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ABSTRACT  

 

The increasing size and flexibility of large wind turbine blades introduces significant 

aeroelastic effects, which are caused by fluid-structure interaction. These effects might 

result in aeroelastic instability problems, such as edgewise instability and flutter, which 

can be devastating to the blades and the wind turbine. Therefore, developing a reliable 

and efficient aeroelastic model to investigate the aeroelasticity characterisation of large 

wind turbine blades is crucial in the development of large wind turbines.  

 

There are several aeroelastic models available today for wind turbine blades. Almost all 

of them are linear models based on assumption of small blade deflections, and do not 

take account of large deflection effects on modelling responses and loads. However, 

with the increasing size and flexibility of large wind turbine blades, this assumption is 

not valid anymore because the blades often experience large deflections, which 

introduce significant geometric nonlinearities. Additionally, existing cross-sectional 

analysis models, which are used to extract cross-sectional properties of wind turbine 

composite blades for aeroelastic modelling, are either time-consuming or inaccurate.  

 

This thesis aims to provide a reliable and efficient aeroelastic modelling of large wind 

turbine blades through developing 1) a cross-sectional model, which can extract cross-

sectional properties of wind turbine composite blades in a reliable and efficient way; 

and 2) a nonlinear aeroelastic model, which is capable of handling large blade 

deflections. 

 

In this thesis, a cross-sectional analysis model for calculating the cross-sectional 

properties of composite blades has been developed by incorporating classical lamination 

theory (CLT) with extended Bredt-Batho shear flow theory (EBSFT). The model 

considers the shear web effects and warping effects of composite blades and thus 

greatly improves the accuracy of torsional stiffness calculation. It also avoids 

complicated post-processing of force-displacement data from computationally 

expensive 3D finite-element analysis (FEA) and thus considerably improves the 

computational efficiency. A MATLAB program was developed to verify the accuracy 

and efficiency of the cross-sectional analysis model, and a series of benchmark 

calculation tests were undertaken. The results show that good agreement is achieved 

comparing with the data from experiment and FEA, and improved accuracy of torsional 



iii 

 

stiffness calculation due to consideration of the shear web effects is observed comparing 

with an existing cross-sectional analysis code PreComp. 

 

Additionally, a nonlinear aeroelastic model for large wind turbine blades has been 

developed by combining 1) a blade structural model, which is based on a mixed-form 

formulation of geometrically exact beam theory (GEBT), taking account of geometric 

nonlinearities; and 2) a blade load model, which takes account of gravity loads, 

centrifugal loads and aerodynamic loads. The aerodynamic loads are calculated based 

on combining the blade element momentum (BEM) model and the Beddoes-Leishman 

(BL) dynamic stall model. The nonlinear aeroelastic model takes account of large blade 

deflections and thus greatly improves the accuracy of aeroelastic analysis of wind 

turbine blades. The nonlinear aeroelastic model was implemented in COMSOL 

Multiphysics, and a series of benchmark calculation tests were undertaken. The results 

show that good agreement is achieved when compared with experimental data, and its 

capability of handling large deflections is demonstrated. After the validation, the 

nonlinear aeroelastic model was applied to the aeroelastic simulation of the parked 

WindPACT 1.5MW wind turbine blade and to the stability analysis of the blade. 

Reduced flapwise deflection from the nonlinear aeroelastic model is observed compared 

to the linear aeroelastic code FAST. The calculated damping ratio of the edgewise mode 

is much lower than the calculated damping ratio of the flapwise mode, indicating that 

edgewise instability is more likely to occur than flapwise instability. It is also 

demonstrated that improper rotor rotational speeds can result in edgewise instability. 

 

Keywords: Wind Turbine Blade; Cross-sectional Analysis; Classical Lamination 

Theory (CLT); Extended Bredt-Batho Shear Flow Theory (EBSFT); Nonlinear 

Aeroelastic Model; Blade Element Momentum (BEM); Geometrically Exact Beam 

Theory (GEBT) 
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CHAPTER 1    INTRODUCTION 

 

1.1. Background  

 

With the depletion of fossil fuel resources and the growing demand of energy 

consumption, renewable energy resources such as wind and solar have received great 

attention in recent years. Compared to fossil fuel resources, most renewable energy 

resources (such as wind and solar) are inexhaustible and environmentally friendly. 

Therefore, many countries are making considerable efforts to exploit renewable energy 

resources. In 2010, renewable power generation contributed around a third of the 

world’s newly constructed power generation capacities [1]. Projections show that it is 

possible to power 100 percent of the world’s energy demand with renewable energy 

resources by the year of 2030 [2]. 

 

Wind power is the most promising renewable energy resource, and is capable of 

providing a competitive solution to battle the global climate change and energy crisis. 

As an inexhaustible and free energy resource, it is available and deployable in most 

regions of the world. Currently, wind power is the fastest growing renewable power 

industry. Fig. 1.1 depicts the global wind power cumulative capacity between years 

1996 and 2013. From Fig. 1.1 we can see that the global wind power cumulative 

capacity has increased dramatically in the past decade. At the end of 2013, worldwide 

cumulative capacity of wind power reached 318.1GW, growing by 34.9GW over the 

previous year [3]. 

 

Figure 1.1. Global wind power cumulative capacity 

With the growth in wind power capacity, wind power technology itself has also moved 

rapidly towards new dimensions. As wind velocity increases with increasing altitude 
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and therefore it is possible to harvest more wind power at higher altitudes, the size of 

wind turbines is getting larger and larger. Another important reason for the growth in 

the size of wind turbines is to place wind turbines at sea. Compared to the land, there is 

more available space to install wind turbines at sea and the wind is steadier and stronger 

in offshore locations. However, the installation and maintenance of offshore wind 

turbines are very expensive. Therefore, for offshore wind farms, placing fewer wind 

turbines that are larger is more beneficial than placing many smaller turbines. The 

incentive to reduce the price for the electricity per kWh has led to increasingly large 

commercial wind turbines. Fig. 1.2 presents the growth in size of commercial wind 

turbines between years 1980 and 2011. As it can be seen from Fig. 1.2, the dimension of 

commercial wind turbines has increased significantly over the past three decades, from 

a rated power of 75kW and a rotor diameter of 17m for earlier designs up to a rated 

power of 7.5MW and a rotor diameter of over 125m for modern machines. The trend of 

increasing size of large wind turbines is expected to continue in the next decade. The 

power rating of wind turbines has gone up to 8MW recently [4], and the potential of 10-

20MW wind turbine is being investigated [5]. 

 

Figure 1.2. Growth in size of commercial wind turbines [6] 

 

The increasing size of large wind turbines lowers the cost of wind power per kWh; 

however it introduces significant aeroelastic effects, which are caused by fluid-structure 

interaction. These effects might result in instability problems, such as edgewise 

instability and flutter, which can be devastating to the blades and wind turbine. For 

instance, as reported in Ref. [7], 0.5% of the LM (Lunderskov Mobelfabrik) 19m wind 

turbine blades were damaged within one year. These blades were mounted on 600kW 

wind turbines around the world and were damaged due to blade edgewise instability. 
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The changes in wind turbine blade design due to the growth in size might lead to other 

not yet recognised aeroelastic instabilities. Therefore, investigating the aeroelasticity 

characterisation of large wind turbine blades is playing an important role in the 

development of large wind turbines.  

 

1.2. Aeroelasticity of Wind Turbine Blades 

 

Aeroelasticity concerns the interaction of the aerodynamic loads, elastic deflections and 

inertial dynamics for a flexible structure [8]. For wind turbine blades, the interaction is 

strong. During the operation of a wind turbine, the blades experience elastic deflections 

due to aerodynamic loads exerted by the airflow passing the blades. The deformed blade 

affects, in turn, the flow field around the blade, which in return influences the 

aerodynamic loads on the blade. The inertia dynamics play a significant role in the 

correlation between the aerodynamic loads and elastic deflections, and the resulting 

accelerations. The blade can experience oscillation due to the changing loads, and it 

becomes unstable under harmonic conditions and/or when the damping is negative. 

 

Aeroelasticity phenomena can be classified into either static or dynamic problems. 

Static aeroelasticity studies the deflections of flexible structures caused by the 

interaction of aerodynamic loads and elastic deflections, where the oscillatory effects 

are ignored. Dynamic aeroelasticity investigates the oscillatory effects of the aeroelastic 

interactions, and its major area of interest is the stability of the structure. The study of 

aeroelasticity can be clearly illustrated by the Collar aeroelastic triangle [9], as shown in 

Fig. 1.3. 
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Figure 1.3. Collar aeroelastic triangle 

 

1.2.1. Steady Aeroelasticity 

 

In the aircraft industry, the study of steady aeroelasticity mainly focuses on the 

divergence, which occurs when the torsional moment introduced by aerodynamic loads 

is higher than the restoring moments due to structural stiffness [10]. The principle of 

divergence can be illustrated using a simple differential equation governing the wing 

deflection. For instance, modelling the aircraft wing depicted in Fig. 1.4 as an Euler-

Bernoulli beam, the uncoupled torsional equation of deflection can be expressed as [11]: 

 BA
ET LyM

dy

θd
GJ ,0,

2

2

    (1.1) 

where y  is the spanwise dimension of the beam, 
ETθ  is the elastic twist angle of the 

beam,  GJ  is the torsional stiffness of the beam, BL  is the length of the beam, AM  is 

the aerodynamic moment per unit length.  
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Figure 1.4. An example of simple aircraft wing 

 

According to a simple lift forcing theory, the aerodynamic moment AM  in Eq. (1.1) can 

be expressed in the following form [11]: 

 0

2
  ETCA θUAM     (1.2) 

where CA  is a coefficient, 
U  is the free-stream wind velocity, and 0  is the initial 

angle of attack.  

 

Substituting Eq. (1.2) into Eq. (1.1) yields: 

0

22

2

2

 SETS
ET BθB

dy

θd
    (1.3) 

Eq. (1.3) is valid for both small and large deflections.  
2

SB  in Eq. (1.3) is defined by: 

 GJUAB CS /22

      (1.4) 

 

The boundary conditions for a cantilever beam are: 

0
0


yETθ       (1.5a) 

0
 BLy

ET

dy

dθ

      (1.5b) 

 

Solving Eq. (1.3) yields the solution: 

      1cossintan0  yByBLBθ SSBSET   (1.6) 
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As can be seen from Eq. (1.6), for  nLB BS 2/ , with any integer number n , 

 BS LBtan  is infinite. 0n  corresponds to the divergence point. For given structural 

parameters, such as length BL  and torsional rigidity GJ , this will correspond to the 

torsional divergence speed, a certain value of free-stream wind velocity 
U . 

 

In the development of aircrafts, aircraft wings have encountered divergence. For 

instance, Langley’s aircraft failed due to the onset of divergence [12]. However, in 

terms of wind turbines, the divergence phenomenon has not been observed in 

commercial wind turbines and is not likely to happen in the future. This is mainly due to 

the fact that the torsional moments on wind turbine blades are generally small. Even 

when the blade is pitching, the torsional moments are not high enough for the onset of 

divergence. 

 

For the static aeroelasticity analysis of wind turbine blades, aeroelastic models are 

mainly used to calculate the steady-state blade tip deflection and perform load 

calculations considering blade deflections.  

 

The blade tip deflection is an important parameter for wind turbine designers to 

determine the blade tip clearance (see Fig. 1.5), the distance between blade tip and the 

tower. The Blade tip clearance of a wind turbine is a critical operating parameter to 

avoid disastrous failure caused by the blade striking the tower. Accurately predicting 

blade tip deflection requires a reliable aeroelastic model to capture the interaction of the 

aerodynamic loads and blade structural deflections. 

 

Figure 1.5. Blade tip deflection and blade tip clearance 



7 

 

Large wind turbines are generally required to be designed to meet the international 

safety standard IEC 61400-1 [13]. According to the requirements of IEC 61400-1, the 

load calculations of wind turbines should be based on aeroelastic modelling. Therefore, 

one of the main roles of wind turbine aeroelastic models is to perform load calculations 

for certification. A comparison of existing wind turbine aeroelastic models used for 

certification can be found in Ref. [14]. The results from these models show good 

agreement for the selected case studies.  

 

1.2.2. Dynamic Aeroelasticity 

 

Dynamic aeroelasticity studies the oscillatory effects of the aeroelastic interactions and 

concerns the aeroelastic instabilities of wind turbine blades, such as flutter and edgewise 

instability. 

  

1.2.2.1. Flutter 

 

Flutter is a two-dimensional vibration problem involving the coupling of two degrees of 

freedom (DOFs) of the blade. Fig. 1.6 depicts the typical three DOFs of a blade, 

including torsional (pitch), flapwise (flap) and edgewise (lag) DOFs. The details of the 

three DOFs can be found in Appendix A2. Based on the different combinations of any 

two DOFs of the blade, flutter can be roughly classified into the following three types: 1) 

flap-pitch flutter, which involves the coupling of flapwise and torsional blade motions; 

2) lag-pitch flutter, which involves the coupling of edgewise and torsional blade 

motions; 3) flap-lag flutter, which involves the coupling of flapwise and edgewise blade 

motions. Among these types of flutter, the flap-pitch flutter, also known as classic 

flutter, is the most common one.  

 

Figure 1.6. Degrees of freedom of a blade 



8 

 

Fig. 1.7 depicts the frequency and damping trends of a typical flap-pitch flutter. As can 

be seen from Fig. 1.7a, as air speed increases, the frequency of pitch mode gets closer to 

that of flap mode, possibly resulting in one combined mode. At the flutter speed, a 

certain critical wind speed, the structure sustains oscillations (see Fig. 1.7d) and one of 

the modes (the pitch mode in this example) has zero net damping (see Fig. 1.7b). The 

net damping is the sum of structural damping and aerodynamic damping. Below the 

flutter speed, the oscillations are damped and the structure is stable (see Fig. 1.7c). 

When wind speed exceeds the flutter speed, the net damping becomes negative and the 

unstable oscillations occur (see Fig. 1.7e), resulting in eventual failure of the structure. 

 

Figure 1.7. An example of flap-pitch flutter 

 

Flutter is a well-known dynamic aeroelasticity phenomenon in the aerospace field. The 

investigations of flutter are generally based on the theory of aeroelasticity [15] and the 

theory of composite thin-walled structures [16]. In order to avoid flutter, a number of 

studies [17-19] have been carried out on aeroelastic optimisation of composite wing and 

helicopter blade structures.  

 

In terms of wind turbines, flutter has not yet been observed on commercial wind 

turbines [20]. However, the increasing size and flexibility of large wind turbine blades 

decreases torsional frequency, and therefore decreases flutter speed. Therefore, 

predicting flutter speed of the large wind turbine blades is a good practice in the design 

process of large wind turbines.  
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1.2.2.2. Edgewise Instability 

 

Modern wind turbine blades generally have an inherent positive aerodynamic damping 

for their flapwise motions but a relatively smaller, even negative aerodynamic damping 

for edgewise modes. Therefore, the edgewise instability is considered the most 

important instability problem for wind turbines [20].   

 

In the development of large wind turbines, some commercial wind turbine blades have 

suffered from the blade edgewise instability. In 1994, Stiesdal [21] firstly reported the 

edgewise instability problem on stall-regulated wind turbines with a 37m diameter rotor. 

This instability problem had not been observed on earlier wind turbines, but it quickly 

became a significant issue for large wind turbines with the increase in rotor size. 

Another example of the blades suffering from this instability problem is the APX40T 

blade [22], which was installed on a 600kW wind turbine with a 37m-diameter rotor. 

Fig. 1.8 depicts the edgewise oscillation measured at 85% span location of the APX40T 

blade at high wind speeds. As it can be seen from Fig. 1.8, violent edgewise oscillations 

are observed between 35s and 55s. The instability of the APX40T blade was caused by 

negative aerodynamic damping of the first edgewise mode. 

 

 

Figure 1.8. Edgewise oscillations of the APX40T blade at high winds (edgewise 

acceleration at 85% blade span) [22] 
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Edgewise instability is single DOF instability, and it occurs when edgewise 

aerodynamic damping coefficient becomes negative. As depicted in Fig 1.9 from Ref. 

[23], if an airfoil cross-section is harmonically translated along an axis 
Bx  (see Fig. 1.9a) 

and the direction of this axis 
RB  relative to the orientation 

Rx  of the wind turbine rotor 

plane is changed, the aerodynamic damping coefficient for the cross-section changes 

significantly. As it can be seen form Fig. 1.9b, For small 
RB  , which corresponds to in-

plane or edgewise vibration direction, the negative aerodynamic damping coefficient is 

observed even at low wind speeds. In order to avoid blade edgewise instability, 

predicting edgewise aerodynamic damping coefficient and exploring effective ways to 

damp edgewise oscillations becomes necessary.  

 

                         (a)                                                                 (b) 

Figure 1.9. Distribution of aerodynamic damping coefficient Bxxc __  for an airfoil 

cross-section against vibration direction 
RB  and three different wind speed [23] 

 

 1.3. Present Wind Turbine Aeroelastic Models 

 

Investigating the aeroelasticity of wind turbine blades needs a wind-turbine-specific 

aeroelastic model. One of the earliest wind turbine aeroelastic models, STALLVIB [24], 

was developed within the European Non-Nuclear Energy project JOULE III. This 

model was developed for predicting dynamic loads and investigating the edgewise 

instability problems. 

 

After the first attempts, a considerable number of aeroelastic models have been 

developed. The models being widely used in wind turbine research organisations and 

industrial practices are listed below with short descriptions.  
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 ADAMS/WT (Automatic Dynamic Analysis of Mechanical Systems – Wind 

Turbine) 

o ADAMS/WT is a wind-turbine-specific add-on for ADAMS, which is a 

widely used commercial multi-body dynamics software package. 

ADAMS/WT is developed by Mechanical Dynamics Inc. (MDI) with the 

help of National Renewable Energy Laboratory (NREL) [25]. 

 FAST (Fatigue, Aerodynamics, Structures, and Turbulence) 

o FAST has been developed by National Renewable Energy Laboratory 

(NREL) to model both two- and three-bladed horizontal-axis wind 

turbines. In 2005, Germanisher Lloyd (GL), one of the leading 

certification organisations in wind energy area, issued FAST a 

certification on its load calculation of onshore wind turbines [26]. 

 

 FLEX5 

o FLEX5 has been developed by the Fluid Mechanics Department at the 

Technical University of Denmark (DTU). This code is capable of 

simulating wind turbines with different configurations, e.g. turbines with 

one to three blades [27].  

 

 GAST (General Aerodynamic and Structural Prediction Tool for Wind Turbines) 

o GAST has been developed by the National Technical University of 

Athens. The code contains an additional module to generate turbulent 

wind fields and a post-processing module to perform fatigue analysis 

[28].  

 

 GH-Bladed 

o GH-Bladed is an integrated commercial software package developed by 

Garrad Hassan (GH) Ltd. GH-Bladed has a friendly windows-based 

graphical user interface (GUI), and it has been validated against 

experimental data for a number of wind turbines with different size and 

configurations [29]. 
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 HAWC2 (Horizontal Axis Wind Turbine Code 2nd generation) 

o HAWC2 has been developed by Technical University of Denmark 

(DTU). The code analyse the aeroelastic behaviour of horizontal axis 

wind turbine in time domain [30]. 

 

 PHATAS (Program for Horizontal Axis Wind Turbine Analysis Simulation) 

o PHATAS has been developed by ECN (Energy research Centre of the 

Netherlands) for predicting the dynamic behaviour and the 

corresponding loads on horizontal axis wind turbines. PHATAS includes 

additional programs used to generate load-case files following IEC or 

GL [31]. 

 

The features of the above seven aeroelastic models are summarised in Table 1.1. From 

Table 1.1 we can see that most of the aeroelastic models use blade element momentum 

(BEM) theory as the aerodynamic part. For the structural part, all of these models 

represent wind turbine blades as a series of one-dimensional (1D) beam elements, and 

requires blade cross-sectional properties as input. The discretisation method used in 

these models can be categorised into three types of approach: modal approach (MA), 

multi-body dynamics (MBD) and 1D finite-element method (FEM).  

 

Table 1.1. Overview of wind turbine aeroelastic models 

Name Structural part Aerodynamic part Require blade 

cross-sectional 

properties as 

input? 

Blade 

representation 

Discretisation 

method 

ADAMS/WT 1D beam MBD BEM Yes 

FAST 1D beam MA BEM Yes 

FLEX5 1D beam MA BEM Yes 

GAST 1D beam 1D FEM Free wake panel Yes 

GH-Bladed 1D beam MA BEM Yes 

HAWC2 1D beam MBD BEM Yes 

PHATAS 1D beam 1D FEM  BEM Yes 
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1.4. Problem Statement 

 

As shown in Table 1.1, almost all aeroelastic models for wind turbines represent the 

blades as a series of 1D beam elements. In order to construct the beam elements for 

aeroelastic modelling, the blade cross-sectional properties (such as mass per unit length 

and cross-sectional stiffness) are essential information. Obtaining these properties 

requires a specialised cross-sectional analysis model. However, existing cross-sectional 

analysis models are either time-consuming or inaccurate [32]. Therefore, it is necessary 

to develop a cross-sectional analysis model, which is capable of rapidly and accurately 

extracting cross-sectional properties of wind turbine composite blades for aeroelastic 

modelling. 

 

Additionally, most existing aeroelastic models are linear models based on assumption of 

small blade deflections, and do not take account of large deflection effects on modelling 

responses and loads [20].  However, with the increasing size and flexibility of large 

wind turbine blades, this assumption is not valid anymore because the blades often 

experience large deflections, which introduce significant geometric nonlinearities. 

Therefore, developing a nonlinear aeroelastic model to take account of geometric 

nonlinearities is essential for reliable aeroelastic modelling of large wind turbine blades. 

 

So far, only a few nonlinear aeroelastic models have been developed. One example is 

HAWC2 (Horizontal Axis Wind turbine simulation Code 2nd generation) [30], which is 

an in-house nonlinear aeroelastic model developed by Technical University of Denmark 

(DTU). The aerodynamic model of HAWC2 is based on BEM and its structural model 

is based on a MBD formulation where each body is a linear Timoshenko beam element, 

which is an extension of Bernoulli-Euler beam element [33] to cover shear deformation. 

The geometric nonlinearities are captured by the MBD formulation, in which the 

flexible blades are modelled, for example, by 40 bodies each. However, if only one 

body per blade is used, HAWC2 will become a linear model because the Timoshenko 

beam model in each body is linear.  In other words, the results of HAWC2 are sensitive 

to the number of bodies, which one chooses to model the flexible blade. Additionally, 

HAWC2 contains assumption that relative displacement between two adjacent bodies is 

small and it assumes some simplifications for the kinematic equations, which introduces 

uncertainties in its results. 
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An alternative way to handle the geometric nonlinearities is the geometrically exact 

beam theory (GEBT) [34], in which the deformed beam geometry, i.e. the 

displacements and rotations of the beam reference line, is represented exactly. Various 

nonlinear formulations have been proposed for GEBT, which can be classified on the 

basis of solution methodology, namely displacement-based formulation, strain-based 

formulation and mixed-form formulation [35]. The main differences between these 

formulations are the definition of the dependent variables and the treatment of the 

rotation of the beam reference line in the solution. The displacement-based formulation 

defines the displacements and rotations of the beam reference line as the irreducible set 

of dependent variables, which include high order nonlinearities. The main advantage of 

this formulation is that the displacement constraints can be easily applied. However, the 

solution of this formulation demands high computational cost due to its high order 

nonlinearities. In order to solve the geometrically nonlinear beam problems more 

efficiently, an alternative way is the strain-based formulation, which uses the strains and 

curvatures of the beam reference line as the primary variables to represent the beam 

deformation. A more efficient way to solve the geometrically nonlinear beams is to use 

the mixed-form formulation proposed by Hodges [36], which introduces Lagrange 

multipliers to satisfy the equations of motion with constitutive and kinematic 

relationships. The mixed-form formulation allows the lowest order of shape functions 

for all dependent variables, which makes it a viable solution for modelling geometric 

nonlinearities and has been widely used for flexible aircraft wings [37].  

 

The similarities between the aircraft wings and wind turbine blades, i.e. both of them 

are long, slender and flexible structures, provide us with the possibility to borrow the 

aeroelastic modelling techniques from aircraft applications for wind turbine blades. To 

the best of the author’s knowledge, the combination of BEM and the mixed-form 

formulation of GEBT for aeroelastic modelling of wind turbine blades has not been 

found in the literature. 

 

1.5. Aims and Objectives  

 

This project aims to provide a reliable and efficient aeroelastic modelling of large wind 

turbine blades through developing 1) a cross-sectional analysis model, which can 

rapidly and accurately extract cross-sectional properties of wind turbine composite 
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blades for aeroelastic modelling of the blades; and 2) a nonlinear aeroelastic model, 

which is capable of handling large blade deflections. 

 

The objectives of the project are as follows: 

 To review the aerodynamic model, structural model and cross-sectional analysis 

model used in aeroelastic modelling of wind turbine blades.  

 To develop a cross-sectional analysis model for efficiently and accurately extracting 

the cross-sectional properties of wind turbine blades using MATLAB. 

 To develop an aerodynamic model of wind turbine blades based on combining the 

blade element momentum (BEM) model with the Beddoes-Leishman (BL) dynamic 

stall model using MATLAB. 

 To develop a nonlinear structural model of wind turbine blades based on mixed-

form formulation of geometrically exact beam theory (GEBT). 

 To couple the developed aerodynamic model and nonlinear structural model to 

develop a nonlinear aeroelastic model. 

 To apply the developed nonlinear aeroelastic model to the aeroelastic simulation and 

stability analysis of large wind turbine blades. 

 

1.6. Outline of Thesis  

 

This thesis is organised as follows. 

 

Chapter 2 reviews the key components in aeroelastic modelling, including aerodynamic 

models, structural models and cross-sectional analysis models. 

 

Chapter 3 summarises the development of a cross-sectional analysis model for 

calculating cross-sectional properties of wind turbine composite blades. 

 

Chapter 4 details the blade structural modelling based on mixed-form formulation of 

GEBT. 

 

Chapter 5 presents the methods used for blade load modelling. Aerodynamic loads, 

gravity loads, centrifugal loads and applied loads are discussed. 
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Chapter 6 presents the implementation of the nonlinear aeroelastic model for wind 

turbine blades by coupling the blade structural modelling module and blade load 

modelling module. The computational scheme and flowchart of the aeroelastic model 

are presented. The strategies for applying the nonlinear aeroelastic model to four types 

of studies, i.e. static analysis, modal analysis, time-dependent analysis and stability 

analysis, are illustrated. 

 

Chapter 7 presents the validation of the nonlinear aeroelastic model. The main 

components of the nonlinear aeroelastic model, i.e. the aerodynamic part (based on 

combining the BEM model with the BL dynamic stall model) and the structural part 

(based on mixed-form formulation of GEBT), are validated separately. Then a case 

study is performed to validate the time-dependent aeroelastic simulation results.  

 

Chapter 8 presents the application of the nonlinear aeroelastic model, including the 

aeroelastic simulation of a parked wind turbine blade and the stability analysis of the 

blade. 

 

Chapter 9 concludes the research work and presents some suggestions for future 

research. 

 

1.7. Contributions  

 

A summary of the research work conducted during the three-year PhD study is 

presented below. This comprises topics which will not be discussed in detail in this 

thesis. 

 

 A cross-sectional analysis model, which is capable of extracting cross-sectional 

properties of wind turbine blades in a fast and reliable way, has been developed. A 

journal paper on the cross-sectional analysis model has been published in 

Renewable Energy [32] (Appendix G1).  

 

 A nonlinear aeroelastic model based on combining BEM theory with geometrically 

exact beam theory (GEBT) has been developed. A journal paper on the nonlinear 

aeroelastic model has been published in Energy [38]  (Appendix G2). 
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 An efficient and reliable aerodynamic model for wind turbine blades has been 

developed using MATLAB based on BEM theory. The high efficiency of the 

aerodynamic model makes it suitable for optimisation design, which commonly 

involves a large number of case studies. Based on the aerodynamic model and 

different optimisation strategies, two academic papers have been completed. One 

paper [39] (Appendix G3), which proposes an optimal blade design strategy for a 

fixed-pitch fixed-speed wind turbine through optimised linearisation of the blade 

chord and twist angle distributions, has been published in Renewable Energy. The 

other paper [40] (Appendix G4), which optimises aerodynamic shape of wind 

turbine blades considering Reynolds number effects, has been delivered in the form 

of an oral presentation at international conference on Wind Energy: Materials, 

Engineering and Policies (WEMEP 2012). 

 

 Contributions have been made to a journal paper [41] (Appendix G5) on the 

optimisation of primary aerodynamic design parameters for fixed-pitch fixed-speed 

wind turbines. 
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CHAPTER 2    LITERATURE REVIEW 

 

2.1. Introduction 

 

Due to the fact that aeroelastic effects are introduced by the interaction of the 

aerodynamic loads and structural dynamics, an aeroelastic model should contain an 

aerodynamic part to calculate the aerodynamic loads and a structural part to determine 

the structural dynamic responses. In aeroelastic modelling, wind turbine blade structure 

is often represented as a series of 1D beam elements, which are characterised by cross-

sectional properties of the blade, such as mass per unit length and cross-sectional 

stiffness. It should be noted that wind turbine blades are generally made of composite 

materials and have complicated structural layout. Obtaining the cross-sectional 

properties of the composite blades is quite challenging and requires a specialised cross-

sectional analysis model. Fig. 2.1 presents the components of aeroelastic modelling of 

wind turbine blades, and each component is reviewed in this chapter. 

 

Figure 2.1. Components of aeroelastic modelling of wind turbine blades 

 

This chapter is structured as follows. Sections 2.2 and 2.3 review the aerodynamic 

models and the structural models, respectively. Section 2.4 reviews cross-sectional 

analysis models used for extracting cross-sectional properties of wind turbine composite 

blades for aeroelastic modelling. 
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2.2. Review of Aerodynamic Models 

 

In order to perform aeroelastic modelling of wind turbine blades, an aerodynamic model 

should be included to calculate the aerodynamic loads exerted by the airflow passing on 

the blades. Four types of aerodynamic models have been used in aeroelastic modelling 

of wind turbine blades, including blade element momentum (BEM) model, vortex 

model, actuator type model and computational fluid dynamic (CFD) model.  

 

2.2.1. Blade Element Momentum (BEM) Model 

 

Compared to other aerodynamic models, the BEM model is fast and able to provide 

accurate results when reliable airfoil aerodynamic data are available. For this reason, 

BEM model has been used for the aerodynamic part by most wind turbine aeroelastic 

models [42]. 

 

The BEM model was originally proposed by Glauert [43] by combining blade element 

theory and blade momentum theory. The blade element theory discretises the blade into 

several elements and ignores the mutual influence between two adjacent elements. The 

aerodynamic loads on each element depend on its local airfoil characteristics, i.e. its lift 

and drag coefficients. The sum of these loads yields the total loads on the blade. The 

blade momentum theory introduces axial induction factor a  and angular induction factor 

a  to calculate the induced velocity in the axial and tangential directions, respectively. 

The induced velocity affects the angle of attack of the blade and therefore influences the 

aerodynamic loads calculated by the above blade element theory.  Combining blade 

element theory and blade momentum theory provides a solution to obtain the 

performance parameters of each blade element through an iterative procedure. 

 

The original BEM model has several limitations which are usually found in wind 

turbine applications. The majority of these limitations have been overcome through 

introducing empirical corrections borrowed from helicopter applications or based on 

wind turbine experience. 

 

One of the main limitations of the original BEM model is that it ignores the effects of 

vortices shedding from the blade tip on the induced velocity. Practically, these effects 

play a significant role in the induced velocity distribution along the blade, especially the 
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region near the blade tip. In order to compensate for this deficiency in the BEM model, 

Prandtl [44] proposed a tip loss correction factor through modelling the wake of the 

wind turbine as vortex sheets. Prandtl tip loss correction is simple and efficient and also 

improves the accuracy in the predictions of induced velocity distribution.  

 

Another limitation of the original BEM model is that the model becomes invalid when 

the axial induction factor a  is larger than around 0.4. This occurs for the cases that wind 

turbines operate at high tip speed ratios, e.g. fixed-speed wind turbines at low wind 

speeds, as the blade gets into turbulent wake state ( 5.0a ).  For the turbulent wake 

state, the wind velocity behind the blade calculated based on blade momentum theory 

becomes negative, which is obviously unreasonable.  The original BEM model is 

incapable of providing reasonable thrust coefficient when the blade is operating at the 

turbulent wake state. In order to overcome this limitation of the BEM model, several 

empirical models have been proposed, such as Glauert model [45], Spera model [46], 

and GH-Bladed model [47]. The comparison of these empirical models in Ref. [48] 

shows that all these models agree well with experimental data except  the Sepra model. 

 

The original BEM model is based on quasi-steady assumption, i.e. the instantaneous 

aerodynamic loads on a wind turbine blade are assumed to be identical with those which 

the blade would experience in steady motion at the same instantaneous wind speed and 

angle of attack. The quasi-steady BEM model can also be expanded to an unsteady 

model by taking account of unsteady effects, such as dynamic inflow and dynamic stall. 

 

The induced velocities calculated using original BEM model are quasi-steady, which 

implies the wake is in equilibrium with the inflow. Practically, if the inflow is changed, 

before a new equilibrium is achieved there exists a time delay, which is a function of 

rotor diameter and wind speed [42]. Fig. 2.2 depicts the predicted and measured 

dynamic response on the rotor shaft torque of the Tjaereborg 2MW wind turbine [49] 

for a sudden change in the pitch angle. At s2t , the pitch angle is changed from 0  to 

7.3 , reducing the local angle of attack. The rotor shaft torque firstly decreases from 

260 to 150 kNm, and then it gradually increases, taking approximately 10s delay to 

reach a new equilibrium state with value of around 220 kNm. At s32t , the pitch 

angle is adjusted back to 0 , and a similar time delay in rotor-shaft torque response is 

observed. Taking account of this time delay needs a dynamic inflow model. Several 

empirical dynamic inflow models have been developed, such as Øye model [50] and 
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Pitt-Peters model [51]. The comparison of these models in Ref. [52] shows that all these 

models agree well with the trends of measurements.  

 

Figure 2.2. Predicted and measured dynamic response on the rotor shaft torque of the 

Tjaereborg 2MW wind turbine for a sudden change in the pitch angle [42] 

 

Dynamic stall is a phenomenon associated with the separation of the boundary layer. 

During the dynamic stall, the boundary layer initially separates at the trailing edge, and 

gradually shifts to leading edge with the increasing angles of attack [20]. The angle of 

attack of rotating blades changes dynamically due to sudden change in wind, such as 

wind shear and atmospheric turbulence. The response introduced by changing angle of 

attack depends on whether the boundary layer is separated and has a time delay. 

Dynamic stall phenomenon has been evident from the measurement of aerodynamic 

coefficients on practical wind turbine blades. One example illustrated in Fig. 2.3 is the 

dynamic stall event measured at the 30% span position of the Combined Experiment 

Rotor (CER). As can be seen from Fig. 2.3, due to dynamic stall effects, airfoil normal 

force coefficient NC  changes dynamically with angle of attack and is significantly 

different from the value measured in static conditions. Several dynamic stall models 

have been developed, such as Beddoes-Leishman (BL) model [53], ONERA model [54] 

and Boeing-Vertol (BV) model [55]. The most widely used model is the BL model, 

which takes account of attached flow, leading edge separation, trailing edge separation, 
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and unsteady vortex. The BL model was initially developed for calculating the 

performance of helicopter rotors and has been applied successfully by Harris [56] and 

Galbraith [57] for predicting the performance of wind turbines. 

 

Figure 2.3. Dynamic stall event measured at the 30% span position of the CER [58] 

 

The validity of the BEM model has been extensively established by comparing with 

experimental data [59]. Because it is simple, efficient and well-proven, the BEM model 

has become a standard method for analyzing aerodynamic performance of wind turbine 

blades.  

 

2.2.2. Vortex Model 

 

In order to better model the wake dynamics of wind turbines, the vortex model [60], in 

which the trailing and shed vorticity in the wake are represented by lifting lines or 

surfaces, also found applications in aeroelastic models.  

 

The wake in vortex models can be calculated using either prescribed-wake method or 

free-wake method.   
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In a prescribed-wake method, the wake shedding from the blade is assumed rigid and 

described using semi-empirical formulations. The applications of prescribed-wake 

vortex models in analysing wakes of wind turbine blades can be found in Refs. [61, 62]. 

The prescribed wake in these models saves computational time but limits their 

application to steady flow.  

 

A free-wake method, in which the wake can be varied freely both in time and space, is 

necessary for unsteady flow. Free-wake vortex models have been applied to wind 

turbine blades to study the unsteady wakes of the blades [63, 64]. The free-wake 

method used in these models enables them capable of handling complex unsteady flow, 

e.g. dynamic inflow. However, free-wake method is much more computationally 

expensive than the prescribed-wake method, and it tends to diverge due to intrinsic 

singularities of the vortex panels in the developing wake [42]. 

 

Compared to the BEM model, vortex models require more computational resources. 

Additionally, viscous effects are ignored in these models, which limit their application 

on wind turbines to some extent  [42]. 

  

2.2.3. Actuator Type Model 

 

In the actuator type model, the blade is represented by a disc/line/surface with 

distributed loads on the disc/line/surface. Various forms of actuator type model have 

been developed, which can be classified based on the representation of the blade, 

namely actuator disc model, actuator line model, and actuator surface model.  

 

The actuator disc model is possibly the earliest model used for studying rotor 

performance. The classical actuator disc mode, which is derived from 1D momentum 

theory initially developed by Rankine [65] and Froude [66], is ended up with BEM 

model [43]. In its general form, however, the actuator disc can also be numerically 

combined with the Euler or Navier-Stokes equations. 

 

In a numerical actuator disc model, the Euler or Navier-Stokes formulations are 

typically solved by finite volume or difference scheme, as in a usual CFD calculation. 

However, the flow around the blades and the geometry of the blades are not resolved. 

The surface of the blade is replaced by distribution forces acting on the incoming flow.  
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In the simple case of a uniformly loaded actuator disc, the force acting on the disc is 

determined by thrust coefficient and reference wind speed, which can be obtained using 

an iterative procedure [67]. 

 

In the case of non-uniformly loaded actuator disc, the force acting on the disc varies 

along radial location but remains constant over an annulus. Similar to BEM, the local 

forces on the blades can be calculated using lift and drag coefficients of section airfoil. 

A relevant issue is the determination of the local angle of attack to find lift and drag 

coefficients. Shen [68] provided a method to determine the local angle of attack 

according to information slightly upstream of the blade plane.  

 

Sørensen [69] extended the non-uniformly loaded actuator disc method to the actuator 

line approach, in which the blade forces was represented using a line with distributed 

loads. Mikkelsen [70] studied the actuator line approach in detail and applied it in 

EllipSys3D, a finite volume program for solving incompressible Navier-Stokes 

formulations [71]. 

 

Shen [72, 73] further extended the actuator line approach to the actuator surface method 

and used it to analyse vertical axis wind turbines. The blade in the actuator surface 

method was represented by a planar surface. Sibuet Watters and Masson proposed their 

actuator surface method using a slightly different approach [74-76]. 

 

The actuator surface method needs not only lift and drag coefficient of airfoils, but also 

the skin friction and pressure distribution on the airfoil surface. Dobrev [77] used a 

linear function which was determined from lift and drag coefficients to represent the 

pressure distribution in the actuator surface method.  

 

The actuator type models mentioned above should be granted the credit of providing a 

better insight into the three-dimensional (3D) flow development and the credit of 

contributing to a better understanding of wake dynamics. However, solving the Navier-

Stokes equations is more time-consuming than BEM, and the actuator type models, in 

which loads on the blade are still calculated based on blade element theory and 

tabulated airfoil data, does not predict aerodynamic loads more accurately than the 

BEM model [78].  
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2.2.4. Computational Fluid Dynamics (CFD) Model 

 

With the advancement of computing resources, CFD has received great attention in 

recent years. The CFD method solves the governing equations of fluid flow at 

thousands of positions on and around the blade in an iterative process, which does not 

require predetermined airfoil aerodynamic data for the calculation. In addition to 

aerodynamic load calculations, CFD is also a valuable tool to visualize the flow field 

around the blade, as shown in Fig. 2.4. 

 

Figure 2.4. Visualised flow field around the blade using CFD [79] 

 

To perform CFD modelling of wind turbine blades, the 3D blade geometry needs to be 

exactly described in a digitised format. Wind turbine blades often have complex 

geometric shape with varied spanwise cross-section information, i.e. airfoil shape, chord 

and twist angle distributions. The 3D blade geometry is generally constructed using 

computer aided design (CAD) software, such as SolidWorks [80] and UG [81].  

 

Due to the complex geometry of a wind turbine blade, it is quite challenging to generate 

appropriate mesh for the CFD modelling of the blade. There are three typical types of 

mesh, including structured mesh, unstructured mesh, and hybrid mesh, as illustrated in 

Fig. 2.5.  Structured mesh has advantages in high resolution, easy convergence and low 

memory usage. However, it is difficult and time-consuming to generate structured mesh 

for complex geometries, such as highly twisted blades. The major advantage of 

unstructured mesh is the ease of mesh generation for complex geometries. However, 

unstructured mesh consumes more computational time, as it generally results in higher 

cell count than structured mesh filling the same volume. Hybrid mesh, also known as 

adaptive mesh, is the combination of structured mesh and unstructured mesh. In hybrid 

mesh, structured mesh is used for important regions, such as boundary layers, while 
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unstructured mesh is used elsewhere. Due to the flexibility of hybrid mesh, it has been 

widely used for the mesh generation of CFD modelling of wind turbine blades [82-84].  

   

a. Structured mesh      b. Unstructured mesh       c. Hybrid mesh 

Figure 2.5. CFD mesh type 

 

The mathematical fundamentals of CFD are the Navier-Stokes (NS) equations [85], 

which are the governing equations of fluids derived from the momentum, energy, and 

continuity conservations. 

 

The discretisation of NS equations can be achieved through three typical discretisation 

methods, including finite-volume method (FVM), finite-element method (FEM) and 

finite-difference method (FDM). FVM is a common method used in CFD modelling, as 

it has advantages in solution speed and memory usage [86]. FEM is mainly utilized in 

structural analysis, but it can also be applied to fluids. For instance, ANSYS CFX [87], 

a widely used commercial CFD software package, is based on FEM. Compared to FVM, 

FEM is much more stable, but it consumes more memory and has slower solution times 

[88]. FDM is easy to implement, but it is limited to simple grids. Currently, FDM is 

only utilised in few specialised CFD codes. 

 

Directly solving NS equations, known as direct numerical simulation (DNS), requires 

huge computational resources, which exceed the capacity of current computers. In order 

to apply NS equations to solve practical engineering problems on wind turbine blades, 

some kind of turbulence modelling are required. Currently, turbulence models are 

mainly derived based on Reynolds Averaged NS equations (RANS) [89], which give 

approximate time-averaged solutions to NS equations. Various RANS based turbulence 

models have been used for wind turbine applications, such as k  SST model [90], 

k  model [91] and Spalart-Allmaras model [92]. Among these models, k  SST 

model is found the most successful one for both 2D airfoil and 3D blade CFD modelling.  

 

A number of studies have been performed on the CFD modelling of stall-regulated wind 

turbines, showing that all RANS based turbulence models fail to accurately model the 
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stalled flow at high angle of attack [42]. Possible solutions to this problem are to use 

more complicated turbulence modelling approaches, such as 1) large eddy simulations 

(LES) [93], which retains large eddies and ignore small eddies in solving NS equations; 

and 2) detached eddy simulations (DES) [94], which is a hybrid method combining 

RANS and LES. However, both LES and DES are much more computationally costly 

than RANS, as they require considerably finer computational meshes and the 

computations have to be carried out with time accurate algorithms [42]. 

 

Currently, CFD is still computationally too expensive and not efficient enough for fluid-

structure interaction analysis, which is the main obstacle of its industrial applications in 

aeroelastic modelling [20].  

 

2.3. Review of Structural Models 

 

In order to perform aeroelastic modelling of wind turbine blades, a structural model 

needs to be included to determine the structural dynamic response of the blade. 

Structural models used in aeroelastic modelling of wind turbine blades can be roughly 

categorized into two groups, i.e. 3D finite-element method (FEM) model with shell 

elements and 1D equivalent beam model with beam elements.  In order to discretise the 

blade into a series of 1D beam elements, three discretisation methods are often used in 

aeroelastic modelling of wind turbine blades [20], including modal approach, multi-

body dynamics (MBD) and 1D finite-element method (FEM).  

 

2.3.1. 3D Finite-element Method (FEM) Model and 1D Beam Model 

 

Wind turbine blade structures can be modelled using either 3D FEM model with shell 

elements or 1D beam model with beam elements. 

 

2.3.1.1. 3D FEM Model 

 

In 3D FEM model, wind turbine composite blades are generally constructed using 3D 

composite shell elements, which are capable of describing composite layer 

characteristics throughout the shell thickness. An example of 3D FEM model of a wind 

turbine composite blade is illustrated in Fig. 2.6. 
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Figure 2.6. 3D FEM model of a wind turbine composite blade 

 

Due to the complicated aerodynamic shape and structural layout of a wind turbine 

composite blade, generating a 3D FEM model of the blade using general-purpose 

commercial finite-element packages, such as ANSYS [95] and Abaqus [96], is tedious 

and time-consuming. In order to facilitate the generation of 3D FEM models of wind 

turbine blades, Laird developed a specialised tool called NuMAD (Numerical 

Manufacturing And Design) [97], which is a stand-alone pre-processor for ANSYS. 

NuMAD provides a user-friendly graphic user interface (GUI), as depicted in Fig. 2.7,  

for defining the blade geometry information (such as chord and twist angle distributions) 

and the blade structural layout information (such as shear web locations and composites 

layup). The output from NuMAD is a series of ANSYS Parametric Design Language 

(APDL) commands used to generate the 3D FEM model of the blade in ANSYS.  
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Figure 2.7. GUI of NuMAD 

 

3D FEM is an incredible tool for examining the stress distribution within a blade, which 

is applicable and valuable for “static” stress analysis. However, 3D FEM is 

computationally too expensive and this drawback limits its application in aeroelastic 

modelling, which demands continuous fluid-structure interaction, i.e. interactive 

aerodynamic loads calculation and structure deflection analysis.  

 

2.3.1.2. 1D Beam Model 

 

Wind turbine blades are slender structures having one of their dimensions significantly 

larger than the other two. Such structures can be efficiently modelled using beam 

models. The beam axis is defined along the largest dimension, and a cross-section 

perpendicular to this axis is considered smoothly varying along the span of the beam.  A 

number of beam models exist and they can be roughly categorised into two groups, i.e. 

linear beam model and nonlinear beam model. 

 

Two widely used linear beam models are the Euler-Bernoulli beam model [33] and the 

Timoshenko beam model [98]. The Euler-Bernoulli beam model, also known as 

classical beam model, deals with slender beams subjected to extensional, torsional, and 

bending loads. The shear deformation effects are ignored in the model. Timoshenko 

beam model was developed by Timoshenko in the early 20th century. The model takes 

account of shear deformation effects, making it more suitable for describing the 

behaviour of thick and short beams than the Euler-Bernoulli beam model. Regarding 
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wind turbine blades, which generally have thin and slender structure, Timoshenko beam 

model does not show much difference from Euler-Bernoulli beam model. Due to its 

easy implementation, Euler-Bernoulli beam model has been used by most structural 

models in aeroelastic modelling of wind turbine blades [42]. 

 

Both Euler-Bernoulli beam model and Timoshenko beam model contain the assumption 

of small deflections. However, this assumption is not valid anymore for very flexible 

blade design because such blades often experience large deflections. Handling large 

deflections requires a nonlinear beam model, and a number of nonlinear beam models 

have been proposed. A well-known example is the geometrically exact beam theory 

(GEBT) [99], in which the deformed beam geometry (i.e. the displacements and 

rotations of the beam reference line) is represented exactly.  

 

Compared to 3D FEM, the 1D beam model is much fast and saves much computational 

time and is capable of providing accurate results if constructed properly [100]. 

Therefore, almost all aeroelastic codes represent the blades as a series of 1D beam 

elements instead of 3D shell elements [20, 42]. 

 

2.3.2. Discretisation Methods of 1D Beam Model 

 

In order to discretise the blade into a series of 1D beam elements, three discretisation 

methods are often used in aeroelastic modelling of wind turbine blades [20], i.e.  modal 

approach, multi-body dynamics (MBD) and 1D finite-element method (FEM).  

 

2.3.2.1.Modal Approach 

 

In modal approach, the deflection shape of the flexible bodies, such as the blade and 

tower, is described as a linear combination of a set of mode shapes, which are usually 

obtained from a finite element pre-processor. 

 

Using mode shapes is an effective way to reduce the number of degrees of freedom 

(DOFs) and therefore reduce the size of matrices and speed up the computations per 

time step. Therefore, the modal approach is computationally efficient, resulting in rapid 

simulation. For this reason, the majority of the present commercial wind turbine 
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aeroelastic models use the modal approach to calculate the structural dynamics of the 

blade [101]. 

 

However, the flexibility of the modal approach is restricted somewhat by its restraints 

on the type and number of DOF allowed in the structure. For instance, FLEX5 [27], 

which is a commercially widely used aeroelastic analysis model based on the modal 

approach, uses only the initial three or four (two flapwise and one or two edgewise) 

eigenmodes for the blade.  

 

Another major limitation of the modal approach is that the approach is inherently 

limited to linear analysis due to its linear assumption, i.e. the deflection shape of the 

flexible components must be a linear combination of the provided mode shapes. This 

means that the modal approach is not capable of handling large deflections of the 

flexible blade.  

 

Additionally, the accuracy of the modal approach greatly depends on the prescribed 

mode shapes. In order to obtain the mode shapes of the blade, a finite-element based 

pre-processor is required. 

 

2.3.2.2.Multi-body Dynamics (MBD) Method 

 

In MBD method, the structure is discretised into a number of bodies, which can be 

either flexible or rigid. These bodies are interconnected by force elements (such as 

springs) or kinematic constraints (such as joints) [102]. The dynamics of the structure 

can then be evaluated using equations of motion, which are usually derived from 

Lagrange’s equations or Newtow-Euler equations.  

 

The MBD method benefits from high modelling flexibility due to its capability to 

generate and couple together arbitrary number of separate bodies in a single dynamic 

system. Compared to modal approach, the MBD method requires more computational 

recourses, but it enables an increased number of DOF to be modelled. 
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2.3.2.3.1D FEM Method 

 

The 1D FEM approach finds approximate solutions of 1D beam problems by the 

analysis of an assemblage of finite elements, which are interconnected by nodal points.  

The 1D FEM allows a more comprehensive and accurate deformation description of 

wind turbine blades, and it only requires slightly more computational resources than the 

other two discretisation approaches. Therefore, the 1D FEM has been adopted by most 

of recently developed aeroelastic models of wind turbine blades [42]. 

 

2.4. Review of Cross-sectional Models 

 

Wind turbine blades generally are made of composite materials due to their high 

strength-to-weight ratio and good fatigue performance. To construct the 1D beam model 

of wind turbine blades for aeroelastic modelling, the cross-sectional properties of the 

blade, such as mass per unit length and sectional stiffness, are essential information.  

Fig. 2.8 depicts the structural layout of a typical blade cross-section, including three 

cells with two shear webs.  As can be seen from Fig. 2.8, each cell includes several 

laminates, each laminate is made up of several plies, and each ply is a composite mat 

placed at different angles, resulting in a complicated structural topology. Due to the 

intrinsic nature of composite materials and the complexity of blade structural topologies, 

it is quite challenging to obtain the cross-sectional properties of a wind turbine blade. 

 

Figure 2.8. Structural layout of a typical blade cross-section [103] 
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In order to obtain the cross-sectional properties of wind turbine blades, various cross-

sectional analysis models have been developed, which can be categorised into three 

groups, i.e. 3D finite-element method (FEM) based model, 2D FEM based model and 

classical lamination theory (CLT) based model.  

 

2.4.1. 3D FEM Based Model 

 

The most sophisticated method to extract the cross-sectional properties of wind turbine 

blades is based on 3D FEM. 3D FEM, despite their ability for accurate stress and 

displacement analysis, cannot directly yield the cross-sectional properties of wind 

turbine blades. It relies on computationally complicated post-processing of force-

displacement data [104]. One such post-processing tool is BPE (Blade Properties 

Extractor) [105], which is developed by Sandia National Laboratories and Global 

Energy Concepts. Currently, BPE is a module of NuMAD (Numerical Manufacturing 

And Design) [97], which is a windows based pre/post-processor to generate the 3D 

FEM models of wind turbine blades. BPE applies a series of unit loads at the blade tip 

and transfers the displacement results of the 3D FEM model of the blade to a series of 

MATLAB routines, which extract the stiffness matrices for the equivalent beam 

elements. In principle, BPE should be able to provide the most accurate cross-sectional 

properties because all 3D information can be captured by the 3D FEM model. However, 

there are seemingly several challenges facing this method. Firstly, application of loads 

must be performed carefully to minimize the boundary layer effects. Additionally, the 

cross-sectional properties estimated by BPE are sensitive to the length of the blade 

segment, which one chooses to perform the finite-element analysis. Changing the length 

of the blade segment may even result in a singular stiffness matrix under some extreme 

situations [106].  

 

2.4.2. 2D FEM Based Model 

 

Several other cross-sectional analysis tools based on 2D finite-element techniques have 

also been developed. Cesnik and Hodges [107] developed VABS (Variational 

Asymptotic Beam Sectional analysis) based on variational asymptotic method, which 

replaces a 3D structural model with a 2D model in terms of an asymptotic series of 

several small parameters of the structure. Two other examples of applying variational 

asymptotic method to composite beam analysis can be found in Refs. [108, 109]. VABS 
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requires a 2D finite-element discretisation of the cross-section to generate its input files, 

which are the 2D mesh of the cross-section and the corresponding materials. For a 

practical wind turbine blade made of layers of composites, the generation of VABS 

input files is very tedious and requires a separate pre-processor called PreVABS [110]. 

Blasques [111] developed a cross-sectional analysis tool called BECAS (BEam Cross 

section Analysis Software) based on anisotropic beam theory, which is originally 

presented by Gianotto et al. [112] for estimating the stiffness and the stresses of 

inhomogeneous anisotropic beams. Similar to VABS, BECAS also requires a 2D finite-

element discretisation of the cross-section. A separate pre-processor called 

Aifoil2BECAS [113], which is a python program, is needed to generate the input files 

for BECAS. Currently, the cross-section in Airfoil2BECAS is limited to 8 distinct 

regions, where layup and thickness information can be assigned.  

 

2.4.3. Classical Lamination Theory (CLT) Based Model 

 

Compared to the finite-element techniques, classical lamination theory (CLT) [114], 

which is an extension of the classical plate theory [115] to laminated plates, is fast and 

reasonably accurate. CLT can be used to combine properties and the angle of each ply 

in a pre-specified stacking sequence to calculate the overall effective performance for a 

laminate structure. Based on several reasonable assumptions, such as plane stress and 

linear strain, CLT transfers a complicated 3D elasticity problem to a solvable 2D 

problem [116]. Among the above assumptions, the assumption ‘each ply is under the 

condition of plane stress’ is acceptable for composite blade due to the fact that wind 

turbine blades are thin-walled structures of composites. 

 

CLT has been widely used for analysing structural performance of composite materials 

[117, 118]. In terms of composite blades, Bir [104, 119] developed PreComp (Pre-

processor for computing Composite blade properties) at National Renewable Energy 

Laboratory (NREL) based on CLT. PreComp does not need a separate pre-processor to 

generate the input files, which are the geometric shape and internal structural layout of 

the blades, and allows an arbitrary number of webs and a general layup of composite 

laminates. Due to its efficiency, PreComp has been widely used in cross-sectional 

analysis of wind turbine composite blades [120-122]. However, PreComp ignores the 

effects of shear webs in the calculation of the torsional stiffness. In other words, if the 

number of webs on a cross-section is changed, no change in torsional stiffness will be 
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observed using PreComp. This is invalid for a practical blade cross-section, where the 

torsional stiffness will be enhanced as the number of shear webs increases. 

 

2.5. Summary 

 

This chapter reviewed the key elements in aeroelastic modelling of wind turbine blades, 

including aerodynamic models, structural model and cross-sectional analysis models. 

 

For the aerodynamic part of aeroelastic modelling of wind turbine blades, there are four 

typical types of aerodynamic models, including blade element momentum (BEM) 

model, vortex model, actuator type model and computational fluid dynamic (CFD) 

model. Compared to other aerodynamic models, BEM model is fast and able to provide 

accurate results when reliable airfoil data are available. For this reason, BEM model is 

chosen as the aerodynamic part of aeroelastic modelling in this thesis. 

 

For the structural part of aeroelastic modelling of wind turbine blades, the blade 

structure can be modelled using either 3D finite-element method (FEM) model with 

shell elements or 1D beam model with beam elements. Compared to 3D FEM, 1D beam 

model is much fast and saves much computational time and is capable of providing 

accurate results if constructed properly. For this reason, in this thesis, wind turbine 

blade structure is represented as a series of 1D beam elements instead of 3D shell 

elements. 

 

In order to discretise the blade into a series of 1D beam elements, three discretisation 

methods are often used in aeroelastic modelling of wind turbine blades, including modal 

approach, multi-body dynamics (MBD) and 1D finite-element method (FEM). 

Compared to the other two discretisation methods, 1D FEM allows a more 

comprehensive and accurate deformation description of wind turbine blades, and it only 

requires slightly more computational resources than the other two discretisation 

methods. Therefore, 1D FEM is adopted for the discretisation of wind turbine blades in 

this thesis. 

 

To construct the 1D beam model of wind turbine blades for aeroelastic modelling, the 

cross-sectional properties of the blades, such as mass per unit length and sectional 

stiffness, are essential information. Due to the intrinsic nature of composite materials 
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and the complexity of blade structural topologies, obtaining the cross-sectional 

properties of a wind turbine blade is quite challenging and requires a specialised cross-

sectional analysis model. However, existing cross-sectional analysis models for wind 

turbine blades are either time-consuming or inaccurate. Therefore, it is necessary to 

develop a cross-sectional model, which is capable of extracting cross-sectional 

properties of wind turbine blades in a fast and reliable way. 

 

The following Chapter 3 details the development of a cross-sectional analysis model. 

Chapter 4 and Chapter 5 present the structural model and aerodynamic model, 

respectively.  
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CHAPTER 3    BLADE CROSS-

SECTIONAL MODELLING 

 

3.1. Introduction 

 

As reviewed in Section 2.3.1, wind turbine blade structures can be modelled using 

either 3D finite-element method (FEM) model with shell elements or 1D beam model 

with beam elements. Compared to the 3D FEM model, the 1D beam model is much 

faster and saves much computational time and is capable of providing reasonable results 

if constructed properly. Therefore, for the structural part of the aeroelastic modelling in 

this thesis, the blade is represented as a series of 1D beam elements instead of 3D shell 

elements. 

 

To construct the 1D beam model of wind turbine blades for aeroelastic modelling, the 

cross-sectional properties of the blades, such as mass per unit length and sectional 

stiffness, are essential information. It should be noted that modern wind turbine blades 

generally are made of composite materials and have complicated structural layout. Due 

to the intrinsic nature of composite materials and the complexity of blade structural 

topologies, it is quite challenging to obtain the cross-sectional properties of a wind 

turbine composite blade. 

 

As reviewed in Section 2.4, three types of models have been proposed for cross-

sectional analysis of wind turbine blades, including 3D FEM based model, 2D FEM 

based model and classical lamination theory (CLT) based model. 3D FEM based model 

is time-consuming because it relies on computationally complicated post-processing of 

force-displacement data. 2D FEM based model is not efficient enough since it requires a 

separate pre-processor to generate its input files. The cross-sectional analysis model 

PreComp [104, 119], which is based on CLT, is efficient, but it is incapable of 

predicting torsional stiffness accurately. The torsional stiffness is hard to evaluate 

because it is significantly affected by shear web effects and warping effects which are 

difficult to model. 
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For a closed thin-walled cross-section, Bredt-Batho shear flow theory (BSFT) [123] can 

be used to determine the torsional stiffness of the cross-section. BSFT is developed 

based on the assumption that the torsional stress is uniformly distributed across the 

thickness of the cross-section. Experiments show that this assumption is acceptable for 

most thin-walled cross-sections [124]. BSFT implicitly includes the dominant warping 

effects and it can provide reasonable results for the torsional stiffness of the closed thin-

walled cross-section [124]. However, the original BSFT is developed for a single-cell 

cross-section. In order to apply BSFT to a practical wind turbine blade cross-section 

with shear webs, an extension of BSFT to cover multi-cells is required. 

 

This chapter presents a mathematical model [32], which is capable of accurately and 

rapidly calculating the cross-sectional properties of wind turbine blades, developed by 

incorporating CLT with extended Bredt-Batho shear flow theory (EBSFT). Based on 

the mathematical model, a MATLAB program called CBCSA (Composite Blade Cross-

Section Analysis) is developed. In order to validate CBCSA, a series of benchmark tests 

are performed for isotropic and composite blades as compared with ANSYS, PreComp 

and experimental data. 

 

The main contents of this chapter have been published in Ref. [32], and more details are 

provided in this chapter. Additionally, the improvements1 since the publication are also 

presented in this chapter. 

 

This chapter is structured as follows. CLT and BSFT are summarised in Sections 3.2 

and 3.3, respectively. EBSFT is discussed in Section 3.4. Section 3.5 details the 

development of a mathematical model for cross-sectional analysis by incorporating 

CLT with EBSFT. Validations are provided in Section 3.6, followed by a chapter 

summary in Section 3.7. 

 

 

 

                                                           
1 Since the publication, improvements have been made to enable CBCSA to output 

flapwise mass per unit length and edgewise mass per unit length, which are cross-

sectional properties required by dynamic analysis.  
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3.2. CLT 

 

CLT is an extension of the classical plate theory to laminated plates. The main 

assumptions of CLT are the Kirchhoff hypotheses [114]: 

 Straight lines which are perpendicular to the mid-surface before deformation remain 

straight after deformation. 

 The transverse normals are inextensible. 

 The transverse normals rotate so that they are always perpendicular to the mid-

surface. 

 

The first two assumptions indicate that the transverse displacement is independent of 

the thickness coordination and the transverse normal strain is zero. The third assumption 

implies that transverse shear strains are zero. These assumptions are acceptable for thin 

laminates in most cases [114].   

 

CLT has wide applications including stress and strain analysis of laminate plates. The 

validity of CLT has been established by comparing with experimental results and the 

exact solutions of the general elastic problems [125]. In terms of cross-sectional 

analysis, CLT can be used to calculate the effective engineering constants of angled 

plies.  

 

The coordinate system used for an angled ply for the cross-sectional analysis using CLT 

is shown in Fig. 3.1. 

 

Figure 3.1. Principal material and global coordinates 

 

The directions 1 and 2 constitute principal material coordinates while the directions x 

and y constitute global coordinates. The directions 1 and 2 are parallel and 

perpendicular to the fiber direction, respectively.  
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The materials considered with CLT are orthotropic. The stress-strain relationship in 

principal material coordinates for an orthotropic material under plane stress condition 

can be expressed as: 
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In Eq. (3.1), the components of matrix [S] are calculated by: 

111 /1 ES 
       

(3.2)

 

11212 / EvS 
      

(3.3)

 

222 /1 ES 
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1266 /1 GS 

       

(3.5)

 

where 1E and 2E are the Young’s modulus along the direction 1 and direction 2, 

respectively; 12v is the Poisson’s ratio and 12G is the shear modulus. All of these 

constants are called engineering constants of a unidirectional ply. 

 

The inverse matrix [Q] of the matrix [S] in Eq. (3.1) is called reduced stiffness matrix 

[126], given as follows: 
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where: 

)/( 2

1222112211 SSSSQ 
   

        

(3.7)

 
)/( 2

1222111212 SSSSQ 

     

(3.8)

 
)/( 2

1222111122 SSSSQ 

     

(3.9)

 

  6666 /1 SQ 

       

(3.10) 

 

The stress-strain relations in Eq. (3.6) for the principal material coordinates can be 

transformed into a global coordinate system using: 
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where  mT is the transformation matrix,  Q  is the reduced stiffness matrix in Eq. (3.6), 

 mR  is the Reuter matrix [126].  mT
 and  mR  are respectively defined as: 
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where 
ply is the ply angle, i.e. the angle between the direction 1 and direction x in Fig. 

3.1. 

 

The effective engineering constants of an angled ply can be expressed in terms of the 

engineering constants of a unidirectional ply using the following equations: 
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where 
ply

xE  and 
ply

xyG are the effective Young’s modulus along the direction x  (see Fig. 

3.1)  and effective shear modulus of an angled ply, respectively.  

 

3.3. Bredt-Batho Shear Flow Theory (BSFT) 

 

In the case of a closed thin-walled cross-section, the assumption that the torsional stress 

 evenly distributes across the thickness of a segment of the cross-section is acceptable 

in most situations. The product of the torsional stress  and the thickness 
ct  refers to 

shear flow 
sq  [124]: 

cs tτq 

    

(3.16) 
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Based on the above assumption, a shear flow theory called Bredt-Batho shear flow 

theory (BSFT) [124] is developed  to evaluate stresses and deformations in structures 

with closed thin-walled cross-section under torsion. 

The torsional stiffness GJ of the closed thin-walled cross-section (e.g. the cross-section 

in Fig. 3.2) can be obtained using BSFT: 







c

c

ds
Gt

A
GJ

1

4
2

    

(3.17) 

where A  is the area enclosed by the middle line of the wall , ct  is the thickness of the 

wall, G  is the shear modulus, and cs  is the perimeter coordinate. It is should be noted 

that the ct  and G can vary along cs  if the cross-section consists of several segments 

having variable wall thickness and different material properties. In case of varied ct , 

shear flow sq  in Eq. (3.16) is also varied. 

 

Figure 3.2. Closed thin-walled cross-section 

 

3.4. Extended Bredt-Batho Shear Flow Theory (EBSFT) 

 

The original BSFT mentioned above is developed for a single-cell cross-section, which 

means no shear webs are included. To apply BSFT in a practical wind turbine blade 

cross-section with shear webs, an extension of BSFT to cover multi-cell is required. 

 

Figure 3.3. Blade cross-section with one shear web 
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Taking a wind turbine blade cross-section with one shear web in Fig. 3.3 as an example, 

the torsional moment 
TM  is expressed as [127]: 

   22112 AqAqM ssT

    

(3.18) 

where 1sq  and 2sq  are the shear flow of cells 1 and 2, respectively; *

1A  and *

2A  are the 

area enclosed by the middle line of the wall of cells 1 and 2, respectively.  

 

The twist angles (
1Tθ  and 

2Tθ ) of  cells 1 and 2 are respectively expressed as: 














 

12

2

1

1

1

1 //
2

1
ccsccsT tdsqtdsq

GA
θ

  

(3.19)

 














 

21

1

2

2

2

2 //
2

1
ccsccsT tdsqtdsq

GA
θ

  

(3.20) 

 

Assuming the twist angles of the two cells are the same, we obtain: 

TTT θθθ  21

      

(3.21) 

 

Reformulating Eqs. (3.19) and (3.20), we obtain: 
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where 
wδ  is warping flexibility: 
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Eqs. (3.18), (3.22) and (3.23) can also be written in matrix format: 

   s
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where: 
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The torsional stiffness is given by: 
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Substituting Eqs. (3.27) and (3.28) into Eq. (3.32) gives: 
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For a wind turbine blade cross-section with arbitrary shear webs, the torsional stiffness 

can be expressed in the form of Eq. (3.33). For a blade cross-section with two shear 

webs,    Aδw and  becomes: 

 


















3332

232221

1211

0

0

ww

www

ww

w

δδ

δδδ

δδ

δ

    

(3.34)

 

 


























3

2

1

A

A

A

A

      

(3.35) 

 

3.5. A Mathematical Model for Cross-sectional Analysis by 

Incorporating CLT and EBSFT 

 

In order to determine the cross-sectional properties of wind turbine blades, all cross-

sectional laminates are discretised into many area segments. Each area segment encloses 

several angled plies. The effective engineering constants of each angled ply are obtained 

using CLT. A weighting method [128] is used to calculate the equivalent properties of 

each area segment, the elastic centre and mass centre locations of the cross-section. 

Firstly, the area moments of inertia of each area segment are calculated with respect to 
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its local axes and centroid, and then transformed to the elastic axes and centre of the 

cross-section using transform-axis formula and parallel-axis theorem [129]. Based on 

the transferred area moments of inertia and calculated equivalent properties of each area 

segment, the contributions of each area segment to the cross-sectional properties are 

calculated. The torsional stiffness is obtained using EBSFT while the other cross-

sectional properties are obtained by means of adding the contributions of all the area 

segments. Based on the above strategy, a mathematical model for cross-sectional 

analysis is developed. The flowchart of the model is shown in Fig. 3.4. 

 

Figure 3.4. Flowchart of the mathematical model 

 

Each step of the flowchart in Fig. 3.4 is detailed as follows: 

1) Input data 

The model requires cross-sectional external shape (chord, twist angle and airfoil 

coordinates) and internal laminate layup (laminate schedule, ply angle and material 

engineering constants) as inputs.  

2) Transform coordinates to reference axes 

In the cross-sectional analysis, bending stiffness including both flapwise and edgewise 

stiffness is generally referred to the elastic centre (
ECX , 

ECY ). The flapwise and 

edgewise mass moments of inertia are generally referred to the mass centre  (
MCX ,

MCY ). 

Both elastic centre and mass centre are measured from the reference axes of the cross-
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section, as shown in Fig. 3.5. Therefore, it is necessary to add a step to transfer the input 

airfoil data to reference axes if the input data refer to different axes. 

 

Figure 3.5. Reference axes 

 

As shown in Fig. 3.5, 
RX  and 

RY  are the reference axes; 
EX  and 

EY  are the elastic 

axes; 
MX  and 

MY  are the mass axes. The directions of 
RX  and 

RY  are parallel and 

perpendicular to the chord direction of the blade cross-section respectively. The location 

of reference point O can be specified arbitrarily and usually is identical to the 

aerodynamic centre of the blade cross-section. Both directions of 
EX  and 

MX are 

parallel to the reference axis 
RX , and both directions of 

EY  and 
MY are parallel to the 

reference axis 
RY . 

3) Discretise cross-sectional laminates into many area segments 

In this step, all cross-sectional laminates are discretised into many area segments. Each 

area segment encloses several plies. Taking a typical blade cross-section with one shear 

web in Fig. 3.6 as an example, the cross-sectional laminates are discretised into 110 area 

segments and the area segment “ab” encloses three different plies. 

 

Figure 3.6. Discretisation of a typical blade cross-section with one shear web 

 

4) Calculate effective engineering constants of each angled ply using CLT 

In order to achieve better structural performance, some plies are generally placed at an 

angle. Therefore, it requires a step to obtain the effective engineering constants of 

angled plies. By giving the engineering constants (
1E ,

2E ,
12G ,

12 ) and ply angle 
ply , 
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the effective Young’s modulus 
ply

xE  and shear modulus 
ply

xyG  of each angled ply are 

determined using Eqs. (3.14) and (3.15) mentioned in Section 3.2, respectively. 

5) Calculate equivalent properties of each area segment 

Because each area segment encloses several plies having different material properties, a 

weighting method is used to represent the non-uniform distribution of materials as a 

single material having equivalent properties. The actual thickness and area of each 

segment are maintained. For instance, the equivalent representations of the area segment 

“ab” in Fig. 3.6 are shown in Fig. 3.7. 

 

Figure 3.7. Equivalent representations of area segment 

 

According to the weighting method [128], the equivalent Young’s modulus 
seg

equE , 

thickness 
seg

equt  and area 
seg

equA  of each area segment can be expressed as: 
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where i  indicates the i th ply in an area segment; plym  is the number of plies in an area 

segment; 
ply

ixE ,  is the effective Young’s modulus of the i th ply; 
ply

it  and 
ply

iA  are the 

thickness and area of the i th ply, respectively; segw  is the width of an area segment.  
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The same method can be used to determine the equivalent density 
seg

equ  and equivalent 

shear modulus 
seg

equG  of each segment by simply replacing the effective Young’s modulus 

ply

ixE ,  in Eq. (3.36) with the density 
ply

i  and effective shear modulus 
ply

ixyG ,  respectively: 
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6) Calculate elastic centre and mass centre of the cross-section 

The elastic centre (
ECX ,

ECY ) and mass centre  (
MCX ,

MCY ) of the cross-section can also 

be calculated using weighting method: 
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where I indicates the I th area segment; segN  is the number of area segments; 
Iseg

equE ,
,

Iseg

equA ,
, and 

Iseg

equρ ,
 are the equivalent Young’s modulus , area and density of the I th 
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area segment, respectively; 
Iseg

cx ,
and

Iseg

cy ,
 are the centroid coordinates of the I th area 

segment.  

 

7) Calculate area moments of inertia of each area segment 

The area moments of inertia of each area segment with respect to its local axes (e.g. the 

yx   axes in Fig. 3.7) can be calculated using an integration scheme: 

 ydxdyI seg

xx

2       (3.45)
 

 ydxdxI seg

yy

2

     
 (3.46)

 

 ydxdyxI seg

yx

     
 (3.47) 

where 
seg

xxI and
seg

yyI are the area moment of inertia about x axis and y axis, respectively; 

seg

yxI is the product of inertia. 

 

8) Transfer the area moments of inertia of each area segment to elastic centre and mass 

centre of the cross-section 

It should be noted that the above calculated area moments of inertia are calculated with 

respect to the local axes and centroid of each area segment. However, the cross-

sectional properties including both flapwise stiffness and edgewise stiffness are 

generally referred to the elastic axes and elastic centre of the cross-section. The flapwise 

and edgewise mass moments of inertia are generally referred to the mass axes and mass 

centre of the cross-section. Therefore, a transformation is necessary. Using the 

transform-axis formula, the area moments of inertia around the local axes of each area 

segment can be transferred to that around the axes which are parallel to the elastic axes 

 EE YX ,  of the cross-section: 
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yxseg
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I
EE
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 2sin2cos
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(3.49) 

where seg  is the angle between the local axes of each area segment and the elastic axes 

of the cross-section. 
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Then, using the parallel-axis theorem, the calculated area moments of inertia can be 

further transferred to elastic centre ( ECX , ECY ) of the cross-section: 

   2EC

seg

c

seg

equ

seg

XX

sec

XX XxAII
EEEE


    

 (3.50) 
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c
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equ
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YY

sec

YY YyAII
EEEE
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 (3.51) 

 

Similarly, the area moments of inertia with respect to mass centre ( MCX , MCY ) of the 

cross-section can be obtained using the following equations: 

   2MC
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c

seg

equ
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XX

sec

XX XxAII
MMMM

     (3.52) 

   2MC
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c

seg

equ

seg

YY

sec

YY YyAII
MMMM

     (3.53) 

Noted that mass axes  MM YX ,  are parallel to elastic axes  EE YX , . Thus, 
seg

XX MM
I  in Eq. 

(3.52) and 
seg

YY MM
I  in Eq. (3.53) are respectively equal to 

seg

XX EE
I  in Eq. (3.48) and 

seg

YY EE
I  in 

Eq. (3.49). 

9) Sum contributions of all area segments to obtain overall sectional properties 

The overall cross-sectional properties including axial stiffness EA , flapwise stiffness 

XEI , edgewise stiffness 
YEI , mass per unit length  , flapwise mass moments of 

inertia  XrhoI , and edgewise mass moments of inertia YrhoI  are obtained by summing 

the contributions of all area segments: 
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10) Determine torsional stiffness using EBSFT 
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The torsional stiffness is determined using EBSFT mentioned in Section 4. Taking the 

blade cross-section with one shear web in Figure 3.6 as an example, having obtained the 

width 
segw (approximate cds if the 

segw is small enough), equivalent thickness 
seg

equt  and 

shear modulus 
seg

equG  of each segment in step 5), the components of the warping 

flexibility matrix ][ wδ can be calculated using Eqs. (3.24) to (3.26). Then the torsional 

stiffness is determined using Eq. (3.33). 

11) Output results 

After all calculations are done, the model will output the cross-sectional properties 

including axial stiffness EA , flapwise stiffness XEI , edgewise stiffness YEI , torsional 

stiffness GJ , mass per unit length  , flapwise mass moments of inertia XrhoI  and 

edgewise mass moments of inertia YrhoI . 

 

3.6. Validation 

 

Based on the above mathematical model, a cross-sectional analysis program, which is 

named as CBCSA (Composite Blade Cross-Section Analysis), is developed using 

MATLAB. CBCSA allows arbitrary geometric shape and internal structural layout of 

the blade. It directly extracts the cross-sectional properties of the blade and runs quickly, 

usually in a fraction of a second. Additionally, the shear web effects and warping effects 

are taken into account by CBCSA due to the usage of EBSFT in the calculation of 

torsional stiffness. In order to validate CBCSA, the following benchmark tests are 

performed. 

 

3.6.1. Case Study A 

 

For the first case study, we compare the performance of CBCSA with analysis done 

with PreComp for a SERI-8 blade [130]. The stations 4 and 6 of the SERI-8 blade are 

chosen as examples. The schematic of the cross-section of the SERI-8 blade is shown in 

Fig. 3.8. 
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Figure 3.8. Schematic of the cross-section of the SERI-8 blade  

 

The geometric data of the wind turbine blade cross-sections at the stations 4 and 6 are 

listed in Table 3.1. 

 

Table 3.1. Geometric data [130] 

Station# Chord(m) Twist angle (degree) Airfoil 

4 1.092 15.7 S807 

6 0.665 0.59 S805A 

 

Four materials are used within the structure, labeled Mat, DblBias, Uni and Balsa. The 

orthotropic material properties used in the model are shown in Table 3.2. 

 

Table 3.2. Material properties [130] 

Property Mat DblBias Uni Balsa 

1E (GPa) 7.58 11.1 45.8 0.12 

2E (GPa) 7.58 11.1 10.1 0.12 

12G (GPa) 4.00 6.89 6.89 0.02 

12v  0.30 0.39 0.30 0.30 

  (kg/m3) 1690 1660 1990 230 

 

The orientation of plies used in [130] is limited to 90°, here our case study also 

demonstrates the effects of ply angles at 45° and 0°. Ply angles are set in the composites 

lay-up, as shown in Table 3.3. The composites lay-up in Table 3.3 is used for both 

stations 4 and 6. 

 

 

 

 

 

 

 

 

Le
Cap Panel

Shear Web 1 Shear Web 2

Te
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Table 3.3. Composites lay-up [130] 

Name Number of  plies ply angle (deg.) Ply Name Thickness (mm) 

Le 1 90 Mat 1.21 

4 45 DblBias 1.21 

Cap 1 90 Mat 1.21 

6 0 Uni 0.93 

Panel 1 90 Mat 1.21 

1 45 DblBias 1.21 

1 0 Balsa 5 

1 45 DblBias 1.21 

Shear webs 

1 and 2 

1 45 DblBias 1.21 

1 0 Balsa 8 

1 45 DblBias 1.21 

Te 1 90 Mat 1.21 

1 45 DblBias 1.21 

 

Both PreComp and CBCSA are used to calculate the properties of the cross-sections. 

Calculated cross-sectional properties for station 4 are presented in Fig. 3.9 and Table 

3.4, and calculated cross-sectional properties for station 6 are shown in Fig. 3.10 and  

Table 3.5. 

 

 

Figure 3.9. Calculated cross-sectional properties of the blade cross-section at station 4  
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Table 3.4.  Calculated cross-sectional properties of the blade cross-section at station 4 

Cross-sectional properties PreComp CBCSA %Diff 

EA  (N) 2.7830E+08 2.7829E+08 0.01 

XEI (N-m2) 1.6670E+06 1.6692E+06 0.13 

YEI (N-m2) 1.4640E+07 1.4641E+07 0.01 

GJ (N-m2) 5.0530E+05 7.3768E+05 45.99 

 (kg/m) 2.2950E+01 2.2952E+01 0.01 

XrhoI (kg-m) 1.0740E-01 1.0738E-01 0.02 

YrhoI (kg-m) 1.8480E+00 1.8481E+00 0.01 

 

 

Figure 3.10. Calculated cross-sectional properties of the blade cross-section at station 6 

 

Table 3.5. Calculated cross-sectional properties of the blade cross-section at station 6 

Cross-sectional properties PreComp CBCSA %Diff. 

EA  (N) 1.6580E+08 1.6584E+08 0.02 

XEI (N-m2) 1.9940E+05 1.9953E+05 0.07 

YEI (N-m2) 3.1960E+06 3.1953E+06 0.02 

GJ (N-m2) 6.7830E+04 8.9811E+04 32.41 

 (kg/m) 1.3510E+01 1.3506E+01 0.03 

XrhoI (kg-m) 1.3340E-02 1.3336E-02 0.03 

YrhoI (kg-m) 4.0030E-01 4.0025E-01 0.01 
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Figs. 3.9 and 3.10 and Tables 3.4 and 3.5 indicate that the results from CBCSA agree 

with those from PreComp very well except the torsional stiffness. The torsional stiffness 

predicted by PreComp is lower than that obtained using CBCAS. Following case studies 

demonstrate that CBCAS has higher accuracy for the calculation of torsional stiffness 

than PreComp due to the consideration of the effects of shear webs. 

 

3.6.2. Case Study B 

 

This case study allows comparison of CBCSA with both PreComp and ANSYS for a 

blade profile with and without shear webs. The first example considered here is an 

isotropic blade cross-section without a shear web, as shown in Fig. 3.11. The geometric 

data and material properties of the cross-section are listed in Table 3.6. 

 

Figure 3.11. Schematic of an isotropic blade cross-section without shear web 

 

Table 3.6. Geometric data and material properties of the isotropic blade cross-section 

Properties Values 

E  (GPa) 210 

v  0.3 

 (kg/m3) 7850 

Airfoil NACA0012 

Chord (m) 0.12 

t  (m) 0.000675 

 

The comparison of cross-sectional properties calculated using CBCAS, PreComp and 

ANSYS is shown in Fig. 3.12 and Table 3.7, where the relative differences are obtained 

with respect to the CBCAS results. 
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Figure 3.12. Calculated cross-sectional properties of an isotropic blade cross-section 

without shear web 

 

Table 3.7. Calculated cross-sectional properties of an isotropic blade cross-section 

without shear web 

Cross-sectional 

properties 
CBCAS PreComp 

%Diff. 

(PreComp) 

ANSYS 

 

%Diff. 

(ANSYS) 

EA  (N) 3.4721E+07 3.4720E+07 0.01 3.4105E+07 1.77 

XEI (N-m2) 8.6756E+02 8.6760E+02 0.01 8.6646E+02 0.13 

YEI (N-m2) 4.2866E+04 4.2870E+04 0.01 4.0789E+04 4.85 

GJ (N-m2) 1.0848E+03 1.0850E+03 0.02 1.1197E+03 3.22 

 (kg/m) 1.2979E+00 1.2980E+00 0.01 1.2718E+00 2.01 

XrhoI (kg-m) 3.2430E-05 3.2950E-05 1.60 3.2389E-05 0.13 

YrhoI (kg-m) 1.6024E-03 1.6020E-03 0.02 1.5247E-03 4.85 

 

From Fig. 3.12 and Table 3.7 we can see that the predictions of the CBCAS are in good 

agreement with PreComp and ANSYS for the isotropic blade cross-section without a 

shear web. 

 

The next example considered is the isotropic blade with two shear webs, located at 0.2c 

and 0.5c, as shown in Fig. 3.13. 
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Figure 3.13. Schematic of an isotropic blade cross-section with two shear webs 

The thickness of both webs is 0.003m. Other properties of the cross-section remain the 

same as those used in the first example. The comparison of cross-sectional properties 

calculated using CBCAS, PreComp and ANSYS is shown in Fig. 3.14 and Table 3.8, 

where the relative differences are obtained with respect to the ANSYS results. 

 

Figure 3.14. Calculated cross-sectional properties of an isotropic blade cross-section 

with two shear webs 

 

Table 3.8. Calculated cross-sectional properties of an isotropic blade cross-section with 

two shear webs 

Cross-sectional 

properties 
ANSYS CBCAS 

%Diff. 

(CBCAS) 
PreComp 

%Diff. 

(PreComp) 

EA  (N) 4.9057E+07 5.1396E+07 4.77 5.1400E+07 4.78 

XEI (N-m2) 1.0439E+03 1.1121E+03 6.53 1.1120E+03 6.52 

YEI (N-m2) 4.8368E+04 5.1601E+04 6.68 5.3190E+04 9.97 

GJ (N-m2) 1.2480E+03 1.1871E+03 4.88 1.0850E+03 13.06 

 (kg/m) 1.8304E+00 1.9212E+00 4.96 1.9210E+00 4.95 

XrhoI (kg-m) 3.9022E-05 4.1571E-05 6.53 4.1570E-05 6.53 

YrhoI (kg-m) 1.8081E-03 1.9280E-03 6.63 1.9290E-03 6.69 
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A big difference is observed between Tables 3.7 and 3.8, indicating that shear webs 

significantly affect cross-sectional properties. From Fig. 3.14 and Table 3.8 it can be 

seen that the results predicted by CBCSA match well with those of ANSYS, with the 

maximum percentage difference (6.68%) occurring for the edgewise stiffness ( YEI ).  It 

can be observed that for this cross-section with two shear webs, the torsional stiffness 

predicted by PreComp is exactly the same as the case without shear web mentioned in 

the previous example. This indicates that PreComp does not account for the effects of 

shear webs in the calculation of torsional stiffness. Since CBCAS uses EBSFT to 

determine the torsional stiffness, the effects of shear webs are taken into account. 

Therefore, CBCAS can provide more realistic torsional stiffness than PreComp. 

 

3.6.3. Case Study C 

 

The final case study aims to verify improved accuracy of torsional stiffness calculation 

of CBCSA by comparing CBCSA and PreComp with the experimental data [131]. The 

example considered here is an extension-torsional coupled blade with two-cell cross-

section [131], as shown in Fig. 3.15.  

 

Figure 3.15. Two-cell cross-section 

 

The skin of the cross-section has [15/-15] layups whereas the D-type spar consists of 

[0/15]2. The geometric data and material properties of the blade are listed in Table 3.9. 
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Table 3.9. Geometric data and material properties of the blade [131] 

Properties Values 

1E  (GPa) 131 

2E  (GPa) 9.3 

12G  (GPa) 5.86 

12v  0.4 

Airfoil NACA0012 

Length(m) 0.6414 

Chord (m) 0.0762 

Ply thickness(m) 0.000127 

 

Both CBCSA and PreComp are used to calculate the properties of the cross-section. 

Predicted values are compared with measured values reported in Ref. [131], as shown in 

Fig. 3.16 and Table 3.10, where the relative differences are obtained with respect to the 

experimental data. 

 

Figure 3.16. Cross-sectional properties of the two-cell cross-section 
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Table 3.10. Cross-sectional properties of the two-cell cross-section 

Cross-

sectional 

properties 

Experiment 

[131] 
CBCSA 

%Diff 

(CBCSA) 
PreComp 

%Diff 

(PreComp) 

EA  (N) - 8.1336E+06 - 8.1340E+06 - 

XEI (N-m2) 7.7141E+01 8.1449E+01 5.58 8.1531E+01 5.69 

YEI (N-m2) - 3.4529E+03 - 3.4530E+03 - 

GJ (N-m2) 2.5427E+01 2.4443E+01 3.87 1.9330E+01 23.98 

 (kg/m) - 1.3485E-01 - 1.3480E-01 - 

XrhoI (kg-m) - 1.4389E-06 - 1.4390E-06 - 

YrhoI (kg-m) - 5.8658E-05 - 5.8660E-05 - 

 

From Fig. 3.16 and Table 3.10 we can see that 1) the flapwise stiffness XEI  and 

torsional stiffness GJ  calculated from CBCSA match well with experimental data, with 

the maximum percentage difference (5.58%) occurring for the flapwise stiffness XEI ; 

and 2) the torsional stiffness GJ  predicted by CBCSA is more accurate than that 

obtained from PreComp. 

 

3.7. Summary 

 

In this chapter, a mathematical model for accurate and rapid calculation of the cross-

sectional properties of wind turbine blades has been developed by incorporating the 

classical lamination theory (CLT) with the extended Bredt-Batho shear flow theory 

(EBSFT). A flowchart of the mathematical model, illustrating the detailed procedure for 

calculating cross-sectional properties of composite blades, is presented. The 

mathematical model considers both the web effects and warping effects of the blades, 

and is presented in a code called CBCSA (Composite Blade Cross-Section Analysis), 

developed using MATLAB. A series of benchmark computational tests are performed 

for isotropic and composite blades, and the results demonstrate that: 

 CBCSA can rapidly extract the cross-sectional properties of the composite blades, 

usually in a fraction of a second, which is much faster than a 3D finite-element 

based method. 
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 Good agreement is achieved in comparison with the data from experiment and 

finite-element analysis, which indicates CBCSA has sufficient accuracy for the 

calculation of the cross-sectional properties of the composite blades. 

 CBCSA provides a more accurate torsional stiffness calculation than the previously 

available tool PreComp due to the consideration of the shear web effects by using 

EBSFT. 

 

The obtained cross-sectional properties of wind turbine composite blades are used as 

input information to construct the blade structural model, which is presented in Chapter 

4. 
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CHAPTER 4    BLADE STRUCTURAL 

MODELLING 

 

4.1. Introduction 

 

As discussed in Chapter 2, in order to perform aeroelastic analysis of wind turbine 

blades, a blade structural model, which determines the blade structural dynamic 

responses, has to be included. Due to the increasing size and flexibility of large wind 

turbine blades, the blades often experience large deflections, which introduce significant 

geometric nonlinearities. In order to take account of geometric nonlinearities, wind 

turbine blades in this thesis are modelled based on a mixed-form formulation of 

geometrically exact beam theory (GEBT) [36], which is detailed in this chapter.  

 

The mixed-form formulation of GEBT, which introduces Lagrange multiplier to satisfy 

the equations of motion with constitutive and kinematic relationships, is capable of 

handling large deflections, large rotations and geometric nonlinearities. It allows the 

lowest order of shape functions for all dependent variables, which makes it a viable 

solution for modelling geometric nonlinearities.  

 

The main contents of this chapter are taken from the manuscript (Appendix G2) 

submitted for publication in Energy (Elsevier), and more details are provided in this 

chapter.   

 

This chapter is structured as follows. Section 4.2 describes the main coordinate systems 

used in blade structural modelling. Section 4.3 presents the equations of motion of 

nonlinear beam. Section 4.4 derives the mixed variational formula of nonlinear beam by 

introducing both constitutive and kinematic relationships to the equations of motion, 

followed by a chapter summary in Section 4.5. 

 

4.2. Coordinate Systems 

 

In order to fully describe the geometry and deflection of a wind turbine blade for 

aeroelastic modelling, three coordinate systems are adopted, i.e. 1) the global frame, 
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which aligns with the wind turbine rotor and defines the rotor parameters; 2) the un-

deformed blade frame, which aligns with the original blade and defines the blade 

parameters; and 3) the deformed blade frame, which aligns with the deformed blade. 

This section illustrates the three coordinate systems and the transformation matrices 

among them. 

 

4.2.1. Main Coordinate Systems 

 

Three main coordinate systems, i.e. the global frame G , the un-deformed blade frame 

b  and the deformed blade frame B , are chosen for the analysis of wind turbine blades, 

as shown in Fig. 4.1. The global frame G , having its axes labelled 1G , 2G , and 3G , is 

rotating along with the wind turbine rotor. Axes 2G  and 3G  are along with and 

perpendicular to the wind turbine rotor axis, respectively. The un-deformed blade frame 

b , having its axes labelled 1b , 2b , and 3b , is attached to each un-deformed blade 

element. Axes 2b  and 3b , located in each un-deformed airfoil plane, are perpendicular 

and parallel to the chord line of each un-deformed blade element, respectively. The 

deformed blade frame B , having its axes 1B , 2B , and 3B , is attached to each deformed 

blade element. Axes 2B  and 3B , located in each deformed airfoil plane, are 

perpendicular and parallel to the chord line of each deformed blade element, 

respectively. All the three coordinate systems obey the right hand rule. The details of 

the three coordinate systems can be found in Appendix A1. 

 

Figure 4.1. Main coordinate systems 
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4.2.2. Transformation Matrices 

 

A vector given in a frame can be transformed into another frame using transformation 

matrices. The transformation matrix bGC , which transfers vectors from the global frame 

G  into the un-deformed blade frame b , is given by: 


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
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 
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001
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ββ

ββ

θθ

θθ

pp

pp

bGC    (4.1) 

where 
1  is the rotor cone angle (see Fig. 4.2), the angle between the blade axis and 

rotor plane; 
p  is the twist angle of each blade element (see Fig. 4.3), the angle between 

the chord line and the blade reference plane.  Obviously, the transformation matrix bGC  

is time independent, i.e. 0bGC . 

 

Figure 4.2. Rotor cone angle 

 

Figure 4.3. Blade-element twist angle 

 

According to Euler’s theorem of rigid-body motion [36], any rotational motion can be 

characterized by the magnitude of rotation r  and a 3-by-1 unit vector e , which 

describes the rotation axis. On the basis of the Euler’s theorem, the transformation 
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matrix BbC , which transfers vectors from the un-deformed blade frame b  into the 

deformed blade frame B , can be expressed in terms of Rodrigues parameters [36] θ  as: 

θθ

θθθΔθθ
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1
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1
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       (4.2) 

where T  is the transpose symbol; Δ  is the 3-by-3 identity matrix 


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

100

010

001

; 

)2/tan(2 rβeθ  ;  T3e2e1ee  and 1eeT .  

 

Introducing another set of Rodrigues parameters 
Gθ  such that   θCθ

bG

G

T
 , the 

transformation vector  BGC , which transfers vectors given in the global frame G  into 

the deformed blade frame B , is obtained by: 

CCC bGBG        (4.3) 
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     (4.4) 

 

Having obtained BbC  and BG
C , the following relations can be easily established: 

 TBbbB CC          (4.5) 

  TBGGB CC         (4.6) 

 

4.3. Equations of Motion 

 

The geometrically exact equations of motion, which exactly describe the behaviour of 

an initially curved and twisted beam as a set of mathematical functions in terms of 

spatial coordinates and time, can be derived from Hamilton’s extended principle, kinetic 

energy and strain energy.  

 

4.3.1. Hamilton’s Extended Principle 

 

Hamilton’s extended principle is expressed as [36]: 
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    
2

1 0
1

t

t

L

dtdx AWSK EE      (4.7) 

where 1t  and 2t  are arbitrary fixed times; L  is the length of the blade;   is the 

Lagrangean variation operator for a fixed time; 
EK  and 

ES  are the kinetic and strain 

energy, respectively; δW  is the virtual work of applied loads; δA  is the virtual action 

at the ends of time interval and at the ends of the blade. 

  

4.3.2. Kinetic Energy 

 

The variation of kinetic energy required in Eq. (4.7) can be written as: 

BBBBE HΩPVK
TT

      (4.8) 

where 
BV  and 

BΩ  are the column matrices that contain linear and angular velocities of 

the deformed beam reference line measured in the frame B , respectively; 
BP  and 

BH  

are the column matrices that contain the linear and angular momenta measured in the 

frame B , respectively. 
T

BV  and 
T

BΩ  can be expressed in terms of the virtual 

displacement B
q  and virtual rotation B

ψ  using the following equations [36]: 

BBBBBB VψΩqqV
~~ TT

T

T 


    (4.9) 

BBBB ΩψψΩ
~T

T

T 


     (4.10) 

where the overhead dot denotes the time derivative; the over-head tilde operator  ~  

defines a second-order skew-symmetric tensor corresponding to the given vector. For 

example, given  TBBB ΩΩΩ 321BΩ , BΩ
~

 can be expressed as: 

























0

0

0
~

12

13

23

BB

BB

BB

ΩΩ

ΩΩ

ΩΩ

BΩ      (4.11) 

 

Substituting Eqs. (4.9) and (4.10) into Eq. (4.8) gives: 

BBBBBBBBBBE HΩψψPVψΩqqK































~~~ T

T
TT

T

  (4.12) 
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4.3.3. Strain Energy 

 

The variation of strain energy required in Eq. (4.7) can be written as: 

BBE MκFγS
TT      (4.13) 

where γ  and κ  are the column matrices that contain force and moment strains, 

respectively; 
BF  and 

BM  are the column matrices that contain the force and moment 

resultants measured in the frame B , respectively. 
T
γ  and Tκ  can be expressed in 

terms of the virtual displacement 
B

q  and virtual rotation 
B

ψ  using the following 

equations [36]: 

 γeψKqqγ BBBB

~~~
1 







 


TT
T

T
   (4.14) 

BBB Kψψκ
~T

T

T 






 
      (4.15) 

where 
BK  is the curvature vector for the deformed beam;  T0011 e ; the prime 

symbol    denotes the spatial derivative. 

 

Substituting Eqs. (4.14) and (4.15) into Eq. (4.13) gives: 

  BBBBBBBBBE MKψψFγeψKqqS





















 























 


~~~~
1

T
T

TT
T

 (4.16) 

 

4.3.4. Geometrically Exact Equations of Motion 

 

The virtual work of the applied loads appearing in Eq. (4.7) is given by: 

BBBB mψfqW
TT

      (4.17) 

where Bf  and 
Bm  are column matrices that contain applied forces and moments per 

unit length measured in the frame B , respectively. 

 

Recalling that A  in Eq. (4.7) is the virtual action at the ends of the time interval and at 

the ends of the blade, the mathematical expression of A  can be written as: 

    
2

1

2

1 00
1

ˆˆˆˆ
t

t

L
TTL t

t

TT

dtdx BBBBBBBB MψFqHψPqA   (4.18) 

where the overhead hat denotes the discrete boundary values. 



68 

 

 

Substituting Eqs. (4.12), (4.16), (4.17) and (4.18) into Eq. (4.7) yields: 

 


   

 


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
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







 
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



















 
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






































2

1

2

1

2

1

00
1

1

1

0

ˆˆˆˆ

~~~~

~~~

t

t

L
TTL t

t

TT

TT

T
T

TT
T

t

t

L T
T

TT
T

dtdx

dtdx

BBBBBBBB

BBBB

BBBBBBBBB

BBBBBBBBBB

MψFqHψPq

mψfq

MKψψFγeψKqq

HΩψψPVψΩqq

 (4.19) 

 

After integrating Eq. (4.19) by parts with respect to the time to remove the time 

derivatives of the virtual quantities, one obtains: 

 

   
  dt

dtdx

Lt

t

TT

TTT

t

t

L T
TT

0

11

0

2

1

2

1

ˆˆ

~~~~~

~~



 


















 








 

BBBB

BBBBBBBBBBBBB

BBBBBBBBBB

MψFq

mψfqPVHΩHFγeMKψ

PΩPFKqMψFq











    (4.20) 

Eq. (4.20) is the geometrically exact equations of motion of a beam expressed in the 

frame B . With the help of transformation matrices, the displacement and rotation 

components can be expressed in global frame G , which are independent of blade 

geometry and deflection. The details are discussed below.  

 

BK
~

 and BΩ
~

 in Eq. (4.20) can be expressed in terms of 
BG

C  and 
GBC  using [132]: 

  GBBG

B CCK
~

       (4.21) 

GB

G

BGGBBG

B CωCCCΩ ~~
        (4.22) 

where Gω  is the column matrix that contains the angular velocity of un-deformed beam 

reference line measured in frame G . 

 

The virtual displacement Bδq , virtual rotation Bδψ , linear momentum 
BP , and angular 

momentum 
BH  measured in frame B  are related to the virtual displacement Gu , 

virtual rotation Gψ , linear momentum GP  and angular momentum GH  measured in 

frame G  by a transformation matrix BG
C , respectively: 
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G

BG

B uCq          (4.23) 

G

BG

B ψCψ          (4.24) 

G

BG

B HCH          (4.25) 

G

BG

B PCP           (4.26) 

 

With the help of Eqs. (4.21) ~ (4.26), the following relations can be easily established: 

    B

GB

GBBBBB FCuFKqFq
TT

T








 


~
   (4.27) 

  B

GB

GBBBBB MCψMKψMψ

T
T

T








 








 


~
   (4.28) 

  B

GB

GGBBB

GB
HCωHHΩHC ~~

     (4.29) 

  B

GB

GGBBB

GB
PCωPPΩPC ~~

      (4.30) 

 

With the help of Eqs. (4.23) ~ (4.30), Eq. (4.20) can be rewritten in the following form: 

 

  


  dt

dtdx

t

t

L
TT

TT

T

t

t

L
T

T



 


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






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





 


2

1

2

1

0

1

1

0

ˆˆ

~~~~

~

GGGG

G

GB

GGG

BB

GB

B

GB

GGB

GB

G

B

GB

GGGB

GB

GB

GBT

G

MψFu

mCψfu

PVCHCωHFγeCψ

PCωPuMCψFCu













    (4.31) 

Eq. (4.31) is the geometrically exact equations of motion of a beam expressed in the 

global frame G . 

 

4.4. Mixed Variational Formula of Nonlinear Beam 

 

Apart from the equations of motion derived in above section, the kinematical and 

constitutive relations are required in order to have a complete formulation to solve 

problems in general. 

 

4.4.1. Kinematical Relations 

 

According to Hodges [36], the inverse kinematical relations are given by: 



70 

 

  bb

bB

b ukeγeCu
~

11       (4.32) 

bbbB

bB

b uωvVCu ~      (4.33) 

 b

Bb

b kCkκθθθΔθ 







 T

4

1~

2

1
   (4.34) 

 b

Bb

B ωCΩθθθΔθ 







 T

4

1~

2

1     (4.35) 

where bu  is the column matrix that contains displacement of the beam reference line 

measured in the frame b ; θ  is the column matrix that contains Rodrigues parameters; 

bk  is the curvature vector for the un-deformed beam; bv  is the column matrix that 

contains velocity of the un-deformed beam reference line measured in the frame b ; bω  

is the column matrix that contains angular velocity of the un-deformed beam reference 

line measured in the frame b . 

 

As it can be seen from Eqs. (4.32) to (4.35), the kinematical relations are nonlinear, 

taking account of geometric nonlinearities. 

 

4.4.2. Constitutive Relations 

 

For beams having small strain, the constitutive equations are linear. The generalized 

strain-force relations are given by: 


















B

B

M

F
S

κ

γ
      (4.36) 

where S  is the constitutive matrix. The expression of fully coupled constitutive matrix 

can be found in Refs. [36, 133]. For the sake of simplicity, all coupling terms in 

constitutive matrix S  are ignored, and then it can be then expressed as: 

















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GK
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/100000

0/10000

00/1000

000/100

0000/10

00000/1

S   (4.37) 

where EA  is the axial stiffness; YGK  and XGK  are the edgewise and flapwise shear 

stiffness, respectively; GJ  is the torsional stiffness; YEI  and XEI  are the edgewise and 
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flapwise bending stiffness, respectively. Note that if shear deformation is ignored, 

YGK/1  and XGK/1  in Eq. (4.37) become zero. 

 

Similarly, the generalized momentum-velocity relations are given by: 


















B

B

M

B

B

Ω

V
I

H

P
      (4.38) 

where MI  is the mass matrix. If the locus of the mass centre is chosen as reference line, 

the mass matrix MI  can be expressed as: 

















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
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


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

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Y

YX

rhoI
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rhoIrhoI

μ

μ

μ

00000

00000

00000

00000

00000

00000

MI       (4.39) 

where   is the mass per unit length of the blade element; YrhoI  and XrhoI  are 

edgewise and flapwise moments of inertia, respectively. 

 

4.4.3. Closing the Formulation 

 

The inverse kinematical relations Eqs. (4.32), (4.33), (4.34) and (4.35) can be 

considered to be constraints to Eq.(4.20). These constraints can be introduced with the 

help of Lagrange multipliers [36]. Thus, the following formulation is obtained: 

 

  

    
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  (4.40) 

where 
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B

bB
FCF        (4.41) 
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    (4.42) 

B

bB
PCP        (4.43) 
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     (4.44) 

 

Eq. (4.40) is the mixed-form formulation of GEBT expressed in the frame B . The 

displacement and rotation components can be expressed in global frame G , which are 

independent of blade geometry and deflection, with the help of transformation matrices. 

The details will be discussed below.  

 

BK
~

 and BΩ
~

 in Eq. (4.40) can be expressed in terms of 
BG

C  and 
GBC  using [132]: 

  GBBG

B CCK
~

      (4.45) 

GB

G

BGGBBG

B CωCCCΩ ~~
       (4.46) 

where Gω  is the column matrix that contains the angular velocity of un-deformed beam 

reference line measured in frame G . 

 

The virtual displacement Bδq , virtual rotation Bδψ , linear momentum 
BP , and angular 

momentum 
BH  measured in frame B  are related to the virtual displacement Gu , 

virtual rotation Gψ , linear momentum GP  and angular momentum GH  measured in 

frame G  by a transformation matrix BG
C , respectively: 

G

BG

B uCq         (4.47) 

G

BG

B ψCψ        (4.48) 

G

BG

B HCH         (4.49) 

G

BG

B PCP          (4.50) 
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With the help of Eqs. (4.45) ~ (4.50), the following relations can be easily established: 

    B
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GBBBBB FCuFKqFq
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T



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  B

GB

GGBBB

GB
PCωPPΩPC ~~

      (4.54) 

 

bk
~

 and bω
~

 in Eq. (4.40) can be expressed in terms of 
bGC  and 

GbC  using [132]: 

  GbbG

b CCk
~

     (4.55) 
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G  , δPCδP
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G  ,  δHθθθΔδH
T

G 4/2/
~

 , 

and with the help of Eqs. (4.47) ~ (4.56), Eq. (4.40) can be rewritten in the following 

form: 
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    (4.57) 

Eq. (4.57) is the mixed-form formulation of GEBT expressed in the global frame G . In 

Eq. (4.57), Gu , Gθ , BF , BM , BP  and BH  are considered to be the fundamental 

unknown variables. γ  and κ  can be expressed in terms of BF  and BM  using Eq. 

(4.36). BV  and BΩ  are related to BP  and BH  through Eq.(4.38). Eq. (4.57) contains all 

the information needed for the finite-element implementation of the geometrically exact 
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beam theory. In addition to time-dependent analysis and modal analysis, Eq. (4.57) can 

also be used for static analysis when all time-dependent variables in Eq. (4.57) are 

eliminated. 

 

4.5. Summary 

 

In this chapter, a blade structural model based on the mixed-form formulation of GEBT 

was presented. Three coordinate systems, i.e. the global frame, the un-deformed blade 

frame and the deformed blade frame, were illustrated and the transformation matrices 

among them were derived. The geometrically exact equations of motion of an initially 

curved and twisted beam were derived from Hamilton’s extended principle, kinetic 

energy and strain energy. The geometric nonlinearities are taken into account by 

nonlinear kinematical relations. The kinematical and constitutive relations were 

introduced to the equations of motion as constraints with the help of Lagrange 

multipliers. The resulting mixed-form formulation of GEBT expressed in the deformed 

blade frame was then transformed into the global frame with the help of transformation 

matrices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 

 

CHAPTER 5    BLADE LOAD 

MODELLING 

 

5.1. Introduction 

 

As discussed in Chapter 2, blade load modelling is an essential part for aeroelastic 

analysis of wind turbine blades. In order to perform reliable aeroelastic analysis of wind 

turbine blades, the loads on the blades need to be accurately modelled. 

 

This chapter summarises the methods used for blade load modelling. The most 

important sources of loads on wind turbine blades are aerodynamic loads, which are 

exerted by the airflow passing the blades. As reviewed in Chapter 2, compared to other 

aerodynamic models, the BEM model is fast and is capable of providing accurate results. 

For this reason, the BEM model is chosen in this thesis to calculate the aerodynamic 

loads. In order to accurately predict unsteady aerodynamic loads, the BEM model used 

in this thesis is extended to an unsteady aerodynamic model through combining with the 

Beddoes-Leishman (BL) dynamic stall model. In addition to aerodynamics loads, the 

gravity loads, which are introduced by the gravity of the blades, and the centrifugal 

loads, which are caused by the rotation of the blades, are also important sources of loads 

on the blades. The sum of aerodynamic loads, gravity loads and centrifugal loads yields 

the applied loads, which are applied on the blade structure as distributed loads. Fig.5.1 

illustrates the relationship among the loads on a wind turbine blade. 

 

Figure 5.1.  Loads on a wind turbine blade 
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The main contents of this chapter are taken from the manuscript (Appendix G2) 

submitted for publication in Energy (Elsevier), and the improvements 2  since the 

submission are also presented in this chapter.  

 

This chapter is structured as follows. Section 5.2 introduces the aerodynamic load 

calculation based on combining the BEM model with the BL dynamic stall model. The 

gravity loads and centrifugal loads are summarised in Sections 5.3 and 5.4, respectively. 

Section 5.5 illustrates the applied loads, followed by a chapter summary in Section 5.6. 

 

5.2. Aerodynamic Loads 

 

In this thesis, the aerodynamic loads are calculated based on combining the BEM model 

with the BL dynamic stall model. The BEM model with both tip loss correction and 

wake state consideration is briefly summarised in Section 5.2.1. The main equations and 

nomenclatures involved in the BEM model can be found in Appendix B. The BL 

dynamic stall model is illustrated in Section 5.2.2, followed by a flowchart in Section 

5.2.3 illustrating the combination of the BEM model and the BL dynamic stall model. 

  

5.2.1. BEM Model 

 

The BEM model was developed through the combination of blade element theory and 

blade momentum theory. The blade element theory discretises the blade into several 

elements and ignores the mutual influence between two adjacent elements. The 

aerodynamic loads on each element are dependent on its local airfoil characteristics, i.e. 

its lift and drag coefficients. The sum of these loads yields the total loads on the blade. 

The blade momentum theory introduces the axial induction factor a  and angular 

induction factor a  to calculate the induced velocity in the axial and tangential 

directions, respectively. The induced velocity will affect the angle of attack of the blade 

and therefore influence the aerodynamic loads calculated by the above blade element 

theory. Combining blade element theory with blade momentum theory provides a 

solution to obtain the performance parameters of each blade element, such as axial 

induction factor a  and angular induction factor a , through an iterative procedure, 

which is summarised below [39, 134]: 

                                                           
2 Since the submission, improvements have been made to extend the BEM model to an unsteady aerodynamic model by  

combining it with the BL dynamic stall model. 
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1) Use an estimate to obtain the initial axial induction factor a  and angular induction 

factor a . In this study, zero initial values are used for both axial induction factor a  

and angular induction factor a :  

01 a         (5.1) 

01 a         (5.2) 

 

2) Start the iterative procedure for the jth iteration. For the first iteration ( 1j ), follow 

step 1. Calculate the relative wind angle 
j  and the Prandtl tip loss factor 

jlosstipF ,
: 

 



















ipj

opj

j
vra

vVa

)1(

1
arctan

0
     (5.3) 
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
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
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 
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jloostip

Rr

RrB
F

 sin)/(

)/(12/
expcos

2 1

,     (5.4) 

where 
opv  and 

ipv  are respectively the out-of-plane and in-plane velocities of the blade 

element (see Fig. B.2 in Appendix B); 
opv  and 

ipv  are generally ignored in a typical 

BEM model, but they are considered in this thesis to take account of blade motions in 

the calculation of aerodynamic loads; 0V  is the upcoming wind velocity on each blade 

element;   is the rotor rotational speed; r  is the distance from the blade element to the 

rotor centre; NB  is the number of blades; R  is the blade radius. In this study, 0V  and r  

are calculated based on the deformed blade geometry to take account of the blade 

deflection in the calculation of aerodynamic loads.  

 

The Prandtl tip loss factor 
jlosstipF ,
 in Eq. (5.4) is used to take account of the influence 

of vortices shedding from the blade tip on the induced velocity. From Eq. (5.4) we can 

see that the Prandtl tip loss factor is always between 0 and 1. 

 

3) Determine the local angle of attack of the blade element: 

pjj          (5.5) 

where p  is the twist angle of each blade element (see Fig. 4.3), previously defined in 

Section 4.2.2.  

Then obtain the lift coefficient jlC ,
 and drag coefficient jdC ,

 from the airfoil lift and 

drag coefficient curves against the angle of attack. 
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4) Update the axial induction factor a  and angular induction factor a  for the next 

iteration, considering the drag effects: 





















HCC

F
a

jjdjjl

jjlosstip

j

1

)sincos('

)(sin4
1

1
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2
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1


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     (5.6) 
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jjdjjl
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CC

F
a
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
    (5.7) 

The parameter    in Eq. (5.6) is the local solidity, defined by: 

rcBN  2/       (5.8) 

where c  is the chord of the blade element. 

 

The parameter H  in Eq. (5.6) is used for the situation when large axial induction factor 

occurs. When the axial induction factor a  is greater than 0.5, wind turbine blades get 

into turbulent wake state, and the expression of thrust coefficient [134]: 

 aaCT  14       (5.9) 

needs to be replaced by the empirical expression [135]:  

279.061.06.0 aaCT       (5.10) 

 

To obtain a better transition, the above empirical model is used for the situation that a  

is greater than 0.3539 rather than 0.5 [135]. The parameter H  is defined as [135]: 

for 0.1,3539.01  Ha j      (5.11) 

for 
)79.061.06.0(

)1(4
,3539.0

21
aa

aa
Ha j




     (5.12) 

 

The above process is repeated until the deviation between the new and previous 

induction factors is within an acceptable tolerance. Then confirm the local relative wind 

angle  , tip loss factor losstipF  , angle of attack  , lift coefficient lC  and drag 

coefficient dC  for each blade element. 

 

Having determined the above performance parameters for each blade element, the 

normal force per unit length NFd  and tangential force per unit length TFd  on each blade 

element (see Fig. B.2 in Appendix B) are respectively calculated by: 
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cCCUFF dlrellosstipN )sincos(d 2

2
1       (5.13) 

cCCUFF dllosstipT )cossin(
2

1
d 2

rel       (5.14) 

where ρ  is the air density, relU  is the relative wind velocity. 

 

The above aerodynamic loads on each blade element are calculated with respect to the 

deformed blade frame B  and can be stored in the aerodynamic-force vector B

aeroF : 










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




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T

N

dF

dF

0
B

aeroF      (5.15) 

 

Fig. 5.2 presents the flowchart of the aerodynamic load calculation based on the BEM 

model. 

 

Figure 5.2. Flowchart of aerodynamic load calculation based on the BEM model 
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5.2.2. Beddoes-Leishman (BL) Dynamic Stall Model 

 

The BEM model illustrated in the above section is based on quasi-steady assumption. 

However, practical aerodynamic loads are unsteady due to sudden change in wind, such 

as wind shear and atmospheric turbulence. In order to take account of the unsteady 

effects, a dynamic stall model is required. 

 

Dynamic stall is a phenomenon associated with the separation of the boundary layer. 

During the dynamic stall, the boundary layer initially separates at the trailing edge, and 

gradually shifts to leading edge with the increasing angles of attack [20]. The angle of 

attack of rotating blades changes dynamically due to sudden change in wind, such as 

wind shear and atmospheric turbulence. The response introduced by changing angle of 

attack is dependent on whether the boundary layer is separated and will have a time 

delay.  

 

In order to take account of dynamic stall effects in aerodynamic load calculation, the BL 

dynamic stall model [53] is used in this thesis. Even though dynamic stall process 

comprises various intrinsically related phenomena, Beddoes and Leishman managed to 

decompose it into three distinct models, i.e. 1) an attached flow model, which calculates 

the unsteady attached force coefficients; 2) a separated flow model, which uses the force 

coefficients obtained in the attached flow model as input to  recalculate the force 

coefficients through taking account of unsteady separated flow effects, such as pressure 

lag, viscous lag and unsteady trailing edge separation point; 3) a vortex lift model, 

which adds the vortex contribution to the results from the separated flow model, 

yielding the total unsteady force coefficients on the airfoil.  

 

5.2.2.1. Attached Flow Model 

 

For unsteady attached flow, the normal force coefficient on an airfoil can be split into 

two components, i.e. a circulatory component and an impulsive component, which are 

considered separately in the attached flow model. 
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 Circulatory Component 

 

According to Ref. [53], the circulatory normal force coefficient 
C

nNC ,  resulted from an 

accumulating series of time step inputs in the angle of attack can be calculated by:  

nENa

C

nN CC ,,      (5.16) 

where n  denotes the n th time step, NaC  is the static NC  curve slope near zero lift, 

nE,  is the equivalent angle of attack at the n th time step. 
nE,  can be expressed as : 

nnnnE YX  ,
    (5.17) 

where n  is the angle of attack at the n th time step. nX  and nY  in Eq. (5.17) are 

deficiency functions at the n th time step, respectively defined as: 

2/

11
33 SA

n

SA

nn eaAeXX


     (5.18) 

2/

21
44 SA

n

SA

nn eaAeYY


     (5.19) 

where na  is the change in angle of attack at the n th time step, i.e. 1 nnna ; 

1A , 2A , 3A  and 4A  are empirical constants. As given in Ref. [136], the suggested values 

for these constant are: 

3.01 A , 7.02 A , 14.03 A , 53.04 A . 

 

S  in Eq. (5.18) is the dimensionless time and can be expressed in terms of relative 

wind speed relU , time interval t  and chord c  using the following equation: 

 
2/c

tU
S rel       (5.20) 

 

 Impulsive Component 

 

For an airfoil undergoing rapid motion, there exists an impulsive force due to local 

pressure variations. The impulsive normal force coefficient 
I

nNC ,  can be calculated 

using [53]: 














 n
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I

nN D
tU

c
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nD  in Eq. (5.21) is another deficiency function, defined as: 
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where 1 n  is the change in angle of attack at the 1n th time step, i.e. 

211   nnn ; aK  is a function of Mach number, and for incompressible flow it 

becomes a constant with suggested value of 0.75 given in Ref. [136]. IT  in Eq. (5.22) is 

the non-circulatory time constant, defined as: 

s

I
a

c
T       (5.23) 

where sa  is the speed of sound. 

 

 Total Attached Flow Normal Force Coefficient 

 

The total unsteady attached-flow normal force coefficient 
P

nNC ,  is obtained by summing 

the circulatory normal force coefficient 
C

nNC ,  and the impulsive normal force coefficient 

I

nNC , : 

I

nN

C

nN

P

nN CCC ,,,       (5.24) 

 

5.2.2.2. Separated Flow Model 

 

The relationship between static normal force coefficient NC  and the dimensionless 

suction side separation point position f  can be established using Kirchoff theory  [53]: 

 0
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








 


f
CC NaN     (5.25) 

where   is the angle of attack; 0 is the angle of attack for zero lift; f  is measured 

from the leading edge, meaning that 0f  when the flow is fully separated and 1f

when the flow is entirely attached. 

 

Inverting Eq. (5.25) and using airfoil’s static characteristic yields separation point 

position f  as a function of angle of attack  , obtaining  f . 
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For unsteady flow, there exists a time delay in the leading edge pressure response with 

respect to the attached flow normal force coefficient 
P

nNC , . In order to take account of 

the time delay, another deficiency function 
nPD ,
 is introduced in the calculation of the 

normal force coefficient 
nNC ,

 : 

nP

P

nNnN DCC ,,,       (5.26) 

 

nPD ,
 in Eq. (5.26) can be expressed as: 
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where PT  is the pressure-lag time constant. As given in Ref. [136], the suggested value 

of PT  is 1.5. 

 

In order to obtain effective separation point nf  , another effective angle of attack 
nf ,  is 

introduced, defined as: 

Na

NnN

nf
C

CC
0,

,


      (5.28) 

where 
0NC  is the normal force coefficient at zero angle of attack. 

 

Having obtained the effective angle of attack 
nf , , the effective separation point nf   is 

then obtained from the static separation point characteristic: 

 Nfn ff ,       (5.29) 

 

It should be noted that there exists a time delay in the boundary layer’s response for 

unsteady conditions. This unsteady effect can be taken into account by applying a first 

order lag to the effective separation point: 

nfnn Dff ,       (5.30) 

where 
nfD ,
 is another deficiency function, defined by: 
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fT  in Eq.(5.31) is the viscous-lag time constant. As given in Ref. [136], the suggested 

value of 
fT  is 5. 

 

At last, the unsteady normal force coefficient 
f

nNC ,  accounting for both pressure lag and 

viscous lag can be calculated with the effective unsteady edge separation point f   

using the Kirchhoff relation [53]: 
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    (5.32) 

 

5.2.2.3. Vortex Lift Model 

 

In this model, the contribution of vortex lift to the unsteady normal force coefficient is 

calculated. The vortex lift contribution is only calculated when the following condition 

is satisfied: 

vlnv Tτ ,
     (5.33) 

where vlT  is an empirical time constant, with suggested value of 5 given in Ref. [136]. 

 

nvτ ,
 in Eq. (5.33) is the vortex time parameter, defined as: 

45.0
2/

1,, relnvnv V
c

dt
τ   , if 

INnN CC ,,     (5.34) 

0, nvτ , if 0,, 
nINnN CC      (5.35) 

where 
INC ,
 is the critical value of normal coefficient. According to Ref. [136], 

INC ,
 can 

be assumed to be the maximum static normal coefficient. 

 

The vortex lift 
nVC ,

 is obtained using the following equation: 

 nN

C

nNnV KCC ,,, 1      (5.36) 

where 
C

nNC ,  is the circulatory normal force coefficient (see Eq. (5.16)); 
nNK ,

 is defined 

as: 
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      (5.37) 
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Then, the total accumulated vortex contribution 
V

nNC ,  is obtained using the following 

equation: 
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2
1,,1,,    (5.38)  

where vT  is the vortex delay constant. As given in Ref. [136], the suggested value of vT  

is 6. 

 

5.2.2.4. Model Outputs and Flowchart 

 

The total unsteady normal force coefficient 
nNC ,
 is obtained by summing the unsteady 

separated term 
f

nNC ,  and the vortex lift term 
V

nNC , : 

V

nN

f

nNnN CCC ,,,       (5.39) 

 

According to Ref. [53], the unsteady tangential force coefficient 
nCC ,
 can be obtained 

using: 

nnENanC fηCC  2

,,      (5.40) 

where η  is the recovery factor, which is used to account for the fact that the airfoil 

usually does not realize all of the tangential pressure obtained in potential flow. η  can 

be attained empirically from static airfoil aerodynamic data, and its typical value is 0.95 

[53]. 

 

Having obtained the unsteady normal force coefficient 
nNC ,
 and unsteady tangential 

force coefficient 
nCC ,

, the unsteady lift coefficient 
nlC ,
 and unsteady drag coefficient 

ndC ,
 can be respectively obtained using the following equations:  

    sincos ,,, nCnNnl CCC     (5.41) 

  )sin(sin ,,,  nCnNnd CCC     (5.42) 

 

In order to illustrate the calculation process, a flowchart of the BL dynamic stall model 

is presented in Fig. 5.3, showing an open loop system. 
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Figure 5.3. Flowchart of the BL dynamic stall model 

 

5.2.3. Flowchart of Aerodynamic Load Calculation Based on 

Combining the BEM Model with the BL Dynamic Stall Model 

 

The BEM model presented in Section 5.2.1 can be extend to an unsteady aerodynamic 

model by combining with the BL dynamic stall model presented in Section 5.2.2. 

Through slightly modifying the flowchart presented in Fig. 5.2, the flowchart of the 

aerodynamic load calculation based on combing the BEM model with the BL dynamic 

stall model is illustrated in Fig. 5.4. 
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Figure 5.4. Flowchart of aerodynamic load calculation based on combining the BEM 

model with the BL dynamic stall model 

 

5.3. Gravity Loads 

 

For large wind turbine blades, gravity is an important source of loading. Taking account 

of the tilt angle 2  (see Fig. 5.5), the angle between the shaft and the horizontal axis, 

and the azimuth angle 3  (see Fig. 5.6), the position of the blade in the circumferential 

direction of the wind turbine rotor axis, the gravity-force vector G

gF  of a blade element 

with respect to the global frame G  is given by: 
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where g  is the gravity constant ,   is the mass per unit length of each blade element. 

 

Figure 5.5. Tilt angle 

 

Figure 5.6. Azimuth angle 

      

The force vector G

gF  with respect to the global frame G  can be transformed into the 

deformed blade frame B  using the following equation: 

G

g

BGB

g FCF         (5.44)  

where BG
C  is the transformation matrix (see Eq. 4.3), previously defined in Section 

4.2.2. 

 

5.4. Centrifugal Loads 

 

Due to the rotation of the wind turbine blades, centrifugal loads have to be considered. 

Taking account of the azimuth angle 3 , the centrifugal-force vector G

cF  of a blade 

element with respect to the global frame G  is given by: 
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The force vector G

cF  can be transformed into the deformed blade frame B  using the 

following equation: 

G

c

BGB

c FCF         (5.46)   

 

5.5. Applied Loads 

 

Having obtained the aerodynamic force B

aeroF , gravity force 
B

gF  and centrifugal force 

B

cF  on each blade element, the applied force 
B

ALF  on each blade element is obtained by 

summing these forces (in vector form): 

B

c

B

g

B

aero

B

AL FFFF      (5.47)  

  

5.6. Summary 

 

This chapter presented the methods used for calculating the main sources of loads on a 

wind turbine blade, i.e. 1) aerodynamic loads, which are contributed by the wind 

passing the blade; 2) gravity loads, which are introduced by the gravity of the blade; and 

3) centrifugal loads, which are caused by the rotation of the blade. The aerodynamic 

loads were calculated based on combining the BEM model with the BL dynamic stall 

model. The calculated aerodynamic loads, gravity loads and centrifugal loads were 

stored in a vector form and transformed to the deformed blade frame with the help of 

transformation matrices. The applied loads were then obtained by summing these load 

vectors.   

 

Chapter 6 presents the implementation of the nonlinear aeroelastic model by coupling 

the blade structural model and blade load model.  
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CHAPTER 6    IMPLEMENTATION OF 

THE NONLINEAR AEROELASTIC 

MODEL 

 

6.1. Introduction 

 

The blade structural model and blade load model have been presented in Chapters 4 and 

5, respectively. The blade structural model is based on a mixed-form formulation of 

geometrically exact beam theory (GEBT), which can be used for static analysis, time-

dependent analysis and modal analysis. The blade load model takes account of 

aerodynamic loads, gravity loads and centrifugal loads. This chapter details the 

implementation of the nonlinear aeroelastic model by coupling the blade structural 

model and blade load model. The strategies for applying the nonlinear aeroelastic model 

to four types of studies, i.e. static analysis, modal analysis, time-dependent analysis and 

stability analysis, are also presented in this chapter. 

 

COMSOL Multiphysics [137] is used to achieve the implementation. The choice is 

mainly based on the fact that COMSOL Multiphysics 1) allows equation-based 

modelling, e.g. the chance to define a partial differential equation (PDE) by its weak 

form using COMSOL 1D Weak Form PDE module; 2) enables MATLAB functions in 

model settings definition, such as boundary conditions and material properties; and 3) 

provides interfaces between its graphical user interface (GUI) and MATLAB, which 

enables direct use of MATLAB scripts in building COMSOL model. 

 

This chapter is structured as follows. Section 6.2 presents the strategy used for coupling 

the blade structural modelling module and the blade load modelling module to yield a 

nonlinear aeroelastic model; Section 6.3 addresses the strategies for applying the 

nonlinear aeroelastic model to four types of studies, including static analysis, modal 

analysis, time-dependent analysis and stability analysis; And Section 6.4 summarises 

the findings of this chapter. 

 

 



91 

 

6.2. Coupling Strategy 

 

Based on the methods presented in Chapter 5, a blade load modelling module is 

developed using MATLAB to calculate the applied forces 
B

ALF  (see Eq. (5.47)). The 

blade load modelling module takes account of the aerodynamic loads (calculated based 

on combing the BEM model and the BL dynamic stall model), gravity loads and 

centrifugal loads, as presented in Chapter 5. GEBT is not available in COMSOL 

Multiphysics, but COMSOL Multiphysics allows equation-based modelling, e.g. the 

chance to define a partial differential equation (PDE) by its weak form. The mixed-form 

formulation of GEBT (see Eq. (4.57))  is implemented using COMSOL 1D Weak Form 

PDE module, yielding a blade structural modelling module. 

 

In order to facilitate illustration, Eq. (5.47) for the applied forces 
B

ALF  and Eq. (4.57) for 

the mixed-form formualtion of GEBT are respectively rewritten below: 

B
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    (6.2) 

All variables in Eqs. (6.1) and (6.2) have been defined in Chapters 5 and 4, respectively. 

 

In Eq. (6.2), Gu , Gθ , BF , BM , BP  and BH  are considered to be the fundamental 

unknown variables, i.e. dependent variables. γ  and κ  can be expressed in terms of BF  

and BM  using Eq. (4.36). BV  and BΩ  are related to BP  and BH  through Eq.(4.38). In 
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order to facilitate illustration, Eqs. (4.36) and Eq. (4.38) are respectively rewritten 

below: 

 


















B

B

M

F
S

κ

γ
      (6.3) 


















B

B

M

B

B

Ω

V
I

H

P
      (6.4) 

where S  is the constitutive matrix (see Eq. (4.37)),  MI  is the mass matrix (see 

Eq.(4.39)). S  and MI  contains cross-sectional properties, such as flapwise stiffness 

and mass per unit length. Theses cross-sectional properties are used as the input data to 

define a beam element, and each beam element is allowed to have diffferent cross-

sectional properties. 

 

All parameters in Eq. (6.2) are defined as 1) global variables, such as time, which are 

applied to the entire model and do not depend on the geometry; or 2) local variables, 

such as cross-sectional properties, which vary along the blade span. Eq. (6.2) is in its 

weakest possible form, which means the lowest order of shape functions can be used. 

Therefore, linear (first-order) Lagrange element is used for the discretisation of 

dependent variables ( Gu , Gθ , BF , BM , BP  and BH ). The combination of blade load 

modelling module and blade structural modelling module is achieved by replacing Bf  

in Eq. (6.2) with 
B

ALF (see Eq. (6.1)) calculated using MATLAB program.  

 

6.3. Types of Studies 

 

The implemented nonlinear aeroelastic model can be used for four types of studies, 

including static analysis, modal analysis, time-dependent analysis and stability analysis, 

as illustrated in Fig. 6.1. 
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Figure 6.1. Types of studies for the nonlinear aeroelastic model 

 

Each type of study in Fig. 6.1 is detailed below. 

 

6.3.1. Static Analysis 

 

For the static analysis, the type of study in COMSOL is set to Stationary, and Eq. (6.2) 

is reduced to the following form by neglecting all time-dependent variables (i.e. BP  ,

BH , GP  and GH ): 
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  (6.5) 

In Eq. (6.5), Gu , Gθ , BF , BM  are considered to be the fundamental unknown 

variables. 
B

ALF  is the applied forces (see Eq. 6.1) calculated using MALTAB program. 
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6.3.2. Modal Analysis 

 

For the modal analysis, also known as eigenfrequency analysis, the type of study in 

COMSOL is set to Eigenfrequency. The mathematic equations involved in the modal 

analysis are briefly summarised in Appendix C. 

 

6.3.3. Time-dependent Analysis 

 

For the time-dependent analysis, the type of study in COMSOL is set to Time 

Dependent. The generalized-alpha method [137], which is an implicit and second-order 

accurate method with a parameter alpha to control the numerical time step, is used for 

time-stepping scheme. In generalized-alpha method, the time step can be set manually, 

which provides the flexibility for controlling the convergence and computational time. 

 

The computational scheme of the nonlinear aeroelastic model for time-dependent 

analysis can be divided into the following major steps: 

1. Read input file. The main input parameters of the model are 1) the blade structural 

properties, such as flapwise stiffness and mass per unit length; and 2) the blade 

aerodynamic data, such as airfoil aerodynamic data, chord and twist angle 

distributions. These parameters are stored in a .txt file which can be read by 

MATLAB function. 

2. Construct blade geometry using a series of 1D elements. The blade is represented as 

a series of 1D elements and each element is allowed to have different cross-sectional 

properties, such as flapwise stiffness and mass per unit length [32]. 

3. Initialise the dependent variables, such as Gu  and Gθ , and global variables, such as 

time. 

4. Perform blade load modelling using MATLAB function to calculate the applied 

loads, including aerodynamic loads (based on combining the BEM model with the 

BL dynamic stall model), gravity loads and centrifugal loads. 

5. Apply the loads on the blade and perform blade structural modelling based on the 

mixed-form formulation of GEBT to calculate the deflections of the blade. 

6. Go back to step 4 to update the applied loads according to the feedback of blade 

deflections and global variables. 
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7. If the current simulation time is less than total simulation time, repeat steps 5-6 

using current solution as the initial values for the subsequent steps; otherwise, end 

the simulation and output results. 

 

The flowchart of the nonlinear aeroelastic model for time-dependent analysis is shown 

in Fig. 6.2. 

 

Figure 6.2. Flowchart of the nonlinear aeroelastic model for time-dependent analysis 

 

6.3.4. Stability Analysis 

 

The main objective of stability analysis of wind turbine blades is to check the 

aeroelastic stability of the blade by examining the damping ratio of the blade. The 

damping ratio is a sum of structural damping ratio and aerodynamic damping ratio. The 

stability analysis in this thesis is based on the direct eigenanalysis approach. This 

approach is useful for modal-interaction dominated instabilities. It is efficient and 

capable of accurately capturing all participant modes. Fig. 6.3 illustrates the flowchart 
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of the stability analysis based on the direct eigenanalysis approach. Based on the 

flowchart, a stability analysis module is developed using MATLAB.  

 

Figure 6.3. Flowchart of stability analysis based on direct eigenanalysis approach 

 

Each step of the flowchart in Fig. 6.3 is detailed below.  

 

6.3.4.1. Obtain Periodic Steady-state Solutions 

 

The first step is to determine a linearisation point, also known as an equilibrium point, 

to linearise the nonlinear aeroelastic model. For a time-dependent nonlinear system, the 

steady-state solution is generally chosen as the linearisation point. For a rotating wind 

turbine blade, this linearisation point is periodic, i.e. the steady-state solutions depend 

on the rotor azimuth position. This periodicity is driven by applied loads (the sum of 

aerodynamic loads, gravity loads and centrifugal loads), which depend on the rotor 

azimuth position. In COMSOL, the periodic steady-state solutions can be obtained 

through performing a series of steady-state analysis by changing rotor azimuth position. 

 

6.3.4.2. Extract Periodic State-space Matrices 

 

Once a periodic steady-state solution has been obtained, the solution is then chosen as a 

linearisation position to extract the system matrices, including the mass matrix M , the 

damping matrix C , the stiffness matrix K  and the load matrix F . These system 
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matrices can be used to find the state-space representation of the nonlinear aeroelastic 

model. The state-space modelling is briefly summarised below. 

 

The general second-order system equations are in the following form: 

FKxxCxM        (6.6) 

where x is a vector containing dependent variables. For a wind turbine blade, x  is also 

known as degrees of freedom (DOFs) vector. For instance, if a blade is discretised into a 

series of blade elements connected by nodes, the length of vector x  at each node is six, 

i.e. three translation DOFs and three rotation DOFs. 

 

In order to derive the state space equations, the following equation is introduced: 

0 xMxM        (6.7) 

 

Combining Eqs. (6.6) and (6.7) in one equation yields: 

EBzzA        (6.8) 

where z is the state-space vector. A , B , E  and z  in Eq. (6.8) are respectively given by: 
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Eq. (6.8) can be rewritten as a standard form of the state-space: 

uBzAz syssys       (6.13) 

where sysA  is the state-space matrix of the system, sysB  is the input matrix of the 

system,  u  is the input vector. sysA  and sysB  in Eq. (6.13) are respectively given by: 
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In summary, having obtained the mass matrix M , the damping matrix C , the stiffness 

matrix K  and the load matrix F , the state-space matrix sysA  and  the input matrix sysB  

can be respectively calculated using Eqs. (6.14) and (6.15).  

 

6.3.4.3. Average the State-space Matrices to Eliminate Periodic Terms 

 

Due to the rotation of wind turbine blades, the steady-state solutions are periodic, 

resulting in periodic state-space matrices. A direct eigenanalysis on the periodic state-

space matrices yields periodic eigenvalues, which are physically meaningless. In order 

to eliminate the periodic terms, it is necessary to average the state-space matrices 

obtained at different rotor azimuth positions. The averaged state-space matrix 
avg

sysA  can 

be obtained using the following equation:   

A

N

iavg

sys
N

A


 1

isys,A

A      (6.16) 

where isys,A  is the static-space matrix obtained at i th azimuth position, AN  is the total 

number of azimuth positions. 

 

6.3.4.4. Eigenanalysis to Obtain Frequencies and Damping Ratios 

 

In this step, eigenanalysis on averaged state-space matrix 
avg

sysA   is performed, yielding 

N  pairs of eigenvalues and N  eigenvectors, where N  is the total number of degrees of 

freedom. Each pair of eigenvalues 
2,1  is generally in the following form: 

iNN IR 2,1     (6.17) 

where 
RN  is the real part number and 

IN  is the imaginary part number.  

 

Each pair eigenvalues 2,1  can also be written as the following form (see Eq. C.9 in 

Appendix C): 

12

2,1       (6.18) 

where   is the damping ratio,   is the un-damped frequency. It should be noted that 

the steady-state solutions obtained in Section 6.3.4.1 vary with wind speeds because 
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aerodynamic loads depend on wind speeds. Therefore, eigenvalues 
2,1  , damping ratio 

  and un-damped frequency   in Eq. (6.18) also change with wind speed.  

 

Through comparing Eqs. (6.17) and (6.18), the un-damped frequency   and damping 

ratio   can be respectively expressed in terms of RN  and IN  using the following 

equations: 

22

IR NN      (6.19) 

22

IR
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NN

N


     (6.20) 

 

Having obtained the un-damped frequency   and the damping ratio   , the damped 

frequency D  is calculated by: 

21  D     (6.21) 

 

It should be noted that damped frequency D  in Eq. (6.21) also varies with wind speed 

because both un-damped frequency   and the damping ratio   change with wind 

speed. 

 

The unit of both un-damped frequency   and damped frequency 
D  is rad/s and can 

be transformed to Hz using the following equations: 





2
Hzf      (6.22) 





2
,

D
HzDf       (6.23) 

where 
Hzf  and  HzDf ,  are the un-damped and damped frequencies in Hz, respectively. 

 

The eigenvectors provide the corresponding mode shapes, which are essential 

information to identify stability modes. 

 

6.4. Summary 

 

In this chapter, the implementation of the nonlinear aeroelastic model using COMSOL 

Multiphysics was presented. A blade load modelling module was developed using 
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MATLAB based on the methods presented in Chapter 5. The blade load modelling 

module takes account of aerodynamic loads, gravity loads and centrifugal loads. Based 

on the mixed-form formulation of GEBT presented in Chapter 4, a blade structural 

modelling module was established using COMSOL 1D Weak Form PDE module. The 

strategy used for coupling the blade load modelling module and blade structural 

modelling module to yield a nonlinear aeroelastic model was presented. The 

implemented nonlinear aeroelastic model can be used for four types of studies, i.e. static 

analysis, modal analysis, time-dependent analysis and stability analysis. The strategy 

used for each type of study was discussed.  

 

Chapter 7 presents the validation of the nonlinear aeroelastic model by a series of 

benchmark calculation tests.  
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CHAPTER 7    VALIDATION OF THE 

NONLINEAR AEROELASTIC MODEL 

 

7.1. Introduction 

 

A nonlinear aeroelastic model, called NAM_WTB (Nonlinear Aeroelastic Model for 

Wind Turbine Blades), is developed based on the strategy presented in Chapter 6. In 

order to validate the NAM_WTB, a series of benchmark calculation tests are performed, 

which are presented in this chapter. 

 

The main components of the NAM_WTB, i.e. the aerodynamic part and the structural 

part, are validated first, followed by a case study to validate the aeroelastic simulation 

results. 

 

Section 7.2 presents the validation of the aerodynamic part of the NAM_WTB. The 

components of the aerodynamic part of NAM_WTB, i.e. the BEM model and the BL 

dynamic stall model, are validated separately through two case studies. In the first case 

study, the BEM model in NAM_WTB is validated against WT_Perf [138], which is an 

existing widely used BEM-based aerodynamic code. A wind turbine blade with rotor 

radius of 13.757m is chosen as an example. In this case study, the dynamic stall effects 

are ignored. In the second case study, the BL dynamic stall model in NAM_WTB is 

validated against experimental 2D unsteady aerodynamic data.  S809 and S814 airfoils, 

which are two widely used wind turbine dedicated airfoils, are chosen as examples. 

 

Section 7.3 presents the validation of the structural part of the NAM_WTB. Two case 

studies have been performed for the validation. In the first case study, an experimentally 

large-deflection cantilever beam is chosen as an example. The static tip deflections of 

the cantilever beam calculated using the structural part of the NAM_WTB are compared 

with experimental results obtained in the laboratory. The COMSOL Euler-Bernoulli 

beam model, which is a widely used linear beam model, is also used in this case study 

for comparison purpose. In the second case study, a practical wind turbine blade is 

chosen. The natural frequencies calculated using the structural part of the NAM_WTB 

are validated against measured values.  



102 

 

Section 7.4 presents the validation of the aeroelastic simulation results of the 

NAM_WTB against FAST [26], which is an existing well-known aeroelastic code. A 

10m-diameter rotor R&D wind turbine is chosen as the case study. In this case study, in 

addition to aerodynamic loads, the gravity loads and centrifugal loads are also taken 

into account, and the blade is considered flexible. Moreover, dynamic stall effects are 

taken into account. 

 

Finally, a chapter summary is presented in Section 7.5. 

 

7.2. Validation of the Aerodynamic Part of NAM_WTB 

 

The aerodynamic part of the NAM_WTB comprises two components, i.e. the BEM 

model and the BL dynamic stall model. The two components of the aerodynamic part of 

the NAM_WTB are validated separately through two case studies. In the first case study, 

the BEM model of the NAM_WTB is validated against WT_Perf [138], which is an 

existing widely used BEM-based aerodynamic code. A wind turbine blade with rotor 

radius of 13.757m, which is a representative of medium-size wind turbine blades, is 

chosen in the case study. In this case study, the dynamic stall effects are ignored. In the 

second case study, the BL dynamic stall model of the NAM_WTB is validated against 

experimental 2D unsteady aerodynamic data, and S809 and S814 airfoils, which are 

widely used wind turbine dedicated airfoils, are chosen in the case study. 

 

7.2.1. BEM Model Validation  

 

In this case study, the BEM model in the NAM_WTB is validated against WT_Perf 

[138], which is a wind turbine aerodynamic performance predictor developed by 

Andrew Platt at National Renewable Energy Laboratory (NREL) based on BEM. The 

wind turbine model used in this case study is the AWT-27CR2 wind turbine, which is a 

two-bladed research wind turbine, and the main parameters of the wind turbine are 

summarised in Table 7.1.  
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Table 7.1. Main parameters of the AWT-27CR2 wind turbine 

Parameters Values 

Rated power (kW) 300 

Number of blades 2 

Rotor radius (m) 13.757 

Rated rotor speed (rpm) 53.333 

Cone angle (deg.) 7 

Tilt angle (deg.) 0 

 

The chord and twist angle distributions of the AWT-27CR2 wind turbine blade are 

depicted in Fig.7.1. The corresponding numerical values can be found in Appendix D. 

The details of the AWT-27CR2 wind turbine, such as its airfoil aerodynamic data, can 

be found from the test file of WT_Perf [138]. 

 

Figure 7.1. Chord and twist angle distributions of the AWT-27CR2 wind turbine blade 

 

Both NAM_WTB and WT_Perf are used to predict the aerodynamic performance of the 

AWT-27CR2 wind turbine. In this case, both yaw angle and pitch angle are 0 , and the 

rotor speed is at rated value (53.333rpm). For the sake of simplicity, the gravity loads 

and centrifugal loads of the blade are ignored, and the blade is assumed rigid, i.e. no 

deflections are considered in the calculation of the aerodynamic performance. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

r/R

C
h

o
rd

 (
m

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

r/R

T
w

is
t 
(d

e
g

)



104 

 

Additionally, dynamic stall effects are ignored in this case study. Figs. 7.2, 7.3 and 7.4 

respectively show the comparisons of the axial induction factor, angular induction factor 

and normal force distributions along the wind turbine blade at free stream wind speed of 

15m/s. 

 

Figure 7.2. Calculated axial induction factor distribution at wind speed of 15m/s 

 

Figure 7.3. Calculated angular induction factor distribution at wind speed of 15m/s 
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Figure 7.4. Calculated normal force distribution at wind speed of 15m/s 

 

The results in Figs. 7.2, 7.3 and 7.4 demonstrate that the calculated axial induction 

factor, angular induction factor and normal force distributions along the wind turbine 

blade from NAM_WTB agree with those from WT_Perf very well. This means that the 

BEM model in the NAM_WTB can be utilized for aerodynamic loads predictions of 

wind turbine blades. 

 

7.2.2. Dynamic Stall Model Validation 

 

In this case study, the BL dynamic stall model, a component of the aerodynamic part of 

the NAM_WTB, is validated against experimental 2D unsteady aerodynamic data. The 

examples used in this case study are the S809 and S814 airfoils, which are widely used 

wind turbine dedicated airfoils. The geometries of S809 and S814 airfoils are depicted 

in Fig. 7.5. 
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Figure 7.5. Geometries of S809 and S814 airfoils 

 

The aerodynamic measurements of S809 and S814 airfoils, such as measured lift and 

drag coefficients,  are available from the Ohio State University (OSU) database [139]. 

In this case study, the Reynolds number is set to 1E6, and the angle of attack   varies 

sinusoidally with an oscillation frequency 1.2Hz and 10  amplitude around 14 mean 

AOA3. 

 

The BL dynamic stall model in the NAM_WTB is used to predict the instantaneous 

unsteady normal force coefficient NC  of the S809 and S814 airfoils. In this case, the 

airfoil oscillates in torsional mode only, and both flapping motion and bending-torsion 

coupling motion are ignored. The comparison between the predicted unsteady values, 

static measurements and unsteady measurements for the S809 and S814 airfoils are 

shown in Figs. 7.6 and 7.7, respectively. 

                                                           
3 In the OSU unsteady aerodynamic database, the angle of attack (AOA) amplitude 

is 5 or 10 , and the mean AOA is 8 , 14  or 20 . 
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Figure 7.6. Normal force coefficient of S809 airfoil 

 

Figure 7.7. Normal force coefficient of S814 airfoil  
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linearly until a breakdown, occurring when the leading edge vortex has travelled past 

the airfoil trailing edge. At the breakdown point, massive flow are separated and the 

unsteady NC  drops to levels far below the typical values of the static NC  curve. There 

is a time delay to recover more regular behavior, and the unsteady NC  remains below 

the static NC  for most of the remaining cycle.  

 

This case study demonstrates that the BL dynamic stall model in the NAM_WTB can 

be utilized for predicting unsteady airfoil aerodynamic coefficients. 

 

7.3. Validation of the Structural Part of NAM_WTB 

 

In order to validate the structural part of the NAM_WTB, two case studies have been 

performed. The first case study compares both the structural part of the NAM_WTB 

and the COMSOL Euler-Bernoulli beam model with experimental results obtained in 

laboratory. In this case study, the static deflections of an experimentally large-deflection 

cantilever beam are investigated, and the details of the experiment are presented. In the 

second case study, the modal analysis results from structural part of the NAM_WTB are 

validated against the experimental data, and a practical wind turbine blade is chosen as 

an example. 

 

7.3.1. Static Deflection of Large-deflection Beam 

 

This case study aims to verify the accuracy of the structural part of the NAM_WTB and 

demonstrate its nonlinear capability by comparing both the structural part of the 

NAM_WTB and the COMSOL Euler-Bernoulli beam model with experimental results 

obtained in the laboratory. The example used here is an experimentally large-deflection 

cantilever beam. Fig. 7.8 depicts the photograph of the experimental system, which is 

made up of a steel beam, fixed at one end and loaded at the free end. A vertical ruler is 

used to measure the vertical deflection of the beam at the free end. The length of the 

beam is 0.48m and it has a uniform rectangular cross-section of width 0.02m and height 

0.0012m. 
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Figure 7.8. Experimentally cantilever beam 

 

Both the NAM_WTB and COMSOL Euler-Bernoulli beam model are used to 

numerically calculate the tip deflection of the cantilever beam. The value of Young’s 

modulus used in the numerical calculation is 2.0E11Pa (typical value of Young’s 

modulus for steel). The weight of the beam, 0.87N, is taken into account in the 

numerical calculation by applying a uniform distribution load over its entire length with 

the value of 1.81N/m. Six values of tip load, i.e. 0, 1.176, 2.156, 3.136, 4.116 and 

5.096N, are used for both experimental test and numerical calculation. The comparison 

between the predicted vertical tip deflection and measured values are shown in Fig. 7.9 

and Table 7.2, where relative differences are obtained with respect to the measured 

values. 

 

Figure 7.9. Tip deflection of the cantilever beam 
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Table 7.2. Tip deflection of the cantilever beam 

Tip 

load 

(N) 

Vertical tip deflection (m) %Diff. 

(COMSOL 

Euler-

Bernoulli 

beam) 

%Diff 

(NAM_WTB) Experiment COMSOL 

Euler-

Bernoulli 

beam 

NAM_WTB 

0 0.0200 0.0206 0.0205 3.00 2.50 

1.176 0.0940 0.0961 0.0926 2.23 1.49 

2.156 0.1490 0.1588 0.1444 6.58 3.09 

3.136 0.1930 0.2216 0.1870 14.82 3.11 

4.116 0.2300 0.2843 0.2213 23.61 3.78 

5.096 0.2550 0.3470 0.2486 36.08 2.51 

 

From Fig. 7.9 and Table 7.2 we can see that 1) the tip deflections calculated using 

COMSOL Euler-Bernoulli beam model increase linearly and do not coincide with 

experimental data for the cases when the tip loads are over 3.136N, with maximum 

percentage difference of 36.08% occurring when the tip load is 5.096N; 2) the tip 

deflections predicted using the NAM_WTB increases nonlinearly and show good 

agreement with experimental data for all cases, with the maximum percentage 

difference 3.78% occurring when the tip load is 4.116N; 3) the COMSOL Euler-

Bernoulli beam model overestimates tip deflections when large deflections occur 

because it fails to capture geometric nonlinearities. 

 

This case study clearly demonstrates that 1) the NAW_WTB is capable of handling 

geometric nonlinearities arising from large deflections; 2) when the deflection is small, 

the error introduced by linear assumptions, e.g. the assumption adopted in the 

COMSOL Euler-Bernoulli beam model, can be ignored; however, when large deflection 

occurs, the error introduced by linear assumptions should be quantified. 

 

7.3.2. Modal Analysis of Truncated RB70 Blade 

 

This case study aims to validate the modal analysis results from the structural part of the 

NAM_WTB against experimental data. The example used here is the truncated RB70 

wind turbine blade [140], which has been subjected to the eigenmode validation within 
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the STABTOOL-3 research project [141]. The chord and twist angle distributions of the 

truncated RB70 wind turbine blade are depicted in Fig. 7.10. 

 

Figure 7.10. Chord and twist angle distributions of the truncated RB70 wind turbine 

blade 

 

The distributions of bending stiffness and mass per unit length of the truncated RB70 

wind turbine blade are respectively shown in Figs. 7.11 and 7.12, and its details can be 

found in Ref. [140]. 
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Figure 7.11. Bending stiffness distribution of the truncated RB70 wind turbine blade 

 

 

Figure 7.12. Mass per unit length distribution of the truncated  

RB70 wind turbine blade 
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[142] as shown in Fig. 7.13 and Table 7.3, where the relative differences are observed 

with respect to the measured values. 

 

Figure 7.13. Flapwise and edgewise mode frequencies of the truncated RB70 wind 

turbine blade 

 

Table 7.3. Flapwise and edgewise mode frequencies of the truncated RB70 wind turbine 

blade 

Mode frequencies Measured values  

[142] 

NAM_WTB Diff. (%) 

1st flapwise  (Hz) 1.582 1.637 3.48 

2nd flapwise (Hz) 4.630 5.061 9.31 

3rd flapwise (Hz) 10.199 11.152 9.34 

1st edgewise (Hz) 2.174 2.173 0.05 

2nd edgewise (Hz) 7.962 7.772 2.39 

3rd edgewise (Hz) 18.138 17.133 5.54 

 

As can be seen from Fig. 7.13 and Table 7.3, the flapwise and edgewise blade mode 

frequencies calculated from the NAM_WTB match well with the experimental data, 

with the maximum percentage difference (9.34%)  occurring for the 3rd flapwise mode.  

 

This case study not only further validates the structural part of the NAM_WTB, but also 

demonstrates that representing wind turbine blades as a series of 1D beam elements 

provides reasonable accuracy if the beam model is constructed properly.  
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7.4. Validation of Aeroelastic Simulation Results of 

NAM_WTB 

 

This case study aims to validate the NAM_WTB against FAST [26], which is a widely 

used linear aeroelastic code developed by NREL based on combining BEM with modal 

approach. The wind turbine model used in this case study is NREL Phase VI wind 

turbine [143], which is a 10m-diameter rotor research wind turbine. The main 

parameters of the turbine are listed in Table 7.4.  

 

Table 7.4. Main parameters of the NREL Phase VI wind turbine 

Parameters Values 

Rated power (kW) 20 

Number of blades 2 

Rotor radius (m) 5.029 

Rotor speed (rpm) 71.9 

Cone angle (deg.) 0 

Tilt angle (deg.) 0 

 

The chord and twist angle distributions of NREL Phase VI wind turbine blade are 

depicted in Fig. 7.14, and its details can be found in Ref. [143] and Appendix E. 

 

Figure 7.14. Chord and twist angle distributions of the NREL Phase VI wind turbine 

blade 
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Both NAM_WTB and FAST are used to perform aeroelastic modelling of NREL Phase 

VI rotor. In this case, yaw angle, pitch angle and rotor speed are 0 , 815.4  and 

71.9rpm, respectively. The gravity loads and centrifugal loads are taken into account, 

and the blade is considered flexible. Additionally, dynamic stall effects are considered. 

The calculated blade root load and blade tip deflection at free stream wind speed of 

10m/s are shown in Figs. 7.15 and 7.16 respectively. 

 

Figure 7.15. Calculated blade root load at wind speed 10m/s 

 

Figure 7.16. Calculated blade tip deflection at wind speed 10m/s 

 

Figs. 7.15 and 7.16 demonstrate that the results from NAM_WTB show good agreement 

with those from FAST for this case study. Fig. 7.16 also indicates that the tip deflection 
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NREL Phase VI wind turbine. This case study demonstrates that both NAM_WTB and 

FAST work well for small deflections. 
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7.5. Summary 

 

In this chapter, the nonlinear aeroelastic model NAM_WTB was validated by a series of 

benchmark calculation tests. The key components of the NAM_WTB, i.e. the 

aerodynamic part (based on combining the BEM model and the BL dynamic stall model) 

and the structural part (based on a mixed-form formulation of GEBT) were validated 

separately. Then a case study was performed to validate the aeroelastic simulation 

results. 

 

Close agreement with existing widely used BEM-based aerodynamic code WT_perf 

confirms the validity of the BEM model in the NAM_WTB for aerodynamic load 

prediction for wind turbine blades. Additionally, the predicted unsteady aerodynamic 

coefficients from the BL dynamic stall model in the NAM_WTB showed good 

agreement with experimental data. This further confirms the capability of the 

aerodynamic part of the NAM_WTB for unsteady aerodynamic load calculation.  

 

Close agreement with experimental data for large beam deflections demonstrates the 

capability of the structural part of NAM_WTB to handle geometric nonlinearities when 

compared with COMSOL Euler-Bernoulli beam model. Moreover, close agreement 

with experimental data for the modal analysis of a practical wind turbine blade further 

validates the structural part of the NAM_WTB. It also demonstrates that representing 

the blades as a series of 1D beam elements provides reasonable accuracy if the beam 

model is constructed properly.  

 

The aeroelastic simulation results of NAM_WTB were validated against the well-

known aeroelastic code FAST. In this case study, the blade deflections are very small, 

and the results of NAM_WTB are consistent with the results of linear aeroelastic code 

FAST, which indicates geometric nonlinearities can be ignored for small blade 

deflections.   

 

Chapter 8 presents the application of NAM_WTB, including the aeroelastic simulation 

of a parked wind turbine blade and the stability analysis of the blade. 
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CHAPTER 8    APPLICATION OF THE 

NONLINEAR AEROELASTIC MODEL 

 

8.1. Introduction 

 

In Chapter 7, NAM_WTB (Nonlinear Aeroelastic Model for Wind Turbine Blades) has 

been validated through a series of case studies. This chapter presents the application of 

NAM_WTB on aeroelastic modelling of large wind turbine blades. 

 

The wind turbine model used in this chapter is the WindPACT 1.5MW wind turbine 

[144], which is a reference wind turbine created by NREL. NAM_WTB is applied to 

simulate the parked WindPACT 1.5MW wind turbine blade and to perform stability 

analysis of the blade. 

 

This chapter is structured as follows. Section 8.2 introduces the WindPACT 1.5MW 

wind turbine. Section 8.3 presents the application of NAM_WTB on the aeroelastic 

simulation of the parked WindPACT 1.5MW wind turbine blade. Section 8.4 presents 

the application of NAM_WTB on the stability analysis of the WindPACT 1.5MW wind 

turbine blade, followed by a chapter summary in Section 8.5.  

 

8.2. WindPACT 1.5MW Wind Turbine  

 

WindPACT 1.5MW wind turbine [144] is a reference wind turbine designed by NREL 

for the Wind Partnership for Advanced Component Technologies (WindPACT) project 

between years 2000 and 2002. In the WindPACT project, the effects of the main wind 

turbine components (such as blades and generator) on the cost of energy (COE) have 

been investigated. The ultimate goal of the WindPACT project is to identify technology 

improvements to reduce the COE of wind turbines in low-wind-speed sites. The details 

of WindPACT project can be found in Ref. [145].  

 

WindPACT 1.5MW wind turbine is a three-bladed horizontal-axis wind turbine. Its 

main parameters are summarised in Table 8.1. 
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Table 8.1. Main parameters of the WindPACT 1.5MW wind turbine 

Parameters Values 

Rated power (MW) 1.5 

Number of blades 3 

Rotor radius (m) 35 

Cone angle (deg.) 0 

Tilt angle (deg.) 5 

 

The chord and twist angle distributions of the WindPACT 1.5MW wind turbine blade 

are shown in Fig. 8.1 and Table 8.2, and its structural properties can be found in 

Appendix F. 

 

Figure 8.1. Chord and twist angle distributions of WindPACT 1.5MW wind turbine 

blade 
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Table 8.2. Chord ant twist angle distributions of the WindPACT 1.5MW wind turbine 

blade 

r (m) Chord 

c  (m) 

Twist angle 

p  (deg.) 

Airfoil 

2.858 1.949 11.1 cylinder 

5.075 2.269 11.1 S818 

7.292 2.589 11.1 S818 

9.508 2.743 10.41 S818 

11.725 2.578 8.38 S818 

13.942 2.412 6.35 S818 

16.158 2.247 4.33 S818 

18.375 2.082 2.85 S825 

20.592 1.916 2.22 S825 

22.808 1.751 1.58 S825 

25.025 1.585 0.95 S825 

27.242 1.427 0.53 S825 

29.458 1.278 0.38 S825 

31.675 1.129 0.23 S826 

33.892 0.98 0.08 S826 

 

8.3. Aeroelastic Simulation of Parked WindPACT 1.5MW 

Wind Turbine Blade 

 

This case study aims to investigate the effects of large blade deflections on the 

aeroelastic modelling of wind turbine blades. Both NAM_WTB and FAST are used to 

perform aeroelastic modelling of the parked WindPACT 1.5MW wind turbine blade. In 

this case study, the rotor rotational speed, yaw angle and blade pitch angle are 0rpm, 0

and 2 , respectively. For the sake of simplicity, the dynamic stall effects are ignored. 

Additionally, in order to investigate the large deflection effects, the flapwise stiffness of 

the WindPACT 1.5MW wind turbine blade in this case study is adjusted by a factor of 

0.2 to make the blade more flexible.  

 

The calculated flapwise tip deflections at free-stream wind speeds between 15m/s and 

50m/s are depicted in Fig. 8.2. For comparison purposes, Fig. 8.2 also presents the 

results from a linear aeroelastic model, BEM_COMSOL-Euler-Bernoulli-beam, which 

is based on combining BEM and COMSOL Euler-Bernoulli beam model and is 
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implemented by replacing the structural part of NAM_WTB with COMSOL Euler-

Bernoulli beam model. 

 

Figure 8.2. Calculated flapwise tip deflection 

 

Fig. 8.2 clearly shows that 1) the results from BEM_COMSOL-Euler-Bernoulli-beam 

show good agreement with the results from FAST for all cases; 2) for this case study, 

when wind speed below 30m/s, the results from NAM_WTB show good agreement 

with the results from FAST; 3) as wind speed further increases, the difference between 

NAM_WTB and FAST gets larger, with maximum percentage difference 23%, which 

occurs for the case study when the wind speed achieves 50m/s, and the blade tip 

deflection predicted by NAM_WTB is less than that predicted by FAST. 

 

It should be noted that the only difference between BEM_COMSOL-Euler-Bernoulli-

beam and NAM_WTB is that the former one uses the COMSOL Euler-Bernoulli beam 

model for the structural part while the latter one uses GEBT. As demonstrated in the 

previous case study (see Section 7.3.1) of the experimentally large-deflection cantilever 

beam, COMSOL Euler-Bernoulli beam model overestimates tip deflections when large 

deflections occur because it fails to capture geometric nonlinearities. Since NAM_WTB 

uses GEBT for the structural part, the effects of geometric nonlinearities are taken into 

account. Therefore, NAM_WTB can provide more reliable aeroelastic modelling than 

linear aeroelastic models, such as FAST and BEM_COMSOL-Euler-Bernoulli-beam, 

for the cases when large deflections occur. No general conclusion can be drawn, but in 

this case study it seems like geometric nonlinearities are to be expected when the ratio 
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of blade deflection to blade radius exceeds 12% (corresponding to wind speed of 30m/s 

in this case study). 

 

This case study clearly demonstrates that when the blade deflection is small, the errors 

introduced by small deflection assumptions, e.g. the assumption adopted in FAST, can 

be ignored. However, as the blade deflection increases, the errors introduced by these 

assumptions should be quantified. 

 

8.4. Stability Analysis of WindPACT 1.5MW Wind Turbine 

Blade 

 

In this case study, the stability behaviour of the WindPACT 1.5MW wind turbine blade 

is investigated. The WindPACT 1.5MW wind turbine blade is simulated at different 

operating points, which are defined by free-stream wind speed, blade pitch angle and 

rotor rotational speed. The rated wind speed of WindPACT 1.5MW wind turbine blade 

is 11.5m/s. At wind speeds above the rated wind speed, the blade pitch angle increases 

while the rotor rotational speed is held constant at the rated value (20rpm) to maintain 

rated power output. In order to investigate the effects of rotor rotational speed on the 

stability behaviour of the blade, two operating conditions are considered, i.e. 1) 

operating condition A, in which the rotor rotational speed is held constant at the rated 

value; and 2) operating condition B, in which the roror rotational speed is held constant 

at 40rpm (double of the rated value). In this case study, the simulation wind speeds are 

12, 15, 18, 21, 24 and 27, and the corresponding rotor rotational speed and blade pitch 

angle under both operating conditions A and B are shown in Figure 8.3. 
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Figure 8.3. Rotor rotational speed and blade pitch angle against wind speed 

 

Based on the method presented in Section 6.3.4, NAM_WTB is used to calculate the 

damped frequencies and damping ratios of the WindPACT 1.5MW wind turbine blade 

operating under both conditions A and B. The resulting damped frequency and damping 

ratio distributions for both flapwise and edgewise modes are shown in Figs. 8.4 and 8.5, 

respectively. 

 

Figure 8.4. Damped frequencies of WindPACT 1.5MW wind turbine blade 
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Figure 8.5. Damping ratio of WindPACT 1.5MW wind turbine blade 

 

As can be seen from Figs. 8.4 and 8.5, under both operating condition A (rotor 

rotational speed is 20rpm) and operating condition B (rotor rotational speed is 40rpm), 

it is observed that 1) both the damped frequencies and amping ratio fo the 1st edgewise 

mode are insensitive to the wind speed; 2) damped frequencies of the 1st flapwise model 

decreases gradually as wind speed goes up, reaching lowest value at wind speed 24m/s; 

3) damping ratio of the 1st edgewise mode is much lower than the damping ratio of the 

1st flapwise mode, indicating that edgewise instability is more like to occur than 

flapwise instability. 

 

Figs. 8.4 and 8.5 also show that 1) the damped frequencies under operating condition B 

are higher than those under operating condition A, indicating that the damped frequency 

is increased with rotor rotational speed; 2) the damping ratio of the 1st edgewise mode 

under operating condition B becomes negative at wind speeds above 15m/s, indicating 

that improper rotor rotational speed (40rpm in this case) can result in edgewise 

instability.   
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8.5. Summary  

 

In this chapter, the nonlinear aeroelastic model NAM_WTB was applied to simulate the 

parked WindPACT 1.5MW wind turbine blade and to perform aeroelastic stability 

analysis of the blade.  

 

Taking account of geometric nonlinearities resulted from large blade deflections, 

significantly reduced tip deflection based on the presented NAM_WTB code is 

observed comparing with the linear aeroelastic code FAST. This difference in deflection 

could be vital for blade designers. No general conclusion can be drawn, but in the 

presented case study it seems like geometric nonlinearities are to be expected when the 

ratio of blade deflection to blade radius exceeds 12%. 

 

The stability behaviour of the WindPAC 1.5MW wind turbine blade was investigated. 

NAM_WTB was used to calculate the damped frequencies and damping ratios of both 

1st flapwise and 1st edgewise modes of the blade. Results show that damping ratio of the 

1st edgewise mode is much lower than the damping ratio of the 1st flapwise mode, 

indicating that edgewise instability is more likely to occur than flapwise instability. It is 

also demonstrated that improper rotor rotational speeds can result in edgewise 

instability. 

 

Next chapter presents the conclusions of the thesis and summarises the 

recommendations for future work. 
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CHAPTER 9    CONCLUSIONS AND 

FUTURE RESEARCH 

 

This thesis presents the research on nonlinear aeroelastic modelling of large wind 

turbine composite blades.  The conclusions of the thesis are presented in Section 9.1, 

and the recommendations for future works are presented in Section 9.2.    

 

9.1. Conclusions 

 

With the increasing size and flexibility of large wind turbine blades, aeroelasticity has 

become a significant subject in wind turbine blade design. In the development of large 

wind turbines, there have been some examples of commercial wind turbine blades 

suffering from instability problems due to aeroelasticity. Those examples have 

heightened the need for aeroelastic modelling of wind turbine blades. 

 

In order to provide a reliable and efficient aeroelastic modelling of large wind turbine 

blades, this project have developed 1) a cross-sectional model, which can extract cross-

sectional properties of wind turbine blade in a reliable and efficient way; and 2) a 

nonlinear aeroelastic model, which is capable of handling large blade deflections. 

 

The cross-sectional analysis model has been developed by incorporating the classical 

lamination theory (CLT) with the extended Bredt-Batho shear flow theory (EBSFT). 

The cross-sectional analysis model considers both the web effects and warping effects 

of the blades, and is presented in a code called CBCSA (Composite Blade Cross-

Section Analysis), developed using MATLAB. A series of benchmark computational 

tests have been performed for isotropic and composite blades. The results demonstrate 

that 

1. CBCSA can rapidly extract the cross-sectional properties of the composite 

blades, usually in a fraction of a second, which is much faster than a 3D finite-

element based method. 

2. Good agreement is achieved in comparison with the data from experiment and 

finite-element analysis, which indicates CBCSA has sufficient accuracy for the 

calculation of the cross-sectional properties of the composite blades. 
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3. CBCSA provides a more accurate torsional stiffness calculation than previously 

available tool PreComp due to the consideration of the shear web effects by 

using EBSFT. 

 

Additionally, a nonlinear aeroelastic model for large wind turbine blades has been 

developed by combining 1) a blade structural model, which is based on a mixed-form 

formulation of geometrically exact beam theory (GEBT), taking account of geometric 

nonlinearities; and 2) a blade load model, which includes gravity loads, centrifugal 

loads and aerodynamic loads. The aerodynamic loads are calculated based on 

combining the blade element momentum (BEM) model with the Beddoes-Leishman 

(BL) dynamic stall model. The nonlinear aeroelastic model takes account of large blade 

deflections, and is presented in a code called NAM_WTB (Nonlinear Aeroelastic Model 

for Wind Turbine Blades) based on COMSOL Multiphysics. NAM_WTB discretises 

the wind turbine blade into a series of 1D elements using 1D finite-element approach, 

which is computationally more efficient than 3D finite-element approaches. Validated 

by a series of benchmark computational tests, the nonlinear aeroelastic model was 

applied to the aeroelastic analysis of the parked WindPACT 1.5MW baseline wind 

turbine and to the stability analysis of the blade. The following conclusions can be 

drawn: 

a) Close agreement with existing widely used BEM-based aerodynamic code 

WT_Perf confirms the validity of the BEM model in the aerodynamic part of 

NAM_WTB for aerodynamic load prediction for wind turbine blades. 

b) Good agreement with unsteady airfoil experimental data confirms the validity of 

the BL dynamic stall model in the aerodynamic part of NAM_WTB for 

unsteady aerodynamic load predictions. 

c) Good agreement (with maximum percentage difference of 3.78%) is achieved in 

comparison with the data from experiment of a large-deflection cantilever beam, 

which indicates the NAM_WTB is capable of handling geometric nonlinearities 

resulted from large deflections. 

d) Good agreement (with maximum percentage difference of 9.34%) is achieved in 

comparison with the data from modal experiment of a practical wind turbine 

blade, which further validates the structural part of NAM_WTB. It also 

demonstrates that representing the blade as a series of 1D beam elements 

provides reasonable accuracy if the beam model is constructed properly. 



127 

 

e) In case of small deflections, the results of the NAM_WTB are consistent with 

the results of the linear aeroelastic code FAST, which indicates geometric 

nonlinearities can be ignored for small blade deflections. 

f) Taking account of geometric nonlinearities resulted from large blade deflections, 

significantly reduced tip deflection based on the presented NAM_WTB code is 

observed comparing with the linear aeroelastic code FAST. This difference in 

deflection could be vital for blade designers.  

g) No general conclusion can be drawn, but in the presented case study it seems 

like geometric nonlinearities are to be expected when the ratio of blade 

deflection to blade radius exceeds 12%. 

h) In the presented case study on the stability analysis of a large wind turbine blade, 

the calculated damping ratio of the 1st edgewise model is much lower than the 

calculated damping ratio of the 1st flapwise mode, indicating that edgewise 

instability is more likely to occur than flapwise instability. It is also 

demonstrated that improper rotor rotational speeds can result in edgewise 

instability. 

  

9.2. Recommendations for Future Research  

 

It is recommended that future research work be undertaken in the following areas: 

 To apply the cross-sectional analysis model CBCSA and the nonlinear 

aeroelastic model NAM_WTB to the optimisation of the blade structural layout 

with the consideration of aeroelastic effects. 

 To conduct aeroelastic experiments to provide more available experimental data 

for the benchmark test of the nonlinear aeroelastic model. 

 To extend the nonlinear aeroelastic model to a nonlinear aero-hydro-elastic 

model for offshore wind turbine applications by introducing a reliable 

hydrodynamic model to take account of hydrodynamic loads in offshore 

environment. 
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APPENDIX A   MAIN COORDINATE SYSTEMS AND 

DEGREES OF FREEDOME OF BLADES 

 

This appendix presents the main coordinate system and degrees of freedom of wind 

turbine blades.   

 

A1. Main Coordinate Systems 
 

Three main coordinate systems, i.e. the global frame G , the un-deformed blade frame 

b  and the deformed blade frame B , are chosen for the analysis of wind turbine blades, 

as shown in Fig. A.1. 

 

A.1. Main coordinate systems 

 

The details of the three main coordinates systems are presented below. 

 

 Global frame G  

Origin: at hub centre (intersection of blade and shaft axes). 

Axis 1G : Perpendicular to Axes 2G  and 3G , to give a right-handed co-ordinate system. 

Axis 2G : along with the wind turbine rotor axis, and pointing towards the tower. 

Axis 3G : perpendicular to the wind turbine rotor axis. 
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 Un-deformed blade frame b  

Origin: at each un-deformed blade section. 

Axis 1b : Perpendicular to Axes 2b  and 3b , to give a right-handed co-ordinate system. 

Axis 2b : located in each un-deformed airfoil plane, and perpendicular to the chord line 

of each un-deformed blade element. 

Axis 3b : located in each un-deformed airfoil plane, and parallel to the chord line of each 

un-deformed blade element. 

 

 Deformed blade frame B  

Origin: at each deformed blade section 

Axis 1B : Perpendicular to Axes 2B  and 3B , to give a right-handed co-ordinate system. 

Axis 2B : located in each deformed airfoil plane, and perpendicular to the chord line of 

each deformed blade element. 

Axis 3B : located in each deformed airfoil plane, and parallel to the chord line of each 

deformed blade element. 

 

A2. Degrees of Freedom of Blades 
 

Fig. A.2 depicts the typical three degrees of freedom (DOFs) of a blade, i.e. torsional 

(pitch), flapwise (flap) and edgewise (lag) DOFs. The torsional (pitch) DOF refers to 

the freedom of movement of the blade about the blade pitch axis. The flapwise (flap) 

DOF refers to the freedom of movement of the blade out of rotor rotational plane. The 

edgewise (lag) DOF refers to the freedom of movement of the blade in the rotor 

rotational plane.  

 

A.2. Degrees of freedom of a blade 
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APPENDIX B   BLADE ELEMENT MOMENTUM 

THEORY 

 

This appendix presents the fundamental equations involved in the blade element 

momentum (BEM) theory, which is a combination of the blade momentum theory and 

the blade element theory. 

 

B1. Blade Momentum Theory 

 

The expression of aerodynamic forces on wind turbine blades can be derived from blade 

momentum theory, which is developed based on the following main assumptions: 

 The fluid is incompressible and homogenous. 

 Both far upstream static pressure and far downstream static pressure are equal to 

undisturbed atmospheric static pressure. 

 

Fig. A.1 depicts a schematic of the parameters involved in the blade momentum theory. 

In Fig. B.1, numbers 1, 2, 3, 4 respectively denote sections at far upstream, just in front 

of rotor plane, just behind rotor plane, and far downstream. It is assumed that 1)  , the 

angular velocity imparted to the flow stream by the rotating blade, is small when 

compared to  , the rotor angular velocity; and 2) far upstream pressure 1p  is equal to 

far downstream pressure 4p . The following analysis is based upon the use of an annular 

stream tube with a radius r and a thickness dr , resulting in a cross-sectional area 

rdr2  (see Fig. B.1). 

 

Figure B.1. Rotor geometry  
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The mass flow rate along the annular element is determined by: 

 ardrUmd  12      (B.1) 

where   is the air density; U  is far upstream wind speed; a  is the axial induction factor, 

the fractional reduction in axial wind velocity between the free stream and rotor plane. 

 

The linear momentum of the annular element at Sections 1 and 4 (see Fig. B.1) are 

Umd   and  aUmd 21 , respectively. Applying the conservation of linear momentum 

to the annular element yields the expression of the thrust on it: 

  rdraaUdT  142
    (B.2) 

 

Similarly, the expression of the torque on the annular element can be obtained by 

applying the conservation of angular momentum to the element. It should be noted that 

the angular velocity of the airflow relative to the rotor increases from   to  . 

According to conservation of angular momentum, the torque equals the rate of change 

of angular momentum of the control volume: 

          rrardrUrrmdrrmddQ  12   (B.3) 

 

Defining the angular induction factor aas 




2
 and substituting it into Eq. (B.3) yields: 

  drrUaadQ  314     (B.4) 

 

Thus, from the blade momentum theory, the thrust dT  and torque dQ  on an annular 

element are respectively defined by Eqs. (B.2) and (B.4) as a function of axial induction 

factor a  and tangential induction factor a . 

 

B2. Blade Element Theory 

 

The expression of aerodynamic forces on wind turbine blades can also be derived from 

blade element theory. The blade element theory discretizes the blade into several 

elements with the following assumptions: 

 Elements are independent and no aerodynamic mutual influence between two 

adjacent elements. 

 The aerodynamic loads on each element are solely dependent on its local airfoil 

characteristics, i.e. its lift and drag coefficients.  
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Fig. B.2 depicts the relationships of the various velocities, angles and forces at the blade 

section. In Fig. B.2, relU  is the relative wind velocity;   is the angle of relative wind, 

the angle between the relative wind and the plane of blade rotation;   is the angle of 

attack, the angle between the relative wind and the chord line of the section;  P  is the 

section pitch angle, the angle between the chord line of the section and the plane of 

blade rotation; 0P  is the pitch angle at blade tip, the angle between the chord line of the 

blade tip and the plane of blade rotation; T  is the twist angle, the angle between the 

chord line of the section and the chord line of the blade tip; TdF  is the tangential force 

one the section, which is tangential to the plane of blade rotation; NdF  is the normal 

force on the section, which is normal to the plane of blade rotation; DdF  is the drag 

force on the section, which is parallel to the relative wind speed; and LdF is the lift force 

on the section, which is perpendicular to the relative wind speed. 

 

Figure B.2. Various velocities, angles, and forces at blade section  

 

From Fig. B.2, the following relationships are established: 

 P      (B.5) 
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 
 

  ip

op

vra

vUa






1

1
tan     (B.6) 

 

 
 



sin

1 aU
U rel     (B.7) 

 

opv  and 
ipv  in Eq. (B.6) respectively are out-of-plane and in-plane blade element 

velocities, and they are generally ignored if the blade element motion is small. If 
opv  

and 
ipv  are ignored, Eq. (B.6) becomes: 

 
 
  ra

Ua






1

1
tan     (B.8) 

 

According to airfoil theory, the lift force LdF and drag force DdF  on the section are 

respectively calculated using the following equations: 

cdrCUdF lrelL

2

2

1
     (B.9) 

cdrCUdF drelD

2

2

1
     (B.10) 

where lC  and dC  are the lift and drag coefficients of the airfoil section, respectively; c  

is the chord length of the section.  

 

The normal force  NdF  and tangential force TdF  can be obtained by projecting the lift 

force LdF and drag force DdF  on the normal and tangential directions (see Fig. B.2): 

    sincos DLN dFdFdF   (B.11) 

    cossin DLT dFdFdF   (B.12) 

 

Substituting Eqs. (B.9) and (B.10) into Eqs. (B.11) and (B.12), and with the help of 

Eq.(B.7), one obtains: 

 
 

    cdrCC
aU

dF dlN 



 sincos

sin

1

2

1
2

22

  (B.13) 

 
 

    cdrCC
aU

dF dlT 



 sincos

sin

1

2

1
2

22

  (B.14) 
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If the rotor has B  blades, the thrust force dT  and the torque dQ  on the section at a 

distance r  from the rotor centre are respectively calculated by: 

NBdFdT        (B.15) 

TBrdFdQ        (B.16) 

 

Substituting Eqs. (B.13) and (B.14) into Eqs. (B.15) and (B.16) yields: 

 
 

    rdrCC
aU

dT dl 



 sincos

sin

1
2

22

  (B.17) 

 
 

     drrCC
aU

dQ dl

2

2

22

sincos
sin

1





   (B.18) 

where   is the local solidity, defined as 

rcBN  2/      (B.19) 

 

Thus, from the blade element theory, the thrust force and torque on an annular rotor 

element can be expressed using Eqs.(B.17) and (B.18), respectively.  

 

B3. Combination of Blade Momentum Theory and Blade 

Element Theory 

 

The performance parameters of each blade element, such as axial induction factor a  

and tangential induction factor a , can be obtained by combining the blade element 

theory with the blade momentum theory.  

 

Equating Eq. (B.2), the thrust force expression from blade momentum theory, to Eq. 

(B.17), the thrust force expression from blade element theory, one obtains the following 

expression for axial induction factor a : 

 
    






sincos

sin4
1

1
2

dl CC

a    (B.20) 

 

Similarly, equating Eq. (B.4), the torque expression from blade momentum theory, to 

Eq. (B.18), the torque expression from blade element theory, one obtains the following 

expression for tangential induction factor a : 
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   
    

1
cossin

cossin4

1







dl CC

a    (B.21) 
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APPENDIX C   MODAL ANALYSIS  

 

This appendix summarises the mathematic equations involved in the modal analysis of a 

free-vibration system. A spring damper system with one degree of freedom, as 

illustrated in Fig. C.1, is chosen as an example.  

 

Figure C.1. A spring damper system with one degree of freedom 

 

The governing equation for the system in Fig. C.1 can be written in a general matrix 

form: 

      FtKxtxCtxM       (C.1) 

where M , C  and K  are the mass, damping and stiffness of the system, respectively; 

F is the applied load of the system; x  is the dependent variable of the system.  

 

Dropping the applied load F  in Eq. (C.1) yields the governing equation of a free-

vibration system: 

      0 tKxtxCtxM      (C.2) 
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The solution of Eq. (C.2) can be found by assuming it has the following type of 

solution:  

    λtetXtx       (C.3) 

 

Substituting Eq. (C.3) into Eq. (C.2) gives: 

    02  λtetXKCM      (C.4) 

 

Eq. (C.4) must hold for every value of t , resulting in: 

  02  KCM       (C.5) 

 

Solving Eq. (C.5) yields two solutions for  : 

KMC
MM

C
4

2

1

2

2

2,1      (C.6) 

 

As can be seen from Eq. C.6, the solutions for  can be real or complex numbers, 

depending on the sign of KMC 42  . 

 

There are three possibilities for the sign of KMC 42  . The first case is that 

KMC 42   is greater than zero. In this case, both 
1  and 

2  are negative real numbers. 

The second case is that KMC 42  equals zero, resulting in both 
1  and 

2  are the 

same negative real number. The last case is that KMC 42  is less than zero. In this case, 

1  and 
2  will be a complex conjugate pair.  

 

Damping ratio   is defined by: 

Mω

C

C

C

r 2
     (C.7) 

where 
rC  is the critical damping coefficient; ω  is the un-damped natural frequency, 

defined by: 

M

K
ω       (C.8) 

 

With the help of Eq. (C.7), Eq. (C.6) can be written as: 

12

2,1       (C.9) 
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The solutions for  are also in the following form: 

iAA 212,1      (C.10) 

where 
1A  is the real part number and 

2A  is the imaginary number. 

 

Through comparing Eqs. (C.9) and (C.10), the un-damped frequency  and damping 

ratio   can be expressed in terms of 
1A  and 

2A  using the following equations: 

2

2

2

1 AA      (C.11) 

2

2

2

1

1

AA

A


     (C.12) 

 

Having obtained the un-damped frequency  and the damping ratio   , the damped 

frequency 
D  is calculated by: 

21  D     (C.13) 

 

The unit of both un-damped frequency   and damped frequency 
D  is rad/s and can 

be transformed to Hz using the following equations: 





2
Hzf      (C.14) 





2
,

D
HzDf       (C.15) 

where 
Hzf  and  HzDf ,  are the un-damped and damped frequencies in Hz, respectively. 

 

The values of X  in Eq. (C.4), which correspond to each eigenvalue, are called 

eigenvectors and can be obtained by substituting calculated eigenvalues   back to Eq. 

(C.4).  
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APPENDIX D   AWT-27CR2 WIND TURBINE BLADE 

CONFIGURATION 

 

In this appendix, the chord and twist angle distributions of the AWT-27CR2 wind 

turbine blade are listed in Table D.1. 

 

Table D.1. The chord and twist angle distributions of the AWT-27CR2 wind turbine 

blade 

r (m) Chord (m) Twist angle  (deg.) 

1.498 0.774 6.1 

2.127 0.869 5.764 

3.07 0.962 5.47 

4.327 1.108 4.996 

5.585 1.148 4.208 

6.842 1.089 3.172 

8.099 1.015 2.086 

9.356 0.931 1.117 

10.614 0.83 0.424 

11.557 0.711 0.122 

12.185 0.646 0.076 

12.625 0.576 0.048 

12.877 0.538 0.041 

13.128 0.501 0.033 

13.38 0.459 0.023 

13.568 0.414 0.012 

13.694 0.392 0.006 
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APPENDIX E   NREL PHASE VI WIND TURBINE BLADE 

CONFIGURATION 

 

In this appendix, the geometry shape data (i.e. chord and twist angle distributions) of the 

NREL Phase VI wind turbine blade are listed in Table E.1, and the cross-sectional 

properties of the blade are listed in Table E.2. 

 

Table E.1. Chord ant twist angle distributions of the NREL Phase VI wind turbine blade 

r (m) 
Chord  

c  (m) 

Twist angle 

 p  (deg.) 

Airfoil 

0.568 0.219 0 cylinder 

0.88 0.181 -0.098 cylinder 

1.232 0.714 19.423 S809 

1.509 0.711 14.318 S809 

1.71 0.691 10.971 S809 

1.928 0.668 8.244 S809 

2.146 0.647 6.164 S809 

2.347 0.627 4.689 S809 

2.548 0.606 3.499 S809 

2.766 0.584 2.478 S809 

2.984 0.561 1.686 S809 

3.185 0.542 1.115 S809 

3.386 0.522 0.666 S809 

3.604 0.499 0.267 S809 

3.822 0.478 -0.079 S809 

4.023 0.457 -0.381 S809 

4.224 0.437 -0.679 S809 

4.4 0.419 -0.933 S809 

4.576 0.401 -1.184 S809 

4.778 0.381 -1.466 S809 

4.954 0.363 -1.711 S809 
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Table E.2a.  Cross-sectional properties of NREL Phase VI wind turbine blade (part 1) 

r (m) 
axial stiffness 

EA  (N) 

flapwise stiffness 

XEI  (Nm^2) 

edgewise stiffness 

YEI (Nm^2) 

Torsional stiffness 

GJ  (Nm^2) 

0.568 1.46E+09 2.90E+06 1.12E+06 3.60E+06 

0.88 4.02E+08 7.24E+05 2.80E+05 4.21E+05 

1.232 4.06E+08 5.88E+05 1.14E+06 3.01E+06 

1.509 3.84E+08 5.04E+05 1.15E+06 2.89E+06 

1.71 3.65E+08 4.47E+05 1.10E+06 2.68E+06 

1.928 3.58E+08 4.00E+05 1.08E+06 2.48E+06 

2.146 3.54E+08 3.64E+05 1.05E+06 2.29E+06 

2.347 3.21E+08 3.09E+05 8.32E+05 1.63E+06 

2.548 2.94E+08 2.64E+05 7.33E+05 1.46E+06 

2.766 2.68E+08 2.24E+05 6.40E+05 1.30E+06 

2.984 2.48E+08 1.94E+05 5.58E+05 1.15E+06 

3.185 2.35E+08 1.73E+05 4.93E+05 1.03E+06 

3.386 2.18E+08 1.49E+05 4.32E+05 9.10E+05 

3.604 2.00E+08 1.25E+05 3.72E+05 7.94E+05 

3.822 1.82E+08 1.04E+05 3.18E+05 6.89E+05 

4.023 1.66E+08 8.59E+04 2.70E+05 5.97E+05 

4.224 1.51E+08 7.17E+04 2.33E+05 5.20E+05 

4.4 1.37E+08 5.96E+04 1.99E+05 4.54E+05 

4.576 1.24E+08 4.97E+04 1.71E+05 3.97E+05 

4.778 1.09E+08 3.91E+04 1.41E+05 3.35E+05 

4.954 9.69E+07 3.13E+04 1.18E+05 2.86E+05 
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Table E.2b.  Cross-sectional properties of NREL Phase VI wind turbine blade (part 2) 

r (m) mass per unit length 

μ  (kg/m) 

flapwise mass 

moments of inertia 

XrhoI  (kgm) 

edgewise mass 

moments of inertia 

YrhoI  (kgm) 

0.568 49.933 0.067 0.067 

0.88 10.233 0.04 0.04 

1.232 15.88 0.038 0.461 

1.509 15.634 0.034 0.452 

1.71 15.118 0.031 0.422 

1.928 14.781 0.028 0.397 

2.146 14.512 0.026 0.372 

2.347 12.372 0.02 0.277 

2.548 11.744 0.017 0.247 

2.766 11.136 0.015 0.218 

2.984 10.634 0.013 0.191 

3.185 10.254 0.012 0.169 

3.386 9.79 0.01 0.149 

3.604 9.313 0.009 0.129 

3.822 8.851 0.008 0.111 

4.023 8.414 0.006 0.096 

4.224 8.01 0.006 0.083 

4.4 7.651 0.005 0.072 

4.576 7.291 0.004 0.062 

4.778 6.888 0.003 0.052 

4.954 6.536 0.003 0.044 
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APPENDIX F   WindPACT 1.5MW WIND TURBINE 

BLADE CONFIGURATION 

 

In this appendix, the geometry shape data (i.e. chord and twist angle distribution) of the 

WindPACT 1.5MW wind turbine blade are listed in Table F.1, and the cross-sectional 

properties of the blade are listed in Table F.2. 

 

Table F.1. Chord ant twist angle distributions of the WindPACT 1.5MW wind turbine 

blade 

r (m) Chord 

c  (m) 

Twist angle 

p  (deg.) 

Airfoil 

2.858 1.949 11.1 cylinder 

5.075 2.269 11.1 S818 

7.292 2.589 11.1 S818 

9.508 2.743 10.41 S818 

11.725 2.578 8.38 S818 

13.942 2.412 6.35 S818 

16.158 2.247 4.33 S818 

18.375 2.082 2.85 S825 

20.592 1.916 2.22 S825 

22.808 1.751 1.58 S825 

25.025 1.585 0.95 S825 

27.242 1.427 0.53 S825 

29.458 1.278 0.38 S825 

31.675 1.129 0.23 S826 

33.892 0.98 0.08 S826 
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Table F.2a.  Cross-sectional properties of WindPACT 1.5MW wind turbine blade  

(part 1) 

r (m) axial stiffness 

 EA  (N) 

flapwise stiffness 

XEI  (Nm^2) 

edgewise stiffness 

YEI (Nm^2) 

Torsional stiffness 

GJ  (Nm^2) 

2.858 2.63E+09 1.11E+09 1.14E+09 3.84E+08 

5.075 2.57E+09 7.97E+08 9.76E+08 2.46E+08 

7.292 2.51E+09 4.82E+08 8.12E+08 1.09E+08 

9.508 2.41E+09 2.57E+08 6.66E+08 1.80E+07 

11.725 2.24E+09 2.07E+08 5.52E+08 1.53E+07 

13.942 2.08E+09 1.56E+08 4.38E+08 1.27E+07 

16.158 1.91E+09 1.06E+08 3.25E+08 1.01E+07 

18.375 1.71E+09 6.89E+07 2.37E+08 7.80E+06 

20.592 1.45E+09 5.27E+07 1.89E+08 6.08E+06 

22.808 1.19E+09 3.66E+07 1.41E+08 4.36E+06 

25.025 9.31E+08 2.05E+07 9.25E+07 2.63E+06 

27.242 7.12E+08 1.03E+07 5.93E+07 1.51E+06 

29.458 5.43E+08 7.39E+06 4.46E+07 1.13E+06 

31.675 3.73E+08 4.52E+06 2.99E+07 7.50E+05 

33.892 2.03E+08 1.66E+06 1.52E+07 3.70E+05 
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Table F.2b.  Cross-sectional properties of WindPACT 1.5MW wind turbine blade  

(part 2) 

r (m) mass per unit length 

 μ  (kg/m) 

flapwise mass 

moments of inertia 

 XrhoI  (kgm) 

edgewise mass 

moments of inertia 

 YrhoI  (kgm) 

2.858 180.854 75.72 80.337 

5.075 183.682 49.881 79.563 

7.292 1.87E+02 24.043 78.79 

9.508 1.84E+02 6.576 73.957 

11.725 1.71E+02 5.206 61.317 

13.942 1.59E+02 3.835 48.676 

16.158 1.46E+02 2.464 36.037 

18.375 1.31E+02 1.501 26.218 

20.592 1.11E+02 1.162 20.726 

22.808 9.19E+01 0.822 15.233 

25.025 7.26E+01 0.484 9.74 

27.242 5.62E+01 0.264 6.029 

29.458 4.34E+01 0.194 4.521 

31.675 3.06E+01 0.124 3.011 

33.892 1.78E+01 0.054 1.502 
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