Hong, Ningning, Zhan, Jing, Wang, Xin, Stec, Anna A ORCID: 0000-0002-6861-0468, Hull, T Richard ORCID: 0000-0002-7970-4208, Ge, Hua, Xing, Weiyi, Song, Lei and Hu, Yuan (2014) Enhanced mechanical, thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for Acrylonitrile–Butadiene–Styrene copolymer composite. Composites Part A: Applied Science and Manufacturing, 64 . pp. 203-210. ISSN 1359835X
Preview |
PDF (Author Accepted Manuscript)
- Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. 1MB |
Official URL: http://dx.doi.org/10.1016/j.compositesa.2014.04.01...
Abstract
Three metal hydroxide nanorods (MHR) with uniform diameters were synthesized, and then combined with graphene nanosheets (GNS) to prepare acrylonitrile–butadiene–styrene (ABS) copolymer composites. An excellent dispersion of exfoliated two-dimensional (2-D) GNS and 1-D MHR in the ABS matrix was achieved. The effects of combined GNS and MHR on the mechanical, thermal and flame retardant properties of the ABS composites were investigated. With the addition of 2 wt% GNS and 4 wt% Co(OH)2, the tensile strength, bending strength and storage modulus of the ABS composites were increased by 45.1%, 40.5% and 42.3% respectively. The ABS/GNS/Co(OH)2 ternary composite shows the lowest maximum weight loss rate and highest residue yield. Noticeable reduction in the flammability was achieved with the addition of GNS and Co(OH)2, due to the formation of more continuous and compact charred layers that retarded the mass and heat transfer between the flame and the polymer matrix.
Repository Staff Only: item control page