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ABSTRACT 

Introduction: Several observational studies support an association between periodontal 

disease and Alzheimer‘s disease (AD). Poorly managed oral hygiene together with the 

immunosuppressed status of demented patients appears central to this hypothesis as 

together they contribute not only to an increased incidence of oral infections but also to 

recurrent bacteraemia that can seed oral bacteria into systemic circulation. The aim of 

this study was to establish a link between periodontal disease and AD with a view to 

identifying the red complex periodontal disease bacteria (Treponema denticola, 

Tannerella forsythia and Porphyromonas gingivalis) and/or bacterial components in 

human AD and non-AD brain tissue and explore the proof of concept of the red 

complex bacteria accessing the brain of ApoE
null

 mice during experimental 

periodontitis, and assess how they may contribute to the development of AD pathology.  

Methods: Molecular techniques (PCR, cloning and sequencing) were employed for 

investigating the presence of bacterial DNA within the specimens (human or mouse) 

using two different approaches (universal and species specific primers). The presence of 

specific virulence factors were determined using anti-bacterial antibodies. The innate 

immune responses were detected using antibodies against complement activation, 

alongside inflammatory assessment using specific antibodies for activated microglia and 

astrocytes. Further, histology staining was used to assess tissue preservation and the 

presence of pathological hallmarks of AD. 

Results: Human AD and non-AD controls failed to demonstrate the presence of red 

complex pathogens when analysed using molecular methodologies. However, 

immunofluorescence labelling of a virulence factor (LPS) was positive for P. gingivalis 

in 4 out of 10 AD cases. Immunoblotting demonstrated bands corresponding to P. 

ginigivalis LPS in the same AD brain specimens (p = 0.029). Analysis of brain tissue 
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from ApoE
null 

mice induced with periodontal disease using molecular methods 

demonstrated 6 out of 12 ApoE
null

 mice brains contained P. gingivalis genomic DNA at 

12 weeks (P = 0.006), and increased to 9 out of 12 at 24 weeks (P = 0.0001). In 

addition, tissue sections of infected mice demonstrated periodic acid-Schiff (PAS)-

positive, argyrophilic inclusions in the hippocampus at both time points, which also 

labelled positive with the bacterial-specific anti-peptidoglycan antibody. Also, it was 

noted that microglia in both infected and control groups demonstrated strong 

intracellular labelling with C3 and C9, presumed on-going biosynthesis, however, the 

pyramidal neurons of the hippocampus in 4 out of 12 P. gingivalis infected mice brains 

were clearly opsonised with C3 activation fragments (P =  0.032) suggesting they were 

under attack from complement mediated lysis. 

Conclusion: These results show P. gingivalis was able to access the brain of humans 

and ApoE
null

 mice, supporting the concept of the focal infection theory. Together these 

results suggest a potential link with AD via the periodontal pathogen translocating from 

its original oral niche to the brain. ApoE
null

 mice induced with periodontal disease 

demonstrated the intracerebaral innate immune responses were initiated by local CNS 

cells, which not only contributed to a higher inflammatory burden but also bystander 

damage of functional neurons in the hippocampus area of the brain which is associated 

with memory. Although further research is needed to establish clinical measures that 

demonstrate a cause and effect relationship between oral infections and AD, this study 

does provide initial support to the role of periodontal pathogens in the development of 

dementia. Early treatment of periodontal disease in addition to greater awareness of the 

importance of maintaining good oral health may halt or slow down the progression of 

this debilitating disease. 
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1. INTRODUCTION 

There is growing support for the longstanding ―focal infection‖ theory of Miller and 

Hunter (Miller 1891; Hunter 1900) which suggests that the main oral diseases (caries, 

pulpal necrosis/root canal and periodontal diseases) can negatively affect the health of 

distant body organs. There are a number of risk factors which are common to both oral 

diseases and other organ specific, inflammatory pathologies at remote body sites. These 

include aging, infection, immunosenescence, genetic predisposition and socio-economic 

factors (Joshipura et al., 2000). In order to understand how one common, clinical 

condition such as chronic periodontitis becomes a potential risk factor for the 

development of, in this case, Alzheimer‘s disease (AD), this chapter will introduce each 

of these conditions in two parts, before reviewing the evidence available from current 

literature. 

 

1.1.Part I 

1.1.1. The oral cavity 

The mouth comprises of the oral cavity, which is important for both nutritional and 

communication functions required for a healthy existence and social values (Scheid, 

2012). The cavity is comprised of a variety of structures ranging in specialist functions 

that include teeth (deciduous and permanent), keratinised and non-keratinised mucosa, 

gingiva, periodontal structures (periodontal ligament, cementum and alveolar bone), 

salivary glands and specialist linings for taste e.g. the dorsal surface of the tongue 

(Scheid, 2012). The cavity stretches from the lips to the oropharynx at the anterior pillar 

of the fauces (Berkovitz and Holland, 2009).  

Bacteria can gain direct access to the oral cavity and colonise its tissue and 

mineralised anatomical structures, which results in the build-up of a biofilm (Marsh, 
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2004). In order to retain healthy levels of biofilm-forming bacteria the oral cavity has its 

own protective barriers. These include the buccal, gingival, and tongue mucosal 

surfaces (Marsh, 2004). These surfaces work together with the internal secretions such 

as saliva, mucous and the gingival crevicular fluid to aid the physical act of mastication 

and protect the oral cavity (Loesche and Lopatin, 1998). The saliva contains a range of 

both innate and adaptive agents designed to minimise the attachment and survival of 

organisms that may be established within the oral cavity (Fábián et al., 2012). Chemical 

factors such as antimicrobial peptides (AMPs) (Gorr and Abdolhosseini, 2011) and β-

defensins (Lu et al., 2004) are innate immune mechanisms involved in controlling 

pathogenic bacterial colonisation. The adaptive immune control measures include 

immunoglobulins (IgA) specific for the mucosal surfaces (Kinane et al., 1999; Cole et 

al., 1995), and various enzymes (for example defensins, lactoferrin and lysozyme) 

designed to prevent the microbial metabolic processes (Bu et al., 2006) essential for 

their colonisation or lyse bacterial cells.  

In addition, the oral mucosa has developed an immune protection based upon the 

activity of cell mediated immunity in the periodontal structures in direct response to 

bacterial antigenic challenges (Arenzana-Seisdedos, 1985; Taubman and Kawai, 2001) 

and antigen presentation. This results in the subsequent infiltration of T and B cells, a 

hallmark of the host‘s response to the presence of these non-host organisms (Arenzana-

Seisdedos, 1985; Taubman and Kawai, 2001; Medzhitov, 2007; Kumagai et al., 2008). 

It is recognised that if the balance between natural protective barriers is 

disrupted, the bacterial load will initiate disease states such as dental caries (Fejerskov, 

1997), periodontal disease (Socransky and Haffajee, 1992; Holt and Ebersole, 2005), 

ulcerative lesions (Leão et al., 2007) and a predisposition to opportunistic infections 
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from other microbial species such as viruses (Slots et al., 2006) and fungi (Moyes and 

Naglic, 2011).  

1.1.2. Complement a pivotal pathway in bacterial infections 

The complement system is a vital part of the innate immune response to bacterial 

infections and is implicated in numerous inflammatory conditions including periodontal 

disease. In brief, the complement system can be activated via three different pathways 

(classical, alternative and the mannose binding lectin (MBL) pathways as shown in Fig. 

1.1). The classical pathway is activated through C1q binding to the Fc portion of IgM or 

IgG which initially binds to neurotoxic proteins from pathogens and damaged cells. C1q 

binds to other proteins eventually forming a complex known as C1qrs. Next the C4 is 

cleaved to C4b and becomes attached to C2. Resulting in the formation of C4b2a that 

further along the pathway binds to C3 generating a C3 convertase enzyme C4b2a3b. 

This can catalyse the cleavage of C5 into C5b and the anaphylotoxin C5a is also 

released The C5b activation fragment interacts with proteins of the terminal 

complement pathways C6, C7, C8 and C9 to form the membrane attack complex 

(MAC) (Fig. 1.1).  

In the MBL pathway MBL binds to carbohydrates on the bacterial cell surfaces, 

forming mannose-associated serine protease-2. This molecule has the ability to interact 

with complement proteins, C4 and C2 to ultimately cleave C3 and from here the process 

is as described for the classical pathway (Fig. 1.1). The alternative pathway is activated 

by bacterial polysaccharides (zymosan, LPS etc.) through factor P (properdin) to cleave 

C3 to C3a and C3b. This is the dominant pathway of activation in periodontal disease. 

Then C3b and factors B and D convert C5 into C5a and C5b before the cascade 

continues to completion i.e. MAC formation (Fig. 1.1).  
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Figure 1.1: Schematic overview of the complement system. Demonstrating the three 

pathways (classical, alternative and the mannose binding lectin; MBL) and how they aid 

the removal of pathogens via anaphylatoxins, opsonin enhanced phagocytosis or 

formation of the MAC on the surface membrane of pathogens. Regulatory proteins both 

plasma soluble proteins (C1 inhibitor, C4bp or C4 binding protein, Factors H and I, 

ckusterin) and membrane bound proteins (CD53, CD46, CD55 and CD59) acting at 

various stages of the complement pathway. 

 

The anaphylotoxins (C4a, C3a and C5a) produced following complement 

activation act by promoting vasodilation and stimulating cellular immune responses via 

monocyte/macrophage cells contributing to local acute inflammation (Perry, 1998). 

Whereas, the final MAC is formed on the surface of the pathogen, inserting C8 and C9 

into the bacterial membrane, forming pores to disrupt the membrane. These pores 
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disrupt the phospholipid bilayer of target cells, leading to cell lysis and ultimately death. 

All three pathways of complement activation merge to facilitate opsonisation and 

recognition of labelled bacteria by phagocytic cells (Gasque, 2004; Hajishengallis, 

2010; Hanisch, 2002; Janeway, et al., 2005; Jack et al., 2001). 

1.1.3. Periodontal disease(s) 

Periodontal diseases are polymicrobial, chronic inflammatory disease processes with an 

established subgingival bacterial aetiology that can ultimately lead to loss of tooth 

attachment (Grenier and Mayrand, 1995; Socransky et al., 1998; 2005). Environmental 

factors such as level of oral hygiene, smoking, stress and systemic factors appear to play 

a role in their development (Stabholz et al., 2010). More than one-third of the adult 

population suffers from periodontitis resulting in tooth loss. In addition, periodontal 

diseases have been associated with many systemic conditions such as cardiovascular 

disease (Mattila et al., 1989; Destefano et al., 1993; Sanz et al., 2010), cerebrovascular 

diseases (Wu et al., 2000; Sfyroeras et al., 2012), rheumatoid arthritis (Tolo and 

Jorkjend, 1990; Gleissner et al., 1998), AD (Riviere et al., 2002; Stein et al., 2007; 

Kamer et al., 2009), and even cancer (Meyer et al., 2008).  It is the chronic form of 

periodontal disease that is of interest here due to its suggested associations with AD, 

although, the strength and relevance of the link is currently under investigation.  

 

1.1.4. Host’s inflammatory response 

The junctional epithelium (JE) plays a key role in protecting the host from periodontal 

disease. The JE links the gingiva to the tooth enamel, thereby creating a seal to prevent 

bacteria from entering the gingival tissue (Larjava et al., 2011). However, in periodontal 

disease the portion of the attached JE is reduced to less than 100 µm at the bottom of the 

pocket hence the JE transforms into pocket epithelium (PE), in healthy individuals 
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portion of the attached JE length is up to 10 times longer. In deep pockets the PE length 

can reach 10 mm or more. In established periodontal disease lesions, bacterial biofilms 

flourish in the pockets between the teeth and PE which separates the biofilm from the 

connective tissue and inflammatory infiltrate. The role of PE, therefore, is thought to be 

crucial in pathogenesis of periodontal disease. It is not clear how PE participates in 

regulation of periodontal inflammation and little is currently known about how 

molecular pathways in the host PE/JE cells could regulate their inflammatory response 

to complex polybacterial biofilms. In the inflammatory infiltrate, the outcome of the 

cytokine response is regulated by production of pro-inflammatory cytokines that are 

encountered by anti-inflammatory cytokines.  

The inflammatory response taking place in periodontal disease begins with a 

complex bacterial challenge where molecules such as lipopolysaccharide (LPS), 

capsular proteins, flagellin, fimbrillin, peptidoglycan, bacterial DNA, proteases, and 

enzymes (for example gingipains, dentisilin, and trypsin like proteases) (Kawai and 

Akira, 2005) stimulate the hosts‘ innate immune responses (Ohlrich et al., 2009). This 

causes hosts pattern recognition receptors (PRRs) on the PE to produce a range of 

cytokines to recruit appropriate immune cells to the site of infection (Kawai and Akira, 

2005). In addition, the metabolic products of the bacteria cause the PE to secrete 

neuropeptides (such as neuropeptides substance P, calcitonin gene-related peptide, 

vasoactive intestinal polypeptide, and neuropeptide Y), promote vasodilation of local 

blood vessels and permit an influx of neutrophils in response to signals from 

chemokines (Ohlrich et al., 2009). At this point there are no clinical signs of 

inflammation and if the plaque is removed then the tissue will return to homeostasis; the 

reversible stage of gingivitis (Darveau et al., 1997; Darveau, 2010). 
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If the microbial burden continues then the vascular leakage and activation of 

serum proteins amplifies the local inflammatory response leading to the initiation of the 

hosts‘ adaptive immune responses with clinical signs progressing to bleeding and 

gingival inflammation. If adequate treatment is not sought, the disease will progress 

further with increased gingival bleeding, and changes in colour and contour of the 

gingivae as macrophages, plasma cells and T and B lymphocytes infiltrate the soft 

tissues (Ohlrich et al., 2009). The innate and adaptive immune responses involved in the 

inflammatory process result in tissue destruction (Darveau et al., 1997, Darveau, 2010) 

(Fig. 1.2).  

 

Figure 1.2: Severe periodontal disease. Image shows the effect of chronic periodontitis, 

the inflammed, receding gums and pus are clearly visible alongside the irreversible 

alveolar bone loss. 

 

When the diseased state progresses to periodontal disease irreversible 

attachment loss and alveolar bone loss becomes apparent (both histologically and 

clinically), as the inflammatory lesion extends deeper affecting the alveolar bone (Di 

Benedetto et al., 2013). It is now accepted that the majority of the destruction of bone as 

a result of chronic periodontal disease is due to the disruption of the balance between 
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osteoblast and osteoclast activity (in favour of osteoclasts) caused by the bacterial 

products and inflammatory cytokines (organ specific inflammation) (Di Benedetto et 

al., 2013). In susceptible individuals, acute phase inflammation fails to resolve and this 

gives rise to chronic inflammation which results in periodontal disease specific 

pathology. 

Diagnosis of periodontal disease is generally made by a thorough examination 

carried out by the individuals‘ dental practitioner. Clinical diagnosis involves measuring 

the depth of the gingival pocket using a calibrated periodontal probe. Measurements are 

taken from four different sites around the circumference of each tooth. The greater the 

depth of gingival pocket indicates a greater loss of supporting tissue. The probe can also 

feel for the calculus deposition (calcified dental plaque), sweep for plaque and highlight 

where the pocket is bleeding as an indicator of active inflammation and tissue 

destruction. Periodontal disease is controlled by improving the patients‘ self-care along 

with regular professional treatment to remove any newly formed deposits and calculus.  

 

1.1.5. Oral Microbes 

Periodontal disease occurs as a result of microbial burden within the oral cavity 

initiating the hosts‘ immune response. Analysis of normal human microbiota revealed 

>700 bacterial species or phylotypes, of which 60% have not been cultivated.  

Similarly, by using culture-independent molecular methods, Paster (2001) detected 

>500 species or phylotypes in subgingival plaque of healthy and periodontal disease 

individuals.  Due to
 
the vast complexity of the microbial oral flora, it is likely

 
that all of 

the organisms involved
 
in the development of periodontitis have not yet been identified.  

Further, viruses (herpes simplex virus, cytomegalovirus, EBV-1) have been detected in 

crevicular samples from individuals with periodontitis (Slots, 2002).   
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Socransky et al., (1998) published seminal data showing the presence and levels 

of 40 subgingival taxa in 13,261 human subgingival plaque samples from 185 subjects 

using DNA-DNA checkerboard hybridization. These authors suggested the existence of 

five major complexes of bacteria (Fig.1.3). Several microbial species belonging to the 

red and orange complexes (Porphyromonas gingivalis, Treponema denticola, 

Tannerella forsythia, Actinobacillus actinomycetemcomitans, Fusobacterium 

nucleatum, Prevotella intermedia, Prevotella nigrescens, Peptostreptococcus micros, 

Campylobacter rectus, Selenomonas noxia, Streptococcus intermedius, and Eikenella 

corrodens), are associated with deep periodontal pockets and periodontal progression 

(Fig. 1.3).  Other species in green and yellow complexes have no relation to periodontal 

progression. In addition, the bacterial species belonging to the red complex (P. 

gingivalis, T. denticola and T. forsythia) are seldom detected in the absence of members 

of the orange complex. F. nucleatum (a member of the orange complex) represents a 

bridging species (Kolenbrander et al., 2000; 2002) in the progression of the subgingival 

biofilm maturation and microbial succession (Fig. 1.4).  Although F.  nucleatum is not 

considered
 
a primary periodontal pathogen the bacterium has attracted interest because

 

of its important role in mediating the attachment of several
 
bacterial species into the 

plaque biofilm (Kolenbrander et al., 2000; 2002; Nishihara and Koseki, 2004). This was 

further demonstrated by Nishihara and Koseki (2004) who reviewed the microbiology 

in periodontal disease and their succession from early, secondary, and late colonizers 

(Fig 1.4) which indicated that the bridging species (F. nucleatum) is implicated in both 

subgingival biofilm development and periodontitis progression.   
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Figure 1.3: Microbial complexes in subgingival biofilm. (Modified from Socransky et 

al., (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134-144).  
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Figure 1.4: Microbial ecology of subgingival plaque as a pathogenic biofilm.  
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1.1.6. Periodontal pathogens  

Periodontal disease is a polymicrobial mixed infection and is a major chronic 

immunoinflammatory disease of humans with no single bacterial species triggering the 

destructive host responses (Darveau, 2010). As mentioned previously, the red complex 

bacteria (P. gingivalis, T. forsythia and T. denticola) are considered as key players in 

chronic periodontal disease pathogenesis and in driving inflammation and tissue 

damage (Socransky et al., 1998; Holt and Ebersole, 2005). These three bacteria are 

found in high numbers in adult periodontal lesions and in deeper pockets (Farias et al., 

2012). A strong relationship between P. gingivalis and T. forsythia has been 

demonstrated in samples taken from sub-gingival plaques of various pocket depths 

(Gmür et al., 1989). P. gingivalis, T. forsythia and T. denticola are major bacteria 

investigated in this thesis; hence, their relevant characteristics are described in detail. In 

addition, F. nucleatum is discussed in light of its bridging role in mediating the 

attachment of several bacterial species into the plaque biofilm. 

 

i) Porphyromonas gingivalis  

P. gingivalis was initially isolated by Oliver and Wherry (1921) and was classed as 

belonging to the Bacteroides genus of anaerobic Gram negative bacteria. Over time, the 

nomenclature has changed on the basis of these organisms ability to hydrolyse sugars 

and if they are pigmented or not. Thus, the Porphyromonas species are asaccharolytic 

and display black pigment (Mayrand and Holt, 1988; Shah and Collins, 1990; Paster et 

al., 1994).  
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Figure 1.5: TEM images of P. gingivalis. A) lower magnification image, bar represents 

500 nm. B) Higher magnification of single P. gingivalis cell, note the outer membrane 

vesicles (OMVs) being released, bar represents 100 nm. Cells were prepared for TEM 

as stated in section 4.2.11. 

 

P. gingivalis is the most studied example of the periodontal pathogens (Fig. 1.5). 

It is a non-motile, non-spore forming, rod shaped, Gram negative, anaerobic bacteria 

and can exist with/without fimbriae (Mayrand and Holt, 1988). P. gingivalis has been 

shown to play a significant role in the initiation, and chronic progression of 

periodontitis (Slots and Listgarten, 1988; Hajishengallis, 2011; 2012). This bacterium is 

highly pathogenic due to the virulence factors it possesses which aid its invasion and 

survival within host tissues (Holt et al., 1999). The presence of fimbriae on the surface 

of the bacteria aids its adhesion, colonisation, invasion and survival within host tissues 

(Holt et al., 1999). In addition, P. gingivalis produces a large number of hydrolytic, 

proteolytic and lipolytic enzymes, many of which are exposed on the surface of the 

bacterium so that it can come into direct contact with the host cells (Mayrand et al., 

1980, Slots, 1981). Collagenases, aminopeptidases and trypsin-like proteases are critical 

to the pathogenesis of periodontal disease. Aminopeptidases and trypsin-like proteases 
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are known as gingipains (Holt and Ebersole, 2005). Gingipains cleave polypeptides 

after the arginine and lysine residues and have been shown to play a key role in the 

adherence of P. gingivalis to host cells and other bacteria (Imamura, 2003). In addition, 

a major component of the outer membrane of P. gingivalis (and all Gram negative 

bacteria) is LPS (discussed further in section 1.1.7), which acts as a pathogen associated 

molecular pattern (PAMP) stimulating the hosts‘ immune response and ultimately 

leading to destruction of the host tissue. The outermost part of the LPS molecule 

consists of a series of repeating units of monosaccharides, which form the O-

polysaccharides that are structurally and antigenically diverse. This is responsible for 

the O serotype of Gram negative bacteria. The core oligosaccharides (R polysaccharide) 

are structurally similar in most Gram negative bacteria. These oligosaccharides are 

attached to lipid A, which is responsible for the majority of the toxicity of this 

endotoxin. 

Further, Gram negative bacteria produce outer membrane vesicles (OMVs) 

when undergoing surface membrane modifications (Grenier and Mayrand, 1987; 

Duncan et al., 2004). During bacterial growth a small portion of the cells outer 

membrane bulges away from the cell where it will pinch off and ultimately be released, 

hence, why membrane blebbing is often observed. OMVs contain outer membrane 

components (LPS), cell wall components (peptidoglycan) along with gingipains and 

other biologically active components which will initiate the hosts immune responses 

(Manning and Kuehn, 2011), contribute to the biofilm formation or enter extracellular 

milieu due to their small size (20-200 nm) (Schooling and Beveridge, 2006). P. 

gingivalis has been shown to selectively sort virulence factors into OMVs (Haurat et al., 

2011) therefore playing an essential role in the pathogenesis of the bacteria.  
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In addition to OMVs, Short chain fatty acids (butyric and propionic acids) are 

also released by P. gingivalis as by-products of metabolism. These inhibit fibroblast 

proliferation in addition to contributing to the noxious smell of the bacteria (Singer and 

Buckner, 1981; Grenier and Mayrand, 1995). These by-products are also shared as 

nutritional pro-growth supplements between P. gingivalis and T. denticola (Grenier, 

1995). 

P. gingivalis has recently been described as a ―keystone pathogen‖ meaning that 

this bacterium can influence the populations of bacterial species taking up residency 

following its initial colonisation in the host (Hajishengallis et al., 2011; 2012).  

 

ii) Treponema denticola 

 Figure 1.6: TEM images of T. denticola. A) Lower magnification image, bar represents 

500 nm. B) Higher magnification of T. denticola cell, bar represents 100 nm. Cells were 

prepared for TEM as stated in section 4.2.11. 

 

T. denticola along with P. gingivalis is implicated in chronic periodontal disease and 

together they demonstrate a synergistic relationship. Simonson et al., (1992), reported 

that T. denticola was not detected in the absence of P. gingivalis in a total of 221 
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specimens taken from a multinational population. Also, T. denticola is found located 

within the surface layers of the sub-gingival plaque, with P. gingivalis being deeper 

within the plaque, beneath the surface layer (Kigure et al., 1995). In addition, Grenier 

(1992) demonstrated that a symbiotic nutrient relationship exists between these two 

bacteria. The growth stimulating factors produced by P. gingivalis (ATCC 33277) and 

T. denticola (ATCC 35405) for their symbiosis are their metabolic by-products 

isobutyric acid and succinic acid respectively (Grenier, 1995).  

T. denticola (Fig. 1.6) is motile and is capable of chemotaxis which allows the 

bacteria to respond to environmental stimuli (Sim et al., 2005). The motility of T. 

denticola is facilitated by the presence of periplasmic flagella. These aid the 

translocation in environments which would generally slow/immobilise externally 

located flagella and their internal location means that the bacteria is protected from 

flagella specific antibodies produced by the host (Charon and Goldstein, 2002). Unlike 

P. gingivalis, T. denticola outer sheath does not contain typical LPS but instead it 

contains lipo-oligosaccharides (LOS), however, LOS can also stimulate an immune 

response within the host and can activate fibroblast activity (Schultz et al., 1998; 

Schröder et al., 2000). The outer sheath proteins of T. denticola also function as OMVs 

targeting the adaptive immune response of the host (Weinberg and Holt, 1991; Kuehn 

and Kesty, 2005). In addition, the transposases of T. denticola function to ‗cut and 

paste‘ mobile genetic elements within the genome, hence, T. denticola has a high 

potential for genetic variability when growing as part of a biofilm (Mitchell et al., 

2010). Another enzyme possessed by the bacterium is dentisilin which is a protease 

enzyme located on the cell surface that aids the bacteria by disrupting host signalling 

pathways via degradation of the hosts‘ cellular matrix proteins (Uitto et al., 1988; 

Grenier et al., 1990; Makinen et al., 1995; Ishihara et al., 1996; Beausejour et al., 
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1997). As for P. gingivalis, it has been reported that T. denticola also possesses trypsin-

like enzyme activity (Ohta et al., 1986; Fenno et al., 2001). Finally, to aid the 

colonisation of the bacteria T. denticola has a β-barrel, integrated outer sheath protein 

which acts as a porin and has surface exposed loops which are able to bind a variety of 

host proteins.  

 

iii) Tannerella forsythia 

 

Figure 1.7: TEM images of T. forsythia. A) Lower magnification image, bar represents 

500 nm. B) Higher magnification of T. forsythia cell, bar represents 500 nm. Cells were 

prepared for TEM as stated in section 4.2.11. 

 

T. forsythia (Fig. 1.7) is one of the least studied significant periodontal pathogens as it 

has fastidious growth characteristics and can be difficult to manipulate genetically 

(Onishi et al., 2008). So far only a few putative virulence factors have been identified 

for T. forsythia and these include trypsin-like and PrtH proteases which may play a role 

in degradation of host proteins, cleaving components involved in the innate (cytokines, 

chemokine, complement proteins) or the adaptive (IgGs) immune system, whilst aiding 

the growth of the bacteria through supplying essential amino acids and heme (Sharma, 
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2010). T. forsythia also possesses two sialidases, known as SiaHI and NanH, these 

enzymes have the ability to cleave sialic acids on host glycoproteins. This results in the 

destruction of the host glycoproteins and/or the unmasking of hidden epitopes on host 

surfaces thereby aiding the pathogenesis of the bacterium. 

In addition, T. forsythia has also been shown to express a number of surface 

components such as the surface layer (S-layer), which promotes adherence to, and 

invasion of epithelial cells (Sabet et al., 2003; Lee et al., 2006). Another surface 

component is the leucine-rich repeat BspA protein which is thought to contribute to 

alveolar bone loss in mice (Sharma et al., 2005) in addition to its role in protein 

interactions vital for the interaction of T. forsythia with the host and other bacteria 

(Sharma et al., 1998; Loimaranta et al., 2009). Inagaki et al., (2006) investigated the 

epithelial cell adherence and invasion abilities of T. forsythia and found that these are 

dependent on BspA. They also reported that P. gingivalis FDC 381 or its OMVs 

enhance the attachment and invasion of T. forsythia ATCC 43037 to epithelial cells 

(Inagaki et al., 2006). Finally, surface lipoproteins are present which can induce an 

inflammatory response within the host leading to cell/tissue destruction (Hasebe et al., 

2007), and T. forsythia presents with trypsin like protease activity as outlined for the 

other bacteria (Grenier, 1995). 

 

iv) Fusobacterium nucleatum 

F. nucleatum is a predominant species of the subgingival biofilm and is commonly 

located in the oral cavity of both healthy individuals and those with periodontal disease 

(Dzink et al., 1988).  It is a Gram negative anaerobic bacterium and, as mentioned 

previously, F. nucleatum has the ability to co-aggregate with both early and late 

colonizers of the oral cavity. Hence, it is suggested to promote plaque development via 
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functioning as a bridge bacterium (Bolstad et al., 1996; Kolenbrander, 2000; Rickard et 

al., 2003; Weiss et al., 2000). In addition, F. nucleatum is viewed as an opportunistic 

pathogen in polymicrobial infections and has been shown to contribute to various 

conditions, including bacterial vaginosis (Citron, 2002), acute appendicitis (Swidsinski 

et al., 2011), and preterm birth (Barak et al., 2007; Han et al., 2004). 

Several potential virulence mechanisms have been proposed for F. nucleatum and 

these include the binding to leukocytes (Mangan et al., 1989; Ozaki et al., 1990) and 

immunoglobulin G (Grenier and Michaud, 1994), binding to and lysing of erythrocytes 

(Ozaki et al., 1990), plus adhering to and invading epithelial cells (Han et al., 2000). In 

addition, F. nucleatum has the ability to produce a serine protease which degrades 

extracellular matrix proteins (Bachrach et al., 2004), activate leukocytes (Sheikhi et al., 

2000) and lymphocytes (Tuttle et al., 1992), and produce OMVs containing probable 

virulence factors (Skår et al., 2003). 

Settem et al., (2012) demonstrated that a more potent immune response and 

increased alveolar bone loss was induced in a periodontal mouse model treated with 

mixed T. forsythia and F. nucleatum infections than infection with either species alone. 

In contrast, Kesavalu et al., (2007) demonstrated that F. nucleatum did not further affect 

the alveolar bone loss due to polymicrobial infection comprising P. gingivalis, T. 

denticola, and T. forsythia. Therefore, as this study is using a mixed infection 

containing all three red complex bacteria (P. gingivalis, T. denticola, and T. forsythia), 

and in the presence of all three pathogens it was shown not to be responsible for 

destructive periodontal disease (resulting in tooth loss) its presence will not be 

investigated and F. nucleatum will be viewed initially as bridging bacteria in the 

formation of a polymicrobial infection. 

 



21 

 

 

1.1.7. Virulence factors that damage the host 

There are three ways in which bacteria can damage the host tissue. The first mechanism 

is via direct damage due to the pathogens ability to adhere, grow and evade the hosts‘ 

defences (Peterson, 1996), although, this method of tissue destruction is believed to be 

the least prevalent mode of pathogen induced damage. The second mechanism is the 

pathogens ability to produce an autoimmune response which is excessive and beyond 

the threshold of the hosts‘ immune response and as a result there is tissue damage 

(Birkedal-Hansen, 1993; Kornman et al., 1997). The final mode of pathogen induced 

tissue damage is via toxins that are ‗poisonous‘ to the host (Peterson, 1996).  

A toxin can be any substance which contributes to illness and there are two main 

forms of toxin produced by periodontal bacteria: endotoxins and exotoxins (Peterson, 

1996).  

 

i) Endotoxin – LPS 

LPS is an integral component of Gram negative bacteria and is found in the outer 

membrane layer. It protects the bacteria by restricting the entry of noxious substances 

such as bile salts, digestive enzymes and some antibiotics and enables the bacterium to 

evade many host defence factors including complement, lysozyme and cationic proteins. 

LPS may also be found in a cell-free form occurring after bacterial autolysis as a result 

of exposure to antibiotics during rapid growth or when essential nutrients are depleted 

from the environment. Such conditions may arise during bacteraemia. In a cell-free 

form, LPS forms complexes with molecular weights >10
6
. It is a stable molecule, which 

can withstand heating to 100 °C for several hours. LPS synthesis is controlled by 

chromosomal genes and not by plasmid DNA. 
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Figure 1.8: The structure of the bacterial endotoxin LPS.  

 

Rough type LPS does not contain the O polysaccharide, whereas smooth LPS contains 

two or more repetitive units forming the O chain. LPS of P. gingivalis is generally of 

smooth type although this can vary amongst strains (Kabanov et al., 2010). Smooth type 

LPS consists of three regions: lipid A, R polysaccharide and O polysaccharide (Ratez 

and Whitfield, 2002) (Fig. 1.8). The lipid A region contains the hydrophobic membrane 

anchoring region of LPS and is made up of a phosphorylated N-acetylglucosamine 

(NAG) dimer with six or seven fatty acids attached, this structure being highly 

conserved amongst Gram negative bacteria (Ratez and Whitfield, 2002). The R 

polysaccharide (also known as the core R antigen) region is attached to the sixth 

position of a NAG and is made up of a short chain of sugars. Two unusual sugars are 

incorporated into the LPS of Gram negative bacteria these are heptose and 2-keto-3-

deoxyoctonate (KDO) and are often used for the identification of Gram negative LPS 

(Ratez and Whitfield, 2002). The third region, the O polysaccharide (also known as the 

somatic O antigen), is attached to the core polysaccharide and consists of repeating 
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oligosaccharide subunits made up of three to five sugars (chains can reach up to 40 

repeated units), this region of LPS is a major antibody binding site (Ratez and 

Whitfield, 2002). The lipid A region of LPS is a powerful biological response modifier 

which can stimulate the mammalian immune system. Lipid A binds to pathogen 

recognition receptors (PRRs) in many cell types which promotes cell activation and 

secretion of pro-inflammatory cytokines and nitric oxide (Beutler, 2003). This can result 

in the stimulation of prostaglandin and leukotriene production, and activation of the 

complement cascade and the coagulation cascade (Taubman et al., 2005). Hence, high 

levels of LPS within the host can result in an elevated immune response which, once 

above the hosts‘ threshold level, will result in damage to the tissue (Taubman et al., 

2005). 

P. gingivalis has been shown to contain two LPS macromolecules, an O-LPS 

containing the O polysaccharide attached to the lipid A core and an A-LPS where the 

phosphorylated branched mannan repeating unit is attached to the lipid A core 

(Rangarajan et al., 2008). In addition P. gingivalis LPS possesses significant amount of 

lipid A heterogeneity containing tetra- (LPS1435/1449) and penta-acylated (LPS1690) 

structures.  The heterogeneity of LPS includes differences in the number of phosphate 

groups alongside both the amount of lipid A fatty acids and their specific position. The 

presence of multiple lipid A structures makes it more difficult for the innate host 

responses to recognise the molecule therefore aiding the virulence of P. gingivalis 

(Reife et al., 2006).  

 Another important factor regarding the LPS of P. gingivalis is its ability to 

modify certain surface proteins; Veith et al., 2002 demonstrated that gingipain complex 

from different strains of P. gingivalis have an intimate association between LPS and the 

glycosylation of the protein - resulting in the cross-reactivity between monoclonal 
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antibodies against LPS and to the carbohydrate moieties on gingipains. O'Brien-

Simpson et al., 2001 suggested that the modification recognised by the P. gingivalis 

monoclonal antibody (clone 1B5) is located in the C-terminal segment of RgpB, overall 

suggesting that gingipains can be modified by LPS attachment to the conserved C-

terminal segment. This could have larger implications in the virulence of the pathogen 

as it displays a mechanism by which the gingipains attach to the outer membrane (Veith 

et al., 2002). 

LPS also activates the immune response through receptors on the membrane of 

host cells or PRRs with both the tetra- and penta-acylated lipid A structures of P. 

gingivalis differentially activating the TLR-mediated NF-κB signalling pathway. P. 

gingivalis LPS has been shown to use both toll like receptors 2 and 4 (TLR2 and 

TLR4), depending on the cell type (Kocgozlu et al., 2009). The resulting bone loss 

following infection with P. gingivalis is dependent on the hosts‘ immune response. In 

support of this view Baker et al., (1994; 1999; 2000) demonstrated that both CD4+ T 

cell deficient mice and SCID (severe-combined-immunodeficiency) mice were resistant 

to alveolar bone loss due to P. gingivalis (Baker, 1994; 1999; 2000). 

T. forsythia cell membrane contains rough type LPS (Posch et al., 2013). This is 

the same structure as smooth type LPS although it lacks the O polysaccharide region 

(Fig. 1.8). T. forsythia LPS produces a typical innate immune response resulting in the 

release of pro-inflammatory mediators (Posch et al., 2013) as described for P. gingivalis 

LPS. In addition to LPS T. forsythia also has an S-layer; the S-layer is the outermost 

cell envelope component of a number of bacteria providing an additional protective 

barrier to the bacteria alongside playing a role in cell adhesion and surface recognition. 

The S-layer of T. forsythia is made up of two glycoproteins, TfsA and TfsB, both of 

which are specifically recognised in the sera of patients with periodontitis. Also, TfsA 
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and TfsB may mediate adhesion to, and/or invasion of, human gingival epithelial cells 

and epidermal carcinoma cells of the mouth. Sekot et al., (2011) demonstrated that the 

mutant strain of T. forsythia which lacks the S-layer induced a significantly higher level 

of proinflammatory cytokines than wild type T. forsythia, thereby suggesting that the S-

layer attenuates the host immune response by evading innate immune recognition 

(Shimotahira et al., 2013). 

On the other hand T. denticola has LOS (as mentioned previously)(Schultz et 

al., 1998) whose structure differs to LPS as its O polysaccharide region is limited to 

only 10 saccharide units (Preston et al., 1996). LOS has a similar lipid A structure to 

LPS with an identical array of functions. Hence, T. denticola LOS has been shown to 

stimulate osteoclastogenesis and MMP (matrix metalloproteinase) expression (Choi et 

al., 2003) and can induce inflammatory mediator production by macrophages (Tanabe 

et al., 2008) alongside production of IL (interleukin) -8 from fibroblasts (Preston et al., 

1996). The continuous high secretion of cytokines (IL-6, IL-8, PGE2, MMPs) by the 

host cells following stimulation by factors such as LPS modulates the tissue destruction 

in periodontal disease (Ishikawa, 2007). 

 

ii) Exotoxins – Proteases 

Although the primary cause for connective tissue destruction is the result of proteolytic 

activity of host cells, bacteria also secrete products which can damage the extracellular 

matrix proteins and these represent the exotoxins. Exotoxins are proteins (often 

enzymes and metabolic by-products) which exert damage on the host following release 

from the bacterial cell. These include proteases, coagulases and fibrinolysins which act 

on their specific substrates (Daly, 1980; Sandholm, 1986). For example, P. gingivalis 

has the ability to secrete a large variety of enzymes such as collagenases, which break 
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the peptide bonds in collagen (the main structural protein of connective tissue) (Travis 

et al., 1997). P. gingivalis is also armed with gingipains. There are two types of 

gingipains expressed and these are lysine specific (Kgp) and arginine specific (Rgps) as 

determined by the specificity for their cleaving sites (Holt and Ebersole, 2005; 

Imamura, 2003). Gingipains are known to play a major role in the progression of 

periodontal disease, inducing inflammation and tissue destruction in the periodontium, 

which includes alveolar bone loss (Miyachi et al., 2007). In addition, gingipains are also 

shown to degrade CD14 on the surface membrane of macrophages (Imamura, 2003). 

T. denticola expresses a number of different proteolytic enzymes which promote 

the invasion and destruction of oral tissues (Kesavalu et al., 1997; Potempa et al., 

2000). Dentilisin is a protease secreted by T. denticola and is bound in the outer sheath 

cleaving specific proteins at a phenylalanine residue site (Uitto et al., 1988; Rosen et 

al., 1999). Dentilisin hydrolyses a range of proteins including transferrin, fibrinogen and 

immunoglobulins. In addition, T. denticola has been shown to possess trypsin like 

activity (Makinen et al., 1995; Gazi et al., 1997) which has been identified as a result of 

the protein encoded for by the OpdB (oligopeptidaseB) gene (Fenno et al., 2001). 

T. forsythia also possesses trypsin like activity. This was initially reported by 

Grenier (1995), who identified a protein which cleaves at arginine or lysine bonds, but 

this is believed to degrade only small peptides. An additional protease (PrtH) secreted 

by T. forsythia, with the ability to cleave larger proteins, has since been identified by 

Saito et al., (1997) and functions as a cysteine protease. Studies have suggested that 

PrtH may be involved in the disintegration of the gingival epithelium and induction of 

chemokine IL-8 from detached cells (Sharma, 2010). In addition, T. forsythia induces 

alveolar bone loss in mice dependant on the BspA protein (Sharma et al., 2005) by 

activating antigen presenting cells via TLR2 dependant signalling (Myneni et al., 2011). 
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Although not directly secreted by bacteria, another form of proteases (secreted 

by the host) that plays a role in the tissue destruction by periodontal pathogens are 

MMPs. MMPs play a role in tissue remodelling and cell migration. If synthesis of these 

proteases is increased these may be involved in the pathogenesis of periodontal disease 

as they have the ability to degrade proteins such as collagen, fibronectin, elastin and 

proteoglycan (Sapna et al., 2013). Exposure to bacterial components such as LPS can 

induce MMP secretion in gingival epithelial cells (Birkedal-Hansen, 1993). In addition, 

P. gingivalis proteases can up-regulate MMP secretion in epithelial cells and 

subsequently this leads to further tissue destruction.  

 

1.1.8. Bacterial peptidoglycan 

Peptidoglycan is the only cell wall component common to all bacteria. It is the essential 

scaffold of all cell walls that provides rigidity. Peptidoglycan, as the name implies, is 

formed of glycan (sugar) strands cross-linked via short peptides (proteins) (Fig. 1.9). 

The glycan segment comprises of two alternating amino-hexose sugars; N-

acetylglucosamine and N-acetyl muramic acid cross-linked by short chains of amino 

acids. Usually, L-alanine is bound to muramic acid (L.L-DAP), in Gram positive 

bacteria, or L.D mesodipemellic acid (L.D- (meso)-DAP) in Gram negative bacteria 

(Ghuysen et al., 1963; Ghuysen 1968). The cell walls of Gram positive bacteria contain 

90-95 % peptidoglycan whereas Gram negative bacterial cell walls contain only 5-10 % 

peptidoglycan. The greater amount of peptidoglycan present in Gram positive bacteria 

protects them from complement mediated lysis as the MAC is unable to penetrate the 

cell wall. Thus, peptidoglycan can act as an immune evasion strategy for some bacteria.  

In addition, peptidoglycan can act as a PAMP, initiating immune responses 

within the host. Both bacterial peptidoglycan and its products (muramylpeptides) have 



28 

 

 

been shown to act as inflammatory mediators by activating host innate PRR (TLRs and 

intracellular receptors nucleotide-binding oligomerization domain receptors (NOD) 1 

and 2) (Sorbara and Philpott, 2011). The binding of peptidoglycan to a PRR (such as 

TLR2) results in an inflammatory response within the host ultimately leading to 

destruction of the host tissue (as described for LPS). Peptidoglycan preferentially binds 

to TLR2 on immune cells within the host unlike LPS (Iwaki et al., 2002). 

 

Figure 1.9: Assembly of Gram negative peptidoglycan. NAM = N-acetylmuramic acid 

and NAG = N-acetylglucosamine. 

As for the three periodontal (red complex) pathogens, P. gingivalis 

peptidoglycan has been shown to be highly toxic (Ishii et al., 2010), and it differs 

slightly from other forms of Gram negative peptidoglycan as it contains L.L-DAP 

instead of L.D- (meso)-DAP (Barnard and Holt, 1985). T. denticola cell wall also 

contains peptidoglycan and has the ability to mount an immune response in the host 

(Tanabe et al., 2009), and was shown to be highly toxic in a time- and concentration-
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dependent manner (Grenier and Uitto, 1993). Tanabe et al., (2009) demonstrated that T. 

denticola peptidoglycan can activate intracellular signalling pathways, leading to an 

increased production of inflammatory mediators by macrophage-like cells.  

T. forsythia cell membrane also contains peptidoglycan, however, these bacteria 

lack the metabolic pathway to synthesize their own N-acetyl muramic acid. Hence for 

the growth of T. forsythia an exogenous source of N-acetyl muramic acid is needed. 

Therefore, it has been speculated that by scavenging the N-acetyl muramic 

acid/peptidoglycan from within the periodontal pocket T. forsythia may be dampening 

the hosts‘ immune response, and actually reducing the level of inflammation (Sharma, 

2010).  

1.1.9. Immune evasion strategies of P. gingivalis, T. denticola and T. forsythia 

Extensive amount of data supports the idea that P. gingivalis, T. denticola and T. 

forsythia are master evaders of the host‘s immune system (Schenkein, 1989; Lamont 

and Jenkinson, 1998; Potempa et al., 2008; Mahtout et al., 2009; Magalhães et al., 

2008; Potempa and Pike, 2009; Belstrøm et al., 2011; Slaney et al., 2006) (Table 1.1). 

All of the red complex bacteria exhibit passive immune evasion mechanisms which aid 

their survival within the host, such as, cell aggregation and biofilm formation. The 

structural nature of a biofilm provides a physical barrier against immune cells of the 

host. Their passive defence mechanisms, allow the bacteria to evade the immune 

response of the host (Socransky and Haffajee, 2002). In addition, a number of active 

mechanisms are employed by bacteria which are based on three main processes 

including degradation of complement fragments (avoiding opsonisation by protease 

digestion of complement fragments), recruitment of hosts regulatory proteins (Factor H, 

C4 binding protein) and the protection by the bacterial cell wall. In the latter either the 

MAC is unable to form or their cell wall component (polysaccharides) mediated 
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complement activation is supressed (Thompson, 2002; Walport, 2001; Ngampasutadol 

et al., 2008; Potempa et al., 2008; McDowell et al., 2011; Shimotahira et al., 2013).  

In the case of P. gingivalis, it is very resistant to killing by complement due to 

the ability of the gingipains to degrade C3 and C5 and, thereby, preventing the 

deposition of C3b on the surface of the bacterial cell (Popadiak et al., 2007; Slaney et 

al., 2006). The finding that gingipains are modified by and reactive with an LPS 

recognising monoclonal antibody (MAb 1B5) suggests a mechanism for the attachment 

of the RgpA and Kgp complexes to the outer membrane (Veith et al., 2002), this 

potentially increases the virulence of the bacterium as gingipains present on the surface 

of the bacterial cell will be readily available to degrade complement proteins amongst 

others therefore avoiding the hosts immune response. Gingipains can also attach to C4b 

binding protein and avoid being killed by complement mediated lysis (Potempa et al., 

2008). Gingipains have also been shown to degrade the CD14 receptor, cytokines (IL-

12, IL-1β, IL-6, and Interferon gamma IFN-γ) and AMPs (Hajishengallis, 2011; Gutner 

et al., 2009). Another immune evasion mechanism which has been demonstrated for P. 

gingivalis is its adherence to erythrocytes via CR (complement receptor)-1. This allows 

the bacteria to go undetected by circulating phagocytes in addition to providing a 

potential transport mechanism for the movement of P. gingivalis via systemic 

circulation (Belstrøm et al., 2011). In addition, the ability to alter the lipid A structure of 

LPS could be one of the strategies utilised by P. gingivalis to evade innate host defence 

in gingival tissues potentially contributing to the pathogenesis of periodontal disease 

(Herath et al., 2013). 

T. denticola on the other hand exploits the hosts own regulatory proteins to 

avoid immune recognition as it has the ability to bind complement factor H to its 

surface (McDowell et al., 2005; 2009; 2011) where subsequently the bound factor H is 
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rapidly cleaved by the protease dentilisin (McDowell et al., 2011, Fenno et al., 1998, 

Yamazaki et al., 2006, Miller et al., 2012). Dentilisin also has the ability to degrade 

other proteins (C3) within the complement system via its protease activity (Yamazaki et 

al., 2006).  

Little is known about T. forsythia and its associated immune evasion 

mechanisms. Although, recently Shimotahira et al., (2013) suggested that the immune 

evasion strategies‘ of T. forsythia are similar to those employed by P. gingivalis. Jusko 

et al., (2012) demonstrated that T. forsythia is highly resistant to killing by human 

complement. This has been attributed to a recently identified metalloproteinase of T. 

forsythia known as karilysin which has the ability to inhibit complement at several 

stages. Jusko et al., (2012) demonstrated that karilysin had the ability to inhibit both the 

classical and lectin complement pathways via the degradation of mannose-binding 

lectin, ficolin-2, ficolin-3, and C4 thereby aiding the evasion of the hosts immune 

response. Recent findings from the same group (Jusko et al., 2013) also demonstrated 

that mirolysin, a novel metalloproteinase of T. forsythia, had the ability to inhibit the 

pathways of the complement system.  

In addition, the trypsin-like and PrtH proteases play a role in the immune 

evasion of T. forsythia via the degradation of host proteins involved in the immune 

response. Also, sialidases belonging to T. forsythia (SiaHI and NanH), as mentioned 

previously, have the ability to cleave sialic acids on host glycoproteins. This allows 

them to destroy the host glycoproteins and/or unmask the hidden epitopes on host 

surfaces thereby aiding the pathogenesis of the bacterium.  

A key factor of T. forsythia which aids the evasion of the hosts‘ immune 

response is the S-layer of the bacterium. As mentioned previously the S-layer is present 

in the outermost cell envelope of a broad range of bacteria. However, T. forsythia is 
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unique in that it is currently the only known Gram-negative bacterium which has a 

glycosylated S-layer. The S-layer of T. forsythia is composed of two high molecular 

weight glycoproteins encoded by the tfsA and tfsB genes which are 220 and 210 kDa 

size, respectively (Higuchi et al., 2000). The key function of the S-layer, with regards to 

evading the hosts‘ immune response, is providing an additional protective barrier to the 

bacteria. In addition, the mutant strain of T. forsythia which lacks the S-layer has been 

shown to induce a greater immune response from the host when compared with the wild 

type strain (Sekot et al., 2011). Therefore, the S-layer of T. forsythia has the ability to 

impair the hosts‘ immune response by evading innate immune recognition (Shimotahira 

et al., 2013). Together, the S-layer of T. forsythia and its enzymes (for example 

karilysin, PrtH proteases and sialidases) play a significant role in evading this 

bacterium‘s recognition by the innate immune system. 

 The immune invasion strategies of periodontal bacteria are of great importance 

not only in periodontal disease, but also in relation to systemic disease as not only can 

the bacteria and their virulence factors access the systemic system but they can also 

cause an increase in serum derived markers. All of these properties have the potential to 

reach remote body organs and elicit consequences on the hosts‘ general health. One 

simple pathway is that periodontal bacteria can gain access to systemic circulation 

through everyday activities such as chewing food or brushing teeth during episodes of 

bleeding (Forner et al., 2006) in the form of transient bacteraemia. These bacteraemic 

episodes can also occur when undergoing invasive dental procedures (Savarrio et al., 

2005; Daly et al., 2001; Tomas et al., 2007), and fitting with the theory of ‗focal 

infection‘ once present in systemic circulation periodontal bacteria have the potential to 

go undetected by the immune system (due to the immune evasion mechanisms) and 

ultimately to contribute to systemic disease. 
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Table 1.1: Tactics employed by periodontal pathogens to avoid eradication from the 

host. 

Mechanism Effector proteins 

& organism 

Supporting references 

Hijacking of C4b-bp & shedding and 

proteolysis of CD46 C‘ment 

regulators 

HrgpA & Kgp (P. 

gingivalis) 

Potempa et al., 2008; Mahtout et 

al., 2009 

Exploitation of CR1 receptor on 

erythrocytes 

Unknown (P. 

gingivalis) 

Belstrøm et al., 2011 

Degradation of  CD14 Gingipains (P. 

gingivalis) 

Potempa & Pike, 2009  

Degradation of complement proteins 

and inflammatory mediators 

Gingipains (P. 

gingivalis), 

Dentisilin (T. 

denticola) 

Hajishengallis, 2011; Gutner et 

al., 2009; Popadiak et al., 2007; 

Slaney et al., 2006; Yamazaki et 

al., 2006 

Inhibit phagocyte mediated killing 

via cross talk between CXCR4-

TLR2 

FimA (P. 

gingivalis) 

Hajishengallis et al., 2008 

Suppression of  the neutrophil 

oxidative burst (TLR-dependent) 

Unknown (T. 

denticola) 

Sabroe et al., 2005 

Hijacking of Factor H C‘ment 

regulator 

11.4 kDa factor H- 

binding lipoprotein 

(T. denticola) 

Magalhães et al., 2008 

Survives phagocytosis  Dentilisin (T. 

denticola) 

Lamont & Jenkinson, 1998; 

Yanagisawa et al., 2006 

Avoids recognition by innate 

immune response  

S-layer (T. 

forsythia) 

Sabet et al., 2003; Sekot et al., 

2011 
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1.1.10. Risk factors, genetics, diagnosis and treatment 

There are a number of factors associated with an increased risk for periodontal disease 

the majority of which are modifiable such as smoking (Bergstrom, 1989; Albandar et 

al., 2000; Tomar and Asma, 2000) and uncontrolled diabetes (considered modifiable as 

it can be controlled) (Kinane and Chestnutt, 1997). Non-modifiable factors include the 

hosts‘ immune response, as it is widely accepted that the destruction occurring in 

periodontal disease is not only due to the presence of harmful bacteria but also the 

specific response of the host (Van Dyke and Serhan, 2003). Another non-modifiable 

risk factor is osteoporosis. Studies have shown that alveolar bone density is altered in 

individuals with osteoporosis (Van Dyke et al., 2005). Furthermore, ageing is 

potentially considered as a risk factor for periodontal disease, although, this may a result 

of cumulative destruction rather than an increased rate of destruction occurring with age 

(Grossi et al., 1994; 1995; Genco, 1996).  

There is also a proposed genetic susceptibility associated with periodontal 

disease as studies have demonstrated that 10-15% of the population are at a higher risk 

of gingivitis developing into periodontal disease (reviewed by Kinane and Hart, 2003). 

Individuals respond to different antigens in ways predicted by their genetic make-up. 

The hosts‘ immune response is, to an extent, determined by previous exposure to a 

foreign substance (adaptive immunity), but it is predominantly influenced by the 

individuals‘ genes. A number of familial studies have been performed which suggest a 

genetic predisposition to chronic periodontal disease (Hassel and Harris, 1995), 

although it has to be noted that familial patterns may simply reflect common 

environmental factors within families. Twin studies have also been carried out which 

generally support a significant heritable component of periodontal disease. Corey et al., 

(1993) analysed 4908 pairs of twins, although their analysis failed to control for 
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external factors such as smoking status and environmental factors. Michalowicz (1991) 

assessed probing depth and clinical attachment loss, followed by alveolar bone height 

and found that there was significant genetic component (whilst controlling for smoking 

status and oral hygiene practices). In 2000, Michalowicz examined genetic and 

environmental variances and heritability for gingivitis and periodontal disease. They 

found that adult periodontal disease estimated to have approximately 50% heritability, 

with no evidence of heritability for gingivitis. Despite this evidence for genetic 

susceptibility in periodontal disease there currently lacks a successful genetic 

target/model and to date clinical evidence examining inflammatory genes has been 

inconclusive. 

 

1.1.11. Animal models of periodontal disease 

Animal models for experimentally induced periodontal disease are vital to 

understanding disease pathogenesis, co-morbidities and for subsequent therapeutic 

regimens. A variety of animals have been used as potential candidates for true 

periodontal disease induction, including rats, mice (germfree and wild type) and beagle 

dogs (Yamasaki et al., 1979; Schou et al., 1993; Eggert et al., 1980; Kesavalu et al., 

2007;   Polak, 2009; Do et al., 2013). These models have been tested using both mono 

infections, mixed infection and polymicrobial infections. The earliest model of 

Yamasaki et al., (1979) used germfree mice to establish if the JE around the molar teeth 

was different from that seen in mice reared in normal conditions and found no 

differences. Eggert et al., (1980) examined the epithelia surrounding molar teeth with 

limited eruption in the rat, mouse and hamsters. They reported that there are two types 

of epithelial arrangements namely the gingivae and the JE with shorter gingival crevice 

depths than previously thought. Subsequent models introduced P. gingivalis at the 
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gingival margins of maxillary molar teeth in a hamster model and murine model, and 

measured bone resorption (Pathirana et al., 2007; Hojo et al., 2008). A rat model of 

periodontal disease induced with the dominant polymicrobial periodontal pathogens was 

first demonstrated by Kesavalu et al., (2007). It was clearly shown that repeated 

polymicrobial infections induced periodontal disease with the associated alveolar bone 

resorption and soft tissue damage. In addition, a murine model of experimental 

periodontitis has been developed by Polak et al., (2009) in which P. gingivalis and F. 

nucleatum infection was initiated to assess bone loss and host responses. These 

researchers found mixed infections were superior to mono infection driven experimental 

models of periodontitis. Subsequent studies from the Kesavalu laboratory explored the 

possibility of P. gingivalis and T. denticola mono and mixed infections in induction of 

periodontal disease processes and once again demonstrated alveolar bone resorption 

(Verma et al., 2010). In addition to investigating co-morbidities, the ApoE
null

 mouse 

model has been used with mono and polymicrobial periodontal pathogen infections, 

confirming the presence of both periodontal disease and atherosclerosis (Rivera et al., 

2013; Chukkapalli et al., 2014; Velsko et al., in press).  ApoE in this context was a key 

factor due to its proven association with the metabolic regulation of cholesterol, and 

subsequently cardiovascular disease. However, this specific animal model may also 

prove useful for investigating other disorders due to the association of ApoE with the 

development of dementia, specifically AD. By using an ApoE
null 

animal model, the 

pathological changes occurring in the brain could be viewed prior to any repair as ApoE 

is essential for neuronal repair after infection. In addition, ApoE has been demonstrated 

to play a vital role in the formation of insoluble β amyloid (Aβ) fibrils (Wisniewski and 

Frangione, 1992) therefore providing an opportunity to assess changes occurring in the 

CNS in the absence of the classical hallmarks of AD (Aβ plaques). 



37 

 

 

The rat and mouse models of experimentally induced periodontal disease clearly 

demonstrate the role of pathogens in the initiation of the disease as well as providing 

proof of concept that they infiltrate to remote body regions to initiate organ specific 

pathology (Rivera et al., 2013; Chukkapalli et al., 2014; Velsko et al., in press). They 

have already been found in the walls of human coronary arterial tissues (Chiu, 1999; 

Haraszthy et al., 2000) and in atheromatous plaques (Cavrini et al., 2005; Kozarov et 

al., 2005). These models are extremely useful for exploring the ―focal infection‖ theory 

(Miller, 1891; Hunter, 1900) in relation to other inflammatory diseases.  

Currently periodontal disease has been linked directly with cardiovascular 

disease (Mattila et al., 1989; Destefano et al., 1993; Sanz et al., 2010), diabetes mellitus 

(Martinez et al., 2011), respiratory infections (Scannapieco et al., 1998; 1999), 

rheumatoid arthritis (Tolo and Jorkjend, 1990; Gleissner et al., 1998), stroke (Sfyroeras 

et al., 2012) Osteoporosis (Jeffcoat, 1998), obesity (Suvan et al., 2011) and pregnancy 

complications (Offenbacher et al., 1998) such as low birth weight (Offenbacher et al., 

1996) and preterm birth (Jeffcoat et al., 2011). More conditions are being added to this 

list all the time. In an attempt to explain the mechanisms underlying the link shown 

between periodontal disease and systemic disease, a number of hypotheses have been 

suggested. These include the direct invasion of distant organs by oral bacteria and/or 

their products, or the effect of increased systemic inflammation due to their presence 

within systemic circulation (Cullinan et al., 2009). Most recently periodontal disease 

has been linked with the aetiology of AD (Riviere et al., 2002; Stein et al., 2007; Kamer 

et al., 2009) and this forms the subject of part II of this thesis. 
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1.2.Part II 

The brain is a very complex organ, and overlapping neurodegenerative diseases add 

further complications when researchers are investigating the mechanisms of disease 

processes. A characteristic feature of human neurodegenerative diseases is the selective 

loss of neurons in a disease specific distribution. Prior understanding of the anatomy 

and the cellular neurobiology of the central nervous system (CNS) is necessary for the 

investigator.  

 

1.2.1. The Human Brain 

The CNS encompasses the brain and the spinal cord which are constantly submerged in 

cerebrospinal fluid (CSF). The CSF provides the brain with protection, support and 

nutrition alongside removal of metabolites. The brain and the spinal cord are surrounded 

by limiting membranes known as the meninges which in turn are surrounded by the 

bones of the vertebrae and cranium (Tamraz et al., 2006).  

The brain consists of both grey and white matter. The grey matter is made up of 

cell bodies of neurons whereas the white matter contains the dendrites and axons of cell 

bodies forming the network that connects neurons from one anatomical region of the 

brain to another. The largest part of the brain is the cerebrum which has a heavily folded 

(sulci) surface of grey matter known as the cerebral cortex (Tamraz et al., 2006). The 

brain is made up of two halves, called hemispheres, which are connected to each other 

by the corpus callosum. Each hemisphere comprises of a frontal, parietal, temporal and 

occipital lobe (Tamraz et al., 2006) (Fig. 1.11). The frontal lobe is located at the anterior 

of each cerebral hemisphere (Fig. 1.10) and this part of the brain is associated with an 

individual‘s personality, behaviour and emotions along with storing of long-term 

memories (Simons and Spiers, 2003).  
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Figure 1.10: Schematic image of the brain from a lateral view, indicating the position of 

the different lobes present in each hemisphere.  

 

The parietal lobe is situated posterior to the frontal lobe and superior to the 

occipital lobe (Fig. 1.10) and is responsible for receiving and processing information 

regarding temperature, taste, touch and movement from the rest of the body. Reading 

and arithmetic are also processed within the parietal lobe region of the cerebral cortex 

(Menon et al., 2000). The two occipital lobes are the smallest of the four lobes which 

make up the cerebral cortex and are found in the rear most portion of the hemispheres 

(Fig. 1.10) and function to process visual information as this is the location of the 

primary visual cortex. The temporal lobe is situated on the lower side of each cerebral 

hemisphere (Fig. 1.10) and is involved in processing hearing, memory and language 
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functions. The temporal lobe also contains the structures of the limbic system (Shepard, 

1994). 

The limbic system (Figure 1.11) is made up of a number of interconnected 

structures including the thalamus, cingulate gyrus, fornix, amygdala, hippocampus and 

parahippocampal gyrus which mediate emotions, learning and memory. Each structure 

plays its individual role in the functioning of the limbic system. For example, the 

thalamus relays signals between the spinal cord and the cerebrum, whereas the cingulate 

gyrus is involved with sensory input concerning emotions and regulation of aggressive 

behaviour. The fornix is an arching fibrous band of nerve fibres which connects the 

hippocampus to the hypothalamus, the parahippocampus also being an important 

connecting pathway of the limbic system. On the other hand the amygdala is involved in 

emotional responses, hormonal secretions and memory, and finally the hippocampus 

functions to form memories and send them to the appropriate location within the 

cerebral hemisphere for storage, along with retrieving memories when necessary 

(Tamraz et al., 2006).  

 

Figure 1.11: Basic diagram of the limbic system showing the location of the 

thalamus, hypothalamus, amygdala and hippocampus. 
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Situated below the cerebral hemispheres is the cerebellum which plays a vital 

role in motor control. The posterior section of the brain is the brain stem; this adjoins 

and structurally continues with the spinal cord. The brain stem is responsible for 

regulating many of the bodies life support mechanisms including blood pressure, heart 

rate and breathing along with coordinating motor control signals sent from the brain to 

the body. The three sections of the brain stem are the mid brain, medulla oblongata and 

pons (Tamraz et al., 2006).  

 

1.2.2. Memory 

As mentioned previously, one anatomical area of the brain associated with memory is 

the hippocampus, a structure located on the medial surface of the temporal lobe. In 

addition, the prefrontal cortex also participates in learning and memory (Wickelgren, 

1979; Damasio, 1989; Squire, 1992). Exactly how the two areas connect and the 

processes involved with learning and memory formation is complex, but anatomically, 

the hippocampus is joined to rest of the cortex by the subiculum.  

Memory is a functional entity, attempts to describe its unit of biological measure 

began with electroencephalogram (EEG) recordings; these demonstrated a difference in 

brain activity between the young and old (Obrist et al., 1962). Surprisingly, the change 

in the EEG recordings from active and healthy elderly subjects was minimal compared 

with younger control subjects (Obrist et al., 1962). Taken together, these findings 

suggested slowing down of the dominant alpha rhythm was related to an individual‘s 

health status, intellect and longevity (Obrist et al., 1962).  
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An electrophysical correlate of a form of simple memory was first described by 

Bliss and Lomo (1973) and this represents ―long term potentiation‖ (LTP). These 

scientists first described the process in the hippocampus where neurons ―learned‖ 

following repetitive electrical stimulations via the perforant pathway of dentate gyrus 

granular cells (Bliss and Lomo, 1973). Following high frequency electrical stimulation, 

an increase in the excitatory post-synaptic potential amplitude of the dentate granule cell 

population was observed. This increase in the efficacy of synaptic signalling has been 

related to memory as it can vary in duration (Abraham et al., 2002). Studies have also 

demonstrated a significant link between hippocampal volume and single measures of 

memory such as immediate recall (Petersen et al., 2000), delayed recall (Hackert et al., 

2002), or delayed recognition (Kopelman et al., 2001). 

 

1.2.3. Cellular neurobiology 

The CNS is made up of nerve cells and their processes in addition to specialised non-

neuronal support cells collectively called glia (Fig. 1.12). These cell types include 

ependymal cells, oligodendrocytes, astrocytes, and microglial cells. Of these, astrocytes 

and microglia are of interest to neuro-biologists/scientists as they play a significant role 

in driving inflammation in neurodegenerative diseases.  
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Figure 1.12: Glial cells of the CNS. Image shows the basic structure of astrocytes, 

microglia and oligodendrocytes.  

 

i) Neurons: biology and function  

The brain contains around one hundred billion nerve cells known as neurons (Johnson 

and Erner, 1972). These represent some of the functional building blocks of the brain 

and they originate from the ectoderm during embryogenesis (Allen and Barres, 2009). 

Following silver impregnation techniques, Camillo Golgi (1873) first visualised these 

cells, and their structural complexities were investigated by Ramon y Cajal between 

1888-1891 demonstrating that a neuron is made up of a cell body (stroma), dendrites 

(processes) and an axon (Fig. 1.13).  
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Figure 1.13: The basic structure of a neuron and its synaptic connections; the electrical 

signal refers to the action potential which is generated in the cell body, travelling along 

the axon to pass via the synapse to the dendrites of another neuron in excitatory 

synapses and allowing communication throughout the CNS. 

 

Neurons form the basic information processing unit of the CNS, communicating 

via the release and capture of neurotransmitter and neuromodulator chemicals, some of 

which work in the synapses going between release sites and receptors. Signals are 

transmitted via the generation of an action potential which travels rapidly along the 

axon to its terminal which is connected to the dendrite of another neuron via a synapse 

(Stewart et al., 1997) (Fig. 1.13). A synapse consists of a pre- and post- synaptic 

terminal, when the action potential reaches the pre-synaptic terminal the membrane is 

depolarised and neurotransmitters are released. These are detected by receptors on the 

post-synaptic membrane of another neuron. The signal is then processed by the neuron 

into meaningful information (Stewart et al., 1997). Each neuron has the ability to 
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contact thousands of other neurons via synapses, with new connections constantly being 

formed. It is through these connections that memories are stored, personalities are 

formed and habits are made (Edelman and Changeux, 2001). In order to perform their 

functional role, the neurons depend upon the glial cells. 

 

ii) Oligodendrocytes  

Oligodendrocytes are cells of the ectodermal origin, named originally by del Rio-

Hortega in 1928. Oligodendroglial cells provide support and insulation to the axons of 

neurons within the CNS. They form the myelin sheath, which consists of 80% lipid and 

20% protein (Morell and Quarles, 1999) and wraps around the axon of a neuron. Myelin 

sheaths not only reduce any ion leakage from the neuron and decrease the capacitance 

of the cell membrane but they also increase the speed of the action potentials (Susuki, 

2010). Oligodendrocytes can be easily demonstrated in tissue sections by 

immunolabelling with antibodies raised to galactocerebroside c and myelin basic 

protein (Ranscht et al., 1982) (Fig. 1.14). Since oligodendrocytes play little role in 

neurodegenerative diseases, these cells will not be discussed further. 

 

iii) Ependymal cells 

Ependymal cells are a single layer of epithelial cells, situated at the boundary between 

the CSF and the brain (Del Bigio, 1995). Ependymal cells can be easily identified by 

morphology stains such as haematoxylin and eosin (H/E). They are cuboidal in shape 

and are ciliated (Bleier, 1971; Millhouse, 1971). The adult ependymal cells are derived 

from radial glia during embryogenesis (Spassky et al., 2005). The ependymal cells aid 

the movement of CSF through the ventricles (Worthington and Cathcart, 1963; Cathcart 

and Worthington, 1964), form tight junctions and control fluid release across the 
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epithelial layer (Bruni, 1998) to protect the brain from potentially harmful substances in 

the CSF (Kuchler et al., 1994). In addition, they express phagocytic receptors to allow 

the detection and clearance of bacteria (Stahl and Ezekowitz, 1998; Laflamme and 

Rivest, 2001) together with expression of membrane bound complement regulatory 

proteins which are up-regulated following bacterial infection (Canova et al., 2006).  

 

iv) Microglial cells: Biology and function  

Microglia comprise a distinct population of glial cells within the CNS as originally 

discovered by del Rio-Hortega (1932), who expanded the idea of a cellular ―third 

element‖ (besides the neurons and astrocytes) in the CNS as formerly described by 

Cajal (1913
a, b

). By using silver impregnation methods, del Rio-Hortega identified 

microglia which differed from other cells in their external morphology as well as their 

embryonic origins. According to del Rio-Hortega (1932), microglia had a mesodermal 

origin and as new technologies have developed over the years, it has become clear that 

microglia are derived from mesodermal precursor cells of haematopoietic stem cell 

lineage. These cells migrate and colonise the CNS during embryogenesis (Rezaie and 

Male, 2002).   
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Figure 1.14: Microglia labelling using the anti 1ba1 antibody taken from mouse brain 

tissue. Blue indicates DAPI nuclear label, Red indicates TRITC label for positive 

microglia. 

 

Microglial cells are the resident immune cells of the CNS acting as primary cells 

responding to the presence of noxious agents or injury within the brain. Microglia differ 

from other populations of macrophages in that they have scattered branches that emerge 

from the cell body allowing them to communicate with surrounding neurons and other 

glial cells (Fig. 1.14). It is these processes which allow microglia to survey the local 

environment for pathological changes or inflammatory stimuli (Nimmerjahn et al., 

2005). Resting microglia are present throughout the CNS allowing for constant 

surveillance for any infection or injury. 

Following the detection of an infection or injury, microglial cells adopt an ―activated 

state‖ (Nimmerjahn et al., 2005; Davalos et al., 2005) in which they produce many pro-

inflammatory mediators (cytokines, chemokines, reactive oxygen species (ROS) and 

nitric oxide). The release of inflammatory mediators aids the clearance of the pathogen 

and the resolution of the inflammatory response. The rapid response of microglia to a 

variety of stimuli is attributed to their expression of a large array of surface receptors 
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which are able to trigger or amplify an immune response. Receptors present on host 

microglial cells include PRRs (recognition of PAMPs), complement receptors, cytokine 

receptors, and receptors that enhance macrophage effector functions following 

interaction with the adaptive immune system (T cells/Ig) (Aloisi, 2001). PRRs include 

TLRs and the binding of a PAMP to TLRs leads to the activation of NF-κB (nuclear 

factor kappa-light-chain-enhancer of activated B cells) and MAPK (Mitogen-activated 

protein kinase) pathways, which eventually induce the transcription of pro-

inflammatory mediators.  

Microglial cells also express receptors for a number of cytokines that are 

produced exclusively in the brain during CNS inflammation. These include receptors 

for pro- and anti- inflammatory cytokines, the balance of which plays a key role in 

inducing and regulating the immune functions of microglia (Chao et al., 1995; Smith et 

al., 1998). Another common feature associated with microglial cell activation is up-

regulation of complement receptors, which mediate or enhance phagocytosis through 

recognition of serum components deposited on microbes. These include complement 

receptors CR1, CR3, and CR4 that bind the complement component C3bi (Barnum, 

1999) and C1qRp that binds C1q (Gasque et al., 1998).   

Protein antigens are normally processed by macrophages (microglia) and other 

antigen presenting cells (astrocytes) into small fragments which are then expressed on 

the surface of these cells in association with major histocompatibility complex (MHC) 

class II molecules. Therefore, only the cells with receptors which recognise the antigen 

together with the MHC molecule will participate in the immune reaction. The activation 

of microglial cells by infection/injury stimulates the up-regulation of MHC class II 

molecules (Perry, 1998). Hence microglia can influence the adaptive immune response 

acting as antigen presenting cells.  
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In addition to the immune functions of the cell, microglia have been shown to 

support and monitor synaptic functions (Wake et al., 2009), induce apoptosis of 

developmental Purkinje cells (Marin-Teva et al., 2004) and control synaptogenesis 

(Roumier et al., 2004). Hence, microglial cells play an important role during the 

development and maintenance of the CNS and have been shown to exert both protective 

and pathogenic functions. 

v) Astrocytes: biology and function  

Astrocytes, the most abundant glial cell population, are of neuroectodermal origin and 

are essential for brain homeostasis and neuronal function (Dong and Benveniste, 2001). 

Astrocytes are made up of oval or irregular nuclei with an open chromatin pattern and 

stellate morphology with numerous fine processes radiating in all directions (Fig.1.15). 

The two main types of astrocytes found in the brain, fibrillary and protoplasmic, can be 

distinguished based upon their cellular morphologies and anatomical locations (Cajal, 

1909).  

 

Figure 1.15: GFAP positive labelled astrocytes (green), cell nucleus shown in red (PI); 

images taken from mouse brain tissue using anti-GFAP antibody. 



50 

 

 

Fibrillary astrocytes are most evident in the white matter which links various 

areas of the brain. The processes of fibrillary astrocytes contain a specific form of 

cytoskeletal intermediate filament called glial fibrillary acidic protein (GFAP). An 

antibody directed against GFAP can be used to identify this cell type. However, it does 

not fully label the finer processes of the fibrillary astrocyte (Eng, 1985) (Fig. 1.15). 

GFAP is essential for reactive astrogliosis and glial scar formation (Pekny and Pekna, 

2004; Herrmann et al., 2008) and is the second main cell subtype contributing to 

neurodegenerative disease pathology.  

Protoplasmic astrocytes are found in the grey matter that consists mainly of 

groups of cell bodies. These astrocytes have long thin processes that contain few 

bundles of GFAP. Both astrocyte subtypes form part of the blood-brain barrier and the 

gap junctions between distal processes of neighbouring astrocytes (Peters et al., 1991). 

Astrocytes perform multiple functions throughout the brain and spinal cord such as 

providing biochemical support to the endothelial cells of the blood-brain barrier, 

ensuring nutrients are provided to the nervous tissue, maintaining extracellular ion 

balance, and they have a vital role in the repair and scarring process of the CNS 

following injury (Chen et al., 2003; Sofroniew, 2009).  

Astrocytes, alongside microglia, are also antigen presenting cells in the brain 

and thus demonstrate their capacity to express MHC class II antigens and co-

stimulatory molecules (B7 and CD40) critical for antigen presentation and T-cell 

activation. Astrocytes also express PRRs including TLR2 (Bsibsi et al., 2002; Bowman 

et al., 2003), TLR3, (Park et al., 2006), TLR4 (Carpentier et al., 2005; Bowman et al., 

2003), TLR5 (Carpentier et al., 2005; Bowman et al., 2003) and TLR9 (Carpentier et 

al., 2005; Bowman et al., 2003). In addition, a range of complement receptors and 



51 

 

 

complement factors are expressed by astrocytes (as seen in microglia) (Gasque et al., 

2000).  

Further, astrocytes produce a wide array of immunologically relevant cytokines 

and chemokines, hence, play a key role in the type and extent of CNS immune and 

inflammatory responses. The release of cytokines, chemokines and neurotrophic factors 

can activate neighbouring cells and amplify the local, initial innate immune response 

further or modify blood-brain barrier permeability and attract immune cells from the 

blood circulation into the neural tissue, thus supporting an adaptive immune response. 

The balance between inflammatory and immunosuppressive pathways is fundamental 

for controlled reactions to CNS infection or injury.  

 

1.2.4. The blood-brain barrier and immune privileged status of the brain  

The CNS maintains an immune privilege status as a consequence of a blood-brain 

barrier composed of capillaries with tight junctions between individual endothelial cells 

augmented by astrocytic foot processes providing an additional protective layer (Huber 

et al., 2001; Abbott et al., 2006) (Fig. 1.16). Along with being a physical barrier, the 

blood-brain barrier is also a system of cellular transport mechanisms. It maintains 

homeostasis by allowing access of essential nutrients and restricting the entrance of 

potentially harmful cells such as neutrophils, naive T cells (adaptive immune system), 

plasma proteins and neurotoxic proteins from the blood. Lipid soluble molecules are 

able to penetrate the barrier relatively easily through the plasma membrane of cells, 

whereas water soluble ions such as sodium and potassium require the specialised carrier 

mediated transport mechanisms (Shepard, 1994). The intact blood-brain barrier also 
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prevents microglial cell activation as the result of systemic antigens, gaining 

unrestricted access to the brain parenchyma.   

 

Figure 1.16: The blood-brain barrier, showing the basic structure from a transverse 

section composed of epithelial cells, pericytes and astrocytes. Magnified image 

demonstrates the specific structure of the endothelial cell layer forming tight junctions.  

 

1.2.5. The CNS immune responses to infection  

Efficient immune responses are essential in order to maintain a healthy CNS. Due to its 

immune privileged status, the CNS requires an innate protective mechanism with the 

ability to neutralise and subsequently remove pathogens, without recruiting the 

peripheral adaptive immune surveillance cells. Therefore the cells of the CNS are 
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adequately equipped to recognise and respond to the presence of pathogens. Although 

the innate immune response within the CNS is not as specific as adaptive immune 

components, it can distinguish self from non-self via PRRs which recognise PAMP‘s on 

the surface of microorganisms (Janeway et al., 2005). In addition all nucleated 

eukaryotic cells are protected, to some extent, by having complement regulatory 

proteins on their surface membranes and this limits complement deposition and lysis of 

host‘s peripheral (Morgan and Gasque, 1996; Markiewski and Lambris, 2007) and CNS 

cells (Singhrao et al., 1999; 2000). Despite astrocytes and neurons having the capacity 

to deal with infection, it is microglial cells that are considered as the primary protective 

cells in the CNS. In vitro studies demonstrate both resting and activated microglia 

express a broad spectrum of defence molecules of the innate immune system, as 

mentioned previously.  

During an infection, the cells at the site of inflammation display PRRs such as 

TLRs to recognise the type of PAMP‘s displayed by the invading bacteria (Laflamme 

and Rivest, 2001). The PAMP‘s also induce cytokine synthesis (Qin et al., 2005) 

bringing about microglial cell differentiation and antigen-presenting functions of this 

cell type. Consequently, microglia up regulate MHC class I and II antigens and induce 

anti-bacterial activity (Qin et al., 2005; Olson and Miller, 2004). MHC class II 

expression is required for activation of naive T cells, and the production of numerous 

pro-inflammatory cytokines, including cytokines which induce the differentiation of 

effector T cells (O‘Keefe et al., 2002). In addition activated microglia express 

complement receptors (CR1, CR3, CR4), complement derived anapylatoxins (C4a, C3a, 

C5a) and pro-inflammatory cytokines including interleukins that aid in the removal of 

bacteria and their associated LPS from the brain (Banati et al., 1997; 2002; Laflamme 
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and Rivest, 2001; Hanisch, 2002; Olson and Miller, 2004; Gasque, 2004; Qin et al., 

2005; Perry et al., 2010).   

LPS specifically binds to CD14 (Kitchens, 2000) and is used routinely to 

activate microglia both in vitro and in vivo. Evidence indicates that LPS-induced signal 

transduction begins with CD14-mediated activation of TLR4 (Kaisho and Akira, 2002). 

It has been demonstrated that CD14 is up-regulated on microglia in vivo following 

treatment with LPS (Nadeau and Rivest, 2000). Interestingly, the microglial cell TLR4 

signalling pathway is activated not only during pathogen infection in the CNS but also 

in the presence of systemic infection. When LPS was injected into the peritoneal 

cavities of mice, TLR4‑induced transcription was observed in the brain (Bauman et al., 

2009; Bhaskar et al., 2010). 

Microglia are more effective at clearing the bacterial surface membrane 

component LPS. However, the TLR2 receptor present on astrocytes is able to bind 

another surface membrane component of bacteria, peptidoglycan, resulting in the 

production of proinflammatory cytokines and chemokines (Esen et al., 2004; Lin et al., 

2011).  

The meninges and the choroid plexus regions of the brain are also equipped to 

deal with bacterial infection. The meninges are phylogenetically younger than the 

blood-brain barrier and have a well-developed population of cells that communicate 

through lymphatic vessels with the adaptive immune system located in the systemic 

lymph nodes. Antigen presenting cells, similar to dendritic cells are present in the 

meninges that express OX62 and the MHC class II antigens on their surface 

membranes. Similar cells are also found lying within blood vessels of the choroid 

plexus but not in the normal brain parenchyma (McMenamin, 1999). Following an 
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injection of dendritic cells into the subarachnoid space, dura mater and choroid plexus 

they migrate to the local cervical lymph nodes where they activate T cells facilitating 

the clearance of pathogens from these anatomical compartments (Cserr et al., 1992). 

The meninges also contain macrophage-like cells expressing the mannose receptor, 

CD14 and the highly conserved TLRs 2 and 4. These receptors aid the cells to recognise 

and bind Gram negative bacteria and their associated PAMPs (Laflamme and Rivest, 

2001; Stahl and Ezekowitz, 1998) and mediate intracellular signalling thereby aiding 

the protection of the brain. 

Another key part of the innate immune response within the CNS is the 

complement system (see section 1.1.2). Microglia, astrocytes and neurons are all able to 

express the components of complement, as mentioned previously (Morgan and Gasque, 

1996; Gasque, 2004; Markiewski and Lambris, 2007; Hajishengallis, 2010).  

 

1.2.6. Implication of the immune response in neurodegeneration 

The CNS demonstrates a complex and well adapted localised immune system which 

generally functions to protect the brain from any infection or injury. However, it is 

important to note that any dysregulation of these pathways might lead to pathogenic, 

chronic neuroinflammation and neurodegeneration. Neurodegeneration is the slow and 

progressive dysfunction and loss of neurons and axons within the CNS. The resident 

cells of the CNS have poor regenerative potential and, therefore, a major inflammatory 

response can induce irreversible damage to neurons and oligodendrocytes. Neuronal 

loss is the common feature of neurodegenerative diseases and studies have shown that 

inflammation is a constant element.  

Microglia can participate in neuroprotective roles as well as contribute to disease 

processes including neurodegeneration. Microglia have been shown to readily up-
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regulate MHC class II expression in the vast majority of inflammatory and 

neurodegenerative conditions (Kreutzberg, 1996). In addition prolonged microglial cell 

activation may result in pathological forms of inflammation that contribute to the 

progression of chronic inflammatory neurodegenerative diseases (Glass et al., 2010; 

Perry et al., 2010).  

For some neurodegenerative conditions it has been shown that the activation of 

microglia can be triggered by misfolded proteins for example; Aβ or 

hyperphosphorylated tau protein in AD, (Rogers et al., 1992; Shen et al., 2001) and 

truncated α-synuclein in Parkinson‘s disease (Klegeris and McGeer, 2007) as well as 

genetic mutations (superoxide dismutase 1 mutation in amyotrophic lateral sclerosis) 

(Lobsiger et al., 2007). These triggers in turn lead to an activation dependent release of 

ROS and proinflammatory cytokines accompanied by a loss of neuronal support (Amor 

et al., 2010). 

Dysregulation of astrocytic responses may also play a key role in 

neuroinflammation. Under normal conditions the interaction with astrocytes leads to a 

block of the microglial inflammatory response, however, if this function is impaired it 

may result in a down-regulation of the astrocyte suppressive function, hence, causing 

microglial hyper-activation and a subsequent release of pro-inflammatory cytokines.  

It has also been suggested that communication between activated microglia and 

astrocytes can result in the amplification of inflammatory responses, and this 

contributes to the production of neurotoxic factors (Liu et al., 2011). For example, LPS-

induced secretion of factors such as IL‑1β and TNF-α (tumour necrosis factor α) by 

microglia can result in potent induction of pro-inflammatory gene expression and 

colony stimulating factor 1 (CSF1) production by astrocytes. These astrocyte-derived 

pro-inflammatory factors can in turn feedback on microglia to promote further 
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microglial cell activation and microgliosis, thereby establishing a positive feedback loop 

(Saijo and Glass 2011). Saijo et al., (2009) demonstrated that co-cultures of microglia 

and astrocytes stimulated with LPS produce significantly more neurotoxic factors than 

either cell type alone. However, the functional significance of microglial cell–astrocyte 

communication in the amplification of inflammatory responses and neurodegeneration 

in vivo remains to be defined.  

 

1.2.7. The ageing brain  

Ageing in the brain is a complex process which generally begins around middle age, 

continues throughout adulthood and is associated with a decline in cognitive 

performance (Whalley, 2003). A feature of the ageing brain is generalised shrinkage 

(Hartmann et al., 1994), although, the ageing process appears to affect specific areas of 

the brain hence resulting in a decline in function associated with that specific region. 

The frontal lobe and pre-frontal cortex are documented as the area‘s most vulnerable to 

the ageing process (Kemper, 1984). Other changes observed in the ageing brain are a 

decrease in the volume of the pre-frontal regions (Raz and Rodrigue, 2006), thinning of 

the cortical ribbon and increase in the sulcus width (Salat et al., 2004), along with a 

general increase in ventricular volume (Chou et al., 2008). Another important 

component of normal ageing is inflammation with the characteristic functional declines 

being largely influenced by changes in redox status and oxidative stress induced 

inflammation. These changes in inflammation throughout ageing are a common 

precursor to disease such as dementia, cancer, osteoporosis and vascular disease (Chung 

et al., 2011). 

The normal ageing brain presents with a number of pathological features, that 

include argyrophillic grains (proteinaceous intracellular protein aggregates in neuronal 
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and glial cells), neuromelanin (found in double membrane granular structures), corpora 

amylacea (round cytoplasmic glycoproteinacous inclusions) and lipofuscin (membrane-

bound cellular waste) (Keller, 2006). These pathologies affect various types of cells 

within the CNS -including astrocytes, microglia, neurons and oligodendrocytes, hence 

may present as precursors to neurological conditions associated with ageing (dementia). 

The interplay of these features associated with the ageing brain may be responsible for 

the loss in the functional integrity of the brain during advancing age.  

One specific area of the brain shown to deteriorate with advancing age is the 

blood-brain barrier (Fig. 1.17). A general increase in blood-brain barrier permeability is 

observed with ageing in healthy individuals (Farrall and Wardlaw, 2009) with 

physiological changes such as the loosening of tight junctions, changes in the astrocytic 

endfeet, stiffening of the vessel wall (Bell and Zlokovic, 2009) and a significant 

decrease in microvessel density (Brown and Thore, 2011). During normal ageing and in 

several diseases of the CNS (such as AD) alterations in the blood composition, levels of 

brain inflammation and the entrance of immune cells via blood-brain barrier can result 

in neuronal damage and cognitive dysfunction (Man et al., 2007; Liu et al.,. 2010; 

Villeda et al., 2011). It has been suggested that peripheral inflammatory conditions may 

have an affect the blood-brain barrier and modulate their response in ageing and in CNS 

diseases. In a healthy person, immune cell migration through the brain barriers is low, 

however, in some neuroinflammatory diseases, an increased number of immune cells 

reach the CNS (Sardi et al., 2011; Pellicano et al., 2012). 
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Figure 1.17: The effect of ageing and neurodegenerative disease (AD) on the blood-

brain barrier.  

1.2.8. Neurodegenerative diseases  

Dementia comprises a group of neurodegenerative diseases in which the symptoms 

include a decline in cognitive and intellectual function, together with loss of memory, 

attention and problem-solving skills. Due to its association with neurodegeneration 

leading to loss of function the specific area of brain affected by each form of dementia 

largely governs the symptoms experienced in each case. For example dementia with 

Lewy bodies, affects the cerebral cortex, brain stem and parts of the basal forebrain 

cholinergic system producing cognitive fluctuation and mild yet spontaneous 

Parkinsonism (McKeith et al., 1996).  

On the other hand fronto-temporal dementia affects the frontal lobe and can 

extend to the temporal lobe. Examples include Pick‘s disease, frontal lobe degeneration 

and dementia associated with motor neuron disease (Gibbs and Gajdusek, 1972; 

Mitsuyama and Takamiya, 1979; Brun, 1987). Hence, the symptoms are generally 

behavioural and/or related to executive function (Lund and Manchester Group, 1994; 
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Mitsuyama and Inoue, 2009). Another type of dementia is AD (Alzheimer, 1907), and is 

the most common form of dementia affecting the human population world-wide. The 

clinical features are associated with cognitive decline and irreversible memory loss. 

This functional loss is attributed to a large proportion of the specific neuronal damage in 

the hippocampal region (Cummings, 2004).  

 

1.2.9. Alzheimer’s disease 

AD was identified over 100 years ago by Alois Alzheimer. In 1906 he presented his 

work on ‗a characteristic disease of the cerebral cortex‘ whereby he described a 51 year 

old woman who exhibited progressive cognitive impairment, focal symptoms, 

hallucinations, delusions and psychiatric incompetence. His notes on this interesting 

case began in February 1902 and continued beyond her death in April 1906. Post-

mortem examination showed arteriosclerotic changes and using the Bielschowsky‘s 

silver stain Alzheimer was able to demonstrate extracellular senile plaques and intra 

neuronal neurofibrillary tangles (NFTs). These findings led to the eponym, Alzheimer‘s 

disease, first used by Emil Kraepelin in his 1910 textbook of psychiatry (Zilka and 

Novak, 2006; Jucker et al., 2006; Kraepelin, 1910).  

AD is characterised by impaired neurocognition. Individuals generally present 

with a decline and ultimately loss of multiple cognitive functions consisting of memory 

impairment and at least one of aphasia (partial or total loss of the ability to 

communicate verbally or using written words), apraxia (inability to perform particular 

purposive actions) or agnosia (inability to interpret sensations and hence to recognise 

things) (Castellani et al., 2010).  

AD can be divided into two forms, familial and sporadic. Familial AD 

represents only 5-10% of AD cases which are associated with early-onset (before age 
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65) and are the result of rare genetic mutations (Selkoe, 2000; Larner and Doran, 2006; 

Bird et al., 1988; Van Broeckhoven, 1995). The majority of AD cases do not exhibit an 

obvious genetic component and are termed sporadic or late-onset AD, in which both 

environmental and genetic differences may act as risk factors. Late-onset/sporadic AD 

accounts for the vast majority of AD cases, generally occurring after the age of 65. The 

apolipoprotein E (ApoE) gene is a known genetic risk factor associated with late-onset 

AD, and more recent investigations suggest further risk associated with genes encoding 

innate immune molecules and inflammatory traits exist (van Exel et al., 2009; Lambert 

et al., 2009; Harold et al., 2009). In particular, cytokine-related genes appear to be 

involved in the susceptibility to inflammation in sporadic form of AD. This study is 

focused on the late-onset form of AD. 

Although symptoms are largely present while the individual is alive and a 

clinical diagnosis can be made using specific criteria (Dubois et al., 2007). AD, at 

present, can only be definitively diagnosed at post-mortem based upon 

neuropathological findings using a standard protocol, outlined by the Consortium to 

Establish a Registry for AD (CERAD), to assess the pathological hallmarks of AD 

(Braak and Braak, 1991). 

The neuropathological changes occurring in the AD brain include both classical 

lesions such as Aβ plaques and NFTs (Terry et al., 1994; Mandelkow and Mandelkow, 

1998; Trojanowski and Lee, 2000; Iqbal and Grundke-Iqbal, 2002; Crews and Masliah 

2010) accompanied by inflammation (Fig. 1.18).  
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Figure 1.18: The neuropathological changes occurring in AD. A) Aβ plaques, 

arrow pointing to large plaque, B) Tau positive labelled NFTs as indicated by arrow C) 

inflammation depicted here by activated microglia seen associating with Aβ plaque 

(arrow). 

 

The insoluble Aβ protein is the main constituent of Aβ plaques and is formed 

when the amyloid precursor protein (APP) is cleaved by α, β or γ secretase enzymes 

(Yan et al., 1999; Sinha et al., 1999; Vassar et al., 1999; Hussain et al., 1999) releasing 

the Aβ peptide with either 1-40 or 40-42 residues. Of these, the 40-42 amino-acid 

peptide is considered to be neurotoxic and aggregates into Aβ plaques within the 

extracellular spaces in the cerebrum. The CERAD criterion for definite diagnosis of AD 

involves the quantification of neurotoxic or neurotic plaques in multiple neocortical 

regions as they define disease progression. Aβ plaques are also observed in the brains of 

cognitively intact individuals, but they tend to be in fewer numbers and are generally of 

the diffuse (Aβ40) plaque types, which so far appear to have little pathological 

significance. 

The NFTs, on the other hand, accumulate in the cytoplasm of the neuron where 

hyper phosphorylated tau, a microtubule-associated protein, is the major constituent 

(Hanger et al., 1998). The presence of NFTs correlates with the severity of the cognitive 

decline and, hence, a specific staging criterion of NFTs (Braak and Braak, 1991; 1995) 
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is used in the pathological diagnosis of AD. In addition to the classical hallmarks of AD 

a number of other neuropathlogies have been associated with the disease, such as 

cerebral amyloid angiopathy, neuronal loss, synapse loss, granuovacuolar degeneration 

and hirano bodies (Serrano-Pozo et al., 2011), although these are not involved in the 

post-mortem diagnostic criteria. 

Inflammation is now a recognised element of AD neuropathology (Akiyama et 

al., 2000) with AD brains demonstrating astrogliosis (Beach et al., 1989; Itagaki et al., 

1989), microgliosis (Rogers et al., 1988; Itagaki et al., 1989; Masliah et al., 1991; 

Imamura et al., 2001), cytokines (Hanisch, 2002) and complement activation fragments 

(Eikelenboom and Stam, 1982; McGeer et al., 1989; Rogers et al., 1992) associated 

with both Aβ plaques and NFTs (Shen et al., 2001). 

Although the pathological characteristics of AD are useful diagnostic markers, 

the cognitive decline suffered by AD individuals is associated with the progressive 

degeneration of the limbic system (Arnold et al., 1991; Klucken et al., 2003), 

neocortical regions (Terry et al., 1981), and the basal forebrain (Tipel et al., 2005). 

Hence the question remains; what causes the initial neurodegenerative process in AD 

individuals? 

 

1.2.10. Research into the causes of late-onset Alzheimer’s disease 

As mentioned previously apart from the classical hallmarks, inflammation is another 

key element of AD pathology. In AD a hyper inflammatory response can take place if 

microglia are already in their ―primed state‖ due to a previous challenge (Ye and 

Johnson, 2001; Godbout et al., 2005), and this can increase the severity of 

neurodegeneration. The exact cause of inflammation in AD individuals remains under 
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investigation – initially and largely still attributed to the pathological hallmarks of the 

disease, specifically the Aβ plaques. 

Hardy and Selkoe (2002) defined the amyloid cascade hypothesis which led to 

extensive research to find mechanistic basis of neurodegeneration and the development 

of AD (Masters and Beyreuther, 2006). The amyloid hypothesis proposes that a fault 

with the processing of the APP by endogenous secretase enzymes in the brain is the 

cause of Aβ deposition (Yan et al., 1999; Sinha et al., 1999; Vassar et al., 1999; 

Hussain et al., 1999). The subsequent accumulation of Aβ due to an imbalance between 

production and clearance from the brain in AD and is believed to trigger neuronal death 

due to the toxic effects of excess Aβ (Hardy and Higgins, 1992; Hardy and Selkoe, 

2002). This hypothesis is strengthened by AD individuals presenting with genetic 

mutations in the APP and presenillins which are responsible for γ-secretase enzymes 

such conditions not only determine the length of the Aβ fragment being generated but 

also their aggregating properties and their toxicity (Hardy, 1997).  

Pros and cons of the amyloid cascade theory remain as individuals with the 

absence of any clinical symptoms have been shown to present with Aβ plaques and 

NFT at post-mortem examination in quantities that would be sufficient enough for an 

AD diagnosis. These individuals only demonstrate modest elevations of inflammatory 

markers and this is dramatically less than observed in clinical AD individuals (Lue et 

al., 1996). Therefore, inflammation may be another key factor in the cognitive decline 

presented in AD. Also, direct evidence of inflammatory toxicity (complement mediated 

cell lysis) can be observed in the AD brain although this originally also centred on the 

amyloid hypothesis (Webster et al., 1997). In addition, a number of clinical studies have 

strongly suggested that conventional anti-inflammatory drugs (nonsteroidal anti-

inflammatory drugs and asprin) may delay the onset or slow the progression of AD 
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(Stewart et al., 1997; Anthony et al., 2000; Broe et al., 2000). However, this was not the 

case in all individuals. 

As mentioned earlier, the initial inflammatory hypothesis suggested that the 

neuroinflammation was a downstream consequence of the Aβ hypothesis with the added 

assumption that the activation of microglia may lead to the phosphorylation of tau 

contributing to the formation of NFTs via overexpression of IL-1 (Sheng et al., 1997). 

However, like the amyloid hypothesis this inflammatory hypothesis is incomplete in 

explaining the aetiology of AD, and despite the initial results the trials using anti-

inflammatory drug treatment provided conflicting results. In addition, the inflammatory 

hypothesis lacked consideration for microbial aetiology. It cannot be ignored that 

inflammatory cascades are initiated by infectious agents. 

There are two different inflammatory aspects to consider when exploring a 

microbial aetiology of AD. These are the effect of microbes in systemic circulation and 

the effect of microbial invasion of the CNS, both of which will be discussed in more 

detail due to direct implications in the present study. 

 

i) Systemic infections and AD 

 Infections are common in elderly individuals and are the main cause of death in a 

majority of neurodegenerative conditions. Advancing age is the greatest risk factor for 

all forms of AD. Some consequences of advancing age are a compromised immune 

system (Pawelec, 1999; Targonski et al., 2007) and a potential neglect of personal 

hygiene (Stein et al., 2007; De Oliveira, 2010; Paganini-Hill et al., 2012) which can 

lead to conditions associated with repeated chronic infections. Recurrent exposure to 

bacteraemia from common infections in the elderly, due to conditions such as chronic 

periodontitis (Forner et al., 2006; Lockhart et al., 2008), intra-abdominal (Norman and 
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Yoshikawa, 1983), and urinary tract infections (De Vecchi et al., 2013), will contribute 

to inflammation within the systemic circulation.  

Holmes et al., (2009) suggests that cytokines from peripheral circulation, as a 

result of systemic inflammation, have the potential to reach the brain parenchyma, 

initiate a local immune response, and impair memory. This is supported by Dunn et al., 

(2005) as they demonstrated that the multiple episodes of recurrent peripheral infections 

in the elderly can result in clinical symptoms similar to that of late-onset AD. Also, the 

innate immune responses suggest extrinsic inflammatory cytokines are involved in 

exacerbating neurocognition (Holmes et al., 2009). Cytokine-related genes have been 

implicated in the susceptibility to inflammation in late-onset AD (van Exel et al., 2009; 

Eikelenboom et al., 2011) and high levels of TNF-α cytokine in the blood plasma is 

considered a risk factor for cognitive deficit (Holmes et al., 2009).  

Interestingly, patients with AD who also have an acute peripheral infection 

(such as chest or urine infections) present signs of a sudden decline in cognitive state, 

and rarely return to their previous cognitive performance levels, despite full recovery 

from the infectious agents (Holmes et al., 2003; Dunn et al., 2005; Perry et al., 2007; 

Holmes et al., 2009). Animal models have also demonstrated that LPS from Gram 

negative bacteria administered systemically, directly to the peritoneum, or directly in 

the brain all induced neuroinflammation in the form of glial cell activation 

(Cunningham et al., 2005; Godbout et al., 2005; Chen et al., 2008; Henry et al., 2009). 

In addition to Aβ formation in the brain (Sheng et al., 2003) and, where measured, 

learning and memory impairment was recorded (Tanaka et al., 2006; Chen et al., 2008). 

As mentioned previously, chronic periodontal disease represents a common but 

chronic infection in the elderly with several studies supporting a deterioration in oral 

health with increasing age and in clinically demented patients (Aida et al., 2011, Arai et 
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al., 2003, Griffin et al., 2012, Philip et al., 2012) with implications on systemic 

inflammation via the induction of recurrent transient bacteraemia. Possible explanations 

for the decline in oral health within the elderly include; side effect of medications 

causing xerostomia (dry mouth) (Friedlander et al., 2006), physical impairments 

(difficulty accessing the dentist or maintaining own personal care) and dependence on 

care of others (Griffin et al., 2012). Further evidence in support of the hypothesis of 

Holmes et al., (2009) and a potential link between periodontal disease, as a source of 

systemic inflammation, and AD comes from Kamer et al., (2009). They detected high 

levels of the TNF-α cytokine and a high titre of antibodies to periodontal pathogens 

circulating in the blood taken from AD patients (Kamer et al., 2009). Although their 

findings need to be interpreted with caution as they used a relatively modest sample size 

(16 controls and 18 AD patients) and found circulating IgG to periodontal pathogens in 

72% AD individuals (p = 0.042) but also in 38% of the control individuals, and due to 

the case control methodology they cannot determine if the antibodies were present prior 

to or following the onset of AD. Further studies have shown that TNF-α, and several 

immune response plasma proteins could predict the development of AD (Ray et al., 

2006; 2007). Also, a study by Sparks Stein et al., (2012) suggested the involvement of 

periodontal disease in the risk of AD onset/progression, they analysed 158 patients, who 

were cognitively intact at baseline, with 77 individuals remaining cognitively intact for 

the duration. They demonstrated that AD individuals had significant elevations in 

antibodies to periodontal pathogens at baseline, prior to diagnosis of the neurological 

changes. It has been proposed that the host‘s immune responses to tissue destruction 

from periodontal disease results in systemic mediator release and potentially contributes 

to the pathogenesis of AD (Kamer et al., 2009). 

 



68 

 

 

ii) CNS infections and Alzheimer’s disease  

In 1913 microbial infections were considered as possible causative agents in AD 

(Noguchi and Moore, 1913) and, with the progression of technology, research into a 

microbial link with AD has resurfaced (Lerner et al., 1997; Schmidt et al., 2002; 

Riviere et al., 2002; Holmes et al., 2003; 2009; Dunn et al., 2005; Kamer et al., 2008; 

Balin et al., 2008, Itzhaki and Wozniak 2008; Miklossy 2008; Urosevic and Martins, 

2008) suggesting a direct involvement of pathogens in the aetiology of AD.  

The aetiological hypothesis suggests that viruses, bacteria and/or their virulence 

factors can access the brain and thereby contribute to AD pathogenesis. A review by 

Holmes and Cotterell (2009) outlines a range of infective agents consistently being 

linked to AD. These include herpes simplex virus type I (Itzhaki and Wozniak, 2008), 

Chlamydophilia pneumonia (Balin et al., 2008), Treponema spp., (Riviere et al., 2002) 

and Borrelia burgdorferi (Miklossy, 2011). More recent findings have led to the ―dental 

aetiological‖ hypothesis, which involves periodontal disease elements (Kondo et al., 

1994; Stein et al., 2007; 2010; Riviere et al., 2002; Foschi et al., 2006; Kamer et al., 

2008; Watts et al., 2008; Sparks Stein, 2012). The ‗dental aetiological‘ hypothesis not 

only involves systemic response to oral pathogens (Kamer et al., 2009; Singhrao and 

Crean, 2010) but also the possibility that oral pathogens, and/or their products, can 

invade the brain resulting in tissue specific pathology.  

 

1.2.11. Invasion of the CNS by oral pathogens 

There are three main routes via which oral bacteria can spread from their initial site of 

colonisation to other tissues, including the brain. These include nerve pathways, the 

lymphatic system and the vascular system.  
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i) Peripheral nerves route 

The olfactory and the trigeminal nerves pathways can be exploited by periodontal 

pathogens especially those that are invasive (motile). These can burrow their way into 

nerves to reach nerve ganglia as a means of bypassing the blood-brain barrier for direct 

entry into the CNS (Riviere et al., 2002; Danielyan et al., 2009; Johnson et al., 2010). 

This observation is supported by studies in immunosuppressed animal models using T. 

denticola (Foschi et al., 2006). In addition, oral Treponema species (Riviere et al., 

1991) have been detected in both the cells of the trigeminal ganglion and the CNS of 

individuals with AD (Riviere et al., 2002). Other spirochetes for example B. burgdorferi 

(Cadavid et al., 2000) and Treponema pallidum (Sell and Salman, 1992) have been 

identified within axons of peripheral nerves in experimental animals, and in the CNS 

(Miklossy et al., 2006). Further support for the dissemination of bacteria via the nerves 

comes from evidence that the herpes virus infected the brains of mice following intra-

pulpal inoculation (Barnett et al., 1995).  

 

ii) The lymphatic system route 

The lymphatic system is designed to filter out bacteria, amongst other material. 

However, it functions less efficiently when there is high lymph flow due to acute tissue 

inflammation or if there is an overwhelming burden of microbes. Bacteria such as the 

periodontal pathogen P. gingivalis have developed phagocytosis evasion mechanisms 

(Belstrøm et al., 2011) and they may spread by using this route (Amodini et al., 2012). 

The gingiva is supplied with the lymphatic system that is able to drain the interstitial 

fluid and transport immune cells to the lymph nodes for antigen presentation (Mkonyi et 

al., 2010). In addition to the lymphatic system providing a transport mechanism to 

systemic circulation there is also potential for bacteria and/or their products to invade 
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the brain, despite its immune privileged status. The subarachnoid space contains CSF 

which in turn communicates with the lateral and third ventricles, and re-absorption of 

CSF into the venous circulation provides a potential communication between the CNS 

and the cervical lymphatic system (Weller, 1998). Once organisms are present in the 

ventricular CSF, they can potentially invade the subarachnoid space. From the CSF, 

bacteria cross the ependymal epithelial cell layer lining the ventricle wall for entry into 

the brain parenchyma. This system provides pathogens with potential access to all areas 

of the CNS. It has been shown that ependymal cells are located strategically at the 

boundary between the CSF and the brain and express a variety of receptors of the innate 

immune system (phagocytic receptors, the mannose receptor and TLRs 2 and 4), hence, 

in healthy individuals they are equipped to detect and clear bacteria. 

 

iii) The vascular systemic route 

Murray and Moonsnic (1941) demonstrated positive cultures of oral bacteria in arterial 

blood in 55% of patients with severe periodontal disease. Sensitive polymerase chain 

reaction (PCR) and sequencing along with fluorescence in-situ hybridisation 

technologies have identified genetic footprints of two members of the ―red complex‖ 

pathogens namely P. gingivalis and T. denticola in the walls of human coronary arterial 

tissues (Chiu, 1999; Haraszthy et al., 2000) and atheromatous plaques (Cavrini et al., 

2005; Kozarov et al., 2005). Therefore, eliminating any doubts over finding oral 

periodontal pathogens in the human vascular system. This observation is further 

strengthened by experimental animal models which demonstrate bacteria placed in the 

oral cavity not only induce periodontal disease in their original niche but also infiltrate 

into the systemic system where they can cause tissue related pathology (Rivera et al., 

2013; Chukkapali et al., 2014; Velsko et al., in press).  
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In addition to the transmigration via the lymphatic system (Amodini et al., 

2012), another mode of dissemination to the systemic system is via transient 

bacteraemia. This appears to be the most convenient route for oral bacteria to spread, 

given that the organisms which have successfully exploited this route are able to resist 

the complex immune defence mechanisms of the vascular system. As mentioned 

previously it is apparent that all three of the main periodontal pathogens (P. gingivalis, 

T. denticola and T. forsythia) are equipped to evade the immune surveillance, with P. 

gingivalis demonstrating both survival within systemic circulation and the ability to 

exploit red blood cells for transport around the body (Belstrøm et al., 2011). Further 

mechanisms of cellular translocations are also suggested elsewhere (Takeuchi et al., 

2011). In individuals with good oral hygiene the number of oral pathogenic bacteria 

reaching the systemic circulation is small (Stein et al., 2006). However, this number 

increases twofold to tenfold in individual‘s with periodontal disease (Stein et al., 2006).  

Organisms within the systemic circulation can then gain access to the brain via 

the circumventricular organs (CVOs) and the choroid plexus regions (that contains a 

rich blood supply), as these are recognised areas of the CNS void of the blood-brain 

barrier. Microglial cells in the CVOs have been demonstrated to express the CD14 

receptor and TLR4 suggesting that they are capable of detecting the PAMPs on bacteria.  

 In addition, bacteria may potentially access the CNS by direct transport across 

the blood-brain barrier. As an individual ages these barriers and protective mechanisms 

in the brain can become worn or damaged thereby making it easier for foreign agents to 

invade the CNS. It is suggested that the deterioration of the blood-brain barrier is a 

result of advancing age and this coincides with the fact that ageing remains a key risk 

factor for neurodegenerative conditions.  
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1.3.Part III: Review of evidence: A link between Alzheimer’s disease and 

periodontal disease? 

Both systemically derived inflammatory mediators and direct invasion of the CNS 

demonstrate potential mechanisms for a link between periodontal disease and AD. 

Although the two diseases are unrelated, the commonality between them is the chronic 

inflammatory status (Watts et al., 2008; Kamer et al., 2008; Hajishengalis, 2010; 

Akiyama et al., 2000).  Longitudinal studies have shown that people who went on to 

develop AD had poorer oral health (Kondo et al., 1994; Gatz et al., 2006; Kim et al., 

2007; Stein et al., 2007; Arrivé et al., 2012; Paganini-Hill et al., 2012; Philip et al,. 

2012; Syrjälä et al., 2012, Yamamoto et al., 2012). These studies allowed the cause of 

the disease to be assessed and increased the confidence that poorer oral health may 

initiate the development/progression of AD. However, many studies used a cross-

sectional design which does not allow a temporal relationship to be established and so 

cannot demonstrate that periodontal disease caused AD. Due to the decline in oral 

health associated with individuals with dementia it is often difficult to determine if poor 

oral health contributes to the onset or merely the progression of AD. 

With regards to the view of periodontal disease as a source of systemic 

inflammation there is little specific evidence. A number of studies used non-specific 

measures of inflammation, hence they cannot link the pathogenesis directly with 

periodontal disease. Some studies have, however, used more specific measures 

including IgG levels to P. gingivalis and other specific periodontal pathogens (Okuda et 

al., 1986; Kamer et al., 2009; Noble et al., 2009). Of particular interest is a study by 

Sparks Stein et al., (2012), as they used the cohort methodology analysing levels of 

serum antibodies to periodontal pathogens. At the start of the study period, all 

participants were cognitively intact, but higher levels of serum antibodies to periodontal 
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pathogens at baseline led to some individuals developing AD (Sparks Stein et al. 2012). 

As baseline measures were taken years before diagnosis of AD, the elevation in serum 

antibodies cannot be attributed to secondary effects of AD (for example, poor oral 

hygiene). Although clinical measurements of oral health were not taken in the Sparks 

Stein et al. (2012) investigation, periodontal bacterial species are generally accepted as 

being specific to periodontal disease and assessing serum antibody levels to these 

pathogens may prove to be a true indicator of periodontal disease in AD patients.  

On the other hand, methodological studies have emerged demonstrating the 

presence of bacteria within the cerebral tissues, suggesting that the association between 

poor oral health and AD may result from the direct invasion of the CNS by oral bacteria 

and/or their virulence factors. One seminal study using molecular and immunological 

methodologies demonstrated the presence of seven oral Treponema species in 14 of 16 

AD cases, reaching statistical significance (Riviere, 2002). In addition, the same authors 

demonstrated that the trigeminal nerve ganglia, hippocampus and the pons taken from 

embalmed cadavers (2 out of 4) also confirmed the presence of Treponema species. 

Furthermore, Miklossy (1993, 2008) reported that various types of spirochetes can 

invade the brain and play a role in the pathogenesis of AD suggesting that between 

others, oral spirochetes may be candidate spirochetes. 

It remains to be determined whether the potential link between the two diseases 

is direct (via the bacteria itself invading the organ) or indirect (via the systemic 

inflammation caused by the presence of periodontal bacteria). 
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1.4.Rationale for the project 

Currently AD affects an estimated 24 million people worldwide representing a major 

public health concern accounting for 68-80% of all dementia cases (Thies and Bleiler, 

2011). Susceptible individuals can take decades before clinically presenting with the 

disease, implying that the aetiology of AD is heterogeneous. Hence, the importance of 

finding new risk factors for development of late-onset AD remains a priority. This will 

aid the identification of diagnostic markers as well as effective treatment; therefore, 

research in this area is much desired. 

Literature suggests a link between periodontal disease and AD, yet further 

evidence is required to support a causative association between periodontal pathogens 

and AD. Understanding the factors and mechanisms involved in the aetiology of AD is 

of paramount importance as AD and other neurodegenerative disorders are becoming 

increasingly common amongst ageing populations and yet the diagnostic markers and 

therapy are still awaited. This is also the case for adverse oral health conditions. 

However, unlike AD, poor oral health – including caries, tooth loss, and periodontitis – 

is potentially treatable and preventable. A number of risk factors have been identified 

for AD, some of which are immutable, whereas others can be modified by simple 

changes to an individual‘s lifestyle. Periodontal disease is an easily modified risk factor 

and, hence, the need to prioritize further research into the link between these two 

conditions.  

 

1.5.Aims of the project 

To identify if chronic periodontal disease is a risk factor for the development of AD. 
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1.6.Objectives 

1. Establish an aetiological link between chronic periodontal disease and AD. This 

was performed by investigating an intra-cerebral presence of oral bacteria and/or 

their products in post-mortem tissue from AD (N=10) and non-AD controls (N = 

10).  

2. Provide proof of concept for the link using animal models of experimentally 

induced periodontal disease. Initially by identifying if periodontal pathogens 

and/or their virulence factors access in the brains of ApoE
null

 mice induced with 

periodontal disease. 

3. Perform a thorough investigation to identify the pathological lesion caused by 

the presence of periodontal pathogens. 

i) Evaluate specific effect of PD pathogens on brain cells in vivo 

animal models (inflammation). 

ii) Detect any alterations in AD makers in periodontal disease mouse 

brain 

1.7.Research Approach 

Ageing is a risk factor for both AD and periodontal disease, and the proven effect of 

periodontal disease on systemic inflammation as a potential link between the two 

conditions warrants this investigation. Due to the complexity and originality of this 

study a wide range of methodologies were employed, that complement each other and 

facilitate a thorough investigation. The main methodologies used were PCR, cloning 

and genetic sequencing, as well as immunolabelling and immunoblotting techniques for 

the detection of specific periodontal pathogens (P. gingivalis, T. denticola and T. 

forsythia) and/or their virulence factors in the brain tissue, as guided by the brains for 
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Dementia Research. Further, immunolabelling (using an array of antibodies), with the 

addition of histology/light microscopy stains were employed to assess morphology and 

any potential lesions within the brain. How these techniques will be employed to meet 

each of the objectives is outlined below. 

 

Objective 1 (To establish an intra-cerebral presence of oral bacteria and/or their 

products in post-mortem tissue from AD (N=10) and non-AD controls (N=10)) was 

achieved using a number of different approaches to analyse the tissue samples provided. 

The initial stages involved characterising the gift antibodies to the three periodontal 

pathogens (P. gingivalis, T. denticola and T. forsythia). These antibodies were then used 

to analyse all human brain tissue samples (AD and non-AD controls) and additional 

immunostaining was performed in order to identify specific lesions of AD. Following 

this genomic DNA was isolated from all cases and subjected to PCR, Topo cloning, 

sequencing and specification. All techniques were thoroughly optimised for use with the 

human brain samples. Results were then be analysed and experiments repeated where 

necessary. 

Objective 2 (To establish an intra-cerebral presence of the oral bacteria and/or their 

products in tissue from Periodontal disease ApoE
null 

mice models (N=12/group) and 

controls (N=12)) was achieved in the same way as objective 1 providing evidence of the 

presence of specific oral bacteria (P. gingivalis, T. denticola and T. forsythia) using 

molecular techniques, histology and immunohistochemistry the methods for which were 

optimised during the human AD phase of the investigation. 

Objective 3i (To determine the effect of periodontal disease related pathogens on CNS 

cells) was achieved using the ApoE
null

 mouse model of periodontal disease. The cells 
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were assessed to determine if periodontal disease has any impact on them using both 

histology and immunochemistry. 

Objective 3ii (To detect any alterations in AD makers in periodontal disease mouse 

brain) was achieved using antibodies specific to AD makers, Aβ and Tau, by both 

immunoblotting and immunofluorescent labelling techniques. Also specific changes 

related to AD lesion formation were assessed by interpreting histological data with 

respect to neurobiology and related changes reflected by the changing pathology. 
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Chapter 2: 

Investigating a link between Alzheimer’s and 

periodontal disease using human post-mortem brain 

tissue. 
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2.1. INTRODUCTION 

Neurodegenerative disease conditions are notoriously complex and the exact aetiology 

of the common form of dementia, AD, remains under investigation. In contrast, 

periodontal disease has a known bacterial aetiology.  Some scientists believe that the 

same bacterial species involved in periodontal disease aetiology may be responsible for 

the deposition of Aβ plagues in AD brains (McDonald, 2006; Miklossy et al., 2006). 

When searching for clues towards bacterial infections having an aetiological role in late-

onset AD researchers are faced with a number of challenges as post-mortem brain tissue 

is all that may be available due to ethical issues surrounding availability of human brain 

tissue. Post-mortem brain tissue is subjected to a post-mortem delay (often 24-48 

hours), hence, autolysis will begin and this can give rise to undesirable artefacts and 

potentially falsify results. Autolysis can be avoided if post-mortem delay can be 

minimised and tissue preserved by lowering temperature (snap freezing) or performing 

chemical fixation immediately after collecting specimens. The role of tissue banks is to 

aid researchers by collecting and appropriately storing valuable human tissue without 

the added wait for arranging ethical clearance and consent, and prevent any delay in 

post-mortem examination. In addition to investigating the presence of periodontal 

pathogens in the brain of AD individuals, this study also aims to validify the use of 

post-mortem tissue for future investigations. Some of the results in this chapter are 

published in the journal of Alzheimer‘s disease (Poole et al., 2013). 
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2.2. MATERIALS AND METHODS 

2.2.1. Human brain specimens and source 

A formal request for post-mortem brain tissue was placed to the brain tissue bank 

(request number 2010-41). Subsequently, previously diagnosed AD (N = 10) and age-

matched non-AD control (N = 10) specimens were obtained from ―Brains for Dementia 

Research‖ following a material transfer agreement (MTA) between the University of 

Central Lancashire (UCLan) and the University of Newcastle, UK. The specimens were 

received on dry ice and were of 1 cm
3
 core taken from the peri-lateral ventricular region 

of the brain. The hippocampus region of the brain was not included. The post-mortem 

interval for all AD cases ranged from 4 - 12 hours from death, and the non-AD age 

matched control brains were taken from a 16-24 hour range (see table 2.1 for full 

details). On receipt all cases were assigned an UCLan code using a simple numbering 

system: AD cases 1-10 and control cases; non-AD 1-10 (Table 2.1). All specimens were 

held in a freezer according to the rules and regulations for storage of human tissue Act.   
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Table 2.1: The age and post-mortem interval of all human cases analysed. 

Case Age Post-mortem interval (hours) 

AD 1 78 12 

AD 2 77 8 

AD 3 84 8 

AD 4 84 8 

AD 5 85 9 

AD 6 83 9 

AD 7 80 4 

AD 8 83 10 

AD 9 63 11 

AD 10 83 12 

Non-AD 1 69 16 

Non-AD 2 72 17 

Non-AD 3 103 21 

Non-AD 4 78 23 

Non-AD 5 89 24 

Non-AD 6 81 43 

Non-AD 7 78 34 

Non-AD 8 89 34 

Non-AD 9 67 22 

Non-AD 10 22 22 
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The human brain tissue was allocated for molecular identification of selected 

periodontal pathogens (P. gingivalis, T. denticola and T. forsythia) as per MTA 

agreement. In addition, the tissue was also used for on-section immunolabelling and for 

immunoblotting where appropriate. 

2.2.2. Sources of antibodies/antisera against bacterial and human proteins 

Primary antibodies: rat anti-T. denticola (factor H-binding protein B (FhbB) protein), 

Prof. Thomas T. Marconi, USA; rabbit anti-T. forsythia (s-layer protein), Dr G. 

Stafford, University of Sheffield, UK; rabbit anti-T. forsythia (rBspA), Dr A. Sharma, 

State University of New York at Buffalo, NY, USA; mouse anti-P. gingivalis (Clone 

61BG1.3), Prof. R. Gmür, University of Zurich, Switzerland; mouse anti-P. gingivalis 

(Clone 1B5), Prof. M. A. Curtis, London, UK; mouse anti-CD14 (clone HCD14), 

Thermo-Fisher; rabbit anti-human IgG (H8765), Sigma Aldrich, UK; mouse anti-GFAP 

(clone GA-5), Thermo-Fisher; mouse anti HLA-DP, DQ, DR clone CR3/43, 

DaoCytomation, goat anti-GFAP, Professor P. Morgan, Cardiff University. Secondary 

detection antibodies: goat anti-mouse - FITC (Fluorescein isothiocyanate)(107K6058), 

Sigma Aldrich, UK; goat anti-rabbit – FITC (01K60571), Sigma Aldrich, UK; rabbit 

anti-goat – FITC (019K4796), Sigma Aldrich, UK; rabbit anti-rat Alexa Fluor 488 (A-

21210), Invitrogen; rabbit anti-goat Alexa Fluor 555 (A21431), Invitrogen; goat anti-

rabbit TRITC (Tetramethylrhodamine), Hycult Biotech. 

2.2.3. Source of whole formalin fixed bacteria and bacterial DNA 

P. gingivalis FDC 381, T. denticola ATCC 35404, and T. forsythia ATCC 43037 fixed 

in formalin and genomic DNA from the same bacteria was a gift from Prof. L. Kesavalu 

(University of Florida).  
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2.2.4. Gift culture supernatant and source 

Sterile bacterial growth medium (medium control) and the culture supernatant was a gift 

from Prof. M A. Curtis (Blizard Institute of cell & Molecular Science, London). The 

medium control refers to the sterile liquid medium containing brain heart infusion broth 

supplemented with haemin (5 mg/l) and menadione (1 mg/l). The culture supernatant 

refers to the same medium except P. gingivalis ATCC 33277 or ATCC 53978 (W50) 

was inoculated and optimally cultured for 48 hours. Following growth, the bacterial 

culture was centrifuged at 15,000 rpm (revolutions per minute) at 4 °C for 30 mins to 

pellet cells, the supernatant containing secreted ―virulence factors‖ was then collected 

for in vitro investigations. On receipt, these supernatants were aliquoted as 1 and 0.5 ml 

in pre-labelled screw top sterile polypropylene vials and stored at -80 °C for subsequent 

use. 

2.2.5. Sources of all other reagents 

A glial cell line (SVGp12) and control cell line, Rahul Previn, MSc student c/o Dr. Sim 

Singhrao, UCLan; Eagle‘s minimal essential medium (EMEM), Sigma; foetal calf 

serum (FBS), Sigma; Analar grade acetone, Fisher Scientific; glutamine, life 

technologies; sodium pyruvate, Sigma; non-essential amino acids, Invitrogen; QIAamp 

DNA Mini Kit, Qiagen; ATL buffer, Qiagen; proteinase K, Qiagen; 

Phenol:Chloroform:Isoamyl Alcohol 25:24:1 Saturated with 10 mM Tris, pH 8.0, 1 mM 

Ethylenediaminetetraacetic acid (EDTA), Sigma; Glycogen, Sigma; sodium acetate, 

Sigma; ethanol, Fisher Scientific; AE buffer, Qiagen; Taq polymerase, Fisher Scientific; 

Phusion High-Fidelity Hot start II DNA Taq Polymerase, ThermoScientific; Taq Buffer 

A, Qiagen; dNTPs (deoxynucleotide triphosphates) mix, Fisher;  agarose, Fisher 

Scientific; ethidium bromide, Sigma; 1 Kb marker, ExactGene, Fisher; TOPO TA 
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cloning kit, Life Technologies; Tris Acetate, Sigma; EDTA, Sigma; microCLEAN, 

Microzome ltd; Luria Broth (LB) agar, Fisher Scientific; Methanol, Fisher Scientific; 

LB broth, Fisher Scientific; KOAc, Sigma; KCl, Sigma; CaCl2, Sigma; glycerol, Fisher 

Scientific; MOPs, Fisher Scientific; TA cloning kit PCR® 2.1 vector 45-0046, 

Invitrogen; Kanamycin, Fisher Scientific; X-Gal, Fisher Scientific; M13 forward primer 

(10 μM), Invitrogen; M13 reverse primer (10 μM), Invitrogen; Qiaquick kit, Qiagen; 

BigDye® Terminator v3.1 Cycle sequencing kit, Applied Biosystems; OCT® adhesive, 

Fisher scientific; phosphate buffered saline (PBS), in house; Normal goat serum, 

DakoCytomation; normal rabbit serum, DakoCytomation; tween 20, Fisher Scientific; 

10% neutral buffered formalin, Sigma; bovine serum albumin (BSA), Sigma; 

Vectashield® propidium iodide (PI) mounting medium, Vector laboratories; 

Vectashield® DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) mounting 

medium, Vector laboratories; NP40, Sigma; NaCl, Sigma; protease inhibitors 

(cOmplete ULTRA Tablets), Roche; E. coli LPS, Sigma; Coomassie blue reagent, 

Sigma; polyvinylidene difluoride (PVDF) membrane Immobilon-P, Millipore, UK; Tris 

base, Sigma; Sodium Dodecyl Sulfate (SDS), Fisher Scientific; ammonium persulphate 

(APS), Sigma; 30% acrylamide/0.8% N, N –methylene bisacrylamide stock solution, 

GE Healthcare; N,N,N′,N′-Tetramethylethylenediamine, Sigma; methanol, Fisher 

Scientific; Laemmli reducing sample buffer (non-reducing Laemmli sample buffer 

BioRad 161-0737 with the addition of 5% β-mecaptoethanol Sigma); gel loading, tips, 

Elkay; pre-stained protein markers, Lonza; chemiluminescence detection reagent, Bio-

Rad.  
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2.2.6. In vitro culture of SVGp12 cells  

To generate relevant controls the SV40 immortalised human glial cell line SVGp12 and 

in another experiment the IMR32 neuroblastoma cell line were used. A culture of the 

SVGp12 or IMR32 cells were exposed to a ¼ dilution of medium control or P. 

gingivalis (33277 or W50) culture supernatant diluted in antibiotic free EMEM 

supplemented with heat inactivated 10 % FBS, 4 mM glutamine, 2 mM sodium 

pyruvate and  0.1 mM non-essential amino acids for 24 hours. The cells were either 

fixed for immunofluorescent labelling or used for preparing lysates for immunoblot 

analysis (Section 2.2.9). 

2.2.7. Molecular Biology 

i) Genomic DNA isolation 

Isolation of DNA was initially performed using two different protocols to identify the 

best method to maximise yield without compromising the purity of the DNA: 

Genomic DNA Isolation method 1: Qiagen kit 

DNA was isolated from 25 mg of human brain tissue using the QIAamp DNA Mini Kit 

according to manufacturer‘s instructions. The column eluted DNA was quantified using 

the Nanodrop 1000 spectrophotometer (ThermoScientific) and stored at -20 °C until 

required for further use. 

Genomic DNA Isolation method 2: phenol chloroform extraction and ethanol 

precipitation 

Equivalent amount of tissue (25 mg), as used for the Qiagen kit method, was taken from 

each sample (AD and non-AD controls) and digested overnight at 56 °C in 180 μl ATL 
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buffer and 20 μl proteinase K from a 10 mM stock solution. Following complete 

enzymatic digestion DNA was extracted using phenol/chloroform/isoamylalcohol; 

avoiding the column elution. This method involved addition of 

phenol/chloroform/isoamylalcohol (200 μl) to each sample, followed by vortex mixing 

and centrifugation for 5 mins at 13,000 rpm. The upper aqueous layer (containing the 

DNA) was transferred to a fresh, sterile 1.5 ml Eppendorf® tube, followed by ethanol 

precipitation; 1 μl Glycogen (20 μg/μl), 0.5x volume of sample sodium acetate (7.5 M) 

and 2.5x volume of sample 100 % ethanol (ice cold) was added to each sample mixed 

by vortexing and then placed at -80 °C for a minimum of 1 hour. Each sample was then 

centrifuged at 4 °C for 30 mins at 13,000 rpm in order to pellet the DNA. Once the 

supernatant was removed the pellet was washed by adding 150 μl 70% ethanol, 

followed by centrifugation at 4 °C for 2 mins at 13,000 rpm. The wash step was 

repeated twice then the tube was left at room temperature for 15 mins to dry the pellet, 

followed by re-suspension in 100 μl AE buffer. Finally the DNA was quantified using 

the Nanodrop 1000 spectrophotometer (ThermoScientific) and stored at -20 °C until 

required for further use. 

ii) PCR optimisation 

For each primer set the PCR required optimisation, this was carried out using a series of 

reactions under different conditions to determine the optimum working protocol. The 

stages involving PCR optimisation are described in detail below.  

DNA template 

A maximum of 1 µg (0.5 µg when using Phusion HS Taq) of DNA template is 

recommended by manufacturers. For each primer set, reactions were initially performed 

out using 0.25 µg, 0.5 µg, 0.75 µg and 1 µg DNA concentrations. For use with universal 
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bacterial primers using Taq polymerase an optimal concentration of 1 µg was 

determined. Whereas when using specific bacterial primers (T. denticola, T. forsythia 

and P. gingivalis) coupled with Phusion High-Fidelity Hot start II DNA Taq 

Polymerase the optimal DNA template concentration was 0.25 µg. The requirement for 

a relatively high concentration of DNA template may be explained by the fact that the 

target DNA is only likely to be present in small quantities within the complex mixture 

of genomic DNA making up each sample. 

Primer concentration 

The optimal primer concentration for each primer set was determined by performing a 

series of PCR reactions with different primer concentrations (final concentration of 

0.05-1 µM). For all primer sets the recommended final primer concentration of 0.2 µM 

was considered to be optimal, this was achieved by adding 0.5 µl of 10 µM 

concentration of each primer (forward and reverse) to a 25 µl reaction.   

Magnesium concentration 

The recommended magnesium concentration for both Taq polymerases (Fisher and 

Phusion HS) did not require further optimisation as the commercial buffers supplied in 

the kit were fully optimised for the required concentration of MgCl2 (15 mM for Fisher 

Taq polymerase and 7.5 mM for Phusion).  

Taq concentration 

The optimum concentration of Fisher Taq polymerase (0.1 U/µl) was achieved by 

adding 0.5 µl of 5 U/µl Taq polymerase per 25 µl reaction. Whereas for Phusion High-

Fidelity Hot start II DNA Taq, the optimal final concentration in the PCR reaction was 

0.02 U/µl (0.2 µl of 2 U/µl Taq per 20 µl reaction). 
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Annealing temperature 

For each primer set the annealing temperature was determined by running a gradient 

PCR using the Verity step on the Veriti™ Thermal Cycler (Applied Biosystems). 

Temperatures of 2 °C intervals were performed (generally ranging from 54 °C – 64 °C), 

if a clear band was visible at all temperatures (and the negative controls were clear) then 

the highest temperature which produced the most compact, single band was selected to 

achieve the highest specificity. 

Extension time 

The rule of thumb was applied for use with the Fisher Taq polymerase which is: 1 

minute extension time per 1 Kb product size, hence a 1 minute 30 second extension was 

employed for universal primer sets (product size: 1.5 Kb). This was increased to 1 

minute 40 seconds during cloning as the product size was larger (~1600 bp) when using 

M13 primers. When using Phusion High-Fidelity Hot start II DNA Taq Polymerase the 

process was much quicker, the manufacturers recommended that when using this taq for 

high complexity genomic DNA to use as little as 30 seconds for 1 Kb length of DNA. A 

number of PCR reactions were performed using a range of extension times for each 

primer set (20, 25, 30, 35 and 40 seconds). Those parameters which produced the 

clearest results, for each primer set, were then selected for routine use here onwards. 

iii) PCR- universal 16s bacterial gene primer sets 

Following DNA extraction the 16S rRNA genes were amplified under standard 

conditions using universal bacterial primer sets (Forward primer: D88, 

GAGAGTTTGATYMTGGCTCAG; Reverse primers: C90 for Spirochetes 

GTTACGACTTCACCCTCCT, F01 for Bacteroidetes CCTTGTTACGACTTAGCCC) 
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as published by Paster et al., (2001) fully optimised as above. The PCR reactions were 

performed in 0.2 ml PCR tubes, vortex mixed and centrifuged briefly before 

amplification using a Veriti™ Thermal Cycler (Applied Biosystems). Each reaction had 

a total volume of 25 μl; consisting of 2.5 μl Buffer A, 0.5 μl dNTPs, 0.5 μl each primer 

(forward and reverse 10 µM), 0.2 μl Taq, 1 μg sample DNA and sterile RNA/DNA free 

water to make the volume up to 25 μl. The negative control samples contained all PCR 

reagents except for the sample DNA. The positive control samples contained all PCR 

reagents together with P. gingivalis, T. denticola or T. forsythia DNA (dependant on the 

primer set being used). The PCR parameters used for all 16s analysis were: 95 °C for 8 

mins, 35 cycles of; 94 °C for 1 min, 55 °C for 30 seconds, 72 °C for 1 min 45 seconds, 

followed by 72 °C for 10 mins.  

iv) Electrophoresis 

PCR product (5 µl of PCR product in 2 µl of loading dye) was examined for expected 

bands around 1500 bp using 1.5 % agarose gel electrophoresis performed at 100 V in 1x 

TAE (0.04 M Tris Acetate, 0.001 M EDTA) buffer. The gel was post stained with 

ethidium bromide (0.5 µg/ml) and the bands were visualised using a GENE GENIUS 

Bio imaging system and Gene snap software (Syngene, UK). 

v) Purification of PCR product 

The PCR product of interest was purified using microCLEAN as per manufacturer‘s 

instructions. Briefly, an equal volume of microCLEAN was added to the PCR product 

and mixed by pipetting then left at room temperature for 5 mins. Followed by 

centrifugation at 13,000 rpm for 7 mins, then the supernatant was removed. Finally the 

pellet was re-suspended in AE buffer (20 µl) and quantified using the Nanodrop 1000 

spectrophotometer (ThermoScientific) for Topo cloning. Any remaining sample was 
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stored at – 20 °C.   

vi) Topo Cloning  

Chemically prepared competent cells  

A discrete colony of Escherichia coli strain DH5-α bacteria maintained previously on 

an LB agar plate (stored at 4 °C) was inoculated into 5ml of LB for an initial overnight 

miniculture at 37 °C in a shaker set at 200 rpm. The following day, 1ml of the fresh 

mini culture was used to inoculate a larger culture in sterile LB (100ml) which was 

incubated at 37 °C in a shaker set at 200 rpm and monitored for growth until an OD600 

of approximately 0.5 was obtained. Then cells were incubated on ice for 10-15 mins 

before transferring the culture, in equal volumes, into two sterile 50 ml centrifuge 

(Falcon
TM

) tubes and centrifuged at 4,000 rpm for 5 min at 4 °C. The supernatant was 

discarded and the remaining cells were re-suspended in 30 ml sterilized TBF1 buffer 

(30 mM KOAc, 50 MnCl2, 100 mM KCl, 10 mM CaCl2 in 15 % glycerol, pH 7.3) per 

50 ml original culture. Following further incubation on ice for 15 min, the cells were 

pelleted by centrifugation (4,000 rpm for 5 min at 4 °C), and re-suspended in sterilised 

TBF2 buffer (10 mM MOPs, 75 mM CaCl2, 10 mM KCl in15 % glycerol, pH 7.3). The 

chemically competent cells (on dry ice) were aliquoted (100 µl) into sterile Eppendorf 

TM 
tubes and stored at -80 °C until needed.  

Ligation 

A ligation reaction was set up using an Invitrogen cloning kit (TA cloning kit PCR® 2.1 

vector) according to manufacturer‘s instructions. In brief a 10 µl ligation reaction was 

prepared consisting of 20 ng fresh PCR product, 1 µl 10X ligation buffer, 2 µl pCR®2.1 

vector (25 ng/µl) and sterile (RNA/DNA free) water to a total volume of 9 µl followed 



91 

 

 

by 1 µl T4 DNA ligase (4.0 Weiss units). The reaction was incubated at 14 °C 

overnight. 

Transforming chemically competent cells 

The ligation product was centrifuged briefly and stored on ice, a 100 μl vial of the 

chemically treated E. coli DH5-α strain (prepared as above) was thawed on ice then 2 μl 

of ligation product was added directly to the vial of competent cells and mixed gently. 

The vials were incubated on ice for 30 mins then heat shocked for 30 seconds at 42 °C, 

without shaking, and immediately returned to ice. S.O.C. medium (200 μl) was added to 

each vial of cells and incubated for 1 hour at 37 °C shaking at 225 rpm. LB agar plates 

were prepared (containing 50 μg kanamycin) and spread with 40 μl X-Gal (40 mg/ml) 

which was left to soak into the agar at 37 °C for approximately 30 mins. Two different 

volumes (50 μl and 100 μl) of each transformation vial was spread onto separate LB 

agar plates containing kanamycin (previously coated with X-Gal) and incubated 

overnight at 37 °C. All plates were then moved to 4 °C for 2-3 hours to allow for 

complete colour development. 

Analysing transformants 

On average 20 % of all colonies (white only) were selected and each mixed with 20 μl 

sterile distilled water, 5 μl of each colony suspension was re-plated onto another pre-

labelled LB agar plate containing kanamycin and incubated overnight at 37 °C. The 

remaining 15 μl was heat killed at 65 °C for 15 mins. 5 μl of the heat killed colony was 

then applied to a PCR mix along with 2.5 μl Buffer A, 0.5 μl dNTPs, 0.5 μl M13 

forward primer (GTAAAACGACGGCCAG, 10 μM), 0.5μl M13 reverse primer 

(CAGGAAACAGCTATGAC, 10 μM), 0.2 μl Taq and 10.8 μl sterile RNA/DNA free 

water. PCR parameters were as follows; 95 °C for 5 mins, 25 cycles of; 94 °C for 1 min, 
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55 °C for 30 seconds, 72 °C for 1 min 45 seconds, followed by 72 °C for 10 mins. 

Results were visualised using agarose (1.5 %) gel electrophoresis post staining with 

ethidium bromide. When a positive clone was identified by PCR (colony screen) that 

specific colony was selected from the LB agar/kanamycin plate and cultured overnight 

in 20 ml LB broth containing 50 μg/ml kanamycin at 37 °C whilst shaking at 200 rpm. 

vii) Plasmid Isolation 

Following a 24 hour liquid culture, the tubes were centrifuged at 4,500 rpm for 20 mins 

to pellet cells. The plasmid DNA was isolated using a plasmid isolation kit (Qiaquick) 

according to the supplier‘s instructions. The elution volume used was 50 μl, and the 

yield was measured on the Nanodrop 1000 spectrophotometer (ThermoScientific). Here 

a PCR reaction using the same parameters as the colony screen (but replacing the 10μl 

of colony with 1μg plasmid DNA) was used to check if the correct plasmid had been 

isolated. 

viii) Sequencing PCR 

Sequencing was carried out using the BigDye® Terminator v3.1 Cycle sequencing kit 

according to the manufacturer‘s instructions. Reactions were performed in volumes of 

10 μl as follows: 0.8 μl reaction premix, 3.6 μl reaction buffer, 1.6 μl (1 μM) primer 

(either the M13 forward or the M13 reverse primers as described above), 10-40 ng DNA 

(Table 2.2) and RNA/DNA free water added up to the required volume. 
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Table 2.2 – The concentration of template needed for DNA sequencing using the 

BigDye® terminator v3.1 cycle sequencing kit. 

Size of PCR product (sequencing 

template) 

Concentration for sequencing reaction 

100-200 bp 1-3 ng 

200-500 bp 3-10 ng 

500-1000 bp 5-20 ng 

1000-2000 bp 10-40 ng 

 

All reactions were performed in 0.2 ml PCR tubes, vortex mixed and centrifuged prior 

to amplification in a Veriti™ Thermal Cycler (Applied Biosystems, UK). The PCR 

parameters were as follows: 96 °C for 1 minute, 25 cycles of; 96 °C for 10 seconds, 50 

°C for 5 seconds, 60 °C for 4 mins. 

ix) Purification of the sequenced reaction 

Purification of the sequencing reactions was carried out using the sodium 

acetate/EDTA/glycogen and ethanol precipitation method recommended by Applied 

Biosystems. For this 1 μl of 3 M sodium acetate pH 5.2, 1 μl of 100 mM EDTA pH 8.0, 

1 μl of 20 mg/ml glycogen and 30 μl ice cold 95% ethanol was added to each reaction. 

The solutions were mixed by pipetting and left at room temperature for a minimum of 1 

hour to allow for DNA precipitation. DNA was pelleted by centrifugation at 13,000 rpm 

at 4 °C for 30 mins. The pellet was washed with 100 μl of 70% ethanol; vortex mixed 

and centrifuged at 13,000 rpm at 4 °C for 15 mins, then the supernatant was removed. 

The wash step was repeated and finally the pellet was dried for 10 mins at 60 °C. 



94 

 

 

x) Capillary electrophoresis of sequencing products 

Analysis of the sequencing product was performed by the Institute for Translation, 

Innovation, Methodology and Engagement, Central Biotechnology services, Cardiff 

University. Following analysis the results were converted into a FASTA sequence and 

submitted to the BLAST (Basic Local Alignment Search Tool) nucleotide search engine 

(http://blast.ncbi.nlm.nih.gov/) to identify the organism(s) with 99-100% match. 

2.2.8. Immunofluorescence labelling 

i) Cryo-sectioning  

A 3 mm
2
 thick section of brain tissue from each case was separated from the original 

snap frozen unfixed cores and mounted onto a specimen holder using the OCT® 

adhesive. Sections (10 µm thickness) were cut using the Leica CM1850 cryostat (Leica 

UK) and collected onto superfrost+® glass slides (Leica UK). Spare sections on slides 

were stored at -80 °C. 

ii) Controls for immunofluorescence labelling 

Negative controls 

Alongside the non-AD control brain sections (whereby both primary and secondary 

antibodies were added) and additional negative control was always included in which 

the primary antibody was omitted. For SVGp12 cells on coverslips, as well as the 

omission of the primary antibody, an additional negative control involved the inclusion 

of the primary antibody (anti-P. gingivalis clone 1B5) on medium control challenged 

cells.  

Positive controls - Bacterial smears 
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Formalin fixed P. gingivalis FDC 381, T. denticola ATCC 35404, and T. forsythia 

ATCC 43037 were smeared on appropriately labelled glass slides using a disposable, 

microbiology loop. Once the smear had dried, the bacteria were heat fixed to firmly 

adhere them to the glass slide. These were used as positive controls for 

immunolabelling alongside the cryo-sections.     

iii) Optimisation of antibodies for immunofluorescent labelling 

No pre-treatments were required on cryo-sections and/or bacterial smears. For every 

antibody used a dilution profile was determined for each application and then adhered to 

for the same application throughout the experimental phase of the study, unless a new 

batch was purchased. Secondary antibody dilution was previously optimised for routine 

use by immunofluorescence in our laboratory (FITC labelled secondary detection 

antibodies used at 1/200 and Alexa Fluor at 1/1000).  

Each of the selected dilutions was tested on a positive control section where possible. 

The optimal dilutions, which produced clear results with no background/non-specific 

labelling, for each antibody are: rat anti-T. denticola (FhbB protein) 1/5000; rabbit anti-

T. forsythia (s-layer protein) 1/20,000; mouse anti-P. gingivalis (Clone 1B5) 1/10; 

mouse anti-CD14 (clone HCD14) 1/200; rabbit anti-human IgG (for detection of Aβ 

plaques) 1/200. 

iv) Immunolabelling snap frozen, cryostat tissue sections 

All unfixed sections were allowed to air dry at room temperature before tissue 

stabilisation for 5 min in cold Analar grade acetone. Unless otherwise stated, no 

quenching of autofluorescence or any other antigen retrieval step was employed. 

Sections were equilibrated in 0.01 M PBS (pH 7.3) once for 5 mins and blocked in the 
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blocking solution (0.01 M PBS pH 7.3 containing 0.01% normal goat/rabbit serum and 

2% tween 20). The sections were incubated overnight at 4 °C in the primary antibody 

(rat anti-T. denticola (FhbB protein); 1/5,000; rabbit anti-T. forsythia (s-layer protein) 

1/20,000; mouse anti-P. gingivalis (Clone 1B5) 1/10; mouse anti-CD14 (clone 

HCD14) 4 μg/ml; rabbit anti-human IgG (for detection of Aβ plaques) 1/200; mouse 

anti-GFAP (clone GA-5) 4 μg/ml; mouse anti HLA-DP, DQ, DR clone CR3/43 (for 

detection of microglia) 1/100) diluted in the blocking solution. The secondary detection 

was carried out using the appropriate secondary antibody (rabbit anti-rat Alexa Fluor 

488 1/1000; goat anti-mouse FITC 1/100; goat anti-rabbit FITC 1/100) diluted in the 

blocking solution as above. Following further washes in PBS (3x 5 mins) sections were 

mounted under a glass coverslip using PI Vectashield mounting medium. Labelling was 

observed and images were captured using the 510 series Zeiss confocal microscope 

(Carl Zeiss Ltd). 

v) Immunofluorescence labeling of in vitro culture of SVGp12 cells 

The cells (on coverslips) were fixed in 10 % neutral buffered formalin for a minimum of 

1 hour at 4 °C. Following a thorough wash in 0.01 M PBS (pH 7.3), the cells were 

either used immediately or held in PBS for up to 1 week at 4 °C before 

immunolabelling.  

Immunolabelling was performed with appropriate primary antibodies as described 

for cryostat brain tissue sections (see above section iv). Briefly; following fixation and 

incubation of cells in the blocking solution (0.01 M PBS pH 7.3 containing 0.01 % 

normal goat/rabbit serum and 2% tween 20), the coverslips were incubated in the 

following primary antibodies: mouse anti-CD14 (1/200), mouse anti-P. gingivalis 

(clones 1B5 and 1A1; diluted 1/10 and 1/50 respectively) and mouse anti-GFAP (1/200) 
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overnight at 4 ºC. Secondary detection was performed using the goat anti-mouse FITC 

(1/100). The results were visualised and imaged using the 510 Zeiss confocal 

microscope. 

vi) Double immunolabelling of in vitro culture of SVGp12 cells 

Formalin fixed SVGp12 cells on coverslips were dual labelled with goat-anti GFAP 

(1/1000) and mouse anti-P. gingivalis (clone 1B5) (1/10) as above except the blocking 

solution used was 0.01 M PBS pH 7.3 containing 1% BSA. Secondary detection 

antibodies were goat anti-mouse FITC (1/200) and rabbit anti-goat Alexa Fluor 555 

(1/1000) diluted in blocking solution (0.01 M PBS/1% BSA). Sections were mounted 

under a glass coverslip using the Vectashield® DAPI mounting medium and imaged as 

described above (Section iv). 

 

2.2.9. Biochemistry  

i) Tissue lysates  

A 3 mm
2
 section of all brain specimens were taken from the original snap frozen 

unfixed tissue core and minced in lysis buffer containing 50 mM Tris pH 8.0, 1% NP40, 

150 mM NaCl, 5 mM EDTA and protease inhibitors. Protease inhibitors are added in 

order to prevent the degradation of the proteins by the protease enzymes released during 

cell lysis within the sample. Following incubation on ice for 30 mins and frequent 

vortex mixing, the tissue homogenate was then centrifuged at 12,000 rpm for 20 mins at 

4 °C using a micro-centrifuge. Finally the supernatant was collected in pre-labelled, 

sterile, 1.5 ml Eppendorf® tubes and stored at -20 °C until needed. 
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ii) Cell lysate  

Following exposure to either to P. gingivalis (33277 or W50) secreted virulence factors 

(culture supernatant) or the medium control for 48 hours (as described in section 2.2.6), 

SVGp12 cells were pelleted free of culture medium and washed three times in cold, 

sterile PBS with centrifugation (5 mins at 2,500 rpm) between each wash. The cells 

were lysed in buffer containing protease inhibitors (as above) and incubated on ice for 

30 mins with frequent vortex mixing. Finally, the cell homogenate was centrifuged and 

collected as before, in pre-labelled Eppendorf® tubes and stored at -20 °C. 

iii) Controls  

Along with the lysates prepared from both human brain tissue and SVGp12 cells a 

number of positive and negative controls were also generated: 

Negative control  

Sterile bacterial growth medium was used as the medium control. Once thawed protease 

inhibitors were added to a 1 ml aliquot and it was then freeze dried for at least 12 hours 

and re-suspended in a 200 μl volume of lysis buffer containing 50 mM Tris pH 8.0, 1% 

NP40, 150 mM NaCl, 5 mM EDTA. The aliquots were stored at -20 °C for subsequent 

needs. 

Positive control 

An aliquot (0.5 ml) of each P. gingivalis culture (ATCC 33277 and W50)  was freeze 

dried  inclusive of protease inhibitors overnight and re-suspended in 200 µl volume of 

lysis buffer and stored at -20 °C until needed (as described above).  
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Control lipopolysaccharide (LPS) lysate  

As a check for cross reactivity of the primary antibody with LPS from other bacteria 

commercially prepared (phenol extracted) lyophilized powder from E. coli LPS was 

used. The LPS (1 µg) was re-suspended in 250 μl lysis buffer containing protease 

inhibitors used above and stored at -20 °C until required. 

iv) Protein assay 

The total protein concentrations of all lysates (cells, human brain tissue and cultures) 

were determined using the Bradford colorimetric assay (Bradford, 1976). Briefly, 

protein concentration was obtained from a standard curve prepared using 100-400 

mg/ml BSA diluted in lysis buffer. Following addition of the Coomassie blue reagent to 

all standards and test samples, absorbance was measured at 595 nm wavelength using a 

Jenway 7315 spectrophotometer. The unknown concentration of the samples was 

calculated by comparing the absorbance values with the standard curve. 

v) Optimisation of western blotting 

SDS PAGE conditions: 

Percentage gel 

Selecting the correct percentage gel is important as this will determine the rate of 

migration and degree of separation between proteins. Initially the percentage gel had to 

be considered for each protein of interest; lower percentage gels (7.5%) were used when 

trying to resolve proteins of a larger size, whereas higher percentage gels (12.5-15%) 

were required for resolution of smaller proteins.  
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Amount of protein to load per well  

All samples were loaded at the same concentration (30 µg total protein). For the 

negative controls a consistent amount of total protein was added (30 µg).  However, 

when using the same amount of protein (30 µg) for the positive controls a rapid, high 

signal, was produced saturating before a 1 second exposure, hence the original stock 

was diluted to ensure the emergence of the signal in line with tests. This meant that the 

positive controls were not always loaded at equivalent protein concentration to the test 

samples.  

Transfer conditions 

Following the electrotransfer, the gels were stained with Coomassie blue reagent in 

order to determine if all proteins had been successfully transferred to the PVDF 

membrane, as indicated by an almost clear gel following the protein stain.  

Immunoblotting conditions 

Blocking solution 

Initially two different blocking solutions were tested; the Invitrogen blocking solution 

and 5% w/v skimmed milk/PBS. Following a number of tests it was determined that 5% 

w/v skimmed milk/PBS produced cleaner blots with no background, whereas the 

Invitrogen blocking solution was associated with a high background with some 

antibodies. Hence, 5 % w/v skimmed milk/PBS was used as the blocking solution 

thereafter.  
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Optimal primary antibody concentration 

The concentration of both primary antibodies (mouse anti-P. gingivalis clones 1B5 and 

1A1) were tested on positive and negative controls, along with human brain specimens, 

at a variety of different concentrations (similar to those previously published; 1/5, 1/10, 

1/20, 1/40). The optimal concentrations for each antibody were: mouse anti-P. 

gingivalis (clone 1B5) 1/20 and mouse anti-P. gingivalis (clone 1A1) 1/50.  

Secondary antibody concentration  

The same assay dependant concentration was used for the secondary antibody, using the 

range suggested by the manufacturer (1/5,000-1/100,000) again testing on both positive 

and negative controls along with human brain specimens. The concentration of the 

secondary which produced the best results, with no background or non-specific binding 

was 1/20,000. 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE) was used to 

separate the proteins within each sample by their size (kDa). The detection of specific 

proteins within the complex mixture (cell/tissue lysate) was performed by transferring 

the proteins from the gel matrix onto a PVDF membrane for immunoblotting using 

antibodies specific to target the desired protein. 

vi) Casting gels 

Bio-Rad mini gel electrophoresis system was used to prepare gels for SDS-PAGE. 

Glass plates (both short and spacer plates) were cleaned using 70% ethanol and 

assembled in the apparatus as per manufacturer‘s instructions. At this stage distilled 

water was added to ensure it was sealed tightly. Following removal of the water, the 

required percentage gels were cast as per table 2.3 using the following reagents: Upper 
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buffer (Stacking gel buffer) 0.5 M Tris base and 0.4 % SDS, pH 6.8; Lower buffer 

(resolving gel buffer) 1.5 M Tris base and 0.4 % SDS, pH 8.8; freshly prepared 10 % 

aqueous APS; 30 % acrylamide/0.8 % N, N –methylene bisacrylamide stock solution 

and N,N,N′,N′-tetramethylethylenediamine (TEMED). The lower (resolving) gel was 

added first, overlaid with a layer of 70% methanol until set, to insure a smooth divide 

between gels with no air bubbles. Once the gel was set the methanol was removed using 

a series of washes in distilled water, then the upper (stacking) gel was poured on top of 

the resolving gel, putting the comb in place to create 10 sample loading wells. Once the 

gel had set the combs were removed and the gels were arranged in the electrophoresis 

unit (Bio-Rad) as per manufacturer‘s instructions. 1x electrophoresis buffer was added 

following dilution from 10x stock (10 x electrophoresis (running) buffer stock: 144 g 

glycine, 30 g Tris base, 1 l distilled water and 0.1 % SDS, pH 8.3). 

Table 2.3: Quantity of reagents required for preparation of resolving and stacking gels 

for SDS-PAGE. 

Reagents Resolving Gel Stacking Gel 

 7.5% 10% 12.5% 15% 4% 

40% 

bisacrylamide 

2.72 ml 3.83 ml 4.53 ml 5.51 ml 575 µl 

1M Tris HCl, pH 

8.8 

3.63 ml 3.63 ml 3.63 ml 3.63 ml  - 

1M Tris HCl, pH 

6.8 

- - - - 1.3 ml 

10% APS 75 µl 75 µl 75 µl 75 µl 37.5 µl 

dH20 8.16 ml 7.05 ml 6.35 ml 5.37 ml 4.075 ml 

TEMED 15 µl 15 µl 15 µl 15 µl 7.5 µl 
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vii) Sample preparation 

Samples were prepared for SDS-PAGE to the correct dilutions (30 µg total protein, as 

per protein assay results) using distilled water. A total volume of 15 µl was prepared for 

each sample. Then an equal volume of Laemmli reducing sample buffer (15 µl) (non-

reducing Laemmli sample buffer with the addition of 5% β-mecaptoethanol) was added 

and the sample was heated at 95 °C for 5 min using a heat block. Following this 

samples (30 µl) were loaded into the appropriate wells using gel loading tips with the 

first lane on each gel containing pre-stained protein markers. 

viii) SDS-PAGE 

A current of 80 V was applied until the dye front (0.01 % bromophenol blue present in 

the Laemmli buffer) was visible approximately 1 cm from the bottom of the gel. 

ix) Electrotransfer  

Following SDS-PAGE, the separated proteins were transferred from the gel matrix to a 

PVDF membrane using the Bio-Rad trans-blot transfer cell (Bio-Rad) as per 

manufacturer‘s instructions. In brief, the PVDF membrane was prepared, washed in 

methanol for 30 seconds and left to equilibrate in 1x transfer buffer prior to the transfer 

process. Transfer buffer was diluted from 10x stock (10 x transfer buffer: 144 g glycine, 

30 g Tris base, 1 l distilled water pH 8.3) in distilled water containing 10 % methanol 

and used to fill the tank to the appropriate level. The required components were layered 

in a specific order inside the plastic cassette – sponge, filter paper, PVDF membrane, 

gel, filter paper then sponge (all made moist using 1x transfer buffer without methanol). 

The cassette was placed within the transfer tank and temperature was controlled by 

placing ice packs in the tank. The electrodes were connected, then 180 mA was applied 
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for a total of 2 hours allowing transfer of the proteins from the gel (+) to the membrane 

(-). 

x) Immunoblotting 

Following the electrotransfer of proteins to a PVDF membrane the membranes were 

blocked for 30 mins at room temperature in 5% w/v skimmed milk/PBS prior to 

incubation overnight at 4 C in anti-P. gingivalis clone 1B5 or 1A1 diluted 1/20 or 1/50 

respectively using 5% w/v skimmed milk/PBS. Following 3x 15 min washes in PBS 

containing 0.2 % tween 20, the membranes were incubated in the horse radish 

peroxidase (HRP)-conjugated IgG secondary antibody, goat anti-mouse, diluted 

1/20,000 in 5% w/v skimmed milk/PBS for 2 hours at room temperature. Membranes 

were washed in PBS/tween 20, (3x 15 mins) followed by the detection of any positive 

bands using the enhanced chemiluminescence detection reagent in a chemi-doc imaging 

station (Bio-Rad) using the Molecular Analyst software. India ink was used to stain the 

membrane as a loading control.  

2.2.10. Statistical analysis  

The non-parametric Mann Whitney-U test was performed comparing the AD specimens 

to the non-AD ages matched controls. Differences were considered significant at P 

<0.05. 
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2.3. RESULTS 

2.3.1. Molecular Biology  

Optimisation of genomic DNA isolation on sample AD-1 (note the same amount of 

tissue was used for each method) demonstrated the kit method gave a poor yield 

compared with the manual method. The results are presented in table 2.4.  

Table 2.4: Results from DNA quantification following two different protocols, as stated 

in materials and methods section 2.2.7. 

Genomic DNA isolation Method DNA Concentration 

(ng/µl) 

purity Total yield 

(µg) 

1. Qiagen kit 28.4 1.98 0.284 

2. Phenol chloroform/ ethanol 

precipitation 

110 1.95 1.1 

 

Hence, from here onwards all genomic DNA isolation was carried out using phenol 

chloroform extraction coupled with ethanol precipitation as this method produced  the 

greatest DNA yield without compromising its purity. 

PCR analysis using primers specific for Spirochetes produced negative results in all AD 

and non-AD human brain specimens (Fig. 2.1a and b) despite the positive control 

showing a clear band (lane 3 Fig. 2.1a and b) and the negative control remaining clear 

(lane 2 Fig. 2.1a and b). When using the same genomic DNA samples (from all AD and 

non-AD cases) with primers specific for Bacteroidetes the controls remained consistent; 

negative control clear and the positive control showing a single bright band, (Fig. 2.2, 
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lanes 2 and 3). However, 4 cases presented with clear positive bands (Case ID: AD 1, 

AD 7, AD 9 and Non-AD 2) with another 4 cases presenting with faint bands of the 

correct size ~1500 bp (Case ID: AD 2, AD 8, AD 10 and Non AD 1) (Fig. 2.2).  

 

Figure 2.1: PCR results from all human cases using primers specific for Spirochetes.  a) 

shows the 1 Kb marker (lane 1) followed by a negative control (lane 2), positive control 

(lane 3), then human AD cases 1-10 (lanes 4-13)  b) shows the 1Kb marker (lane 1) 

followed by a negative control (lane 2), positive control (lane 3), then human non-AD 

control cases 1-5 (lanes 4-8). 
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Figure 2.2: PCR results from all human cases using primers specific for Bacteroidetes. 

a) shows the 1 Kb marker (lane 1) followed by a negative control (lane 2), positive 

control (lane 3), then human AD cases 1-10  (lanes 4-13). b) Shows the 1 Kb marker 

(lane 1) followed by a negative control (lane 2), positive control (lane 3), then human 

non-AD control cases 1-5 (lanes 4-8).  

 

Following cloning, colony screening demonstrated some bands with the correct size 

insert (~1600 bp) to be isolated for sequencing (Fig. 2.3).  



108 

 

 

 

Figure 2.3: Results of colony screen to check for success of cloning; positive colony 

shown by a bright band at ~1600 bp (indicated by arrow). Gels show 1 Kb marker (lane 

1- on all gels A-E), and a number of colony screens, here a total of 68 colonies were 

screened across all cases (lanes 2-15 on gels A-E). Arrow adjacent to each gel indicates 

expected position of positive band (~1600 bp). 

Sequencing identified that the DNA was from bacterial phylotypes outside the scope of 

this study (Table 2.5). Oral bacteria Prevotella oulorum strain WPH 179 and 

Propinobacterium acnes were commonly identified, however, they were both present in 
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the AD and non-AD control brain tissue therefore proving insignificant when tested 

using the non-parametric Mann-Whitney U test. 

Table 2.5: Sequencing results from human brain tissue (AD and Non-AD controls).  

Case Sequence 

length (bp)                               

Identification E 

value 

% nucleotide 

match 

AD 1 1286 Massilia aurea (strain 

AP13)   

0.0 99 

AD 2 1310 Pseudomonas 

psychrotolerans (strain 

C36) 

0.0 99 

AD 7 505  Prevotella oulorum (strain 

WPH 179) 

0.0 98 

AD 8 1203 Propinobacterium acnes 0.0 99 

AD 9 1098 Sphingomonas spp. 0.0 99 

AD10 1219 P. acnes 0.0 100 

Non AD 1 1280 P. oulorum (strain WPH 

179) 

0.0 99 

Non AD 2 1186 P. acnes 0.0 99 
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2.3.2. Immunofluorescence labelling 

i) Controls  

All control human brain tissue sections were semi-serial to those shown under test 

conditions and were exposed to identical conditions. The sections whereby the primary 

antibody was omitted remained negative with FITC labelled secondary detection system 

(Fig. 2.4a). There was some generalised auto fluorescence associated with erythrocytes, 

but this remained below the threshold of noise to signal ratio except for the elastin in 

arteries. There was also strong auto fluorescence associated with brain pigment but this 

was of a different wavelength and colour (yellow) to that of FITC (green). Non-AD 

control brain tissue sections also remained negative (Fig. 2.4b) despite labelling with 

both the primary and secondary antibodies. SVGp12 cells challenged with medium-

control remained negative when incubated with the anti-P. gingivalis (clone 1B5) 

antibody (Fig. 2.4c) and when the primary antibody was omitted.  

For all bacterial antibodies positive controls were generated using smears of 

each bacterium (T. denticola, T. forsythia and P. gingivalis) dried onto microscope 

slides. In all cases the antibodies were tested using identical conditions to those used on 

the human brain sections. The results show that the antibodies correctly labelled their 

respective epitopes (Fig. 2.4 d-f), although only weak labelling of the whole cell was 

detected by both T. denticola and T. forsythia antibodies (Fig. 2.4 d and e). 
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Figure 2.4: Control images for immunofluorescent labelling of human brain tissue. a) 

Human brain tissue section whereby the primary antibody was omitted, the secondary 

antibody being goat anti-mouse FITC (green). b) Human non-AD control brain tissue 

section where both primary (mouse anti P. gingivalis clone 1B5) and secondary (goat 

anti-mouse FITC) antibodies were applied. c) SVGp12 cells treated with medium 

control for 48 hours, labelled with both primary (mouse anti-P. gingivalis clone 1B5) 

and secondary (goat anti-mouse FITC) antibodies. Red (PI) indicates the nuclear label. 

d) T. denticola positive bacterial smear labelled with rat anti-T. denticola (FhbB 

protein). e) T. forsythia bacterial smear positively labelled with rabbit anti-T. forsythia 

(s-layer protein). f) P. gingivalis bacterial smear positively labelled with mouse anti-P. 

gingivalis clone 1B5. 
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ii) Immunofluorescence labelling of human brain tissue 

Tests using both T. denticola and T. forsythia antibodies on human brain sections (both 

AD and non-AD controls) remained negative throughout. The human brain tissue 

sections labelled with the mouse anti-P. gingivalis (clone 1B5) revealed strong cellular 

surface membrane labelling on glial cells in 4 out of 10 AD cases (Case ID: AD 3, AD 

5,  AD 8 and AD 10; p = 0.029; Fig. 2.5 b-d) and not in the non-AD age matched 

controls. Surface membrane labelling was confirmed by labelling adjacent brain tissue 

sections with a monoclonal anti-CD14 antibody (Fig. 2.5e).  

 

Figure 2.5: A-D) Human brain tissue sections labelled with anti-P. gingivalis clone 1B5 

(FITC-green) and PI nuclear label (Red). A) negative control image whereby the 

primary antibody was omitted. B) labelling of human AD brain tissue with anti-P. 

gingivalis (clone 1B5) antibody; Red is the nuclear label (PI), green demonstrates P. 

gingivalis positive labelling (FITC). Cell surface labelling was observed in AD cases 3, 

5, 8 and 10. C-D) Further examples of P. gingivalis positive labelled cells at higher 

magnification. E) Human AD brain tissue sections labelled with CD14 to demonstrate 

cell surface labelling on adjacent section to that shown in B, green shows CD14 positive 

labelling (FITC). 
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In addition to the cell surface labelling particulate extracellular aggregates were also 

present within the human AD brain specimens (Case ID: AD 3, AD 5,  AD 8 and AD 

10), labelling positive with the anti-P. gingivalis antibody (Fig. 2.6). These aggregates, 

with pebbly appearance, were frequently observed within the brain parenchyma and in 

association with arterio-venus shunts, and smaller blood vessels as clearly shown by a 

phase image overlaid on the dark field image shown in figure 2.7a , alongside H/E stain 

carried out on the same sections where possible (Fig. 2.7 b and c). 

 

 

Figure 2.6: Human AD brain tissue sections demonstrating extracellular 

immunolabelling for P. gingivalis (clone 1B5). Red is the nuclear label (PI) and green 

demonstrates P. gingivalis positive labelling (FITC). Extracellular, granular particles 

(pebbly in appearance) shown at different magnifications (AD Cases 3, 5, 8 and 10). 
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Figure 2.7: Human AD brain tissue sections demonstrating immunolabelling for P. 

gingivalis (clone 1B5) associated with blood vessels. Red is the nuclear label (PI) and 

green shows P. gingivalis positive labelling (FITC). A) P. gingivalis positive 

extracellular particles associated with a blood vessel, particles shown at higher 

magnification and blood vessel further demonstrated by the phase image overlaid on the 

dark filed image. B and C) again show P. gingivalis positive extracellular aggregates 

associated with blood vessels, further demonstrated by the phase image overlaid on the 

dark field image; blood vessel confirmed by H/E stain on the same section. 
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Alongside labelling for the specific bacteria, the number of Aβ plaques labelled with the 

anti-human IgG antibody (Fig. 2.8) were counted on three serial sections for each case 

and the average number of plaques was recorded (table 2.6). Results revealed that the 

same 4 out of 10 AD cases which were positive for P. gingivalis also presented with the 

highest number of Aβ plaques (average 58.625). No plaques were observed with the 

same antibody when applied to age matched non-AD cases and the average for the other 

6 out of 10 cases was 4.25 Aβ plaques (Table 2.6).  

 

Figure 2.8: Human brain tissue sections immunolabelled with anti-IgG for detection of 

Aβ plaques. The secondary antibody was conjugated with FITC, hence the green is the 

positive labelling. Red (PI) is the nuclear label. A) Human non-AD control tissue 

section labelled with both the primary and secondary antibodies. B and C) human AD 

brain tissue labelled with anti-IgG antibody; showing IgG positive plaques. 

 

In addition the levels of inflammation, as demonstrated by immunolabelling of both 

microglial and astroglial cell populations, were estimated and scored in accordance with 

that from the control specimens (Fig. 2.9, Table 2.6). The 4 out of 10 AD cases positive 

for P. gingivalis  scored higher than the non-AD control cases, however, no significant 
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difference in inflammation was noted between the 4 cases positive for P. gingivalis and 

the remaining 6 AD cases.  

 

Figure 2.9: Scoring system for immunolabelling of both microglial and astroglial cell 

populations. A) The scoring system used for the level of GFAP labelling Red is the 

nuclear label (PI), green is GFAP positive labelling (FITC). B) The scoring system for 

measuring the level of microglial cell labelling Red is the nuclear label (PI) Green is 

microglia positive labelling (FITC). 
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Table 2.6- Summary of all immunofluorescent labelling data collected on the human 

AD and non-AD control specimens (ND refers to samples which were not done). 

Case ID P. gingivalis 

antibody labelling 

Average No. of 

plaques labelled 

with IgG 

GFAP score 

(1=min, 3=max) 

Microglial 

score (1=min 

4=max) 

AD 1 Negative 0 2 3 

AD 2 Negative 0 3 3 

AD 3 Positive 60.5 3 2 

AD 4 Negative 0 2 4 

AD 5 Positive 18 2 3 

AD 6 Negative 25.5 2 1 

AD 7 Negative 0 2 1 

AD 8 Positive 76.5 2 3 

AD 9 Negative 2 (diffused) 3 3 

AD 10 Positive 79.5 3 3 

Non AD 1 Negative 0 1 1 

Non AD 2 Negative 0 2 2 

Non AD 3 Negative 0 3 2 

Non AD 4 Negative 0 1 2 

Non AD 5 Negative 0 1 2 

Non AD 6 Negative ND ND ND 

Non AD 7 Negative  ND ND ND 

Non AD 8 Negative ND ND ND 

Non AD 9 Negative ND ND ND 

Non AD 10 Negative ND ND ND 
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iii) Immunofluorescencelabeling of SVGp12 cells 

As stated in the materials and methods (section 2.2.6) SVGp12 cells were treated with 

either a medium control or the secreted virulence factors (culture supernatant) of P. 

gingivalis  ATCC 33277 or ATCC 53978 (W50) for up to 48 hours, washed, fixed and 

then immunolabelled for the detection of P. gingivalis virulence factors. The SVGp12 

cells (Fig. 2.10a), including both media control treated cells and those challenged with 

P. gingivalis (33277) culture supernatant, showed no non-specific labelling with the 

secondary antibody (Fig. 2.10b), and presented with GFAP (Fig. 2.10c) labelling as 

expected.  

 

Figure 2.10: Immunofluorescent labelling of SVGp12 cell line a) light microscopy 

image of SVGp12 cells in culture b) negative control image using FITC conjugated 

secondary (green), Red (PI) indicates the nuclear label c) GFAP labelling of SVGp12 

cells Red is the nuclear label (PI) Green indicates GFAP positive labelling (FITC).  

The media control treated SVGp12 cells remained negative when immunolabelled with 

both the primary (mouse anti-P. gingivalis clone 1B5) and secondary antibodies (goat 

anti-mouse FITC) as shown in figure 2.11. Whereas, immunolabelling of SVGp12 cells 

treated with culture supernatant (33277) using the anti-P. gingivalis (clone 1B5) 
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antibody demonstrated surface membrane labelling (Fig. 2.12). The cell membrane was 

intensely labelled and appeared highly vesiculated (Fig. 2.12). 

 

Figure 2.11: Media control treated SVGp12 cells immunolabelled with mouse anti-P. 

gingivalis (clone 1B5) and detected using the secondary antibody goat anti-mouse 

conjugated with FITC (green), Red represents PI, nuclear label. 

 

Figure 2.12: SVGp12 cells treated with P. gingivalis culture supernatant for 48 hours, 

and immunolabelled using the mouse anti-P. gingivalis (clone 1B5) antibody. Nuclei 

are red (PI), green demonstrates P. gingivalis positive labelling (FITC). 

Further, cells from all treatment groups (media control, and P. gingivalis culture 

supernatant from both ATCC 33277 and W50) were dual labelled for both P. gingivalis 
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virulence factors and GFAP (Fig. 2.13). Again the media control treated cells were 

negative for P. gingivalis virulence factors but expressed GFAP as expected (Fig. 

2.13a). Whereas the SVGp12 cells treated with P. gingivalis culture supernatants (from 

both strains 33277 and W50) demonstrated P. gingivalis positive cell surface labelling 

on the GFAP positive cells (Fig. 2.13 b and c). 

 

 

Figure 2.13: Double immunofluorescent labelling of SVGp12 cells with mouse anti-P. 

gingivalis (clone 1B5) and goat anti-GFAP. Blue is the nuclear label (DAPI), Red 

demonstrates GFAP positive labelling (Alexa Fluor 555), whereas green represents P. 

gingivalis positive labelling (FITC). A) SVGp12 cells treated with medium control for 

48 hours, immunolabelled with both primary and secondary antibodies. B) SVGp12 

cells treated with P. gingivalis (strain 33277) culture supernatant for 48 hours, then 

immunolabelled for P. gingivalis (clone 1B5) and GFAP. C) SVGp12 cells treated with 

P. gingivalis (strain W50) culture supernatant for 48 hours, then immunolabelled using 

the mouse anti P. gingivalis (clone 1B5) and anti-GFAP antibodies. 
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2.3.3. Biochemistry 

i) Immunoblot analysis of controls 

All control samples were analysed under reducing conditions using immunoblotting 

with the anti-P. gingivalis (clone 1B5) antibody (Fig. 2.14) for the detection of P. 

gingivalis LPS and/or gingipains. The results show no bands in lanes loaded with the 

medium control, E. coli LPS and SVGp12 cells treated with sterile medium control. The 

lanes with culture supernatants from P. gingivalis ATCC 33277 and SVGp12 cells 

challenged with the P. gingivalis culture supernatant (48 hours) both showed a dark, 

high molecular weight band for gingipains (Fig. 2.14a) and a ladder of bands around 45-

12 kDa corresponding to LPS (Fig. 2.14a). This data agrees with the previously 

published literature for P. gingivalis (W50) LPS using the same antibody (Curtis et al., 

1999, Paramonov et al., 2005) and is further supported by the immunofluorescent 

labelling of SVGp12 cells treated with P. gingivalis culture supernatant labelled using 

the same antibody (Fig. 2.14b). Alongside this an identical blot was probed using the 

anti-P. gingivalis (clone 1A1) antibody (Fig. 2.15), here only high molecular weight 

bands for gingipains were observed in both the culture supernatant and SVGp12 cells 

challenged with the same supernatant (Fig. 2.15). The medium control, medium control 

treated SVGp12 cells and E. coli LPS remained negative as before. 
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Figure 2.14: Immunoblot analysis and immunofluorescent labelling of SVGp12 cells 

(treated and untreated) using anti-P. gingivalis (clone 1B5). A) Immunoblot of lysates 

prepared from in vitro investigation using anti-P. gingivalis (clone 1B5) antibody to 

further support cellular staining. Labels clearly state samples present in each lane. Both 

P. gingivalis culture supernatant and SVGp12 cells treated with the same supernatant 

demonstrated both gingipains and LPS. Whereas the medium control, medium control 

treated SVGp12 cells and E. coli LPS remained negative. B) SVGp12 cells treated with 

P. gingivalis (strain 33277) culture supernatant for 48 hours, then  immunolabelled 

using the mouse anti P. gingivalis (clone 1B5) antibody; Red is the nuclear label (PI), 

whereas green represents P. gingivalis positive labelling (FITC), showing presence of 

both LPS and gingipains, supporting the immunoblot data in A. 
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Figure 2.15: Immunoblot of lysates prepared from in vitro investigation using anti-P. 

gingivalis (clone 1A1). Labels clearly state samples present in each lane. Both P. 

gingivalis culture supernatant and SVGp12 cells treated with the same supernatant 

demonstrated the presence of gingipains. Again the medium control, medium control 

treated SVGp12 cells and E. coli LPS remained negative. 

ii) Immunoblot analysis of non-AD age matched control brain  

The negative and the positive controls from the P. gingivalis bacterial media and the 

SVGp12 cells treated with culture supernatant (48 hours) were loaded alongside 5 non-

AD age matched brain samples (Cases non-AD 1-5) (Fig. 2.16). The controls remained 

consistent in that no bands were present in lanes corresponding to the medium control 

and SVGp12 cells treated with medium control (Fig. 2.16). A laddering pattern of bands 
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corresponding to LPS was observed in the culture supernatant (33277) and SVGp12 

cells treated with culture supernatant between 45-12 kDa molecular weights (Fig. 2.16). 

No bands were detected in any of the 5 control brains (Fig. 2.16). 

 

Figure 2.16: Immunoblot using anti-P. gingivalis (clone 1B5) antibody on control 

human brain tissue lysates (case ID: non-AD 1-5), using cell lysates as appropriate 

controls, labels clearly state samples loaded to each well. The controls were consistent, 

whereas the non-AD cases 1-5 were negative for P. gingivalis LPS/gingipains. 

The same process was carried out on the remaining non-AD control cases (6-10) (Fig. 

2.17). Again no bands were detected in the medium control or the cells treated with the 

same medium, and the positive controls (culture supernatant and SVGp12 treated with 

the culture supernatant) remained consistent producing bands corresponding to LPS and 

gingipains of P. gingivalis (45-12 kDa). No bands were detected in the remaining 5 

human non-AD control brains (case ID non-AD 6-10) (Fig. 2.17).  
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Figure 2.17:  Immunoblot using anti-P. gingivalis (clone 1B5) antibody on control 

human brain tissue lysates (case ID: non-AD 6-10), using cell lysates as appropriate 

controls, labels clearly state samples loaded to each well. The controls were consistent, 

whereas the non-AD cases 6-10 were negative for P. gingivalis LPS/gingipains. 

 

iii) Immunoblot analysis of AD brain  

Initially the immunoblotting for P. gingivalis virulence factors was performed on the 

AD cases which were positive when screened using immunofluorescent labelling with 

the same antibody (anti-P. gingivalis clone 1B5), these cases were identified as AD 3, 

AD 5, AD 8 and AD 10 (Fig. 2.18). Consistently, no bands were detected in the lanes 
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corresponding to the sterile control medium, E. coli LPS and SVGp12 cells treated with 

sterile control medium when blotting was performed with the anti-P. gingivalis (clone 

1B5) antibody. Bands in a laddering pattern characteristic for LPS were observed in 

both the culture supernatant (33277) (38 kDa-12 kDa) and SVGp12 cells treated with 

the culture supernatant (48 hours) between 38-31 kDa molecular weight positions (Fig. 

2.18). A weak band for LPS was observed in AD brain case 3; along with more intense 

bands for LPS in AD cases designated 5, 8 and 10 (Fig. 2.18). 

 

Figure 2.18: Immunoblot using anti-P. gingivalis (clone 1B5) antibody on human AD 

samples (case ID: AD 3, 5, 8 and 10), using cell lysates as appropriate controls, labels 

clearly state samples loaded to each well. The anti-P. gingivalis antibody (clone 1B5) 

detected bands characteristic of the LPS at the expected molecular weight in AD cases 

3, 5, 8, and 10. 
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Finally, tissue lysates from the remaining human AD cases (case ID: AD 1, AD 2, AD 

4, AD 6, AD 7 and AD 9) were immunoblotted using the same conditions, probing for 

P. gingivalis virulence factors with the anti-P. gingivalis (clone 1B5) antibody (Fig. 

2.19). Again, the controls remained consistent (Fig. 2.19) and the AD cases designated 

1, 2, 4, 6, 7, and 9, which were negative by immunofluorescence, consistently failed to 

detect any bands (Fig. 2.19). 

 

Figure 2.19: Immunoblot using anti-P. gingivalis (clone 1B5) antibody on the remaining 

human AD samples (case ID: AD 1, 2, 4, 6, 7 and 9). Again, cell lysates along with 

control and culture supernatant (33277) were used as appropriate controls, labels clearly 

state samples loaded to each well. The anti-P. gingivalis antibody (clone 1B5) 

consistently failed to detect and bands characteristic of LPS in AD cases numbers 1, 2, 

4, 6, 7 and 9. 
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2.4. DISCUSSION  

The initial investigation of the aetiological hypothesis was dependent upon sampling 

tissues from post-mortem specimens obtained from both AD and non-AD individuals, 

taken from areas of the brain that are not directly involved in the pathology of the 

disease. The main reason for using the chosen area of brain tissue was that the 

hippocampus region of the brain is vital for the neuropathological confirmation of the 

disease at post-mortem. A pre-requisite for diagnostic neuropathology is that the 

appropriate areas of the brain are formalin fixed and embedded in paraffin wax for 

subsequent staining techniques. Formalin fixed, paraffin wax embedded tissue is not 

ideal for extracting genomic DNA, as was required in this study. Thus the human post-

mortem brain tissue samples were isolated from an area adjacent to the lateral ventricle 

of the parietal lobe and received in an unfixed, snap frozen state from the ―Brains for 

Dementia Research‖ network via the Newcastle Brain Tissue Resource. The use of 

brain tissue from this region was of significant interest as it is from the brain site close 

to the CVOs, which act as a port of entry for LPS into brain (Lacroix et al., 1998). 

Therefore, improving the chances of finding a molecular footprint and/or endotoxins 

(LPS) of periodontal bacterial. The cases examined did not accompany the patients‘ 

dental records, making it difficult to establish if the human donors had suffered from 

chronic periodontal disease during their lifetime.  

In order to eliminate the potential autopsy contamination of tissues from 

anaerobic periodontal pathogens in the oral cavity and in CNS post-mortem specimens 

AD cases were selected with a short post-mortem interval, whereas controls were from 

cases with a greater post-mortem interval. In addition, as mentioned previously, the 

investigation was limited to the identification of the red complex pathogens. This was 
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vital to avoid any ambiguities occurring between all other bacteria that are likely to be 

on the cadaver during post-mortem examination if the specimens become contaminated 

at any stage during handling. This study is only the second investigation to be 

performed on human post-mortem tissues in relation to periodontal pathogens and hence 

remains original.   

Analysis of genomic DNA from all AD and control cases using PCR with 

universal bacterial primer sets (Paster et al., 2001) (as stated in materials and methods 

section 2.2.7) failed to identify the pathogens of interest.  There could be several 

reasons for this finding, for example the bacterial DNA may have degraded hence could 

not be amplified. Despite the absence of the periodontal pathogens of interest, bacterial 

DNA of irrelevant species including M. aurea (strain AP13), P. oulorum and P. acnes 

was identified, demonstrating that the technique was working.  

M. aurea was detected in one case (AD case 1) and was concluded to be the 

result of a common water contaminant. On the other hand, P. oulorum is an example of 

a true oral bacterium which was detected in the brain. P. oulorum was identified in two 

cases (1 AD case and 1 non-AD control) and is an oral bacterium originally isolated 

from the subgingival biofilm of an individual with moderate periodontitis (Shah et al., 

1985). P. oulorum is commonly implicated in bacterial ―plaque‖ above the gingivae that 

leads to gingivitis. It is not surprising to find this bacterium in the brain as it has 

previously been reported in association with abscess formation in the CNS (Mylonas et 

al., 2007), although, it has not to date been associated with dementia. 

In addition, P. acnes was identified in three cases (2 AD cases and 1 non-AD 

control). P. acnes is a Gram positive, slow-growing bacterium which primarily forms 

part of the normal skin flora (Grice and Segre, 2011). P. acnes is also linked to the oral 
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cavity, large intestine, conjunctiva and the external ear canal (Funke et al., 1997; Grice 

and Segre, 2011; Portillo et al., 2013). Its presence within the brain, though surprising, 

is biologically plausible as P. acnes is an opportunistic pathogen and has been 

implicated as a cause of a number of CNS infections such as brain abscess (Maniatis 

and Vassilouthis, 1980; Cohle et al., 1981; Brenson and Bia, 1989), subdural and 

epidural empyema (Yoshikawa et al., 1975), and meningitis (Beeler et al., 1976; 

Schlesinger and Ross, 1977; Everett et al., 1976). Ramos et al., (1995) demonstrated 

that the pathogenicy of P. acnes may be the cause of severe CNS infections, reporting 

such events in a number of cases over a five year period. In addition, Kranick et al., 

(2009) presented a case whereby P. acnes complicated neurosurgical procedures 

resulting in abscess formation 10 years post-surgery.  

Although the identification of both P. orulum and P. acnes was an interesting 

result and potentially related to periodontal disease, it was of no statistical significance 

as they were detected in both AD and non-AD brain specimens. Therefore, it would be 

incorrect to speculate any link to the development or pathology of AD. Also, as 

mentioned previously, this study was focused solely on the three ‗red complex‘ bacteria 

(T. denticola, T. forsythia and P. gingivalis) hence, these findings were beyond the 

initial scope of the research.  

Further assessment for the presence of the major periodontal bacteria was 

performed using immunofluorescence labelling with a number of antibodies specific for 

P. gingivalis, T. denticola and T. forsythia. All antibodies were tested on cryo-sections 

taken from all AD and non-AD cases using indirect immunofluorescence see materials 

and methods section 2.2.8. The T. forsythia  and T. denticola  antibodies poorly detected 

the native antigen on whole cells and subsequently all results from brain tissue sections 
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were negative, hence, further assessment of these organisms was not pursued during this 

stage of the project as these were the only antibodies accessible.  

On the other hand the anti-P. gingivalis antibodies intensely labelled P. 

gingivalis antigen both on whole cells and within brain tissue sections. Immunolabelling 

was performed using the monoclonal anti-P. gingivalis (clone 1B5) antibody (Curtis et 

al., 1999). This antibody is well characterized (Curtis et al., 1999) and is specific for P. 

gingivalis LPS and gingipain epitopes (Paramonov et al., 2005). Positive 

immunolabelling for P. gingivalis (clone 1B5) was observed in 4 out of 10 AD cases on 

the surface of glial cells and as extracellular aggregates within the human AD brain 

tissue. As this monoclonal antibody (Curtis et al., 1999) detects both P. gingivalis LPS 

and gingipains further labelling with two additional monoclonal antibodies specific for 

gingipains was performed (Curtis et al., 1996; Marcotte et al., 2006). The subsequent 

immunofluorescent labelling for gingipains was negative on all tissue sections thereby 

suggesting that it was LPS of P. gingivalis labelling positive in the human tissue 

sections.  

In addition to the cellular labelling, extracellular aggregates of ―LPS‖ were 

frequently observed within the brain tissue as well as in association with a number of 

blood vessels and intra-venous sinuses, potentially supporting the vascular systemic 

route of entry to the CNS. Although, further investigation would be required to confirm 

this route of entry supporting data comes from studies which have confirmed that 

periodontal pathogens P. gingivalis and T. denticola can be found in the human vascular 

system. Both P. gingivalis and T. denticola have been identified in the walls of human 

coronary arterial tissues (Chiu, 1999; Haraszthy et al., 2000) and in atheromatous 

plaques (Cavrini et al., 2005; Kozarov et al., 2005). The more virulent forms of P. 
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gingivalis (FDC 318) have the ability to adhere to erythrocytes for innate immune 

evasion (Chiu, 1999; Haraszthy et al., 2000; Cavrini et al., 2005; Belstrøm et al., 2011) 

as well as gaining advantage for transportation to remote body organs (Belstrøm et al., 

2011) further supporting a vascular route of entry. Also the human brain tissue used for 

this study was isolated from close proximity to the CVOs, this area being void of the 

blood-brain barrier hence, it is biologically plausible that the LPS of P. gingivalis may 

have exploited this route to enter the CNS (Lacroix et al., 1998). 

In order to clarify the findings in human tissue an in vitro investigation was 

performed whereby the human glial cell line (SVGp12) was treated with P. gingivalis 

culture supernatant containing a battery of molecular determinants, including endotoxin 

(LPS) and extracellular cysteine proteases (gingipains) (Holt et al., 1999) as well as 

metabolites such as butyric and propionic acids. Immunolabelling, using the same 

monoclonal antibodies for P. gingivalis, demonstrated that LPS was adsorbed on the 

surface membrane of the astroglial cell line whereas gingipains demonstrated an 

intracellular localisation (Scragg et al., 2002). This observation supports the results 

from the human brain tissue which demonstrated that LPS was adsorbed on the surface 

membrane of glial cells, as was validated by the anti-CD14 receptor antibody labelling 

of tissue sections.  

These findings were confirmed by performing complementary immunoblot 

analysis using the same (anti-P. gingivalis clone 1B5) antibody (Curtis et al., 1999; 

Paramonov et al., 2005). Immunoblotting demonstrated that the culture supernatant 

from P. gingivalis ATCC 33277 contained LPS, thus supporting the previously 

published literature from P. gingivalis W50 (Curtis et al., 1999; Paramonov et al., 

2005). Further immunoblotting performed on the cell cultures treated with P. gingivalis 
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culture supernatant demonstrated a characteristic LPS laddering pattern, thereby 

supporting the immunofluorescent labelling results. An additional immunoblot analysis 

(using the same conditions) conclusively revealed that it was LPS, and not gingipains, 

from P. gingivalis that was detected in 4 out of 10 AD brain specimens. LPS was absent 

from the control brain tissues and the remaining six AD cases when analysed by 

immunoblotting (using identical conditions) despite the post-mortem interval extending 

to 43 hours. Therefore, all immunoblotting results were consistent with the 

immunofluorescent labelling data performed on the same tissue. With 4 out of 10 AD 

cases labelling positive for P. gingivalis LPS the non-parametric Mann-Whitney U test 

demonstrated that, even from this small series, the data reached statistical significance 

(p = 0.029) when compared with the non-AD controls.  

In addition to the detection of the red complex bacteria and their products the 

number of Aβ plaques present in the brain specimens was assessed. Interestingly the 

highest number of plaques were detected in the four brains which were positive for P. 

gingivalis LPS. A number of researchers have found bacteria (Hammond et al., 2010) 

and viruses associated with Aβ deposits and tau positive NFTs (Itzhaki and Wozniak, 

2008; Balin et al., 2008; Miklossy et al., 2011) in late-onset AD brains. However, in 

this study P. gingivalis LPS was only detected on glial cells and not in association with 

Aβ plaques or NFTs. Glial cells participate in the innate immune responses in relation to 

infection in the brain. It has been suggested that inflammatory processes may lead to 

increased production of Aβ protein and its deposition in the form of senile plaques seen 

in AD brain (Eikelenboom et al., 1991; Miklossy, 2006), however, the mechanisms 

involved remain elusive.  
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LPS is a potent activator of the innate immune response via the CD14/TLR 

receptors on the surface of a number of cells within the CNS, resulting in the production 

of inflammatory mediators. When challenged with systemic LPS microglia demonstrate 

an activated phenotype capable of mounting an innate immune response to combat the 

destructive effects of the extrinsically derived endotoxins. Continued exposure of 

microglia to both circulating systemic LPS due to concurrent infections (for example 

bronchopneumonia, urinary tract and oral infections) together with pathogens entering 

the brain results in the continual activation of microglia and the adoption of a 

hypersensitive ‗activated‘ phenotype. The LPS hyper-sensitised microglia increase 

synthesis of TNF-α, IL-1β, IL-6, complement factors, TLRs 2 and 4 and nitric oxide 

that release free radicals and ROS (Boje and Arora, 1992; Lodge and Sriram, 1996; 

Floyd, 1999;  Laflamme and Rivest, 2001; Ye and Johnson, 2001; Gasque, 2004;  

Godbout et al., 2005) and increase tissue damage.Therefore, the results from this 

investigation still has relevance to neurodegeneration, and potentially AD, on the basis 

that LPS is a powerful stimulator of the innate immune system, suggesting that bacteria 

and/or their degradation products may enhance a cascade of events leading to amyloid 

deposition in AD (Miklossy et al., 2006). In addition, the inflammatory signals that 

initiate phagocytosis by microglia are also driven by Aβ and involve the CD14 and 

TLR2 and TLR4 signalling (Kopec and Carroll 1998; Fassbender et al., 2004; Walter et 

al., 2007; Reed-Geaghan et al., 2009). Also, bacterial products such as LPS and 

peptidoglycan not only elicit a variety of proinflammatory responses they have also 

been shown to induce amyloidosis (AD pathology) in vitro and in vivo (Picken, 2000; 

Hauss-Wegrzyniak and Wenk, 2002). The mechanism by which LPS and bacterial 

toxins induced amyloidoisis remains unclear although it has been proposed that the 
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changes may be influenced by changes in secretase activity, specifically the inhibition 

of α-secretase activity (Lee et al., 2008). 

  Another hypothesis potentially linking LPS to Aβ plaque formation is that Aβ is 

acting as an AMP to counteract infections (Soscia et al., 2010). Here, Aβ functions as 

part of the early innate immune defence mechanisms that mediate the innate and 

adaptive immune responses (Zaiou, 2007). The main target for AMPs is the pathogen 

cell membrane, as most AMPs are cationic (Yeaman and Yount, 2003). AMPs undergo 

electrostatic interactions with negatively charged molecules to penetrate bacterial cell 

walls, including anionic lipids and LPS (Yeaman and Yount, 2003). They then invade 

the lipid bilayer creating trans-membrane pores through which leakage of ions, 

metabolites and cytoplasmic components, dissipation of electrical potentials, and 

microbial cell death takes place (Kawahara et al., 2011). This hypothesis suggests the 

involvement of a pathogenic precursor in the initiation of Aβ release before 

inflammation becomes detectable. Although, further investigations would be required to 

confirm any relationship between the presence of P. gingivalis LPS and Aβ plaques, 

preferably in tissue sections from the primary regions bearing neuropathology (i.e. the 

hippocampus). 

 These results indicate that the brain of AD patients may be at a greater risk of 

secondary chronic infection from the periodontal pathogen P. gingivalis which has long 

been implicated in chronic and severe adult periodontitis (Slots and Genco, 1984; Slots 

and Lostgarten, 1988). If the dental records of individuals, whose brain specimens 

examined here, were available, it would have been possible to delineate all those with 

periodontal disease, hence, harbouring P. gingivalis infection. Alternatively, if all of the 

AD cases examined had suffered from periodontal disease but only a small proportion 
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indicated the presence of LPS (4 out of 10), it would have been possible to conclude 

whether it is only the highly virulent pathogens that translocate to the brain. Although 

due to the absence of these records no comment on any direct relationship of 

periodontal disease with AD during life can be made. However, due to the poor memory 

exhibited by AD patients, these individuals may forget to maintain optimal oral hygiene 

which during advanced stages of AD would be expected to deteriorate even further 

(Arai et al., 2003; Henry and Wekstein, 1997; Shimazaki et al., 2001; Philip et al., 

2012). Therefore, without a full dental history this study is unable to determine if the 

periodontal infection leading to P. gingivalis LPS in the brain of AD individuals is due 

to the increased rates of periodontal infection associated with the elderly or the ongoing 

inflammatory burden present in individuals with periodontal disease throughout life. 

The fact that there was no contamination with the red complex pathogens in the 

non-AD controls (despite the extended post-mortem interval) aids the validation of the 

use of post-mortem brain tissue for such investigations. The use of post-mortem brain 

tissue was previously considered to be potentially flawed due to the possibility of the 

spread of bacteria following death. Hence the autopsy contamination of tissues from 

anaerobic periodontal pathogens in the oral cavity and the CNS in post-mortem 

specimens can be excluded.  

Despite the importance of the study using human post-mortem brain tissue to 

establish a potential link between periodontal disease and AD, there are a number of 

limitations associated with using human tissue. For example, the inability to control for 

confounding factors such as smoking status and lifestyle choices, also the brain tissue 

available for research into AD is limited. Therefore, to further the investigation there is 

need for research using animal models. This study was performed as a collaboration 



137 

 

 

with the University of Florida, where researchers have developed a number of animal 

models of established periodontal disease (Kesavalu et al., 2007; Verma et al., 2010; 

Rivera et al., 2013; Chukkapalli et al., 2014) providing an opportunity to not only 

investigate if periodontal pathogens can access the CNS, but also the lesion caused by 

periodontal disease infections, either via a direct or systemic route while controlling for 

any confounding factors. 
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Chapter 3:  

Identification of periodontal pathogens and/or their 

virulence factors in the brains of ApoE
null

 mice induced 

with periodontal disease. 
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3.1. INTRODUCTION 

As is apparent from the introducing chapter, a link between periodontal disease and AD 

is proposed and is thought to be via the major periodontal pathogens such as T. 

denticola, P. gingivalis, and T. forsythia. Several studies suggest that periodontal 

disease-associated bacteria can penetrate gingival JE, enter the blood stream, and induce 

a transient bacteremia to affect the pathology of distant organs including the brain. In 

the previous chapter, LPS from the oral pathogen P. gingivalis, was shown to access the 

brain. In this chapter, proof of concept is explored by taking the rare opportunity to 

enhance the initial study (using human AD brain tissue specimens) by utilising an 

experimental periodontal disease animal model. This eliminates the autolytic artifacts 

associated with human post-mortem delay allowing the preservation of the brain tissue 

for both DNA isolation and histological investigations. The results from this chapter are 

published in the journal of Alzheimer‘s disease (Poole et al., 2014).  

 

3.2. MATERIALS AND METHODS 

3.2.1. In vivo animal model c/o the University of Florida  

Eight-week old male ApoE
null 

male mice (strain B6.129P2-Apoe
tm1Unc/J

) were obtained 

from Jackson Laboratories, Bar Harbor, ME, USA and acclimated as described by 

Rivera et al., (2013). The animal model was established using the methods described by 

Chukkapalli et al., (2014). The strains of bacteria used were P. gingivalis (strain 

FDC381), T. denticola (ATCC 35404), T. forsythia (ATCC 43037) and F. nucleatum 

(ATCC 49256). Briefly, at 11 weeks of age mice were randomly assigned to sham 

infected, mono infected (P. gingivalis, T. denticola, T. forsythia) or polymicrobial 
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infected groups (n = 24 for each group). Note, in the polymicrobial infection F. 

nucleatum was added in addition to the red complex pathogens (P. gingivalis, T. 

denticola, T. forsythia) due to its function as a bridging bacteria in biofilm formation. In 

keeping with the human study the presence of only the three red complex pathogens 

was investigated. Antibiotic pre-treatment was used to reduce the amount of indigenous 

murine oral flora to facilitate colonization by the human periodontal pathogens being 

given for infection.  Human periodontal pathogens do not readily colonize the mouse 

oral cavity, and reducing the mouse normal flora load is thought to reduce the 

competition for the human bacteria, and so facilitate colonization. There was a 3 day 

period following antibiotic administration in which the mice were provided antibiotic-

free water to remove all traces of the antibiotic from their systems. For polymicrobial 

infection, P. gingivalis was mixed with an equal quantity of T. denticola for 5 min; 

subsequently, T. forsythia was added to the culture tubes containing P. gingivalis and T. 

denticola, and cells were mixed thoroughly and allowed to interact for an additional 5 

min. P. gingivalis, T. denticola, and T. forsythia were then mixed with F. nucleatum 

followed by mixing with an equal volume of 4% (w/v) sterile carboxymethylcellulose 

(CMC) in PBS, this mixture was then used for oral infection (5×10
9
 bacteria/ mL) in 

ApoE
null

 mice. For mono infections 10
9
 P. gingivalis/T. denticola/T.forsythia cells in 

RTF-4% CMC were used to infect the appropriate mice. Mice were orally inoculated by 

gavage for four consecutive days per week every third week for four (12 week) or eight 

(24 week) weeks of infection.  

Following infections, animals were sacrificed (n = 12/group at 12 weeks and n= 

12/group at 24 weeks post infection) and several tissues (aorta, heart, brain, pancreas, 

lymph nodes, serum, jaw bones) were collected for analysis to evaluate periodontal 

disease and atherosclerosis in the University of Florida, USA. From these the brains of 
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the mice were intended for use in this study. The brain was removed from its skull and 

separated into two. One cerebral hemisphere was snap frozen immediately for molecular 

analyses and stored in RNA-later and the other hemisphere was immerse fixed in 10% 

neutral buffered formalin for histological analysis.  

This investigation is a collaboration with the University of Florida and UCLan 

(MTA ref no. A10415). Ethical approval was obtained from the animal projects 

committee at UCLan (UK) for research on animal tissues as secondary users (ref no 

RE/11/01/SS), as well as in accordance with the approved protocol guidelines (Protocol 

# 201004367) set forth by the Institutional Animal Care and Use Committee (IACUC) 

of the University of Florida. The University of Florida has an Assurance with OLAW 

(Office of Laboratory Animal Welfare) and follows PHS (Public Health Service) policy, 

the Animal Welfare Act and Animal Welfare Regulations, and the Guide for the Care 

and Use of Laboratory Animals. The University of Florida is also AAALAC 

(association for the assessment and accreditation of laboratory animal care international) 

accredited. 

Evaluation of selected oral pathogens (excluding F. nucleatum), accessing the brain and 

the subsequent innate immune responses of CNS cells following mono and 

polymicrobial infections were examined at UCLan, UK. The specimens were sent to 

UCLan in compliance with rules and regulations for their import into the UK (certified 

by Defra ref nos: IMP/GEN/2010/12 (unfixed tissues); IMP/GEN/2011/03 (formalin 

fixed); IMP/GEN/2008/03 (DNA, protein, antibodies etc.). The specimens were sent 

within 48 hours of collection via International FedEx courier service to UCLan, UK 

either on dry ice (Frozen specimens) or at room temperature (suspended in 10 % 

formalin). All specimens, on receipt were labelled with the University of Florida‘s code 
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denoting the group number (1, 2, 3 or 5), tissue (brain), duration of infection (12 and 24 

weeks) and number of the animal (1-12). As per agreed rules and regulations of the 

MTA, following receipt, UCLan codes were allocated to each specimen. Thereafter, all 

data recorded about those specimens was identified by the UCLan code. The 

experimenter was completely unaware of the group number corresponding to each 

infected and control group (P. gingivalis, T. forsythia, T. denticola, mono and 

polymicrobial sham infected and polymicrobial infected). They are identified here for 

the purposes of reporting. From here onwards the time points will be referred to as 12 

and 24 weeks, this is the time period from the initial infection; 12 and 24 weeks i.e. a 

total of four infections and eight infections respectively. 

All tests described in this chapter were performed on the frozen brain specimens. 

 

3.2.2. Source of antibodies  

Primary antibodies: As per chapter 2 (section 2.2.2). 

3.2.3. Source of all other reagents 

In addition to those in chapter 2 section 2.2.5; 5x HF buffer ThermoScientific; dNTPs 

Fisher Scientific; Phusion High-Fidelity Hot start II DNA Taq Polymerase 

ThermoScientific; Glycine Fisher Scientific; T. denticola (Dr Daniel Miller, USA); and 

T. forsythia (Dr. Graham Stafford, University of Sheffield) positive controls for 

immunoblotting. 
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3.2.4. Molecular Biology 

i) Genomic DNA Isolation 

Genomic DNA was isolated for all groups (both mono and polymicrobial infected) at 

both time points as per human tissue (see section 2.2.7). Approximately 25 mg of mouse 

brain, taken from the periventricular regions, was digested overnight in proteinase K, 

followed by phenol/chloroform extraction and ethanol precipitation. The exact DNA 

yield of each sample was quantified using the Nanodrop 1000 spectrophotometer 

(ThermoScientific) and all DNA was stored in sterile PCR grade Eppendorf® tubes at -

20 °C until use. 

ii) PCR 

Specific bacterial genes for periodontal (red complex) pathogens 

For amplification of specific bacterial genes (T. denticola, T. forsythia and P. 

gingivalis) the primer sets from Figuero et al., (2011; P. gingivalis forward: 

AGGCAGCTTGCCATACTGCG; P. gingivalis reverse: 

ACTGTTAGCAACTACCGATGT; T. forsythia forward; 

GCGTATGTAACCTGCCCGCA; T. forsythia reverse: 

TGCTTCAGTGTCAGTTATACCT) and Rivera et al., (2013; T. denticola forward: 

TAATACCGAATGTGCTCATTTACAT; T. denticola reverse; 

CTGCCATATCTCTATGTCATTGCTCTT) were used. The PCR reaction consisted of 

4 μl 5x HF buffer, 0.5 μl dNTPs, 0.5 μl each primer (10 µM forward and reverse), 0.2 μl 

Phusion High-Fidelity Hot start II DNA Taq Polymerase, 250 ng sample DNA and 

sterile RNA/DNA free water to a final 20 μl volume. The negative controls contained 

all PCR reagents except for the sample DNA. The positive controls contained all PCR 

reagents together with DNA from P. gingivalis, T. denticola, or T. forsythia dependent 
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on the primer sets being used. The expected product sizes for each primer set are as 

follows: P. gingivalis – 404 bp, T. denticola – 860 bp and T. forsythia - 641 bp. 

The PCR parameters used were as follows: 

T. denticola  

98 °C for 3 mins, 28 cycles of; 98 °C for 10 seconds, 60 °C for 30 seconds, 72 °C for 35 

seconds, followed by 72 °C for 10 mins.  

T. forsythia 

98 °C for 3 mins, 28 cycles of; 98 °C for 10 seconds, 56 °C for 30 seconds, 72 °C for 30 

seconds, followed by 72 °C for 10 mins.  

P. gingivalis 

98 °C for 3 mins, 28 cycles of; 98 °C for 10 seconds, 58 °C for 30 seconds, 72 °C for 25 

seconds, followed by 72 °C for 10 mins.  

Following visualisation of the PCR products by electrophoresis (1.5 % agarose gel post 

stained using ethidium bromide) any amplified product was purified using 

MicroCLEAN according to supplier‘s instructions (Eluted in 20 μl volume of AE 

buffer). 

iii) Cloning and sequencing 

In the event of a positive amplification cloning of the PCR product (ligation, 

transformation, analysis, plasmid isolation) followed by sequencing, purification and 

capillary electrophoresis of sequencing products were performed as for the human 

specimens (section 2.2.7). 
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3.2.5. Immunofluorescent labelling with specific bacterial antibodies 

i) Cryo-sectioning  

Cryo-sectioning was performed on all mouse brains from all groups at both time points 

Where possible using the temporal lobe region (to include the hippocampus). 

ii) Bacterial cell smears 

 In addition, bacterial cell smears (P. gingivalis, T. denticola and T. forsythia) on 

microscope slides were also prepared to characterise the specific antibodies for each 

bacterial species by immunofluorescent labelling (chapter 2, section 2.2.8). 

iii) All controls  

All mouse brain tissue sections included omission of the primary antibody (to check 

specificity of the secondary antibody) alongside the inclusion of the primary antibody 

on the sham infected groups for both polymicrobial and mono infections (12 and 24 

weeks); hence, all groups were treated identically. The bacterial cell smears acted as 

positive controls. 

iv) Immunofluorescent labelling 

Immunolabelling was performed using an overnight, indirect method as described for 

the human brain tissue (section 2.2.8) for the immunodetection of bacterial virulence 

factors. In brief sections were fixed in cold Analar grade acetone for 5 mins and any 

tissue associated endogenous fluorescence was quenched for 10 mins in 50 mM 

glycine/PBS, followed by 3x 5 min washes in distilled water. Sections were equilibrated 

in 0.01 M PBS for 5 min and then blocked in PBS containing 0.01 % normal serum 

(goat or rabbit depending on the nature of the secondary antibody) and 2 % tween 20. 

The sections were incubated overnight at 4 °C in the primary antibody (rat anti-T. 
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denticola (FhbB protein) (1/5000), rabbit anti-T. forsythia (s-layer protein) (1/20,000), 

mouse anti-P. gingivalis (Clone 1B5) (1/10).  The secondary detection was then 

performed using the appropriate secondary antibody (goat anti-mouse FITC (1/200), 

Alexa Fluor® 488 goat anti-mouse IgG1 (γ1) (1/1000), Alexa Fluor® 488 goat anti-rat 

IgG (H+L) (1/1000), goat anti-rabbit FITC (1/200) diluted in the blocking solution as 

before. Following further washes in PBS for 3x 5 min, sections were mounted under a 

glass coverslip using PI Vectashield® Mounting Media. Labelling was observed and 

images were captured using the 510 series Zeiss confocal microscope (Carl Zeiss Ltd). 

3.2.6. Biochemistry 

i) Tissue lysates  

Tissue lysates were prepared from all mice brains (polymicrobial and mono infected at 

both time points) as for the human tissue (see section 2.2.9) from a section 

(approximately 25 mg) of unfixed tissue stored in RNA-later. The final lysates were 

collected in pre-labelled tubes and stored at -20 °C until required. 

ii) Controls 

The controls used when immunoblotting for P. gingivalis virulence factors were 

identical to those used in the human study (see section 2.2.9). In addition, the sham 

infected group of mice were tested using identical conditions to all infected mice. When 

immunoblotting for T. denticola and T. forsythia the positive controls used were obtain 

via gift (see sources of all reagents section 3.2.3). 
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iii) Protein assay 

Total protein concentrations of all lysates (cells, tissue and controls) were determined 

using the Bradford colorimetric assay (Bradford 1976) as described for the human tissue 

(see section 2.2.9).  

iv) Immunoblot 

Immunoblotting using anti- P. gingivalis (1B5) was carried out as described for the 

human study (see section 2.2.9). However, for the in vivo work 40 µg of protein was 

loaded per lane. The same protocol was used for the other antibodies except 7.5 % gels 

were used for rabbit anti-T. forsythia, (against the s-layer) and 15% gels used for the rat 

anti-T. denticola ATCC 35405 antibody (against FhbB protein). The protocol was 

identical to that used for anti-P. gingivalis 1B5 (see section 2.2.9) except the primary 

antibodies were rabbit anti-T. forsythia (s-layer protein) (1/20,000) and rat anti-T. 

denticola ATCC 35405 antibody (against FhbB protein) (1/10,000) diluted in blocking 

solution (5 % w/v skimmed milk/PBS). HRP - conjugated secondary antibodies were 

used (goat anti-mouse HRP; 1/20,000), goat anti-mouse IgG1 HRP (1/2,000), goat anti-

rat HRP (1/5,000), goat anti-rabbit HRP (1/80,000)) with all antibodies being diluted in 

blocking solution (5 % w/v skimmed milk/PBS) as before.  

3.2.7. Statistical analysis 

As per human specimens (see section 2.2.10) 
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3.3. RESULTS 

3.3.1. Molecular biology 

i) Mono bacterial infections of ApoE
null

 mice  

T. denticola 

Molecular profiling using primers specific for T. denticola was negative when 

performed on DNA isolated from the sham infected group of mice, at both 12 (Fig. 

3.1a) and 24 weeks (Fig. 3.1b). The positive control in both cases (lane 3, Fig. 3.1a and 

b) produced a band with the expected fragment size (860 bp) and the negative control 

remained clear (lane 2, Fig. 3.1a and b). The same technique was employed on the DNA 

isolated from the brains of ApoE
null 

mice infected with T. denticola (Fig. 3.2) this also 

failed to demonstrate the presence of T. denticola within the specimens at both time 

point (Fig. 3.2a and b). Although the T. denticola positive control was detected clearly 

as shown by a bright positive band of the correct size (860 bp) (lane 3, Fig. 3.2a and b). 
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Figure 3.1: T. denticola PCR on mono sham infected ApoE
null 

mice A) PCR on DNA 

isolated from sham infected mice at 12 weeks; lane 1 is the 100 bp marker, lane 2 is the 

negative control, lane 3 is the positive control containing T. denticola DNA, lanes 4-15 

contain DNA isolated from 12 week sham infected ApoE
null

 mice brains (cases 1-12). 

B) PCR performed on DNA isolated from sham infected mice at 24 weeks; lanes 1-3 are 

as described for A, lane 4 was left empty, lanes 5-12 correspond to 24 week sham 

infected mice brains 1-8, and lanes 13-15 correspond to 24 week sham infected mice 

brains 10-12 (note case 9 is missing). 
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Figure 3.2: T. denticola PCR on mono T. denticola infected ApoE
null

 mice A) PCR on 

DNA isolated from T. denticola infected mice at 12 weeks; lane 1 contains the 100 bp 

marker, lane 2 is the negative control, lane 3 is the positive control containing T. 

denticola DNA, lanes 4-15 contain DNA isolated from 12 week T. denticola infected 

ApoE
null

 mice brains (cases 1-12). B) PCR performed on DNA isolated from T. 

denticola infected mice at 24 weeks; lanes 1-3 are as described for A, lanes 4-14 

correspond to DNA isolated from 24 week T. denticola infected ApoE
null

 mice brains 2-

12 (note case 1 is missing). 

T. forsythia 

The sham infected mouse brains were negative when tested (using molecular 

techniques) for the presence of T. forsythia DNA at both 12 (Fig. 3.3a) and 24 (Fig. 

3.3b) week time points. The negative control remained negative and the positive control 

produced the correct band at 641 bp as expected (Fig. 3.3, lanes 2 and 3 respectively). 
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Identical molecular techniques also provided consistently negative results when tested 

on the DNA isolated from the brains of ApoE
null

 mice orally infected with T. forsythia 

(Fig. 3.4) and both 12 and 24 week time points (Fig. 3.4a and b respectively), despite 

the positive control showing a clear band of the correct size.   

 

Figure 3.3: T. forsythia PCR on mono sham infected ApoE
null

 mice A) PCR on DNA 

isolated from sham infected mice at 12 weeks; lane 1 represents the 100 bp marker, lane 

2 contains the negative control, lane 3 is the positive control containing T. forsythia 

DNA, lanes 4-15 contain DNA isolated from 12 week  sham infected mice brains (cases 

1-12). B) PCR performed on DNA isolated from mono sham infected mice at 24 weeks; 

lanes 1-3 are as described for A, lanes 4-15 contain DNA isolated from 24 week sham 

infected ApoE
null

 mice brains 1-12. 
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Figure 3.4: T. forsythia PCR on mono T. forsythia infected ApoE
null 

mice A) PCR on 

DNA isolated from T. forsythia infected mice at 12 weeks; lane 1 is the 100 bp marker, 

lane 2 contains the negative control, lane 3 is the positive control (containing T. 

forsythia DNA), lanes 4-15 contain DNA isolated from 12 week T. forsythia mono 

infected ApoE
null

 mice brains (cases 1-12). B) PCR performed on DNA isolated from T. 

forsythia mono infected mice at 24 weeks; lanes 1-3 are as described for A, lanes 4-15 

contain to DNA isolated from 24 week T. forsythia infected ApoE
null

 mice brains 1-12. 

P. gingivalis 

The molecular profiling failed to demonstrate the presence of genomic DNA from P. 

gingivalis when analysing the  DNA isolated from sham infected ApoE
null

 mice at both 

12 and 24 week time points; figure 3.5 a and b respectively. However using identical 

molecular methodologies the PCR with P. gingivalis specific bacterial gene primers 

demonstrated 6 out of 12 ApoE
null

 mice brain specimens contained P. gingivalis 

genomic DNA at 12 week time point (Fig. 3.6a), which further increased to 9 out of 12 
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at 24 weeks  (Fig. 3.6b). These results are highly significant when analysed by the non-

parametric Mann Whitney-U test, P values are 0.006 at 12 weeks and 0.0001 at the 24 

week time point.  

 

 

Figure 3.5: P. gingivalis PCR on mono sham infected ApoE
null

 mice. A) PCR on DNA 

isolated from mono sham infected mice sacrificed at 12 weeks; lane 1 represents the 100 

bp marker, lane 2 was left empty, lane 3 contains the negative control, lane 4 is the 

positive control containing P. gingivalis DNA, lane 5 was left empty, and lanes 6-17 

contain DNA isolated from 12 week sham infected mice brains (cases 1-12). B) PCR 

performed on DNA isolated from mono sham infected mice at 24 weeks; lane 1 

represents the 100 bp marker, lane 2 was left empty, lane 3 contains the negative 

control, lane 4 was left empty, lane 5 is the positive control containing P. gingivalis 
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DNA, lane 6 was left empty, and lanes 7-17 contain DNA isolated from 24 week sham 

infected mice brains (cases 1-8 and 10-12). 

 

 

Figure 3.6: P. gingivalis PCR mono P. gingivalis infected ApoE
null 

mice A) PCR on 

DNA isolated from P. gingivalis infected mice at 12 weeks; lane 1 is the 100 bp marker, 

lane 2 was left empty, lane 3 contains the negative control, lane 4 is the positive control 

(containing P. gingivalis DNA), lane 5 was left empty, and lanes 6-17 contain DNA 

isolated from 12 week P. gingivalis mono infected ApoE
null

 mice brains (cases 1-12). 

Positive results are seen in lanes 6, 7, 10, 13, 14 and 16; corresponding to animals 1, 2, 

5, 8, 9 and 11 from 12 week ApoE
null

 mice orally infected with P. gingivalis. B) PCR 

performed on DNA isolated from P. gingivalis mono infected mice at 24 weeks; lanes 

1-3 are as described for A, lane 4 was left empty, lane 5 is the positive control (P. 



155 

 

 

gingivalis DNA), lanes 6-17 contain to DNA isolated from 24 week P. gingivalis 

infected ApoE
null

 mice brains 1-12. Positive results are seen in lanes 7, 8, 9, 10, 11, 14, 

15, 16 and 17; corresponding to animals 2-6 and 9-12 from ApoE
null 

mice orally infected 

with P. gingivalis, sacrificed after 24 weeks. 

ii) Polymicrobial infections of ApoE
null

 mice  

T. denticola 

As for the mono infections, molecular techniques failed to detect the presence of DNA 

from T. denticola from the polymicrobial sham infected ApoE
null

 mice at either time 

points (12 and 24 weeks; Fig. 3.7a and b respectively). The positive control consistently 

produced the expected band (lane 3, Fig.  3.7a and b) and the negative control lane 

remained clear (lane 2, Fig. 3.7a and b). The DNA isolated from the brain of ApoE
null

 

mice given a polymicrobial oral infection were also negative when tested for T. 

denticola DNA (Fig. 3.8) at both 12 (Fig. 3.8a) and 24 (Fig. 3.8b) week time points. 

Again the controls remained consistent (lanes 3 and 4 Fig. 3.8 a and b)  
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Figure 3.7: T. denticola PCR on polymicrobial sham infected ApoE
null 

mice A) PCR on 

DNA isolated from polymicrobial sham infected mice at 12 weeks; lane 1 is the 100 bp 

marker, lane 2 is the negative control, lane 3 is the positive control containing T. 

denticola DNA, lanes 4-15 contain DNA isolated from 12 week sham infected 

(polymicrobial) ApoE
null

 mice brains (cases 1-12). B) PCR performed on DNA isolated 

from sham infected (polymicrobial) mice at 24 weeks; lanes 1-3 are as described for A, 

lanes 4-15 correspond to 24 week polymicrobial sham infected mice brains 1-12. 
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Figure 3.8: T. denticola PCR on polymicrobial infected ApoE
null

 mice A) PCR on DNA 

isolated from polymicrobial infected mice sacrificed at 12 weeks; lane 1 contains the 

100 bp marker, lane 2 was left empty, lane 3 is the negative control, lane 4 is the 

positive control containing T. denticola DNA, lane 5 was left empty, lanes 6-16 contain 

DNA isolated from 12 week polymicrobial infected ApoE
null

 mice brains (cases 1-11). 

B) PCR performed on DNA isolated from polymicrobial infected mice at 24 weeks; 

lanes 1-5 are as described for A, lanes 6-16 correspond to DNA isolated from 24 week 

polymicrobial infected ApoE
null

 mice brains. 

 

T. forsythia 

Again, no bands were detected for the presence of T. forsythia DNA in the brain 

specimens collected from polymicrobial sham infected ApoE
null

 mice at either 12 or 24 

week time points (Fig. 3.9 a and b respectively). Also, DNA isolated from the 

polymicrobial infected animals failed to demonstrate the presence of T. forsythia DNA 
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at both 12 (Fig. 3.10a) and 24 (Fig. 3.10b) week infections. In all cases the positive 

controls produced the expected band at 641 bp and the negative control lanes remained 

clear. 

 

 

 

Figure 3.9: T. forsythia PCR on polymicrobial sham infected ApoE
null 

mice. A) PCR on 

DNA isolated from polymicrobial sham infected mice at 12 weeks using T. forsythia 

specific primers; lane 1 is the 100 bp marker, lane 2 is the negative control, lane 3 is the 

positive control containing T. forsythia DNA, lanes 4-15 contain DNA isolated from 12 

week sham infected (polymicrobial) ApoE
null

 mice brains (cases 1-12). B) PCR 

performed on DNA isolated from sham infected (polymicrobial) mice at 24 weeks; 

lanes 1-3 are as described for A, lanes 4-15 correspond to 24 week polymicrobial sham 

infected mice brains 1-12. 
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Figure 3.10: T. forsythia PCR on polymicrobial infected ApoE
null 

mice. A) PCR on 

DNA isolated from polymicrobial infected ApoE
null 

mice at 12 weeks using T. forsythia 

specific primers; lane 1 is the 100 bp marker, lane 2 was left empty, lane 3 is the 

negative control, lane 4 is the positive control containing T. forsythia DNA, lane 5 was 

left empty, lanes 6-16 contain DNA isolated from 12 week polymicrobial infected 

ApoE
null

 mice brains. B) PCR performed on DNA isolated from polymicrobial infected 

mice at 24 weeks; lanes 1-5 are as described for A, lanes 6-16 correspond to 24 week 

polymicrobial infected mice brains. 

 

P. gingivalis  

As for the other periodontal bacteria, there were no positive bands for P. gingivalis 

DNA in the brains samples from sham infected group of polymicrobial infected animals 

at both time points (Fig. 3.11a and b) despite the positive controls showing a clear band 
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(lane 4, Fig. 3.11a and b). In all cases the negative control lane remained clear (lane 3, 

Fig. 3.11a and b). Specific bacterial primers failed to detect P. gingivalis DNA in the 

polymicrobial infected mice at 12 week time point (Fig. 3.12a), however by 24 weeks, 2 

out of 12 polymicrobial infected ApoE
null

 mice brain specimens demonstrated the 

presence of P. gingivalis DNA (Fig. 3.12b). The differences between the sham infected 

and the poly infected groups were not statistically significant (P > 0.05). All molecular 

biology data are summarised in table 13. 

 

 

Figure 3.11: P. gingivalis PCR on polymicrobial sham infected ApoE
null 

mice A) PCR 

on DNA isolated from polymicrobial sham infected mice at 12 weeks using P. 

gingivalis specific primers; lane 1 is the 100 bp marker, lane 2 is the negative control, 

lane 3 was left empty, lane 4 is the positive control containing P. gingivalis DNA, lane 

5 was left empty, lanes 6-16 contain DNA isolated from 12 week sham infected 
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(polymicrobial) ApoE
null

 mice brains. B) PCR performed on DNA isolated from sham 

infected (polymicrobial) mice at 24 weeks; lanes 1-5 are as described for A, lanes 6-16 

correspond to 24 week polymicrobial sham infected mice brains. 

 

Figure 3.12: P. gingivalis PCR on polymicrobial infected ApoE
null 

mice. A) PCR on 

DNA isolated from polymicrobial infected ApoE
null 

mice at 12 weeks using P. 

gingivalis specific primers; lane 1 is the 100 bp marker, lane 2 was left empty, lane 3 is 

the negative control, lane 4 is the positive control containing P. gingivalis DNA, lane 5 

was left empty, lanes 6-16 contain DNA isolated from 12 week polymicrobial infected 

ApoE
null

 mice brains. B) PCR performed on DNA isolated from polymicrobial infected 

mice at 24 weeks; lanes 1-5 are as described for A, lanes 6-16 correspond to 24 week 

polymicrobial infected mice brains. Positive results are seen in lanes 12 and 14, 

corresponding to polymicrobial infected 24 week ApoE
null

 mice 7 and 9. 
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Table 3.1: Summary of molecular results for the identification of P. gingivalis, T. 

denticola or T. forsythia in the brains of sham, mono and polymicrobial infected 

ApoE
null 

mice at both 12 and 24 weeks. 

Group  Mono infected mice Polymicrobial infected mice 

Bacterial DNA 

present 12 week 

Bacterial DNA 

present 24 week 

Bacterial DNA 

present 12 week 

Bacterial DNA 

present 24 week 

1 (P. gingivalis)  6 out of 12 

P = 0.006 

9 out of 11 

P = 0.000 

0 out of 11 2 out of 11 

2 (T. denticola)  0 out of 12 0 out of 12 0 out of 11 0 out of 11 

3 (T. forsythia)  0 out of 12 0 out of 12 0 out of 11 0 out of 11 

5 (control)  0 out of 12 0 out of 11 0 out of 11 0 out of 11 

 

Following detection by PCR the positive results for P. gingivalis DNA in the brain 

tissue specimens of ApoE
null

 mice were isolated and cloned. Positive clones were 

determined using a colony screen (Fig. 3.13) and then purified and sequenced in order 

to confirm the specificity of the primers and to determine the exact strain of P. 

gingivalis being detected. The molecular sequencing data confirmed it to be P. 

gingivalis strain FDC381 having 99-100% match with >200 bases (see table 14). 
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Figure 3.13: Colony screen following cloning of PCR product from P. gingivalis 

infected ApoE
null

 mice. Expected size for a positive colony is approximately 500 bp. 

Lane 1 contains the 100 bp marker, lanes 2-17 contain single colonies isolated 

following cloning. Positive results are seen in lanes 2, 7, 8 and 11-16.  

Table 3.2: Sequencing results of PCR product detected by P. gingivalis specific primers 

on brain tissue from mono P. gingivalis infected ApoE
null

 mice 

Case sequenced Sequence length Identification E value Nucleotide match 

(%) 

G1 Br1 24Wk 400 bp P. gingivalis gene from 

16s strain FDC 381 

0.0 100 

G1 Br2 24Wk 400 bp P. gingivalis gene from 

16s strain FDC 381 

0.0 100 

G1 Br5 24Wk 402 bp P. gingivalis gene from 

16s strain FDC 381 

0.0 99 

G1 Br11 24Wk 403 bp P. gingivalis gene from 

16s strain FDC 381 

0.0 100 



164 

 

 

3.3.2. Immunofluorescent labelling 

The anti-T. denticola ATCC 35405 antibody raised against FhbB protein generated in 

rats remained negative when tested on all tissue sections, despite correctly labelling the 

positive control bacterial smear (Fig. 3.14a). All tissue sections also remained negative 

when immunolabelled with rabbit antiserum raised against T. forsythia (whole cell and 

s-layer). Although both antibodies correctly labelled the whole cell; figure 3.14b shows 

labelling of T. forsythia bacterial cells with rabbit anti-T. forsythia (s-layer) whereas 

figure 3.14c demonstrates immunolabelling with the antibody against T-forsythia 

(whole cell). Figure 3.14d demonstrates positive labelling of the P. gingivalis bacterial 

smear using the anti-P. gingivalis (clone 1B5) antibody, again all mouse brain sections 

were negative when tested using this antibody. 
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Figure 3.14: Positive control images for immunofluorescent labelling with specific 

bacterial antibodies. A) T. denticola bacterial smear labelled with anti-T. denticola 

ATCC 35405 antibody raised against FhbB protein generated in rats, the secondary 

antibody was goat anti-rat Alexa fluor 488 so the positive result is indicated by green 

labelling. B) T. forsythia bacterial smear immunolabelled with rabbit antisera raised 

against T. forsythia (against the s-layer). The secondary antibody was goat anti-rabbit 

conjugated to FITC; therefore, positive result is green. C) T. forsythia bacterial smear 

labelled using rabbit anti-T. forsythia (against the whole cell) and an FITC conjugated 

secondary (goat and rabbit-FITC); hence, the positive result is indicated by green 

labelling. D) demonstrates positive labelling (green) of the P. gingivalis bacterial smear 
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using the anti-P. gingivalis (clone 1B5) antibody, coupled with a goat anti-mouse FITC 

secondary antibody.  

 

3.3.3. Biochemistry  

Immunoblotting was performed on all brain specimens with anti-T. denticola ATCC 

35405 antibody against FhbB protein, anti-T. forsythia antibody against the whole cell 

and s-layer and anti-P. gingivalis (clone 1B5) antibody for LPS and gingipains. Figures 

3.15-3.17 show the results of immunolabelling with each antibody carried out on the 24 

week ApoE
null

 mice which were mono infected with their respective bacteria. In all 

cases the positive controls demonstrated appropriate bands at the expected molecular 

weights. The anti-T. denticola antibody against FhbB protein showed a positive band at 

around 11.4 kDa (Fig. 3.15) as reported by Miller et al., (2013), although, all test brains 

remained negative (Fig. 3.15). The T. forsythia antibody against the s-layer 

demonstrated multiple bands with two prominent bands at 230 and 270 kDa (Fig. 3.16) 

as previously reported by Settem et al., (2013), however, the specimens from the T. 

forsythia mono infected group (24 weeks) failed to detect any bands (Fig. 3.16). The 

anti-P. gingivalis (clone 1B5) antibody demonstrated a ladder of bands in the range of 

45-12 kDa in the lane corresponding to the positive control (culture supernatant) as 

reported previously by Poole et al., (2013) (Fig. 3.17). The test tissue lysates failed to 

detect LPS or gingipains. These results were the same in all cases, both mono and 

polymicrobial infected animals, at both time points (data not shown). A possible 

explanation for the absence of LPS and gingipains despite the presence of DNA is that 

the animals, due to their young age and already primed microglia (ApoE
null

), readily 
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removed the ‗harmful‘ products from the CNS. In addition, the detection limits of the 

antibodies used will not be as sensitive as that of molecular techniques. 

 

 

 

Figure 3.15: Immunoblotting of T. denticola infected ApoE
null

 mice (24 weeks) using 

the anti-T. denticola antibody against FhbB protein.  A) Immunoblotting of lysates 

prepared from brains 1-7 of T. denticola infected ApoE
null

 mice. B) Immunoblotting of 

lysates prepared from brains 8-12 of T. denticola infected ApoE
null

 mice. For both A and 

B the medium control remained negative as expected, the positive control demonstrated 

a positive band at around 11.4 kDa, all test brains remained negative. 
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Figure 3.16: Immunoblotting of T. forsythia infected ApoE
null

 mice (24 weeks) using the 

T. forsythia antibody against the s-layer. A) Immunoblotting of lysates prepared from 

brains 1-7 of T. forsythia infected ApoE
null

 mice sacrificed at 24 weeks. B) 

Immunoblotting of lysates prepared from brains 8-12 of T. forsythia infected ApoE
null

 

mice sacrificed at 24 weeks. For both A and B the medium control remained negative, 

whereas the positive control demonstrated multiple bands (a smear) with two prominent 

bands at 230 and 270 kDa, however, all specimens from the T. forsythia mono infected 

group were negative. 
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Figure 3.17: Immunoblotting of P. gingivalis infected ApoE
null

 mice (24 weeks) using 

the anti-P. gingivalis (clone 1B5) antibody. A) Immunoblotting of lysates prepared from 

brains 1-7 of P. gingivalis infected ApoE
null

 mice sacrificed at 24 weeks. B) 

Immunoblotting of lysates prepared from brains 8-12 of P. gingivalis infected ApoE
null

 

mice sacrificed at 24 weeks. For both A and B the medium control remained negative, 

whereas the positive control (spent medium) demonstrated a ladder of bands in the 

range of 45-12 kDa, although, none of the test tissue lysates demonstrated P. gingivalis 

LPS or gingipains. 

 

3.4. Discussion 

The results from the first phase of the investigation using AD brain tissue specimens 

(C/o ―Brains for Dementia Research‖) provided novel experimental evidence towards 

establishing an aetiological link between periodontal disease and AD.  Proof of concept 

was explored using experimental animals induced with periodontal disease (Kesavalu et 

al., 2007; Chukkapalli et al., 2014). Therefore, any autolytic artifacts associated with 
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human post-mortem delay could be eliminated and both the DNA and general brain 

tissue could be preserved according to experimental needs.  

 The initial investigation of the in vivo model explored the possibility of oral 

pathogens P. gingivalis, T. denticola and T. forsythia or their associated virulence 

factors accessing the brain of ApoE
null

 mice following experimental induction of 

periodontitis as mono and polymicrobial infections. As mentioned previously Foschi et 

al., (2006) used an endodontic infection and, despite the absence of any reported 

neuropathological findings, they did identify the presence of T. denticola in distant 

organs including the brain, heart and spleen.  

The present study identified P. gingivalis as the dominant organism that 

accessed the brain and both T. denticola and T. forsythia went undetected. The 

identification of P. gingivalis DNA and the absence of T. denticola in the present study 

did not support the previous findings reported by Foschi et al., (2006). Although this 

may be attributed to the specific strains of bacteria used in each study in addition to the 

method used to infect the animals and their genetic composition. Firstly, different 

diseases were induced in each study, Foschi et al., (2006) used an endodontic infection 

whereas the present study induced periodontal disease in the mice. Secondly, different 

strains of bacteria were used in each study. The only common strain between this study 

and that of Foschi et al., (2006) is T. forsythia (ATCC 43037) and based on this result 

alone it is likely that T. forsythia, being a non-motile bacterium and lacking fimbriae, 

are unable to transmigrate to the brain (Settem et al., 2012). The present study identified 

P. gingivalis strain FDC381 DNA within the brains of ApoE
null

 mice, this strain has 

fimbriae for adherence and is a more virulent form compared with the avirulent strain P. 

gingivalis ATCC 33277 (Mayrand and Holt, 1988) used by Foschi et al., (2006), 

therefore, providing a possible reason for the difference in findings. The strains of T. 
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denticola used in both studies (ATCC 35404 and ATCC 35405) are motile. However, in 

the study by Foschi et al., (2006) T. denticola (ATCC 35405) was detected in the brain 

despite being applied at a lower dose (10
8
) than in the present study (10

9
). Thus, the 

outer membrane with abundant pore-forming adhesion protein that may be lacking in 

our T. denticola (ATCC 35404) strain may have contributed to its accessibility to the 

brain, rather than being a dose dependent effect which could account for the 

polymicrobial infection model.  

The results show that P. gingivalis strain FDC 381 used to infect the oral cavity 

of the ApoE
null

 mice was able to access the brain. This result alone provides definitive 

evidence for transmigration of P. gingivalis, a common bacteria implicated in chronic 

periodontal disease, from the oral cavity to the brain. The mode of entry to the CNS, in 

this case, was not investigated although a systemic route is favoured due to its 

association with atherosclerotic lesions and its ability to adhere to erythrocytes for 

innate immune evasion (Chiu, 1999; Haraszthy et al., 2000; Cavrini et al., 2005; 

Belstrøm et al., 2011; Chukkapalli et al., 2014) as well as gaining advantage for 

transportation to remote body organs (Belstrøm et al., 2011). Finding molecular 

evidence of P. gingivalis in the ApoE
null

 mice brains supports the previous findings 

(chapter 2) in which P. gingivalis specific LPS was detected in 4 out of 10 AD brains 

using anti-P. gingivalis specific monoclonal antibodies (Poole et al., 2013).  

However, in the in vivo mouse study it was specifically the DNA of the 

periodontal pathogen P. gingivalis that was found in the brains of the appropriate 

infected groups with high significance. Bacterial virulence factors were not detected in 

any of the brains by immunoblotting or immunolabelling for P. gingivalis, T. denticola 

and T. forsythia using the aforementioned antibodies. Initially, the absence of any 
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virulence factors appeared surprising in light of the findings in the human brain tissue. 

However, the lack of detection may be attributed to the younger age of these animals 

(compared with AD individuals) allowing them to rapidly clear the virulence factors 

(LPS) from the systemic circulation, therefore, preventing them from accessing the 

brain. Also it is possible that the virulence factors may have been neutralised upon entry 

by the already enhanced microglial inflammatory phenotype in this animal model 

(Roselaar and Daugherty, 1998; de Bont et al., 1999), whereas, the DNA of the bacteria 

appears to have remained intact.  
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Chapter 4: 

In vivo investigation to find neutral bacterial virulence 

factors and to determine dementia like pathological 

lesion(s) following an oral infection in the ApoE
null

 

mouse model of periodontal disease 
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4.1. INTRODUCTION 

Conventional identification of bacteria using specific molecular tools (primers) 

provided evidence in favour of a link between oral pathogens and AD using an in vivo 

model of periodontal disease. However, immunolabelling with antibodies to common 

bacterial epitopes can also be used for an exhaustive search and visualisation of such 

proteins in disease specific lesions and cells. In addition, this approach can be used to 

assess chemically fixed tissue specimens which present with better morphological 

preservation and allow the application of conventional light microscopy stains for 

preliminary understanding of the disease process. Hence, the investigation of brain 

tissue from ApoE
null

 mice with induced periodontal disease continues using such 

methodologies.  

 

4.2. MATERIALS AND METHODS 

4.2.1. In vivo animal model c/o the University of Florida 

As per chapter 3 section 3.2.1. 

4.2.2. Source of antibodies  

Mouse anti-bacterial peptidoglycan (MAB995), Millipore; rabbit anti-PGP9.5 (protein 

gene product 9.5) (ab27053), Abcam; Secondary detection antibodies: goat anti-mouse 

FITC, Sigma; Alexa Fluor® 488 goat anti-mouse IgG1 (γ1) (A-21121), Life 

Technologies; goat anti-rabbit FITC, Sigma; goat anti-rabbit TRITC, Hycult biotech; 

goat anti-mouse HRP (A4416), Sigma; goat anti-mouse IgG1 HRP (ab98693), Abcam. 

4.2.3. Source of all other reagents 

Mayers Haematoxylin, RA Lamb;  Eosin, RA Lamb; Schiff‘s reagent, Sigma 395-2; 
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Wrights stain, Sigma; DPX mounting medium, Sigma; Thioflavin T, Fisher Scientific; 

glycerol, Fisher Scientific; Silver nitrate, Fisher Scientific; hexamine, Fisher Scientific; 

borax (disodium tetraborate), Sigma; periodic acid, Fisher Scientific; sodium 

thiosulphate, Sigma; FragEL
TM 

DNA Fragmentation Detection Kit, Calbiochem; 

glutaraldehyde, Sigma; aqueous osmium tetroxide solution, Agar Scientific; propylene 

oxide, Sigma; Araldite CY212, Agar Scientific; plastic capsules, Agar Scientific; 300 

mesh naked nickel grids, Agar Scientific, UK; uranyl acetate, Sigma; lead citrate, 

Sigma; Glycine, Fisher Scientific; paraffin wax pellets, Tissue prep 2; tissue processing 

cassettes and embedding moulds, Fisher Scientific; hydrogen peroxide, Sigma;  3,3‘-

Diaminobenzidine tetrahydrochloride hydrate, Sigma; Gold chloride solution, gift, 

University of Cardiff; Na2S, Fisher Scientific; silver solution, gift, University of 

Cardiff; zymosan, Sigma. 

 

Unless otherwise stated, all histology and immunolabelling described in this chapter 

was performed on Paraffin embedded tissue sections 

 

4.2.4. Formalin fixed tissue processing 

All specimens were thoroughly washed in PBS pH 7.3 (at least 3 changes over 24 

hours). The intact hemisphere was divided into the frontal cortex and temporal lobe 

inclusive of the hippocampus. Also, the brain stem and cerebellum were kept together 

where possible. The specimens were processed in cassettes through a series of alcohol 

and xylene washes using an automated tissue processor (Shandon Citadel 2000, Thermo 

Scientific) and infiltrated in molten paraffin wax. The protocol employed by the tissue 

processor was; 70% ethanol for 1 hour, 80% ethanol for 3 hours, 90% ethanol for 3 

hours, 3 x 100% ethanol for 4 hours, 2 x 100% xylene for 4 hours, 100% xylene for 5 
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hours, 2x paraffin wax for 7 hours, then held in paraffin wax for a minimum of 1 hour. 

The tissue was then embedded in paraffin wax in appropriately labelled embedding 

moulds using an embedding station (RA Lamb).  

4.2.5. Tissue Sectioning 

The paraffin wax embedded tissue blocks with temporal lobe inclusive of the 

hippocampus were trimmed to expose the tissue specimen then pre-cooled on ice for 1 

hour prior to sectioning using the Leica RM2235 microtome. A temperature regulated 

water bath was switched on and maintained at 50 °C to float sections and to collect 

them onto Superfrost+® glass microscope slides (Leica, UK). The pre-cooled block was 

held in the chuck such that the tissue faced the vertical plane of a microtome blade. 

Following setting of the section thickness to 5 µm, ribbons of the sections were picked 

with the aid of forceps and a paint brush and floated onto the surface of the water in the 

bath. At least 3 consecutive sections/slide and multiple slides/block were collected. All 

sections on slides were allowed to dry at 37 °C in an incubator overnight. Further 

bonding of the tissue sections to the glass slides was achieved by placing the slides at 65 

°C for 2 hours. The slides were removed and allowed to cool at room temperature prior 

to further use. 

4.2.6. Bacterial smears 

 See chapter 2, section 2.2.8. 

4.2.7. Histology 

i) Haematoxylin and Eosin 

Haematoxylin and Eosin staining was performed in order to assess the general histology 

of the brain sections. Paraffin wax sections (all brains from each group, at both time 
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points) were deparaffinised (2x 15 mins xylene) and rehydrated (5 mins absolute 

ethanol, 5 mins 80% ethanol, 5 mins 70% ethanol, 2x 5 mins distilled water). Sections 

were then placed in running water for 5 mins, followed by incubation in Mayers 

Haematoxylin for 5 mins. Following this the sections were washed in cold running 

water for 5 mins then subjected to hot running water for 30 seconds followed by a 30 

second incubation in Eosin. Finally sections were washed briefly in water then blotted 

dry and mounted using DPX mounting medium. Sections were examined using the 

Nikon Eclipse E200 microscope and imaged using the Nikon DS-L2 v.441 software. 

ii) FragEL
TM 

DNA Fragmentation Detection Kit. 

To assess the hippocampus for any apoptotic cell bodies paraffin wax sections were 

bought to water then analysed using the FragELTM DNA Fragmentation Detection Kit 

according to manufacturer‘s instructions. This assay is a non-isotopic system for 

labelling of DNA breaks in apoptotic nuclei. Results were visualised and imaged using 

the 510 Zeiss confocal microscope (Carl Zeiss). 

iii) Wrights stain  

The Wrights stain was carried out in order to detect any haematopoietic cells in the 

brain tissue. Again sections were deparaffinised and rehydrated as above (section i) and 

stained in Wright‘s stain as per suppliers‘ protocol. Finally, sections were rinsed with 

deionized water and blot dried before mounting with DPX mountant. 
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4.2.8. Searching for characteristic AD hallmark lesions in ApoE
null

 mouse brains 

using neutral dyes and silver impregnation methods 

i) Thioflavin T 

Thioflavin T is a stain used which positively labels amyloid. Paraffin wax mouse brain 

tissue sections were deparaffinised and rehydrated as above (section 4.2.7.i) then treated 

in Haematoxylin solution for 2 mins to quench nuclear fluorescence. The sections were 

washed in water and incubated in 1% aqueous Thioflavin T for 5 min. This was 

followed by rinsing sections in water and differentiating in 1% acetic acid for 20 mins 

to reduce background fluorescence. Finally, sections were washed in water and mounted 

in glycerol/PBS (9:1 ratio) and imaged using the 510 series Zeiss confocal microscope 

(Carl Zeiss Ltd). 

ii) Methenamine silver solution and impregnation 

Methenamine silver staining methods positively label argyrophillic components of a 

tissue section, historically this staining methodology has been used to positively label 

the pathological hallmarks associated with AD alongside other particles (Pick bodies 

associated with Picks disease). Methenamine silver solution was prepared by mixing 

three solutions; Silver nitrate 0.0625 g (in 5 ml distilled water), 3 % hexamine solution 

(in 25 ml distilled water) and 3 % borax (disodium tetraborate) (in 5 ml distilled water). 

Rehydrated paraffin wax sections, were initially oxidised in 0.5 % periodic acid for 10 

mins. Following washings in water, the sections were transferred into pre-heated 

methenamine silver solution at 60 °C for 40 – 60 mins and monitored until the desired 

degree of silver impregnation was achieved. All sections were then rinsed in deionized 

water and fixed in 2.5 % aqueous sodium thiosulphate for 2 mins. Followed by a further 
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wash in water, the sections were counterstained in haematoxylin (3 mins), blotted dry, , 

cleared using a series of xylene washes (2 x 5 mins) and mounted with DPX mountant. 

iii) Periodic Acid Schiff’s stain 

PAS stain is used to detect polysaccharides such as glycogen, and mucosubstances such 

as glycoproteins, glycolipids and mucins in tissues. PAS histochemitry was carried out 

using Schiff‘s reagent and the sigma protocol (No. 395) for tissue sections (standard 

procedure). Briefly, sections were deparaffinised and rehydrated, immersed in periodic 

acid solution (1 g/dL) for 5 mins at room temperature then rinsed in several changes of 

distilled water. Following this, sections were immersed Schiff‘s Reagent for 15 mins at 

room temperature then washed with running tap water (5 mins). Finally, sections were 

counterstained using Mayers Hematoxylin solution for 90 seconds, rinsed in distilled 

water, dehydrated, cleared and mounted in DPX mountant. 

4.2.9. Immunofluorescence labelling  

i) All controls  

All mouse brain tissue sections included omission of the primary antibody (to check 

specificity of the secondary antibody) alongside the inclusion of the primary antibody 

on the sham infected groups for both mono and polymicrobial infections (12 and 24 

weeks). 

ii) Antigen retrieval 

Rabbit anti-PGP9.5 antibody required pre-treatment in order to expose the relevant 

antigen which is specifically expressed following microwave heating of tissue sections 

for 35 mins in 0.2 % citric acid buffer at pH 6.0 using 750W power.  
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Mouse anti-bacterial peptidoglycan antibody (MAB995) required sections to be 

permebilised in 10 % SDS for 15 mins, followed by thorough washes in PBS (3x 

5mins), then 10 mins in 50 mM glycine/PBS to quench autofluorescence. 

iii)  Universal bacterial peptidoglycan 

Immunofluorescence labelling was carried on rehydrated paraffin sections employing 

the same methodology as for human brain tissue (section 2.2.8). Antigen retrieval and 

other pre-treatments were incorporated where necessary (see above section ii). All 

sections were blocked (PBS 2 % tween 20, containing 0.01 % normal goat serum) and 

incubated overnight at 4 °C in mouse anti-bacterial peptidoglycan (MAB995) (1/200). 

Followed by detection using goat anti-mouse IgG1 (Alexa fluor 488, 1/1000) or goat 

anti mouse FITC (1/200). Slides were mounted using the Vectashield PI mounting 

medium and imaged on the Zeiss confocal microscope as before. 

iv) Cell marker antibodies  

Immunofluorescent labelling was performed on rehydrated paraffin wax sections as 

previously (section 2.2.8); pre-treatments were applied where necessary (above section 

ii). The primary antibodies (rabbit anti-PGP9.5 (1/100), rabbit anti-GFAP (1/1000)) 

were diluted in block solution and applied overnight at 4 °C, followed by labelling with 

the appropriate secondary (goat anti- rabbit FITC; 1/200) and then mounted under a 

glass coverslip using PI and imaged as before (see section 2.2.8).  

v) Double labelling  

Rehydrated paraffin wax ApoE
null

 mouse brain sections were double labelled with rabbit 

anti-PGP9.5 (for neuronal labelling; 1/100) and the bacterial peptidoglycan (1/200) 

antibody, as well as with rabbit anti-GFAP (1/1000) and mouse anti- peptidoglycan 
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(1/200). The same protocol was used for dual labelling as was for the single 

immunofluorescent labelling (see section 2.2.8), except the blocking solution used was 

1% BSA in PBS. As there was no non-specific reactivity between any of the antibodies 

they were diluted in the same solution and applied to the section overnight at 4 °C. 

Secondary detection antibodies (goat anti-rabbit TRITC (1/50) and goat anti-mouse 

IgG1 (γ1) Alexa Fluor® 488 (1/1000)) were diluted together in blocking solution and 

applied to the sections for 1 hour at room temperature. goat anti-rabbit TRITC 

conjugated secondary antibody was used to allow differentiation between the labelling 

from each antibody. Finally sections were mounted under a glass coverslip using the 

Vectashield® DAPI mounting medium and imaged as described above. 

4.2.10. Biochemistry 

i) Tissue lysates  

Tissue lysates were prepared from all mice brains (polymicrobial and mono infected at 

both time points) as described in chapter 3 (see section 2.2.9) and were used for dot 

blots with the anti-bacterial peptidoglycan antibody (MAB995). 

ii) Dot blot 

To confirm the presence of peptidoglycan, dot blots were performed by transferring 30 

µg of total protein onto a PVDF membrane which had been previously permeabilized 

with methanol and hydrated in transfer buffer. The membrane was subsequently blocked 

for 30 min at room temperature in 5% w/v skimmed milk/PBS then incubated overnight 

at 4 °C with the anti-bacterial peptidoglycan antibody (MAB995) diluted 1/400 in 5% 

w/v skimmed milk/PBS. Following 3x 15 min washings in PBS containing 0.2 % tween 

20, the membrane was incubated in HRP-conjugated goat anti-mouse Ig secondary 
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antibody diluted 1/10,000 in 5 % w/v skimmed milk/PBS for 2 hours at room 

temperature. Following further washes in PBS/tween 20, (3x 15 min each) bands were 

detected using the enhanced chemiluminescence detection reagent as before.  

4.2.11. Electron microscopy of bacterial cell pellets and IMR32 cellular debris 

The cellular debris was collected from a flask of IMR32 cells treated with culture 

supernatant and from a flask treated with control medium (Chapter 2, section 2.2.6) 

following centrifugation for 5 mins at 2,500 rpm to form a pellet. All pellets were then 

fixed for up to 1 hour at 4 °C in 2.5 % glutaraldehyde and subsequently post-fixed in 2 

% aqueous osmium tetroxide solution (Agar Scientific) for 2 hours at room temperature 

in a fume hood. The pellets were fully dehydrated in a series of graded alcohols (70 %, 

80 % and 100 %) then placed in propylene oxide, with 3 changes lasting 10 mins each. 

The specimens were then infiltrated in a mixture of propylene oxide and Araldite 

CY212 using a 1:1 ratio for initial infiltration of the resin into the specimen, followed 

by at least 3 changes in fresh resin over 24 hours. Following this the specimen blocks 

were embedded and polymerised in plastic capsules (Agar Scientific) at 65 °C for 48 

hours. Thin sections were cut with a glass knife at 80-100 nm thickness using the Leica 

Ultracut E microtome (Leica, UK). The sections were collected onto 300 mesh naked 

nickel grids (Agar Scientific, UK) and stained in heavy metal salts (saturated uranyl 

acetate, 20 mins, and lead citrate, 5 min). All sections were examined and images were 

captured using the Philips CM 120 BioTwin TEM. The same process was used for 

bacterial cells provided by Prof. Kesavalu (University of Florida), initially cells were 

pelleted by centrifugation at 2,500 rpm for 5 mins. 

4.2.12. IMR32 cellular debris 

Cell debris from IMR32 treated cells was also smeared onto glass microscope slides for 
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assessment of autofluorescence. 

4.2.13. Statistical analysis 

As per human specimens (see section 2.2.10). 

 

4.3. RESULTS 

4.3.1. Mouse brain morphology 

Overall morphological observations of the temporal lobe including the hippocampus by 

H/E analysis of the brains of all animals (sham, mono, and polymicrobial infected at 

both time points) appeared well preserved. There were no abscesses in the brain and 

there were no signs of the classical blood borne inflammatory cells (neutrophils, 

lymphocytes) or sites of focal haemorrhage. The pyramidal neurons CA1-CA4 regions 

and the dentate gyrus neurons of the hippocampus in sham and infected brains generally 

appeared well preserved (Fig. 4.1). However, on a number of occasions shrunken and 

darker neurons were noted, to varying extent, in CA1-CA4 regions and the dentate hilus 

with a random distribution (Fig. 4.2). The extent of the ‗darker‘ neuronal staining within 

the hippocampus of all ApoE
null

 mice (sham, mono, and polymicrobial infected animals 

at both time points) was scored on a scale of one to three (denoting minor, medium and 

extensively shrunken and darker staining) by myself and an additional investigator (Dr. 

Sim Singhrao) on separate occasions. Fig. 4.3 represents the averages scores for each 

group.  
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Figure 4.1 H/E stain of mouse hippocampus from sham infected ApoE
null

 mice (24 

weeks). Labels denote the various regions visible; the cortex, lateral ventricle (LV), 

choroid plexus (Cpx), dentate gyrus molecular layer (DG: Mo layer), dentate gyrus 

granular layer (DG: Gr layer) and the CA1, CA2, CA3 and CA4 regions of the 

pyramidal neurons. 

 

Figure 4.2: A) H/E stain of mouse hippocampus from mono P. gingivalis infected 

ApoE
null

 mice (24 weeks). B) higher magnification image of dentate gyrus region in A. 

C) a higher magnification of the pyramidal neurons shown by the blue box in A. D) a 

higher magnification image of the dentate gyrus neurons shown by the red box in A.  
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Figure 4.3: Graph showing the average score of the extent the neurons of the 

hippocampus appeared ‗shrunken and darker‘. Scored on a scale of 0-3 for all brains in 

all groups (sham, mono and polymicrobial infected animals sacrificed following 12 and 

24 weeks) and averaged depending on the number of cases in each group – note if the 

hippocampus was not located then the case was denoted as missing. 

Initial tests were performed in an attempt to outline the difference between the 

darker stained neurons and those which appeared healthy. The first test was using 

FragELTM DNA Fragmentation Detection Kit to see if the cells were undergoing 

necrotic death. The results show that despite the test working (as seen by the positive 

control; Fig. 4.4a and b) no DNA fragmentation was detected in the tested brains (Fig. 

4.4 c and d). At this point, as no evidence of cell death or damage was detected in the 

cases scoring the highest for ‗darker‘ neurons, the investigation into these neurons was 

terminated. 
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Figure 4.4: FragELTM DNA Fragmentation Detection Kit test on hippocampus of 

ApoE
null

 mouse brain sections (which had previously scored high for ‗darker‘ neurons). 

A) Positive control generated for the purpose of the test, red is the nuclear label (PI), 

green indicates DNA fragmentation. B) a higher magnification of A. C) Fragmentation 

Detection Kit test performed on hippocampus of ApoE
null

 mouse brain, identical 

conditions to that in A and B; red is the nuclear label (PI), green indicates DNA 

fragmentation. D) A higher magnification image of C. Note, the test brain is negative 

for DNA fragmentation. 

4.3.2. Searching for characteristic AD hallmark lesions in ApoE
null

 mouse brains 

using neutral dyes and silver impregnation methods 

A number of stains were used in attempt to identify the presence of the pathological 

hallmarks of AD. Both thioflavin T (for labelling amyloid) and methanamine silver 

neutral staining methods (to detect both NFTs and Aβ plaques amongst other 

argyrophillic components) failed to demonstrate any evidence, in all of the brains, for 
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the presence of either Aβ plaques or NFT‘s in the hippocampus or in the fronto-

temporal cortex regions. However, the methenamine silver stain presented with positive 

argyrophillic clusters of granules within the hippocampus of a number of brains as 

shown in figure 4.5.  

 

Figure 4.5: Silver methenamine staining of brain sections from mono P. gingivalis 

infected ApoE
null

   mice (24 weeks). Red circles and arrows highlighting the clusters 

labelling positive. A) Region of the hippocampus demonstrating extracellular 

argyrophillic granules. B-C) higher magnification images of the extracellular 

argyrophillic granules. D) Argyrophillic labelled neuronal cell from the CA neurons of 

the hippocampus. 

4.3.3. Periodic acid Schiff’s 

The results from the silver methenamine staining appeared similar in appearance to 

those reported by Akiyama et al., (1986) which were reported as being PAS positive, 

therefore, the brain tissues from all groups were tested using PAS stain. Following 

histochemical staining with PAS reagent the rehydrated paraffin wax sections 

demonstrated numerous clusters of PAS positive granules (Fig 4.6), as shown at a range 
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of magnifications. The granules within the hippocampus of ApoE
null

 mice brain were 

always present in clusters of variable size supporting the findings of Akiyama et al., 

(1986).  

 

Figure 4.6: PAS staining of the hippocampus of ApoE
null 

mice – using cases previously 

positive for extracellular argyrophillic granules. Images of varying magnification 

demonstrating that the same granules are also weakly labelled with PAS – Red circles 

highlighting areas of positive labelling.  

 

4.3.4. Immunofluorescence labelling for bacterial peptidoglycan 

Immunofluorescent labelling for bacterial peptidoglycan was performed to identify if 

there was any presence of the bacterial cell wall component in the ApoE
null

 mouse brain 
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sections to indicate any bacterial presence which may have been beyond the detection 

limit of the species specific antibodies used in chapter 3. 

i) Controls 

All negative controls whereby the primary antibody was omitted remained consistently 

negative (Fig. 4.7a), whereas the positive control bacterial smears (T. denticola, T. 

forsythia and P. gingivalis) labelled with the peptidoglycan antibody (MAB995) as 

expected (Fig. 4.7b-d).  
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Figure 4.7: Control images for peptidoglycan immunofluorescent labelling on ApoE
null

 

mouse brain tissue sections. A) Negative control, here the primary antibody was omitted 

and brains were subsequently labelled with the secondary antibody against mouse IgG1 

conjugated to Alexa Fluor® 488 (green), red indicates PI, the nuclear label. B-D) 

Positive controls, in all cases the primary antibody used was mouse anti- peptidoglycan 

(MAB995) and the secondary antibody was Alexa Fluor® 488, hence green indicates 

positive labelling. B) T. denticola bacterial smear immunolabelled for peptidoglycan C) 

T. forsythia bacterial smear immunolabelled for peptidoglycan D) P. gingivalis bacterial 

smear immunolabelled for peptidoglycan. 
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i) ApoE
null

 mouse brain immunolabelled for peptidoglycan 

Rehydrated paraffin wax sections from all infected groups were immunolabelled with 

the anti-peptidoglycan antibody, the results are shown in Figure 4.8. 

Sham infected  

Immunolabelling of the mono sham infected mice sacrificed at 12 weeks presented with 

only one case showing positive labelling in clusters of granules (Fig. 4.8a). The 

granules were observed at the same location and looked similar in appearance to those 

seen labelling positive with silver methenamine and PAS. An abundance of inclusions 

were also observed in 2 out of 11 brains analysed from the mono sham infected animals 

sacrificed at 24 weeks (Fig. 4.8b). 
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Figure 4.8: Immunofluorescent labelling results for peptidoglycan on all groups (sham, 

P. gingivalis, T. denticola, T. forsythia and polymicrobial infected). Positive labelling 

for peptidoglycan (MAB995) is shown in green, whereas red represents PI, nuclear 

label. A) Sham infected mice at 12 weeks demonstrating positive clusters of granules in 

the hippocampal region. B) Sham infected mice at 24 weeks also demonstrating positive 

clusters of granules in the hippocampal region, insert shows higher magnification of 

peptidoglycan positive granules. C) P. gingivalis infected mice at 12 weeks, showing 

granules as in A, insert shows granules at higher magnification. D) P. gingivalis 

infected mice at 24 weeks demonstrated peptidoglycan positive cellular labelling in 

addition to the granules in the hippocampal region of the brain. E) T. denticola infected 

mice at 12 weeks showing positive granules as in A. F) T. denticola infected mice at 24 

weeks, again showing positive granules as in A. G) T. forsythia infected mice at 12 

weeks, showing peptidoglycan positive granules as in A. H) T. forsythia infected mice 

at 24 weeks, showing peptidoglycan positive granules, insert displays granules at higher 

magnification. I) Polymicrobial infected mice also displayed peptidoglycan positive 

granules in selected cases at 12 weeks. J) Polymicrobial infected mice at 24 weeks 

showing positive granules as in the sham infected A. 

 

P. gingivalis  

ApoE
null

 mice which were orally infected with P. gingivalis presented with clear 

positive extracellular labelling (granular) in 4 out of 12 cases at the 12 week time point 

(Fig. 4.8c). Whereas, only 2 positive cases were observed at the 24 week time point 

(Fig. 4.8d). In addition, cellular localisation of peptidoglycan was observed in 

abundance in both cases which were positive at 24 weeks (Fig. 4.8d).  
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T. denticola 

Results from the ApoE
null

 mice orally infected with T. denticola immunolabelled for 

peptidoglycan showed a greater number of cases were positive with these granules at 

both 12 and 24 week time points (Fig. 4.8e and f; total number of cases being 5 and 6 

respectively). When compared with the sham infected groups the difference between the 

number of positive cases were close to reaching statistical significance (P = 0.065) with 

the labelling appearing clearer in the T. denticola infected group than that detected in 

the sham infected mice at both time points (Fig. 4.8). 

T. forsythia 

The number of brains displaying the peptidoglycan positive granules in the 

hippocampus was also higher in the T. forsythia infected group than the sham infected 

group at the 12 week time point (Fig. 4.8g), having 4 cases positive for peptidoglycan 

granules in the hippocampus (P = 0.140). However, by the 24 week time point (Fig. 

4.8h) this had dropped to 2 out of 12 cases, the same as that in the sham infected group. 

Again the granules were intensely labelled within the hippocampus and remained 

variable in size (Fig. 4.8g and h). 

Polymicrobial infected  

The polymicrobial sham infected animals also presented with the same granular 

labelling in the hippocampus of a number of cases at both 12 and 24 week time points. 

This was also the case when analysing the hippocampus of polymicrobial infected 

ApoE
null

 mice at 12 and 24 weeks post infection (Fig. 4.8i and j respectively). There was 

no statistical difference in the number of brains demonstrating the extracellular granules 

in the sham and the polymicrobial infected animal brains at either of the two time 
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points. See table 4.1 for a full summary of the number peptidoglycan positive cases for 

each group of animals, the data for which is consistent for those producing positive 

granules in the hippocampus using light microscopy tests (silver methanamine and 

PAS). No groups of animals presented with statistically significant differences when 

compared with the sham-infected group of animals, although, the T. denticola infected 

group came closest to reaching significance. However, it was only the P. gingivalis 

infected animals at the 24 week time point which displayed cellular labelling for 

peptidoglycan.  
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Table 4.1: Summary of peptidoglycan labelling data for all groups of ApoE
null

 mice at 

both 12 and 24 week time points. P values given were generated using the Mann 

Whitney U test comparing all test groups with the relevant sham infected group. 

Group  peptidoglycan 

positive  

12 week 

p value when 

compared with 

control group 

peptidoglycan 

positive  

24 week 

p value when compared 

with control group 

Mono sham 

infected   

1 out of 12 . 2 out of 11  . 

P. gingivalis 

infected  

4 out of 12  2 out of 9  0.827 

T. denticola 

infected  

5 out of 12 0.065 6 out of 12  0.118 

T. forsythia 

infected   

4 out of 12 0.140 2 out of 12  0.925 

Poly sham 

infected 

5 out of 12 . 6 out of 12 . 

Polymicrobial 

infected 

6 out of 12 0.688 6 out of 12 1 

 

 



197 

 

 

In order to investigate the origin of the peptidoglycan positive granules double 

immunolabelling with neuronal marker (PGP9.5) and the bacterial peptidoglycan 

antibody was performed to identify if the peptidoglycan labelling was localising with 

neurons or neuronal components. The results showed that cellular labelling was not 

associated with neurons (Fig. 4.9), although, demonstrated further examples of both 

extracellular and cellular peptidoglycan labelling. Additional dual labelling was 

performed using GFAP and the bacterial peptidoglycan (clone MAB995) antibody to 

see if peptidoglycan was labelling astrocytes/astrocytic components. Results 

demonstrated it was astrocytes that were immunolabelling positive for bacterial 

peptidoglycan (Fig. 4.10).  

 

 

Figure 4.9: Peptidoglycan (MAB995) and PGP9.5 (neuronal cell marker) dual 

immunofluorescent labelling of paraffin wax brain tissue sections from mono P. 

gingivalis infected ApoE
null

 mice (24 weeks). Blue is the DAPI nuclear label, green 

demonstrates peptidoglycan positive labelling and red demonstrates PGP9.5 positive 

neuronal labelling. A) Negative control image, primary antibodies were omitted. B) 
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Peptidoglycan positive labelling in the hippocampus, both cellular and extracellular 

labelling is present. Note, the labelling is not neuronal. 

 

Figure 4.10: Peptidoglycan (MAB995) and GFAP dual immunofluorescent labelling of 

paraffin wax sections from mono P. gingivalis infected ApoE
null

 mice (24 weeks). Blue 

is the DAPI nuclear label, green demonstrates peptidoglycan positive labelling and red 

demonstrates GFAP positive labelling. Note, cells are clearly astrocytes. 

Further tests were performed in order to exclude any cross-reactivity with the 

mouse primary antibody on mouse tissue sections. This was carried out using a positive 

control from human AD brain 6 was tested under the same conditions used on the 

mouse brain tissue sections. The results also demonstrated an abundance of reactive 

cells labelled with the bacterial peptidoglycan (MAB995) antibody (Fig. 4.11) as well 

as a corpus amylaceum (Fig. 4.11 f insert), the human alternative to the PAS positive 

granules. Double immunolabelling with an anti-human GFAP antibody and the bacterial 

peptidoglycan antibody (MAB995) confirmed that the cells immunolabelled with the 

peptidoglycan antibody were astrocytes (Fig. 4.12). 
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Figure 4.11: Human Alzheimer‘s disease post-mortem brain tissue immunolabelled for 

bacterial peptidoglycan (MAB995). Red is PI nuclear label, green represents 

peptidoglycan positive labelling. A) Negative control image whereby the primary 

antibody was omitted. B) Intense cellular labelling for peptidoglycan was observed 

throughout the brain parenchyma. C) Higher magnification images of cells in B. Insert 

in C shows the presence of corpora amylaceum, also labelling positive for bacterial 

peptidoglycan.  

 

Figure 4.12: Dual immunofluorescent labelling of human Alzheimer‘s disease post-

mortem brain tissue using both the anti-bacterial peptidoglycan antibody (MAB995) 

and anti-human GFAP. Blue is the DAPI nuclear label, green demonstrates 

peptidoglycan positive labelling and red demonstrates GFAP positive labelling. Note, 

the cells are clearly astrocytes. 
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4.3.5. Analysis of cell debris from IMR32 cells treated with spent medium. 

Alongside this cell debris from IMR32 neurons treated with spent medium from all 

three bacteria (separately) and a control group treated with sterile control medium was 

analysed by electron microscopy in order to see the effect of PD bacterial virulence 

factors on healthy neurons. The results demonstrated intact IMR32 neurons from the 

control treated culture (Fig. 4.13a). Whereas, the cells treated with the culture 

supernatant from all three periodontal bacteria (P. gingivalis, T. denticola and T. 

forsythia at 24 h) appeared to have burst expelling their subcellular content including 

debris resembling nuclear remnants (Fig. 4.13b and c) in between other intact cells (Fig. 

4.13b). At a higher magnification, the subcellular components appeared to be membrane 

bound organelles including mitochondria, but their ultrastructure was poorly preserved 

(Fig. 4.13c).The cellular debris also demonstrated clear autofluorescence (Fig. 4.14). 

 

Figure 4.13: Electron microscopy analysis of debris from IMR32 cells treated with 

spent media. A) Cells treated with sterile control medium demonstrated intact IMR32 

neurons. B) Cells treated with spent medium show subcellular content in between other 

intact cells. C) Higher magnification of subcellular content from B appears to 

demonstrate membrane bound organelles such as mitochondria; however, their 

ultrastructure is poorly preserved. 
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Figure 4.14: Fluorescent analysis of cell debris from IMR32 neuronal cells treated with 

spent media. In all cases the debris was clearly autofluorescent (A and B).  

 

4.4. DISCUSSION 

The identification of DNA belonging to the periodontal pathogen P. gingivalis in the 

brains of ApoE
null

 mice orally infected with the pathogen encouraged further 

investigation into the neuropathological changes occurring in the brain, an element not 

reported by previous studies (Foschi et al., 2006). Due to the greater preservation of 

formalin fixed tissue specimens, for the initial stages of this investigation, conventional 

light microscopy stains were employed to explore clues for potential lesions. Later to be 

confirmed by an alternative approach, as used by Miklossy (2006), to localise common 

(neutral) bacterial antigens in the same mice brains following the negative result when 

using species specific bacterial antibodies. 

Rehydrated paraffin wax sections were examined following staining with H/E 

for general morphological preservation of the fronto-temporal lobe including the 

hippocampus. These areas appeared well preserved however, shrunken and darker 

stained neurons were occasionally noted in CA1-CA4 regions of the dentate gyrus and 
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dentate hilus in both the sham and the infected animals. The reasons for this observation 

are unclear. Tests for any DNA fragmentation in these neurons as an indication of 

apoptotic cell death returned negative results; therefore, further investigation into these 

neurons was halted. 

 The fact that there were no signs of any abscess formation or whole bacterial 

cells in the brain suggests that P. gingivalis (FDC 381) was unlikely to have been 

metabolically active upon accessing the brain. In addition, there were no myeloid 

lineage cells (neutrophils, lymphocytes) infiltrating into the brain and no sites of focal 

brain haemorrhage. 

Following analysis of the H/E data the investigation was focused on the 

detection of any early cellular changes occurring in the ApoE
null

 mice brains. According 

to Braak and Braak (1995), neurodegeneration begins in the entorhinal cortex and 

spreads to the hippocampus followed by other regions; hence, the hippocampus was the 

main area of interest in this study. Screening for the AD hallmark associated structures 

by thioflavin T and methenamine silver methods did not provide any evidence for the 

fibrillar Aβ and NFT‘s in the entorhinal cortex or the hippocampus regions. Since ApoE 

is an essential protein for amyloid to form insoluble fibrils this was not an unexpected 

finding (Wisniewski and Frangione, 1992). Thus, the intra-cerebral inflammatory 

precursors (fibrillar Aβ and NFT‘s) in this model can be excluded from any endogenous 

inflammation in all groups of infected animal brains, including sham infected.  

Despite silver impregnation methods failing to demonstrate any evidence of Aβ 

or NFTs, the results did demonstrate the presence of argyrophilic granules in the 

hippocampus of ApoE
null

 mice, which were later determined to be PAS-positive and 

their distribution closely resembled those described previously (Akiyama et al., 1986; 
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Jucker et al., 1992; 1994; Kuo et al., 1996). These inclusions displayed a low level of 

quenchable autofluorescence, suggesting the presence of advanced glycation end (AGE) 

products as another possible constituent. This may be a unique property of the granules 

in the ApoE
null

 mice as this has not been reported previously (Akiyama et al., 1986; 

Jucker et al., 1994).  

Subsequently, immunofluorescence labelling was employed to detect common 

bacterial cell wall constituents (bacterial peptidoglycan) in the ApoE
null

 mouse brains. 

Results demonstrated that the age-related granules were specifically and intensely 

immunolabelled with this bacterial virulence factor (peptidoglycan) in some of the sham 

infected and the mono and polymicrobial infected brains. Alongside the presence of the 

granules labelling positive within the hippocampal regions, astrocytic cellular labelling 

was also observed, however, this was only observed in abundance in selected cases of 

the P. gingivalis infected groups. The cell type was identified using dual labelling and 

confirmed by the observation of identical astrocytic labelling, using the same antibody 

for peptidoglycan, within human AD brain sections (taken from the first phase of the 

study). In the human brain a number of positively labelled corpora amylacia were also 

detected using the anti-peptidoglycan antibody thereby supporting the findings from the 

mouse model.  

Positive immunolabelling for bacterial peptidoglycan in the sham infected 

control brains at 12 week time point was surprising as these animals were still under 7 

months of age, although this could possibly be related to the peroxisomal mediated 

degradation of lipids and proteins (Monastyrska and Klionsky, 2006) in the ApoE
null

 

mice. Under various physiological conditions, cytoplasmic components and organelles 

are randomly isolated into membrane-bound vesicles leading to autophagy 
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(Monastyrska et al., 2006). This method involves the non-enzymatic breakdown of 

lipids by catalase and hydrogen peroxide content of the peroxisome. SAMP8 

(Senescence Accelerated Mouse-Prone 8) mice demonstrate autophagic processes 

(Caballero et al., 2009; Ma et al., 2011) at around 7 months of age, when PAS-positive, 

argyrophilic granules form, which appears to correlate with cognitive decline (Ma et al., 

2011). The peroxisomal process imparts endogenous peroxidase activity to PAS-

positive, argyrophilic granules leading to their non-specific immunostaining. Thus 

immunolabelling of the age-related granules, whether from human or murine origins, 

has to be interpreted with caution. As described earlier, the presence of positive 

labelling in the sham infected brain is attributed to this peroxisomal process. 

In view of the inflammatory component of the ApoE
null

 mice and their 

predisposition to infections (Roselaar and Daugherty, 1998; de Bont et al., 1999), 

induction of chronic periodontal disease in these mice may provide the necessary 

catalyst to trigger the occurrence of these PAS-positive inclusions in the hippocampus 

where the greatest intensity of their deposition takes place (Akiyama et al., 1986; Jucker 

et al., 1994; Kuo et al., 1996). The bacterial cell walls of all eubacteria, irrespective of 

their Gram stain characteristics, consist of variable amounts of peptidoglycan. 

Peptidoglycan is a mixture of proteins and complex polysaccharide carbohydrates (short 

peptides and N-acetyl glucosamine and N- acetyl muramic acid) and has been found in 

brains of patients with dementia along with argyrophilic disease hallmarks (Miklossy et 

al., 1996). The same hallmarks are known to be associated with heparan sulphate 

proteoglycans (Su et al., 1992; Snow et al., 1994) as well as the PAS-positive granules 

in SAMP8 mice (Kuo et al., 1996). The presence of subcellular organelles such as 

―abnormal mitochondria and membrane-like structures‖ within the ultrastructure of 
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ageing SAMP8 mice (Kuo et al., 1996) implies that these granules might be 

components of degraded organelles resulting from on-going cell death. 

This view was supported by electron microscopy analysis of IMR32 neurons 

treated with spent media from each of the three red complex pathogens. The results 

demonstrated that the IMR32 neurons released their intracellular content following 

exposure to bacterial virulence factors, possibly due to an episode of oxidative stress 

causing free radicals to be generated as a result of infection with periodontal bacterial 

components and endotoxins (Shapira et al., 2002). Therefore, it is possible that there 

exists an alternative pathway of formation of the age-related granules in the mouse brain 

where they originate from initial interaction with ―bacterial factors‖. This causes cells to 

release their sub-cellular components into the molecular layer of the dentate gyrus 

within the hippocampal region.  

In a complementary study (c/o Dr. Sim Singhrao) SVGp12 cells upon in vitro 

treatment of periodontal bacteria (T. denticola) from culture supernatants demonstrated 

an up-regulation of IL-6 cytokine secretion by 72 fold compared with controls. 

Similarly, the interaction of another periodontal bacterium (T. forsythia) also showed an 

increase (3 fold) in IL-6 secretion levels. The higher IL-6 secretion appeared to be 

responsible for INF-γ which can modulate proinflammatory conditions in the host. This 

is supported by data concerning the levels of systemic inflammatory markers present in 

the serum of the animals used in this model, as published by our collaborators 

(Chukkapalli et al., 2014). They demonstrated that periodontal pathogens induced an 

increase in systemic antibody (IgG) levels along with the production of serum 

inflammatory mediators (Chukkapalli et al., 2014; Velsko et al., in press). The current 

study found no direct evidence for the presence of T. denticola and T. forsythia in the 
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brain, however, the ApoE
null

 mice orally infected with these bacteria presented with age-

related PAS-positive granules, hence there may also be a systemic contribution from 

periodontal disease (Kamer et al., 2008; Watts et al., 2008).  Multiple systemic 

infections can exacerbate premorbid cognitive status in AD patients and the current 

view indicates that this is the result of proinflammatory mediators crossing the BBB 

(Kamer et al., 2009; Holmes et al., 2003; 2009). 

The observations in the current study are in agreement with previous reports 

showing a higher presence of PAS-positive argyrophilic granules in the B6 mice strains 

and the potential contribution of these granules towards the development of 

neurodegenerative diseases (Akiyama et al., 1986; Jucker et al., 1994). Results support 

the view that these granules are processed by astrocytes, since they were also 

immunopositive with the bacterial peptidoglycan antibody, in both ApoE
null

 mice and 

humans. These granules may significantly serve as an alternative source of potentially 

neurotoxic subcellular proteins which could ultimately provide a nidus for the 

development of neurodegenerative disease pathology in the appropriate host.  
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Chapter 5: 

In vivo Assessment of glial cell activation and 

complement activation fragments in ApoE
null

 mouse 

model of periodontal disease using immunolabelling 
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5.1. INTRODUCTION 

Having established the identity of the PAS-positive argyrophillic granules using 

immunolabelling, it was possible to investigate the contribution made by the 

complement system in the brains of an ApoE
null

 mouse model of periodontal disease. In 

this chapter the extent to which glia are involved in the inflammatory neuropathology 

will be examined. In vitro studies suggest that activated glial cells (astrocytes and 

microglia) can generate a full and functional complement system involved in an innate 

immune defence mechanism against pathogens (Barnum, 1995; Gasque et al., 2000).  

 

5.2. MATERIALS AND METHODS  

5.2.1. In vivo animal model c/o the University of Florida 

As per chapter 3 section 3.2.1. 

5.2.2. Source of antibodies  

Rabbit anti-mouse CD14 (ab106285), Abcam; goat anti-Iba1 (Ionized calcium binding 

adaptor molecule 1)(ab5076), Abcam; rat anti-mouse C3b/iC3b/C3d, Hycult Biotech, 

UK; rabbit anti-rat C9 neoepitope, Professor P. Morgan, Cardiff University. Secondary 

detection antibodies: goat anti-rat IgG (H+L) Alexa Fluor® 488 (A-11006), Life 

Technologies; goat anti-rabbit FITC, Sigma; goat anti-rabbit TRITC, Hycult Biotech; 

rabbit anti-goat Alexa Fluor® 488, Life Technologies. 

5.2.3. Source of all other reagents  

As for Chapters 2-4 (see sections 2.2.5; 3.2.3; 4.2.3)   
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5.2.4. Tissue preparation 

Cryo-sections were prepared for all mouse brains (all groups at both time points) using 

the same method as for human tissue (section 2.2.8). In addition, brain tissue from 

ApoE
null

 mice (all groups) was also prepared in the form of paraffin wax sections as 

described in chapter 4 sections 4.2.4 and 4.2.5. 

 

5.2.5. Immunofluorescent labelling 

i) Paraffin embedded tissue sections immunolabelled using cell marker 

antibodies 

Antigen retrieval 

Rabbit anti-PGP9.5 and goat anti-Iba 1 antibodies required pre-treatment in order to 

expose the relevant antigen by microwave heating (750 W) tissue sections for 35 mins 

in 0.2 % citric acid buffer at pH 6.0.  

All controls  

As for previous chapters all mouse brain tissue sections included omission of the 

primary antibody (to check specificity of the secondary antibody) alongside the 

inclusion of the primary antibody on the sham infected groups for both polymicrobial 

and mono infections (12 and 24 weeks). 

 

Immunolabelling - Cell marker antibodies  

Immunolabelling for cell markers was performed as for human tissue (section 2.2.8). 

The primary antibodies used were rabbit anti-PGP9.5 (1/100), rabbit anti-GFAP 

(1/1000), goat anti-Iba 1 (1/500) diluted in block solution and applied to tissue sections 



210 

 

 

overnight. After a series of washes (3x 5 mins in PBS) sections were labelled with the 

appropriate secondary (goat anti-rabbit FITC (1/200) rabbit anti-goat Alexa Fluor® 488 

(1/1000), washed again (3x 5 mins in PBS) and then mounted under a glass coverslip 

using PI as before (see section 2.2.8). Labelling was observed using the 510 series Zeiss 

confocal microscope (Carl Zeiss Ltd) and images were captured using the Zeiss LSM 

510 software. 

 

ii) Immunofluorescent labelling of cryostat tissue sections for CD14 

Immunofluorescent labelling of mouse brain cryo-sections was performed as for the 

human brain tissue (section 2.2.8). The primary antibody used was rabbit anti-mouse 

CD14 (1/50), followed by detection using goat-anti rabbit FITC (1/200). 

 

iii) Immunofluorescent labelling of cryostat tissue sections for complement 

activation proteins 

Immunolabelling was performed using an overnight, indirect method as described for 

the human brain tissue (section 2.2.8) for the detection of complement activation 

proteins. Acetone stabilised tissue sections were treated in 50 mM glycine/PBS for 10 

mins to quench any tissue associated endogenous fluorescence. Following an overnight 

incubation at 4 °C in primary antibodies (rat anti-mouse C3b/iC3b/C3d (1/50), rabbit 

anti-rat C9neoepitope (1/100)) diluted in the appropriate blocking solution, the 

secondary detection was carried out using the appropriate secondary antibody (goat 

anti-rat IgG (H+L), 1/1000; goat anti-rabbit FITC, 1/200) in the blocking solution as 

before. Following further washes in PBS (3x 5 min) sections were mounted under a 

glass coverslip using PI (Vectashield®). Labelling was observed using the 510 series 
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Zeiss confocal microscope (Carl Zeiss Ltd.) and images were captured using the Zeiss 

LSM 510 software. 

 

iv) Double immunolabelling 

Cryo-sections were dual labelled using with rat anti-C3 (1/50) and rabbit anti-C9 

(1/100), using the same method as for human tissue (section 2.2.8). The secondary 

detection antibodies used were goat anti-rat IgG (H+L) Alexa Fluor 488 (1/1000) and 

goat anti-rabbit TRITC (1/50). Following labelling all sections were mounted in 

Vectashield DAPI mounting medium and imaged using the Zeiss confocal microscope 

as previously (section 2.2.8). 

 

5.3. RESULTS 

5.3.1. Immunolabelling to determine glial cell activation (GFAP) 

 

ApoE
null

 mouse brain tissue sections from all groups were immunolabelled with an anti-

GFAP antibody in order to determine glial cell activation as a marker of inflammation. 

i) Controls  

Negative control sections, whereby the primary antibody was omitted remained 

negative throughout (Fig. 5.1). No non-specific binding of the secondary antibody was 

detected. 
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Figure 5.1: Negative control for GFAP immunofluorescent labelling on ApoE
null

 mouse 

brain tissue sections. Here the primary antibody was omitted and brains were 

subsequently labelled with a secondary antibody conjugated to FITC (green), red 

indicates PI, the nuclear label.  
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ii) ApoE
null

 mice brain sections immunolabelled for GFAP 
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Figure 5.2: ApoE
null

 mice brains (sham, P. gingivalis, T. denticola, T. forsythia and 

polymicrobial infected) immunolabelled for GFAP, showing results from both 12 and 

24 weeks. Positive labelling for GFAP is shown in green, whereas red represents PI, 

nuclear label. A) Sham infected mice at 12 weeks showing positive labelling 

specifically in the hippocampal region. B) Sham infected mice at 24 weeks showing 

lateral ventricle surrounded by GFAP positive astrocytes. C) P. gingivalis infected mice 

at 12 weeks also showing lateral ventricle surrounded by astrocytes with activated 

phenotype. D) P. gingivalis infected mice at 24 weeks again showing positive labelling 

surrounding a lateral ventricle. E) T. denticola infected mice at 12 weeks showing 

positive labelling in the hippocampus. F) T. denticola infected mice at 24 weeks 

demonstrating GFAP positive astrocytes surrounding the lateral ventricle. G) T. 

forsythia infected mice at 12 weeks showing positive cellular labelling in the 

hippocampus. H) T. forsythia infected mice at 24 weeks, again high levels of positive 

cellular labelling in the hippocampus. I) Polymicrobial infected mice at 12 weeks 

showing an abundance of GFAP positive astrocytes in the hippocampal region. J) 

Polymicrobial infected at 24 weeks demonstrating high levels of reactive astrocytes 

around a ventricle. 

 

A selection of results for the immunolabelling of mouse brain tissue from all groups 

(sham, P. gingivalis, T. denticola, T. forsythia and polymicrobial infected) is shown in 

figure 5.2. Immunolabelling of the sham infected control brain sections for GFAP 

demonstrated numerous astrocytes with activated phenotype scattered within the 

hippocampus CA1-CA4 regions and surrounding the lateral ventricles at both 12 and 24 
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weeks (Fig. 5.2a and b respectively). The immunolabelling using the anti-GFAP 

antibody on all of the mono-infected groups (P. gingivais, T. denticola and T. forsythia) 

clearly demonstrated an abundance of astrocytes around the periphery of the lateral 

ventricles and within the hippocampus (Figs. 5.2 c-h). Although there was no statistical 

difference when cells/area were counted and compared with the sham infected group of 

animals at each time point. The only difference noted was in tissue sections from T. 

forsythia mono infected ApoE
null 

mice at 12 weeks, they demonstrated a lower density 

of astrocytes scattered around the periphery of the lateral ventricles and within the 

hippocampus, in the majority of cases, when compared with the P. gingivalis and T. 

denticola group as well as the sham group. Although a few cases at the 12 week time 

point presented with similar labelling to that demonstrated by the sham infected mice 

within the hippocampal region and by 24 weeks GFAP positive astrocytes were seen in 

abundance within the hippocampus (Fig. 5.2).  

In addition, rehydrated paraffin wax sections from all polymicrobial infected 

ApoE
null 

mice (sham and poly infected) at both time points were immunolabelled for 

GFAP. As for the mono infected group, the sham infected polymicrobial brains at 12 

and 24 weeks (Fig. 5.2i and j) presented with positively labelled astrocytes around the 

periphery of the lateral ventricles and scattered throughout the hippocampus region (Fig 

5.2j).  Again, there was no significant difference in the polymicrobial infected group of 

animals when compared with the sham infected group at both 12 (Fig. 5.2a) and 24 

(Fig. 5.2b) weeks.  

Overall there was no significant difference between the level of glial cell 

activation when comparing all test groups with the relevant controls, as is shown by the 

average score (Fig. 5.3) for each group (mono and poly microbial infections) at both 12 
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and 24 weeks. The only low scoring group was T. forsythia 12 week mono infection, 

however, by the 24 week time point this had returned to the same level as the other 

groups. 

 

Figure 5.3: Graph showing the average score of GFAP labelling in the ApoE
null

 mouse 

brain sections. Scored on a scale of 0-3 for all brains in all groups (sham, mono and 

polymicrobial infected animals sacrificed following 12 and 24 weeks) and averaged 

depending on the number of cases in each group. 

 

5.3.2. Immunolabelling to determine microglial cell activation (Iba1) 

The sham infected mouse brain sections whereby the primary antibody was omitted 

remained negative for microglial cell distribution (Fig. 5.4a and d). Only a few 

microglial cells were observed following immunolabelling of sections with the Iba 1 

antibody around the lateral ventricles at 12 and 24 weeks in the sham infected brain 

sections (Fig. 5.4b) and even fewer cells (mainly processes, Fig. 5.4c) were noted in the 

hippocampus. Similar, microglial cell distribution was observed in the P. gingivalis 

infected brains around the lateral ventricles (Fig. 5.4e). Again, few microglial cell 
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bodies with branched processes were observed in the hippocampus (Fig. 5.4f). The 

brain tissue sections from T. denticola mono infected groups at 12 and 24 weeks 

demonstrated no differences in the density of microglia scattered around the periphery 

of the lateral ventricles and within the hippocampus (not shown) as was observed in the 

sham infected and the P. gingivalis infected animals. Similarly there were no 

differences between sham and T. forsythia infected brain sections.  

Figure 5.4: Rehydrated paraffin wax embedded tissue sections immunolabelled with 

goat anti-mouse Iba1 antibody to assess microgliosis. A-C) are images taken from the 

mono sham infected group of animals, and D-F) are images taken from the mono P. 

gingivalis infected animals, both at the 24 week time point. A and D) negative control 

images whereby primary antibody is omitted. B) demonstrated an abundance of 

immunopositivity especially around the periphery of the lateral ventricles C) Few Iba1 

positive cells were noted in the hippocampus region of the Sham infected mice (24 

weeks). E) Mono P. gingivalis infected brains at 24 weeks demonstrated a more 
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widespread distribution of fibrillary astrocytes around ventricles. F) The distribution 

within the hippocampus region was similar to that observed in the sham infected brains, 

few cells were positively labelled.  

 

5.3.3. Immunolabelling to determine complement activation.  

ApoE
null

 mouse brain tissue (cryo-sections) were immunolabelled for the presence of 

complement activation products including C3 components (iC3b, C3b and C3d) and the 

C9 neoepitope to determine if the complement system was activated in the brain of mice 

both infected with periodontal disease and sham infected. 

i) Controls 

All negative control sections whereby the primary antibody was omitted remained 

negative (Fig. 5.5). 

 

Figure 5.5:  Negative control for complement products (C3 and C9) labelling on 

ApoE
null

 mouse brain tissue sections. Here the primary antibody was omitted and brains 

were subsequently labelled with the secondary antibody conjugated to FITC (green), red 

indicates PI, the nuclear label. Note, no non-specific binding of the secondary antibody 

was detected. B and C showing areas of the hippocampus – CA neurons. 
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ii) ApoE
null

 mice brain sections immunolabelled for complement activation 

at 12 weeks 

Cryo-sections taken from sham infected ApoE
null 

mice at 12 weeks demonstrated 

complement activation products for the common C3 component activation fragments 

(iC3b, C3b and C3d) and C9 neoepitope specifically on microglia and not on astrocytes 

and/or neurons (5.6a and b). This was also the case for all of the infected groups of mice 

(P. gingivalis, T. denticola, T. forsythia and polymicrobial infected; Figs 5.6c-j) at 12 

weeks, all groups demonstrated strong labelling for both C3 and C9. Positive labelling 

was intracellular and on microglia alone (Fig. 5.6c-j), as seen in the sham infected group 

of mice (Fig. 5.6a and b). 
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Figure 5.6: ApoE
null

 mice brains (sham, P. gingivalis, T. denticola, T. forsythia and 

polymicrobial infected) immunolabelled for complement activation products C3 and 

C9, showing results from 12 weeks Positive labelling for complement activation 

products (C3 and C9) is shown in green, whereas red represents PI, nuclear label, all 

cases show positive labelling on microglia alone for C3 and C9. A) Sham infected mice 

immunolabelled for C3. B) Sham infected mice at 24 weeks immunolabelled for C9. C) 

C3 labelling of P. gingivalis infected mice. D) C9 labelling of P. gingivalis infected 

mice. E) C3 labelling of T. denticola infected mice. F) C9 labelling of T. denticola 

infected mice. G) C3 labelling of T. forsythia infected mice at 12 weeks. H) C9 

labelling of T. forsythia infected mice. I) C3 labelling of polymicrobial infected mice. J) 

C9 labelling of polymicrobial infected mice. 

 

iii) ApoE
null

 mice brain sections immunolabelled for complement activation 

24 weeks 

Sham infected 

Cryo-sections taken from sham infected ApoE
null 

mice at 24 weeks also demonstrated 

complement activation products for the common C3 component activation fragments 

(iC3b, C3b and C3d) and C9 neoepitope specifically on microglia and not on astrocytes 

and/or neurons (Fig. 5.7a and b), as was observed at the 12 week time point.  

P. gingivalis  

The complement activation products for the common C3 components (iC3b, C3b and 

C3d) and C9 were detected in P. gingivalis infected mouse brains at 24 weeks, the glial 

cell labelling was still high as seen at 12 weeks (Fig. 5.7d) plus C3 activation fragments 
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appeared to be opsonised onto pyramidal neurons particularly in the CA2 area of the 

hippocampus in 4 out of 12 infected brains (P =  0.032) (Fig. 5.7c). The C9 neoepitope 

was also observed in association with the pyramidal neurons, but only in 2 out of 12 

specimens (P > 0.05). 

T. denticola  

In addition to the high glial cell labelling (Fig. 5.7e) observed at 12 weeks, in the brain 

sections from mono T. denticola infected ApoE
null

 mice at 24 weeks 1 out of the 12 

cases demonstrated both C3 (iC3b, C3b and C3d) and C9 neoepitope localised to CA 

neurons (P > 0.05) (Fig. 5.5.7f). The complement activation fragments appeared to be 

opsonised onto pyramidal neurons particularly in the CA2 area of the hippocampus as 

shown in Fig. 5.7f. 

T. forsythia 

Again, at the 24 week time point, 1 out of 12 cases from the T. forsythia mono infected 

group of mice demonstrated complement activation products (C3 (iC3b, C3b and C3d) 

and C9) localised to CA neurons (P > 0.05) (Fig. 5.7h). In this case the glial cell 

labelling observed was still high (fig. 5.7g) and the complement activation fragments 

appeared to be opsonised onto the CA2 area of the hippocampus (Fig.5.7h). 

Poly microbial infected  

By the 24 week time point, glial cell labelling remained high (as seen at 12 weeks, Fig. 

5.7i) in the polymicrobial infected mice, and 2 out of the 12 cases presented with 

additional labelling present on the surface membrane of neurons (P > 0.05) (Fig. 5.5.7j). 
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Figure 5.7: ApoE
null

 mice brains (sham, P. gingivalis, T. denticola, T. forsythia and 

polymicrobial infected) immunolabelled complement activation products C3 and C9, 

showing results from 24 weeks. Positive labelling for complement activation products is 

shown in green, whereas red represents PI, nuclear label. A) Sham infected mice 

immunolabelled for C3 showing high microglial labelling. B) Sham infected mice at 24 

weeks immunolabelled for C9 showing high levels of microglial labelling. C) C3 

labelling of P. gingivalis infected mice, here labelling is observed on the surface of the 

CA neurons. D) C9 labelling of P. gingivalis infected mice showing intracellular 

microglial labelling. E) C3 labelling of T. denticola infected mice showing high 

labelling on microglia alone. F) C9 labelling of T. denticola infected mice showing cell 

surface labelling on hippocampal neurons. G) C3 labelling of T. forsythia infected mice, 

again showing high levels of microglial labelling. H) C9 labelling of T. forsythia 

infected mice, in one case presented with cell surface labelling of hippocampal neurons. 

I) C3 labelling of polymicrobial infected mice shows further microglial labelling. J) C9 

labelling of polymicrobial infected mice, again in limited cases demonstrating cell 

surface labelling on the neurons of the hippocampus. 

 

iii) Double labelling for complement products 

Dual labelling for both C3 components (iC3b, C3b and C3d) and C9 was performed to 

demonstrate the presence of both complement activation products within the same 

section (Fig. 5.8). Fig. 5.8 A-C clearly demonstrates both glial and neuronal localisation 

of C3 and C9 respectively.  
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Figure 5.8: Dual immunolabelling of brain tissue from ApoE
null

 mice infected with P. 

gingivalis (24 weeks) for complement products C3 and C9. Blue is the DAPI nuclear 

label, Green demonstrates C3 positive labelling and Red demonstrates C9 positive 

labelling. A-C) positive labelling for complement in the hippocampus, both glial cell 

and neuronal labelling is present.  

iv) Immunolabelling to detect CD14 

To determine if the CD14 cell surface receptor had been lost from these neurons 

immunolabelling was performed to detect CD14 (Figure 5.9). The negative control 

(where the primary antibody was omitted) showed no non-specific labelling (Fig. 5.9 a) 

and the test brains presented with normal C14 cell surface labelling on all pyramidal 

neurons including the dentate gyrus (Fig. 5.9 b).  
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Figure 5.9: CD14 labelling on brain sections from P. gingivalis infected ApoE
null 

mice 

(24 weeks). A) A negative control whereby the primary antibody was omitted. B and C) 

Images from the hippocampus of 24 week mono infected (P. gingivalis) mouse, which 

had previously scored high when assessing extent of ‗darker‘ neurons. Red is the 

nuclear label (PI) and green (FITC) indicates a positive CD14 result. 

 

5.4. DISCUSSION 

Having established the identity of the PAS-positive argyrophillic granules and in 

the absence of Aβ plaques or NFTs, it was then possible to investigate the innate 

immune responses of glial cells for an inflammatory contribution in the brain following 

peripheral oral infections, focusing on the contribution made by the complement 

system. In vitro studies have demonstrated that activated glial cells (astrocytes and 

microglia) can generate a full and functional complement system involved in an innate 

immune defence mechanism against pathogens (Barnum, 1995).   
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The results demonstrated the presence of responsive fibrillary astrocytes 

particularly at the peri-circumventricular organ sites following initial microglial cell 

activation. Studies on ApoE
null

 mice have identified glial cell activation in which 

microglia demonstrate evidence in favour of an increased secretion of cytokines, 

especially of TNF-α (Roselaar and Daugherty, 1998; de Bont et al., 1999) a cytokine of 

macrophage origin. This observation has been suggested as an impaired 

immunomodulatory function of macrophages in controlling the innate immune 

responses in this animal model (Ophir et al., 2005; Tsoi et al., 2007; Vitek et al., 2009). 

Microglia are the tissue bound macrophages of the brain capable of expressing a range 

of proinflammatory cytokines and phagocytosing cellular debris to reduce the 

inflammatory response to pathogens. However, the finding that the ApoE
null

 mice have 

higher levels of endogenous proinflammatory cytokines especially TNF-α implies that it 

is likely that microglia were already in their activated phenotype. Hence, explaining the 

presence of activated microglia across all groups of animals, including the sham 

infected mice.  

Complement is a pivotal pathway in the CNS innate immune responses 

following infections, as described in the introduction (Chapter 1 section 1.1.2) (Gasque, 

2004; Morgan and Gasque, 1996; Markiewski and Lambris, 2007). In brief, the 

complement system comprises of three different activation pathways (classical, 

alternative and the MBL), all of which converge upon the central component C3 which 

then leads to activation of the terminal pathway. Through this activation process 

numerous enzymatic activation fragments are generated many of which have 

immunomodulatory functions, examples of these include the anaphylotoxins C3a, C5a 

and cytolytic MAC. In the CNS the dominant mode of complement activation is the 

classical pathway (Singhrao et al., 2000). Therefore, this study assessed if there was any 
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evidence for the activation of the common C3 and the terminal pathways leading to 

formation of the MAC in the brains of ApoE
null

 mice both with and without the presence 

of periodontal infections (including both mono and polymicrobial infections). 

Immunofluorescent labelling using both C3 and the C9neoepitope antibodies 

was employed to detect their respective complement components (C3 and C9 

respectively) as well as the C3 activation fragments and the MAC on the surface 

membrane of complement activated cells. The results demonstrated an intracellular 

localisation of C3 and C9 exclusively in microglia in all brains suggesting these cells 

were actively synthesizing complement components, again supporting the view that in 

ApoE
null

 mice microglia are already in their activated state (Roselaar and Daugherty, 

1998; de Bont et al., 1999; Ramaglia et al., 2012). However, the demonstration of the 

cell surface membrane staining of C3 activation fragments (iC3b, C3b and C3d) and the 

MAC (anti-C9neoepitope) exclusively on CA pyramidal neurons of the mono and 

polymicrobial infected groups at 24 weeks, but not at 12 weeks, suggested the high 

chronic inflammatory burden of periodontal disease may have tipped the balance from 

protection to bystander injury on complement activated neurons. The C3 activation 

fragments opsonised to neurons in the P. gingivalis mono infected group were 

statistically significant (P = 0.032) whereas the observed MAC detected on neurons in 

the same group did not reach significance (P > 0.05). In all cases the CD14 receptor on 

the CA neurons remained intact.  

In view of detecting C3 activation fragments being opsonised on the pyramidal 

neurons, it appears likely that bacterial (P. gingivalis) DNA itself may have been the 

trigger for complement activation as it was detected in the same brains. Due to the 

activated glial cells throughout all groups (attributed to the ApoE
null

 genotype), it is 
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possible that a slight insult from the presence of PAMPs within the CNS or a peripheral 

infection such as periodontal disease has initiated activation of the complement cascade 

where fragments of C3 and C9 resulted in opsonising pyramidal neurons thereby 

indicating that they are under attack by complement mediated lysis leading to their 

eventual demise. However, due to the presence of complement opsonised neurons in 

animals from the T. forsythia and T. denticola infected groups (although not statistically 

significant), in the absence of any detectable bacterial DNA, a contribution from 

systemic inflammation cannot be ruled out. 

The opsonisation of hippocampal neurons reported in the present study may 

indicate a potential link with AD as human brain tissue specimens from post-mortem 

AD patients have been shown to demonstrate evidence of neuroinflammation via the 

activated complement system, plus C1q, C3b, and ROS have all been implicated in the 

formation of amyloid fibrils (Eikelenboom et al., 1991; 2011; Akiyama et al., 2000). 

These observations are strengthened by genome-wide studies supporting the role of 

innate immune components such as CR1 (Lambert et al., 2009; Harold et al., 2009) in 

AD, plus the CR1 gene has been linked to defective clearance of the Aβ in AD. 

Thereby, suggesting the potential for a link between oral pathogens and AD hallmarks 

(Aβ) via the complement system. 
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6. DISCUSSION 

6.1 General discussion  

The theory of the human mouth as a focus of infection states that oral microbial 

infections contribute to the developing pathologies of remote body organs by infiltrating 

into the systemic system (Miller, 1891; Hunter, 1900). This concept prompted us to 

explore the hypothesis in relation to finding an aetiological link between periodontal 

disease and AD. Studies to understand the relationship between environmental factors 

such as pathogens and their role in dementia, including the deposition of Aβ, are crucial 

to understanding the contribution made by microbial agents to disease pathogenesis and 

progression.  

Numerous population-based, observational studies suggest a strong association 

between tooth loss due to periodontal disease and the development of AD (Gatz et al., 

2006; Stein et al., 2007). One study demonstrated that monozygotic twins had a strong 

association between tooth loss and the presence of AD with an odds ratio of 5.5 (Gatz et 

al., 2006). Also Stein et al., (2007) reported a statistically significant association 

between tooth loss due to periodontal disease and the development of AD in catholic 

nuns. However, the only established experimental link to date between true periodontal 

infections and direct effect on the brain is by Riviere et al., (2002). In this study, the 

robust technique of PCR coupled with immunolabelling detected Treponema species of 

oral bacteria in 14 out of 16 AD cases. Furthermore, the AD brains were more 

susceptible to infection by Treponema genus of bacteria than the age matched control 

brains (Riviere et al., 2002). In addition, the same authors also demonstrated that the 

trigeminal nerve ganglia, hippocampus and the pons taken from embalmed cadavers (2 

out of 4) also contained evidence of the same species of bacteria.  
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Subsequent studies have demonstrated that AD patients express high circulatory 

antibody titres to periodontal pathogens and higher levels of the pro-inflammatory 

cytokine TNF-α in their blood than the age matched controls (Kamer et al., 2009). High 

levels of TNF-α cytokine in the blood plasma is considered a risk factor for cognitive 

deficit (Holmes et al., 2009). The possible role of periodontitis in AD is an interesting 

concept and has obvious parallels with the emerging role of periodontitis in other 

inflammatory based disorders such as Rheumatoid arthritis and CVD.  

Recurrent bacteraemia from dental procedures including dental extractions, 

periodontal surgery, tooth scaling, brushing and flossing can seed oral bacteria into 

systemic circulation (Forner et al., 2006). The aim of this study was to determine the 

plausibility of oral pathogens P. gingivalis, T. forsythia and T. denticola accessing the 

brain in both humans and in animal models (ApoE
null

 mice) with established periodontal 

disease, in addition to describing any organ specific pathology related to hallmark 

features of dementia in the latter.  

This study was performed in two phases, with the results from each stage being 

discussed in full at the end of each chapter (see sections: 2.4, 3.4, 4.4 and 5.4). The first 

phase used human post-mortem brain tissue to assess the presence of periodontal 

bacteria in AD and non-AD age matched control brains. This formed a vital part of the 

investigation, not only in terms of assessing if periodontal pathogens or their products 

are present in the brain of AD individuals but also to validate the use of post-mortem 

brain tissue for such investigations. The original request for obtaining human post-

mortem tissue from control individuals and those diagnosed AD cases was approved on 

the basis that the investigation was restricted specifically to finding P. gingivalis, T. 

forsythia and T. denticola (the red complex; Holt and Ebersole, 2005) bacteria.  
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The key findings from the initial phase of the study using human pm brain tissue 

show that there was no presence of bacterial DNA belonging to the three red complex 

pathogens (P. gingivalis, T. denticola and T. forsythia) within the brains of human AD 

or non-AD individuals. However, the immunofluorescent labelling investigation using 

species specific antibodies for the red complex pathogens identified positive labelling 

for P. gingivalis in 4 out of 10 AD cases and none of the non-AD control brains. This 

labelling was observed associated with glia as well as extracellulary and was later 

confirmed to be P. gingivalis LPS via immunoblotting with the same antibody. 

 The identification of P. gingivalis LPS in the brain of AD individuals 

was not only a novel finding but significant in that LPS is a potent activator or the 

hosts‘ immune response in most cases inducing organ specific inflammation (Boje and 

Arora, 1992; Lodge and Sriram, 1996; Floyd, 1999; Laflamme and Rivest, 2001; Ye 

and Johnson, 2001; Gasque, 2004; Godbout et al., 2005). These findings provide 

experimental evidence in favour of a link between periodontal disease and AD, 

however, due to the absence of the dental records of the individuals the present study is 

unable to comment on if PD was present in the individuals before or after the onset of 

AD. The findings contribute significantly to the growing area of research into a link 

between periodontal disease and AD, and prompt further investigation as well as 

successfully validating the use of pm brain tissue for such studies.  

The second phase of the study involved the analysis of an animal model 

(ApoE
null

 mice) induced with periodontal disease (see materials and methods section 

3.2.1) to confirm or refute the results from the human brains by investigating if the red 

complex bacteria could access the brain following chronic oral infection.  
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The use of ApoE
null

 mice in this study introduced the potential to assess the 

neuronal damage caused by the periodontal infections which has not been performed to 

date.  In addition, ApoE is essential for neuronal repair following infection therefore in 

the absence of ApoE repair of damaged tissue will be inhibited to expose the related 

lesion. Also, ApoE has been demonstrated to play a vital role in the formation of 

insoluble Aβ fibrils (Wisniewski and Frangione, 1992). Therefore, it was possible to 

assess changes occurring in the CNS in the absence of the classical hallmarks of AD 

(Aβ plaques).  

The time course for this experimental model was 12 weeks (n=12/group) and 24 

weeks (n=12/group) post infection, although this would seem inadequate for the 

detection of the pathological hallmarks of AD I was privileged to have access to the 

brain tissue from an established periodontal disease animal model. This gave me the 

opportunity to assess any early signs of tissue damage in addition to exploring the 

possibility of the bacteria entering the brain following periodontal infection. Prior 

studies (Foschi et al., 2006) have used an endodontic infection, hence making this study 

a vital, original investigation into the potential link between periodontal disease and 

AD. 

The aim of the initial investigation using the animal model was to identify if 

there was any evidence of periodontal pathogens used to orally infect the animals and/or 

their virulence factors present in the brain. The results found evidence of DNA from P. 

gingivalis in a number of cases which were orally infected with the pathogen with this 

number of cases increasing from the 12 to 24 week time points (number of cases being 

6 and 9 respectively), although there were only 2 positive cases from the polymicrobial 

infected group. Although the findings didn‘t support a pervious study using an 
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endodontic infection (Foschi et al., 2006) this can be explained by the difference in 

strains used as well as the primer sets and antibodies employed by each study. The only 

common strain between the two studies (Foschi et al., 2006) is T. forsythia which 

represents the only consistent result. Thereby, suggesting that the virulence factors of 

each strain can play a key role in the translocation or the bacteria to distant organs. 

In addition the difference in the result from the mono and polymicrobial 

infections can potentially be explained due to the does exhibited in each group – 

although the polymicrobial group were given the same total bacterial dose ultimately 

the dose of each of the bacteria was much lower. Despite finding DNA belonging to P. 

gingivalis in the brain of the infected mice there was no presence of LPS or gingipains 

detected when immunolabelling and/or immunoblotting with species specific 

antibodies. However, this may be simply due to the difference in sensitivity and 

detection limit or the antibodies when compared with molecular methodology. 

Following on from investigating for the presence of the pathogens in the brain 

tissue, the study then turned to assess the histological aspects of the brain to determine 

if the oral infection had an effect on the brain itself. The first step involved an overall 

histological analysis which demonstrated that the brain tissue was well preserved and no 

significant differences were noted between the sham and the infected groups. In 

addition, an investigation into the histological hallmarks of AD showed no positive 

results for Aβ plaques or NFTs. However, PAS positive, peptidoglycan positive, 

argyrophillic granules were noted in a number of cases including some from the sham 

infected group. The granules observed were similar in appearance to those reported 

previously (Akiyama et al., 1986; Jucker et al., 1994). The number of cases showing 
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these granules only came close to reaching statistical significance in the T. denticola 

infected group when compared with the sham infected group. 

As mentioned previously, these granules may be a unique property in ApoE
null

 

mice, not reported to date. The labelling may be attributed to the perioximal process or 

alternatively the increased levels on systemic inflammation in periodontal disease may 

have triggered the occurrence of these granules which could contain components of 

degraded organelles as a result of cell death via interaction with ‗bacterial factors‘ – 

which would explain the peptidoglycan positive labelling. These components are the 

packaged into granules by astrocytes – again explaining why astrocytes were also 

labelling positive for peptidoglycan. It‘s important to note that at this stage no 

statistically significant difference was noted between the infected and sham infected 

group and at present these granules cannot be linked to neurodegenerative disease. 

Hence, further investigation is required in order to suggest any link between the 

presence of the granules and periodontal disease or AD and also to prove any 

association with the ApoE
null

 model. 

The final stage of the investigation into the mouse model of periodontal disease 

was to identify any differences in levels of inflammation between the sham and infected 

groups of animals. The model being used (ApoE
null

) is known for its high levels of 

inflammation (Roselaar and Daugherty, 1998; de Bont et al., 1999; Ophir et al., 2005; 

Tsoi et al., 2007; Vitek et al., 2009), therefore the finding that there was no difference 

in glial cell activation (measured by GFAP labelling) between the groups was expected. 

In addition all groups (including the sham infected group) displayed high levels of 

complement synthesis, as shown by C3 and C9 intracellular labelling observed in 

microglia alone. However, by the 24 week time point complement components (C3 and 
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C9) were observed opsonised on the CA pyramidal neurons of the hippocampus in a 

number of cases from the infected animals but not the controls (sham infected). 

Although, potentially due to the small sample size, the number of cases showing 

complement opsonisation on hippocampal neurons only reached statistical significance 

in the P. gingivalis mono-infected group at 24 weeks. Although this result coincides 

with the positive results for P. gingivalis DNA therefore the presence of the PAMP 

within the brain may have been the trigger to change the complement activation from 

synthesis to bystander damage. Together both the work on human pm tissue and the 

novel investigation using the periodontal disease animal model provides further 

experimental evidence in favour of a link between periodontal disease and AD in 

addition to paving the way for future studies. 

6.2. Conclusions  

In summary, this study has demonstrated the presence of LPS specifically from P. 

gingivalis in the post-mortem brain tissue of human AD individuals. DNA from the 

same bacteria was also detected in ApoE
null

 mouse brain tissue following its 

administration in the oral cavity. Both of the PAMP‘s (LPS and bacterial DNA) have 

the capacity to stimulate an inflammatory response in the host (Beutler, 2003) resulting 

in the local release of potentially neurotoxic substances such as cytokines, complement 

factors, and ROS, exacerbating the pre-existing disease-related inflammatory pathology. 

This study provides preliminary evidence for the complement factors and complement 

mediated damage in pyramidal neurons in the CA region of the hippocampus in the 

brains which demonstrated DNA from P. gingivalis. In addition, the PAS-positive age-

related granules within the hippocampus were observed in the ApoE
null

 mice, these 

granules accumulate during advancing age in human brain. Their appearance in the 



238 

 

 

mice as well as the human brain are said to serve as a source of potentially neurotoxic 

subcellular proteins.  

The infected ApoE
null

 mice also demonstrated systemic inflammation in the form of 

abundant up regulation of serum amyloid A, serum antibodies (IgM and IgG) as well as 

some cytokines (Chukkapali et al., 2014 and Velsko et al., in press), presenting a further 

potential link with AD via the systemic inflammatory mediator hypothesis of Kamer et 

al., (2008), Watts et al., (2008) and Holmes et al., (2009). 

This study set out to find aetiological associations between two inflammatory 

diseases, periodontal disease and AD. The results support the growing body of evidence 

for inflammatory cytokines and complement mediated neurodegeneration and 

microgliosis in AD (Hanisch, 2002; Akiyama et al., 2000), and provides experimental 

evidence in favour of a link between periodontal disease and AD. Periodontal disease is 

potentially a modifiable risk factor for the common form of dementia, AD. The 

evidence in favour of a link between these two conditions is increasing rapidly and, 

following proof of concept, treatment of periodontal disease (in both the young and the 

elderly) coupled with a greater awareness of the importance of maintaining good oral 

health may potentially help to decrease the prevalence of dementia along with other 

systemic diseases. 

6.3. Future prospective 

This study has demonstrated a clear potential association between periodontal disease 

and AD via systematic investigation of human post-mortem brain tissue followed by 

proof of concept that periodontal pathogens placed in the mouth can translocate to the 

CNS using animal models. This work now paves the way for finding a cause and effect 

relationship between periodontal pathogens and dementia inclusive of symptoms and 
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neuropathology. A number of future projects are under consideration which have 

stemmed from this research, these are listed below. 

 

6.3.1. Human post mortem-brain tissue  

Expansion of the initial study leads to an investigation of the putative association of 

periodontal pathogens with advanced stages of AD and their role in cognitive 

impairment in a larger number and/variety of individuals. The immune system of AD 

patients is inefficient to deal with infections in general; hence, they are at a greater risk 

of harbouring microorganisms from existing chronic infections in the oral cavity. The 

current view on the oral status of AD patients who have become debilitated by the 

disease process suggests that there is a lack of quality of oral care; this not only makes 

them more susceptible to systemic infections but also the invasion of the brain by the 

bacteria or their components. Following invasion of the CNS bacteria and/or their 

components can contribute towards priming of microglia and subsequently maintaining 

―hyperinflammatory status‖ resulting in bystander damage to functional cells and 

deteriorate memory. The present study aims to test this theory by analysing brain tissues 

from non-demented and demented cases in comparison with brains from other 

neurodegenerative disease in which memory remains intact e.g. amyotrophic lateral 

sclerosis and a demyelinating disease e.g. multiple sclerosis together with their dental 

records. If the investigation supports the current theory of a lack of provision for oral 

care, then recommendations can be made to the policy makers for periodontal therapy 

and prevention strategies to be made accessible to the at risk group of the population. 
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6.3.2. Animal models  

Currently P. gingivalis and spirochetes (T. denticola) appear to be the two main types of 

oral bacteria that show associations with the CNS. They are also found in the walls of 

arteries suggesting their systemic involvement and subsequent generation of 

inflammation. One interesting study would be to examine their effect on the two 

hallmarks of AD pathology (Aβ and NFT‘s in relation to tau protein) in the CNS of AD 

mouse models following chronic infection with multiple periodontal bacteria (mono  

and/or polymicrobial infection) over a longer period of time. This will determine if 

increased levels of immune mediators (cytokines, chemokines and immune receptors) in 

systemic circulation following periodontal bacterial infection affects Aβ plaque 

formation or tau pathogenesis in vivo.  
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PRELIMINARY EVIDENCE FOR A LINK BETWEEN PERIODONTAL DISEASE AND 
ALZHEIMER’S DISEASE 
S. Poole 1,*, S. K. Singhrao 2, S. Crean 1 
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If your abstract is accepted for oral presentation at the conference, would you allow your 
PowerPoint presentation to be on the ADI website after the conference?: Yes 

Are you submitting a scientific or non scientific abstract?: Scientific 

Objectives: Alzheimer‘s disease (AD) is associated with impaired memory and a number of classical 

features such as Aβ4 deposits, hyperphosphorylated neurofibrillary tangles and synapse loss that are 

implicated for loss of function. Some research suggests that exogenous sources of inflammatory 

mediators may access brain tissue and exacerbate the disease process. This concept links periodontal 

disease (PD) with AD as antibodies to PD pathogens and cytokines have been identified in blood serum 

from AD patients. PD is a complex inflammatory disease encompassing Porphyromonas gingivalis, 
Treponema denticola and Tannerella forsythia as aetiological agent. This aims of this study was to 

identify an intra-cerebral presence of P. gingivalis and/or its virulence factors in AD brains.  

Methods: Brain tissues from 10 AD cases and 5 age-related controls (Brains for Dementia Research 

tissue bank) were examined. Genomic DNA was isolated and amplified using primers from the 16s RNA 

gene of the bacterial domain using polymerase chain reaction (PCR). To demonstrate virulence factors, 

immunofluorescence labelling and immunoblotting was performed on brain tissue sections and tissue 

lysate respictively, using a specific antibody raised to P. gingivalis. Histology was used to confirm the 

likely mode of entry of the microorganisms and/or the virulence factors into the brain tissue. 

Results: At the gene level, PCR data from all human brain specimens remained negative for 

P.ginigivalis DNA. At the protein level, immunofluorescence labelling was detected intracellulary in 

only a few cells but demonstrated significant extracellular aggregates that were also observed in blood 

vessel lumens. Immunoblotting demonstrated bands corresponding to lipopolysaccharide (LPS) from 

P.ginigivalis used as a positive control.  

Conclusion: This study provides some evidence of the presence of LPS from P. gingivalis in AD brain 

tissue suggesting a preliminary link between PD and AD. The fact that the staining was associated with 

extracellular aggregates that were also associated with the blood vessels suggests LPS may gain entry to 

the brain via the vascular channels. Research assessing potential relationships between PD pathogens and 

their impact on early pathological signs contributing to cognitive dysfunction is important for uncovering 

unique pathogenic mechanisms for cognitive impairment and ultimately AD. 
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 Title: Evidence that Porphyromonas gingivalis accesses the brain from the oral cavity of 

ApoEnull mice induced with periodontal disease.  

Authors: Sophie Poole, Sim K. Singhrao, Mercedes Rivera1, Sasanka Chukkapalli1, Irina 

Velsko1, Lakshmyya Kesavalu1,2, StJohn Crean  

Affiliation: Oral & Dental Sciences Research Group (ODSRG), School of Postgraduate Medical & 

Dental Education, University of Central Lancashire, Preston, PR1 2HE, UK.  

Department of Periodontology1 and Oral Biology2, College of Dentistry, University of Florida, 

FL, USA.  

Introduction: Numerous population-based observational studies suggest a strong association 

between tooth loss due to periodontal disease and the development of Alzheimer’s disease. 

Prior study reported oral treponemes in human brains including cortex, trigeminal ganglia and 

pons. This study was aimed to investigate the possibility of oral pathogen Porphyromonas 

gingivalis accessing the brain of ApoEnull mice during experimental periodontitis.  

Methods: ApoEnull mice were orally infected (N=12) with 109 P. gingivalis FDC 381 cells four 

days/week every third week for eight infections. Molecular methods were employed to 

examine brain tissue from mice infected with P. gingivalis along with the control sham infected 

mice (N=11) sacrificed after 24 weeks of chronic infection. Genomic DNA was isolated and 

amplified using specific primers for the 16s rDNA gene of P. gingivalis. Nucleotide sequencing 

was performed to confirm the identity of the amplified product. Immunofluorescence labelling 

of brain tissue sections was performed using an anti-bacterial peptidoglycan monoclonal 

antibody.  

Results: Molecular methods demonstrated 9 out of 12 ApoEnull mice brain specimens 

contained the P. gingivalis genomic DNA whilst all control sham-infected mice brains remained 

negative. This result was highly significant (p = 0.003) when tested by the non-parametric 

Kolmogorov-Smirnov test for two independent samples. Of these twelve infected ApoEnull 

mice brains, one demonstrated peptidoglycan deposition within the molecular layer of the 

dentate gyrus of the hippocampus.  

Conclusion: These results show P. gingivalis strain FDC 381 used to infect the oral cavity of the 

ApoEnull mice was able to access the brain. This supports the concept of the focal infection 

theory which states that oral pathogens can access remote body organs including the brain. 

This work is significant as it provides preliminary evidence for transmigration of P. gingivalis 

from the oral cavity to the brain.  

Funding support: The project is supported by 1R01 DE020820-01A1, NIH/NIDCR, USA. 
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Abstract. The aim of this study was to establish a link between periodontal disease and Alzheimer’s disease (AD) with a
view to identifying the major periodontal disease bacteria (Treponema denticola, Tannerella forsythia, and Porphyromonas
gingivalis) and/or bacterial components in brain tissue from 12 h postmortem delay. Our request matched 10 AD cases for tissue
from Brains for Dementia Research alongside 10 non-AD age-related controls with similar or greater postmortem interval. We
exposed SVGp12, an astrocyte cell line, to culture supernatant containing lipopolysaccharide (LPS) from the putative periodontal
bacteria P. gingivalis. The challenged SVGp12 cells and cryosections from AD and control brains were immunolabeled and
immunoblotted using a battery of antibodies including the anti-P. gingivalis-specific monoclonal antibody. Immunofluorescence
labeling demonstrated the SVGp12 cell line was able to adsorb LPS from culture supernatant on its surface membrane; similar
labeling was observed in four out of 10 AD cases. Immunoblotting demonstrated bands corresponding to LPS from P. gingivalis
in the SVGp12 cell lysate and in the same four AD brain specimens which were positive when screened by immunofluorescence.
All controls remained negative throughout while the same four cases were consistently positive for P. gingivalis LPS (p = 0.029).
This study confirms that LPS from periodontal bacteria can access the AD brain during life as labeling in the corresponding
controls, with equivalent/longer postmortem interval, was absent. Demonstration of a known chronic oral-pathogen-related
virulence factor reaching the human brains suggests an inflammatory role in the existing AD pathology.

Keywords: Alzheimer’s disease, lipopolysaccharide, periodontal disease, Porphyromonas gingivalis, postmortem

INTRODUCTION

Periodontal disease (PD) is a chronic immuno-
inflammatory disease initiated by complex polymi-
crobial subgingival biofilm. This results in the

∗Correspondence to: Dr. Sim K. Singhrao, Oral & Dental Sci-
ences Research Group, School of Postgraduate Medical and Dental
Education, University of Central Lancashire, Preston, PR1 2HE,
UK. Tel.: +44 1772 895137; Fax: +44 1772 892965; E-mail:
SKSinghrao@uclan.ac.uk.

inflammatory destruction of tooth supporting tissues,
including the gingivae, periodontal ligament, and alve-
olar bone [1]. Analysis of the human oral microbiota
has revealed more than 700 bacterial species in the oral
cavity and over 400 species in the subgingival plaque
of healthy and PD oral biofilms [2]. These pathogens
interact with the host and result in significant systemic
inflammation characterized by the induction of proin-
flammatory cytokines, chemokines, and exaggerated
host immune responses [3, 4].
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Periodontal pathogens adhere to and colonize the
subgingival pocket in the form of a biofilm and the
net effect of this bacterial biofilm community is to
maintain a persistent chronic infection within the host.
Several studies suggest that PD-associated bacteria can
penetrate gingival tissues and enter the bloodstream
during chewing, tooth brushing, or dental procedures
and may induce a recurrent transient bacteremia [5,
6]. Thus, periodontal lesions are recognized as con-
tinually renewing reservoirs for the systemic spread
of bacteria, antigens, and cytokines along with other
proinflammatory mediators. Once the bacteria, viru-
lence factors, and/or indirectly released inflammatory
mediators reach remote body organs, it has been pos-
tulated that they may induce similar inflammatory
responses, resulting in the tissue-specific pathology.
Chronic PD has been linked to several systemic dis-
eases such as atherosclerotic vascular disease [7],
adverse pregnancy outcome [8, 9], diabetes [10, 11],
respiratory diseases [12], renal disease [13], rheuma-
toid arthritis [14, 15], and Alzheimer’s disease (AD)
[16].

Thus, a link between periodontitis and AD has been
proposed [16] although the strength and relevance
of the association remains to be fully investigated.
Besides oral pathogens being found in the aged human
brains, viruses such as Herpes Simplex Virus Type
1 [17] and diverse bacterial infections, including
Chlamydia pneumoniae [18] and Borrelia burgdorferi
[19], have also been implicated in the pathogen-
associated etiology of the late onset AD, as recently
reviewed by Miklossy [19, 20]. The pathological
characteristics of AD are the extracellular fibrillar
amyloid-� (A�) deposits and the neurofibrillary tan-
gles [21]. However, elderly cognitively unimpaired
individuals also show these lesions in the brain but
to a lesser degree than that expected to cause dementia
[22].

Brain inflammation behind the blood-brain barrier
(BBB) differs from inflammation in the periphery
by the relative absence of leukocytes (including
neutrophils, monocytes, B cells, and T cells) and anti-
bodies; however, the presence of activated microglial
cells is the key contributor of inflammation in the
brain [23]. Activated microglial cells express a range of
proinflammatory cytokines [23, 24] and are capable of
recognizing the non-self-pathogen-associated molec-
ular patterns (PAMPs) on bacteria and their cellular
debris. However, the current view regarding the inflam-
matory response in the AD brain is viewed as being
a downstream consequence of the A� accumulation
resulting in the activation of microglia; this initi-

ates a pro-inflammatory cascade and brings about the
local release of potentially neurotoxic substances such
as cytokines, complement factors, and reactive oxy-
gen species [24]. Interestingly, experimentally induced
microbial infections and/or their virulence factors also
appear to contribute to CNS inflammation and in some
cases to lead to A� deposition [25–28].

Inflammation also plays a key part in the oral cav-
ity; the immediate response to periodontal pathogens
and their endotoxins is to activate the local and sys-
temic innate immune responses [29] leading to the
recruitment of inflammatory cells (macrophages, T
and B cells) that secrete cytokines [(interleukin (IL)-
1, IL-6, tumour necrosis factor-alpha (TNF-�), and
interferon-gamma (INF-�) [29–31]. The inability of
the innate immune system to remove pathogens such as
P. gingivalis [32–35] results in progressive local tissue
destruction together with a chronic systemic inflam-
matory response with potential for damaging distant
organs such as the brain.

The brain was originally considered an immunopriv-
ileged microenvironment due to the existence of the
BBB; however, it is now recognized that the BBB is
incomplete in both the circumventricular organs and
the choroid plexus regions [36–38]. The incomplete
BBB provides an opportunity for systemic proteins and
cells to gain access to the CNS. Microglial cells in the
circumventricular organs have been demonstrated to
express the CD14 receptor and the toll-like receptor
4 (TLR-4), suggesting that these cells are capable of
detecting bacterial PAMPs [37, 39, 40].

This initial concept received additional support from
clinical studies that demonstrated a significant corre-
lation between tooth loss due to PD and memory loss
in AD [16]. The same researchers reported that indi-
viduals with deteriorating memory also have increased
incidence of the apolipoprotein E (ApoE) allele 4 [41].
ApoE is a cholesterol-transporting protein and, in the
brain (with a few exceptions), is synthesized largely by
astrocytes for repair of and protection of neurons [42].
AD individuals are known to have antibodies to oral
bacteria in their plasma along with an increased pres-
ence of TNF-� [43, 44]. It was also reported that a high
titer of circulating IgG from a range of PD pathogens,
during advancing age, statistically correlates with
a possible onset of mild cognitive impairment and
AD [33]. Methodological studies demonstrating the
presence of bacteria within the cerebral tissues are
sparse. The limiting factor may be availability of suit-
able postmortem (PM) tissue and corresponding data
regarding cognitive impairment and PD in relation to
pathogens such as Treponema denticola, Tannerella
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forsythia, and Porphyromonas gingivalis indigenous
to the oral cavity. One seminal study using molecu-
lar and immunological methodologies demonstrated
the presence of seven oral Treponema species in 14
of 16 AD cases, reaching statistical significance [45].
Moreover, immune-suppressed rodents demonstrated
an increased risk from endodontic infections with the
fastidious oral spirochete T. denticola [46]. Thus it is
plausible that bacteria and/or their virulence factors
have a greater chance of accessing the brain of indi-
viduals with AD due to their immuno-compromised
status. The aim of this study was to determine if the
major PD bacteria (T. denticola, T. forsythia, and P.
gingivalis) and/or bacterial components are present in
brain tissue of individuals with and without dementia.

MATERIALS AND METHODS

Human brain specimens and tissue sectioning

All research procedures met approval of our
academic institute (Ref No. 071) and the ethical guide-
lines, including adherence to the legal requirements of
study in the UK. PM human brain tissue was obtained
from the Brains for Dementia Research network and
was provided by the Newcastle Brain Tissue Resource.
These specimens included previously diagnosed AD
(n = 10) and, where possible, age-matched non-AD
control (n = 10) brains. Samples of frozen human brain
tissue from an area adjacent to the lateral ventricle of
the parietal lobe were dissected using aseptic methods.
Precautions were taken to prevent cross contamina-
tion during sample preparation. The brain specimens
(1 cm3 core) were in sterile polystyrene tubes in dry ice
when received via next-day-delivery courier service.
The PM interval for all AD cases ranged from 4 to 12 h
and the non-AD age-matched control brains from 16
to 43 h (Table 1). On receipt, all specimens were allo-
cated a code number and thereafter all data recorded
about those cases were identified by that code. The
experimenter was completely unaware of which cases
corresponded to AD and control brains. The cases are
identified here as being AD and non-AD controls for
clarity of reporting. A 3-mm2 section of the brain tissue
was separated from the original snap-frozen unfixed
cores and mounted onto a specimen holder using the
OCT® adhesive (Fisher Scientific). Sections (10 �m
thickness) were cut using the Leica CM1850 cryo-
stat (Leica, UK) and were collected onto Superfrost +®

glass slides (Leica, UK). The sections were used imme-
diately or stored at –80◦C until needed.

Table 1
The age and postmortem interval of the cases analyzed

Case Age Postmortem interval (h) LPS detected

AD 1 78 12 No
AD 2 77 8 No
AD 3 84 8 Yes
AD 4 84 8 No
AD 5 85 9 Yes
AD 6 83 9 No
AD 7 80 4 No
AD 8 83 10 Yes
AD 9 63 11 No
AD 10 83 12 Yes
Non-AD 1 69 16 No
Non-AD 2 72 17 No
Non-AD 3 103 21 No
Non-AD 4 78 23 No
Non-AD 5 89 24 No
Non-AD 6 81 43 No
Non-AD 7 78 34 No
Non-AD 8 89 34 No
Non-AD 9 67 22 No
Non-AD 10 22 22 No

In vitro culture of SVGp12 cells

The SV40 immortalized normal human glial cell
line SVGp12 was obtained from the American Type
Culture Collection ATCC Ref No. CRL-8621 (Man-
assas, VA, USA) and cultured in Eagle’s minimal
essential medium supplemented with heat-inactivated
10% fetal calf serum, 4 mM glutamine, 2 mM sodium
pyruvate, and 0.1 mM non-essential amino acids (Invit-
rogen) without the addition of penicillin/streptomycin.
Cells were cultured in flasks (T25, T75) or on sterile
uncoated glass coverslips placed in six well plates in
the presence of appropriate culture medium and incu-
bated at 37◦C in a humidified atmosphere of 5% CO2,
95% air with regular media changes every two to three
days where applicable.

In vitro responses of the SVGp12 cell line to P. gin-
givalis ATCC 33277 was examined following initial
confirmation of LPS in culture supernatant (Table 2).
SVGp12 cells were exposed for 24–48 h to diluted
P. gingivalis culture supernatant.

Immunofluorescence labeling of brain tissue
sections

Tissue sections from snap-frozen brain were allowed
to air dry at room temperature and stabilized for
5 min in cold analar-grade acetone (Fisher Scien-
tific, UK). Unless otherwise stated, no quenching of
autofluorescence or any other antigen retrieval step
was employed. Sections were equilibrated in 0.01 M
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Table 2
Source of antibodies and their working concentration and/or dilutions applied

Antibody Source Final concentration and/or dilution

Mouse anti-CD14 (clone HCD14) Thermo-Fisher 4 �g/ml
Mouse anti-P. gingivalis (Clones 1B5 and

1A1) tissue culture supernatant
Prof. M. A. Curtis (co-author) 1B5 1/10, 1A1 1/50

Mouse anti-P. gingivalis (Clone 61BG1.3)
tissue culture supernatant

Prof. R. Gmur, University of Zurich, Switzerland Neat and 1/5

Rabbit anti-T. forsythia (rBspA) Dr A Sharma, State University of New York at Buffalo, NY,
USA

1/50

Mouse anti-T. denticola Tissue culture supernatant raised in-house from hybridoma
cell lines TDII (HB-9966) and TDIII (HB-9967)
purchased from ATCC

Neat and 1/5

Blocking solution In-house: 0.01 M phosphate buffered saline (PBS) pH 7.3
containing 0.01% normal goat serum and 2.5% tween 20

-

Normal goat serum (X0907) and normal
rabbit serum (X0902)

DakoCytomation, Germany, 0.01%

E. coli LPS Sigma Aldrich, UK 4 �g/�l

phosphate buffered saline (PBS) once for 5 min and
blocked in PBS containing 0.01% normal goat or rabbit
serum and 2.5% tween 20. The sections were incubated
overnight at 4◦C in the following monoclonal antibod-
ies raised to different epitopes of P. ginigvalis: where
clone 1B5 of anti-P. gingivalis detects both LPS and
gingipains [47] and clone 1A1 [48] and 61BG1.3 [49]
recognize gingipains specifically from this bacterium
(Table 2). Anti-T. forsythia antibodies (recombinant
bacterial surface protein A (rBspA), gift from Dr.
Ashu Sharma, USA), were raised against the rBspA
protein which was heat/SDS denatured before immu-
nization in rabbits [50]. Anti-T. denticola antibodies
were raised in-house from hybridoma cell lines (TDII
(HB-9966) and TDIII (HB-9967) from ATCC) accord-
ing to the manufacturer’s instructions. In addition,
anti-CD14 (Fisher Scientific, UK) was also applied
to tissue sections following dilution in the blocking
solution (Table 2). The secondary detection was car-
ried out using either the goat anti-mouse or the goat
anti-rabbit IgG conjugated to FITC (Sigma-Aldrich,
UK) at 5 �g/ml. Following further washes in PBS for
three times 5 min, sections were mounted under a glass
coverslip using propidium iodide (Vector Laborato-
ries, Peterborough, UK). Labeling was observed and
images were captured using the 510 series Zeiss con-
focal microscope (Carl Zeiss Ltd).

Immunofluorescence labeling of SVGp12 cells

SVGp12 cells were immunolabeled following fix-
ation of cells (on coverslips) in 10% neutral buffered
formalin ranging from 1 h to overnight at 4◦C and sub-
sequently washed in 0.01 M PBS, pH 7.3. Primary
antibodies [mouse anti-CD14 and anti-P. gingivalis

(clones 1B5 and 1A1) (Table 2)] were applied to cells
in the blocking solution (Table 2) and the conditions
for incubation and secondary detection was performed
as described for labeling of brain tissue sections above.

Controls

The primary antibody was either omitted from all
control brain tissue sections and from cells on cov-
erslips or included anti-P. ginigvalis (clones 1B5 and
1A1) antibodies on medium-control-challenged cells.

Bacteria and LPS

P. gingivalis (ATCC 33277 and W50) was grown
for 48 h, in a brain/heart-infusion broth supplemented
with haemin (5 mg/l), and menadione (1 mg/l), pur-
chased from Sigma-Aldrich, (UK). Following growth,
each culture was centrifuged at 15,000 rpm at 4◦C
for 30 min to pellet bacterial cells and the culture
supernatant was collected. Aliquots (1 ml or 0.5 ml)
were prepared in pre-labeled sterile Eppendorf® tubes
and stored at −80◦C until needed. Protease inhibitors
(cOmplete ULTRA®, Roche Applied Science, USA)
were added to one of the aliquots, from the culture
supernatants and the growth medium (control) and
freeze dried for at least 12 h. The lyophilized powder
was re-suspended in a 200 �l volume of lysis buffer
containing 50 mM Tris pH 8.0, 1% NP40, 150 mM
NaCl, and 5 mM EDTA before the total protein con-
centration was determined. These aliquots were stored
at −20°C until needed. Commercially prepared (phe-
nol extracted) lyophilized powder from Escherichia
coli LPS was obtained from Sigma-Aldrich (UK) and
re-suspended (1 mg) in 250 �l lysis buffer containing
protease inhibitors (used above) and stored at −20◦C.
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Positive and negative control cell lysates

Following exposure to either the sterile bacterial
growth medium (medium control) or to the P. gingi-
valis culture supernatant, SVGp12 cells were pelleted
and washed twice in cold sterile PBS with centrifuga-
tion (5 min at 2,500 rpm). The cells were lysed in buffer
containing protease inhibitors (used above). Following
incubation on ice for 30 min and frequent vortex mix-
ing, the cell homogenate was centrifuged at 12,000 rpm
for 20 min at 4◦C in a microcentrifuge. The super-
natant was collected in pre-labeled tubes and stored at
−20◦C.

Human brain tissue lysates

To prevent secondary cross contamination of the
human brain during the experimental procedures,
the specimens were handled only in the bench-top
microflow cabinet (Astec Microflow Ltd., UK), which
is regularly serviced and was always disinfected with
2% sodium hypochlorite solution (Fisher Scientific)
and sprayed with 70% ethanol before use and at the
end of the experiment. The experimenter wore dis-
posable face masks and gloves when handling tissue
and preparing the tissue lysate. A 3-mm2-thick sec-
tion of all brain specimens was taken from the original
snap-frozen unfixed tissue core and minced in the lysis
buffer containing protease inhibitors as above. Follow-
ing incubation on ice for 30 min and vortex mixing, the
tissue homogenate was centrifuged and collected in
pre-labeled tubes and stored at −20◦C. The total pro-
tein concentration of all lysates was determined using a
colorimetric assay. Protein concentration was obtained
from a standard curve prepared using 100–400 �g/ml
bovine serum albumin diluted in lysis buffer con-
taining protease inhibitors. After Coomassie® protein
assay reagent (Sigma-Aldrich, UK) was added to all
standards and test samples, absorbance was measured
at 595 nm wavelength using the Jenway 7315 spec-
trophotometer. The concentration of the unknowns was
calculated by comparing absorbance values with the
standard curve.

Immunoblot analysis

To confirm the presence of LPS and gingipains in
P. gingivalis culture supernatant and medium control
(initially at 60 �g, later adjusted to 30 �g per lane),
electrophoresis was performed under reducing condi-
tions using 12.5% (w/v) SDS-PAGE gels. The proteins
were electro-transferred to a polyvinylidene difluo-

ride membrane (PVDF, Immobile-P; Millipore, UK)
and blocked for 30 min at room temperature in 5%
(w/v) skimmed milk/PBS prior to incubation overnight
at 4◦C with the primary anti-P. gingivalis antibodies
(clones 1B5 and 1A1) diluted 1/20 and 1/50 respec-
tively, in 5% (w/v) skimmed milk/PBS. Following
three 15-min washes in PBS containing 0.2% tween
20, the membrane was incubated in horseradish perox-
idase (HRP)-conjugated goat anti-mouse Ig secondary
antibody (Chemicon) diluted 1/10,000 in 5% (w/v)
skimmed milk/PBS for 2 h at room temperature. Fol-
lowing further washes in PBS/tween 20, (3x15 min
each) the bands were detected using the enhanced
chemiluminescence detection reagent (Bio-Rad, UK)
under transmitted ultra violet light in a gel-doc imaging
station using the Molecular Analyst software (Bio-
Rad, UK). India ink was used to stain the membrane
to determine the amount of protein transferred onto
the membrane(s) as a loading control. Electrophore-
sis of brain tissue and SVGp12cell samples was also
carried out under reducing conditions as described
above, except the extracts loaded were 30 �g per lane.
Electrophoresis and immunoblotting were performed
at least six times and cross checked by at least two
experimenters.

Statistical analysis

The significance of the difference between AD and
non-AD controls was analyzed by a non-parametric
Mann-Whitney U test for two independent samples
(IBM SPSS statistics 20). The differences were con-
sidered significant at p ≤ 0.05.

RESULTS

Immunofluorescence labeling

Controls
All control tissue sections from the human brain

were exposed to the same conditions as the test sec-
tions. The sections in which the primary antibody
was omitted remained negative with the FITC-labeled
secondary detection system (Figs. 1a, 2a (phase over-
lay), 3a). Some generalized autofluorescence was
associated with erythrocytes, but remained below
the threshold of the noise-to-signal ratio except for
the elastin in arteries. Strong autofluorescence was
associated with brain pigment, but this was of a
different wavelength and color to that of the FITC
signal. SVGp12 cells challenged with medium con-
trol remained negative when incubated with the anti-P.
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a b c

10 µm
10 µm 10 µm

Fig. 1. Human AD brain. Confocal microscope images captured from snap-frozen brain tissue sections from Alzheimer’s disease (AD) showing
nuclei due to propidium iodide (PI) uptake. The images are overlaid with PI and the FITC signals. a) Negative control, primary antibody omitted.
b) Immunolabeled using the anti-P. gingivalis (clone 1B5) antibody overnight at 4◦C followed by detection using goat anti mouse FITC. Insert
shows extracellular aggregates with granular (pebbly) appearance embedded within a smoother matrix. c) An adjacent section from the same
brain labeled with mouse anti-CD14 for surface membrane labeling.

a b c

10 µm10 µm 10 µm

Fig. 2. An arterio-venous sinus. Immunolabeling as described for Fig. 1. a) Phase contrast image with the extracellular aggregate within the
lumen of the arterio-venous sinus. b) The extracellular aggregate is labeled with the anti-P. gingivalis antibody (clone 1B5). c) The phase contrast
image from (a) is overlaid on the immunofluorescent image from (b).

gingivalis antibody clones 1B5 (Fig. 4a) and 1A1 (not
shown) and when the primary antibody was omitted.

a b

20 µm 20 µm

Fig. 3. SVGp12 cells challenged with P. gingivalis culture super-
natant. SVGp12 cells exposed to medium control and P. gingivalis
culture supernatant for 24 h. Immunolabeling (anti-P. gingivalis,
1B5) and nuclear stain are as for Fig. 1. a) The cells exposed
to medium control remained negative despite the application of
the antibody. b) Cells exposed to the P. gingivalis culture super-
natant demonstrated intense labeling localized to membrane-bound
vesicles.

Human brain tissue sections
Post labeling the human brain tissue sections with

the mouse anti-P. gingivalis (clone 1B5), revealed
strong cellular surface membrane labeling in four out
of 10 AD cases (Fig. 1b) and not in the non-AD age-
matched controls. Extracellular aggregates “pebbly” or
“granular” in appearance were also present and were
intensely labeled in the same four AD cases (Fig. 1b
insert). Surface membrane labeling was validated with
a monoclonal anti-CD14 antibody in adjacent brain
test sections (Fig. 1c). The extracellular aggregates
were frequently observed within the brain parenchyma
and in association with arterio-venus sinuses (Fig. 2b)
as clearly shown by a phase image overlaid on the
immunofluorescence image (Fig. 2c). No labeling
associated with anti-P. gingivalis antibodies (clones
1A1 and 61BG1.3) was observed in any of the tissue
sections from control and/or AD brains. No immuno-
labeling was observed with the anti-T. forsythia
antibodies raised to rBspA protein nor with the anti-T.
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Fig. 4. Immunoblots to demonstrate gingipains and LPS are components of the culture supernatant from P. gingivalis ATCC 33277 and W50.
Total protein/lane (60 �g) was loaded on a 12.5% SDS-PAGE gel followed by a successful transfer to a PVDF membrane. Immunoblotting using
the primary antibody (anti-P. gingivalis clone 1B5) and secondary detection using goat anti-mouse conjugated to HRP (see text). a) Medium
control (lane 1) failed to produce any bands whereas the positive control culture supernatants from P. gingivalis ATCC 33277 (lane 2) and W50
(lane 3) demonstrated an abundance of gingipains (dark long band above and below 52 kDa) and a number of bands (45–12 kDa) corresponding
to LPS in P. gingivalis culture supernatants from ATCC 33277 and W50. b) Total protein/lane (30 �g) was loaded on the gel as in Fig. 4a. The
same medium control (lane 1) failed to produce any bands, whereas the positive control culture supernatant (lane 2) demonstrated bands for
gingipains at the higher molecular weight and at 45–12 kDa corresponding to LPS in P. gingivalis culture supernatant from ATCC 33277. E. coli
LPS (lane 3), and cells treated with medium control (lane 4) showed no bands. The result in lane 5 confirmed the de-novo antigen detected by
the anti-P. gingivalis (clone 1B5) antibody was LPS on SVGp12 cells. The loading control represented by India ink failed to stain the medium
control (lane 1), culture supernatants (lanes 2 and 3), and E. coli LPS (lane 3). c) A duplicate blot to that shown in (b) was exposed to the anti-P.
gingivalis clone 1A1 antibody. The same medium control (lane 1) produced no bands, whereas the positive control culture supernatant from
ATCC 33277 (lane 2) demonstrated bands for gingipains at the higher molecular weight size. E. coli LPS (lane 3) and the cells treated with
medium control (lane 4) failed to produce any bands. The presence of gingipains in SVGp12 cells was confirmed (lane 5).

denticola antibodies, although they weakly labeled the
whole bacterial cells (not shown). Experiments using
these antibodies were terminated at this stage.

In vitro culture of SVGp12 cells challenged with
P. gingivalis culture supernatant

Immunolabeling using the anti-P. gingivalis (clone
1B5) antibody demonstrated that the surface mem-

brane of SVGp12 glial cell line was intensely
labeled and appeared highly vesiculated (Fig. 3b).
The anti-P. gingivalis antibody (clone 1A1) which
is specific for gingipains was applied to SVGp12
treated cells with P. gingivalis ATCC 33277 for
over 24 h and demonstrated that the labeling was
restricted to perinuclear sites and in lysosomes (not
shown).
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Fig. 5. Human non-AD control brain tissue immunoblotted with anti P. gingivalis (clone 1B5). Electrophoresis and protein transfer was as for
Fig. 4. Total protein was 30 �g per lane and, unless otherwise stated, conditions for immunoblotting and loading control were as described in
Fig. 4b. While the negative controls (lanes 1 and 3) and positive controls (lanes 2 and 4) remained as expected, there were no bands in the
specimens from all five non-AD control brains (lanes 5–9).

Immunoblot analysis

LPS and gingipains were components of
P. gingivalis culture supernatant

The medium control (sterile liquid medium) ana-
lyzed under reducing conditions using immunoblotting
with the anti-P. gingivalis (clone 1B5) antibody
(Fig. 4a) failed to show any bands (lane 1). The lanes
with culture supernatants from P. gingivalis ATCC
33277 (lane 2) and W50 (lane 3) both showed a dark,
high molecular weight band for gingipains (Fig. 4a)
and a ladder of bands around 45–12 kDa corresponding
to LPS (Fig. 4a). These data agree with the previously
published literature for W50 LPS using the same anti-
body [47, 51].

Positive and negative controls
All control samples were analyzed using

immunoblotting with the anti-P. gingivalis (clones
1B5 and 1A1) antibodies (Fig. 4a-c); no bands were
visible in lanes loaded with the medium control (lane
1), E. coli LPS (lane 3, Fig. 4b-c), and SVGp12 cells
treated with sterile medium control (lane 4, Fig. 4b-c).
A ladder of bands in the range of 45–12 kDa, corre-
sponding to LPS, was detected in the P. gingivalis
culture supernatant (lane 2, Fig. 4a-b) and SVGp12
cells challenged with the same supernatant for 48 h
(lane 5, Fig. 4b). Only high molecular weight bands

were observed with anti-P. gingivalis (clone 1A1)
in both the culture supernatant (lane 2, Fig. 4c) and
SVGp12 cells challenged with the same supernatant
(lane 5, Fig. 4c). Medium control (lane 1), P. gingivalis
culture supernatant (lane 2-Fig. 4a-b, 5–7), and E. coli
LPS (lane 3-Fig. 4b-c and 5–6) consistently failed to
stain with India ink.

Human control brain
Immunoblotting with anti-P. gingivalis (clone 1B5)

(Fig. 5) detected no bands in lanes corresponding to
the sterile medium control (lane 1) and SVGp12 cells
treated with sterile control medium (lane 3). A lad-
dering pattern of bands (45–12 kDa) corresponding
to LPS was observed in both the P. gingivalis culture
supernatant (lane 2) and in SVGp12 cells treated with
the same culture supernatant (lane 4). However, no
bands were detected in the lanes loaded with the age-
matched non-AD control brains labeled 1–5 (Fig. 5,
lanes 5–9). Further control brains (Non-AD 6–10) were
also analyzed on a separate blot under identical con-
ditions and again all of the test lysates (from non-AD
brains 6–10) remained negative (data not shown).

AD brain
Consistently, no bands (Fig. 6) corresponding to the

sterile medium control (lane 1), E. coli LPS (lane 3),
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Fig. 6. Human AD brain tissue immunoblotted with anti-P. gingivalis (clone 1B5). Electrophoresis and protein transfer was as for Fig. 4. Total
protein/lane, immunoblotting reagents, and loading control conditions were the same as for Fig. 4b. The orders of negative and positive controls
(lanes 1–5) are as for Fig. 4b. Anti-P. gingivalis antibody (1B5) detected bands characteristic of the LPS at the expected molecular weight in
AD case numbers 3, 5, 8, and 10.

Fig. 7. Statistical analysis. The non-parametric Mann-Whitney U
test for two independent samples (IBM SPSS statistics 20) confirmed
there was statistical difference in AD compared with non-AD cases
(p = 0.029).

and SVGp12 cells treated with sterile medium con-
trol (lane 4) were detected following incubation in
the anti-P. gingivalis (clone 1B5) antibody. Bands in a
characteristic P. gingivalis LPS laddering pattern were
observed in lanes loaded with P. gingivalis culture
supernatant (lane 2), SVGp12 cells treated with the cul-
ture supernatant (lane 5) and in AD cases designated 3,
5, 8, and 10 (lanes 6–9) between 45–12 kDa molecular

weight positions (Fig. 6). The AD cases designated 1, 2,
4, 6, 7, and 9 were negative by immunofluorescence but
when tested by immunoblotting under identical condi-
tions to those described for Fig. 6, they (AD cases 1, 2,
4, 6, 7, and 9) consistently failed to detect any bands
(data not shown).

Statistical analysis

Immunolabeling and immunoblotting using the anti-
P. gingivalis (clone 1B5) antibody identified four out of
10 of the AD brain specimens as being positive while
10 out of 10 non-AD age-matched controls were neg-
ative for LPS. The non-parametric Mann-Whitney U
test demonstrated that the four positive AD cases were
statistically significant (p = 0.029) compared with the
non-AD controls (Fig. 7).

DISCUSSION

The theory of the human mouth as a focus of infec-
tion states that oral microbial infections contribute to
the developing pathologies of remote body organs by
infiltrating into the systemic system [52, 53]. This con-
cept prompted us to explore the hypothesis in relation
to finding a causal link between PD and AD. Studies
to understand the relationship between environmental
factors such as pathogens and their role in dementia
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including the deposition of A� are crucial to under-
standing the contribution made by microbial agents to
disease pathogenesis and progression. An investiga-
tion of the etiological hypothesis will therefore rely on
sampling tissues from PM specimens obtained from
AD and non-AD individuals, with and without evi-
dence of oral infection, and from older subjects with
longer interval between onset of dementia and death.
All these variables can be investigated once autopsy
contamination of tissues from anaerobic periodontal
pathogens in the oral cavity and the CNS in PM speci-
mens has been excluded. Potentially important bacteria
include P. gingivalis, T. denticola, and T. forsythia,
one of which (T. denticola) has already been linked
to neurodegeneration and dementia [20, 45].

We assessed the presence of the major periodon-
topathogenic bacteria P. gingivalis, T. denticola, and T.
forsythia, in a small series of 10 AD brains with a 12 to
24 h PM delay and 10 non-AD cases with an extended
(16 to 43 h) PM delay. As stated (in the Materials and
Methods section), a number of antibodies were tested
on the AD and non-AD age-related control sections
using indirect immunofluorescence. The T. forsythia
[50] and T. denticola antibodies poorly detected the
native antigen on whole cells and in the brain tissue
sections. Hence, further assessment of these organisms
was not pursued. Anti-P. gingivalis antibodies, on the
contrary, intensely labeled P. gingivalis whole cells and
their antigen within tissue sections. This prompted fur-
ther investigation of this organism in the brain tissue
of individuals with dementia with a validated neu-
ropathological diagnosis of the sporadic form of AD
(c/o Brains for Dementia Research).

The monoclonal antibody used in this investiga-
tion is well characterized [47] and is specific for P.
gingivalis LPS and gingipain epitopes [51]. To delin-
eate if it was the LPS and/or gingipains that were
being detected on the surface of cells by the anti-
P. gingivalis (clone 1B5); two additional and specific
monoclonal antibodies to gingipains [48, 49] were also
used. Immunofluorescence labeling of cells and the
immunoblot analysis conclusively revealed that it was
LPS and not gingipains from P. gingivalis that was
detected in AD brain specimens. The same antibody
confirmed that the culture supernatant from P. gin-
givalis ATCC 33277 contained LPS, thus supporting
the previously published literature from P. gingivalis
W50 [47, 51]. The non-parametric Mann-Whitney U
test demonstrated that, even from this small series,
AD cases provided a statistically significant result
(p = 0.029) compared with the non-AD controls. A
number of researchers have found bacteria [54] and

viruses associated with A� deposits and tau positive
neurofibrillary tangles [17–20] in the late-onset AD
brains. However, we only detected the P. gingivalis
LPS epitope on glial cells which participate in the
innate immune responses in relation to infection in the
brain.

These results indicate that the brain of AD patients is
at a greater risk of secondary chronic infection from the
periodontal pathogen P. gingivalis which has long been
implicated in chronic and severe adult periodontitis
[55, 56]. Dental records of the individuals whose brain
specimens we examined were not available; hence, it
is difficult to comment on any direct relationship of
PD with AD during life. However, due to the poor
memory exhibited by AD patients, these individuals
may forget to maintain optimal oral hygiene which
during advanced stages of AD would be expected to
deteriorate even further [57–60].

Bacteremia in AD patients is inevitable because of
impaired swallowing reflexes during the late stages
of the disease process. The impaired functionality of
the muscles associated with swallowing is likely to
increase oral pathogens gaining entry into the systemic
circulation. Direct access of pathogens and/or their
endotoxins into the CNS from the circumventricular
organs can take place because these regions of the brain
have an incomplete BBB [36, 38] and are the primary
port for bacterial and LPS entry into the brain following
systemic infections [37]. An alternative route of direct
access of bacteria and/or their products into the CNS is
from the perivascular space using systemic circulation.

Multiple systemic infections are reported to exac-
erbate premorbid cognitive status in AD patients and
the current view indicates that this is the result of
proinflammatory mediators crossing the BBB [43,
61, 62]. We frequently observed aggregates of “LPS”
within the brain tissue as well as in some intravenous
sinuses. Detecting systemic LPS is relevant because it
is a powerful stimulator of the innate immune system.
Once in the brain it will activate local glia to mount an
innate immune response. The LPS hyper-sensitized
microglia increase synthesis of inflammatory medi-
ators, such as TNF-�, IL-1�, and IL-6, complement
factors, TLRs 2 and 4 and nitric oxide that release free
radicals and reactive oxygen species [24] and increase
tissue damage.

In this study, the in vitro data has demonstrated that
SVGp12 cells adsorbed LPS from P. gingivalis cul-
ture supernatant that contained a battery of molecular
determinants, including endotoxin (LPS) and extracel-
lular cysteine proteases (gingipains) [63, 64] as well
as metabolites such as butyric and propionic acids.
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Of these, LPS was adsorbed on the surface mem-
brane by the astroglial cell line whereas gingipains
demonstrated an intracellular localization [65]. This
observation supports the results from the human brain
which demonstrated that LPS was adsorbed by CNS
glia as detected by the surface membrane immunola-
beling using the anti-P. gingivalis monoclonal antibody
[47, 51], and validated by the anti-CD14 receptor
antibody. In addition, the immunoblot detecting char-
acteristic LPS laddering pattern using the same (anti-P.
gingivalis) antibody [47, 51] on the same AD cases
unequivocally demonstrates that it was LPS adsorbed
by CNS glia in the human brain. LPS was absent from
the control brain tissues with PM interval extending to
43 h.

In summary, immunolabeling and immunoblotting
of brain tissue from individuals with and without
dementia has provided statistically significant evi-
dence to implicate the presence of LPS from P.
gingivalis in AD cases with 12 h maximum PM delay.
No evidence of LPS from P. gingivalis was detected in
the non-AD control tissues with longer PM delay (up
to 43 h). Once in the brain, microglia will respond to
the LPS and activate the CNS innate immune system.
This will result in the initiation of a pro-inflammatory
cascade to bring about the local release of potentially
neurotoxic substances such as cytokines, complement
factors, and reactive oxygen species and exacerbate the
preexisting disease-related inflammatory pathology.
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Periodontal disease (PD) is an inflammatory disease 
affecting tooth-supporting tissues in which interaction of 
specific bacteria and the host’s immune responses play a 
pivotal role. The pathogenic bacteria associated with PD are 
a source of systemic inflammation as they have the ability 
to enter systemic circulation during everyday tasks such as 
brushing teeth and chewing food. Alzheimer’s disease (AD) 
is a form of dementia whereby inflammation is thought to 
play a key role in its pathogenesis and the risk of developing 
the disease increasing with age. The exact aetiology of the 
late-onset AD is unknown but peripheral infections are 
being considered as a potential risk factor.
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PD begins as a peripheral infection, inducing inflam-
mation that leads to cellular destruction. It contributes 
to systemic inflammation and is highly prevalent in the 
elderly population, hence the potential link with AD. 
Although a clear causative relationship between PD and 
AD has not yet been established, there is a basis for local 
inflammatory responses being initiated within the cen-
tral nervous system (CNS) following the direct invasion 
of PD pathogens and/or their virulence factors, or the 
migration of systemic inflammatory mediators (cyto-
kines) into the brain. If chronic inflammation becomes 
established, it will compromise the health of neurons 
and lead to poor memory. This review will briefly look at 
the theory behind the potential of PD to cause or exacer-
bate AD pathology and the existing evidence in favour of 
a link between the two conditions.

Periodontal disease
Periodontal disease is a disease of the tooth-supporting 
tissues in which interaction of specific bacteria and the 
host’s immune system play a pivotal role.1 In the early 
stages of PD (gingivitis), the host’s innate and adaptive 
immune responses are able to control bacterial infection. 
However, once the amount of bacteria and its products 
increase beyond the host’s immune threshold level then 
the balance shifts from a healthy to diseased status. 
This results in an uncontrolled inflammatory response, 
leading to the destruction of tooth-supporting tissues, 
including the gingivae, periodontal ligament, and alveo-
lar bone. The rate at which the disease progresses varies 
among individuals and is influenced by oral hygiene, 
dietary composition, salivary flow rates and the host’s 
immune defenses.

The ‘red complex’ pathogenic bacteria are strongly asso-
ciated with chronic PD and comprise Treponema denticola, 
Tannerella forsythia and Porphyromonas gingivalis.2,3 These 
are armed with multiple virulence factors to maximise tis-
sue destruction and invasion outside of the oral cavity via 
bacteriemic episodes that occur during the performance 
of essential daily chores such as chewing food and brush-
ing teeth.4–6 Therefore PD is a chronic infectious disease 
that, if left untreated, results in years of significant bacte-
rial infection and inflammation, both locally and within 
the systemic system. The presence of oral pathogens 
within the systemic system and the inflammation caused 
by them form the basis for the proposed link between 
periodontal disease and systemic diseases including car-
diovascular diseases,7,8 diabetes,9 rheumatoid arthritis,10–12 
and Alzheimer’s disease.13–16

Alzheimer’s disease
Dementia is a common disorder among the elderly that 
becomes more prevalent with advancing age. Given 
that there has been a rapid rise in the world popula-
tion, with the most elderly being the fastest growing 
segment, dementia has become an increasing public 
health concern. Dementia comprises a group of neuro-
degenerative diseases in which the symptoms include a 
decline in cognitive and intellectual function, together 
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with loss of memory, attention and problem-solving skills. 
Alzheimer’s is considered to be the most common cause 
of dementia, representing 68–80% of all cases. The exact 
cause of the development and progression of sporadic 
AD remains under investigation – however, inflammation 
is thought to play a vital role. 

The pathological characteristics of AD are an accumula-
tion of intracellular neurofibrillary tangles (NFT) and 
extracellular deposits of fibrillary beta amyloid (Aβ). 
These hallmark proteins have traditionally been given 
the full credence for intracerebral inflammation in AD 
owing to the belief that brain is an ‘immunoprivileged 
organ’ and as such is protected from plasma proteins 
and extracerebral toxins entering the brain and causing 
an immune response by local CNS glial cells. It is now 
understood that the circumventricular organs (CVO) 
are not protected by the blood-brain barrier17 and that 
peripheral infections and inflammatory mediators can 
access the brain.18–20 This implies microbial infections 
and the innate immune system may play a role in the de-
velopment of inflammation within the brain, contribut-
ing to the pathogenesis of cognitive deficit in subclinical 
and the clinical AD individuals. 

Indeed, the aetiological hypothesis suggests that viruses 
and bacteria and/or their virulence factors can access 
the brain and thereby contribute to AD pathogenesis. 
A review by Holmes and Cotterell21 outlines a range of 
infective agents consistently being linked to AD. These 
include herpes simplex virus type I,22 Chlamydophilia pneu-
monia,23 Treponema spp.,13 Borrelia burgdorferi,24 and more 
recently lipopolysaccharide (LPS) from P. gingivalis,16 
one of the key bacteria linked to PD. As with the other 
infections implicated in AD, PD begins as a peripheral 
infection that can induce inflammation leading to cel-
lular destruction, contribute to systemic inflammation 
and most importantly is highly prevalent in the elderly 
population.

Evidence in favour of a link between periodontal disease 
and Alzheimer’s
In support of the aetiological hypothesis from the 
periodontopathogens aspect, longitudinal studies sug-
gest that individuals who develop AD have poor oral 
health.14,25–28 This may be due to the longstanding inflam-
matory burden of PD pathogens on the systemic system 
and potentially the CNS. Although another explanation 
is subsequent poorer quality of oral health care when se-
verity of dementia prevents the individual from maintain-
ing their personal hygiene.27,29 Subsequent studies have 
tried to identify biomarkers to find a more specific link 
between periodontal disease and AD. Researchers have 
demonstrated that AD patients express high-circulatory 
antibody titers to periodontal pathogens alongside 
higher levels of the proinflammatory cytokine tumour 
necrosis factor-α (TNF-α) cytokine in their blood than 
the age-matched controls.15,30 It was also reported that a 
high titer of circulating IgG from a range of periodontal 
pathogens, during advancing age, significantly corre-
lates with onset of mild cognitive impairment and AD.31 

Although these markers allow general immune function 
to be monitored, they may not necessarily be specific to 
periodontal disease. It remains to be determined wheth-
er the potential link between the two diseases is direct 
(via the bacteria itself invading the organ) or indirect 
(via the systemic inflammation caused by the presence 
of periodontal bacteria). Evidence is accumulating in 
favour of peripheral inflammatory mechanisms that can 
alter brain inflammation, with the current view indicat-
ing that this is the result of proinflammatory mediators.32 
The same researchers have demonstrated that multiple 
systemic infections can exacerbate premorbid cognitive 
status in AD patients.32,33 

On the contrary, methodological studies have emerged 
demonstrating the presence of bacteria within the cere-
bral tissues, suggesting that the association between poor 
oral health and AD may result from the direct invasion 
of the CNS by oral bacteria or their virulence factors. 
One seminal study using molecular and immunological 
methodologies demonstrated the presence of seven oral 
Treponema species in 14 of 16 AD cases, reaching statisti-
cal significance.13 In addition, the same authors demon-
strated that the trigeminal nerve ganglia, hippocampus 
and the pons taken from embalmed cadavers (2 out of 
4) also confirmed the presence of Treponema species. Fur-
thermore, Miklossy34 identified Treponema species of bac-
teria in 14/16 AD cases and only 4/18 non-AD controls; 
some of which were from oral origin. Studies performed 
on immunosuppressed mice have also demonstrated 
an increased risk from endodontic infections, with the 
fastidious oral spirochete T. denticola35 supporting the 
findings of Riviere et al,13 and Miklossy.34 

Recent findings using immunolabelling and immunob-
lotting of brain tissue from individuals with and without 
dementia provide statistically significant evidence to 
implicate the presence of LPS from P. gingivalis in AD 
cases with short postmortem (PM) delay. No evidence of 
LPS from P. gingivalis was detected in the non-AD con-
trol brain tissues with longer PM delay (up to 43h).16 The 
demonstration of systemic LPS (of oral origin) is relevant 
because it is a powerful stimulator of the innate immune 
system. Once in the brain it will activate local glia to 
mount an innate immune response. The LPS hyper-
sensitised microglia increase synthesis of inflammatory 
mediators, such as TNF-α, IL-1β and IL-6, complement 
factors, TLRs 2 and 4 and nitric oxide, which release 
free radicals and reactive oxygen species and increase 
bystander tissue damage. Animal studies have shown 
that chronic infusion of LPS into rat brains may result 
in long-lasting inflammatory reaction, with pathological 
changes such as increased number of activated glia and 
increase in cytokine burden leading to the degeneration 
of hippocampal pyramidal neurons and impairment in 
spatial working memory. PD provides a significant bacte-
rial and inflammatory burden within the systemic system 
and, with the addition of a direct invasion of the CNS 
by PD-associated bacteria or their virulence factors, it is 
becoming increasingly evident that PD has the ability to 
enhance inflammation within the brain and contribute 
to the initiation and/or pathogenesis of AD.
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Conclusions
Literature suggests a link between PD and AD. Further 
evidence is needed to support a causative link between 
periodontal pathogenic bacteria and AD. Understand-
ing the factors and mechanisms involved in the aetiology 
of AD is of paramount importance as, in common with 
adverse oral health conditions, AD and other neurode-
generative disorders are becoming increasingly common 
among aging populations. However, unlike AD poor oral 
health – including caries, tooth loss, and periodontitis 
– is potentially treatable and preventable. A number of 
risk factors have been identified for AD, some of which 
are immutable; whereas others can be modified by 
simple changes to an individual’s lifestyle. PD is an easily 
modified risk factor; hence the need to prioritise further 
research into the link between these two conditions. 
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Abstract. Periodontal disease is a polymicrobial inflammatory disease that leads to chronic systemic inflammation and direct
infiltration of bacteria/bacterial components, which may contribute to the development of Alzheimer’s disease. ApoE−/− mice
were orally infected (n = 12) with Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium
nucleatum as mono- and polymicrobial infections. ApoE−/− mice were sacrificed following 12 and 24 weeks of chronic infection.
Bacterial genomic DNA was isolated from all brain tissues except for the F. nucleatum mono-infected group. Polymerase chain
reaction was performed using universal 16 s rDNA primers and species-specific primer sets for each organism to determine
whether the infecting pathogens accessed the brain. Sequencing amplification products confirmed the invasion of bacteria into
the brain during infection. The innate immune responses were detected using antibodies against complement activation products
of C3 convertase stage and the membrane attack complex. Molecular methods demonstrated that 6 out of 12 ApoE−/− mice brains
contained P. gingivalis genomic DNA at 12 weeks (p = 0.006), and 9 out of 12 at 24 weeks of infection (p = 0.0001). Microglia
in both infected and control groups demonstrated strong intracellular labeling with C3 and C9, due to on-going biosynthesis.
The pyramidal neurons of the hippocampus in 4 out of 12 infected mice brains demonstrated characteristic opsonization with C3
activation fragments (p = 0.032). These results show that the oral pathogen P. gingivalis was able to access the ApoE−/− mice
brain and thereby contributed to complement activation with bystander neuronal injury.
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INTRODUCTION25

Alzheimer’s disease (AD) is a form of demen-26

tia associated with cognitive decline and irreversible27

memory loss. The pathological hallmarks of AD28
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brains are an accumulation of intracellular hyper- 29

phosphorylated tau-positive neurofibrillary tangles 30

(NFT) together with insoluble, fibrillary amyloid-� 31

(A�) plaques, which are traditionally recognized as 32

being triggers that stimulate glial cell activation and 33

initiate local innate immune responses [1]. AD has a 34

complex etiology in which the genetic makeup of the 35

individual and environmental factors play a role. The 36

late-onset form of AD is particularly interesting as its 37

etiology remains unknown despite the known genetic 38

risk factors, including apolipoprotein E (ApoE) gene 39

and its E4 allele inheritance [2, 3]. This risk factor is 40
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associated with severe AD pathology and an enhanced41

inflammatory response by microglia [4].42

Peripheral infections also serve as a significant43

risk factor affecting mental health as demonstrated in44

clinical studies in which cognitive decline and deterio-45

rating memory are reported [5–7]. A range of infective46

agents is consistently being linked to AD [8], including47

viruses such as the Herpes simplex virus type 1 (HSV-48

1) [9]; bacteria such as Chlamydophila pneumoniae49

(C. pneumoniae) [10]; and various types of spiro-50

chetes, including Borrelia burgdorferi (B. burgdorferi)51

[11–13] and periodontal Treponema spp., [14] and52

more recently Porphyromonas gingivalis (P. gingi-53

valis) [15]. P. gingivalis and some oral Treponema54

species are invasive and virulent within their origi-55

nal niche where they induce gingival inflammation56

that leads to connective tissue degradation and alve-57

olar bone resorption around teeth [16, 17]. Once58

the junctional epithelium that links the gingiva to59

the tooth enamel transforms to pocket epithelium,60

pathogenic bacteria induce bacteremia and initiate61

systemic inflammation by infiltrating the local blood62

vessels [18–20]. These factors may lead to various63

chronic inflammatory disorders such as cardiovascular64

disease(s) [21, 22], diabetes [23], rheumatoid arthritis65

[24–26], premature births [27], and AD [14, 15 28, 29].66

Clinical studies by Stein et al. [28] support a strong67

association between tooth loss due to periodontal dis-68

ease and the development of AD. They noted a greater69

rate of cognitive decline occurring in carriers of the70

ApoE �4 allele variant with fewer teeth [30]. Although71

chronic infection by Treponema pallidum is widely72

accepted for the atrophic form of general paresis, it and73

B. burgdorferi infections (etiological bacteria for Lyme74

disease) are also reported to result in dementia [11–13].75

These spirochete infections give rise to the similar76

pathological hallmark features such as A�4 plaques77

and NFTs seen in AD [11–13]. This is regarded as a78

direct link between spirochete infections and the devel-79

opment of AD. C. pneumoniae and HSV-1 infections80

of the brain also appear to be associated with the A�81

deposition observed in AD [9, 10, 12]; however, their82

role as infection by individual pathogen or occurring83

as co-infections with the invading spirochetes remains84

under investigation [12]. T. denticola and P. gingivalis85

oral infections of the brain are also reported [14, 15],86

but their direct involvement with the deposition of A�487

and NFTs is not clear.88

Inflammation in the brain is characterized by89

the presence of reactive microgliosis and astrocy-90

tosis (inflammatory phenotype) and is an accepted91

component of AD pathology [1]. Traditionally, the92

inflammatory component of the pathology in AD is 93

believed to be the result of cytokines, oxidative stress, 94

and complement activation, including the membrane 95

attack complex due to the hallmark proteins of AD 96

[1]. However, the fact that pathogens are implicated 97

in some forms of central nervous system (CNS) dis- 98

eases that result in the eventual development of AD 99

(11–13), suggests that the existing hypothesis cannot 100

exclude a possible role of chronic infections gener- 101

ating an inflammatory pathology in AD. Concerning 102

chronic infections in AD brains, in 2008 two inde- 103

pendent research groups implicated the indirect role 104

of periodontal pathogens and/or their virulence factors 105

in the development of AD [31, 32] involving acute- 106

phase proteins, including cytokines, as a plausible 107

link between periodontal bacteria and inflammatory 108

AD pathology. Miklossy (2008) proposed a direct link 109

between oral spirochetes and AD via bacterial infection 110

of the brain in which either the spirochetes or their vir- 111

ulence factors activate the classical and the alternative 112

pathways of complement, resulting in vital cell loss via 113

the membrane attack complex [33]. Thus, the presence 114

of cytokines and/or an activated complement cascade 115

can be used as a marker to measure CNS inflammation 116

in this context. 117

Further demonstration of a high titer of antibodies 118

against periodontal pathogens in the serum of elderly 119

who progressed to AD also suggests the possible asso- 120

ciation between periodontal disease and AD [34]. 121

Poor oral hygiene [35] is strongly linked to the devel- 122

opment of dementia; however to date there are very 123

few reports establishing an experimental link between 124

periodontal disease and AD. Two studies using human 125

brain tissue explored the impact of periodontal infec- 126

tions on AD [14, 15]. These studies examined AD brain 127

tissue specimens using molecular profiling methodolo- 128

gies to identify seven Treponema species [14] and the 129

immunogenic endotoxin, lipopolysaccharide (LPS), 130

from P. gingivalis [15]. 131

Focal dissemination of periodontal pathogens from 132

the oral cavity to distant organ sites has long been 133

hypothesized, but few studies have explored this the- 134

ory. Previous studies using wild-type mice (C57BL/6J) 135

explored the dissemination of periodontal pathogens 136

in an endodontic infection model [36]. However, the 137

study detailed here was unable to trace the dissemi- 138

nation of periodontal pathogens to distant organ sites 139

due to the disadvantages associated with using a wild- 140

type mouse model [36]. The ApoE−/− mouse model, 141

which is a proatherogenic model for co-morbidity stud- 142

ies, is unable to deposit A� in the brain as the essential 143

ApoE isoforms are lacking [37]. This mouse serves 144
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as a suitable model with which to study the associa-145

tion between periodontal disease and AD as it avoids146

confounding factors that may result from an overlap147

of signaling in response to AD hallmark proteins and148

pathogen-associated molecular patterns. Thus, keep-149

ing in view the lack of in vivo experimental evidence150

for a link between periodontal pathogens/disease and151

AD, the present study aimed to explore such an asso-152

ciation using the ApoE−/− mouse as a model. This153

study also tested the hypothesis that infectious agents154

and/or their components from oral diseases such as155

periodontitis can access the brain and modulate local156

CNS inflammation. To this end, we investigated the157

role of the oral pathogens P. gingivalis, T. denticola,158

and T. forsythia in accessing the brain of ApoE−/−
159

mice following chronic experimental periodontitis and160

in contributing to the development of local inflam-161

mation as an early pathological lesion in relation to162

AD.163

The present study explored the possibility of specific164

oral pathogens altering normal functioning of the brain165

in experimental animals with established periodonti-166

tis. In this infection model F. nucleatum was used as a167

bridging organism that co-aggregates with major peri-168

odontal bacteria in both supra- and subgingival biofilm169

development and for the subsequent progression of170

periodontitis [38–40].171

MATERIALS AND METHODS172

Mice, oral infection, and brain173

The study involved oral infection of ApoE−/− mice174

with periodontal pathogens either as mono- or poly-175

bacterial for a chronic infection period of 24 weeks.176

Following the infection period the mice were eutha-177

nized and the brain tissue was collected and preserved.178

Later, using molecular, immunological, and patholog-179

ical detection techniques we evaluated the invasion of180

periodontal bacteria into the mice brains.181

Microbial strains182

P. gingivalis FDC 381, T. denticola ATCC 35404, T.183

forsythia ATCC 43037, and F. nucleatum ATCC 49256184

were used in the study and were routinely cultured185

anaerobically at 37◦C as described previously [41].186

ApoE−/− mice oral infection187

Eight-week-old male ApoE−/− mice strain188

B6.129P2-Apoetm1Unc/J, Jackson Laboratories, Bar189

Harbor, ME, USA) were randomly assigned to sham- 190

infected, mono-infected (P. gingivalis, T. denticola, 191

T. forsythia,F. nucleatum) and polymicrobial-infected 192

groups, n = 12 in each group). This mouse study 193

was carried out in strict accordance with the rec- 194

ommendations in the Guide for the Care and Use 195

of Laboratory Animals of the National Institutes 196

of Health, USA. All procedures were performed in 197

accordance with the approved protocol guidelines 198

(Protocol # 201004367) set forth by the Institutional 199

Animal Care and Use Committee of the University of 200

Florida. The University of Florida has an Assurance 201

with the Office of Laboratory Animal Welfare and fol- 202

lows Public Health Service policy, the Animal Welfare 203

Act and Animal Welfare Regulations, and the Guide 204

for the Care and Use of Laboratory Animals, USA. 205

ApoE−/− mice were administered with 500 �g/mL 206

kanamycin in drinking water for 3 days followed by 207

a mouth rinse with 0.12% chlorhexidine gluconate 208

[42] before the first oral lavage with the periodontal 209

bacteria [42] to suppress the murine indigenous 210

oral microflora. While mono-infections involved a 211

bacterial inoculum of 109 cells/mL of respective 212

bacteria, the polymicrobial-infection constituted 213

an inoculum of 5 × 109 combined bacteria/mL, as 214

described previously [41, 42]. This investigation is 215

part of an on-going collaboration with the University 216

of Florida and the University of Central Lancashire 217

(UCLan) (MTA Ref. No. A10415). Ethical approval 218

was obtained from the Animal Projects Committee 219

of UClan for research on animal tissues as secondary 220

users (Ref. No. RE/11/01/SS). 221

Collection and storage of brain tissue specimens 222

The mouse brains were removed following 12 and 24 223

weeks of oral infection as well as sham-infection and 224

separated into two halves. One cerebral hemisphere 225

was immediately stored at −80◦C in RNAlater® buffer 226

for subsequent molecular biology analysis and the 227

other half fixed in 10% neutral buffered formalin for 228

histopathological analysis. 229

Genomic DNA Isolation 230

To confirm the spread of periodontal pathogens from 231

the mouth to the brain of ApoE−/− male mice, genomic 232

DNA was isolated from the brains of all the infected 233

and sham-infected groups. Briefly, frozen brain tissue 234

(25 mg) was removed, close to the circumventricu- 235

lar organs in a bench top microflow cabinet (Astec 236

Microflow Ltd., UK), using the aseptic technique [15]. 237
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Table 1a
PCR primers from Paster et al. [43]

Primer Function Orientation Sequence

D88 PCR Forward GAGAGTTTGATYMTGGCTCAG
E94 PCR Reverse GAAGGAGGTGWTCCARCCGCA

Table 1b
Specific primer sets used for analysis of bacterial DNA from ApoE−/− mice brains by PCR

Primer [Ref] Amplicon size Primer Sequence

P. gingivalis [44] PCR Forward AGGCAGCTTGCCATACTGCG
P. gingivalis [44] PCR Reverse ACTGTTAGCAACTACCGATGT
T. denticola [41] PCR Forward TAATACCGAATGTGCTCATTTACAT
T. denticola [41] PCR Reverse CTGCCATATCTCTATGTCATTGCTCTT
T. forsythia [44] PCR Forward GCGTATGTAACCTGCCCGCA
T. forsythia [44] PCR Reverse TGCTTCAGTGTCAGTTATACCT
M13 (Invitrogen) Sequencing Reverse CAGGAAACAGCTATGAC

Following the manufacturer’s protocol (Qiagen DNA238

easy blood & tissue kit 69504), brain tissue was239

lysed and genomic DNA was isolated manually using240

ethanol precipitation.241

DNA amplification and sequencing242

Polymerase chain reaction (PCR) was performed243

using a thermocycler (Veriti, Applied Biosystems,244

UK), initially using the universal bacterial primers245

(Table 1a) from the 16 s rDNA bacterial genes [43]. For246

the bacterial-specific gene amplification, the primer247

sets from Figuero et al. [44] and Rivera et al. [41]248

(Table 1b) were employed, adhering to the published249

PCR protocols [41, 44]. PCR products were analyzed250

using agarose gel electrophoresis (1.5%) and visu-251

alized in the Gene Genius bio-imaging system, and252

images were captured using the Gene snap software253

(Syngene, UK). The PCR product was cleaned in254

MicroCLEAN DNA Cleanup® reagent (Web Scientific255

Ltd.) and cloned using the TA TOPO cloning kit (Invit-256

rogen) according to the manufacturer’s instructions.257

Following successful colony screening, a mini culture258

(10 ml) of each of the selected colonies was set up259

overnight and plasmid DNA isolated using a Qiaquick260

kit (Qiagen). This was followed by sequencing (40 ng)261

with the M13 forward or reverse primers (TA TOPO262

cloning kit, Invitrogen) and using the BigDye™263

Terminator v3.1 cycle sequencing kit (Applied Biosys-264

tems) according to the manufacturer’s instructions.265

The sequencing parameters were an initial denatura-266

tion step at 96◦C for 1 min and 25 cycles involving267

(96◦C for 10 s), annealing (50◦C for 5 s), and elonga-268

tion (60◦C for 4 min) according to Paster et al. [43].269

Following sequencing the results were submitted to270

BLAST nucleotide search engine for 16 s DNA genes 271

(http://blast.ncbi.nlm.nih.gov/) to identify the organ- 272

ism(s) with 99–100% match with at least 200 bases. 273

Immunodetection of periodontal pathogens in 274

mouse brain tissue 275

Isolation of total protein from mouse brain tissue 276

In each case a 3-mm-thick section of the cortical 277

brain was minced in the lysis buffer containing pro- 278

tease inhibitors [15]. The total protein concentration 279

of all cell lysates was determined as described previ- 280

ously [15]. A number of positive and negative controls 281

were kindly provided as gift reagents and their sources 282

are identified in Table 2. These were sterile bacterial 283

growth medium (medium control) and P. gingivalis 284

culture supernatant as described in Poole et al. [15], 285

purified recombinant T. denticola protein (FhbB) [45], 286

and ready-to-use T. forsythia whole-cell lysate [46]. 287

Immunoblot analysis 288

Immunoblotting was performed under reducing con- 289

ditions in which up to 60 �g per lane of total protein 290

from all brain specimens was loaded [15] on SDS- 291

PAGE gels of variable percentages (7.5% gels were 292

used for high-molecular-weight proteins such as the 293

S-layer of T. forsythia, 12.5% for gingipains and LPS 294

from P. gingivalis and 15% w/v gels were used for the 295

low-molecular-weight proteins detected by anti-T. den- 296

ticola antibodies). Following electrophoresis, proteins 297

were electro-transferred to a polyvinylidene difluoride 298

membrane (PVDF, Immobilon-P; Millipore, UK). The 299

membranes were blotted with mouse anti-P. gingivalis 300

(clone 1B5), rabbit anti-T. forsythia against the S-layer, 301

and anti-T. denticola ATCC 35405 antibody against 302

http://blast.ncbi.nlm.nih.gov/
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Table 2
Source of antibodies and their working concentration and/or dilutions used

Antibody Supplier Final conc/ dilution

Rabbit anti-GFAP (gift) Dr Jia Newcombe (The Multiple Sclerosis Society
Laboratory, UK)

1/1000

Goat anti-Iba 1 (ab5076) Abcam 1/250
Mouse anti-P. gingivalis (Clones 1B5) tissue culture

supernatant (gift)
Prof. Michael A. Curtis (London, UK) 1B5 1/10

Rabbit anti-T. forsythia (S-layer protein) Dr Graham Stafford (University of Sheffield, UK) 1/20,000
Rat anti-T. denticola (FhbB protein) Prof. Thomas T. Marconi (USA) 1/5,000
Blocking solution 0.01 M phosphate buffered saline, pH 7.3,

containing 0.01% normal goat or rabbit serum and
0.25% tween 20

–

Normal serum: goat (X0907), rabbit (X0902). DakoCytomation (Germany) 0.01%
Rat anti-mouse C3b/iC3b/C3d Hycult Biotechnology (UK) 1/50
Rabbit anti-rat C9 neoepitope Professor B. Paul Morgan, and Dr Timothy R.

Hughes (Cardiff University)
1/100

FhbB protein generated in rats (sources of antibodies303

and their dilutions used are listed in Table 2).304

Histopathological staining of brain tissue305

The formalin-fixed brain tissue was thoroughly306

washed in PBS and the intact hemisphere was divided307

into the frontal cortex, temporal lobe inclusive of the308

hippocampus, and the brain stem and cerebellum. The309

specimens were then processed and embedded in paraf-310

fin wax. The tissue blocks with temporal lobe inclusive311

of the hippocampus were sectioned (5 �m in thickness)312

using the Leica RM2235 microtome.313

Cryo-sections (10 �m thickness) from frozen314

unfixed brain tissue (hippocampus) were cut using the315

Leica CM1850 cryostat (Leica UK). Both paraffin wax316

and cryo-sections were collected onto superfrost+®
317

glass slides (Leica UK). The cryo-sections were either318

used immediately or stored at −80◦C until required319

for further use. Rehydrated paraffin wax sections were320

examined for morphology following staining with321

Hematoxylin and Eosin (H&E). In addition, a modified322

methenamine silver (silver impregnation) technique323

adapted from resin-embedded-tissue specimens as pre-324

viously described by Singhrao et al. [47] was used to325

demonstrate the A� plaques and the NFTs. All sec-326

tions were also stained with 1% aqueous thioflavin T327

as a standard neuropathology technique for detecting328

fibrillar amyloid deposition.329

Immunofluorescence labeling of periodontal330

pathogens in brain tissue331

Antigen retrieval was carried out on rehydrated332

paraffin wax sections for labeling with goat anti-Iba1333

(Abcam) by microwave heating of tissue sections at334

750 W power for 35 min in 10-mM citric acid buffer335

(pH 6.0). The infected as well as sham-infected control 336

brain sections were incubated in primary antibodies 337

and subsequently in secondary detection antibodies. 338

Rehydrated paraffin wax sections were immunola- 339

beled with rabbit anti-glial fibrillary acidic protein 340

(GFAP) (Table 2) and the calcium binding protein 341

marker Iba 1 (AbCam). For formalin fixative sensi- 342

tive antibodies, tissue sections from frozen brains were 343

stabilized by fixation in cold acetone for 10 min fol- 344

lowed by a 5-min wash in PBS. Tissue-associated 345

endogenous fluorescence was quenched for 10 min 346

in 50-mM glycine/PBS. All brain tissue specimens 347

were immunolabeled using the mouse anti-P. gingi- 348

valis (1B5), anti-T. denticola against FhbB protein, 349

and anti-T. forsythia (against S-layer) and for com- 350

plement C3 activation products rat anti-C3b/iC3b/C3d 351

(Hycult Biotech), and a rabbit anti-C9 neoepitope to 352

detect the membrane attack complex. The dilutions 353

for incubation of sections in primary antibodies are 354

given in Table 2. Where appropriate, the antibodies 355

were diluted in block solution containing 0.01% nor- 356

mal serum (goat serum for GFAP, P. gingivalis (1B5), T. 357

denticola (FhbB), T. forsythia (S-layer), C3b/iC3b/C3d 358

and C9 neoepitope; rabbit serum for Iba 1) in PBS pH 359

7.3 and 0.25% tween 20. FITC-conjugated secondary 360

detection antibodies were goat anti-rabbit (Sigma- 361

Aldrich Ltd., UK) diluted 1/200 and rabbit anti-goat 362

Alexa Fluor 488® and goat anti-rat Alexa Fluor® 488 363

(Molecular Probes, UK) diluted 1/1000, in block solu- 364

tion. Sections were mounted under a glass coverslip 365

using the Vectashield® PI (propidium iodide) mount- 366

ing medium (Vector laboratories, Perterborough, UK). 367

Labeling was observed and images were captured 368

using a 510 series Zeiss confocal microscope (Carl 369

Zeiss Ltd). A semi-quantitative approach was taken 370

by manually counting the number of cells/area for all 371
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Table 3
DNA detected from periodontal pathogens in the ApoE−/− mice brains

Mono DNA detected DNA detected Polymicrobial infections Polymicrobial infections
infections at 12 weeks at 24 weeks 12 weeks 24 weeks

Sham-infected 0 out of 12 0 out of 11 0 out of 11 0 out of 11
P. gingivalis 6 out of 12, 9 out of 11 0 out of 11 2 out of 11

p = 0.006 p = 0.0001
T. denticola 0 out of 12 0 out of 12 0 out of 11 0 out of 11
T. forsythia 0 out of 12 0 out of 12 0 out of 11 0 out of 11

brains in each infected group and compared with the372

sham group to assess glial cell activation.373

Statistical analysis374

Data are presented as mean ± standard deviation375

(n ≥ 3 replicates per treatment) and tested for normality376

and equal variance prior to analysis. Where treatment377

groups did not meet the assumptions for parametric378

analysis, the non-parametric Mann Whitney-U test was379

performed comparing the number of positive cases380

in each group of infected mice with those in the381

sham-infected group. Differences were considered sig-382

nificant at p ≤ 0.05.383

RESULTS384

Molecular identification of pathogens in brain385

specimens386

Molecular analysis using universal primers failed387

to detect T. denticola or T. forsythia in the brain tis-388

sues from sham-, mono-, and polymicrobial-infected389

groups at both time intervals (Fig. 1a-c). The species-390

specific bacterial gene primers revealed 6 out of 12391

ApoE−/− mice brain specimens containing P. gin-392

givalis genomic DNA at 12 weeks (Fig. 1d), which393

further increased to 9 out of 12 at 24 weeks (Fig. 1e).394

These results are highly significant when analyzed by395

the non-parametric Mann Whitney-U test; p = 0.006 at396

12 weeks and p = 0.0001 at 24 weeks. The molecular397

identity of the organism was further confirmed follow-398

ing purification of the amplification product and direct399

sequencing. A nucleotide basic local alignment search400

tool (BLAST) identified a 99-100% match with >200401

bases of the submitted sequence for P. gingivalis. Fol-402

lowing molecular identification using specific bacterial403

gene primers, the group of brains from the polymicro-404

bial infections failed to detect P. gingivalis genomic405

DNA at 12 weeks. However, by 24 weeks 2 out of406

12 ApoE−/− mice brain specimens demonstrated the407

presence of P. gingivalis genomic DNA (Fig. 1f).408

The brain tissue sections from polymicrobial-infected409

Fig. 1. Molecular identification of P. gingivalis in brain tissue sec-
tions using specific primers. Panels a and b) mono sham-infected
group 12 and 24 weeks, c) polymicrobial sham-infected group 24
weeks, d) Mono- infection with P. gingivalis at 12 weeks, e) Mono-
infection with P. gingivalis at 24 weeks, f) Polymicrobial infection
with P. gingivalis at 24 weeks. d) Lanes corresponding to Brain 1,
2, 5, 8, 9, 11 demonstrated a band at 400 bp. p = 0.006. e) Lanes
corresponding to Brain 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 demonstrated a
band at 400bp. p = 0.0001. f) Lanes corresponding to Brain 8 and 10
demonstrated a band at 400 bp.

mice did not show the presence of T. denticola and T. 410

forsythia at either 12 weeks or 24 weeks (Table 3). 411

Immunoblot analysis of infected mouse brain 412

tissue 413

None of the test tissue lysates demonstrated 414

LPS, FhbB protein, and the S-layer protein from 415

their respective bacterial species in the mono- and 416

polymicrobial-infected groups (data not shown). 417

Histology of the infected mouse brain 418

Overall morphological observations of the temporal 419

lobe, including the hippocampus, appeared well pre- 420

served in H&E preparations obtained from all brains 421

(Fig. 2). The pyramidal neurons in all sub-regions of 422

the hippocampus (CA1-CA4) and the dentate gyrus 423

in sham-infected and infected brains generally also 424

appeared to be well preserved (Fig. 2a-d). Occasion- 425

ally, shrunken and darker neurons were noted to a 426

varying extent in CA1-CA4 regions and the dentate 427

hilus with a random distribution (not shown). There 428
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Fig. 2. Hematoxylin and Eosin stained tissue section from the temporal lobe of Apo E−/− mice demonstrating the overall preservation of a)
CA1-CA4 regions of the hippocampus, b) Higher magnification of the dentate gyrus neurons, c) the cortical and hippocampal fissure by the
lateral ventricle in relation to CA2 and 3 neurons, d) higher magnification of the CA2 neurons. DG: Gr layer, dentate gyrus granule cell layer.
The red arrows depict fused hippocampal fissure. LV, lateral ventricle containing the choroid plexus.

were no abscesses in the brain and there were no signs429

of the classical blood-borne inflammatory cells (neu-430

trophils, lymphocytes) or sites of focal hemorrhage.431

Thioflavin T and methenamine silver neutral staining432

methods failed to demonstrate any evidence for the433

presence of either A� plaques or NFTs in the hip-434

pocampus or in the frontotemporal cortex regions in435

all of the brains examined.436

Immunofluorescence detection of periodontal437

pathogens in infected mouse brain tissue438

Cell markers associated with glial cell activation439

Astrocytes (GFAP): All the sections from the sham-440

infected brains and mono- and polymicrobial-infected441

groups in which the primary antibody was omitted442

remained negative (Fig. 3a, d).443

Immunolabeling of sections for GFAP in the444

sham-infected control brains demonstrated numerous445

astrocytes with activated phenotypes around the lat-446

eral ventricles (Fig. 3b) as well as scattered astrocytes447

within the hippocampus CA1-CA4 regions at both448

time points (Fig. 3c). The brain tissue sections from449

P. gingivalis mono-bacterial-infected groups at 12450

and 24 weeks showed astrocytes at the periphery of 451

the lateral ventricles (Fig. 3e) and within the hip- 452

pocampus (Fig. 3f). There was no statistical difference 453

when cells/area were counted and compared with the 454

sham-infected mice. The brain tissue sections from T. 455

denticola mono-infected groups at 12 and 24 weeks 456

demonstrated a similar density of astrocytes scattered 457

at the periphery of the lateral ventricles and within 458

the hippocampus (not shown) as observed in the P. 459

gingivalis-infected and sham-infected mice. The brain 460

tissue sections from T. forsythia mono-infected groups 461

at 12 and 24 weeks demonstrated a lower density 462

of astrocytes scattered at the periphery of the lat- 463

eral ventricles and within the hippocampus compared 464

with the P. gingivalis and T. denticola groups as well 465

as the sham-infected mice (not shown). Equally, the 466

polymicrobial-infections demonstrated no significant 467

difference compared with the control group. GFAP 468

labeling was observed in the circumventricular regions 469

as well as in the hippocampus (not shown). 470

Microglia (Iba 1): All mouse brain sections in which 471

the primary antibody was omitted remained negative 472

for microglial cell distribution (Fig. 4a,d). Only a few 473

microglial cells were observed following immunola- 474
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Fig. 3. Immunolabeling of the temporal lobe of ApoE−/− mice with rabbit anti-human GFAP to assess astrogliosis. a and d) negative control
images whereby primary antibody is omitted. Sham-infected (b, c) in which (b) demonstrated abundance of immunopositivity especially around
the periphery of the lateral ventricles and the inset in (c) shows the morphology of cells labeled with anti-GFAP. These appeared as fibrillary
astrocytes with reactive phenotype. The mono P. gingivalis infected (e, f) brains at 24 weeks demonstrated a more widespread distribution of
fibrillary astrocytes around ventricles but their distribution within the hippocampus region was similar to that observed in the sham-infected
brains.

beling of sections with the Iba 1 antibody around the475

lateral ventricles at 12 and 24 weeks in the sham-476

infected brain sections (Fig. 4b), with even fewer cells477

(mainly processes, Fig. 4c) in the hippocampus. Sim-478

ilar microglial cell distribution was observed in the P.479

gingivalis-infected brains around the lateral ventricles480

(Fig. 4e), and few microglial cell bodies with branched481

processes were observed in the hippocampus (Fig. 4f).482

The brain tissue sections from T. denticola mono-483

infected groups at 12 and 24 weeks demonstrated no484

differences in the density of microglia scattered around485

the periphery of the lateral ventricles or within the hip-486

pocampus (not shown). Similarly, there were no differ-487

ences observed between sham-infected, T. forsythia-488

infected, and polymicrobial-infected brain sections.489

Detection of bacterial virulence factors in infected490

mouse brain tissue491

Immunolabeling of brain cryo-sections was unable492

to demonstrate the presence of any of the three bacteria493

used for infection when tested using anti-P. gingivalis 494

antibody, rabbit antisera against T. forsythia, and anti-T. 495

denticola. 496

Detection of complement activation proteins in 497

mouse brain tissue 498

The sham-infected mouse brain sections, in which 499

the primary antibody was omitted, remained negative 500

for C3 complement activation products (Figs. 5a, 6a). 501

Intracellular labeling detected complement activation 502

products for the common C3 component activation 503

fragments (iC3b, C3b and C3d) (Figs. 5b, 6b) and the 504

membrane attack complex C9 neoepitope (Fig. 6c), 505

specifically on microglia rather than on astrocytes 506

and/or neurons from all brain tissues in sham-infected 507

mice. The complement activation products for the com- 508

mon C3 components (iC3b, C3b, and C3d) and C9 509

(C9 neoepitope) were detected in P. gingivalis-infected 510

mouse brains (12 weeks), but the labeling was intracel- 511

lular and exclusive to microglia. By 24 weeks, the glial 512
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Fig. 4. Immunolabellng of the temporal lobe of ApoE−/− mice with goat anti-mouse Iba1 antibody to assess microgliosis. a and d) negative
control images whereby primary antibody is omitted. Sham-infected (b, c) in which (b) demonstrated immunopositivity around the periphery of
the lateral ventricles. The mono- P. gingivalis 24 weeks infected (e, f) brains demonstrated similar labeling to that observed in the sham-infected
brains, in both the lateral ventricles and hippocampal regions.

cell labeling was still high (Fig. 5c), but C3 (Fig. 6d,e),513

and C9 (Fig. 6f) activation fragments appeared to be514

opsonized onto pyramidal neurons, particularly in the515

CA2 area of the hippocampus in 4 out of 12 infected516

brains (p = 0.032). Labeling of the C9 neoepitope was517

observed in 2 out of 12 specimens (p > 0.05, Fig. 6f).518

In contrast, both T. denticola and T. forsythia infec-519

tions (12 weeks) were similar to the control mice,520

demonstrating intracellular staining in microglial cells.521

However, at 24 weeks, 1 out of 12 from each group522

demonstrated both C3 (iC3b, C3b, and C3d) and523

C9 neoepitope localized to CA neurons (p > 0.05)524

(data not shown). Immunolabeling of polymicrobial-525

infected mouse brains (12 and 24 weeks) with the same526

antibodies also demonstrated the glial cells.527

DISCUSSION528

Infectious agents have previously been linked to529

cognitive decline [9–13], and more recently periodon-530

tal pathogens and/or their virulence factors have been531

implicated in the development of AD [14, 15]. This532

study explored the hypothesis that infectious agents533

and/or their components from oral diseases such as534

periodontitis can access the brain and contribute to535

local CNS inflammation that eventually leads to the 536

development of a chronic inflammatory component 537

of AD. In this study we investigated the possibil- 538

ity that oral pathogens P. gingivalis, T. denticola, 539

and T. forsythia can access the brains of ApoE−/−
540

mice following experimental induction of periodon- 541

titis as mono- as well as polymicrobial-infections. F. 542

nucleatum has the ability to co-aggregate with early 543

colonizers in the oral cavity as well as the late coloniz- 544

ers such as P. gingivalis, T. denticola, and T. forsythia 545

[36–38]. However, in the present study no attempt was 546

made to detect F. nucleatum in the brain specimens as 547

F. nucleatum is part of another ongoing study. The sig- 548

nificance of using a periodontal disease model to assess 549

AD lies in understanding the role of bacteria access- 550

ing the brain and thereby priming glial cells to mount 551

a subsequent local immune response and contribute 552

to neuronal lysis. One previous study, which was 553

performed with an endodontic infection model using 554

wild-type and the severe-combined-immunodeficiency 555

(SCID) mice, demonstrated that only the SCID mice 556

were conducive to T. denticola invasion following 557

mono- and polymicrobial-infections [36]. That study 558

showed that T. denticola can disseminate to distant 559

body organs, including the brain, heart, and spleen 560

while P. gingivalis and T. forsythia were undetected 561
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Fig. 5. Cryo-section from the temporal lobe of ApoE−/− mice immunolabeled for complement activation fragments in the hippocampus using
rat anti-mouse C3b/iC3b/C3d. (a) Control, where the primary antibody was omitted from the tissue section. In both sham-infected (b) and
infected (c) brains, the labeling appears intracellular within branched microglia demonstrating an activated phenotype. The inset (b-c) shows
the branched morphology of cells labeled with the same antibody.

Fig. 6. Immunodetection of complement fragments in brain tissue sections using rat anti-mouse C3b/iC3b/C3d. (a) Negative control (b–c)
sham-infected brains with rat anti-mouse C3b/iC3b/C3d (b) and rabbit anti-rat C9 neoepitope (c). (d–f) P. gingivalis infected brain with rat
anti-mouse C3b/iC3b/C3d (d and e) and rabbit anti-rat C9 neoepitope (f); showing labeling on the cell surface membranes of the CA neurons
in the infected brains (p = 0.032).

[36]. In our current study using a periodontal infec-562

tion model in ApoE−/− mice, we report a contrasting563

finding in which we observed the dominance of P.564

gingivalis in accessing the brain in comparison to T.565

denticola and T. forsythia. These differences in our566

study from those of Foschi et al. [36] maybe due to the567

bacterial strains used, the dosage of infection adminis- 568

tered, method of inoculating animals during infection, 569

differences in disease models (endodontic versus peri- 570

odontal disease), as well as the genetic makeup of 571

the mice used. For example, the only common strain 572

between this study and that of Foschi et al. [36] is T. 573
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forsythia (ATCC 43037) and the dose of bacteria used574

in each study was different (higher by a factor of 10 in575

this study). Based on the available data it is likely that576

T. forsythia, being a non-motile bacterium which lacks577

fimbriae, is unable to transmigrate to the brain [48]. We578

found that P. gingivalis FDC381 DNA predominated579

in the brains of ApoE−/− mice, and this strain is highly580

fimbriated compared to the P. gingivalis ATCC 33277581

[48] used by Foschi et al. [36]. Although both strains of582

T. denticola are motile, the T. denticola (ATCC 35405)583

used by Foschi et al. [36] at a lower dose disseminated584

to the brain. This difference may be attributed to the585

outer membrane, with abundant pore-forming adhe-586

sion protein that may be lacking in our T. denticola587

(ATCC 35404) strain [49]. Thus, the virulence of the588

bacteria may have contributed to its accessibility to the589

brain, rather than being a dose-dependent effect.590

Despite the differences in bacterial strains used and591

their dosage, as well as the genetics of the experimental592

animals, our results show that P. gingivalis strain FDC593

381 used to infect the oral cavity of the ApoE−/− mice594

was able to access the brain tissue, providing definitive595

evidence for transmigration of this bacterial species596

from the oral cavity to the brain. The fact that more597

brains demonstrated a greater P. gingivalis infection at598

24 weeks of infection suggests that the translocation of599

bacteria is likely to be time dependent. Inflammation600

occurring at 24 weeks of infection may be increasing601

the permeability of the blood-brain barrier and facili-602

tating easier access of bacteria into the brain.603

Detecting P. gingivalis in the ApoE−/− mice brains604

in this in vivo study supports the data presented in our605

recently published study of human brain specimens in606

which we detected P. gingivalis-specific LPS in 4 out607

of 10 AD human brains [15]. Together these studies608

provide evidence to support an association between609

periodontal disease and AD. When examined for gen-610

eral morphological preservation of the frontotemporal611

lobe, including the hippocampus, rehydrated paraffin612

wax sections showed no signs of abscess formation,613

no myeloid lineage cells (neutrophils, lymphocytes)614

infiltrating into the brain, and no sites of focal brain615

hemorrhage.616

Our immunoblotting and immunofluorescence tech-617

niques with specific antibodies did not show the618

presence of bacterial virulence factors in any of the619

brain tissues examined. If any of these are metaboli-620

cally active in the brain, it may take several years to621

form an abscess as seen in the case with non-oral bacte-622

ria such as Propionibacterium acnes, which can take 10623

years to form an abscess following entry into the brain624

[50]. Although this appeared surprising at first, the lack625

of detection may be attributed to the inability of these 626

bacteria to access the brain due to their rapid clearance 627

from the systemic circulation and/or they were neu- 628

tralized upon entry by the already enhanced microglial 629

cell inflammatory phenotype in these mice [51, 52]. 630

Another possible reason may be that the antibodies 631

themselves failed to detect their epitope in tissue sec- 632

tions or the antigen itself was below the detection limit 633

of both immunoblotting and immunolabeling. 634

We focused on the hippocampus region of the brain 635

to detect any early cellular changes in the Apo E−/−
636

mice brains, as according to Braak and Braak [53] 637

neurodegeneration begins in the entorhinal cortex and 638

spreads to the hippocampus followed by other regions. 639

Screening for the AD hallmark associated structures by 640

thioflavin T and methenamine silver methods failed to 641

provide any evidence for the fibrillar A� and NFTs in 642

the entorhinal cortex or the hippocampus regions. A 643

plausible reason for the inability to detect the AD hall- 644

mark proteins could be the relatively short time span of 645

chronic infection in our mouse model because, even in 646

the accelerated transgenic AD animal model and in the 647

A�PP and SS-1 transgenic mice, insoluble A� depo- 648

sition and plaque formation usually takes between 6 649

to 12 months [54, 55]. Further, ApoE−/− mice used 650

in the current study are unlikely to demonstrate A� 651

deposition as they lack the essential protein required 652

for amyloid to form insoluble fibrils [37]. Hence it will 653

be beneficial for a future study to be designed with a 654

longer duration of mono- and polymicrobial-infection 655

in a non-ApoE−/− rodent model so as to demonstrate 656

the direct link between periodontal disease and AD 657

hallmark proteins. 658

Previous studies with ApoE−/− mice have identified 659

glial cell activation in which microglia demonstrate 660

evidence of an increased secretion of cytokines, espe- 661

cially of tumor necrosis factor-� (TNF-�) [51, 52], a 662

cytokine of macrophage origin. This observation has 663

been suggested as an impaired immuno-modulatory 664

function of macrophages in controlling the innate 665

immune responses in this animal model [56–58]. 666

Microglial cells are the tissue-bound macrophages 667

of the brain capable of expressing a range of 668

proinflammatory cytokines and phagocytosing cellu- 669

lar debris to reduce the inflammatory response to 670

pathogens. However, the finding that the ApoE−/−
671

mice have higher levels of endogenous proinflamma- 672

tory cytokines, especially TNF-� suggests that it is 673

likely that microglia were already in their primed phe- 674

notype. In this study we also found responsive fibrillary 675

astrocytes, particularly at the peri-circumventricular 676

organ sites following initial microglial cell activation. 677



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

12 S. Poole et al. / Oral Pathogen in Brain

Complement is a pivotal pathway in the CNS innate678

immune response following infections. In the CNS,679

the dominant mode of complement activation is the680

classical pathway where neurons show vulnerability681

to complement mediated damage [59] and microglia682

synthesize complement proteins [60]. Hence, we set683

out to detect any evidence for the activation of the684

common C3 and the terminal pathway of complement685

leading to the formation of the membrane attack com-686

plex in our infected mice brain specimens. Our study687

demonstrated an intracellular localization of C3 and688

C9 exclusively in microglia in all brains, suggesting689

that these cells were actively synthesizing comple-690

ment components [60] rather than being opsonized691

with the complement activation fragments, again sup-692

porting the view that microglia were already in their693

primed/activated state [51, 52, 61].694

However, our observation of the cell surface mem-695

brane staining of C3 activation fragments (iC3b, C3b,696

and C3d) and the membrane attack complex (anti-697

C9 neoepitope) exclusively on CA pyramidal neurons698

of the mono- and polymicrobial-infected mice at 24699

weeks but not at 12 weeks suggests that the inflamma-700

tory burden was increasing from protection to causing701

bystander injury on complement activated neurons. In702

view of our detecting C3 activation fragments being703

opsonized on the pyramidal neurons, it appears likely704

that bacteria (P. gingivalis) and/or its DNA may have705

triggered the complement activation in these infected706

mice.707

Our study supports the observation from previous708

studies which hypothesized that bacterial infections709

would contribute to the development of AD pathol-710

ogy via mechanisms involving acute-phase proteins,711

including cytokines and the complement cascade in712

which neurons would be attacked [31–33]. The pres-713

ence of cytokines and activated complement cascade714

can be used as a marker to represent local CNS inflam-715

mation [1, 33]. Thus, the demonstration of activated716

complement cascade here in response to P. gingivalis717

directly infecting the brain supports the conclusion that718

chronic local inflammation constitutes a component of719

developing AD pathology.720

Finally, this study demonstrates that, in the absence721

of fibrillary A� deposition the neurons remain vulnera-722

ble to complement mediated damage from P. gingivalis723

accessing the brain.724
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