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ABSTRACT
We present a method for finding binaries among pulsating stars that were observed by the
Kepler Mission. We use entire 4 yr light curves to accurately measure the frequencies of the
strongest pulsation modes, and then track the pulsation phases at those frequencies in 10-d
segments. This produces a series of time-delay measurements in which binarity is apparent as
a periodic modulation whose amplitude gives the projected light travel time across the orbit.
Fourier analysis of this time-delay curve provides the parameters of the orbit, including the
period, eccentricity, angle of ascending node, and time of periastron passage. Differentiating
the time-delay curve yields the full radial-velocity curve directly from the Kepler photometry,
without the need for spectroscopy. We show examples with δ scuti stars having large numbers of
pulsation modes, including one system in which both components of the binary are pulsating.
The method is straightforward to automate, thus radial velocity curves can be derived for
hundreds of non-eclipsing binary stars from Kepler photometry alone.

Key words: techniques: radial velocities – binaries: general – stars: oscillations.

1 IN T RO D U C T I O N

The study of binary stars is fundamental to our understanding of
stellar structure and evolution. Eclipsing binaries in particular are
the major source of the stellar fundamental parameters mass and
radius. In close binary systems, deformation of the stars by tidal
forces provides observational constraints on our understanding of
tidal interaction. Most stars form in multiple systems; probably
∼100 per cent do if we include stars with exoplanets.

Now we have a second, complementary way to derive stellar
fundamental parameters: asteroseismology (e.g. Aerts, Christensen-
Dalsgaard & Kurtz 2010). The study of pulsating stars in binary
systems is therefore particularly important (e.g. Handler et al. 2002;
Beck et al. 2014), but most efforts so far have been limited to
eclipsing systems (e.g. Southworth et al. 2011; Debosscher et al.
2013; Frandsen et al. 2013; Hambleton et al. 2013; da Silva et al.
2014; Maceroni et al. 2014).

The clear geometrical information available from the binary ob-
servations (light curves and radial velocity curves), combined with
the constraints on internal structure from asteroseismology, give us
novel insights into stars. Stellar masses, radii, and ages are better

� E-mail: murphy@physics.usyd.edu.au

known than ever before, and physical processes such as convective
overshoot, internal rotation, and tidal interaction are now observa-
tional sciences.

The Kepler Mission provides an unprecedented source of high-
precision stellar light curves with nearly continuous data over a
time span of 4 yr for over 150 000 stars. Obtaining the required
radial velocity curves for these many stars from ground-based ob-
servations is currently not possible. In this paper, we show how
radial velocities for pulsating binary δ scuti stars observed with
Kepler’s long-cadence mode (30 min sampling) can be derived from
photometry alone. Our technique can be automated to discover and
characterize hundreds of binary stars in the Kepler data set, par-
ticularly for non-eclipsing systems that other techniques do not
find. It should even be capable of finding planet-mass companions
to pulsating stars that are beyond the reach of other surveys for
exoplanets.

2 M E T H O D A N D E X A M P L E S

The orbital motion of a star in a binary system leads to a periodic
variation in the path length travelled by the light that we observe.
Hence, the phase of the observed pulsations varies over the orbit (e.g.
Paparó, Szeidl & Mahdy 1988; Silvotti et al. 2007, 2011; Telting
et al. 2012). Shibahashi & Kurtz (2012) showed that the light-time
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2516 S. J. Murphy et al.

effect in a binary star leads to a frequency multiplet in the Fourier
transform of the light curve of a pulsating star and that the mem-
bers of the multiplet are separated by the orbital frequency. They
demonstrated that the amplitudes and phases of the components of
the frequency multiplet can be used to derive all of the information
traditionally found from radial velocity curves. The analogy to the
frequency modulation (FM) technique found in radio transmitters
led to such pulsating stars in binaries being termed ‘FM stars’.

The FM method of Shibahashi & Kurtz (2012) is suitable for
the data covering an observational time span that is long compared
with the binary orbital period. For wider binaries, however, the FM
method is not necessarily appropriate, because the frequency split-
ting due to the binary motion becomes comparable to the frequency
resolution. In this paper, we develop a complementary method, by
which we extract explicitly the phase modulation (PM) in the time
domain of intrinsic pulsation frequencies of the star, which is caused
by binary orbital motion. We exploit this to derive the orbital radial
velocities and the other orbital elements from the light curve alone.
An advantage of this PM method, compared to the FM method, is
that it provides the variation in the light-travel time at short inter-
vals. This is particularly useful in visualizing the variation caused
by the binary motion, and its time derivative provides the radial
velocity. Furthermore, the signals from different pulsation modes in
multiperiodic stars can be combined. All of this is straightforwardly
automated. Unlike the traditional O−C (observed minus calculated)
method, PM uses all of the data – not just the pulsation maxima –
and is particularly suited to multimode pulsators.

2.1 Phase variations and time delays

As a pulsating star moves in its binary orbit, the path length of the
light between us and the star varies, leading to the periodic variation
in the arrival time of the signal from the star to us. We detected this
as a phase variation.

We use entire Kepler long-cadence (30 min sampling) data sets,
which may be up to 1400 d in length, for identifying peaks arising
from each pulsation mode. For binary stars, these peaks are multi-
plets that are used by the FM method. In our analysis, we measured
the frequency of the central component of the multiplet for each
peak in the Fourier transform. We then divided the light curve into
n short segments and measured the phase at this frequency in each
segment. This produced a set of phases as a function of time, which
could be repeated for each pulsation mode. Choice of the segment
size is a trade-off between time resolution and frequency resolution.
We found that 10-d segments gave sufficient frequency resolution to
measure phases of well-resolved pulsation modes, while still giving
enough time resolution to monitor the time delays, and ultimately
the radial velocities. Shorter segments gave much higher scatter in
the radial velocity curve. There is a measured phase, φij, for each
fixed pulsation frequency ν j, for each of the time segments ti. If the
target is actually a binary system, that series of phases

�j (t) = [φ1j , φ2j , . . . , φij , . . . , φnj ]

varies with the orbital period of the system. We describe the math-
ematics of the phase variations in Appendix A1.

The amplitude of the phase variations depends on the geometry
of the orbit, which in turn is dictated by the mass of the perturb-
ing companion, and the frequency of the pulsation (see equations
A1 and A2 in Appendix A1). The latter dependence means that
the phase variations of each pulsation mode will have a different
amplitude. To remove this effect, we converted the phase variations
into light arrival times, which we refer to as time delays. To do this,

we first calculated the relative phase shifts by subtracting the mean
phase for each mode from each measurement

�φij = φij − φj , (1)

where

φi = 1

n

n∑
i=1

φij . (2)

Then the time delay with respect to the stationary (single-star) case
is simply

τij = �φij

2πνj

. (3)

In the following, we demonstrate the method with five examples.
We show results for each in a figure with four panels: (a) the Fourier
transform of the entire light curve, (b) time delays in each segment
for the strongest pulsation modes, calculated from the pulsation
phases, (c) the Fourier transform of those delays, and (d) the Fourier
transform of the weighted average of the time delays.

2.2 Example 1: a known binary

For a binary in a circular orbit, the time delays should follow a
sinusoid whose amplitude is the projected light-travel time across
the orbit and whose period is the orbital period. An example is
shown in Fig. 1. This star is KIC 11754974, an SX Phe star already
demonstrated to be a binary by Murphy et al. (2013b) based on
O−C and FM analyses. The star falls on Module 3 – a pair of
Kepler’s CCDs that failed early in the mission, rendering ∼4/21
of the field unobservable for 93 consecutive days each year. These
outages are of little consequence to our results. Time delays for the
three strongest pulsation modes are shown in Fig. 1(b). The delays
for ν1 and ν2 agree well and show a clear sinusoidal variation. The
delays for ν3 are noticeably scattered. This results from a pulsation
mode close to ν3 that modifies its phase. In the full 1350-d data set,
the two frequencies are resolved, but in each 10-d segment they are
not, due to a poorer frequency resolution that scales as 1/T. As such,
in the 10-d segments, there is beating between these two unresolved
frequencies, and the measured phase reflects this. Despite this, the
delays for ν3 still contain information on the orbital period, as
evidenced by the Fourier transform of the time-delay data (Fig. 1c).
Note that lengthening the sampling segments would see the scatter
progressively reduced until the segments were long enough that the
two frequencies were completely resolved.

All three modes show time-delay variations with the same pe-
riod, amplitude, and phase, as seen in their Fourier spectra. The
unresolved companion frequency near ν3 is responsible for the ad-
ditional blue peak dominating the right of Fig. 1(c). The separation
of the two pulsation frequencies is equal to the frequency of that blue
peak: 0.036 d−1. The mathematics of that relationship is described
in Appendix A2.

We also calculated the weighted average time delay,

〈τi〉 =
∑m

j=1

[
τij

σ 2
ij

]
∑m

j=1

[
1

σ 2
ij

] , (4)

weighed by the phase uncertainties. This is shown as black squares
in Fig. 1(b) and its Fourier transform is shown in Fig. 1(d). The
derived period of 344.2 ± 1.5 d is in agreement with the orbital
period of 343.3 ± 0.3 d found by Murphy et al. (2013b). The latter

MNRAS 441, 2515–2527 (2014)
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Phase-modulated stars 2517

Figure 1. Example 1. (a) The Fourier transform of the 1350-d Kepler light curve of KIC 11754974 is shown for both sides of the long-cadence Nyquist
frequency (24.47 d−1, blue line), as discussed in Section 2.2.1. (b) Time delay as a function of time in 10-d segments, for three modes at f1 = 16.34 d−1, f2 =
21.40 d−1, and f3 = 20.91 d−1. The uncertainty-weighted averages of the data are plotted. The orbital variations appear as a sinusoid of amplitude 125 s and
period 344 d. The gaps arise because the star falls on Module 3. (c) Fourier transform of the time-delay data in panel (b), with the weighted averages plotted
in panel (d). Time delays of all three modes agree well at the orbital frequency at 0.0029 d−1, but an extra peak (and its window pattern) appear for f3 (blue)
because of its unresolved frequency. See the text for details.

MNRAS 441, 2515–2527 (2014)
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period is more precisely determined because those authors also
made use of ∼1600 d of data from the Wide Angle Search for
Planets.

2.2.1 Choice of frequency range for the pulsation spectrum

We calculated the pulsation spectrum in Fig. 1(a) on both sides of
the Kepler long-cadence Nyquist frequency (24.47 d−1). The real
peaks can be distinguished from aliases because the latter are split
into multiplets (Murphy, Shibahashi & Kurtz 2013a) whose central
peaks have lower amplitudes than real peaks. We use the amplitudes
to determine which peaks are real. Hence in Fig. 1(a), we can see
that the star’s real pulsations lie below the Nyquist frequency.

Tracking a Nyquist alias, rather than the real peak, causes the
phases to be modulated at the Kepler orbital period (372.5 d). This
is easily detected in our analysis, and is illustrated in Fig. 2, for a
star that is not binary.

2.3 Example 2: a long-period binary

The shortest period binary we can detect is set by the length of the
sampling segments. In our examples, we use 10-d sampling, which
limits the sensitivity of our application of the method to Porb > 20 d,
but shorter segments may be used. Very short-period binaries can
be detectable by other means, such as the Fourier series that appear
in Fourier transforms of light curves of ellipsoidal variables, and
the fact that short-period binaries are often eclipsing. Hundreds of
such binaries are already known in the Kepler data (Slawson et al.
2011; Gaulme et al. 2013).

The longest measurable period is set by the length of the data
set. It is this requirement – long, continuous data sets – that has
delayed developments like FM and PM until the present era of
space-based photometry, especially that of Kepler. Fig. 3 shows
KIC 7618364, a δ sct star that appears to be in a long-period binary.
We find Porb = 1479 ± 17 d, which is slightly longer than the
Kepler data set (1437 d). We extracted the five highest peaks from
its pulsation spectrum (Fig. 3a). Note that KIC 7618364 pulsates at
high frequencies, some of which are above the Nyquist frequency
of Kepler long-cadence data. We see all modes vary with the same
periodicity, and the orbital frequency is clearly seen in Figs 3(c)
and (d).

2.4 Example 3: a low-amplitude pulsator

It would be useful to be able to apply our method to stars with low
pulsation amplitudes. Only 56 per cent of stars in the δ sct instability
strip pulsate at amplitudes above 50 μmag (Murphy 2013). Among
those, stars with peak amplitudes above 0.5 mmag are outnumbered
by those below 0.5 mmag by almost a factor of 3. To maximize
the sensitivity of binary searches, our method therefore needs to be
capable of detecting binaries among the low-amplitude pulsators.

To test this, Fig. 4 shows the δ sct star KIC 11771670, whose pul-
sation amplitudes range from 0.12 mmag downwards. Its pulsation
spectrum is displayed in Fig. 4(a). From the argument presented
in Section 2.2.1, we conclude that the real pulsation frequencies of
KIC 11771670 lie above the long-cadence Nyquist frequency. We
plot their time delays in Fig. 4(b). Each mode shows a clear varia-
tion at the orbital period (565 d) and the orbital information can be
extracted even for the weakest mode monitored (0.02 mmag). From
this we conclude that binary companions are detectable for even the
lowest amplitude δ sct stars.

2.5 Example 4: an eccentric binary

An eccentric binary will produce a non-sinusoidal time-delay curve
and we expect harmonics of the orbital frequency in its Fourier
transform. Fig. 5 shows KIC 9651065, which was discovered to
be highly eccentric by Shibahashi et al. (in preparation). The time
delays (Fig. 5b) are clearly not represented by a single sinusoid,
but can be described by a Fourier series. The Fourier transforms
(Figs 5c and d) show the main peak and the first two harmonics.
The eccentricity (and 
 , the angle between the ascending node and
the periapsis) can be determined from the amplitude ratios of the
harmonics, just as they are determined from the amplitude ratios of
consecutive sidelobes in the frequency domain (cf. equation 46 of
Shibahashi & Kurtz 2012). Particularly, in the case of e � 1,

e � 2A2/A1, (5)

where A1 and A2 are the amplitudes of the first and second harmon-
ics, respectively, that is, the amplitudes of peaks at νorb and 2νorb.
In the more general case, we can determine e and 
 from the ratios
A2/A1 and A3/A2, which we defer to Appendix A3 along with the
derivation of equation (5).

2.6 The radial velocity curve

Time delays are caused by the modulation of the length of the light
path. Hence, they are described by the integral

τ (t) = −1

c

∫ t

0
vrad,1(t ′) dt ′. (6)

The time derivative of the time delays gives the radial velocity as a
function of time:

vrad,1(t) = −c
dτ

dt
. (7)

One way to differentiate the data is numerically. Pair-wise dif-
ferentials in time delays over each light-curve segment give the
average radial velocity in those segments. To reduce the scatter, we
smoothed over three consecutive time delays using a moving boxcar
function. The pair-wise differentials and the smoothed values are
displayed in Fig. 6, for the eccentric star discussed in the previous
example (KIC 9651065).

A second method uses an analytical approach to produce a smooth
RV curve (black line, Fig. 6). For a circular orbit, the time delay is
described by the sinusoid

τ (t) = A sin (2πνorbt + φ), (8)

where A is the amplitude (the maximum time delay), νorb is the
orbital frequency (reciprocal of the orbital period, Porb), and φ is
the phase with respect to the chosen zero-point in time. Eccentric
orbits are described by a Fourier series, that is, a superposition of N
harmonics of the orbital frequency

τ (t) =
N∑

k=1

Ak sin (2πkνorbt + φk). (9)

The orbital harmonics in the time delays are fitted with least squares
to find their amplitudes: A1 = 165.6, A2 = 38.4, and A3 = 10.2 s,
each with a formal uncertainty of ±2.0 s. The eccentricity (e =
0.468 ± 0.025) is calculated with the help of Bessell functions
(cf. Appendix A3) using ratios of those amplitudes. The full or-
bital solution, including details on the RV curve, is discussed in
Appendix A5.

RV curves derived with the PM method could be used as in-
put for codes that model eccentric binaries, such as PHOEBE

MNRAS 441, 2515–2527 (2014)
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Phase-modulated stars 2519

Figure 2. An illustration of the spurious signal seen when the phase of a Nyquist alias is tracked instead of a real frequency. (a) The Fourier transform for
the non-binary star KIC 5459908, calculated up to 70 d−1 – almost three times the Nyquist frequency. Multiples of the Nyquist frequency are indicated by
dashed blue lines. Inspection of the peak amplitudes shows the highest peaks occur in the highest frequency set of peaks. These are therefore the real peaks.
We have confirmed this with the Super-Nyquist Asteroseismology method (Murphy et al. 2013a). However, time delays (b) have been calculated for the
lowest-frequency set of peaks, at f1. . . f5 = 12.0, 14.91, 8.6, 14.67, and 15.11 d−1. The time delays for the aliases clearly vary at the Kepler orbital frequency.
Gaps in the data arise because the star lies on Module 3. (c) Fourier transform of the time-delay data. (d) Fourier transform of the weighted-average time-delay
data, with a dashed red line indicating the orbital frequency of the Kepler satellite around the Sun (0.0027 d−1).

MNRAS 441, 2515–2527 (2014)
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Figure 3. Example 2. (a) Fourier transform of the light curve of KIC 7618364. (b) Time delays for the nine highest peaks in panel (a). Their frequencies,
in descending amplitude order, are 26.14, 26.9, 21.8, 17.35, and 23.39 d−1, respectively. (c) The Fourier transform of the time-delay data. (d) The Fourier
transform of the weighted-average time-delay data.

MNRAS 441, 2515–2527 (2014)
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Phase-modulated stars 2521

Figure 4. Example 3. (a) Fourier transform of the light curve of the low-amplitude δ sct star KIC 11771670. (b) Light arrival time delays for the highest nine
peaks from panel (a). Their frequencies, in descending amplitude order, are 40.43, 37.21, 38.23, 39.01, 41.58, 34.71, 39.33, 39.49, and 35.54 d−1, respectively.
(c) Fourier transforms of the time delays for those nine peaks. (d) The Fourier transform of the weighted-average time-delay data, giving Porb = 565.65 ±
1.83 d.

MNRAS 441, 2515–2527 (2014)
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Figure 5. Example 4. (a) The Fourier transform of the light curve of KIC 9651065. (b) Time delays for the nine highest peaks. Their frequencies, in descending
amplitude order, are 19.48, 21.71, 30.8, 17.7, 22.69, 24.46, 16.27, 13.62, and 36.15 d−1, respectively. (c) Fourier transforms of the time delays for those nine
peaks. (d) Fourier transform of the weighted-average time-delay data. Panel (d) shows the main peak and two harmonics. The amplitudes of those harmonics,
A1 = 165.6, A2 = 38.4, and A3 = 10.2 s (±2 s), are obtained from a least-squares fit at νorb, 2νorb, and 3νorb.

MNRAS 441, 2515–2527 (2014)
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Figure 6. Radial velocity curve for KIC 9651065 as a function of time (top) and phased on Porb = 272.7 d (bottom). The zero-point of the phased radial
velocities was chosen to coincide with the start of the Kepler data set. The radial velocities of each 10-d light-curve segment from pair-wise differences are
shown as small circles; large circles represent smoothing of those values over three points. The black line is the RV curve calculated from the differentiated
analytical function.

(Prša & Zwitter 2005). Given that such codes aim to infer the
geometry of the orbit, modelling the time delays themselves might
be preferred over the RV curve, since the former give the binary
geometry directly and more precisely.

2.7 Orbital parameters

In this section, we explain how information on the binary system can
be extracted from the data. Obtaining the eccentricity and orbital
period has already been discussed (equations 5 and 8). In the circular
case, the projected semi-major axis of the pulsator’s orbit around
the centre of mass is simply the maximum time delay, A, times the
speed of light:

a1 sin i = Ac, (10)

but the eccentric case requires a more detailed treatment.
To first order, the radial velocity curve of the pulsating star is

described by equations (7) and (9). In the general case, the radial
velocity vrad, 1 is expressed as

vrad,1 = −2πνorba1 sin i√
1 − e2

[cos(f + 
 ) + e cos 
 ] , (11)

where a1 denotes the semi-major axis, e is the eccentricity, f is the
true anomaly, 
 denotes the angle between the ascending node and
the periapsis, and i denotes the inclination angle of the orbital axis
with respect to the line of sight. The angle f + 
 defines the angle
between the ascending node and the star at the time when vrad, 1 is

measured. This value of vrad, 1 is the same quantity that would be
measured by spectroscopy.

The minimum and the maximum values of the radial velocity are
then

vrad,1,min ≡ −2πνorba1 sin i√
1 − e2

(1 + e cos 
 ) (12)

and

vrad,1,max ≡ −2πνorba1 sin i√
1 − e2

(−1 + e cos 
 ) , (13)

respectively, and they are available from the radial velocity derived
from the time delays. Then, the projected semi-major axis of the
pulsator’s orbit around the barycentre is deduced,

a1 sin i = 1

4π

1

νorb

√
1 − e2

(
vrad,1,max − vrad,1,min

)
, (14)

with the help of the orbital frequency and the eccentricity already de-
rived from the amplitude ratio of the harmonics in the non-sinusoidal
time-delay curve (equation 5). The value of a1sin i obtained in this
way is used to calculate the mass function:

f (m1, m2, sin i) = (m2 sin i)3

(m1 + m2)2
(15)

= (2π)2

P 2
orb G

(a1 sin i)3, (16)

MNRAS 441, 2515–2527 (2014)
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where G is the gravitational constant. Thus, with a suitable assump-
tion of the primary mass (or, even better, its mass as determined
through asteroseismology), the mass of the perturbing body, m2,
can also be found.

The angle between the ascending node and the periapsis, 
 , is

cos 
 = −1

e

[
vrad,1,max + vrad,1,min

vrad,1,max − vrad,1,min

]
. (17)

This relation can be used to confirm those values deduced from the
amplitude ratios of the harmonics of the orbital period in the time
delays.

When the star passes the periastron, the true anomaly is zero
(f = 0), hence

vrad,1,periastron = 1 + e

2e

(
vrad,1,max + vrad,1,min

)
. (18)

From this value and the radial velocity curve as a function of time,
we can derive the time of periastron passage of the star.

2.8 Example 5: a binary with two pulsating components

Fig. 7 shows a binary with Porb = 961 ± 12 d, KIC 4471379,
consisting of two pulsating stars. We call this a PB2 system, by
analogy with the double-lined spectroscopic binary (‘SB2’) systems
of spectroscopy.

Figure 7. Example 5. (a) Fourier transform of the light curve of the δ sct star KIC 4471379. (b) Time delays for the highest nine peaks from panel (a), whose
variations as two sinusoids of opposite phase show they belong to two separate stars. (c) Fourier transforms of the time delays for those nine peaks, giving Porb

= 960 ± 12 d. Unlike in other figures, we do not show the weighted average for obvious reasons. The frequencies of f1. . . f9 are 18.45, 16.99, 20.13, 13.96,
12.41, 13.74, 18.83, 12.01, and 21.95 d−1, respectively.

MNRAS 441, 2515–2527 (2014)
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The Fourier transform of the light curve (Fig. 7a) shows a dense
pulsation spectrum. Fig. 7(b) shows this is the result of the combined
light variations of two stars. We see two sets of modes, one set for
each star, each having the same period and amplitude. However,
the two sets are in antiphase with each other. The technique has
separated the pulsation spectra of two pulsating stars in a binary
system very clearly. More detailed analysis of this system will be
the subject of a future paper.

3 C O N C L U S I O N S A N D F U T U R E WO R K

The long data sets with high duty cycle provided by Kepler have al-
lowed the detection of binary companions to pulsating stars through
PM of the pulsation modes. As with the FM method (Shibahashi &
Kurtz 2012), binary information can be extracted from the Kepler
light curve without the need for spectroscopy. Furthermore, the PM
method is easily automated, offers a clear visualization of the binary
geometry, and straightforwardly provides the instantaneous radial
velocity curve. The choice of FM or PM analysis is to be made on a
case-by-case basis, and the methods are complimentary. While FM
performs more satisfactorily for short-period binaries, where PM
sampling segments must be short and thus suffer poor frequency
resolution, PM is preferable for long-period binaries and produces
a more detectable signal than FM for low-frequency pulsations.

We have shown that the PM method allows companions to be
found in orbits at least as long as the 1400-d Kepler data sets.
Moreover, companions can be found around very low amplitude
(∼20 μmag) pulsators, regardless of orbital period. Extrapolating
this finding, we infer that planetary companions could be discovered
around mmag amplitude pulsators. We will be applying this analysis
to the full set of δ sct stars in the Kepler archive.
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A P P E N D I X A : M AT H E M AT I C A L D E R I VAT I O N S

A1 Mathematics of the phase variations

We consider a star pulsating with frequency ν0 in a binary with
circular orbital motion of frequency νorb. The observed luminosity
as a function of time t has the form

L(t) = A exp i

{
2πν0

[
t − 1

c

∫ t

0
vrad,1(t ′) dt ′

]
+ φ

}
(A1)

= A exp i [(2πν0t + φ) − α sin (2πνorbt)], (A2)

where α is the amplitude of the PM. Shibahashi & Kurtz (2012)
defined the instantaneous frequency from the time derivative of
L(t),

νobs(t) = 2πν0

[
1 − vrad,1(t)

c

]
. (A3)

Similarly, by considering the frequency ν0 fixed, we can define the
instantaneous phase as a slowly varying function of time:

�(t) = −α sin (2πνorbt) + φ. (A4)

Even though the amplitude of the Doppler frequency shift, ανorb/ν0

is tiny, α is usually much bigger. Shibahashi & Kurtz (2012) carried
out the Fourier transform by implicitly assuming the time span is
infinitely long, and then

L(t) = A

∞∑
n=−∞

Jn(α) exp i2π [(ν0 − nνorb)t + φ] . (A5)

In practice, the time span is finite. For the method presented in
Section 2, we divide the observational time span into equal seg-
ments, whose lengths are much longer than the pulsation period
1/ν0 but much shorter than the orbital period 1/νorb. Then a least-
squares fit at frequency ν0 is carried out in each segment. Since
the instantaneous phase � is almost constant in each segment, the
result is∫ tn+1

tn

L(t) exp(−i2πνt) dt

� ei�(tn+1/2)
∫ tn+1

tn

A exp i2π(ν0 − νorb)t dt (A6)

� ei�(tn+1/2)A�t
2 sinc 2π�ν�t

2 ei2π�νtn+1/2 , (A7)

and we get the peak frequency at ν = ν0, the amplitude A, and
the instantaneous phase �(tn + 1/2). Note that the frequency thus
obtained is common in all the segments, while the phase � is not,
that is, � is a slowly varying and discrete function of time. Since �

is of the form of equation (A4), the binary information, α and νorb,
can be extracted as in the FM method.
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A2 Closely spaced modes

Let us assume that two unresolved modes are present at ν0 and
ν0 + δν, with the same amplitude, for simplicity:

L(t) = Aei2πν0(t−c−1 ∫
vrad,1 dt ′) + Aei2π(ν0+δν)(t−c−1 ∫

vrad,1 dt ′) (A8)

� A exp [i2π(ν0 + δν/2)t]

× exp

[
−i2π(ν0 + δν/2)c−1

∫
vrad,1 dt ′

]

× 2 cos (πδν)

(
t − c−1

∫
vrad,1 dt ′

)
. (A9)

The first term on the right-hand side gives the frequency ν0 + δν/2,
which is ν3 in our example in Section 2.1. The second term gives
the PM due to binarity, which coincides with those of ν1 and ν2.
The third term indicates the existence of a peak at δν/2 in the
power spectrum of the phase of the ν3-component, with side lobes
separated from the peak by exactly νorb.

A3 Measurement of the orbital elements through PM

In a general case, the radial velocity vrad, 1 is expressed as

vrad,1 = −2πνorba1 sin i√
1 − e2

[cos(f + 
 ) + e cos 
 ] , (A10)

where a1 denotes the semi-major axis, e is the eccentricity, f is the
true anomaly, 
 denotes the angle between the ascending node and
the periapsis, and i denotes the inclination angle of the orbital axis
with respect to the line of sight. The angle f + 
 defines the angle
between the ascending node and the star at the moment.

The trigonometric functions of the true anomaly f are expressed
in terms of the mean anomaly l:

cos f = −e + 2(1 − e2)

e

∞∑
n=1

Jn(ne) cos nl, (A11)

sin f = 2
√

1 − e2

∞∑
n=1

Jn
′(ne) sin nl. (A12)

Here, Jn(x) denotes the Bessel function of the first kind of integer
order n and Jn′(x) is its derivative (dJn(x)/dx). With the help of these
expressions and the series of an(e), bn(e), and ξ n(e, 
 ) introduced
by Shibahashi & Kurtz (2012, see their fig. 11), the radial velocity
is rewritten as

vrad,1 = −2πνorba1 sin i

[ ∞∑
n=1

nan(e) cos nl cos 


−
∞∑

n=1

nbn(e) sin nl sin 


]

= −2πνorba1 sin i

∞∑
n=1

nξn(e, 
 ) cos [nl + ϑn(e,
 )] ,(A13)

where

an(e) ≡ 2
√

1 − e2

e

1

n
Jn(ne), (A14)

bn(e) ≡ 2

n
Jn

′(ne), (A15)

ξn(e, 
 ) ≡
√

{an(e)}2 cos2 
 + {bn(e)}2 sin2 
, (A16)

and

ϑn(e, 
 ) ≡ tan−1

[
bn(e)

an(e)
tan 


]
. (A17)

Since the mean anomaly l is proportional to the time after the
periapsis passage, t,

l = 2πνorbt, (A18)

equation (A13) is written explicitly as a function of t:

vrad,1(t) = −2πνorba1 sin i

×
∞∑

n=1

nξn(e, 
 ) cos [2πnνorbt + ϑn(e,
 )] . (A19)

Integrating this, we eventually obtain

τ (t) = −1

c

∫ t

0
vrad,1(t ′) dt ′

= 1

c
a1 sin i

∞∑
n=1

ξn(e, 
 ) [sin(2πnνorbt + ϑn) − sin ϑn] (A20)

= 1

c
a1 sin i

×
[ ∞∑

n=1

ξn(e, 
 ) sin(2πnνorbt + ϑn) + τ0(e, 
 )

]
, (A21)

where

τ0(e, 
 ) ≡ −
∞∑

n=0

ξn(e, 
 ) sin ϑn(e, 
 ). (A22)

Equation (A21) means that the amplitude of the nth order Fourier
component of the time delay, An, is

An = 1

c
a1 sin iξn(e, 
 ). (A23)

By measuring PM, we know the values of {An}, for n = 1, 2, 3, . . . .
Hence from a set of equation (A23) for n = 1, 2, 3, we can deduce
the eccentricity e, the semi-major axis a1, and the angle between
the ascending node and the periapsis, 
 . Indeed, from the ratio of
A2/A1 and A3/A2, e and 
 are deduced:

A2

A1
= ξ2(e, 
 )

ξ1(e, 
 )
(A24)

and

A3

A2
= ξ3(e, 
 )

ξ2(e, 
 )
. (A25)

A4 Measurement of eccentricity

To the order of O(e6), the coefficients an(e) and bn(e) are given by

a1(e) �
√

1 − e2

(
1 − 1

8
e2 + 1

192
e4 − 1

9216
e6

)
(A26)

and

b1(e) � 1 − 3

8
e2 + 5

192
e4 − 7

9216
e6, (A27)

MNRAS 441, 2515–2527 (2014)

 at T
he L

ibrary on A
pril 20, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Phase-modulated stars 2527

Figure A1. Amplitude ratios of the harmonics, An + 1/An, of time delays
for n = 1 (lower, red), and n = 2 (upper, green), as functions of e. The values
were numerically computed with equation (A16). The band of each curve
shows the range of 
 from 0 to 2π. The 
 -dependence is very weak, hence
we cannot determine 
 from the amplitude ratio. The angle 
 should be
derived from equation (17), after obtaining a reasonable value of e and the
RV curve. The analytical ratios A2/A1 ∼ e/2 and A3/A2 ∼ 3e/4 for e � 1
are numerically validated.

respectively (Shibahashi & Kurtz 2012). Also,

a2(e) � e

2

√
1 − e2

(
1 − 1

3
e2 + 1

24
e4 − 1

360
e6

)
(A28)

and

b2(e) � e

2

(
1 − 2

3
e2 + 1

8
e4 − 1

90
e6

)
. (A29)

So, in the case of e � 1, to the lowest order of e, a1(e) � 1 and
b1(e) � 1, then ξ 1(e, 
 ) � 1. Similarly, a2(e) � e/2 and b2(e) �
e/2, then ξ 2(e, 
 ) � e/2. Hence, in this case, we get the eccentricity
from the ratio of the low-order Fourier components;

e � 2A2

A1
. (A30)

Similarly, it can be shown that

e � 4A3

3A2
. (A31)

In more general cases, we need to solve equations A24 and A25.
The graphical solutions are shown in Fig. A1.

A5 The eccentricity of KIC 9651065

The Fourier series applied to the time delays of KIC 9651065 (Sec-
tion 2.6) gave amplitudes A1 = 165.57, A2 = 38.41, and A3 =
10.16 (±2.03) s. Despite this star’s moderately high eccentricity,
it is instructive to see that the low-eccentricity approximation still
gives a sensible result. From equations (A30) and (A31), we calcu-
late e = 0.464 ± 0.026 and e = 0.530 ± 0.108, respectively. The
uncertainty-weighted mean of the two values is e = 0.468 ± 0.025.

Table A1. Observed and calculated properties of
the orbit of KIC 9651065. Values of vrad, 1, max and
vrad, 1, min are taken from the RV curve obtained by dif-
ferentiating the time delays, and the uncertainties are
approximated by the scatter. A1, A2, and νorb are found
from the Fourier transform of the time delay data. The
remaining values (below the mid-table rule) are calcu-
lated based on those observables. The mass function
is calculated for i = 45◦, and we have adopted m1 =
1.70 M from Huber et al. (2014). φorb, periastron is the
orbital phase at periastron, and Tperiastron is the corre-
sponding time in BJD, at the epoch closest to the centre
of the Kepler data set.

Quantity Value Units

vrad, 1, max, input 20.2 ± 2.5 km s−1

vrad, 1, min, input −13.5 ± 3.2 km s−1

A1 165.57 ± 2.03 s
A2 38.41 ± 2.03 s
νorb 0.003667 ± 0.000011 d−1

Porb 272.70 ± 0.82 d
e 0.468 ± 0.025

 2.01 ± 0.30 rad

a1sin i 0.37 ± 0.02 au
f(m1, m2, i = 45◦) 0.001667 ± 0.000010 M

m1 1.70 ± 0.17 M
m2 0.26 ± 0.02 M

φorb, periastron 0.46 ± 0.03 (0–1)
Tperiastron 2455 400 ± 15 d

Once e and 
 are determined in a reasonably reliable way, such
as with the low-eccentricity approximation, all the coefficients ξ n(e,

 ) and all the phases ϑn(e, 
 ) are uniquely determined with high
precision. The RV curve is calculated with a series expansion of
ξ n(e, 
 ). We found that n = 10 is sufficiently high, with no no-
ticeable difference between n = 10 and n = 20. Importantly, the
high-order components are determined more precisely than is pos-
sible in practice through observational quantities.

As such, precise measurements of the coefficients of A1, A2,
vrad, 1, max [= −c(dτ/dt)max], and vrad,1,min[= −c(dτ/dt)min], along
with their uncertainties, are all that is required. The latter two quanti-
ties are later refined with the expansion of ξ n(e, 
 ). We tabulate the
input values and the calculated orbital parameters for KIC 9651065
in Table A1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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