance within a texture. 

2.2 Model Based Methods 

Model based methods are created from the ability to describe a texture or a method of 

synthesising it. 

Markov Random Fields (MRFs) demonstrated by Cross and Jain [Cross and Jain 1983] 

provide a method of synthesising textures artificially. Suen and Healey [Suen and 

Healey 1999] apply this methodology to model and classify colour textures. Bhatt and 

Desai [Bhatt and Desai 1994] apply them in a different manor in the identification of 

textures when performing an image restoration function. Markov Random Fields are 

also used as a post processor validating the output of other classifiers as shown by 

Lorette et al [Lorette et al 2000]. 
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Binary patterns are used as texture descriptors by Oiala and Pietikainen [Ojala and 

Pietikainen 19991 who use them to classify both Brodatz and real word imagery. 

Fractals also provide an artificial method of producing textures and can be used in 

image analysis as shown by Pentland [Pentland 1984]. Kasparis et al [Kaspans et al 

2001] develops the use of fractals further by operating them in conjunction with Gabor 

filters to segment Brodatz images. 

Liu and Picard [Liu and Picard 1996] create a model of texture based upon periodicity, 

directionality and randomness. Lu [Lu 1998] improves upon this method by applying 

the three parameters to wavelet transforms. Another model is proposed by Pala and 

Santini [Pala and Santini 1999] where the shape of an object is used in conjunction with 

a sampled texture from a database to determine the objects identity. 

As well as mathematical models portraying texture, descriptions of the make up of a 

texture are also available. Julesz [Julesz 1996] presents a theory with a Texton 

representing textural elements. The relationship between the Textons determines the 

appearance of the texture. Another model is suggested by Healey and Enns [Healey and 

Enns 1998] who offer Perceptual Texture Elements (Pexel), each pexel attribute being 

generated from height, density and regularity. 
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2.3 Signal Processing Methods 

Spatial domain filters demonstrated by Reed and Wechsler [Reed and Wechsler 1990] 

have been proven to be capable of segmenting both synthesised and Brodatz textures. 

Unser [Unser 1986] also shows that their performance is comparable with spatial grey 

level dependence matrices and highlights that they give a computational saving. 

Fourier domain filtering has been applied to numerous image processing problems 

including texture analysis as shown by Coggins and Jain [Coggins and Jain 1985]. Shen 

and Bie [Shen and Bie 1992] use frequency matrices to label twenty Brodatz textures. 

Hsu et al [Hsu et al 2000] applies multiple Fourier transforms at different resolutions to 

segment textures. Directional textures are identified by an approach presented by Tsai 

and Hsieh [Tsai and Hsieh 1999] where frequency components in the Fourier domain 

are isolated by a Hough transform. 

Gabor filters also possess the ability to identify frequency components as shown by 

Clark and Bovik [Clark and Bovik 1987]. Strand and Taxt [Strand and Taxt 1994] 

evaluate Gabor filters with co-occurrence matrices and local frequency operators with 

favourable results. Ma and Manjunath [Ma and Manjunath 1996] model Gabor filters 

with wavelets to classify textures. To ensure optimum performance from Gabor filters 

Clausi and Jernigan [Clausi and Jernigan 2000] provide a review in their operation. Frye 

and Ledley [Frye and Ledley 20001 take a different approach by using a discrete cosine 

transform (DCT) sliding window across regions of interest to generate spatial frequency 

values. 
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Wavelets offer an alternative to Gabor filters as demonstrated by Chang and Kuo 

[Chang and Kuo 1993]. Wang et al [Wang et a] 19981 proposes a new feature of texture 

coarseness using two dimensional wavelet transforms. Van de Wouwer et al [Van de 

Wouwer et al 1999] extend the use of wavelets into the colour spectrum by analysing 

each colour channel in tum. Portilla and Simoncelli [Portilla and Simoncelli 2000] use 

wavelet coefficients generated from synthesised textures to offer a new method of 

modelling textures. 

2.4 Neural Network Methods 

Applying neural networks to image processing tasks has been undertaken in a number 

of different modes, such as acting as pre and post processors for conventional 

methodologies. De Ridder et al [De Ridder et al 1998] shows neural networks to be 

capable of filtering images. Neural networks have also been used to classify the output 

data from spatial grey level dependence matrices [Fukue et al 1998, Muhamad and 

Deravi 1993, Oja and Valkealahti 1996, Visa 1990, Visa 1992, Valkealahti and Oja 

1998]. The concept of modular neural networks introduced by Van Hulle and 

Tollenaere [Van Hulle and Tollenaere 1993] has given rise to their use as post- 

processors. Daugman and Ruiz del Solar [Daugman 1989, Ruiz del Solar 1998] use a 

neural network to classify the output of a bank of Gabor filters. Gabor filters were also 

used by Lampinen and Smolander, Ma and Manjunath, Mather et al, Raghu and 

Yegnanarayana [Lampinen and Smolander 1996, Mather et al 1998, Ma and Manjunath 

1996, Raghu and Yegnanarayana 1997] to produce a system capable of indexing aerial 

photographs. Drimbarean and Whelan [Drimbarean and Whelan 20011 also use neural 

networks driven by Gabor filters to classify texture in colour images. 
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Bahlmann et al [Bahlmann et al 1999] uses self-organising maps to produce an 

automated quality control system to inspect textile seams. Karras et al [Karras et al 

1998] also produced an automated image recognition system but this time the self- 

organising map classifies wavelet coefficients. Daniell et al along with Greenberg and 

Guterman [Daniell et al 1992, Greenberg and Guterman 1996] have both used multi- 

layer neural networks capable of target recognition. 

Self-organising neural networks have been demonstrated to perform texture 

segmentation by Wang et al and Yoshimura and Oe [Wang et a] 1996, Yoshimura and 

Oe 1999], with Murtagh [Murtagh 1995] using them to classify large astronomical star 

catalogues. Raghu et al, Biebelmann et al and Bhattacharya et al [Raghu et al 1995, 

Biebelmann et al 1996, Bhattacharya et al 1997] have also demonstrated the ability of a 

modular neural network to classify texture. Goltsev and Wunsch [Goltsev and Wunsch 

1998] produced another modular neural network based upon texture class to classify 

textures within an image. 

The ability of neural networks in the classification of ground cover from satellite images 

has been demonstrated by Augusteijn et al [Augusteijn et al 1995] via the use of feed- 

forward cascade correlation neural network architecture. Bischof et al, Bruzzone et al, 

Serpico et al [Bischof et al 1992, Bruzzone et al 1997, Serpico et al 1996] apply error 

back-propagation in multi-layer networks to a similar task when classifying regions of 

Landsat images. 

Neural methodologies are not just limited to the visible spectrum of data acquisition. 

Stewart et al [Stewart et al 1994] shows self-organising maps that can classify 
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millimetre-wave radar returns. Inggs and Pasquanello et al [Inggs and Robinson 1999, 

Pasquanello et al 1998] also use self-organising maps to classify radar retums of ships. 

Ghinelli and Bennett [Ghinelli and Bennett 1998] use synthetic aperture radar (SAR) to 

produce a crop monitoring system. Marana et al [Marana et al 19971 makes use of 

Hough space as an input to a Kohonen [Kohonen 1998] network to classify textures. 

20 



Chapter 3 Texture Analysis 

A brief overview of texture, texture is presented in this chapter. 

Section 3.1 provides a breakdown on the definition of texture, how texture may be 

represented within images. 

Sections 3.2 through 3.6 identify some of the common methodologies that currently 

exist for texture analysis in the image processing realm. 

Section 3.7 offers a comparison of the different methodologies and identifies a 

benchmark for use in Chapter 6 when evaluating the performance of the hybrid neural 

network architecture. 
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3.1 Texture 

Haralick [Haralick 1979] describes texture held within an image by the number and 

types of its primitives and the spatial organisation or layout of its primitives. Sklansky 

[Sklansky 1978] states that a region in an image has a constant texture if a set of local 

statistics or other local properties of the picture function are constant, slowly varying or 

approximately periodic. 

Rao [Rao 1990] expands upon this by offering a taxonomy for texture descrIption that 

can be illustrated through the Brodatz [Brodatz 1966] collection: - 

9 Strongly ordered (Deterministic) textures such as that shown in Figure 3.1 have 

primitive elements in their composition such as the bricks in the brick wall. 

Weakly ordered (Structured) textures can be seen to possesses some repetitive 

structure, however this can be intermittent as shown in Figure 3.3 where the knot 

breaks up the grain. The composition of textures may also be made up from 

elements such as the pebbles shown in Figure 3.2. 

9 Disordered (Stochastic) textures possess neither repetition nor orientation in their 

structure. Figure 3.4 shows the random mottled effect of the pressed cork. 
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Figure 3.1 Brick Wall 

Figure 3.2 Pebbles 
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Figure 3.3 Tree Stump 
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Figure 3.4 Pressed Cork 
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3.2 Common methods of texture analysis 

Various surveys of different texture analysis methods have been performed [Conners 

and Harlow 1980, Haralick 1979, Pal and Pal 1993, Van Gool et al 1983, Weszka et al 

1976] identifying numerous routes that can be used. Some of the popular methods that 

are often used as benchmarks for image processing research are: Fourier Spectrum, 

Wavelets, Cross-correlation and Second Order Statistics. 

* Fourier Spectrum; by converting an image into the Fourier spectrum (Amplitude vs. 

Frequency) Weszka et al [Weszka et al 1976] showed ring filters applied in this 

domain before conversion back to the visible spectrum can classify features from 

Landsat images. 

* Wavelets offer the ability to record frequency verses time at multiple resolutions. 

Laine and Fan [Laine and Fan 1993] along with Mallat [Mallat 1989] have applied 

wavelets in texture classification applications. 

9 Cross-correlation involves running a sample texture across an image, and using a 

coffelation coefficient to indicate matches between samples, as documented by 

Haralick [Haralick 1979] and reviewed again by Sonka et al [Sonka et al 1993]. 

e Spatial Grey Level Dependence Matrices (SGLDMs) or Co-occurrence matrices, 

[Haralick 1973], a method of texture analysis where matrices are created to 

represent distribution of pixels throughout an image. 
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3.3 Fourier Spectrum 

Most texts on image processing such as James [James 1987], give the algorithms for 

Fast Fourier Transforms (FFTs). A benchmark image processing application Matlab 

[Matlab, 2000] for IBM compatible personal computers provides the capability of both 

forward and inverse FFTs on bitmap images. Using this software package, Fast Fourier 

Transform operations upon images can be visuallsed. Take the Brodatz texture D20 

(French Canvas) Figure 3.5. A Fast Founer Transforrn performed upon this image 

results in Figure 3.6. 

Figure 3.5 D20 French Canvas 
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Figure 3.6 Fast Fourier Transform on D20 

This representation of texture in the Fourier domain can be used to segment images, as 

different textures will have different representations in the Fourier domain. An example 

of this process can be seen by manipulating the image in Figure 3.7. This image is 

constructed from four Brodatz textures. Top left is D20 (French Canvas x 4), top right is 

D55 (Straw Matting), bottom left is D105 (Cheesecloth) and bottom right is D21 

(French Canvas reduced by 1/2). 

Figure 3.7 Collage of four Brodatz Textures 
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A Fast Fourier Transform is performed on Figure 3.7 giving the image Figure 3.8. 

Figure 3.8 FFT of Brodatz collage 

This time the Fourier domain contains elements of all four textures from the Brodatz 

collage image Figure 3.7. To segment a single texture out of the image using its Fourier 

domain representation is possible by multiplying Figure 3.8 with a Fourier transform of 

the wanted texture to be segmented, in this case D56. Then an inverse Fast Fourier 

Transform is applied to it to re-create an image, this is thresholded to create a binary 

mask Figure 3.9. 
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Figure 3.9 Inverse Fast Fourier Transform 

Applying an AND function to Figure 3.7 and Figure 3.9 gives a segmented image with 

the texture D56 remaining. 

Figure 3.10 Fourier Segmented Image of Brodatz Collage 
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The following example considers Fast Founier Transforms when using real world 

images Figure 3.11. 

I 

Figure 3.11 Aerial Image 1 

'3" 1 

Multiplying an FFIF of Figure 3.11 by an FFT of a small sample image of trees and 

performing an inverse FFI' gives the image in Figure 3.12. Matlab has the ability of 

zero padding the smaller image to the same size as Figure 3.11 to allow this 

multiplication. 

Figure 3.12 FFT of Aerial Image I 
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Thresholding this image generates Figure 3.13 

Figure 3.13 Threshold FFT of Aerial Image I 

Performing an AND function on Figure 3.11 and Figure 3.13 gives the segmented 

image below Figure 3.14 

Figure 3.14 Segmented Aerial Image I by FFT 
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3.4 Wavelets 

The application of wavelets is based upon scale rather than frequency as with Fourier 

analysis. Whereas Fourier analysis relies upon breaking a signal up into a series of sine 

waves, wavelet analysis breaks up the signal into a series of shifted and scaled 

waveforms. This analysis can take the form of pyramid / tree structured transforms. The 

pyramid wavelet structure breaks decomposes the image into a set of frequency 

channels. 

If the Brodatz texture D20 (Figure 3.5) is considered again, then the following wavelet 

analysis gives Figure 3.15. 

Approximation 

Vertical Details 

Honzontal Details 

Diagonal Details 

Figure 3.15 Discrete Wavelet Analysis on D20 
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The reconstructed images in Figure 3.15 were generated from the wavelet toolbox in 

Matlab [Matlab 2000] and show that the decompositions differ greatly for horizontal, 

vertica or diagonal properties. A Daubechies [Daubechies 1992] 8 tap wavelet was 

used in the analysis as this was demonstrated by Chang and Kuo [Chang and Kuo 19931 

to give the optimum results when considering texture classification. These wavelet 

reconstructions can be combined to make masks capable of segmenting textures held 

within images. 

Considering the Brodatz collage image (Figure 3.7) again, a wavelet reconstruction is 

made from vertical and diagonal elements Figure 3.16. The choice of elements is made 

by manual inspection of all the elements as which isolates the wanted texture. This time 

with a threshold function applied to the level one wavelet coefficients before 

reconstruction, Mallat [Mallat 1989]. In this case all negative wavelet coefficients are 

zeroed. 

Figure 3.16 Wavelet Reconstruction upon Brodatz Collage using Vertical and 

Diagonal Detail Coefficients 
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This image is converted to a binary image Cztna et al [Czina et al 20011, with a dilate 

and median cut operation applied to generate the mask in Figure 3.17. 

Figure 3.17 Wavelet Segmenting Mask for Brodatz Collage 

Applying this mask to the Brodatz collage image gives Figure 3.18. 

Figure 3.18 Wavelet Segmented Brodatz Collage 
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Applying a similar process to Aerial Image I (Figure 3.11) but this time reconstructing 

using horizontal and vertical components results in Figure 3.19 and Figure 3.20. 

Figure 3.19 Wavelet Reconstruction of Aerial Image 1 

9 

lb im 

Figure 3.20 Wavelet Segmenting Mask for Aerial Image 1 
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Using the mask from Figure 3.20 upon Aerial image 1 results in Figure 3.21. 

Figure 3.21 Wavelet Segmented Aerial Image I 
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3.5 Cross-correlation 

Cross-correlation provides a quick and simple method of detecting texture within an 

image. A section of the image that contains a texture that needs to be identified or 

isolated is selected and placed into a mask. This mask is then passed across the image 

and the correlation coefficient (r) is calculated from (2.4). 

N 

NJ (aib, ) - 
GaGb 

r i=l 

N22N2 F(N 
ai 

)-G NJ(b 2 )-G 
aib 

(2.4) 

Note that a elements come from the image mask and the b elements from the 

comparison mask. N is the number of elements in the mask. 

N 

(Sum of a elements) 11 ai 

N 

=Ebi (Sum of b elements) 

Using this equation it is possible to find matches between textures within an image. As 

the mask is run across the image, the correlation coefficient is calculated. If it 

approaches the value of one, then a near match is found (an exact match produces one). 

After the entire image has been processed, this coefficient is examined. The distance 

between the peaks gives an indication of any periodicity that may be present with the 

image. Appendix B expands on the implementation of this process in software and some 

of the limitations encountered, as well the methods applied to produce the following 

images. 
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This method of texture analysis is ideal for applications where regular periodicity within 

a texture is to be considered. This is demonstrated by using the Brodatz collage i image 

Figure 3.7. Applying the cross-correlation algorithm to this image whilst using the D56 

image to populate the comparison sample mask results in Figure 3.22. 

Figure 3.22 Cross-correlated collage image 

The algorithm correctly indicates the presence of the D55 texture in the upper right hand 

portion of the image. 

Figure 3.23 shows cross-correlation with a sample of trees in the comparison mask 

when applied to Aerial Image I Figure 3.11. Any peaks from the cross-correlation 

function indicated a match with the trees. The new image was created as the mask was 

passed across the sample image. Any matches above a threshold value (0.6) were copied 

to the new image, non-matches were replaced with a black pixel. 
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Figure 3.23 Cross-correlation of Aerial Image I 
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3.6 Spatial Grey Level Dependence Matrices 

Baraldi and Parmiggiani, Weszka et al [Baraldi and Parmiggiani 1995, Weszka et al 

1976] have proved spatial grey level dependence matrices capable of classifying 

Landsat images, with Marceau et al [Marceau et al 1990] performing similar work upon 

SPOT images. Haddon and Boyce [Haddon and Boyce 19931 have also proven them 

capable of operating on aerial images. 

3.6.1 A Review of Spatial Grey Level Dependence Matrices 

Spatial grey level dependence matrices can be specified in a matrix of relative 

frequencies. The number of neighbouring pairs of pixels I(xj, yj) and I(X., 
I Y2) one 

with a grey level of i, and the other with a grey level of j separated by a distance d and 

angle 0 can be recorded as Sd,, 
9 

(" A- 

An entryin a matrix I at position I(i, j) gives the number of times within an image that 

grey scale i is onentated with j as shown :- 

(x,, yl) =i and I 
(X2 

11 Y2) =i 

Of course the number of angles and sampling distances, if not limited, can cause a huge 

computational overhead. Conners et al [Conners et al 1984] used four angles of 0,45, 

90 and 135 degrees and eight sampling distances of 1,2,4,6,8,12,16 and 20 pixels. 
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Angles between 180 and 360 degrees are not considered, as pixel pair orientations are 

calculated in a forward and reverse motion. 

E. g. If pixel I(x,, yj) is orientated with another pixel I(X2. Y2) at 90 degrees this is 

equivalent to I(X2, Y2) being orientated to I(xj, yj) by 270 degrees. 

Functions can be defined to extract information from the matrices, Haralick 

[Haralick 1979] identifies several functions :- 

e Homogeneity (Energy) equation (2.5.1) is the squares of all the elements in the 

matrix summed. It measures textural uniformity such as pixel pair repetitions. This 

enhances any large values from the matrix and highlight periodicity and direction of 

a texture. 

I S2 EnergYd, O d, O (i, 

(2.5.1) 

* Contrast (Inertia) gives the grey level range in the region that is being sampled. It 

provides an indication of any spatial frequencies. So using equation (2.5.2), the 

contrast would have a small value if there are a small number of grey levels are 

used. 

ContraStd, O 
2 

j) Sd, 
O 

(2.5.2) 
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0 Entropy (2.5.3), this parameter measures disorder within the texture. If there are a 

large number of small values in the matrix then the entropy becomes large. It tends 

to be inversely proportional to the energy function. 

EntroPyd, 
O 

Sd, 
O 

(" D log(Sd, 
O 

(2.5.3) 

0 Variance (2.5.4) increases when the grey levels differ from their mean value (u). It 

provides a similar measure to that of contrast, with both functions possessing similar 

behaviour. 

Variance 
I_ 

U)2 djO 
Sd, 

O 

(2.5.4) 

The following examples show how the energy and contrast functions can give 

information on the composition of the texture being sampled. 

Take an image sample with a grey level range of 0 to 9 pixels with dimensions of 10 by 

8 pixels, overleaf: - 

.0 
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2 2 

- 

2 

- 

8 

- 

8 

- 

2 2 2 7 7 

2 8 8 2 

- 

2 2 2 7 7 

8 8 8 2 -2 2 7 7 7 

8 8 2 2 2 7 7 7 2 

8 8 8 2 

- 

7 7 4 4 4 

8 2 2 2 7 7 7 2 2 

2 2 2 7- 7 7 2 2 

2 2 7 7 7 2 2 8 

Table 3.1 Image Sample A 

If 0 is 0' and d =1 when sampling, the following co-occurrence matrix is created: - 

i 

4 

5 

6 

7 

8 

9 

0123456789 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 42 0 0 0 0 12 12 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 4 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 12 0 1 0 0 26 0 0 

0 0 12 0 0 0 0 0 22 0 

0 0 0 0 0 0 0 0 0 0 

Table 3.2 Co-occurrence Matrix Sample A 
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If another sample image is considered, Table 3.3. This time it has no texture. 

5 

Table 3.3 Image Sample B 

If 0 is 0' and d =1 when sampling, the following co-occurrence matrix is created: - 

lN\ 

3 

4 

5 

6 

7 

8 

9 

0123456789 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 01 0- 01 0 0 0 

0 0 0 0 0 0 

1 

0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 144 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Table 3.4 Co-occurrence Matrix Sample B 
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Energy Contrast Entropy Variance 

Sample A 3518 738 3751 1074 

Sample B 20736 0 310 36 

The contrast value highlights the fact there is no texture present within the sample. 

Some practical examples of spatial grey level dependence matrices are demonstrated by 

applying the energy and contrast functions on the aerial image shown in Figure 3.11. An 

operation was performed to segment out all the trees of the image. 11igher values of 

energy and contrast were used to segment out the trees / woodland, whereas the 

buildings would have lower values of contrast and would be left remaining in the image. 

Normalising the spatial grey level dependence matrices to contain values that lie 

between 0 and I the parameters for segmentation took the form of-- 

Energy Function: Band Pass 0.1 to 1.00 AND Contrast Function: Band Pass 0.0 to 0.1 

The image was sampled in blocks at multiple resolutions to produce different sized 

SGLDMs for a performance comparison. 

Figure 3.24 shows the results of being sampled at 4 by 4 pixel blocks with 0 at 00,450, 

90', 135' and d at I and 2 pixels. 

Figure 3.25 shows the results of being sampled at 8 by 8 pixel blocks with 0 at 0', 45', 

90', 135' and d at 1,2,4 and 6 pixels. 
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Figure 3.26 shows the results of being sampled at 16 by 16 pixel blocks with 0 at 0', 

45', 90', 135' and d at 1,2,4,6,8 and 12 pixels. 

Figure 3.24 Aerial Image I with 4x4 pixel block segmentation 

Figure 3.25 Aerial Image 1 with W pixel block segmentation 
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Figure 3.26 Aerial Image I with 16x16 pixel block segmentation 

Visual inspection shows little misclassification for the building aspects in Figure 3.25 

and Figure 3.26 as the size of the sample increases from which the SGLDM is created, 

unlike Figure 3.24. 

To offer a comparison of performance with the other methodologies Figure 3.27 shows 

the output of a spatial grey level dependence matrix when operating on the Brodatz 

collage image Figure 3.7 using a 16xI6 pixel square sample. 
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Figure 3.27 SGLDM Segmented Brodatz Collage 
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3.7 Summary 

The four methods of texture analysis presented in sections 3.3,3.4,3.5 and 3.6 appear at 

a glance to offer the same capabilities. To offer a comparison of the performance of the 

different methods each was compared to an image that was hand segmented via a 

computer graphics package, Figure 3.28 and Figure 3.29. 

Figure 3.28 Hand Segmented Brodatz Collage Image 

Figure 3.29 Hand Segmented Aerial Image I 
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Table 3.5 below shows the percentage number of correctly classified pixels for each of 

the four methodologies examined. Assuming the hand segmented images are 100% 

correctly classified. 

Brodatz Collage Aerial Image I 

Fourier 84.23% 70.42% 

Wavelet 84.12% 58.86% 

Cross-correlation 83.86% 51.50% 

SGLDM 85.31% 65.23% 

Table 3.5 Comparison of Texture Analysis Methods 

The Fourier process gives a good overall performance for both Brodatz and real world 

textures. However when applied to a more complex image, for example an image with 

cars in it, the FTT process becomes difficult to use if the end result was to segment out 

all the cars and leave the remainder of the image. This is because the representation of a 

car in the Fourier domain can possess a large number of attributes. 

With wavelets applied to the Brodatz series their ability to handle scale produces a very 

accurate classification when considering structured and deterministic textures. However 

real world textures are much more complex, a second layer of classification using 

wavelet features would be needed. 

Cross-correlation upon deterministic and structured textures gives an accurate method 

of texture analysis providing an ideal method of segmentation. When cross-correlation 

is implemented on the aerial image shown in Figure 3.11, some limitations become 

50 



apparent as can be seen in Figure 3.23. There are no regular textures contained within it, 

this leads to some spurious triggers of the cross-correlation process. The setting of the 

threshold value of the correlation coefficient is also a limiting factor. The coefficient 

can change between the types of texture being sampled. The overall result indicates that 

this is the poorest of the four methods. 

Although the initial appearance of the output from spatial grey level dependence 

matrices has a blocky look, the image has been segmented accurately. Conners and 

Harlow [Conners and Harlow 1980] demonstrate that spatial grey level dependence 

matrices are powerful classifiers of artificial and real world textures. With this and their 

popularity in mind, they were chosen to offer the basis of a benchmark against which 

the performance of the hybrid neural network based system is to be evaluated. 
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Chapter 4 Artificial Neural Networks 

Sections 4.1 and 4.2 introduce the concept of biological and artificial neurons with 

aspects of their operation. Some basic training laws provided for the artificial neuron 

accompany this. 

The back-propagation neural network model is discussed in detail in Section 4.3. The 

architecture of the network is examined and the algorithms required to train this model 

are documented. The benefits of multi-layer neural networks are also presented. This is 

followed by a practical demonstration of the back-propagation neural network being 

trained to act as an edge detector when working upon digital images. 

Section 4.4 introduces another neural network architecture, the self-organising map. 

Again the algorithms required to train this model are reviewed and a practical example 

of the operation of this model working upon a digital image is included. 

A brief summary of all the aspects of work discussed in this chapter is provided in 

Section 4.5. 
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4.1 Introduction 

A neural network is a collection of highly parallel processing elements. Each element is 

known as a neuron and it can take many inputs to produce an output. The structure of a 

neuron in an artificial neural network is based on the biological equivalent found in all 

species of animals [Anderson 95]. The inputs to the cell body are fed from the synapses 

through the axon where some processing can take place, the output is then fed to other 

cells via the dendrites. This output process is often referred to as firing. 

A typical operation of a neuron would be to fire when the summed inputs from other 

neurons on the synapses were greater than a threshold value held within the cell body. 

Haykin [Haykin 1994] gives an insight into the massive amount of neurons in the 

human cortex, with an estimate of lOxI09neurons and 60x 1012 connections via the 

synapses. 
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4.2 Artiricial Neuron 

The operation of an artificial neuron is analogous to that of the biological one. It 

takes inputs and performs a function and outputs the results. This model was first 

discussed by McCulloch and Pitts [McCulloch and Pitts 1943]. Figure 4.1 shows their 

model with two inputs. 

Output 

Neuron 

W2 W, 
Input ut np 
X2 I 

Figure 4.1 An Artificial Neuron 

They defined that the neuron computes the weighted sum of its inputs (I ) and then 

determines its output against a threshold T. Each input to the neuron (x) has a unique 

weight or value (w) against. it. Equations (4.2.1,4.3.2) show the neuron's state may 

only be +1 or -1. 

wixi 

+ 19 if I>T 
output 

-1, if I<T 

Where :N is the number of neuron inputs. 

(4.2.1) 

(4.2.2) 
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Rosenblatt (Rosenblatt 1958) took this concept further by introducing a training law 

given in equations (4.2.3,4.2.4). This law allows the neuron to be trained to perform a 
function using a training set containing input patterns and required outputs. If the 

neuron7s output is incorrect than the weight vectors applied to the inputs are modified 

and the neuron's output is re-assessed. This continues until the correct answer is 

achieved for all patterns. This process is referred to as training. 

Wnew =W 
old+ bnx 

(4.2.3) 

07 if the neuron's output is correct 
b= 1- 1, if it is incorrect and the output should be negative 

+ 1, if it is incorrect and the output should be positive 

(4.2.4) 

Where: n= leaming rate, ranges 0<n<I 

Using these basic ideas, neurons can be connected together to produce a variety of 

neural network models. Lippmann [Lippman 1987] classified these models into binary 

input and continuous valued inputs, with sub-divisions for supervised and unsupervised 

learning. The very nature of image processing means that continuous valued networks 

offer an ideal architecture. The most popular and flexible method of continuous valued 

neural network using supervised learning Is the error back-propagation algorithm 

[Rumelhart et al 19861. 
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4.3 Back-Propagation Neural Networks 

The objective of training a back-propagation neural network is to adjust the weights of 

the neurons so their outputs match a desired set of results when training. This is 

achieved by using sets of data that have desired output data matching sets of input data. 

These training pairs or vectors are used to reduce the error of the network by means of a 

gradient descent system often referred to as the Delta Rule as shown in Figure 4.2. 

This error of the back-propagation neural network can be found from the squared 

difference between the actual and wanted outputs of the neurons summed for all units. 

This error (E) can be found from (4.3.1). 

fx )2 

(4.3.1) 

Where: - dx is the desired output for a neuron. 

is the actual output for the same neuron. 
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Frmr Z 

W2 

Figure 4.2 Delta Rule Gradient Descent System 

This process of training can be broken down into five steps: - 

1) Apply a training pair of vectors to the network. 

ii) Calculate the output of the network 

ill) Calculate the error of the network. 

iv) Adjust the weights to reduce the error. 

V) Repeat steps 1 through iv for all training vectors in the training set until 

the error is reduced to acceptable level. 
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When performing steps i and il the system can be considered to operating in a 'Forward 

Pass' mode as seen in Figure 4.3, data is being propagated forwards through the 

network. Steps iii and iv make the network operate in a 'Reverse Pass' mode Figure 4.4, 

as data is being back-propagated through the network. 

Inputs Input Middle Output ts ýý 
Layer Layer Layer 

Figure 4.3 Forward Pass 

ACtJUSt I AaJUSt 
Error Input Weights Mddle Weights output 

Layer 41 Layer 4 Layer 

Figure 4.4 Reverse Pass 
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4.3.1 Error Back-Propagation Training Algorithm Forward Pass 

The output of a neuron f is found by (4.3.1.1) 

I 

+ e-' 

(4.3.1.1) 

Where: a is the sum of the products of the outputs of neurons of the preceding 

layer and the weights connecting them to the next layer. 

The sum of products for neuron y in layer (i+1) is found using equation (4.3.1.2). 

ay =I fi, w, 
x 

(4.3.1.2) 

Where :-i identifies the layer (I or 2) 

x identifies neuron in layer i 

identifies the neuron in layer (i+1) 
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Figure 4.5 shows how a two dimensional network can be represented and indexed in a 

single dimension, each neuron has a unique number. 

Layer i 

i+1 

Interconnecting Layer i+I 
Weights 

Layer i 

Figure 4.5 Sample Neural Network Arrangement 

After the outputs of the neurons have been calculated, they are used to produce ay 

according to equation (4.3.1.2). This value is used to give the output of the neuron in the 

next layer according to equation (4.3.1.1), which limits the neuron outputs to the range 0 to 

1. This function is referred to as the sigmoid function and its operation can be seen in 

Figure 4.6. 
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Figure 4.6 Sigmoid function 

With all the outputs of the neurons calculated the reverse pass mode of operation can be 

implemented where the weights are adjusted to reduce the network's error. 
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4.3.2 Error Back-Propagation Training Algorithm Reverse Pass 

The reverse pass back-propagation algorithms are used to calculate the error of the neurons 

in the output layer against the wanted output and adaptation of the weights feeding them 

from the previous layer. 

The wanted output is derived from the training set. Each input applied to the network as a 

corresponding wanted output associated with it. 

Using the neuron outputs calculated in (4.3.1.2) and the wanted output from the training 

set, the local gradient at the output layer (5y can be found from (4.3.2.1). 

45x - fy (I - fy)(dy - f, ) 

(4.3.2.1) 

is the output of a neuron in the output layer. 

dy is the wanted output for that neuron. 

fy (I - fy ) is the derivative of the neuron output to ensure a gradual error descent. 

This term can be used in generating the gradient descent process for calculating changes to 

be applied to the interconnecting neuron weights. 
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Output Layer Weight Updates 

The new weight w,,, (t + 1) connecting the middle layer to output in the output layer can 

be found from equation (4.3.2.2) 

W2xy (t + 1) :::::: W2xy (t) + 176y f, 

(4.3.2.2) 

is the output of neuron in the rmddle layer. 

Sy is the local gradient generated from the error the neuron produced. 

77 is the learning rate and is a constant. 

t is the current point in time in the training cycle. 

x is the index of the neuron in the middle layer. 

is the index of the neuron in the output layer. 

All the weights feeding the output layer can now be adapted using equation (4.3.2.2). 

Hidden Layer Weight Updates 

However for the hidden layer, the error terin is now calculated by equation (4.3.2.3), 

because an error cannot be found with respect to the wanted output at this level of the 

neural network. The error term is made up from the sum of all errors connected to a neuron 

with all the weights connected to it. 

(5yW2,,, 
- 

y 

(4.3.2.3) 
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Equation (4.3.2.4) is used to find the new weights from the input layer to the middle layer 

(t + 1) = w,, (t) nýj, 

(4.3.2.4) 

Where-- f., is the input value. 

is the index of the neuron in the middle layer. 

x is the index of the neuron in the input layer. 

4.3.3 Back-propagation Training Algorithm Modification 

A variation on this rule is the inclusion of another term called momentum (Rumelhart et al 

1986), equation (4.3.3.1). This is designed to reduce the length of time taken to train the 

neural network. Its purpose is the help the gradient descent training by adding momentum 

behind the weight vector to keep it moving towards achieving small error. 

W2xy (t + 1) --:: W2xy (t)+ 
n(5yfy+ 

flAW2, 
y 

(4.3.3.1) 

,8 is the new momentum term. 

AW2xy iSthe change applied to the neuron's weight on the last cycle. 
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4.3.4 Advantages of Back-Propagation 

Multiple layer networks have the ability to solve linearly inseparable problems unlike 

single layer networks as declared by Minsky and Papert [Minsky and Papert 19691. 

Single layer networks can solve problems that are linearly separable such as the AND or 

OR functions. Typically a hyperplane can separate decision regions as seen in Figure 

4.7. 

O'l 

AND Function 

Figure 4.7 AND OR Functions 

OR Function 

However single layer networks cannot solve linearly inseparable problems. The most 

common example of this can be seen in the exclusive-or problem (XOR). 
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If a network was to have two inputs a and b and a single output c then the following 

truth table (Table 4.1) would apply. 

a b c 

0 

Table 4.1 XOR Truth Table 

Lisboa and Haykin [Lisboa 1992, Haykin 1994] both demonstrate that creating a 

multiple layer neural network Figure 4.8 using a hidden layer can solve the linearly 

inseparable XOR problem. 

a 

C 

b 

Figure 4.8 Simple XOR Back-Propagation Neural Network Architecture 
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With this simple network the XOR function can be implemented through a decision 

boundary generated by the multiple layers. 

O'l 

b 

=0 

N 

0,0 

a 

Figure 4.9 XOR Decision Boundaries 

1,0 

4.3.5 Use of Back-Propagation Neural Networks for Image Processing 

The neural network consists of three layers: - 

i) The input layer takes information from outside the network and prepares it 

for network operations. This may include some scaling of the data. 

ii) The middle layer or hidden layer holds the bulk of the network. Training 

algonthms are applied to the interconnections either side of the middle layer. 

This layer itself may be sub-divided into more than one layer of neurons. 

iii) The output layer interfaces with external elements, it also provides error 

information to be used in the training algorithms when training the network. 

67 



This error information provides the reference values for chang ng the weights 

between all layers of the network. 

A typical arrangement of neurons can be seen in Figure 4.10. 

Middle Layer 

Figure 4.10 Input data arrangement for a neural network 

The input values held in the mask map onto the input layer of the network. Note that in this 

figure only the first neuron (top) is shown as being connected to the input layer in the mask 

for clarity, in reality all the neurons are fully connected to all possible inputs. Since each 

neuron7s mode of operation is between 0 and 1, the image data is scaled from 0 to 255 

down to lie between 0 to 1. 

Each of the associated weights to the neuron's inputs is intialised with a random number 

that lies between -0.5 and 0.5. 

In this example the neural network requires two images, the input image which needs to 

altered in some way and a training image. The training image is the wanted output of 

the network. It is presented at the output layer and the network's Output is compared 

against it. The network trains until its output approaches the training image. 
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A mask is applied to the image. The values held in the mask are fed into the neural 

network's input layer as depicted in Figure 4.10. 

The outputs of the neurons in the middle layer are calculated and these outputs are fed 

into the inputs of the neurons in the output layer. The output layer is then computed and 

compared against the training image and the error calculated. The change in weights of 

the output layer and then the middle layer are calculated and then the cycle or epoch is 

complete. The mask is then advanced one position and the process is repeated. This 

carries on until the whole image is covered and one iteration is complete. A decision is 

then made as to embark on another iteration or to finish the training. This decision will 

be based upon the size of the error between the network's Output against the desired 

training image. After training is complete the network can be run, this uses the same 

process as the forward pass but no error is calculated or applied to the network. The 

outputs of the network are copied to a temporary store that mirrors the dimensions of 

the input image. After the process is complete the image is updated with the contents of 

the temporary store. 

To calculate the error between the training image and the network's output the Root 

Mean Square is taken after each cycle and this is used to produce an error value 

(4.3.5.1) at the end of a cycle when the whole image has been processed. 

error - 

V(Wanted 
output - Actual output) 2 

Total number of times the mask is used 

(4.3.5.1) 
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The images shown in Figure 4.11 and Figure 4.12, were operated upon using the back- 

propagation training algorithm with the intention of simulating a high pass filter. The 

neural network architecture was implemented as follows: - 

Input Layer : Nine neurons. 

Middle Layer: Four neurons. 

Output Layer :A single neuron. 

Figure 4.11 Lena Image 

Figure 4.12 Peppers Image 
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The processes of training, was to drive a mask / kernel feeding the Input layer across the 

image. The error term was calculated at the output layer by using an image that had a 

Laplacian 2D high pass filter applied to it to provide the wanted output through a 

process of convolution, Table 4.2. 

-1 -1 -1 

-1 8 -1 

-1 -1 -1 

Table 4.2 Laplacian Operation 

Experimental testing found the optimum learning rate to be low (0.01) and with a 

momentum term of 0.5. Each image was processed for one hundred cycles. Each cycle 

consisting of complete coverage of the neural network input mask in the x, y plane. 

As this Laplacian mask traverses the image, a second image is constructed from the 

output of the mask. The pixel values are multiplied by the constants assigned to each 

cell in the mask. The sum of all the cells is the new resulting pixel value for the new 

second image being constructed. 

Figure 4.13 shows the output from the processing of Figure 4.11 with the standard 

Laplacian edge detecting function. Figure 4.14 is the result of the neural network 

training upon Figure 4.11 using Figure 4.13 as a reference to calculate the error term to 

back-propagate through the network. 
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Figure 4.13 Laplacian High Pass Filter Output for Lena Image 

Figure 4.14 Neural Network Output for Lena Image 

ian filter by simulating the operati The network replicates the operation of the Laplaci II ion 

of a high pass filter upon images that have not been included as part of the training 

process. Figure 4.15 shows the output of the neural network when it Is applied to Figure 

4.12. 
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Figure 4.15 Neural Network Output for Peppers Image 

Figure 4.16 Laplacian High Pass Filter Output for Peppers Image 
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4.4 Self-Organising Networks 

Aleksander and Morton [Aleksander and Morton 1990] trace the origin of the self- 

organising map (SOM) to early work carried out by Von der Malsberg [Von Der 

Malsberg 1973]. The self-organising map does not have expected output results as in 

the case of back-propagation networks, but relies on a competitive inter-neuron 

relationship. When training, it behaves in an unsupervised fashion based upon 

competition amongst the neurons in the output layer, this is direct contrast to the back- 

propagation neural network, which operates in a supervised mode of training. 

4.4.1 Self-Organising Map Network Architecture 

Figure 4.17 shows a typical arrangement for a self-organising map with nine neurons in 

the output layer and twenty neurons in the input layer. For simplicity only the 

highlighted neuron is shown with all its connections. In reality, it and the rest of the 

neurons in the output layer have connections to all the neurons in the input layer. 
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Figure 4.17 Self-Organising Map 

The inter-neuron relationships are determined by competitive learning, the winning 

neurons in the training cycle have the largest updates to their weights. The weight 

updates that are applied to winning neuron are also applied to its neighbours, but these 

are fractional updates according to their distance from the winning neuron. This 

distance is known as the neighbourhood as depicted in Figure 4.18. The function to 

calculate the distance between neurons is known as the Box Distance or Chessboard 

Distance. As the network trains, the size of this neighbourhood decreases, until on the 

final cycle the neighbourhood has a size of one neuron, i. e. the winning neuron. 
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Figure 4.18 SOM Neighbourhood 

4.4.2 Self-Organising Map Training Algorithm 

The training of the self-organising map was popularised by Kohonen [Kohonen 1998]. 

It takes the form of evaluating the distance dy(t), at a point in time t, between the 

weights w,, y of a neuron and the applied input values I, (t) to the neuron. 

The distance dy (t) for a neuron is calculated using equation (4.4.2.1). 

wx, y 
(t))2 

x 

(4.4.2.1) 
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This distance d, (t) is evaluated for each of the neurons and the winning neuron j is 

then identified by finding the neuron which has the smallest distance value: - 

arg min(d�) 

(4.4.2.2) 

After the winning neuron j is found, its weights are updated according to the equation 

(4.4.2.3), where il(t) is the leaming rate at a specified moment in time t. 

Wx, 
y (t + 1) = Wx, y (t) + 77(t)(Ix (t) - wx, y 

(4.4.2.3) 

The learning rate gradually decreases in value over time as training of the SOM 

progresses. The weights of neurons situated in the neighbourhood of the winning 

neuron j are also updated. Fractional updates are applied to the winning neuron7s 

neighbour's weights by equation (4.4.2.4). 

wx, 
y (t +W Xly (t) + q(t)o(ix (t) - wx, y 

(4.4.2.4) 

Where the scaling factor 0 (0 <0< 1) is deterrmned according to the position of the 

neighbourhood neuron in relation to the winning neuron. 
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4.4.3 Use of Self-Organising Maps for Image Processing 

Using a similar process to that seen in section 4.3.5 a mask is applied to an image. The 

mask feeds the input layer of the self-organising map. However this time there is no 

reference image to be considered, as the self-organising map is an unsupervised process. 

The inter-connecting weights are adjusted as the mask traverses the image for a pre- 

determined number of cycles. Again a cycle is deemed to be one complete pass of an 

image in the xy plane. 

The following architecture and settings were used to demonstrate the activity produced 

by a self-organising map: - 

Input layer : Eighty one neurons, arranged in a nine by nine neuron grid. 

Output layer: Twenty five neurons, arranged in a five by five neuron grid. 

Learning rate was set to 0.3 and the initial neighbourhood size was 4. 

This network was trained upon Aerial Image I shown in Figure 3.11. After the network 

had completed its training phase, it was re-applied to the image and a new image was 

created based upon the activity of the output layer. 

Twenty-five grey scales (five by five neurons), ranging from black to white were 

assigned to map the activity of each neuron in the output layer. As the mask feeding the 

self-organising map traversed the image, a secondary image was created using the 

unique grey level assigned to the neurons in the output layer. That is when a winning 

neuron is found for a particular sample, its unique grey level is placed into the new 

image being constructed via a sliding window process. 
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Figure 4.19, shows that the training phase has allowed the neurons in the output layer to 

have different properties to stimulate them to becoming the most active neuron. In this 

case, the area within in the image that does not contain trees relies upon only a few 

neurons becoming the winners. Therefore identifying these neurons allows the image to 

be segmented. 

This process takes the form of running the SOM across the source image again, this 

time acting as a filter. Again a secondary image is created via the output of the SOM. If 

the winning neuron is deemed to be representing a sample of non-trees then the grey 

scale placed in to the new image is black. If however the winning neuron is deemed to 

be not representing a non-trees sample then the original grey scale from the source 

image is passed into the image under construction. The designation of which neurons 

should represent desirable textures was made by the human operator in this case. These 

results are demonstrated in Figure 4.20. 

Figure 4.19 Grey Level Output from SOM on Aerial Image I 
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Figure 4.20 Segmented SOM Output from Aerial Image I 

White pixels are the ones that have been filtered out. The grey band around the image is 

the area the network cannot sample as the 9x9 mask will stray off the edge of the 

image. 
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4.5 Summary 

With the example provided in section 4.3.5, the back-propagation neural network has 

been demonstrated to be capable of operating as a 'black box' system. It is able to take a 

desired output and train against it to approximate the operation of a Laplacian high pass 

filter. Companng the output (Peppers, Figure 4.15) from the neural network against that 

of the equivalent Laplacian operation shown in Figure 4.16, the Neural Network output 

has highlighted all the edges along with removing some of the noise embedded within 

the image. This noise removal has occurred by the fact there was no noise in the original 

training image (Figure 4.11). The back-propagation neural network is ideally matched 

for applications that are strongly rule based. 

Contrasting the back-propagation neural network is the self-organising map with its 

unsupervised training process. The self-organising neural network demonstrated in 

section 4.4.3 has strong abilities to provide unique and distinct outputs on its output 

layer for a wide range of possible inputs. This network works at its optimum when 

processing clusters of data that need to be classified. 

Although the neurons themselves are simple processing elements, when constructed into 

a network they prove themselves to be powerful processors of data. 

The following chapter presents a hybrid system which utilises both types of neural 

network for texture analysis in digital images. 
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Chapter 5 Hybrid Neural Network System for 

Texture Analysis 

The idea behind the development of the hybrid neural network was to encapsulate the 

benefits of processing clusters of data from the self-organising map and the rule based 

capabilities of the back-propagation network. 

The introduction in section 5.1 outlines the basis for the creation of the hybrid neural 

network system. 

Section 5.2 examines the architecture of the hybrid system. 

The training processes required to implement the hybrid system of neural networks are 

proposed in section 5.3. These processes are demonstrated against samples taken when 

training against the Brodatz texture series. 

Section 5.4 concludes the hybrid developments with details on the operation of the 

hybrid architecture in an image processing environment. 

A summary of the proposals for the hybrid neural network system are presented in 

Section 5.5. 
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5.1 Introduction 

As seen in the previous chapter, the self-organising network exhibits the ability to be a 

powerful tool in the segmentation process of Images by organisIng data into clusters. 

Unfortunately due to its nature of having an unsupervised training process, the neurons 

in the output layer will never have the same properties when the network is re-trained. 

This is as a consequence of applying random values to the inter-connecting weights 

before the training process starts. For example, a neuron that could indicate the presence 

of trees within an image, might only fire when roads are detected if the network was to 

be re-trained. 

This can be seen graphically in Figure 5.1 and Figure 5.2. Figure 5.1 shows the output 

from the self-organising map when it was re-trained, Figure 5.2 shows a third re- 

training of the network. The same architecture and process was used to that which 

created the example in Figure 4.19. The same false grey scales were applied to the same 

neurons. However in this case it can be seen that the neurons now represent different 

aspects of texture within the image. 
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Figure 5.1 Artificial Output from SOM on Aerial Image 1, second training 

Figure 5.2 Artificial Output from SOM on Aerial Image 1, third training. 

I ferent textures within Even though the images can be seen to accurately represent the dif 

the image, there needs to be some supervised process applied to make sense of the data 

being created. 
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The process of classification of data that the self-organising map produces lends itself to 

that of the operation of the supervised back-propagation neural network. 

Training the self-organising map on distinct textures, the back-propagation network can 

use these textures to calculate its error terms and train against the output layer of the 

self-organising map. 
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5.2 System Architecture 

The hybrid neural network system is constructed from a self-organising neural network 

and a back-propagation neural network. The self-organising map traverses across 

images sampling pixel grey scale values from within them. This data is fed through the 

network to produce results upon the output layer. The data on its own is relatively 

meaningless unless it can be classified in some fashion. The back-propagation neural 

network does exactly this. Its sole purpose is to identify and classify the data being 

presented on the output layer of the self-organising map. The classification process may 

be to identify that a particular texture is present or to classify the types of texture within 

the image being sampled. 

The output of the self-organising map is an array of neurons whose output values 

represent the products of the inputs attached to them. At a given point in time these 

values may not accurately represent the activity on the output layer of the self- 

organising map. In reality the recent history of the activity of the output layer needs to 

be recorded to avoid a spurious glitches with false triggering of neurons. To achieve the 

mapping of the output layer's history of activity, a cumulative two-dimensional 

histogram is created to record the most active neurons when working on a sample taken 

from an image. 

The histogram transposes the self-organising map output layer activity data onto the 

input layer of the back-propagation network ready for classification. The self-organising 

map's output layerý inter-connecting histogram and the input layer of the back- 

propagation neural network all have the same dimensions. 
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The back-propagation network is constructed using three layers with the dimensions 

acquired through experimental data of speed versus accuracy. That is only enough 

neurons are allocated to complete the task in hand to keep the training times as low as 

possible. 

The hybrid neural network depicted in Figure 5.3 is designed to classify textures by 

activating one of its neurons in the output layer when a particular texture is encountered 

by the self-organising section. In this case ten different types of texture can be 

catalogued (ten neurons in the output layer). 

Blocks of 
Image Data 

(9 X9) 

Figure 5.3 Hybrid Neural Network System for Texture Analysis 

Texture 
Data out 

The dimensions of this architecture are derived through experimental analysis to 

determine the most computationally efficient with regards to accuracy. This is 

demonstrated in Section 6.2.2. 
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5.3 System Training 

The training of the hybrid neural network takes the form of three distinct and separate 

stages -- 

5.3.1 Self-Organising Map Training 

To train the self-organising map, test images must be first created for the input data. An 

image is created for every individual texture that is to be classified. Data is extracted 

from each image in turn via a mask that is run across the image on a pixel by pixel 

basis. All images considered in this investigation are monochrome bitmaps, having a 

grey scale range of 256 (0 to 255) levels. As the maximum operating range of input for 

a neuron does not exceed one, the pixel grey scale information is scaled down 

accordingly. The mask extracting data from the image has a one to one mapping on to 

the input layer of the self-organising map. Each time the mask is moved across the 

image the data is presented to the SOM and a winning neuron is found. Its weights are 

then adjusted accordingly along with its neighbours' weights. The mask is applied to 

each image in turn until all the images in the training set have been accessed, then the 

mask position is incremented by one pixel in the x plane, and then again all the images 

are processed. This is repeated until the mask reaches the end of the x axis, now the 

mask is shifted by one pixel in the y direction and the x direction count is reset. After 

the mask has scanned the entire image a training cycle has been completed. At this point 

the neighbourhood and learning rate can be reduced with another training cycle 

beginning or the training phase can be deemed to have been completed. 
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An important part of the training cycle is the learning rate; if the learning rate is too low 

the network does not converge properly, if it is too high the network runs the risk of 

falling into local minima [Anderson 1995]. 

Figure 5.5 shows different leaming rates self-organising map training on a Brodatz 

image D106 (Figure 5.4), a9 by 9 pixel input layer was run across a sample region of 

32 by 32 pixels for 10 cycles. 

Figure 5.4 D106 (Cheesecloth) 

The criteria for choosing a leaming rate was having an optimum curve with a steady 

descent of the slope, levelling out at a low error value. The lowest final error value in 

conjunction with a steady slope was deemed to be the best relationship to overcome the 

nsk of failing into local Minima. 

The learning rate shown is the initial learning rate at the start of the training process. 

Through experiments such as this on different images, it was found that the optimum 

curves were often obtained when the learning rate was in the region of 0.01. 
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Figure 5.5 Comparison of SOM Learning Rates 

The SOM error term (5-3.1) reflects the average error across all images in the training 

set. 

iLM 

error= -II 
Cdyk 

L 
k=l y=l 

(5.3.1) 

Where :-y is the index of the neuron in the output layer. 

M is the number of neurons in the output layer. 

k is the index of the image segment presented to the input layer. 

L is the total number of image segments presented to the network. 

( This is found from the total number of images multiplied by number of 

sample windows multiplied by the total number of input windows within 

the sample) 
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After training has taken place, the inter-connecting weights of all the neurons are saved 

and the histograms can be created. 

5.3.2 Histogram Creation 

The histograms are created in a similar fashion to the training of the self-organising 

map, the mask is run across an image and the most active neuron is found. However the 

weights are not updated, but an incremental count of the winning neurons is recorded in 

a cumulative two-dimensional histogram with the same dimensions as the output layer. 

After the histogram has been completed the data is normallsed to values between zero 

and one. A typical example can be seen in Figure 5.6, there are different regions of 

activity (hotspots) on the output layer with some very dominant neurons. 
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Figure 5.6 Histogram 1 for Brodatz Image D106 (Fig 4.4) 
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The activity in the output layer for a different image is considered by applying another 

Brodatz texture, Figure 5.7 D9 (Grass) 

Figure 5.7 D9 (Grass) 

The activity in the output layer when sampling Figure 5.7 can be seen to be more 

widespread, Figure 5.8. 
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Figure 5.8 Histogram for Brodatz Image D9 

As the inter-connecting histograms represent the activity on the output layer of the self- 

organising map, the sample size when creating these should be large enough to 

accurately represent the most active neurons. That is, if the sample region taken from 

the image to run the sampling mask over is too small, the histogram may not reflect the 

true activity of the output layer that would be otherwise seen in a larger image sample. 

The normal practice is to use the same image and size of sample that was used to train 

the network. e. g. if the sample image is 32 by 32 pixels then the sample region would be 

32 by 32 pixels. However this need not be the case and is discussed in section 6.2. 
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5.3.3 Back-Propagation Network Training 

The key part to this stage of training is to present the previously created histograms in 

the same order as the required outputs to create the correct error term to propagate back 

through this stage. Again there is a one to one mapping of the histogram onto the input 

layer of the back-propagation network as shown in Figure 5.9. 
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.................... 

Output Layer 
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Figure 5.9 BPNN stage 
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As each histogram is presented to the input layer the appropriate look up is applied at 

the output layer to find the wanted output to calculate the error terrn. 

As with self-organising map the learning rate influences the accuracy of the network, 

but this time there is also the momentum term to be taken into consideration. The 

following graphs explore the relationship between the learning rate and the momentum 

term to find the optimum training setting when training against the histogram created 

for Brodatz image D106. 

Figure 5.10 shows a learning rate of 0.01 to be inadequate with the network failing to 

train correctly. 
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As the momentum term increases to 0.25, a learning rate of 0.5 offers a steady curve 

that reduces to a small error quickly, Figure 5.11. 

Cycles 

Figure 5.11 BPNN Error, Momentum = 0.25 
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Figure 5.12 shows a steady descent to a low error with a combination of momentum set 

at 0.5 and a learning rate of around 0.1. 
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Figure 5.12 BPNN Error, Momentum = 0.5 
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With the larger momentum terms, the small rate of learning has its error forced down at 

a greater rate. However Figure 5.13 shows that if the momentum term is too large the 

initial error plunges too quickly with the nsk of falling into local minima. 
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Figure 5.13 BPNN Error, Momentum = 0.75 
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After the network has trained to an acceptable error all the interconnecting weights 

between the neurons are saved to disk. 

Another measure of the network error can be made when in a run time mode of 

operation. That is processing images that have not been part of the training set. Table 

5.1 shows the average error of the network when considering ten Brodatz images, D4, 

D6, D9, D21, D24, D57, D73, D86, D93 and D106 from Section 6.2. The error being 

the percentage of the wanted output minus the actual output. 100% indicates total failure 

and 0% indicates complete success. 
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Momentum Learning Rate 

0.01 0.1 0.5 

0.125 50.89 18.55 12.76 

0.25 44.26 13.32 10.94 

0.5 33.30 12.00 10.48 

0.75 23.23 15.33 15.92 

Table 5.1 Average Network Error for 10 Brodatz Images 

The data in Table 5.1 implies that high leaming rates give the best results, however the 

performance of the network can also be measured by the error of the test case with the 

weakest output. Table 5.2 shows the network error when processing image D73, which 

was identified as giving the worst perfonnance. 

Momentum Learning Rate 

0.01 0.1 0.5 

0.125 76.66 93.49 85.93 

0.25 71.20 75.01 81.45 

0.5 59.88 30.33 60.62 

0.75 77.43 86.60 95.10 

Table 5.2 Percentage Network Error Brodatz Image D73 
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To achieve the best accuracy for the weakest case, Table 5.2 shows a learning rate of 

0.1 used in conjunction with a momentum term of 0.5 gives the best results. This choice 

of parameters still gives an acceptable error for the ten Brodatz images (12.00) as shown 

in Table 5.1, even though a slightly lower error (10.48) could be achieved. However if 

the settings (learning rate of 0.5 and momentum 0.5) which gave this slightly lower 

average error (10.48 in Table 5.1) are used, then the error for the worst case (D73) 

increases significantly from 30.33 to 60.62 as seen in Table 5.2. 
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5.4 System Operation 

During the training phases of the neural networks, the interconnecting weights are 

continuously adjusted to provide the smallest possible error ten-n at each output layer. 

However in the run-time operation of the architecture, none of the weights are adjusted. 

Data from the image sample is propagated through both networks to produce a 

classification on the output layer of the back-propagation network. 

This takes the form of :- 

9 Run a mask across a sample region in the image, mapping grey scale data on to the 

input layer of the self-organising map, hence creating the histogram of activity at the 

output layer. (To increase the accuracy of the system the sample region is bigger 

than the sample mask, typically the mask may be 9 by 9 pixels, whereas the sample 

region could be 25 by 25 pixels). 

Apply the histogram to the input layer of the back-propagation network. 

* Monitor the output layer of back-propagation network for the neuron with the 

highest output, this neuron indicates which texture has been classified. 

An example of this process was illustrated by Arrowsmith et al [Arrowsmith et al 1999], 

where the hybrid architecture was applied as a pre-processor for Spatial Grey Level 

Dependence Matnces. A training and a run-time (testing) set of textures were created. 

To calculate the wanted output, the repetitive elements embedded with the textures were 

found by means of cross-correlation and manual inspection. This training set was used 

in the network set up resulting in a system that was capable of classifying similar 

textures. To test the performance of the architecture, the run-time set of images was 

used the network's input. 
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The key elements of system operation were as follows- 

0 The self-organising layer trained upon ten sample textures. 

* Each of the ten samples was then processed again to produce ten histograms of 

activity of the self-organising map's output layer. 

9 The ten histograms were then used as inputs to train the back-propagation neural 

network. They were applied in the same order as the wanted output being expressed 

at the output layer of the back-propagation network for the calculation of the error 

term. 

9 After training, all the interconnecting weights from both networks are saved to disk. 

* To analyse a texture, the mask feeding the input layer of the self-organising map is 

applied to a sample region of the image in question. 

9 As the mask traverses the sample, the activity upon the output layer is built up into 

the interconnecting histogram. 

o This histogram is applied to the input layer of the back-propagation neural network 

and the output of the network is calculated. 

e The most active neuron upon the output layer of the back-propagation neural 

network indicates the texture within the sample. 

Note: - When considering the Brodatz image set, only one histogram is required per 

texture. However when processing other types of textures such as the ones found in the 

aerial imagery in the next chapter, multiple histograms are required to represent a single 

texture label. 
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5.5 Summary 

The hybrid neural network takes the best elements of the back-propagation neural 

network and the self-organising map neural network to create a system with strong 

classification properties. These properties concentrate upon extracting meaning and 

understanding from the large data sets found in digital image processing environments. 

The proposed architecture and training cycles in this chapter are capable of classifying 

texture features in images. The training set is the key to successful operation. It needs to 

contain enough samples of the textures it is required to classify. If the training set is 

constructed appropriately, the hybrid neural network is capable of a range of image 

digital processing applications, as demonstrated in Chapter 6. 
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Chapter 6 Experimental Results 

The experimental results presented in this chapter aim to prove the versatility of the 

hybrid neural network when working in a digital image processing environment. 

Section 6.1 outlines some of decisions taken when determining the imagery used for 

producing the experimental results, and to justify the images chosen. 

The hybrid architecture is shown working as a classifier in Section 6.2, for which some 

sample imagery taken from the Brodatz series. 

Some tuning of the architecture is also explored in Section 6.3. 

Section 6.4 proposes another version of the hybrid neural network architecture capable 

of segmenting images. This section also evaluates the performance of hybrid neural 

network performance when segmenting real world images. A discussion of the 

performance of the hybrid architecture versus that of conventional spatial grey level 

dependence matrix feature generator classified by a back-propagation neural network is 

also provided. 

A resume of the achievements presented in this chapter is concluded in Section 6.5. 
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6.1 Introduction 

Since Haralick et al. [Haralick et al 1973] did his early work on texture analysis, the 

Brodatz series of textured images has been used a benchmark for researchers in the 

texture analysis field. Therefore their inclusion as images in the production of 

experimental data was deemed to be necessary. A hybrid neural network architecture, 

presented in Section 6.2.2, processes Brodatz images with the aim of classifying them 

based upon the periodic structures embedded within them. 

However the main element of the work provided in this thesis is the hybrid neural 

network working upon real world images. The hybrid architecture is applied to real 

world images with the aim of deriving meaning from them via a segmentation process. 

In the work presented here, the real world images are taken from an aerial photographic 

mapping survey. The hybrid architecture is applied to them with the aim of identifying 

textures similar to those in its training set. 

The same real world images also have spatial grey level dependence matrices applied to 

them which are in turn classified by a back-propagation neural network with the aim of 

producing a critical comparison of the two methodologies. 
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6.2 Brodatz Series of Texture Images 

6.2.1 Training Images 

Ten samples were identified in the Brodatz album [Brodatz 19661 that contained a wide 

variety of texture types. 

The original Brodatz image series were labelled DI to D 112. To retain consistency the 

D label and number has been retained in this document. Each image is monochrome 

with the dimensions of 64 by 64 pixels using 256 grey scales and histogram equalised 

using the process from section 1.1. 

Samples of the images used follow: - 

e D4 (Pressed Cork), Figure 6.1 

e D6 (Woven Aluminium), Figure 6.2 

do D9 (Grass Lawn), Figure 6.3 

o D21 (French Canvas), Figure 6.4 

* D24 (Pressed Calf Leather), Figure 6.5 

do D57 (Handmade Paper), Figure 6.6 

9 D73 (Soap Bubbles), Figure 6.7 

9 D86 (Ceiling Tile), Figure 6.8 

0 D93 (Fur), Figure 6.9 

0 D106 (Cheesecloth), Figure 6.10 
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Figure 6.1 D4 (Pressed Cork) 

Figure 6.2 D6 (Woven Aluminium) 
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Figure 6.3 D9 (Grass Lawn) 

Figure 6.4 D21 (French Canvas) 
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Figure 6.5 D24 (Pressed Calf Leather) 

Figure 6.6 D57 (Handmade Paper) 
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Figure 6.7 D73 (Soap Bubbles) 

Figure 6.8 D86 (Ceiling Tile) 
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Figure 6.9 D93 (Fur) 

Figure (Cheesecloth) 
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6.2.2 Hybrid Network Architecture and Training 

The Hybrid Neural Network dimensions were acquired through a process of 

experimental tests upon the Brodatz images with different hybrid network sizes. The 

optimum size is being the smallest architecture offering the highest accuracy. The 

smallest architecture is desirable to give quick processing times when implemented in 

software. 

The parameters can be seen in below. 

i) SOM Input Layer 3 by 3 neurons. 

SOM Output Layer 2 by 2 neurons. 

BPNN Input Layer 2 by 2 neurons. 

BPNN Middle Layer 1 neuron. 

ii) SOM Input Layer 5 by 5 neurons. 

SOM Output Layer 2 by 2 neurons. 

BPNN Input Layer 2 by 2 neurons. 

BPNN Nfiddle Layer I neuron. 

ill) SOM Input Layer 5 by 5 neurons. 

SOM Output Layer 3 by 3 neurons. 

BPNN Input Layer 3 by 3 neurons. 

BPNN Middle Layer I neuron. 

iv) SOM Input Layer 7 by 7 neurons. 

SOM Output Layer 3 by 3 neurons. 

BPNN Input Layer 3 by 3 neurons. 

BPNN Middle Layer 2 by 2 neurons. 
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V) SOM Input Layer 7 by 7 neurons. 

SOM Output Layer 5 by 5 neurons. 

BPNN Input Layer 5 by 5 neurons. 

BPNN Middle Layer 3 by 3 neurons. 

vi) SOM Input Layer 9 by 9 neurons. 

SOM Output Layer 5 by 5 neurons. 

BPNN Input Layer 5 by 5 neurons. 

BPNN Middle Layer 3 by 3 neurons. 

The BPNN Output layer was always ten neurons to represent the ten different images. 

iii iv v vi 

D4 V/ 

D6 x 

D9 x x V/ V/ 

D21 x x V/ V/ V/ 

D24 x x V/ 

D57 x x V/ 

D73 x x V/ v V/ 

D86 X X V/ V/ 

D93 x x I/ V/ 

D106 x x VII, V/ 

Table 6.1 Experimental hybrid network sizes 

Where: - vI indicates correct classification. 

x indicates incorrect classification. 
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The optimum hybrid network uses the dimensions of :- 

9 Self-organising map input layer 9 by 9 neurons 

9 Self-organising map output layer 5 by 5 neurons 

* Back-propagation network input layer 5 by 5 neurons 

* Back-propagation network middle layer 3 by 3 neurons 

e Back-propagation network output layer 10 by I neurons 

For each sample two images were created, one for use in the training of the system and 

the other to test the performance of the system. Both images were created by sampling 

the original Brodatz image at two different and distinct positions. 
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6.2.3 System Performance 

Table 6.2 shows the output from the hybrid neural network when tralned upon the 

Brodatz images listed previously, Figure 6.1through to Figure 6.10. Each row contains 

the output of the ten neurons in the output layer of the back-propagation neural network. 

Image 1 2 3 

Neuron 

4 

Number 

5 

(I - 10) 

6 7 8 9 10 

D 106 0.0051 0.0000 0.0111 0.0126 0.0076 0.0154 0.0000 0.0000 0.0058 0.9678 

D93 0.0252 0.0007 0.0021 0.0265 0.0008 0.0034 0.0415 0.0000 0.9513 0.0018 

D4 0.0002 0.0275 0.0203 0.0000 0.0193 0.0220 0.0269 0.9591 0.0000 0.0015 

D73 0.0015 0.0258 0.0003 0.0003 0.0050 0.0285 0.9427 0.0052 0.0413 0.0002 

D24 0.0007 0.0018 0.0000 0.0001 0.0015 0.9662 0.0219 0.0235 0.0004 0.0255 

D21 0.0181 0.0012 0.0167 0.0009 0.9726 0.0003 0.0000 0.0034 0.0000 0.0103 

D86 0.014 0.0200 0.0118 0.9697 0.0018 0.0000 0.0000 0.0000 0.0177 0.0172 

D57 0.0002 0.0194 0.9699 0.0162 0.0095 0.0000 0.0000 0.0079 0.0002 0.0105 

D9 0.0000 0.9577 0.0171 0.0065 0.0094 0.0001 0.0214 0.0276 0.0000 0.0001 

D6 0.9679 0.0000 0.0014 0.0088 0.0183 0.0039 0.0001 0.001 0.0218 0.0106 

Table 6.2 Hybrid Output from the Brodatz Training Set 
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Figure 6.11 gives a pictorial view of the activity of the neurons on the output layer. 

neuron that fires with a value close to one indicates a classified texture. 
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Figure 6.11 Hybrid Output from the Brodatz Training Set 
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A run-time set of images was constructed to test the performance of the hybrid 

architecture. These images contain the same type of texture to that of those used In the 

training phase, however they contain completely different pixels. When the run-time set 

of images are applied to the system, the following results are displayed in Table 6.3. 

Images 1 2 3 

Neuron 

4 

Number 

5 

(1-10) 

6 7 8 9 10 

D106 0.0026 0.0000 0.0197 0.0163 0.0024 0.0178 0.0000 0.0000 0.0767 0.9656 

D93 0.0332 0.0012 0.0094 0.0769 0.0009 0.0006 0.0222 0.0000 0.9704 0.0013 

D4 0.0000 0.3433 0.0953 0.0003 0.0201 0.0022 0.0290 0.9307 0.0000 0.0010 

D73 0.0009 0.0220 0.0000 0.0002 0.0045 0.0931 0.9092 0.0027 0.0217 0.0004 

D24 0.0026 0.0017 0.0000 0.0001 0.0017 0.9645 0.3930 0.0097 0.0069 0.0152 

D21 0.017 0.0012 0.0170 0.0008 0.9724 0.0003 0.0000 0.0034 0.0000 0.0096 

D86 0.0188 0.0184 0.0090 0.9793 0.0019 0.0000 0.0000 0.0000 0.0276 0.0266 

D57 0.0000 0.1991 0.9365 0.0069 0.0391 0.0000 0.0001 0.0328 0.0000 0.0074 

D9 0.0000 0.9224 0.0052 0.0051 0.0058 0.0002 0.0552 0.0162 0.0000 0.0000 

D6 0.9679 0.0000 0.0013 0.0088 0.0183 0.0039 0.0001 0.0016 0.0218 0.0106 

Table 6.3 Hybrid output from the Brodatz run-time set 
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The pictorial information presented In Figure 6.12 hjighfights the fact that although there 

is more 'background noise' from all the neurons, there are still strong outputs available 

for texture classification. 
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Figure 6.12 Hybrid output from the Brodatz run-time set 

The additional noise that is presented when working on the run-time images is not 

considered to be a problem. By searching through all the neurons' output values, the 

neuron with the highest value indicates which texture has been sampled. 
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Although the test images are 64 by 64 pixels in size, the sample does not have to be of 

the same size. Using the same system architecture from section 6.2 the following results 

in Table 6.4 were achieved using the same run-time set of ten images using variable 

sample sizes. The columns show the sample size and the rows represent the Brodatz 

image titles. 

lox 10 15 x 15 20 x 20 25 x 25 

D4 VII V/ V/ V/ 
D6 V/ V/ V/ V/ 

D9 V/ 

D21 V/ 
D24 V/ V/ V/ 

D57 V/ 

D73 V/ 

D86 V/ 

D93 V/ 

D106 V/ 

Table 6.4 Sample Size vs. Accuracy 

Where: - V indicates correct classification. X indicates incorrect classification. 

Small samples are adequate for textures which are strongly ordered with a periodicity 

covering a small number of pixels such as Figure 6.4 D21 (French Canvas). However to 

encompass all the textures in the training / run-time set a large general-purpose sample 

region must be used. This is of the order of 25 by 25 pixels. 

Note: - The sample size is the region that the mask feeding the input layer of the self- 

organising map traverses, it is not the size of the mask. 
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6.2.4 Comparison of Hybrid Architecture Against a "Glue Less" Interface 

The accuracy of the histograms of the hybrid architecture can be seen when comparing 

the results from section 6.2.3 to the same neural network architecture but without the 

histogram interface. In this case the interface between the Self-organising map and the 

Back-propagation network could be said to be "glue less". The training of the network 

is the same as the hybrid network with regards to the self-organising layer, all images 

are trained upon and the interconnecting weights are saved after the training phase is 

complete. However instead of re-applying the self-organising network to the images to 

generate the interconnecting histograms, its output is used to directly feed the input 

layer of the back-propagation network for its training phase. This training process takes 

the form of running of the self-organising network across all the images in the training 

set applying the self-organising output layer to the input layer of the back-propagation 

network. 

Using exactly the same suite of images used in training the hybrid network, the "glue 

less" network was trained as described above to give the results presented in Table 6.5. 
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Image 1 2 3 

Neuron 

4 

Number 

5 

(1-10) 

6 7 8 9 10 

D 106 0. )000 0.2194 0.0224 0.0299 0.0003 0.0431 0.0048 0.1270 0.032 0.0915 

D93 0.0000 0.0017 0.0000 0.0000 0.0000 0.0019 0.2048 0.0440 0.8251 0.0000 

D4 0.0000 0.1613 0.0204 0.0231 0.0003 0.0404 0.0343 0.1546 0.2176 0.0169 

D73 0.0000 0.0187 0.0003 0.0176 0.0000 0.0076 0.3427 0.0582 0.5733 0.0003 

D24 0.0000 0.0543 0.0007 0.0019 0.0000 0.1532 0.0428 0.1353 0.2235 0.0065 

D21 0.0331 0.0138 0.0004 0.0017 0.9564 0.0002 0.0000 0.0007 0.0008 0.0000 

D86 0.0011 0.0940 0.0101 0.6954 0.0023 0.0064 0.0351 0.0000 0.0012 0.0052 

D57 0.0002 0.3161 0.1650 0.0442 0.0139 0.0071 0.0000 0.0865 0.0093 0.0185 

D9 0.0000 0.1822 0.0354 0.0206 0.0024 0.0568 0.0233 0.1475 0.1425 0.0152 

D6 0.9866 0.0386 0.0008 0.0055 0.0106 0.0009 0.0000 0.0066 0.0208 0.0000 

Table 6.5 "Glue Less" Network Training Results 

The boxes highlighted indicate which neuron should be the highest firing for each 

individual texture in the training set. Values in bold type indicate the highest neuron 

output for that particular image under test. There is a 50% failure in the training phase 

with the network failing to produce a distinct neuron for textures D106, D4, D73, D24 

and D57. 

A graphical representation of this data presented in Figure 6.13. 
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Figure 6.13 "Glue Less" Network Training Results 
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Unlike the training phase of the hybrid architecture there is considerably more noise in 

the neurons output. Only textures D93, D21 and D6 have near maximum (1.0) neuron 

outputs. 

Applying the run time set of images used previously with the hybrid architecture gives 

the results in Table 6.6. 
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Image 1 2 3 

Neuron 

4 

Number 

5 

(1-10) 

6 7 8 9 10 

D 106 0.0000 0.1787 0.0136 0.0245 0.0002 0.0750 0.0102 0.1188 0.0473 0.0885 

D93 0.0000 0.0165 0.0005 0.0018 0.0000 0.0045 0.1952 0.0537 0.7383 0.0003 

D4 0.0000 0.1517 0.0145 0.0235 0.0002 0.0420 0.0374 0.1561 0.2546 0.0156 

D73 0.0000 0.0348 0.0082 0.0375 0.0020 0.0062 0.2822 0.0578 0.5721 0.0047 

D24 0.0000 0.0410 0.0005 0.0015 0.0001 0.1660 0.0453 0.1110 0.1967 0.0112 

D21 0.0408 0.0122 0.0002 0.0019 0.9468 0.0002 0.0000 0.0006 0.0007 0.0000 

D86 0.0057 0.0822 0.0274 0.7151 0.0115 0.0019 0.0024 0.0324 0.0136 0.0035 

D57 0.0000 0.3084 0.0659 0.0704 0.0019 0.0141 0.0006 0.1326 0.0096 0.0215 

D9 0.0000 0.1669 0.0308 0.0190 0.0030 0.0658 0.0288 0.1350 0.1479 0.0210 

D6 0.9837 0.0383 0.0008 0.0055 0.0129 0.0009 0.0000 0.0065 0.0205 0.0000 

Table 6.6 "Glue Less" Network Run Time Results 

Again the highlighted neuron outputs indicate which neurons should represent each 

individual texture. As with the training data there is a 50% failure in identification of 

the appropriate texture. 

Figure 6.14 shows a large amount of noise generated by the network when the run time 

set of images are presented to the "glue less" network. 
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Figure 6.14 "Glue Less" Network Run Time Results 

6.2.5 Vulnerability of the training process. 

The accuracy of the hybrid neural network is directly related to the quality of the images 

in its training set. This is borne out of the next two examples. If the textures are rotated 

through forty five and ninety degrees the failure rate increases to thirty and sixty percent 

respectively as shown in Table 6.7 and Table 6.8. To overcome these failures extra 

images would have to be added to the training set that typically would represent all 

types of image that may be encountered when running. 
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Image 1 2 3 

Neuron 

4 

Number 

5 

(1-10) 

6 7 8 9 10 

D 106 0.0038 0.0213 0.3930 0.7670 0.0064 0.0001 0.0165 0.0004 0.0024 0.0091 

D93 0.0163 0.0019 0.0001 0.0366 0.0159 0.0014 0.0118 0.0000 0.9790 0.0148 

D4 0.0145 0.0205 0.0429 0.0000 0.0187 0.0040 0.0039 0.9601 0.0000 0.004 

D73 0.0032 0.0113 0.0001 0.0054 0.0009 0.0099 0.5659 0.0001 0.3867 0.0023 

D24 0.0060 0.0109 0.0001 0.0024 0.0009 0.0295 0.8557 0.0003 0.1284 0.0016 

D21 0.4798 0.0001 0.0036 0.0046 0.2970 0.0003 0.0008 0.0037 0.0125 0.0081 

D86 0.0025 0.0183 0.0232 0.9669 0.0102 0.0001 0.0080 0.0001 0.0064 0.0107 

D57 0.0046 0.0094 0.8607 0.2918 0.0058 0.0000 0.0163 0.0023 0.0009 0.0122 

D9 0.0005 0.7299 0.0886 0.0568 0.0028 0.0009 0.0256 0.0038 0.0005 0.0006 

D6 0.5687 0.0001 0.0038 0.0017 0.1931 0.0015 0.0008 0.0095 0.0132 0.0201 

Table 6.7 Hybrid output when run time images are rotated 45 degrees. 

Image 1 2 3 

Neuron 

4 

Number 

5 

(I - 10) 

6 7 8 9 10 

D106 0.0051 0.0745 0.0086 0.6115 0.0009 0.0012 0.1093 0.0000 0.0772 0.0029 

D93 0.0202 0.0013 0.0001 0.0564 0.0151 0.0016 0.0081 0.0000 0.9747 0.0219 

D4 0.0015 0.2724 0.0545 0.0004 0.0097 0.0004 0.0080 0.2682 0.0000 0.0004 

D73 0.0022 0.0398 0.0002 0.0027 0.0006 0.0148 0.8008 0.0002 0.0888 0.0010 

D24 0.0025 0.0206 0.0001 0.0021 0.0014 0.0165 0.5546 0.0001 0.3569 0.0024 

D21 0.0065 0.0000 0.0015 0.0288 0.0252 0.0077 0.0000 0.0043 0.0084 0.9737 

D86 0.0025 0.0127 0.0222 0.9509 0.0119 0.0001 0.0080 0.0001 0.0052 0.0122 

D57 0.0033 0.0182 0.6268 0.5268 0.0061 0.0000 0.0151 0.0010 0.0014 0.0095 

D9 0.0029 0.0271 0.0002 0.0009 0.0003 0.0870 0.6512 0.0007 0.0152 0.0010 

D6 0.1487 0.0002 0.0030 0.0107 0.4769 0.0003 0.0006 0.0039 0.0167 0.0201 

Table 6.8 Hybrid output when run time images are rotated 90 degrees. 
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Another possible failure is the encountering of textures that have not been part of the 

network's training set. Five new textures to the training set were applied: D1 I (Home 

spun wool cloth), D38 (Water), D49 (Straw Screening), D67 (Plastic Pellets) and D102 

(Cane, shadow graph). 

Figure 6.15 DII Home spun wool cloth 

Figure 6.16 D38 Water 
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Figure 6.17 D49 Straw Screening 

Figure 6.18 D67 Plastic Pellets 
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Figure 6.19 D102 Cane Shadow Graph 

The network's output is recorded in Table 6.9. There are two strong outputs against 

unknown textures. The neurons that gave the high outputs were responsible for 

classifying textures with similar grey scales in them. Neuron nine classified D93 (Fur) 

originally a dark image with little contrast, whereas neuron five classified D21 (French 

Canvas) a high contrast image. 

Image 1 2 3 

Neuron 

4 

Number 

5 

(1-10) 

6 7 8 9 10 

DII 0.0014 0.0335 0.0001 0.3862 0.0800 0.0000 0.0996 0.0001 0.3388 0.0119 

D38 0.0074 0.0001 0.0000 0.0071 0.0117 0.0932 0.0323 0.0002 0.8334 0.0121 

D49 0.0073 0.2147 0.0049 0.0038 0.0001 0.0238 0.0207 0.0003 0.0339 0.0018 

D67 0.0010 0.0194 0.0048 0.0812 0.0085 0.0000 0.0007 0.0004 0.0008 0.0045 

D102 0.0497 0.0015 0.0002 0.0204 0.6290 0.0000 0.0000 0.0009 0.0014 0.0005 

Table 6.9 System Peformance for Unknown Textures 
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6.3 Variations of the Hybrid Neural Network Architecture 

Some variations of the hybrid neural network architecture presented here to explore the 

resolving power of the two-dimensional network. 

6.3.1 Flat Self-Organising Network Input Layer 

The input layer of the self-organising network was made to be one-dimensional, the 

ability of the architecture to classify the textures is shown in Table 6.10 and Figure 

6.20. The architecture is similar to that as presented before but the input layer to the 

self-organising neural network is flat and is nine neurons wide. This is the smallest 

dimension that results in all the images in the training set being classified by the back- 

propagation neural network. 

Image 1 2 3 

Neuron 

4 

Number 

5 

(1-10) 

6 7 8 9 10 

D106 0.0006 0.0184 0.0010 0.0057 0.0000 0.0268 0.0001 0.0192 0.0002 0.9655 

D93 0.0004 0.0001 0.1353 0.0170 0.0076 0.0002 0.0109 0.0114 0.5533 0.0004 

D4 0.0052 0.0000 0.014 0.0024 0.0000 0.0001 0.0262 0.9013 0.0556 0.0044 

D73 0.0146 0.0000 0.0019 0.0142 0.0000 0.0128 0.9028 0.2154 0.0319 0.0002 

D24 0.0112 0.0062 0.0000 0.0007 0.0000 0.9235 0.0156 0.0027 0.0039 0.0730 

D21 0.0045 0.0287 0.0414 0.0332 0.8140 0.0005 0.0014 0.0005 0.0104 0.0007 

D86 0.0001 0.0607 0.0473 0.8693 0.0161 0.0004 0.0039 0.0005 0.0013 0.0130 

D57 0.0003 0.0001 0.6596 0.0159 0.0222 0.0000 0.0162 0.0046 0.1703 0.0004 

D9 0.0045 0.9476 0.0011 0.0476 0.0077 0.0219 0.0008 0.0001 0.0003 0.0210 

D6 0.9573 0.0287 0.0000 0.0000 0.0182 0.0249 0.0043 0.0077 0.0007 0.0001 

Table 6.10 Flat SOM Input Layer (9 Neurons Wide) 
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Figure 6.20 Flat SOM Input Layer (9 Neurons Wide) 

The flat input layer to the self-organising map is capable of producing data that results 

in successful classification of all the images albeit with a lesser accuracy to that of a two 

dimensional network upon certain textures that contain stochastic or weakly ordered 

attnbutes. 
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Interestingly if the flat input layer is made wider to try and increase the performance of 

the system the accuracy is actually reduced. Table 6.11 shows the results when the input 

layer to be doubled in size to be eighteen neurons wide. 

Image 1 2 3 

Neuron 

4 

Number 

5 

(1-10) 

6 7 8 9 10 

D106 0.0130 0.0196 0.0173 0.0000 0.0092 0.0287 0.0001 0.0005 0.0000 0.9638 

D93 0.0002 0.0000 0.0470 0.0098 0.0845 0.0056 0.0031 0.0221 0.9418 0.0000 

D4 0.0031 0.0001 0.0079 0.0014 0.0000 0.0032 0.0717 0.3152 0.0651 0.0000 

D73 0.0025 0.0750 0.0000 0.0039 0.0000 0.0084 0.8507 0.1751 0.0837 0.0000 

D24 0.0087 0.0002 0.0126 0.0000 0.0001 0.9526 0.0107 0.0139 0.0001 0.0483 

D21 0.0001 0.2810 0.0027 0.0095 0.9204 0.0000 0.0002 0.0082 0.0067 0.0265 

D86 0.0032 0.0351 0.0014 0.5768 0.1406 0.0000 0.0051 0.0016 0.0385 0.0017 

D57 0.1214 0.0000 0.6470 0.4560 0.0088 0.0011 0.0049 0.0023 0.0961 0.0015 

D9 0.0002 0.9886 0.0000 0.0050 0.0241 0.0000 0.0190 0.0102 0.0001 0.0251 

D6 0.9745 0.0000 0.7801 0.4072 0.0001 0.0036 0.0067 0.0002 0.0004 0.0392 

Table 6.11 Flat SOM Input Layer (18 Neurons Wide) 

Again it is the textures that contain stochastic or weakly ordered attributes that cause 

problems for the network. There is a general increase in background noise in the 

classification of the textures, as seen in Figure 6.21. The number of neurons in the input 

layer of the self-organising map is not the key to accurate classification, but the 

dimensions of the input layer is seen to be more important. 
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Figure 6.21 Flat SOM Input Layer (18 Neurons Wide) 

6.3.2 Flat Self-Organising Network Output Layer 

As well as a flat input layer, other investigations exarmned the effects of a flat output 

layer for the self-organising map. If this layer is changed then the histogram dimensions 

and the input layer to the self-organising map must also be changed. 
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The experimental network had the following dimensions: - 

" Self-organising map input layer 9 by 9 neurons 

" Self-organising map output layer 20 by I neurons 

9 Back-propagation network input layer 20 by I neurons 

9 Back-propagation network middle layer 3 by 3 neurons 

* Back-propagation network output layer 10 by I neurons 

The dimensions of the output layer was made to be twenty neurons wide to allow a 

similar number of neurons to the original architecture. The classification from this 

network is presented in Table 6.12. 

Image 1 2 3 

Neuron 

4 

Number 

5 

(1-10) 

6 7 8 9 10 

D106 0.0183 0.0199 0.0000 0.0015 0.0002 0.0224 0.0130 0.0156 0.0000 0.9679 

D93 0.0092 0.0000 0.0580 0.0533 0.0001 0.0005 0.0017 0.0088 0.7479 0.0000 

D4 0.0002 0.0000 0.0044 0.0400 0.0000 0.0047 0.0157 0.9674 0.0712 0.0005 

D73 0.0022 0.0002 0.0002 0.0000 0.0000 0.0164 0.9704 0.0083 0.0027 0.0388 

D24 0.0080 0.0000 0.0095 0.0000 0.0107 0.9695 0.0032 0.0132 0.0000 0.0214 

D21 0.0083 0.1354 0.0112 0.0003 0.9767 0.0082 0.0015 0.0000 0.0002 0.0001 

D86 0.0147 0.0068 0.0258 0.1706 0.0448 0.0004 0.0003 0.0005 0.0081 0.0001 

D57 0.0064 0.0000 0.5563 0.1113 0.0008 0.0021 0.0009 0.0088 0.1835 0.0000 

D9 0.0068 0.9615 0.0000 0.0493 0.0114 0.0000 0.0219 0.0002 0.0016 0.0388 

D6 0.9709 0.0004 0.0007 0.0030 0.0145 0.0031 0.0032 0.0000 0.0076 0.0157 

Table 6.12 Flat SOM Output Layer (20 Neurons wide) 

Increasing or decreasing this number had negligible performance on the network until 

very low values are used such as ten neurons. At this point the system fails to classify 

all the textures staring with the stochastic or weakly ordered textures. 
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6.3.3 Adjustments to the Self-Organising Maps Training Process 

Apart from the box distance measure between neurons employed in section 4.4-1, other 

distance metrics can be employed such as Euclidean and City Block distance measures. 

The Euclidean distance metric D calculates the distance between two neurons (xj, y, ) 

and 
(X2, 

Y2) from equation (6.3.3.1). 

D- 
V(X2 

_ XI 
)2 + (Y2 

_ YI 
)2 

(6.3.3.1) 

Figure 6.22 shows several distances to neighbouring neurons calculated from the 

equation above assuming the centre neuron is the winning neuron. 

DI=1.0 
0 0 0 0 0 

D2=1.4 0 0 0 0 0 

D3=2.0 
D3 DI 

0 

D4=2.2 D4 D2 

D5=2.8 

00 

D5 
00000 

Figure 6.22 Euclidean Neighbourhood 
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The City Block distance metnc provides a computationally very simple distance 

measure. This metric assumes that only possible to 'travel' between neurons along 

gild lines and diagonal moves are not allowed. With only straight lines used this 

measure sometimes also called the Manhattan or Taxi Driver metric. Figure 6.23 shows 

paths taken by this metric to three neurons, again assuming the centre neuron to be the 

winner. Only one step is need to get to neuron A, however two steps via an intermediate 

neuron are required to get to neuron B. Neuron C lies four steps away. 

0 000 
C 

0 00 

0 
A0 

0 0B0 

0 0000 

Figure 6.23 City Block Neighbourhood 

The results presented in the following ten tables show the performance of the three 

distance metrics Box, Euclidean and City Block when operating upon the ten Brodatz 

images from section 6.2. Each distance measure was used in both training and run time 

operation with the same training parameters identified in section 6.2.2. The highest 

outputs are highlighted in bold text to indicate the best perfon-ning metnc for the 

particular texture being sampled. 
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Neuron Number (I - 10) 

Metric 1 2 3 4 5 6 7 8 9 10 

Box 0.0026 0.0000 0.0197 0.0163 0.0024 0.0178 0.0000 0.0000 0.0767 0.9656 

Euclid. 0.0105 0.0103 0.0004 0.0089 0.0030 0.0069 0.0051 0.0087 0.0000 0.9781 

City B. 0.0083 0.0104 0.0002 0.0000 0.0056 0.0081 0.0081 0.0014 0.0001 0.9791 

Table 6.13 SOM metric comparison for D106 

Neuron Number (I - 10) 

Metric 1 2 3 4 5 6 7 8 9 10 

Box 0.0332 0.0012 0.0094 0.0769 0.0009 0.0006 0.0222 0.0000 0.9704 0.0013 

Euclid. 0.0001 0.0000 0.0178 0.0631 0.0013 0.0004 0.0032 0.0038 0.9707 0.0002 

City B. 0.0002 0.0001 0.0093 0.0686 0.0011 0.0002 0.0055 0.0027 0.7417 0.0013 

Table 6.14 SOM metric comparison for D93 

Neuron Number (1-10) 

Metric 1 2 3 4 5 6 7 8 9 10 

Box 0.0000 0.3433 0.0953 0.0003 0.0201 0.0022 0.0290 0.9307 0.0000 0.0010 

Euclid. 0.0013 0.0000 0.0649 0.0032 0.0000 0.0127 0.0080 0.9855 0.0265 0.0126 

City B. 0.0016 0.0000 0.0197 0.0001 0.0000 0.0051 0.0063 0.9671 0.0170 0.0020 

Table 6.15 SOM metric comparison for D4 

Neuron Number (1-10) 

Metric 1 2 3 4 5 6 7 8 9 10 

Box 0.0009 0.0220 0.0000 0.0002 0.0045 0.0931 0.9092 0.0027 0.0217 0.0004 

Euclid. 0.0082 0.0131 0.0000 0.0000 0.0000 0.0130 0.9881 0.0099 0.0093 0.0100 

City B. 0.0002 0.0002 0.0002 0.0058 0.0001 0.0130 0.9788 0.0149 0.0087 0.0158 

Table 6.16 SOM metric comparison for D73 
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Neuron Number (1-10) 

Metric 1 2 3 4 5 6 7 8 9 10 

Box 0.0026 0.0017 0.0000 0.0001 0.0017 0.9645 0.3930 0.0097 0.0069 0.0152 

Euclid. 0.0058 0.0116 0.0041 0.0000 0.0002 0.9748 0.0077 0.0125 0.0002 0.0050 

City B- 0.0104 0.0060 0.0081 0.0000 0.0001 0.9751 0.0032 0.0100 0.0000 0.0063 

Table 6.17 SOM metric comparison for D24 

Neuron Number (1-10) 

Metric 1 2 3 4 5 6 7 8 9 10 

Box 0.0170 0.0012 0.0170 0.0008 0.9724 0.0003 0.0000 0.0034 0.0000 0.0096 

Euclid. 0.0072 0.0022 0.0077 0.0381 0.9697 0.0010 0.0001 0.0000 0.0025 0.0052 

City B. 0.0070 0.0024 0.0020 0.2020 0.9655 0.0032 0.0043 0.0000 0.0001 0.0070 

Table 6.18 SOM metric comparison for D21 

Neuron Number (I - 10) 

Metric 1 2 3 4 5 6 7 8 9 10 

Box 0.0188 0.0184 0.0090 0.9793 0.0019 0.0000 0.0000 0.0000 0.0276 0.0266 

Euclid. 0.0018 0.0183 0.0001 0.7167 0.0519 0.0001 0.0002 0.0000 0.0041 0.0046 

City B. 0.0002 0.0176 0.0001 0.9606 0.0315 0.0020 0.0232 0.0001 0.0190 0.0003 

Table 6.19 SOM metric comparison for D86 

Neuron Number (1-10) 

Metric 1 2 3 4 5 6 7 8 9 10 

Box 0.0000 0.1991 0.9365 0.0069 0.0391 0.0000 0.0001 0.0328 0.0000 0.0074 

Euclid. 0.0067 0.0000 0.8719 0.0859 0.0008 0.0046 0.0010 0.2104 0.5097 0.0012 

City B. 0.0020 0.0000 0.9537 0.0006 0.0027 0.0017 0.0002 0.0489 0.3249 0.0046 

Table 6.20 SOM metric comparison for D57 
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Neuron Number (1-10) 

Metric 1 2 3 4 5 6 7 8 9 10 

Box 0.0000 0.9224 0.0052 0.0051 0.0058 0.0002 0.0552 0.0162 0.0000 0.0000 

Euclid. 0.0081 0.9623 0.0000 0.0436 0.0041 0.0114 0.0782 0.0000 0.0029 0.0378 

City B. 0.0121 0.9757 0.0000 0.0279 0.0016 0.0210 0.0086 0.0001 0.0008 0.0122 

Table 6.21 SOM metric comparison for D9 

Neuron Number (1-10) 

Metric 1 2 3 4 5 6 7 8 9 10 

Box 0.9679 0.0000 0.0013 0.0088 0.0183 0.0039 0.0001 0.0016 0.0218 0.0106 

Euclid. 0.9903 0.1701 0.0008 0.0032 0.0049 0.0196 0.0041 0.0005 0.0000 0.0064 

City B. 0.9692 0.1275 0.0001 0.0000 0.0027 0.0061 0.0001 0.0034 0.0000 0.0044 

Table 6.22 SOM metric comparison for D6 

All three metrics provide accurate data to the back-propagation classifier section to 

enable one hundred percent classification of the ten Brodatz textures. In this application 

the choice of distance metric does not impact significantly on the accuracy of the 

system. 
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6.4 Real World Images 

6.4.1 Training Images 

To evaluate the hybrid neural network architecture against real world problems, some 

images from the aerial photographic survey [USB 1994] of the campus and surrounding 

neighbourhood of University of Santa Barbara were used to construct a data set for 

testing purposes. Again all images are histogram equalised. 

When applying the hybrid network to real world images, certain flaws in the training 

philosophy became immediately apparent that were not evident when using the Brodatz 

data set. The Brodatz images are essentially artificial textures as they have moderately 

the same characteristics across the image. 

Consider the aenal image Figure 6.24 explored earlier in Section 3.2. Again if the 

segmentation of the trees is desired, then a single example of a tree would not suffice. 

Closer examination of the trees within the image shows a wide variation of foliage 

density and a broader range of grey scales used. 

Figure 6.24 Aerial Image I 

4 
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When considering the other elements within the image such as roads and buildings, 

there can not be a generic sample for each type of texture as used in the Brodatz 

expenments. 

The training set had to be expanded to encompass a broad range of textures that would 

have to be processed when segmenting desired features out of aerial images. Again the 

image in the training set would be sampled from different images to those used In the 

testing of the hybrid architecture. 

Four labels were defined to the samples created: - 

9 Tree: these samples would contain a wide variety of trees and bushes. 

9 Road: wide range of samples containing anything automotive such as cars, 

highways, freeways and car parks. 

9 Building: from residential to commercial properties. 

* Grass: covers sports fields, gardens and wasteland. 

6.4.2 Hybrid Architecture and Training 

The architecture and operation of the hybrid architecture were also changed to optimise 

the performance of the system. Altering the output layer of the back-propagation neural 

network to contain just two neurons, changed the system to act as a binary classifier, 

that is it would be trained to look for just one type of texture. The interconnecting 

weights of the neurons would now be developed for specialist texture classification. 

That is a set of weights would be created for each texture to be classified. If a different 

texture is to be processed, then a new set of weights would be loaded and used. 
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When sampling an image for a texture, neuron I would fire if the target texture has been 

identified, otherwise neuron 2 would fire indicating an unwanted texture has been 

identified. No threshold boundary is applied to the neurons' output, the neuron with the 

highest output indicates the detected texture. 

Another change to the operation of the hybrid network was identified when segmenting 

an image rather than just classifying it. Samples would be taken in small blocks with 

sizes ranging from the size of the self-organising map's input layer, up to larger samples 

for histogram accuracy. Therefore the resultant segmented image becomes very blocky. 

This is demonstrated in Figure 6.25 by using the following network architecture and 

training conditions which demonstrated the best results from Section 6.2.2. 

9 Self-organising map input layer 9 by 9 neurons 

* Self-organising map output layer 5 by 5 neurons 

* Back-propagation network input layer 5 by 5 neurons 

o Back-propagation network middle layer 3 by 3 neurons 

e Back-propagation network output layer 2 by 1 neurons 

* SOM Leaming rate 0.01 for 3 cycles* starting with a neighbourhood of 2 pixels. 

9 BPNN Learning rate of 0.1 for 50000 samples, momentum term of 0.5 

*A SOM cycle is deemed to be a complete pass over every image in the training set 

with the entire coverage of every image in the set. At the end of a cycle the 

neighbourhood term is decremented. 
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The training set consisted of sixty images, thirty Iimages for the desired feature and the 

remaining thirty compnsed of the three unused labels. The self-organising stage 

processed the images in an order of desired texture then an undesired texture followed 

again by desired textures until all the images have processed. The sample mask i is 

moved across by one pixel and the whole processed is repeated. The intermediate 

histograms are presented to the back-propagation neural network in a random order. 

Figure 6.25 Aerial Image 1 Segmented by blocks of 15 x 15 pixel samples 

In the example of Figure 6.25 the trees were designated as the desired texture in the 

training set applied to the network. The image was sampled in square blocks of 15 

pixels, each sample was processed and a decision made as to whether or not the desired 

texture was present. A black block indicates that the sample was not the desired texture. 

The grey border around the image indicates that region could not be processed by the 

mask because it would sample data that was off the edge of the image. Therefore if 15 x 

15 pixel mask was used, a7 pixel buffer / indent is used around the edge of the image. 
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6.4.3 System Performance 

To overcome the blocky effect, a sliding window Figure 6.26 was employed by means 

of constructing a new image of segmented data as the original image is being sampled. 

The image is sampled in blocks of pixels. Within each sample a mask feeding the input 

layer of the self-organising map was run over the entire sample generating the 

intermediate histograms. After each sample is processed the back-propagation section 

provides an indication as whether or not the desired texture has been sampled. The 

centre pixel of the sample region is then either masked out or left remaining at its 

original grey scale value depending upon the output of the hybrid network. The sample 

region is incremented. by one pixel and the process repeated until the entire image has 

been covered. 
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age 

Figure 6.26 Sliding window sampling 
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Figure 6.27 demonstrates a sliding window upon Aerial Image I from Figure 6.24 using 

a sample size of 20 x 20 pixel blocks. 

Figure 6.27 Aerial Image I segmented by a sliding window in 20 x 20 pixel square 
samples. 

The size of sample taken when performing this process is critical to the accuracy 

achieved. This is demonstrated when the performing a segmentation process on Figure 

6.28, in this case the hybnd network was trained to classify roads and cars. 

145 



Figure 6.28 Aerial Image 2, Car Park 

The first sample size was made to be nine by nine pixels which is the same size as the 

input layer mask. This size of sample does not allow the intermediate histogram to be 

built up, it therefore only represents a local region of the image and cannot give an 

accurate representation of the most active neurons. Figure 6.29 shows that the system 

has produced results that have isolated the cars and road regions albeit with a large 

amount of corruption. 

Figure 6.29 Aerial Image 2, Car Park, 9x9 pixel sample 
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Increasing the sample size to a 15 x 15 pixel squares gives better results, although there 

are still regions that have not been segmented correctly, Figure 6.30. 

Figure 6.30 Aerial Image 2, Car Park, 15 x 15 pixel sample 

With a sample size of 21 x 21 pixels, Figure 6.31 shows that the error is becoming 

acceptable in terms of the segmentation highlighting roads and cars. 

Figure 6.31 Aerial Image 2, Car Park, 21 x 21 pixel sample 
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With a sample size of 30 x 30 pixels, accurate results are achieved with very little 

spurious triggering, Figure 6.32. 

Figure 6.32 Aerial Image 2, Car Park, 30 x 30 pixel sample 

The 30 x 30 pixel square mask was judged to offer the best accuracy against system 

performance. With a sample size of 40 x 40 (Figure 6.33), the negligible increase in 

accuracy does not warrant the extra burden upon the processor. 

Figure 6.33 Aerial Image 2, Car Park, 40 x 40 pixel sample 
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6.4.4 Real World Image Results 

To give an indication of how the hybrid neural network architecture performance relates 

to other machine segmentation techniques a benchmark method is introduced. It offers 

the feature generation properties of the spatial grey level dependence matrices and the 

classification power of the back-propagation neural network as proposed by Muhamad 

and Deravi [Muhamad and Deravi 1993]. Appendix C gives an overview of the 

operation of this benchmark process in relation to image segmentation for the results 

presented in this section. 

To evaluate the performance of the hybrid neural network and benchmark systems when 

processing real world images, test images have to be created where they are segmented 

by hand via a computer graphics package. The assumption being made here is that a 

human can perform the segmentation process to 100% accuracy. These test images can 

be used to generate an error term against the output of the both systems. This is 

achieved by overlaying the hand segmented image on top of the output of the system 

under test and each pixel is cross checked between the two images. From this 

comparison the number of correctly classified pixels can be summed and an average 

calculated for that particular image. 

Sixty aerial images are presented to the two systems with thirty images being nominated 

to have trees as their desired texture segmentation output and thirty having automotive 

elements to be segmented out. Table 6.23 overleaf shows the results gathered from both 

systems when segmenting for automotive elements. Values in bold type indicate which 

system gave the best result. The entire pictorial results and original source images are 

presented in Appendix E. 
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Image Name Hybrid Neural Network SGLDM BPNN Classifier 

Aerial Image 3 91.18 89.18 

Aerial Image 4 83.03 77.72 

Aerial Image 5 78.79 78.17 

Aerial Image 6 84.55 83.80 

Aerial Image 7 85.58 88.47 

Aerial Image 8 83.85 90.63 

Aerial Image 9 85.59 83.08 

Aerial Image 10 79.60 62.78 

Aerial Image 11 84.55 77.17 

Aerial Image 12 85.89 76.91 

Aerial Image 13 86.73 86.09 

Aerial Image 14 84.12 78.48 

Aerial Image 15 85.68 80.77 

Aerial Image 16 82.73 79.245 

Aerial Image 17 77.93 73.54 

Aerial Image 18 82.75 77.89 

Aerial Image 19 84.75 82.61 

Aerial Image 20 83.05 76.85 

Aerial Image 21 86.49 85.85 

Aerial Image 22 95.95 75.10 

Aerial Image 23 86.00 95.28 

Aerial Image 24 83.60 90.90 

Aerial Image 25 90.90 80.83 

Aerial Image 26 85.70 84.48 

Aerial Image 27 79.89 86.16 

Aerial Image 28 90.55 94.84 

Aerial Image 29 88.02 87.46 

Aerial Image 30 83.74 81.63 

Aerial Image 31 76.17 81.94 

Aerial Image 32 76.24 75.55 

Table 6.23 Percentage of Correctly Classified Pixels for Automotive Elements 
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Table 6.23 gives the percentage number of pixels correctly classified for both the hvbnd 

neural network and the spatial grey dependence matrix / back-propagation neural 

network benchmark method. This percentage is calculated with reference to the hand 

segmented images. The system with the most accurate output is highlighted in bold 

type. 

Considering automotive segmentation the overall average performance of correctly 

classified pixels is: - 

9 Hybrid Neural Network 

o SGLDM / BPNN Benchmark 

84.45% 

82.11% 

The performance of both systems is close with the hybrid neural network giving a 

higher accuracy overall when considering all thirty images that need to be segmented 

for automotive elements. This can be attributed to the ability of the hybrid neural 

network to handle scenes that contain urban and residential content. Quite often the 

hybrid architecture will encounter and segment out trees whereas SGLDM / BPNN 

benchmark will fail and leave them in the final image thus lowering its score. Aerial 

images 10 and 22 (Figures E8 and E20) are prime examples of this. 

However the SGLDM / BPNN benchmark does have an advantage when processing 

scenes with limited textures particularly with a high content of the desired texture 

within in them. Aerial images 23 and 24 (Figures E21 and E22) show this with a large 

amount of automotive elements within them. False triggering on behalf of the hybrid 

neural network lowers its accuracy in these scenanos. 
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Image Naýi-e Hybrid Neural Network SGLDM BPNN Classifier 

Aerial Image 33 86.89 81.01 

Aerial Image 34 84.95 78.99 

Aerial Image 35 83.05 70.16 

Aerial Image 36 83.36 66.67 

Aerial Image 37 91.21 87.30 

Aerial Image 38 84.03 80.85 

Aerial Image 39 88.20 80.31 

Aerial Image 40 83.42 77.12 

Aerial Image 41 84.59 81.46 

Aerial Image 42 85.01 74.62 

Aerial Image 43 85.55 70.67 

Aerial Image 44 87.76 62.92 

Aerial Image 45 88.09 67.64 

Aerial Image 46 87.44 68.76 

Aerial Image 47 87.10 67.35 

Aerial Image 48 87.40 62.85 

Aerial Image 49 89.17 82.53 

Aerial Image 50 86.88 60.27 

Aerial Image 51 91.06 67.32 

Aerial Image 52 90.83 77.88 

Aerial image 53 83.07 65.96 

Aerial Image 54 83.15 68.58 

Aerial Image 55 90.19 84.66 

Aerial image 56 88.66 72.29 

Aerial Image 57 85.94 68.12 

Aerial Image 58 85.17 72.85 

Aerial Image 59 86.93 82.06 

Aerial Image 60 83.19 74.04 

Aerial Image 61 87.18 75.82 

Aerial Image 62 86.80 77.66 

Table 6.24 Percentage of Correctly Classified Pixels for Tree Elements 
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Table 6.24 gives the percentage performance of both systems when considering 

segmenting tree like textures. 

Considering tree segmentation, the overall average perforinance of correctly classified 

pixels is: - 

9 Hybrid Neural Network 

o SGLDM / BPNN Benchmark 

86.54% 

73.62% 

Surprisingly since both systems were trained on the same images the performance of the 

hybrid neural network is noticeably higher to that of the SGLDM / BPNN benchmark 

unlike the previous examples of segmenting automotive elements. The difference in 

performance can be attributed to the hybrid neural network often over segmenting an 

image by removing large amounts of detail, sometimes even some of the desired 

texture. Whereas the SGLDM / BPNN benchmark under segments the image by leaving 

the desired texture intact but also a large amount of the undesired texture. An typical 

example of this can be seen in aerial images 51 and 52 (Figures E49 and E50), where a 

large amount of data needs to be segmented out. 

The SGLDM / BPNN benchmark again gives its best performance when there is little 

data to be segmented out of the image, with a large amount of the wanted texture 

existing within the image which can be seen in aerial images 33 and 37 (Figures E35 

and E3 1). 
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6.4.5 System Timings 

All the experiments presented in this thesis were performed upon an Intel Pentium HITm 

processor with a clock speed of 500 MHz running the Windows98 TM operating system. 

The architecture of the neural network impacts significantly upon the performance of 

the system in the training phase of the self-organising map. This is demonstrated in 

Figure 6.34, timings were recorded with different sizes of input layer, the output layer 

remained static with a fixed dimension of 9 by 9 neurons. The times taken were to 

process a sample of 32 by 32 pixels within an image. 
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Figure 6.34 Variable input layer, fixed output layer 

154 

7 by 79 by 9 11 by ll 13 by 13 15 by 15 17 by 17 21 by 21 31 by 31 

Input Layer Dimensions (Neurons) 



Again In the training phase, the process was repeated by varying the size of the output 

layer and keeping the input layer static with a fixed dimension of 9 by 9 pixels. Figure 

6.35 shows that the dimensions of the output layer are far less critical to performance to 

those of the input layer. The growth in processing time is reasonably linear. 
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0 

Figure 6.35 Variable output layer, fixed input layer 

Another important factor for performance considerations when using the sliding 

window described in section 6.4.2 is the sample size used in the self-organising layer. 

Figure 6.36 depicts the relationship between sample size and performance. The 

dimensions of the network is again a9 by 9 neuron input layer and a5 by 5 neuron 

output layer for the self-organising map. Only one pass / cycle was applied to the image. 
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Figure 6.36 Hybrid performance upon 128 by 128 pixel image 

The processing time of the back-propagation section of the hybrid neural network can 

be considered to be negligible due to the fact there are relatively small number of 

samples to be processed, each sample being a histogram produced by the self-organising 

map. Using the same architecture that produced the results in section 6.4.2 the back- 

propagation neural network section was timed in the training phase to give the results 

depicted in Figure 6.37. The number of images in the training set used to produce the 

histograms was 60. 
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Figure 6.37 BPNN Training Performance 

The typical number of cycles needed to train this section of the hybrid neural network is 

of the order of 50000 iterations. A cycle is deemed to be the presentation of a histogram 

sample to the input layer of the back-propagation neural network. 
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6.5 Summary 

This chapter has provided the optimal training patterns and architecture dimensions that 

allow the hybrid neural network to successfully classify images taken from the Brodatz 

texture series. 

This model has been demonstrated to give accurate results with different dimensions 

and training philosophies. The only common theme being the inter-connecting 

histograms which accumulate texture data being fed from the self-organising neural 

network. 

A second variant of the hybrid neural network has also been proposed along with 

experimental to show it to be capable of segmenting aerial images depending upon their 

texture content. 

The hybrid neural network architecture is demonstrated to give a higher accuracy than 

the spatial grey level dependence matrices benchmark methodology when segmenting 

aerial images for automotive and tree like textures. 

The overall performance of correctly classified pixels when considering both textures 

across all sixty images is: - 

0 Hybrid Neural Network 85.49% 

0 Spatial Grey Level Dependence Matrix / 

Back-Propagation Neural Network Benchmark 77.85% 
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With regards to the segmentation of automotive elements there is little to choose from 

the two systems, with both of them to be capable with little false tnggenng. The spatial 

grey level dependence matrix / back-propagation neural network gives a good score of 

82.11% with the hybrid neural network marginally ahead with 84.45%. 

The overall performance advantage of the hybrid neural network arises due to its ability 

to cope textures with little contrast; it gives consistent results looking at segmenting tree 

like textures (86.54%). These textures, which have little contrast, cause problems for the 

spatial grey level dependence matrix / back-propagation neural network benchmark with 

a lower score of (73.62%). This unfortunately is the prime cause of lowering the overall 

score of an otherwise respectable benchmark. 
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Chapter 7 Conclusions and Recommendations 

for Further Work 

A concise review of the work submitted in this thesis is presented in this the final 

chapter. This chapter extracts the key elements of this research project with aim of 

documenting the research activities resulting in the hybrid neural network architecture. 

Section 7.1 presents the original contributions to knowledge contained within the thesis 

with documentary evidence against existing knowledge in this field of research. 

Some conclusions are drawn together in Section 7.2 from the work that was necessary 

to generate this thesis. 

Finally, some recommendations are made with regards to further work that can be 

applied to the hybrid neural network architecture in Section 7.3. 
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7.1 Original Contributions to Knowledge 

The work presented in this thesis can be summansed as follows with regards to the 

original contributions to knowledge in this field of research: - 

9 Known and established neural network models have been taken and integrated 

together to produce a new and novel method of data extraction and classification 

within a digital image processing environment. 

* Via the use of interconnecting histograms between the two neural network models, 

unique fingerprints can be assigned to individual textures in the training set. 

9 The hybrid neural network architecture has been demonstrated to be capable of 

classifying a series of images from the Brodatz series of textures. This has resulted 

in a publication [Arrowsmith et al 1999]. 

e The experimental results produced in this thesis have shown the hybrid neural 

network model to capable of segmenting real world aerial images. 

9A critical comparison presented in this thesis has also shown the hybrid neural 

network architecture to have a higher performance to that of a spatial grey level 

dependence matrix / back-propagation neural network. 
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7.2 Conclusions 

With the hybrid neural network model, the training set needs to include the textures that 

are likely to be encountered when sampling an image and some label that can be 

assigned to the texture classes in the training set. When working with the hybrid neural 

network model, it was discovered that a broad range of images was required to be 

included in the training set to obtain a reasonable level of data extraction.. 

The accuracy of the hybrid neural network is only as good as its training data, which 

was demonstrated in Section 6.2.5. If a texture is encountered that was not part of the 

training set then the network will often classify the texture to one that had similar 

properties in its training set. 

When implementing the hybrid neural network in a segmentation mode working upon 

aerial images, some reference to the altitude of the aircraft must be known, e. g. textures 

representing trees at a low altitude would be coarse differing from finer textures at high 

altitudes. If the altitude is to be over a wide range, then different training models must 

be applied to the interconnecting weights of the neurons. Therefore this range of 

altitudes must be included in creating multiple training sets, that can be dialled in when 

a change of altitude is detected. Unfortunately due to lack of imagery, this function was 

not included in this thesis. 

Although at times, particularly in the early stages of the project the amount of work 

carried out almost became a software engineering project in its own right. Implementing 

neural networks in a image processing environment requires a large of amount of 
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complicated source code. However this investment was extremely fruitful when 

integrating the two neural models together, as it allowed complete control and visibility 

of the inner working of the neural networks. The author was not limited in anyway by 

the tool set, any new ideas could be immediately implemented and the results 

monitored. 
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7.3 Recommendations for Further Work 

The realm of digital image processing and its possible applications are directly linked to 

the computing power of the day. When this project was first embarked upon, the fastest 

personal computer of the day had a clock speed of 33 MHz and with 4 Mbytes of RAM, 

and today as the project draws to a close, machines with clocks speeds of over I GHz 

with 512 Mbytes RAM are becoming common place. It is with this vast increase of 

computing power available that continues to drive new and ever expanding areas of 

digital image processing. This is particularly relevant to neural networks. Processing 

that took hours to implement a neural model can now be achieved in minutes and with 

the machines of tomorrow these models will be able to run in real time using software 

emulation rather than hardware implementations such as the RAM node [Aleksander 

and Morton 1990]. 

As well as the growth in computing capabilities, the standard of image acquisition and 

image resolutions has changed vastly across the life of this prOject. Images with a 

resolution of 512 by 512 pixels were considered to be of a very high resolution at the 

outset. However comparing this to the capability of modem machines with display 

resolutions of 1280 by 1024 pixels, these images could be considered to be almost low 

resolution. Image acquisition has advanced from video digitisers reliant upon A/D 

converters through to CCD devices providing true colour images (32bit). 

The whole process of off-line manipulation of images is starting to look dated, the ever 

increasing performance of computing will allow real time processing of images. It is 

this direction that a great deal of future work can be applied to the hybrid neural 

network model. 
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With slight alterations to the hybrid model, a system could be constructed to perform 

target recognition task. The process of target recognition upon a video feed can be 

broken down into sub-units. If for instance the video image was digitised to a resolution 

of 256 by 256 pixels, then 64 hybrid neural networks sampling in 32 by 32 pixel squares 

could be mapped on to the video feed, Figure 7.1. 

0,0 

o, c 

31 

255,255 

Figure 7.1 Proposed Image Acquisition Architecture for Hybrid Network 

Instead of a mask scanning the sample region, the whole sample region could map 

directly on to an enlarged input layer of the self-organising map. The inter-connecting 

histogram would now be constructed over time, rather than be built up from samples by 

the mask traversing the sample region. In practice the inter-connecting histograms 

would have a certain depth to them, organised as a stack. That is after n number of 

results from the self-organising layer, the first inputs into the histogram will removed to 

make way for new results being entered into the stack. 
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The second stage of the hybrid architecture would remain the same. The back- 

propagation neural network would still take the histogram of self-organising output 

layer activity as its input and would fire, producing a classification upon its output 

layer. This result would not be the final stage of processing. The system is now 

modular, numerous results will be produced by the individual hybrid networks. A third 

stage would have to be implemented. This stage would take as its input all the results 

produced by the hybrid modules, Figure 7.2. 

put 

Input Video Feed Neural Stages I and 2 Neural Stage 3 

Figure 7.2 Three Stage Neural Network Classifier 

Depending on the mode of operation, the third stage could act as majority voter, 

producing a classification result based upon the most active modules. A different mode 

of operation might be track objects with regards to speed and angle of motion. 
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A variation of the three stage classifier might be to replace the third stage with a 

reconstructed image. This would be constructed by enlarging the output layer from the 

back-propagation stage of the hybrid neural network. The output layer size would have 

the same dimensions as the input layer of the self-organising stage. As data propagates 

through the network, a filtering process could be carried out before the image is 

reconstructed, Figure 7.3. 

Input Video Feed Modular Stage Output Video Feed 

Figure 7.3 Modular Hybrid Neural Network Video Filter 

With current advance in processor speeds, the model proposed in Figure 6.2, could be 

implemented on the next generation of GHz processors if the following assumptions are 

made. When the hybrid model is in run-time mode, the time taken to execute a self- 

organising map with an input layer of 32 by 32 neurons and an output layer of 9 by 9 

neurons is 4.8 ms on a Pentium HIII-m 500 MHz processor. Therefore a complete frame 

could be processed in 0.31 seconds (3.2Hz), resulting in three frames per second which 

is not very practical. 
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However with optimised code running in processor cache and increased processor clock 

speed, frame rates of ten to fifteen frames per second should be achievable on aI GHz 

processor. 

The hybrid neural network filter proposed in Figure 6.3, is for the time being not 

imminently achievable. If a model was to be implemented with the dimensions of a 32 

by 32 neuron input layer feeding a9 by 9 neuron output layer for the self-organising 

map. A9 by 9 input layer feeding a5 by 5 middle layer driving a 32 by 32 neuron 

output layer the back-propagation neural network would take 0.24 seconds for one 

firing. Therefore a complete frame made up from 256 by 256 pixels would take 15.36 

pixels. 

This may seem impracticable, but referring back to the description of the pace of 

technology progress in the beginning of this section, this need not be the case. If 

another part time research project were to be undertaken to investigate hybrid neural 

network models operating on video images, it is most probable that in six years when 

the project draws to a close, the hardware of the day will more than capable of 

achieving full motion video using the future work proposed here. It has to be 

remembered that when this research was first undertaken, the World Wide Web 

(V; WW) was only just beginning to be implemented through the MosaiCTM software 

from CERN and the fastest modem speed was 2400 bps. Technology will often provide 

surprising advances in short timescales. 
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One aspect of training that was not explored in this thesis but might well lend Itself to 

the scenario described above is that of continuous training. Real world video feed rarely 

matches exactly the quality or content of laboratory image sequences. Allowing the self- 

organising layer to perform minor updates upon its inter-connecting weights would 

tailor the application to its surroundings. This would be possible, as there is no 

supervision of this stage in the training phase. 
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Appendix A Software 

A. 1 Software Development 

Upon embarkation on this project a conscious decision was made to develop all the 

tools used for generating neural networks via custom software rather than relying upon 

third party software vendors. Some of the factors influencing the decision were the 

ability to model any type of structure and the author's software background. The only 

commercial neural modelling software available at the time (MATLAB TM ) did not offer 

a function to customise the neural structures or the ability to access the structures to log 

data or monitor operation. 

The initial software was developed in MSDOSTM, 
using the programming language 

C++. It performed small neural network architectures quickly and accurately, however 

specific device drivers had to be written to view the result on the VDU. Because these 

used software calls to the machines video card, it quickly became un-portable to other 

machines. Another limitation encountered was the limit on array declarations, 

MSDOSTm applications had a memory limit of 640K. This meant that as the neural 

networks grew in size, less memory was beconlIng available to implement them. A 

graphic example of this can be seen in Appendix C. An array of integers was created the 

same size as an input image, 512 pixels by 512 pixels. With a word representing an 

integer, the memory allocation for this structure is over 500 Kbytes, which would be a 

non-starter as far as MSDOS is concerned. 
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At this point in the research programme decision was taken to move up to developing 

software for the newly released operating system Windows 95". This operating system 

offered several advantages, the primary one being the memory model. There were no 

limits on using memory, and if the machine ran out of physical RAM it would create 

virtual memory by using hard disk space. A new compiler was purchased by the 

department specifically aimed at Windows 95 Tm development, this being Borland Visual 

C++ Version 5 OTM 
. However being a different system, new software had to be 

developed to make use of the Windows operating system. The new software allowed 

images to be cut and pasted between other windows applications such as Microsoft 

Word Tm 
and Paint Shop PrOTM. It also did not tie up the system's resources because 

Windows 95 TM is a multi-tasking environment unlike 
MSDOSTM 

. Tasks could be 

therefore running in the background of the operating system. 

Figure A. 1 shows a snapshot of the image processing tool developed to implement 

neural networks and conventional methods of image processing, with a set of images in 

the Brodatz training set stacked up ready for processing. When experimenting with 

different parameters such as sample size and learning rate it is useful to have the ability 

to compare immediately the results to those achieved previously, depicted in Figure 

A. 2. 
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A. 2 Data Structures 

Visual C++ provides classes capable of image addressing and manipulation. The C++ 

programming language also offers some very useful data structure declarations that lend 

themselves to image processing and neural networks. To give a flavour of the image 

processing environment developed for this research project, a few of the structures are 

explored in the next two sections. This is however is a very small fraction of the amount 

of code developed to meet the requirements of the project. 

One of the most useful classes provided by Borland Visual C++ is that of the Tdib, this 

class gives access to device independent bitmaps (DIB) as discussed in Section I. I. 

Once a bitmap has been displayed in the image processing environment, a copy can be 

made of it by using the GetBits function to set up a pointer in memory :- 

unsigned char *imagecopy= (unsigned char*)Dib->GetBitso; 

Variable imagecopy now points to the beginning of memory when the bitmap is stored. 

Unsigned characters are used as they represented a single byte, 8 bit grey scales with 

256 grey levels. To address individual pixel locations, offsets are used against this 

pointer 

pixel=*(imagecopy+(x+ width * y)); 
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Variable pixel contains the grey scale value at position x, y. The DIB class also has 

another useful function that it can return the height and width of an image *. - 

int width = Dib->Widtho; 

int height - Dib->Heighto; 

Variables width and height are given integer values to cater for images larger the 256 

pixels (maximum value for unsigned characters). 

An important note regarding the representation of bitmaps by the DIB class is that they 

are constructed the opposite way to those of conventional television pictures. The 

source point is the bottom left hand comer, with the image terminating at the top right 

hand comer, illustrated by Figure A. 3 for a square image of 256 pixels. 

255 

y 

0 
255 

Figure A. 3 DIB Representation 
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The following excerpt of code sets up the three layers of the back-propagation network, 

a five by five square input layer, a three by three square middle layer and a flat output 

layer consisting of 2 neurons. 

const middle-x=3; 

const middle-Y=3; 

const output-x=2; 

const output_y=l; 

const input_x=5; 

const input_y=5; 

float input[input-x][input_yl; 

float middle[middle_x][middle_y]; 

float output[output-x][output_y]; 

The connections between the layers can be modelled by :- 

struct 

middle-layer-weights{float wght[input_x][input_y]; ); 

struct 

output-layer_weights{float wght[middle_x][middle_y]; I; 

struct middle_layer-weights middle_w[middle-xl[middle_yl; 

struct output_layer_weights output-w[output-xl[output-yl; 
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To reference the weights for example connecting the middle layer to the input layer then 

the following can be used. 

middle_w[x] [y] wght[xxl [yyl 

Where X and Y reference the position of the neuron in the middle layer that is going to 

have its interconnecting weights addressed. XX and YY address the individual weight 

by reference to a particular neuron in the input layer. 

K 

00 
Middle Layer 

'ýýo 

Y 

YY 
0 0/ /00 

VInput 

Layer 00 

xx 

Figure A. 4 Data Structure Example 

If the array numbering scheme starts top left (0,0), then Figure A. 4 shows that neuron 

1,1in the middle layer is connected to neuron 2,1 in the input layer. The code used to 

address the interconnecting weight would be: - 

middle_w[l] [11 wght[21 [11 
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Appendix B Cross- Correlation 

The cross-correlation process presented in Section 3.5 produces a coefficient that 

indicates peri odi city/s ample match within the image sample being processed. Close 

examination of Brodatz Image D55 (Straw Matting) Figure B. 1, shows there are regular 

repetitions in the horizontal and vertical planes. The repetitions in the vertical plane 

appear to have twice the frequency to those in vertical plane. 

Figure B. 1 D55 

If the cross -correlation algorithm is applied to Figure B. 1, the periodic elements within 

the image become visible via correlation coefficients. A 16-element mask produces the 

results in Figure B. 2 and Figure B. 3 applied in horizontal and vertical directions. 
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Figure B. 2 Correlation Coefficient in the Horizontal Plane 

Figure B. 2 gives an indication of a sample match of every 13 or 14 pixels, setting a 

threshold value of 0.6 would ensure the segmentation of this particular texture. 
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Figure B. 3 Correlation Coefficient in the Vertical Plane 

Figure B. 3 gives an indication of sample match of every 7 pixels. However in this case 

setting a threshold value of 0.6 would not ensure the complete segmentation of this 

particular texture. To capture the entire texture, a lower threshold value would have to 

be used. 

The setting of the threshold limit is a severe limitation of the cross-correlation process. 

This value will differ from texture to texture and from different sampling planes, 

depending upon the strength of the texture, e. g. detenninistic versus structured textures. 
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When considering real world images such as Aerial Image I Figure 3.11, the size of the 

sample mask and the sampling point for the sample mask become critical. When 

constructing Figure 3.23 numerous mask sizes were tested in constructing the sample 

mask. The whole process was considered to be somewhat hit and miss depending on the 

type of texture to segmented out. A large mask in the order of 30 pixels produced the 

best results for tree segmentation. 
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Appendix C Spatial Grey Level Dependence Matrix / 

Back-Propagation Neural Network 

Although the theory of spatial level dependence matrices appears to relatively 

straightforward, the actual implementation of them in software is far from easy. There 

are a number of variables to be considered when producing the matrices such as :- 

1) Which are the best functions (energy, contrast) to use on the matrices? 

2) What thresholds should be applied to the functions? 

3) Should more than one function be applied? 

These considerations can be removed with one stroke by employing a neural network to 

act as a classifier operating upon the features extracted from the spatial grey level 

dependence matnces. Muhamad and Deravi [Muhamad and Deravi 1993] successfully 

demonstrated this approach by classifying Brodatz textures by placing a back- 

propagation neural network upon spatial grey level dependence matrices. Fukue et al 

[Fukue 1998] also use the same method to classify Landsat imagery. The spatial grey 

level dependence matrices generate features from the image being processed and the 

neural network acts as a classifier, Figure C. 1. 
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Figure C. 1 SGLDNVBPNN Classifier 

The training process employed takes the form of two stages: - 

1) Generate spatial grey level dependence matrices for all the sample textures in the 

training set over multiple distance measures and sample angles. 

ii) Apply the data acquired from step one to the input of the back-propagation 

neural network and train the network against labels of known textures assign to 

each spatial grey level dependence matnx. 

The system can now classify textures it encounters that have been included in its 

training set. The method of operation is sinnlar to that of the hybrid neural network as 

shown in Section 6.3. That is instead of segmenting the image in blocks, a new image is 

created on a pixel by pixel basis depending upon the output of the back-propagation 

neural network driven by the spatial grey level dependence matrices. However before 

the second image is constructed, a record of the results of the matrices functions applied 

to the back-propagation network is recorded. As multiple passes of the image for 

multiple distances d and angles 0 are required, a majority vote is used to determine if a 

pixel is to be segmented based on the networks output, Figure C. 2. 
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Multiple spatial grey level dependence matrices are created at different displacement 

distance and angles as shown by Conners et al [Conners et al 1984] to try and enable the 

matrices to capture a wide range of textures. The values used are 1,2,4,6,8 and 12 for 

distances of d and 0,45,90 and 135 degree angles for 0- The images are quantized 

down to contain 8 grey scales from 256 to give the matrices a dimension of 8 by 8 

elements. This is done to allow this benchmark architecture to possess similar 

dimensions to that of the hybrid neural network to give meaningful comparisons of the 

two methodologies. 

After a result has been determined for the spatial grey level dependence matrix created 

for the sample window, the sample window is stepped across the image by one pixel in 

the x plane and the process is repeated. The sample window is traversed across the 

entire image on a pixel by pixel basis until all the x, y plane is processed. 

Some key points of this method are: - 

e All the data used to train it are exactly the same as used with the hybrid neural 

network. 

* The sample size is the same. 

0 The dimensions are 8 by 8 SGLDM. With a back-propagation neural network 

having an 8 by 8 input layer, 3 by 3 middle later and a2 by 1 output layer. 

0 The output layer operates in the same way as the hybrid neural network with one 

neuron indicating a positive match and the other indicating a negative match. 
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Appendix D Published Work 

This appendix contains a paper illustrating the hybrid neural network architecture 

presented by the author of the thesis at the IEE Seventh International Conference on 

Image Processing and its Applications, Manchester, England, 13 th 
_ 15 th jUly 1999. 
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HYBRID NEURAL NETWORK SYSTEM FOR TEXTURE ANALYSIS 

MT Arrowsmithl, M. R. Varley', P. D. Picton 2, and J. D. Heys' 

University of Central Lancashire, United Kingdom 
University College Northampton, United Kingdom 

ABSTRACT 

Texture classification and segmentation in digital 
images is commonly achieved using spatial grey level 
dependence matrices (SGLDMs), often referred to as 
co-occurrence matrices. This involves the computation 
of many matrices over a range of different spatial 
separations and orientations. The approach proposed 
in this paper uses a hybrid neural network system, 
consisting of a self-organising map followed by a 
backpropagation network, to restrict the number of 
SGLDMs that need to be computed. The system is 
trained in two phases on images with known texture 
content. The trained system is able to provide 
information, in the form of pixel spacing and 
orientation, on the texture content of unseen images. 
This information may be used to select appropriate 
SGLDMs for further texture classification. 
Experimental results are presented which demonstrate 
the effective performance of the system. 

and the backpropagation neural network (BPNN), 
working in conjunction. The output of the SOM is used 
to construct a cumulative two-dimensional histogram, 
which gives a representation of the texture content of 
the input image. This information is presented to the 
BPNN, which is trained to output information on the 
pixel spacing and orientation of the texture. Previous 
work in this field has shown neural networks to be 
capable of classifying types of textures from co- 
occurrence matrices [3,4], and has also applied SOMs 
to classify Gabor texture features [5,6]. 

Promising results have been achieved using this 
approach. The trained system is able to correctly 
identify texture parameters in all images in its training 
set. Additionally, successful identification of textures 
in previously unseen images (i. e. images not included 
in the training set) has been achieved. The paper 
presents results from a system trained using synthetic 
texture images, and images with real-world textures 
from the Brodatz series [7]. 

INTRODUCTION 

In this paper, the authors propose a new neural network 
based system aimed at simplifying the use of spatial 
grey level dependence matrices (SGLDMs). SGLDMs, 
commonly referred to as co-occurrence matrices, are a 
widely used tool for texture classification and 
segmentation in the realm of digital image 
processing [1 Their operation, however, is highly 
dependent on the sampling distance between pixels and 
the relative orientations of textures in the image. In 
most applications, many SGLDMs would have to be 
calculated over several different spatial distances 
between pairs of pixels, and through numerous 
orientations (2]. This typically introduces large 
computational costs, when using SGLDMs for texture 
analysis, if no prior information regarding spatial 
distances and orientation is available. 

The new methodology presented in this paper reduces 
these computational costs by acquiring the pixel 
spacing relationship and orientation prior to use of the 
SGLDM, thus reducing the number of SGLDMs that 

are to be calculated. This is achieved by the use of two 

neural network models, the self-organising map (SOM) 

SYSTEM ARCHITECTURE AND TRAINING 

The hybrid system comprises two neural network 
models: 

A self-organising map (SOM) with a9x9 array of 
neurons fed from 17 x 17 inputs obtained from a 
region of the image. The SOM outputs are used to 
form a9x9 cumulative histogram representing the 
input image. 

A backpropagation neural network (BPNN) with 81 
input nodes fed from the 9x9 histogram, 49 hidden 
neurons and an 14 x4 output layer. 

The sizes of the two networks have been determined by 
trial and error following several tests involving one- 
dimensional and two-dimensional structures. 

A block diagram of the system is shown in Fig. I- 

Training of the hybrid system is a two-step process 
which uses a set of images containing different textures, 
with the pixels that comprise these textures having 
different orientations and spatial relationships. 
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SOM BPNN 

Blocks of 
Output Accumulation Input Hidden 

Image Data 
> layer ofDatafor2-D layer layer 

(17 x 17) 9x9 Histogram 9x97x7 
(9x 9) 

Fig. 1 Hybrid Neural Network System for Texture Analysis 

During the first step, a two-dimensional 17 X 17 mask is 
used to map pixel grey levels, via a linear scaling 
function (converting grey scales of 0 through 255 to 0 
through 1-0), onto the output layer of the SOM, the 
interconnecting weights of which have previously been 
assigned random values in the range -1.0 to 1.0. 

The processing of image data, in blocks of 17 x 17 
pixels to the SOM output layer is depicted in Fig. 2. 

x 

y 

ki /X I 
SOM Output Layer 

(9 x 9) 

Fig. 2 Presentation of Image Data to SOM 

Note that in Fig. 2, for clarity only the first neuron (top 
left) is shown as being fully connected to the input data 
held in the 17 x 17 mask - in reality all the neurons are 
fully connected to all possible inputs. 

The training of the SOM [81 takes the form of evaluating 
the distance dk, at a point in time t, between the weights 
Wik of neuron k and the applied input values Ii to 
neuron k, with the inputs taken over all positions on the 

x and y axes. 

The distance dk for neuron k is calculated using 

dk Wik 

Output 
Texture layer 
Data out 14 x4 

This distance dk is evaluated for each of the 81 neurons 
in the SOM (i. e. for all values of k), and the winning 
neuronj is then identified by finding the neuron which 
has the smallest difference value dj, i. e. 

dj < dk for all k, k :?, - 

After the winning neuron j is found, its weights are 
updated according to the equation 

wij (t + 1) = wii (t) + 11(t) ( Ii (t) - wii 
where q(t) is the learning rate at a specified moment in 
time t. The learning rate gradually decreases in value 
over time as training of the SOM progresses. The 
weights of neurons situated in the neighbourhood of the 
winning neuron j are also updated. Fractional updates 
are applied, i. e. y 

Wik (t + 1) ::::::: Wik 
(t) + Ok 11(t) 

(Ii (t) 
- Wik 

where the scaling factor Ok (0 < Ok< 1) is determined 

according to the position of the neighbourhood neuron 
in relation to the winning neuron. The neighbourhood 
used in this application is square and centred on the 
winning neuron. 

After this training step has been taken, a new input is 

presented to the SOM via the 17 x 17 mask, until all 
pixels in the training images have been processed. As 
training progresses, the size of the neighbourhood is 

gradually decreased after each pass through all the 
images in the training set, until the neighbourhood is 

only one pixel wide for the final pass. 

The values representing the interconnecting weights 
between the neurons are saved, and the intermediate 
data between the two neural networks is calculated. 
This is achieved by running the SOM over an Image in 
the training set and constructing a9x9 two-dimensional 
cumulative histogram, which gives a numerical 
representation of the most active neurons within the 
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SOM for that image. The histograms are linearly scaled 
such that the values lie in the range 0 to 1.0. 

Each image now has its own unique identity via the 
contents of its own two-dimensional histogram at the 
output of the SOM. An example of a scaled 9x9 two- 
dimensional cumulative histogram is shown in Fig. 3. 

0.9 
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0, 

0.1 

Fig. 3 Scaled 9x9 Two-Dimensional Cumulative 
Histogram obtained from SOM Output Layer 

The values in the 9x9 histogram have a one-to-one 
mapping to the input layer of the BPNN. The second step 
of the training process is to train the BPNN to classify 
the histogram. For each histogram the known pixel 
spatial relationship, obtained using the autocorrelation 
function [9], and orientation, obtained by visual 
inspection, of the corresponding training image are 
presented as a target output. The backpropagation 

training algorithm [10] is used to train the BPNN to 

classify histograms according to different pixel 
separations from 2 pixels to 15 pixels (corresponding to 
14 columns in the output layer) and different texture 

orientations (0', 90', 45' and 135', corresponding to 4 

rows in the output layer). Again, after training is 
complete, the weights between the interconnecting 

neurons of the BPNN are saved for the run-time 
application of this model. 
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TEXTURE ANALYSIS USING THE TRAINED 
SYSTEM 

The run-time mode of operation is to select an area from 
an image that is to be classified using an SGLDM. This 
selected area is then applied to the SOM input layer in 
groups of 17 x 17 pixels, and a cumulative 2-D 
histogram is generated which represents that area. The 
scaled histogram is then presented to the BPNN, which 
provides an indication of the most likely pixel separation 
and orientation that forms the texture in the image. This 
data can be used to select the most appropriate 
SGLDMs for subsequent texture classification. It 
should be noted that no training or updating of the 
weights in either network takes place during this run- 
time process. 

EXPERIMENTAL RESULTS 

The system was initially trained using 64 x 64 images 
containing synthetic textures and superimposed random 
noise. The run-time set of images for testing this system 
also consists of lines superimposed with random noise; 
however the lines are of a different grey scale value. 
The only common components between the two sets of 
images are the pixel spacings and orientations of the 
lines forming the textures. It was found that the system 
successfully classified images from the training set, and 
also unseen images containing textures similar to those 
present in the training set images. 

The final system was trained on ten 64 x 64 images from 
the Brodatz series, the textures in which are summarlsed 
in Table 1. All Brodatz images were histogram 
equalised prior to training and testing the system. 

Name Texture Content Pixel spacing at 0' 
(pixels) 

Pixel spacing at 90' 
(pixels) 

D6 Woven Aluminium Wire 7 9 
D14 Woven Aluminium Wire 5 6 
D20 French Canvas x4 5 10 
D21 French Canvas 1/2 size 9 9 
D53 Oriental Straw Cloth 12 4 
D55 Straw Matting 7 9 
D78 Oriental Straw Cloth 6 7 
D84 Raffia 8 8 
D104 Loose Burlap 8 8 
D106 Cheesecloth 4 4 

Table 1 Texture classifications of images from the Brodatz series [7] used for training and testing the system 
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Fig. 4 Brodatz Images used as the Training Set 

For each type of texture, two images were created by 
sampling the original Brodatz image in different 
locations. One image was used as part of the training set 
for the system, and the other was used to test the 
network in its run-time mode. The images used in the 
training set are shown in Fig. 4. 

The system was trained using the following parameters: 

The SOM used an initial neighbourhood size of eight 
neurons and an initial learning rate 77(0) of 0.1, with 
each image being presented 10 times. The input 
layer to the SOM was moved across the image on a 
pixel-by-pixel basis. 

The scaled cumulative two-dimensional histograms 
produced were applied to the BPNN- The error 
backpropagation training algorithm was used with a 
learning rate of 0.3, and the network was trained for 
10000 cycles. The error decreases to give 100% 

classification. 

The run time images were applied to the network to test 
the effectiveness of training. Again, these were all 
correctly classified. 

The data in Fig. 5 shows sample results from the output 
layer of the BPNN for test image D55, for which the 
periodicity is correctly determined to be every 7 pixels 
at an orientation of 0', and 9 pixels at 90' orientation. 
There is no significant texture content for orientations of 
45' and 135'. 
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Fig. 5 System Output for Brodatz Test Image D55 
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Additionally it was found that it was unnecessary to 
apply the mask to the entire 64 X 64 image. Accurate 
results for the texture analysis were achieved by 
applying the 17 X 17 mask to a smaller region (typically 
22 x 22 pixels) selected from the image. 

CONCLUDING REMARKS 

A hybrid neural network system has been developed to 
analyse textures within regions of images. The system 
incorporates two neural network models: the self- 
organising map and the backpropagation network. The 
system has been trained separately on two training sets: 
one containing synthetic textures with superimposed 
noise, and the other containing real-world textures from 
Brodatz images. The effective performance of the 
system has been demonstrated. It has been shown that 
this scheme can successfully identify texture spacings 
and orientations within images not included in the 
training set. 

The hybrid neural network system is intended as a pre- 
processing stage, and may be used to select a reduced 
number of SGLDMs for subsequent texture 
classification, thus decreasing the computational load. 
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Appendix E Pictorial Aerial Image Results 

This appendix consists of the real world aerial images used to generate the results 

presented in chapter six. Accompanying each aerial image is a hand segmented image 

along with a hybrid neural network segmented image and a spatial grey level 

dependence matrix classified by a back-propagation neural network segmented image. 

A single page is dedicated to each image. The positioning of the images takes the form 

of: - 

9 Top left, the onginal aenal image. 

e Top right, the hand segmented image. This image was generated by a human via a 

computer graphics package to indicate desired segmentation properties. 

* Bottom left, hybrid neural network segment image. As documented in Chapter 5. 

* Bottom right, spatial grey level dependence matrix classified by a back-propagation 

neural network image. As documented in Appendix C. 

E-1 



Ii 

Aerial Image 3 

Hybrid Neural Network (9 1. IS %) 

I 

(1 

Hand Segmented Image 

SGLDM /BPNN (89.18%) 

Figure E. 1 Aerial Image 3 Results 

E-2 



Aerial Image 4 

Hybrid Neural Network (83.03%) 

Hand Segmented Image 

SGLDM /BPNN (77.72%) 
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Figure E. 15 Aerial Image 17 Results 
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Figure E. 16 Aerial Image 18 Results 
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Figure E. 23 Aerial Image 25 Results 
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