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ABSTRACT

The increasing size and flexibility of large wind turbine blades introduces significant
aeroelastic effects, which are caused by fluid-structure interaction. These effects might
result in aeroelastic instability problems, such as edgewise instability and flutter, which
can be devastating to the blades and the wind turbine. Therefore, developing a reliable
and efficient aeroelastic model to investigate the aeroelasticity characterisation of large

wind turbine blades is crucial in the development of large wind turbines.

There are several aeroelastic models available today for wind turbine blades. Almost all
of them are linear models based on assumption of small blade deflections, and do not
take account of large deflection effects on modelling responses and loads. However,
with the increasing size and flexibility of large wind turbine blades, this assumption is
not valid anymore because the blades often experience large deflections, which
introduce significant geometric nonlinearities. Additionally, existing cross-sectional
analysis models, which are used to extract cross-sectional properties of wind turbine

composite blades for aeroelastic modelling, are either time-consuming or inaccurate.

This thesis aims to provide a reliable and efficient aeroelastic modelling of large wind
turbine blades through developing 1) a cross-sectional model, which can extract cross-
sectional properties of wind turbine composite blades in a reliable and efficient way;
and 2) a nonlinear aeroelastic model, which is capable of handling large blade

deflections.

In this thesis, a cross-sectional analysis model for calculating the cross-sectional
properties of composite blades has been developed by incorporating classical lamination
theory (CLT) with extended Bredt-Batho shear flow theory (EBSFT). The model
considers the shear web effects and warping effects of composite blades and thus
greatly improves the accuracy of torsional stiffness calculation. It also avoids
complicated post-processing of force-displacement data from computationally
expensive 3D finite-element analysis (FEA) and thus considerably improves the
computational efficiency. A MATLAB program was developed to verify the accuracy
and efficiency of the cross-sectional analysis model, and a series of benchmark
calculation tests were undertaken. The results show that good agreement is achieved

comparing with the data from experiment and FEA, and improved accuracy of torsional
ii



stiffness calculation due to consideration of the shear web effects is observed comparing

with an existing cross-sectional analysis code PreComp.

Additionally, a nonlinear aeroelastic model for large wind turbine blades has been
developed by combining 1) a blade structural model, which is based on a mixed-form
formulation of geometrically exact beam theory (GEBT), taking account of geometric
nonlinearities; and 2) a blade load model, which takes account of gravity loads,
centrifugal loads and aerodynamic loads. The aerodynamic loads are calculated based
on combining the blade element momentum (BEM) model and the Beddoes-Leishman
(BL) dynamic stall model. The nonlinear aeroelastic model takes account of large blade
deflections and thus greatly improves the accuracy of aeroelastic analysis of wind
turbine blades. The nonlinear aeroelastic model was implemented in COMSOL
Multiphysics, and a series of benchmark calculation tests were undertaken. The results
show that good agreement is achieved when compared with experimental data, and its
capability of handling large deflections is demonstrated. After the validation, the
nonlinear aeroelastic model was applied to the aeroelastic simulation of the parked
WindPACT 1.5MW wind turbine blade and to the stability analysis of the blade.
Reduced flapwise deflection from the nonlinear aeroelastic model is observed compared
to the linear aeroelastic code FAST. The calculated damping ratio of the edgewise mode
is much lower than the calculated damping ratio of the flapwise mode, indicating that
edgewise instability is more likely to occur than flapwise instability. It is also

demonstrated that improper rotor rotational speeds can result in edgewise instability.

Keywords: Wind Turbine Blade; Cross-sectional Analysis; Classical Lamination
Theory (CLT); Extended Bredt-Batho Shear Flow Theory (EBSFT); Nonlinear
Aeroelastic Model; Blade Element Momentum (BEM); Geometrically Exact Beam
Theory (GEBT)
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T transformation matrix used in cross-sectional analysis

T, pressure-lag time constant used in dynamic stall model
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CHAPTER 1 INTRODUCTION

1.1. Background

With the depletion of fossil fuel resources and the growing demand of energy
consumption, renewable energy resources such as wind and solar have received great
attention in recent years. Compared to fossil fuel resources, most renewable energy
resources (such as wind and solar) are inexhaustible and environmentally friendly.
Therefore, many countries are making considerable efforts to exploit renewable energy
resources. In 2010, renewable power generation contributed around a third of the
world’s newly constructed power generation capacities [1]. Projections show that it is
possible to power 100 percent of the world’s energy demand with renewable energy

resources by the year of 2030 [2].

Wind power is the most promising renewable energy resource, and is capable of
providing a competitive solution to battle the global climate change and energy crisis.
As an inexhaustible and free energy resource, it is available and deployable in most
regions of the world. Currently, wind power is the fastest growing renewable power
industry. Fig. 1.1 depicts the global wind power cumulative capacity between years
1996 and 2013. From Fig. 1.1 we can see that the global wind power cumulative
capacity has increased dramatically in the past decade. At the end of 2013, worldwide
cumulative capacity of wind power reached 318.1GW, growing by 34.9GW over the
previous year [3].
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Figure 1.1. Global wind power cumulative capacity

With the growth in wind power capacity, wind power technology itself has also moved

rapidly towards new dimensions. As wind velocity increases with increasing altitude
1



and therefore it is possible to harvest more wind power at higher altitudes, the size of
wind turbines is getting larger and larger. Another important reason for the growth in
the size of wind turbines is to place wind turbines at sea. Compared to the land, there is
more available space to install wind turbines at sea and the wind is steadier and stronger
in offshore locations. However, the installation and maintenance of offshore wind
turbines are very expensive. Therefore, for offshore wind farms, placing fewer wind
turbines that are larger is more beneficial than placing many smaller turbines. The
incentive to reduce the price for the electricity per kWh has led to increasingly large
commercial wind turbines. Fig. 1.2 presents the growth in size of commercial wind
turbines between years 1980 and 2011. As it can be seen from Fig. 1.2, the dimension of
commercial wind turbines has increased significantly over the past three decades, from
a rated power of 75kW and a rotor diameter of 17m for earlier designs up to a rated
power of 7.5MW and a rotor diameter of over 125m for modern machines. The trend of
increasing size of large wind turbines is expected to continue in the next decade. The
power rating of wind turbines has gone up to 8MW recently [4], and the potential of 10-
20MW wind turbine is being investigated [5].

126 m
7500 kW
200
180
100 m

" 3,000 kW

140 80 m
- Rotor Diameter (m)
E .  Rating (kW) 1,800 kW
= 1.500 kW
:g‘ 100 -
e 750 kw
=5
ES &0 /s

: 3oo kW
7m
40 7 75 kW
20
©r
04
1930 1990 - 1995- 2000 - 2005- 2010 201

1990 1995 2000 2005 2010

Figure 1.2. Growth in size of commercial wind turbines [6]

The increasing size of large wind turbines lowers the cost of wind power per kWh;
however it introduces significant aeroelastic effects, which are caused by fluid-structure
interaction. These effects might result in instability problems, such as edgewise
instability and flutter, which can be devastating to the blades and wind turbine. For
instance, as reported in Ref. [7], 0.5% of the LM (Lunderskov Mobelfabrik) 19m wind
turbine blades were damaged within one year. These blades were mounted on 600kW

wind turbines around the world and were damaged due to blade edgewise instability.
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The changes in wind turbine blade design due to the growth in size might lead to other
not yet recognised aeroelastic instabilities. Therefore, investigating the aeroelasticity
characterisation of large wind turbine blades is playing an important role in the

development of large wind turbines.
1.2. Aeroelasticity of Wind Turbine Blades

Aeroelasticity concerns the interaction of the aerodynamic loads, elastic deflections and
inertial dynamics for a flexible structure [8]. For wind turbine blades, the interaction is
strong. During the operation of a wind turbine, the blades experience elastic deflections
due to aerodynamic loads exerted by the airflow passing the blades. The deformed blade
affects, in turn, the flow field around the blade, which in return influences the
aerodynamic loads on the blade. The inertia dynamics play a significant role in the
correlation between the aerodynamic loads and elastic deflections, and the resulting
accelerations. The blade can experience oscillation due to the changing loads, and it

becomes unstable under harmonic conditions and/or when the damping is negative.

Aeroelasticity phenomena can be classified into either static or dynamic problems.
Static aeroelasticity studies the deflections of flexible structures caused by the
interaction of aerodynamic loads and elastic deflections, where the oscillatory effects
are ignored. Dynamic aeroelasticity investigates the oscillatory effects of the aeroelastic
interactions, and its major area of interest is the stability of the structure. The study of
aeroelasticity can be clearly illustrated by the Collar aeroelastic triangle [9], as shown in
Fig. 1.3.



Inertial
dynamics

Dynamic
aeroelasticity

Elastic
deflections

Aerodynamic

loads

Static aeroelasticity

Figure 1.3. Collar aeroelastic triangle
1.2.1. Steady Aeroelasticity

In the aircraft industry, the study of steady aeroelasticity mainly focuses on the
divergence, which occurs when the torsional moment introduced by aerodynamic loads
is higher than the restoring moments due to structural stiffness [10]. The principle of
divergence can be illustrated using a simple differential equation governing the wing
deflection. For instance, modelling the aircraft wing depicted in Fig. 1.4 as an Euler-
Bernoulli beam, the uncoupled torsional equation of deflection can be expressed as [11]:

GJ
dy®

=-M},, ye[o,Lg] (1.1)
where Y is the spanwise dimension of the beam, ¢, is the elastic twist angle of the

beam, GJ is the torsional stiffness of the beam, Lg is the length of the beam, M , is

the aerodynamic moment per unit length.



Figure 1.4. An example of simple aircraft wing

According to a simple lift forcing theory, the aerodynamic moment M , in Eq. (1.1) can

be expressed in the following form [11]:
’ 2
Myi=AU, (HET +ao) (1.2)
where A is a coefficient, U_ is the free-stream wind velocity, and 0 is the initial

angle of attack.

Substituting Eq. (1.2) into Eq. (1.1) yields:

d 2
% +B20,, ——Bla, (1.3)

Eqg. (1.3) is valid for both small and large deflections. Bs2 in Eq. (1.3) is defined by:

BZ=AU2/(GJ) (1.4)

The boundary conditions for a cantilever beam are:

Ocr|,, =0 (1.53)
doe|  _,
d
Y s (1.5b)

Solving Eq. (1.3) yields the solution:
O, =, [tan(B, L, )sin(Bg y)+cos(Bg y)-1] (1.6)
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As can be seen from Egq. (1.6), for BsLg =7/2+N1, with any integer number 1,
tan(Bs LB) is infinite. n=0 corresponds to the divergence point. For given structural

parameters, such as length LB and torsional rigidity GJ , this will correspond to the

torsional divergence speed, a certain value of free-stream wind velocity U _ .

In the development of aircrafts, aircraft wings have encountered divergence. For
instance, Langley’s aircraft failed due to the onset of divergence [12]. However, in
terms of wind turbines, the divergence phenomenon has not been observed in
commercial wind turbines and is not likely to happen in the future. This is mainly due to
the fact that the torsional moments on wind turbine blades are generally small. Even
when the blade is pitching, the torsional moments are not high enough for the onset of

divergence.

For the static aeroelasticity analysis of wind turbine blades, aeroelastic models are
mainly used to calculate the steady-state blade tip deflection and perform load

calculations considering blade deflections.

The blade tip deflection is an important parameter for wind turbine designers to
determine the blade tip clearance (see Fig. 1.5), the distance between blade tip and the
tower. The Blade tip clearance of a wind turbine is a critical operating parameter to
avoid disastrous failure caused by the blade striking the tower. Accurately predicting
blade tip deflection requires a reliable aeroelastic model to capture the interaction of the

aerodynamic loads and blade structural deflections.

|
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\ Deformed
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\

Undeformed
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/

Blade tip deflection
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Figure 1.5. Blade tip deflection and blade tip clearance
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Large wind turbines are generally required to be designed to meet the international
safety standard IEC 61400-1 [13]. According to the requirements of IEC 61400-1, the
load calculations of wind turbines should be based on aeroelastic modelling. Therefore,
one of the main roles of wind turbine aeroelastic models is to perform load calculations
for certification. A comparison of existing wind turbine aeroelastic models used for
certification can be found in Ref. [14]. The results from these models show good

agreement for the selected case studies.
1.2.2. Dynamic Aeroelasticity

Dynamic aeroelasticity studies the oscillatory effects of the aeroelastic interactions and
concerns the aeroelastic instabilities of wind turbine blades, such as flutter and edgewise

instability.
1.2.2.1. Flutter

Flutter is a two-dimensional vibration problem involving the coupling of two degrees of
freedom (DOFs) of the blade. Fig. 1.6 depicts the typical three DOFs of a blade,
including torsional (pitch), flapwise (flap) and edgewise (lag) DOFs. The details of the
three DOFs can be found in Appendix A2. Based on the different combinations of any
two DOFs of the blade, flutter can be roughly classified into the following three types: 1)
flap-pitch flutter, which involves the coupling of flapwise and torsional blade motions;
2) lag-pitch flutter, which involves the coupling of edgewise and torsional blade
motions; 3) flap-lag flutter, which involves the coupling of flapwise and edgewise blade
motions. Among these types of flutter, the flap-pitch flutter, also known as classic
flutter, is the most common one.

Edgewise (lag) DOF

Torsional (pitch) DOF

Figure 1.6. Degrees of freedom of a blade
7
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Fig. 1.7 depicts the frequency and damping trends of a typical flap-pitch flutter. As can
be seen from Fig. 1.7a, as air speed increases, the frequency of pitch mode gets closer to
that of flap mode, possibly resulting in one combined mode. At the flutter speed, a
certain critical wind speed, the structure sustains oscillations (see Fig. 1.7d) and one of
the modes (the pitch mode in this example) has zero net damping (see Fig. 1.7b). The
net damping is the sum of structural damping and aerodynamic damping. Below the
flutter speed, the oscillations are damped and the structure is stable (see Fig. 1.7c).
When wind speed exceeds the flutter speed, the net damping becomes negative and the

unstable oscillations occur (see Fig. 1.7e), resulting in eventual failure of the structure.
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Figure 1.7. An example of flap-pitch flutter

Flutter is a well-known dynamic aeroelasticity phenomenon in the aerospace field. The
investigations of flutter are generally based on the theory of aeroelasticity [15] and the
theory of composite thin-walled structures [16]. In order to avoid flutter, a number of
studies [17-19] have been carried out on aeroelastic optimisation of composite wing and

helicopter blade structures.

In terms of wind turbines, flutter has not yet been observed on commercial wind
turbines [20]. However, the increasing size and flexibility of large wind turbine blades
decreases torsional frequency, and therefore decreases flutter speed. Therefore,
predicting flutter speed of the large wind turbine blades is a good practice in the design

process of large wind turbines.



1.2.2.2. Edgewise Instability

Modern wind turbine blades generally have an inherent positive aerodynamic damping
for their flapwise motions but a relatively smaller, even negative aerodynamic damping
for edgewise modes. Therefore, the edgewise instability is considered the most

important instability problem for wind turbines [20].

In the development of large wind turbines, some commercial wind turbine blades have
suffered from the blade edgewise instability. In 1994, Stiesdal [21] firstly reported the
edgewise instability problem on stall-regulated wind turbines with a 37m diameter rotor.
This instability problem had not been observed on earlier wind turbines, but it quickly
became a significant issue for large wind turbines with the increase in rotor size.
Another example of the blades suffering from this instability problem is the APX40T
blade [22], which was installed on a 600kW wind turbine with a 37m-diameter rotor.
Fig. 1.8 depicts the edgewise oscillation measured at 85% span location of the APX40T
blade at high wind speeds. As it can be seen from Fig. 1.8, violent edgewise oscillations
are observed between 35s and 55s. The instability of the APX40T blade was caused by

negative aerodynamic damping of the first edgewise mode.

Blade edgewise acceleration (V)

0 5 35 20025 30 35 40 .45 500 55 60 65

Time (s)

Figure 1.8. Edgewise oscillations of the APX40T blade at high winds (edgewise
acceleration at 85% blade span) [22]
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Edgewise instability is single DOF instability, and it occurs when edgewise
aerodynamic damping coefficient becomes negative. As depicted in Fig 1.9 from Ref.
[23], if an airfoil cross-section is harmonically translated along an axis x, (see Fig. 1.9a)

and the direction of this axis @, relative to the orientation x, of the wind turbine rotor

RB

plane is changed, the aerodynamic damping coefficient for the cross-section changes
significantly. As it can be seen form Fig. 1.9b, For small e, , which corresponds to in-
plane or edgewise vibration direction, the negative acrodynamic damping coefficient is
observed even at low wind speeds. In order to avoid blade edgewise instability,
predicting edgewise aerodynamic damping coefficient and exploring effective ways to
damp edgewise oscillations becomes necessary.
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Figure 1.9. Distribution of acrodynamic damping coefficient ¢ _ xx_ B for an airfoil

cross-section against vibration direction 6., and three different wind speed [23]

1.3. Present Wind Turbine Aeroelastic Models

Investigating the aeroelasticity of wind turbine blades needs a wind-turbine-specific
aeroelastic model. One of the earliest wind turbine aeroelastic models, STALLVIB [24],
was developed within the European Non-Nuclear Energy project JOULE Ill. This
model was developed for predicting dynamic loads and investigating the edgewise

instability problems.
After the first attempts, a considerable number of aeroelastic models have been

developed. The models being widely used in wind turbine research organisations and

industrial practices are listed below with short descriptions.
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ADAMS/WT (Automatic Dynamic Analysis of Mechanical Systems — Wind
Turbine)
o ADAMS/WT is a wind-turbine-specific add-on for ADAMS, which is a

widely used commercial multi-body dynamics software package.
ADAMS/WT is developed by Mechanical Dynamics Inc. (MDI) with the
help of National Renewable Energy Laboratory (NREL) [25].

FAST (Fatigue, Aerodynamics, Structures, and Turbulence)
o FAST has been developed by National Renewable Energy Laboratory

(NREL) to model both two- and three-bladed horizontal-axis wind
turbines. In 2005, Germanisher Lloyd (GL), one of the leading
certification organisations in wind energy area, issued FAST a

certification on its load calculation of onshore wind turbines [26].

FLEX5
o FLEXS5 has been developed by the Fluid Mechanics Department at the

Technical University of Denmark (DTU). This code is capable of
simulating wind turbines with different configurations, e.g. turbines with
one to three blades [27].

GAST (General Aerodynamic and Structural Prediction Tool for Wind Turbines)
o GAST has been developed by the National Technical University of

Athens. The code contains an additional module to generate turbulent
wind fields and a post-processing module to perform fatigue analysis
[28].

GH-Bladed
o GH-Bladed is an integrated commercial software package developed by

Garrad Hassan (GH) Ltd. GH-Bladed has a friendly windows-based
graphical user interface (GUI), and it has been validated against
experimental data for a number of wind turbines with different size and

configurations [29].
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e HAWC?2 (Horizontal Axis Wind Turbine Code 2" generation)
o HAWC2 has been developed by Technical University of Denmark
(DTU). The code analyse the aeroelastic behaviour of horizontal axis

wind turbine in time domain [30].

e PHATAS (Program for Horizontal Axis Wind Turbine Analysis Simulation)

o PHATAS has been developed by ECN (Energy research Centre of the
Netherlands) for predicting the dynamic behaviour and the
corresponding loads on horizontal axis wind turbines. PHATAS includes
additional programs used to generate load-case files following IEC or
GL [31].

The features of the above seven aeroelastic models are summarised in Table 1.1. From
Table 1.1 we can see that most of the aeroelastic models use blade element momentum
(BEM) theory as the aerodynamic part. For the structural part, all of these models
represent wind turbine blades as a series of one-dimensional (1D) beam elements, and
requires blade cross-sectional properties as input. The discretisation method used in
these models can be categorised into three types of approach: modal approach (MA),
multi-body dynamics (MBD) and 1D finite-element method (FEM).

Table 1.1. Overview of wind turbine aeroelastic models

Name Structural part Aerodynamic part Require blade
Blade Discretisation cross-sectional
representation  method properties as

input?

ADAMS/WT 1D beam MBD BEM Yes

FAST 1D beam MA BEM Yes

FLEX5 1D beam MA BEM Yes

GAST 1D beam 1D FEM Free wake panel  Yes

GH-Bladed 1D beam MA BEM Yes

HAWC?2 1D beam MBD BEM Yes

PHATAS 1D beam 1D FEM BEM Yes

12



1.4. Problem Statement

As shown in Table 1.1, almost all aeroelastic models for wind turbines represent the
blades as a series of 1D beam elements. In order to construct the beam elements for
aeroelastic modelling, the blade cross-sectional properties (such as mass per unit length
and cross-sectional stiffness) are essential information. Obtaining these properties
requires a specialised cross-sectional analysis model. However, existing cross-sectional
analysis models are either time-consuming or inaccurate [32]. Therefore, it is necessary
to develop a cross-sectional analysis model, which is capable of rapidly and accurately
extracting cross-sectional properties of wind turbine composite blades for aeroelastic

modelling.

Additionally, most existing aeroelastic models are linear models based on assumption of
small blade deflections, and do not take account of large deflection effects on modelling
responses and loads [20]. However, with the increasing size and flexibility of large
wind turbine blades, this assumption is not valid anymore because the blades often
experience large deflections, which introduce significant geometric nonlinearities.
Therefore, developing a nonlinear aeroelastic model to take account of geometric

nonlinearities is essential for reliable aeroelastic modelling of large wind turbine blades.

So far, only a few nonlinear aeroelastic models have been developed. One example is
HAWC?2 (Horizontal Axis Wind turbine simulation Code 2" generation) [30], which is
an in-house nonlinear aeroelastic model developed by Technical University of Denmark
(DTU). The aerodynamic model of HAWC?2 is based on BEM and its structural model
is based on a MBD formulation where each body is a linear Timoshenko beam element,
which is an extension of Bernoulli-Euler beam element [33] to cover shear deformation.
The geometric nonlinearities are captured by the MBD formulation, in which the
flexible blades are modelled, for example, by 40 bodies each. However, if only one
body per blade is used, HAWC2 will become a linear model because the Timoshenko
beam model in each body is linear. In other words, the results of HAWC2 are sensitive
to the number of bodies, which one chooses to model the flexible blade. Additionally,
HAWC?2 contains assumption that relative displacement between two adjacent bodies is
small and it assumes some simplifications for the kinematic equations, which introduces

uncertainties in its results.
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An alternative way to handle the geometric nonlinearities is the geometrically exact
beam theory (GEBT) [34], in which the deformed beam geometry, i.e. the
displacements and rotations of the beam reference line, is represented exactly. Various
nonlinear formulations have been proposed for GEBT, which can be classified on the
basis of solution methodology, namely displacement-based formulation, strain-based
formulation and mixed-form formulation [35]. The main differences between these
formulations are the definition of the dependent variables and the treatment of the
rotation of the beam reference line in the solution. The displacement-based formulation
defines the displacements and rotations of the beam reference line as the irreducible set
of dependent variables, which include high order nonlinearities. The main advantage of
this formulation is that the displacement constraints can be easily applied. However, the
solution of this formulation demands high computational cost due to its high order
nonlinearities. In order to solve the geometrically nonlinear beam problems more
efficiently, an alternative way is the strain-based formulation, which uses the strains and
curvatures of the beam reference line as the primary variables to represent the beam
deformation. A more efficient way to solve the geometrically nonlinear beams is to use
the mixed-form formulation proposed by Hodges [36], which introduces Lagrange
multipliers to satisfy the equations of motion with constitutive and kinematic
relationships. The mixed-form formulation allows the lowest order of shape functions
for all dependent variables, which makes it a viable solution for modelling geometric

nonlinearities and has been widely used for flexible aircraft wings [37].

The similarities between the aircraft wings and wind turbine blades, i.e. both of them
are long, slender and flexible structures, provide us with the possibility to borrow the
aeroelastic modelling techniques from aircraft applications for wind turbine blades. To
the best of the author’s knowledge, the combination of BEM and the mixed-form
formulation of GEBT for aeroelastic modelling of wind turbine blades has not been

found in the literature.

1.5. Aims and Objectives

This project aims to provide a reliable and efficient aeroelastic modelling of large wind
turbine blades through developing 1) a cross-sectional analysis model, which can

rapidly and accurately extract cross-sectional properties of wind turbine composite
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blades for aeroelastic modelling of the blades; and 2) a nonlinear aeroelastic model,

which is capable of handling large blade deflections.

The objectives of the project are as follows:

e To review the aerodynamic model, structural model and cross-sectional analysis
model used in aeroelastic modelling of wind turbine blades.

e To develop a cross-sectional analysis model for efficiently and accurately extracting
the cross-sectional properties of wind turbine blades using MATLAB.

e To develop an aerodynamic model of wind turbine blades based on combining the
blade element momentum (BEM) model with the Beddoes-Leishman (BL) dynamic
stall model using MATLAB.

e To develop a nonlinear structural model of wind turbine blades based on mixed-
form formulation of geometrically exact beam theory (GEBT).

e To couple the developed aerodynamic model and nonlinear structural model to
develop a nonlinear aeroelastic model.

e To apply the developed nonlinear aeroelastic model to the aeroelastic simulation and
stability analysis of large wind turbine blades.

1.6. Outline of Thesis

This thesis is organised as follows.

Chapter 2 reviews the key components in aeroelastic modelling, including aerodynamic

models, structural models and cross-sectional analysis models.

Chapter 3 summarises the development of a cross-sectional analysis model for

calculating cross-sectional properties of wind turbine composite blades.

Chapter 4 details the blade structural modelling based on mixed-form formulation of
GEBT.

Chapter 5 presents the methods used for blade load modelling. Aerodynamic loads,

gravity loads, centrifugal loads and applied loads are discussed.
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Chapter 6 presents the implementation of the nonlinear aeroelastic model for wind
turbine blades by coupling the blade structural modelling module and blade load
modelling module. The computational scheme and flowchart of the aeroelastic model
are presented. The strategies for applying the nonlinear aeroelastic model to four types
of studies, i.e. static analysis, modal analysis, time-dependent analysis and stability

analysis, are illustrated.

Chapter 7 presents the validation of the nonlinear aeroelastic model. The main
components of the nonlinear aeroelastic model, i.e. the aerodynamic part (based on
combining the BEM model with the BL dynamic stall model) and the structural part
(based on mixed-form formulation of GEBT), are validated separately. Then a case

study is performed to validate the time-dependent aeroelastic simulation results.

Chapter 8 presents the application of the nonlinear aeroelastic model, including the
aeroelastic simulation of a parked wind turbine blade and the stability analysis of the
blade.

Chapter 9 concludes the research work and presents some suggestions for future

research.

1.7. Contributions

A summary of the research work conducted during the three-year PhD study is
presented below. This comprises topics which will not be discussed in detail in this

thesis.

e A cross-sectional analysis model, which is capable of extracting cross-sectional
properties of wind turbine blades in a fast and reliable way, has been developed. A
journal paper on the cross-sectional analysis model has been published in
Renewable Energy [32] (Appendix G1).

e A nonlinear aeroelastic model based on combining BEM theory with geometrically
exact beam theory (GEBT) has been developed. A journal paper on the nonlinear

aeroelastic model has been published in Energy [38] (Appendix G2).
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An efficient and reliable aerodynamic model for wind turbine blades has been
developed using MATLAB based on BEM theory. The high efficiency of the
aerodynamic model makes it suitable for optimisation design, which commonly
involves a large number of case studies. Based on the aerodynamic model and
different optimisation strategies, two academic papers have been completed. One
paper [39] (Appendix G3), which proposes an optimal blade design strategy for a
fixed-pitch fixed-speed wind turbine through optimised linearisation of the blade
chord and twist angle distributions, has been published in Renewable Energy. The
other paper [40] (Appendix G4), which optimises aerodynamic shape of wind
turbine blades considering Reynolds number effects, has been delivered in the form
of an oral presentation at international conference on Wind Energy: Materials,
Engineering and Policies (WEMEP 2012).

Contributions have been made to a journal paper [41] (Appendix G5) on the
optimisation of primary aerodynamic design parameters for fixed-pitch fixed-speed

wind turbines.
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CHAPTER 2 LITERATURE REVIEW

2.1. Introduction

Due to the fact that aeroelastic effects are introduced by the interaction of the
aerodynamic loads and structural dynamics, an aeroelastic model should contain an
aerodynamic part to calculate the aerodynamic loads and a structural part to determine
the structural dynamic responses. In aeroelastic modelling, wind turbine blade structure
is often represented as a series of 1D beam elements, which are characterised by cross-
sectional properties of the blade, such as mass per unit length and cross-sectional
stiffness. It should be noted that wind turbine blades are generally made of composite
materials and have complicated structural layout. Obtaining the cross-sectional
properties of the composite blades is quite challenging and requires a specialised cross-
sectional analysis model. Fig. 2.1 presents the components of aeroelastic modelling of

wind turbine blades, and each component is reviewed in this chapter.
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Figure 2.1. Components of aeroelastic modelling of wind turbine blades

This chapter is structured as follows. Sections 2.2 and 2.3 review the aerodynamic
models and the structural models, respectively. Section 2.4 reviews cross-sectional
analysis models used for extracting cross-sectional properties of wind turbine composite

blades for aeroelastic modelling.
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2.2. Review of Aerodynamic Models

In order to perform aeroelastic modelling of wind turbine blades, an aerodynamic model
should be included to calculate the aerodynamic loads exerted by the airflow passing on
the blades. Four types of aerodynamic models have been used in aeroelastic modelling
of wind turbine blades, including blade element momentum (BEM) model, vortex

model, actuator type model and computational fluid dynamic (CFD) model.

2.2.1. Blade Element Momentum (BEM) Model

Compared to other aerodynamic models, the BEM model is fast and able to provide
accurate results when reliable airfoil aerodynamic data are available. For this reason,
BEM model has been used for the aerodynamic part by most wind turbine aeroelastic
models [42].

The BEM model was originally proposed by Glauert [43] by combining blade element
theory and blade momentum theory. The blade element theory discretises the blade into
several elements and ignores the mutual influence between two adjacent elements. The
aerodynamic loads on each element depend on its local airfoil characteristics, i.e. its lift
and drag coefficients. The sum of these loads yields the total loads on the blade. The
blade momentum theory introduces axial induction factor @ and angular induction factor
a’ to calculate the induced velocity in the axial and tangential directions, respectively.
The induced velocity affects the angle of attack of the blade and therefore influences the
aerodynamic loads calculated by the above blade element theory. Combining blade
element theory and blade momentum theory provides a solution to obtain the

performance parameters of each blade element through an iterative procedure.

The original BEM model has several limitations which are usually found in wind
turbine applications. The majority of these limitations have been overcome through
introducing empirical corrections borrowed from helicopter applications or based on

wind turbine experience.

One of the main limitations of the original BEM model is that it ignores the effects of
vortices shedding from the blade tip on the induced velocity. Practically, these effects

play a significant role in the induced velocity distribution along the blade, especially the
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region near the blade tip. In order to compensate for this deficiency in the BEM model,
Prandtl [44] proposed a tip loss correction factor through modelling the wake of the
wind turbine as vortex sheets. Prandtl tip loss correction is simple and efficient and also

improves the accuracy in the predictions of induced velocity distribution.

Another limitation of the original BEM model is that the model becomes invalid when
the axial induction factor d is larger than around 0.4. This occurs for the cases that wind
turbines operate at high tip speed ratios, e.g. fixed-speed wind turbines at low wind
speeds, as the blade gets into turbulent wake state (a>0.5). For the turbulent wake
state, the wind velocity behind the blade calculated based on blade momentum theory
becomes negative, which is obviously unreasonable. The original BEM model is
incapable of providing reasonable thrust coefficient when the blade is operating at the
turbulent wake state. In order to overcome this limitation of the BEM model, several
empirical models have been proposed, such as Glauert model [45], Spera model [46],
and GH-Bladed model [47]. The comparison of these empirical models in Ref. [48]
shows that all these models agree well with experimental data except the Sepra model.

The original BEM model is based on quasi-steady assumption, i.e. the instantaneous
aerodynamic loads on a wind turbine blade are assumed to be identical with those which
the blade would experience in steady motion at the same instantaneous wind speed and
angle of attack. The quasi-steady BEM model can also be expanded to an unsteady

model by taking account of unsteady effects, such as dynamic inflow and dynamic stall.

The induced velocities calculated using original BEM model are quasi-steady, which
implies the wake is in equilibrium with the inflow. Practically, if the inflow is changed,
before a new equilibrium is achieved there exists a time delay, which is a function of
rotor diameter and wind speed [42]. Fig. 2.2 depicts the predicted and measured
dynamic response on the rotor shaft torque of the Tjaereborg 2MW wind turbine [49]
for a sudden change in the pitch angle. At t =2s, the pitch angle is changed from 0° to
3.7°, reducing the local angle of attack. The rotor shaft torque firstly decreases from
260 to 150 kNm, and then it gradually increases, taking approximately 10s delay to
reach a new equilibrium state with value of around 220 kNm. At t =325, the pitch
angle is adjusted back to 0°, and a similar time delay in rotor-shaft torque response is
observed. Taking account of this time delay needs a dynamic inflow model. Several
empirical dynamic inflow models have been developed, such as @ye model [50] and
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Pitt-Peters model [51]. The comparison of these models in Ref. [52] shows that all these

models agree well with the trends of measurements.
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Figure 2.2. Predicted and measured dynamic response on the rotor shaft torque of the

Tjaereborg 2MW wind turbine for a sudden change in the pitch angle [42]

Dynamic stall is a phenomenon associated with the separation of the boundary layer.
During the dynamic stall, the boundary layer initially separates at the trailing edge, and
gradually shifts to leading edge with the increasing angles of attack [20]. The angle of
attack of rotating blades changes dynamically due to sudden change in wind, such as
wind shear and atmospheric turbulence. The response introduced by changing angle of
attack depends on whether the boundary layer is separated and has a time delay.
Dynamic stall phenomenon has been evident from the measurement of aerodynamic
coefficients on practical wind turbine blades. One example illustrated in Fig. 2.3 is the
dynamic stall event measured at the 30% span position of the Combined Experiment
Rotor (CER). As can be seen from Fig. 2.3, due to dynamic stall effects, airfoil normal

force coefficient Cy changes dynamically with angle of attack and is significantly

different from the value measured in static conditions. Several dynamic stall models
have been developed, such as Beddoes-Leishman (BL) model [53], ONERA model [54]
and Boeing-Vertol (BV) model [55]. The most widely used model is the BL model,

which takes account of attached flow, leading edge separation, trailing edge separation,
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and unsteady vortex. The BL model was initially developed for calculating the
performance of helicopter rotors and has been applied successfully by Harris [56] and
Galbraith [57] for predicting the performance of wind turbines.

2.5 4 = Static Data

Angle of Attack (deg)

Figure 2.3. Dynamic stall event measured at the 30% span position of the CER [58]

The validity of the BEM model has been extensively established by comparing with
experimental data [59]. Because it is simple, efficient and well-proven, the BEM model
has become a standard method for analyzing aerodynamic performance of wind turbine
blades.

2.2.2. Vortex Model

In order to better model the wake dynamics of wind turbines, the vortex model [60], in
which the trailing and shed vorticity in the wake are represented by lifting lines or

surfaces, also found applications in aeroelastic models.

The wake in vortex models can be calculated using either prescribed-wake method or

free-wake method.
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In a prescribed-wake method, the wake shedding from the blade is assumed rigid and
described using semi-empirical formulations. The applications of prescribed-wake
vortex models in analysing wakes of wind turbine blades can be found in Refs. [61, 62].
The prescribed wake in these models saves computational time but limits their

application to steady flow.

A free-wake method, in which the wake can be varied freely both in time and space, is
necessary for unsteady flow. Free-wake vortex models have been applied to wind
turbine blades to study the unsteady wakes of the blades [63, 64]. The free-wake
method used in these models enables them capable of handling complex unsteady flow,
e.g. dynamic inflow. However, free-wake method is much more computationally
expensive than the prescribed-wake method, and it tends to diverge due to intrinsic

singularities of the vortex panels in the developing wake [42].

Compared to the BEM model, vortex models require more computational resources.
Additionally, viscous effects are ignored in these models, which limit their application

on wind turbines to some extent [42].

2.2.3. Actuator Type Model

In the actuator type model, the blade is represented by a disc/line/surface with
distributed loads on the disc/line/surface. Various forms of actuator type model have
been developed, which can be classified based on the representation of the blade,

namely actuator disc model, actuator line model, and actuator surface model.

The actuator disc model is possibly the earliest model used for studying rotor
performance. The classical actuator disc mode, which is derived from 1D momentum
theory initially developed by Rankine [65] and Froude [66], is ended up with BEM
model [43]. In its general form, however, the actuator disc can also be numerically
combined with the Euler or Navier-Stokes equations.

In a numerical actuator disc model, the Euler or Navier-Stokes formulations are
typically solved by finite volume or difference scheme, as in a usual CFD calculation.
However, the flow around the blades and the geometry of the blades are not resolved.

The surface of the blade is replaced by distribution forces acting on the incoming flow.
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In the simple case of a uniformly loaded actuator disc, the force acting on the disc is
determined by thrust coefficient and reference wind speed, which can be obtained using

an iterative procedure [67].

In the case of non-uniformly loaded actuator disc, the force acting on the disc varies
along radial location but remains constant over an annulus. Similar to BEM, the local
forces on the blades can be calculated using lift and drag coefficients of section airfoil.
A relevant issue is the determination of the local angle of attack to find lift and drag
coefficients. Shen [68] provided a method to determine the local angle of attack
according to information slightly upstream of the blade plane.

Serensen [69] extended the non-uniformly loaded actuator disc method to the actuator
line approach, in which the blade forces was represented using a line with distributed
loads. Mikkelsen [70] studied the actuator line approach in detail and applied it in
EllipSys3D, a finite volume program for solving incompressible Navier-Stokes

formulations [71].

Shen [72, 73] further extended the actuator line approach to the actuator surface method
and used it to analyse vertical axis wind turbines. The blade in the actuator surface
method was represented by a planar surface. Sibuet Watters and Masson proposed their

actuator surface method using a slightly different approach [74-76].

The actuator surface method needs not only lift and drag coefficient of airfoils, but also
the skin friction and pressure distribution on the airfoil surface. Dobrev [77] used a
linear function which was determined from lift and drag coefficients to represent the
pressure distribution in the actuator surface method.

The actuator type models mentioned above should be granted the credit of providing a
better insight into the three-dimensional (3D) flow development and the credit of
contributing to a better understanding of wake dynamics. However, solving the Navier-
Stokes equations is more time-consuming than BEM, and the actuator type models, in
which loads on the blade are still calculated based on blade element theory and
tabulated airfoil data, does not predict aerodynamic loads more accurately than the
BEM model [78].
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2.2.4. Computational Fluid Dynamics (CFD) Model

With the advancement of computing resources, CFD has received great attention in
recent years. The CFD method solves the governing equations of fluid flow at
thousands of positions on and around the blade in an iterative process, which does not
require predetermined airfoil aerodynamic data for the calculation. In addition to
aerodynamic load calculations, CFD is also a valuable tool to visualize the flow field

around the blade, as shown in Fig. 2.4.

Figure 2.4. Visualised flow field around the blade using CFD [79]

To perform CFD modelling of wind turbine blades, the 3D blade geometry needs to be
exactly described in a digitised format. Wind turbine blades often have complex
geometric shape with varied spanwise cross-section information, i.e. airfoil shape, chord
and twist angle distributions. The 3D blade geometry is generally constructed using
computer aided design (CAD) software, such as SolidWorks [80] and UG [81].

Due to the complex geometry of a wind turbine blade, it is quite challenging to generate
appropriate mesh for the CFD modelling of the blade. There are three typical types of
mesh, including structured mesh, unstructured mesh, and hybrid mesh, as illustrated in
Fig. 2.5. Structured mesh has advantages in high resolution, easy convergence and low
memory usage. However, it is difficult and time-consuming to generate structured mesh
for complex geometries, such as highly twisted blades. The major advantage of
unstructured mesh is the ease of mesh generation for complex geometries. However,
unstructured mesh consumes more computational time, as it generally results in higher
cell count than structured mesh filling the same volume. Hybrid mesh, also known as
adaptive mesh, is the combination of structured mesh and unstructured mesh. In hybrid

mesh, structured mesh is used for important regions, such as boundary layers, while
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unstructured mesh is used elsewhere. Due to the flexibility of hybrid mesh, it has been
widely used for the mesh generation of CFD modelling of wind turbine blades [82-84].
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Figure 2.5. CFD mesh type

The mathematical fundamentals of CFD are the Navier-Stokes (NS) equations [85],
which are the governing equations of fluids derived from the momentum, energy, and

continuity conservations.

The discretisation of NS equations can be achieved through three typical discretisation
methods, including finite-volume method (FVM), finite-element method (FEM) and
finite-difference method (FDM). FVM is a common method used in CFD modelling, as
it has advantages in solution speed and memory usage [86]. FEM is mainly utilized in
structural analysis, but it can also be applied to fluids. For instance, ANSYS CFX [87],
a widely used commercial CFD software package, is based on FEM. Compared to FVM,
FEM is much more stable, but it consumes more memory and has slower solution times
[88]. FDM is easy to implement, but it is limited to simple grids. Currently, FDM is

only utilised in few specialised CFD codes.

Directly solving NS equations, known as direct numerical simulation (DNS), requires
huge computational resources, which exceed the capacity of current computers. In order
to apply NS equations to solve practical engineering problems on wind turbine blades,
some kind of turbulence modelling are required. Currently, turbulence models are
mainly derived based on Reynolds Averaged NS equations (RANS) [89], which give
approximate time-averaged solutions to NS equations. Various RANS based turbulence
models have been used for wind turbine applications, such as k —m SST model [90],
k—& model [91] and Spalart-Allmaras model [92]. Among these models, k —® SST

model is found the most successful one for both 2D airfoil and 3D blade CFD modelling.

A number of studies have been performed on the CFD modelling of stall-regulated wind

turbines, showing that all RANS based turbulence models fail to accurately model the
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stalled flow at high angle of attack [42]. Possible solutions to this problem are to use
more complicated turbulence modelling approaches, such as 1) large eddy simulations
(LES) [93], which retains large eddies and ignore small eddies in solving NS equations;
and 2) detached eddy simulations (DES) [94], which is a hybrid method combining
RANS and LES. However, both LES and DES are much more computationally costly
than RANS, as they require considerably finer computational meshes and the
computations have to be carried out with time accurate algorithms [42].

Currently, CFD is still computationally too expensive and not efficient enough for fluid-
structure interaction analysis, which is the main obstacle of its industrial applications in

aeroelastic modelling [20].

2.3. Review of Structural Models

In order to perform aeroelastic modelling of wind turbine blades, a structural model
needs to be included to determine the structural dynamic response of the blade.
Structural models used in aeroelastic modelling of wind turbine blades can be roughly
categorized into two groups, i.e. 3D finite-element method (FEM) model with shell
elements and 1D equivalent beam model with beam elements. In order to discretise the
blade into a series of 1D beam elements, three discretisation methods are often used in
aeroelastic modelling of wind turbine blades [20], including modal approach, multi-
body dynamics (MBD) and 1D finite-element method (FEM).

2.3.1. 3D Finite-element Method (FEM) Model and 1D Beam Model

Wind turbine blade structures can be modelled using either 3D FEM model with shell

elements or 1D beam model with beam elements.

2.3.1.1. 3D FEM Model

In 3D FEM model, wind turbine composite blades are generally constructed using 3D
composite shell elements, which are capable of describing composite layer
characteristics throughout the shell thickness. An example of 3D FEM model of a wind

turbine composite blade is illustrated in Fig. 2.6.
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Figure 2.6. 3D FEM model of a wind turbine composite blade

Due to the complicated aerodynamic shape and structural layout of a wind turbine
composite blade, generating a 3D FEM model of the blade using general-purpose
commercial finite-element packages, such as ANSYS [95] and Abaqus [96], is tedious
and time-consuming. In order to facilitate the generation of 3D FEM models of wind
turbine blades, Laird developed a specialised tool called NuMAD (Numerical
Manufacturing And Design) [97], which is a stand-alone pre-processor for ANSYS.
NUuMAD provides a user-friendly graphic user interface (GUI), as depicted in Fig. 2.7,
for defining the blade geometry information (such as chord and twist angle distributions)
and the blade structural layout information (such as shear web locations and composites
layup). The output from NuMAD is a series of ANSYS Parametric Design Language
(APDL) commands used to generate the 3D FEM model of the blade in ANSYS.
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Figure 2.7. GUI of NuMAD

3D FEM is an incredible tool for examining the stress distribution within a blade, which
is applicable and valuable for ‘static” stress analysis. However, 3D FEM is
computationally too expensive and this drawback limits its application in aeroelastic
modelling, which demands continuous fluid-structure interaction, i.e. interactive

aerodynamic loads calculation and structure deflection analysis.

2.3.1.2. 1D Beam Model

Wind turbine blades are slender structures having one of their dimensions significantly
larger than the other two. Such structures can be efficiently modelled using beam
models. The beam axis is defined along the largest dimension, and a cross-section
perpendicular to this axis is considered smoothly varying along the span of the beam. A
number of beam models exist and they can be roughly categorised into two groups, i.e.

linear beam model and nonlinear beam model.

Two widely used linear beam models are the Euler-Bernoulli beam model [33] and the
Timoshenko beam model [98]. The Euler-Bernoulli beam model, also known as
classical beam model, deals with slender beams subjected to extensional, torsional, and
bending loads. The shear deformation effects are ignored in the model. Timoshenko
beam model was developed by Timoshenko in the early 20" century. The model takes
account of shear deformation effects, making it more suitable for describing the

behaviour of thick and short beams than the Euler-Bernoulli beam model. Regarding
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wind turbine blades, which generally have thin and slender structure, Timoshenko beam
model does not show much difference from Euler-Bernoulli beam model. Due to its
easy implementation, Euler-Bernoulli beam model has been used by most structural

models in aeroelastic modelling of wind turbine blades [42].

Both Euler-Bernoulli beam model and Timoshenko beam model contain the assumption
of small deflections. However, this assumption is not valid anymore for very flexible
blade design because such blades often experience large deflections. Handling large
deflections requires a nonlinear beam model, and a number of nonlinear beam models
have been proposed. A well-known example is the geometrically exact beam theory
(GEBT) [99], in which the deformed beam geometry (i.e. the displacements and

rotations of the beam reference line) is represented exactly.

Compared to 3D FEM, the 1D beam model is much fast and saves much computational
time and is capable of providing accurate results if constructed properly [100].
Therefore, almost all aeroelastic codes represent the blades as a series of 1D beam

elements instead of 3D shell elements [20, 42].

2.3.2. Discretisation Methods of 1D Beam Model

In order to discretise the blade into a series of 1D beam elements, three discretisation
methods are often used in aeroelastic modelling of wind turbine blades [20], i.e. modal
approach, multi-body dynamics (MBD) and 1D finite-element method (FEM).

2.3.2.1.Modal Approach

In modal approach, the deflection shape of the flexible bodies, such as the blade and
tower, is described as a linear combination of a set of mode shapes, which are usually

obtained from a finite element pre-processor.

Using mode shapes is an effective way to reduce the number of degrees of freedom
(DOFs) and therefore reduce the size of matrices and speed up the computations per
time step. Therefore, the modal approach is computationally efficient, resulting in rapid

simulation. For this reason, the majority of the present commercial wind turbine
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aeroelastic models use the modal approach to calculate the structural dynamics of the
blade [101].

However, the flexibility of the modal approach is restricted somewhat by its restraints
on the type and number of DOF allowed in the structure. For instance, FLEX5 [27],
which is a commercially widely used aeroelastic analysis model based on the modal
approach, uses only the initial three or four (two flapwise and one or two edgewise)

eigenmodes for the blade.

Another major limitation of the modal approach is that the approach is inherently
limited to linear analysis due to its linear assumption, i.e. the deflection shape of the
flexible components must be a linear combination of the provided mode shapes. This
means that the modal approach is not capable of handling large deflections of the
flexible blade.

Additionally, the accuracy of the modal approach greatly depends on the prescribed
mode shapes. In order to obtain the mode shapes of the blade, a finite-element based

pre-processor is required.

2.3.2.2.Multi-body Dynamics (MBD) Method

In MBD method, the structure is discretised into a number of bodies, which can be
either flexible or rigid. These bodies are interconnected by force elements (such as
springs) or kinematic constraints (such as joints) [102]. The dynamics of the structure
can then be evaluated using equations of motion, which are usually derived from

Lagrange’s equations or Newtow-Euler equations.

The MBD method benefits from high modelling flexibility due to its capability to
generate and couple together arbitrary number of separate bodies in a single dynamic
system. Compared to modal approach, the MBD method requires more computational
recourses, but it enables an increased number of DOF to be modelled.
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2.3.2.3.1D FEM Method

The 1D FEM approach finds approximate solutions of 1D beam problems by the
analysis of an assemblage of finite elements, which are interconnected by nodal points.
The 1D FEM allows a more comprehensive and accurate deformation description of
wind turbine blades, and it only requires slightly more computational resources than the
other two discretisation approaches. Therefore, the 1D FEM has been adopted by most

of recently developed aeroelastic models of wind turbine blades [42].

2.4. Review of Cross-sectional Models

Wind turbine blades generally are made of composite materials due to their high
strength-to-weight ratio and good fatigue performance. To construct the 1D beam model
of wind turbine blades for aeroelastic modelling, the cross-sectional properties of the
blade, such as mass per unit length and sectional stiffness, are essential information.
Fig. 2.8 depicts the structural layout of a typical blade cross-section, including three
cells with two shear webs. As can be seen from Fig. 2.8, each cell includes several
laminates, each laminate is made up of several plies, and each ply is a composite mat
placed at different angles, resulting in a complicated structural topology. Due to the
intrinsic nature of composite materials and the complexity of blade structural topologies,

it is quite challenging to obtain the cross-sectional properties of a wind turbine blade.
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Figure 2.8. Structural layout of a typical blade cross-section [103]
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In order to obtain the cross-sectional properties of wind turbine blades, various cross-
sectional analysis models have been developed, which can be categorised into three
groups, i.e. 3D finite-element method (FEM) based model, 2D FEM based model and

classical lamination theory (CLT) based model.

2.4.1. 3D FEM Based Model

The most sophisticated method to extract the cross-sectional properties of wind turbine
blades is based on 3D FEM. 3D FEM, despite their ability for accurate stress and
displacement analysis, cannot directly yield the cross-sectional properties of wind
turbine blades. It relies on computationally complicated post-processing of force-
displacement data [104]. One such post-processing tool is BPE (Blade Properties
Extractor) [105], which is developed by Sandia National Laboratories and Global
Energy Concepts. Currently, BPE is a module of NuMAD (Numerical Manufacturing
And Design) [97], which is a windows based pre/post-processor to generate the 3D
FEM models of wind turbine blades. BPE applies a series of unit loads at the blade tip
and transfers the displacement results of the 3D FEM model of the blade to a series of
MATLAB routines, which extract the stiffness matrices for the equivalent beam
elements. In principle, BPE should be able to provide the most accurate cross-sectional
properties because all 3D information can be captured by the 3D FEM model. However,
there are seemingly several challenges facing this method. Firstly, application of loads
must be performed carefully to minimize the boundary layer effects. Additionally, the
cross-sectional properties estimated by BPE are sensitive to the length of the blade
segment, which one chooses to perform the finite-element analysis. Changing the length
of the blade segment may even result in a singular stiffness matrix under some extreme
situations [106].

2.4.2. 2D FEM Based Model

Several other cross-sectional analysis tools based on 2D finite-element techniques have
also been developed. Cesnik and Hodges [107] developed VABS (Variational
Asymptotic Beam Sectional analysis) based on variational asymptotic method, which
replaces a 3D structural model with a 2D model in terms of an asymptotic series of
several small parameters of the structure. Two other examples of applying variational

asymptotic method to composite beam analysis can be found in Refs. [108, 109]. VABS
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requires a 2D finite-element discretisation of the cross-section to generate its input files,
which are the 2D mesh of the cross-section and the corresponding materials. For a
practical wind turbine blade made of layers of composites, the generation of VABS
input files is very tedious and requires a separate pre-processor called PreVABS [110].
Blasques [111] developed a cross-sectional analysis tool called BECAS (BEam Cross
section Analysis Software) based on anisotropic beam theory, which is originally
presented by Gianotto et al. [112] for estimating the stiffness and the stresses of
inhomogeneous anisotropic beams. Similar to VABS, BECAS also requires a 2D finite-
element discretisation of the cross-section. A separate pre-processor called
Aifoil2BECAS [113], which is a python program, is needed to generate the input files
for BECAS. Currently, the cross-section in Airfoil2BECAS is limited to 8 distinct

regions, where layup and thickness information can be assigned.

2.4.3. Classical Lamination Theory (CLT) Based Model

Compared to the finite-element techniques, classical lamination theory (CLT) [114],
which is an extension of the classical plate theory [115] to laminated plates, is fast and
reasonably accurate. CLT can be used to combine properties and the angle of each ply
in a pre-specified stacking sequence to calculate the overall effective performance for a
laminate structure. Based on several reasonable assumptions, such as plane stress and
linear strain, CLT transfers a complicated 3D elasticity problem to a solvable 2D
problem [116]. Among the above assumptions, the assumption ‘each ply is under the
condition of plane stress’ is acceptable for composite blade due to the fact that wind

turbine blades are thin-walled structures of composites.

CLT has been widely used for analysing structural performance of composite materials
[117, 118]. In terms of composite blades, Bir [104, 119] developed PreComp (Pre-
processor for computing Composite blade properties) at National Renewable Energy
Laboratory (NREL) based on CLT. PreComp does not need a separate pre-processor to
generate the input files, which are the geometric shape and internal structural layout of
the blades, and allows an arbitrary number of webs and a general layup of composite
laminates. Due to its efficiency, PreComp has been widely used in cross-sectional
analysis of wind turbine composite blades [120-122]. However, PreComp ignores the
effects of shear webs in the calculation of the torsional stiffness. In other words, if the

number of webs on a cross-section is changed, no change in torsional stiffness will be
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observed using PreComp. This is invalid for a practical blade cross-section, where the

torsional stiffness will be enhanced as the number of shear webs increases.

2.5. Summary

This chapter reviewed the key elements in aeroelastic modelling of wind turbine blades,

including aerodynamic models, structural model and cross-sectional analysis models.

For the aerodynamic part of aeroelastic modelling of wind turbine blades, there are four
typical types of aerodynamic models, including blade element momentum (BEM)
model, vortex model, actuator type model and computational fluid dynamic (CFD)
model. Compared to other aerodynamic models, BEM model is fast and able to provide
accurate results when reliable airfoil data are available. For this reason, BEM model is

chosen as the aerodynamic part of aeroelastic modelling in this thesis.

For the structural part of aeroelastic modelling of wind turbine blades, the blade
structure can be modelled using either 3D finite-element method (FEM) model with
shell elements or 1D beam model with beam elements. Compared to 3D FEM, 1D beam
model is much fast and saves much computational time and is capable of providing
accurate results if constructed properly. For this reason, in this thesis, wind turbine
blade structure is represented as a series of 1D beam elements instead of 3D shell

elements.

In order to discretise the blade into a series of 1D beam elements, three discretisation
methods are often used in aeroelastic modelling of wind turbine blades, including modal
approach, multi-body dynamics (MBD) and 1D finite-element method (FEM).
Compared to the other two discretisation methods, 1D FEM allows a more
comprehensive and accurate deformation description of wind turbine blades, and it only
requires slightly more computational resources than the other two discretisation
methods. Therefore, 1D FEM is adopted for the discretisation of wind turbine blades in
this thesis.

To construct the 1D beam model of wind turbine blades for aeroelastic modelling, the
cross-sectional properties of the blades, such as mass per unit length and sectional

stiffness, are essential information. Due to the intrinsic nature of composite materials
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and the complexity of blade structural topologies, obtaining the cross-sectional
properties of a wind turbine blade is quite challenging and requires a specialised cross-
sectional analysis model. However, existing cross-sectional analysis models for wind
turbine blades are either time-consuming or inaccurate. Therefore, it is necessary to
develop a cross-sectional model, which is capable of extracting cross-sectional

properties of wind turbine blades in a fast and reliable way.
The following Chapter 3 details the development of a cross-sectional analysis model.

Chapter 4 and Chapter 5 present the structural model and aerodynamic model,

respectively.
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CHAPTER 3 BLADE CROSS-
SECTIONAL MODELLING

3.1. Introduction

As reviewed in Section 2.3.1, wind turbine blade structures can be modelled using
either 3D finite-element method (FEM) model with shell elements or 1D beam model
with beam elements. Compared to the 3D FEM model, the 1D beam model is much
faster and saves much computational time and is capable of providing reasonable results
if constructed properly. Therefore, for the structural part of the aeroelastic modelling in
this thesis, the blade is represented as a series of 1D beam elements instead of 3D shell

elements.

To construct the 1D beam model of wind turbine blades for aeroelastic modelling, the
cross-sectional properties of the blades, such as mass per unit length and sectional
stiffness, are essential information. It should be noted that modern wind turbine blades
generally are made of composite materials and have complicated structural layout. Due
to the intrinsic nature of composite materials and the complexity of blade structural
topologies, it is quite challenging to obtain the cross-sectional properties of a wind

turbine composite blade.

As reviewed in Section 2.4, three types of models have been proposed for cross-
sectional analysis of wind turbine blades, including 3D FEM based model, 2D FEM
based model and classical lamination theory (CLT) based model. 3D FEM based model
is time-consuming because it relies on computationally complicated post-processing of
force-displacement data. 2D FEM based model is not efficient enough since it requires a
separate pre-processor to generate its input files. The cross-sectional analysis model
PreComp [104, 119], which is based on CLT, is efficient, but it is incapable of
predicting torsional stiffness accurately. The torsional stiffness is hard to evaluate
because it is significantly affected by shear web effects and warping effects which are

difficult to model.
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For a closed thin-walled cross-section, Bredt-Batho shear flow theory (BSFT) [123] can
be used to determine the torsional stiffness of the cross-section. BSFT is developed
based on the assumption that the torsional stress is uniformly distributed across the
thickness of the cross-section. Experiments show that this assumption is acceptable for
most thin-walled cross-sections [124]. BSFT implicitly includes the dominant warping
effects and it can provide reasonable results for the torsional stiffness of the closed thin-
walled cross-section [124]. However, the original BSFT is developed for a single-cell
cross-section. In order to apply BSFT to a practical wind turbine blade cross-section

with shear webs, an extension of BSFT to cover multi-cells is required.

This chapter presents a mathematical model [32], which is capable of accurately and
rapidly calculating the cross-sectional properties of wind turbine blades, developed by
incorporating CLT with extended Bredt-Batho shear flow theory (EBSFT). Based on
the mathematical model, a MATLAB program called CBCSA (Composite Blade Cross-
Section Analysis) is developed. In order to validate CBCSA, a series of benchmark tests
are performed for isotropic and composite blades as compared with ANSYS, PreComp

and experimental data.

The main contents of this chapter have been published in Ref. [32], and more details are
provided in this chapter. Additionally, the improvements! since the publication are also

presented in this chapter.

This chapter is structured as follows. CLT and BSFT are summarised in Sections 3.2
and 3.3, respectively. EBSFT is discussed in Section 3.4. Section 3.5 details the
development of a mathematical model for cross-sectional analysis by incorporating
CLT with EBSFT. Validations are provided in Section 3.6, followed by a chapter

summary in Section 3.7.

! Since the publication, improvements have been made to enable CBCSA to output
flapwise mass per unit length and edgewise mass per unit length, which are cross-

sectional properties required by dynamic analysis.
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3.2.CLT

CLT is an extension of the classical plate theory to laminated plates. The main

assumptions of CLT are the Kirchhoff hypotheses [114]:

e Straight lines which are perpendicular to the mid-surface before deformation remain
straight after deformation.

e The transverse normals are inextensible.

e The transverse normals rotate so that they are always perpendicular to the mid-

surface.

The first two assumptions indicate that the transverse displacement is independent of
the thickness coordination and the transverse normal strain is zero. The third assumption
implies that transverse shear strains are zero. These assumptions are acceptable for thin

laminates in most cases [114].

CLT has wide applications including stress and strain analysis of laminate plates. The
validity of CLT has been established by comparing with experimental results and the
exact solutions of the general elastic problems [125]. In terms of cross-sectional
analysis, CLT can be used to calculate the effective engineering constants of angled

plies.

The coordinate system used for an angled ply for the cross-sectional analysis using CLT

is shown in Fig. 3.1.

2 i

NP

- X

Figure 3.1. Principal material and global coordinates

The directions 1 and 2 constitute principal material coordinates while the directions x
and y constitute global coordinates. The directions 1 and 2 are parallel and

perpendicular to the fiber direction, respectively.
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The materials considered with CLT are orthotropic. The stress-strain relationship in
principal material coordinates for an orthotropic material under plane stress condition

can be expressed as:

&1 Si 5,0 o,
&y |=]S1,352,0 O, (3.1)
V12 0 0 Sg || 72

In Eq. (3.1), the components of matrix [S] are calculated by:

S, =1/E, (3.2)
S, =V, /E (3.3)
S, =1/E, (3.4)
Se =1/G,, (3.5)

where E1 and E2 are the Young’s modulus along the direction 1 and direction 2,

respectively; Vi, is the Poisson’s ratio and GlZ is the shear modulus. All of these

constants are called engineering constants of a unidirectional ply.

The inverse matrix [Q] of the matrix [S] in Eq. (3.1) is called reduced stiffness matrix
[126], given as follows:

O, Q, Q0 &
o, |=1Q, Qx0 | &, (3.6)
T1o 0 0 Qg || 712

where:
Q, =5,,/(5,S,, —S3) (3.7)
Q, =-S,/(5,,S,, - S5) (3.8)
Q,, =5,,/(5,4S,, —S5) (3.9)
Qg =1/S, (3.10)

The stress-strain relations in Eqg. (3.6) for the principal material coordinates can be

transformed into a global coordinate system using:
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o, |- Tolr, I IR I e, )

TX}’ yx}’
where [Tm]is the transformation matrix, [Q] is the reduced stiffness matrix in Eq. (3.6),

[Rm] is the Reuter matrix [126]. [Tm] and [Rm] are respectively defined as:

cos?(a,, ) sin?(a,, ) —2sin(a,, Jcoslar,, )
[T.]=|sin?(a,,) cos?(a,, ) 2sin(a,, Jcosla,, ) (3.12)
sin(a,, Jcosla,, ) —sinla,, Jcosla,,) cos?(a,, )-sin*(a,, )
100
[R,]=| 010 (3.13)
002

where o is the ply angle, i.e. the angle between the direction 1 and direction x in Fig.

3.1.

The effective engineering constants of an angled ply can be expressed in terms of the
engineering constants of a unidirectional ply using the following equations:

EPY = 1 (3.14)

él0054 (a ply)+[(:;2_ 2;112 JSinz(a ply )COSZ (a ply)+ElZSin4(a ply)

1

Gy = (3.15)

4 4+8 2] . sin*la ., ]+ cos* (o
& 2 e, Ko, )y € )

12

where E" and pryly are the effective Young’s modulus along the direction X (see Fig.

3.1) and effective shear modulus of an angled ply, respectively.
3.3. Bredt-Batho Shear Flow Theory (BSFT)

In the case of a closed thin-walled cross-section, the assumption that the torsional stress
T evenly distributes across the thickness of a segment of the cross-section is acceptable
in most situations. The product of the torsional stress 7 and the thickness t_ refers to

shear flow q_ [124]:

t (3.16)

s
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Based on the above assumption, a shear flow theory called Bredt-Batho shear flow
theory (BSFT) [124] is developed to evaluate stresses and deformations in structures
with closed thin-walled cross-section under torsion.

The torsional stiffness GJ of the closed thin-walled cross-section (e.g. the cross-section
in Fig. 3.2) can be obtained using BSFT:

2

4A

1
§tCGdS°

GJ = (3.17)

where A" is the area enclosed by the middle line of the wall , [, is the thickness of the
wall, G is the shear modulus, and S; is the perimeter coordinate. It is should be noted
that the {, and G can vary along S if the cross-section consists of several segments
having variable wall thickness and different material properties. In case of varied i,

shear flow 0y in Eq. (3.16) is also varied.

SC

I, t.(can vary along s)

Middle line

Figure 3.2. Closed thin-walled cross-section

3.4. Extended Bredt-Batho Shear Flow Theory (EBSFT)

The original BSFT mentioned above is developed for a single-cell cross-section, which
means no shear webs are included. To apply BSFT in a practical wind turbine blade

cross-section with shear webs, an extension of BSFT to cover multi-cell is required.

shear web

Figure 3.3. Blade cross-section with one shear web
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Taking a wind turbine blade cross-section with one shear web in Fig. 3.3 as an example,

the torsional moment M is expressed as [127]:

M; zz(qslAi* +quA;) (3.18)
where (g and 0, are the shear flow of cells 1 and 2, respectively; A" and A* are the

area enclosed by the middle line of the wall of cells 1 and 2, respectively.

The twist angles (¢,, and 4.,) of cells 1 and 2 are respectively expressed as:

1
6., = oK [qslfds It —q., j ds, /t J (3.19)

0., = TN (q52§ds It, —qsljds It J (3.20)

Assuming the twist angles of the two cells are the same, we obtain:
01, =0r, =0; (3'21)

Reformulating Egs. (3.19) and (3.20), we obtain:

Ou1lst +0u1sp — 2A1*9T =0 (3.22)
021 Ouolsz — ZA;QT =0 (3.23)
where s, is warping flexibility:
ds
Ou1 = §G : (3.24)
»={ gs, (3.25)
2 G .
ds
Oy =—| — 3.26
2 =G (3:26)
Egs. (3.18), (3.22) and (3.23) can also be written in matrix format:
M, =2[AT[a,] (3.27)
[6,][0.]=26; |~ | (3.28)

where:
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[A*]{Af_ (3.29)

A; |
g |
=" 3.30
[qS] |:q52 ( )
5W11 5W12
[%]{ 5 5wzj (3.31)

Gl=—1 (3.32)

Substituting Egs. (3.27) and (3.28) into Eq. (3.32) gives:

G =4a [, ][~] (3.33)

For a wind turbine blade cross-section with arbitrary shear webs, the torsional stiffness

can be expressed in the form of Eq. (3.33). For a blade cross-section with two shear

webs, [0, |and [A] becomes:

Owr Oz 0

[5w]: 0wzt Owzz Ouza (3.34)
0 dus Ouss
A

[w]=| A (3:35)
As

3.5. A Mathematical Model for Cross-sectional Analysis by
Incorporating CLT and EBSFT

In order to determine the cross-sectional properties of wind turbine blades, all cross-
sectional laminates are discretised into many area segments. Each area segment encloses
several angled plies. The effective engineering constants of each angled ply are obtained
using CLT. A weighting method [128] is used to calculate the equivalent properties of
each area segment, the elastic centre and mass centre locations of the cross-section.

Firstly, the area moments of inertia of each area segment are calculated with respect to
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its local axes and centroid, and then transformed to the elastic axes and centre of the
cross-section using transform-axis formula and parallel-axis theorem [129]. Based on
the transferred area moments of inertia and calculated equivalent properties of each area
segment, the contributions of each area segment to the cross-sectional properties are
calculated. The torsional stiffness is obtained using EBSFT while the other cross-
sectional properties are obtained by means of adding the contributions of all the area
segments. Based on the above strategy, a mathematical model for cross-sectional

analysis is developed. The flowchart of the model is shown in Fig. 3.4.

/ 1) Input data /

v
2) Transform coordinates to reference axes |
Vv
| 3) Discretise cross-sectional laminates into many area segments |
Vv
| 4) Calculate effective engineering constants of each angled ply using CLT |
Vi
| 5) Calculate equivalent properties of each area sagment |
N7
| 6) Calculate elastic centre and mass centre of the cross-section |
Vv
| 7) Calculate area moments of inertia of each area segment |
v
| 8§) Transfer the area moments of inertia of each area segment to elastic centre and mass centre of the cross-section |
v
| 9) Sum contributions of all area segments to obtain overall sectional properties |
N\
| 10) Determine torsional stiffness using EBSFT |
v

/ 11) Qutput results /

Figure 3.4. Flowchart of the mathematical model

Each step of the flowchart in Fig. 3.4 is detailed as follows:

1) Input data

The model requires cross-sectional external shape (chord, twist angle and airfoil
coordinates) and internal laminate layup (laminate schedule, ply angle and material
engineering constants) as inputs.

2) Transform coordinates to reference axes

In the cross-sectional analysis, bending stiffness including both flapwise and edgewise

stiffness is generally referred to the elastic centre ( x_.., v.. ). The flapwise and
edgewise mass moments of inertia are generally referred to the mass centre (x,,.,Y,. )-

Both elastic centre and mass centre are measured from the reference axes of the cross-
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section, as shown in Fig. 3.5. Therefore, it is necessary to add a step to transfer the input

airfoil data to reference axes if the input data refer to different axes.

Elastic centre Mass centre
(X, .Y )

g MC* MCY
(XKoo Tped MC’ TMC

Figure 3.5. Reference axes

As shown in Fig. 3.5, X, and v, are the reference axes; X . and y_ are the elastic
axes; Xx,, and v, are the mass axes. The directions of x . and v, are parallel and

perpendicular to the chord direction of the blade cross-section respectively. The location
of reference point O can be specified arbitrarily and usually is identical to the
aerodynamic centre of the blade cross-section. Both directions of x_ and Xx,, are
parallel to the reference axis X, and both directions of y_ and v, are parallel to the
reference axis Y, .

3) Discretise cross-sectional laminates into many area segments

In this step, all cross-sectional laminates are discretised into many area segments. Each
area segment encloses several plies. Taking a typical blade cross-section with one shear
web in Fig. 3.6 as an example, the cross-sectional laminates are discretised into 110 area

segments and the area segment “ab” encloses three different plies.

),

Shear web a %
iy~

e D

~ Y= baY
L",YE L—‘Y_u Cell2 ap
(Xac, Yac) (Xac, Yac) et

Figure 3.6. Discretisation of a typical blade cross-section with one shear web

4) Calculate effective engineering constants of each angled ply using CLT
In order to achieve better structural performance, some plies are generally placed at an
angle. Therefore, it requires a step to obtain the effective engineering constants of

angled plies. By giving the engineering constants (E,, E,,G,, ,v,,) and ply angle oy
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the effective Young’s modulus EXply and shear modulus pry'y of each angled ply are

determined using Egs. (3.14) and (3.15) mentioned in Section 3.2, respectively.

5) Calculate equivalent properties of each area segment

Because each area segment encloses several plies having different material properties, a
weighting method is used to represent the non-uniform distribution of materials as a
single material having equivalent properties. The actual thickness and area of each
segment are maintained. For instance, the equivalent representations of the area segment

“ab” in Fig. 3.6 are shown in Fig. 3.7.

i erg Ws‘@
Z_}]}{p &
a .

a e
V4 5% ley,

0 p T— b
Sy

Figure 3.7. Equivalent representations of area segment

According to the weighting method [128], the equivalent Young’s modulus E..

equ
- seg seg .
thickness t,, and area A, of each area segment can be expressed as:

Mpiy

plyz ply
Z EX,I tl

B - —— (336)

ply

tPly

=Yt (3.37)
i=1
A:;S = Z Af'y = Z:'[ip'ywSeg (3.38)
i=1l i=1

where i indicates the i th ply in an area segment; M, is the number of plies in an area
segment; Ex[f:y is the effective Young’s modulus of the ith ply; tiply and Aply are the

thickness and area of the i th ply, respectively; Wy, is the width of an area segment.
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The same method can be used to determine the equivalent density ,0553 and equivalent
shear modulus G;e?, of each segment by simply replacing the effective Young’s modulus

EY in Eq. (3.36) with the density p™ and effective shear modulus pr respectively:

% piplytiply

Pagy = (3.39)

Mply

t.Py

m,

Z G plyt ply
Xy,i-i
Gy = —— (3.40)

P'Y

Zt ply

6) Calculate elastic centre and mass centre of the cross-section

The elastic centre (x_.,v_.) and mass centre (x,,..,Y,,. ) Of the cross-section can also

be calculated using weighting method:

Nee

zEseg i seg I)—(seg |

equ c

XEC =1= (3.41)

seg

seg,| seg |
LES

%Eesgg 1 sqeg,l —seg,l
Yee =5 (3.42)

seg

| seg |
> e
equ

seg, | seg I—seg |
Zpequ
- Nseg

seg,l A seg,l
D P AL

1=1

X (3.43)

seg
seg, | seg I —seg |
Zpequ

seg

seg, | seg I
Zpequ

where | indicates the | th area segment; N

Y, = (3.44)

. seg, |
sy IS the number of area segments; E. ",

Seg' , and ,0equ are the equivalent Young’s modulus , area and density of the | th
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o 5eg,|

. seq, |
area segment, respectively; X; -

and Y.~ are the centroid coordinates of the | th area

segment.

7) Calculate area moments of inertia of each area segment
The area moments of inertia of each area segment with respect to its local axes (e.g. the

X —y axes in Fig. 3.7) can be calculated using an integration scheme:

|39 = j y2dxdy (3.45)
1529 = j x2dxdy (3.46)
159 = [ xydxdy (3.47)

where I§g and I%g are the area moment of inertia about X axis and ¥y axis, respectively;

1557 is the product of inertia.

8) Transfer the area moments of inertia of each area segment to elastic centre and mass
centre of the cross-section
It should be noted that the above calculated area moments of inertia are calculated with
respect to the local axes and centroid of each area segment. However, the cross-
sectional properties including both flapwise stiffness and edgewise stiffness are
generally referred to the elastic axes and elastic centre of the cross-section. The flapwise
and edgewise mass moments of inertia are generally referred to the mass axes and mass
centre of the cross-section. Therefore, a transformation is necessary. Using the
transform-axis formula, the area moments of inertia around the local axes of each area
segment can be transferred to that around the axes which are parallel to the elastic axes

(X,Yg ) of the cross-section:

[29 41359 |30 %0

seg _ XX yy XX vy Seg i

ok, = 5 + > C0S2¢, — |5’ Sin20,, (3.48)
[ 29 4130 %0 |30
XX yy XX yy .

17y, = I COS2¢,, + 137 sin20 (3.49)

where @, is the angle between the local axes of each area segment and the elastic axes

of the cross-section.
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Then, using the parallel-axis theorem, the calculated area moments of inertia can be

further transferred to elastic centre ( Xgc, Yec ) of the cross-section:

155 = (155 )+ A (ke = X (3.50)
e = (1529 )+ A (759 — Ve ) (3.51)

Similarly, the area moments of inertia with respect to mass centre (X, Yuc ) of the

cross-section can be obtained using the following equations:

e (5 ) A (xS =X, ) (3.52)
15, = (15, )+ A (72 Yoo ) (3.53)

Noted that mass axes (X,,,Y,, ) are parallel to elastic axes (X.,Y. ). Thus, |x x, INEQ.

seg

(3.52)and 1%, in Eq. (3.53) are respectively equal to 13%,_in Eq. (3.48) and Iy _in
Eq. (3.49).

9) Sum contributions of all area segments to obtain overall sectional properties

The overall cross-sectional properties including axial stiffness EA , flapwise stiffness
El, , edgewise stiffness El,, mass per unit length 4 , flapwise mass moments of
inertia rhol, , and edgewise mass moments of inertia rhol, are obtained by summing

the contributions of all area segments:

EA= ZEjgg' ot (3.54)
N

El, =) Ego'Isy (3.55)
1=1
N

El, =) Exo'I5%! (3.56)
1=1

p= zp::S' (357)

rhol, ZpeegllffC;(M (3.58)
N

rhol, => " paot 155! (3.59)
1=1

10) Determine torsional stiffness using EBSFT
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The torsional stiffness is determined using EBSFT mentioned in Section 4. Taking the

blade cross-section with one shear web in Figure 3.6 as an example, having obtained the

seg
equ

width w,,, (approximate ds; if the w,, is small enough), equivalent thickness t.,; and

shear modulus Gj;ﬁ of each segment in step 5), the components of the warping
flexibility matrix [0,,] can be calculated using Egs. (3.24) to (3.26). Then the torsional

stiffness is determined using Eq. (3.33).
11) Output results
After all calculations are done, the model will output the cross-sectional properties

including axial stiffness EA, flapwise stiffness El, , edgewise stiffness El, , torsional
stiffness GJ , mass per unit length y, flapwise mass moments of inertia rhol, and

edgewise mass moments of inertia rhol, .

3.6. Validation

Based on the above mathematical model, a cross-sectional analysis program, which is
named as CBCSA (Composite Blade Cross-Section Analysis), is developed using
MATLAB. CBCSA allows arbitrary geometric shape and internal structural layout of
the blade. It directly extracts the cross-sectional properties of the blade and runs quickly,
usually in a fraction of a second. Additionally, the shear web effects and warping effects
are taken into account by CBCSA due to the usage of EBSFT in the calculation of
torsional stiffness. In order to validate CBCSA, the following benchmark tests are
performed.

3.6.1. Case Study A

For the first case study, we compare the performance of CBCSA with analysis done
with PreComp for a SERI-8 blade [130]. The stations 4 and 6 of the SERI-8 blade are
chosen as examples. The schematic of the cross-section of the SERI-8 blade is shown in
Fig. 3.8.
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Figure 3.8. Schematic of the cross-section of the SERI-8 blade

The geometric data of the wind turbine blade cross-sections at the stations 4 and 6 are

listed in Table 3.1.

Table 3.1. Geometric data [130]

Station#  Chord(m) Twist angle (degree) Airfoil
4 1.092 15.7 S807
6 0.665 0.59 S805A

Four materials are used within the structure, labeled Mat, DbIBias, Uni and Balsa. The

orthotropic material properties used in the model are shown in Table 3.2.

Table 3.2. Material properties [130]

Property Mat DbIBias Uni Balsa
E, (GPa) 7.58 11.1 45.8 0.12
E, (GPa) 7.58 11.1 10.1 0.12
G,, (GPa) 4.00 6.89 6.89 0.02
Vi, 0.30 0.39 0.30 0.30
p (kg/m®) 1690 1660 1990 230

The orientation of plies used in [130] is limited to 90< here our case study also
demonstrates the effects of ply angles at 45°and 0< Ply angles are set in the composites
lay-up, as shown in Table 3.3. The composites lay-up in Table 3.3 is used for both

stations 4 and 6.
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Table 3.3. Composites lay-up [130]

Name Number of plies plyangle (deg.) Ply Name Thickness (mm)
Le 1 90 Mat 1.21
4 45 DblBias 1.21
Cap 1 90 Mat 1.21
6 0 Uni 0.93
Panel 1 90 Mat 1.21
1 45 DblBias 1.21
1 0 Balsa 5
1 45 DblBias 1.21
Shear webs 1 45 DbliBias 1.21
land?2 1 0 Balsa 8
1 45 DblBias 1.21
Te 1 90 Mat 1.21
1 45 DblBias 1.21

Both PreComp and CBCSA are used to calculate the properties of the cross-sections.
Calculated cross-sectional properties for station 4 are presented in Fig. 3.9 and Table
3.4, and calculated cross-sectional properties for station 6 are shown in Fig. 3.10 and
Table 3.5.
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Figure 3.9. Calculated cross-sectional properties of the blade cross-section at station 4
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Table 3.4. Calculated cross-sectional properties of the blade cross-section at station 4

Cross-sectional properties PreComp CBCSA %Diff
EA (N) 2.7830E+08 2.7829E+08 0.01
El X (N-m2) 1.6670E+06 1.6692E+06 0.13
EIY (N-m2) 1.4640E+07 1.4641E+07 0.01
GJ (N-mz) 5.0530E+05 7.3768E+05 45,99
 (kg/m) 2.2950E+01 2.2952E+01 0.01
rhol, (kg-m) 1.0740E-01 1.0738E-01 0.02
rhol, (kg-m) 1.8480E+00 1.8481E+00 0.01
w100 w107 w 10"
2 2 4 | [=[eiN
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Figure 3.10. Calculated cross-sectional properties of the blade cross-section at station 6

Table 3.5. Calculated cross-sectional properties of the blade cross-section at station 6

Cross-sectional properties  PreComp CBCSA %Diff.
EA (N) 1.6580E+08  1.6584E+08 0.02
El, (N-m?) 1.9940E+05  1.9953E+05 0.07
El, (N-m?) 3.1960E+06  3.1953E+06 0.02
GJ (N-m?) 6.7830E+04  8.9811E+04 32.41
u (kg/m) 1.3510E+01  1.3506E+01 0.03
rhol, (kg-m) 1.3340E-02  1.3336E-02 0.03
rhol, (kg-m) 4.0030E-01  4.0025E-01 0.01
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Figs. 3.9 and 3.10 and Tables 3.4 and 3.5 indicate that the results from CBCSA agree
with those from PreComp very well except the torsional stiffness. The torsional stiffness
predicted by PreComp is lower than that obtained using CBCAS. Following case studies
demonstrate that CBCAS has higher accuracy for the calculation of torsional stiffness

than PreComp due to the consideration of the effects of shear webs.

3.6.2. Case Study B

This case study allows comparison of CBCSA with both PreComp and ANSYS for a
blade profile with and without shear webs. The first example considered here is an
isotropic blade cross-section without a shear web, as shown in Fig. 3.11. The geometric
data and material properties of the cross-section are listed in Table 3.6.

I

Figure 3.11. Schematic of an isotropic blade cross-section without shear web

Table 3.6. Geometric data and material properties of the isotropic blade cross-section

Properties Values

E (GPa) 210

Y 0.3

o (kg/m®) 7850
Airfoil NACAO0012
Chord (m) 0.12

t (m) 0.000675

The comparison of cross-sectional properties calculated using CBCAS, PreComp and
ANSYS is shown in Fig. 3.12 and Table 3.7, where the relative differences are obtained
with respect to the CBCAS results.
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Figure 3.12. Calculated cross-sectional properties of an isotropic blade cross-section
without shear web

Table 3.7. Calculated cross-sectional properties of an isotropic blade cross-section
without shear web

Cross-sectional %Diff. ANSYS %Diff.
properties CBCAS PreComp (PreComp) (ANSYS)
EA (N) 3.4721E+07 3.4720E+07 0.01 3.4105E+07 1.77

El, (N-m?) 8.6756E+02 8.6760E+02 0.01 8.6646E+02 0.13

El, (N-m?) 4.2866E+04 4.2870E+04 0.01 4.0789E+04 4.85

GJ (N-m?) 1.0848E+03 1.0850E+03 0.02 1.1197E+03 3.22

4 (kg/m) 1.2979E+00 1.2980E+00 0.01 1.2718E+00 2.01
rhol, (kg-m)  3.2430E-05 3.2950E-05 1.60 3.2389E-05 0.13
rhol, (kg-m) 1.6024E-03 1.6020E-03 0.02 1.5247E-03  4.85

From Fig. 3.12 and Table 3.7 we can see that the predictions of the CBCAS are in good
agreement with PreComp and ANSYS for the isotropic blade cross-section without a
shear web.

The next example considered is the isotropic blade with two shear webs, located at 0.2¢

and 0.5c, as shown in Fig. 3.13.
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Figure 3.13. Schematic of an isotropic blade cross-section with two shear webs

The thickness of both webs is 0.003m. Other properties of the cross-section remain the
same as those used in the first example. The comparison of cross-sectional properties
calculated using CBCAS, PreComp and ANSYS is shown in Fig. 3.14 and Table 3.8,

where the relative differences are obtained with respect to the ANSY'S results.
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Figure 3.14. Calculated cross-sectional properties of an isotropic blade cross-section
with two shear webs

Table 3.8. Calculated cross-sectional properties of an isotropic blade cross-section with

two shear webs

Cross-sectional %Diff. %Diff.
properties ANSYS CBCAS (CBCAYS) PreComp (PreComp)
EA (N) 4.9057E+07 5.1396E+07 4.77 5.1400E+07 4.78

El, (N-m?) 1.0439E+03 1.1121E+03 6.53 1.1120E+03 6.52

El, (N-m?) 4.8368E+04 5.1601E+04 6.68 5.3190E+04 9.97

GJ (N-m?) 1.2480E+03 1.1871E+03 4.88 1.0850E+03 13.06

u (kg/m) 1.8304E+00 1.9212E+00 4.96 1.9210E+00 4.95

rhol, (kg-m) 3.9022E-05 4.1571E-05 6.53 4.1570E-05 6.53

rhol, (kg-m) 1.8081E-03 1.9280E-03 6.63 1.9290E-03 6.69
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A big difference is observed between Tables 3.7 and 3.8, indicating that shear webs
significantly affect cross-sectional properties. From Fig. 3.14 and Table 3.8 it can be
seen that the results predicted by CBCSA match well with those of ANSY'S, with the
maximum percentage difference (6.68%) occurring for the edgewise stiffness ( El. ). It
can be observed that for this cross-section with two shear webs, the torsional stiffness
predicted by PreComp is exactly the same as the case without shear web mentioned in
the previous example. This indicates that PreComp does not account for the effects of
shear webs in the calculation of torsional stiffness. Since CBCAS uses EBSFT to
determine the torsional stiffness, the effects of shear webs are taken into account.

Therefore, CBCAS can provide more realistic torsional stiffness than PreComp.
3.6.3. Case Study C

The final case study aims to verify improved accuracy of torsional stiffness calculation
of CBCSA by comparing CBCSA and PreComp with the experimental data [131]. The
example considered here is an extension-torsional coupled blade with two-cell cross-

section [131], as shown in Fig. 3.15.

Figure 3.15. Two-cell cross-section

The skin of the cross-section has [15/-15] layups whereas the D-type spar consists of
[0/15]>. The geometric data and material properties of the blade are listed in Table 3.9.
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Table 3.9. Geometric data and material properties of the blade [131]

Properties

Values

E, (GPa)
E, (GPa)
G,, (GPa)
V12

Airfoil
Length(m)
Chord (m)

Ply thickness(m)

131
9.3
5.86

0.4

NACA0012
0.6414
0.0762
0.000127

Both CBCSA and PreComp are used to calculate the properties of the cross-section.

Predicted values are compared with measured values reported in Ref. [131], as shown in

Fig. 3.16 and Table 3.10, where the relative differences are obtained with respect to the

experimental data.
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Figure 3.16. Cross-sectional properties of the two-cell cross-section



Table 3.10. Cross-sectional properties of the two-cell cross-section

Cross- ) ) )

) Experiment %Diff %Diff
sectional CBCSA PreComp

_ [131] (CBCSA) (PreComp)

properties
EA (N) - 8.1336E+06 - 8.1340E+06 -
El, (N-m?)  7.7141E+01 8.1449E+01 5.58 8.1531E+01 5.69
El, (N-m?) - 3.4529E+03 - 3.4530E+03 -
GJ (N-m?) 2.5427E+01  2.4443E+01 3.87 1.9330E+01 23.98
u (kg/m) - 1.3485E-01 - 1.3480E-01 -
rhol, (kg-m) - 1.4389E-06 - 1.4390E-06 -
rhol, (kg-m) - 5.8658E-05 - 5.8660E-05 -

From Fig. 3.16 and Table 3.10 we can see that 1) the flapwise stiffness El, and
torsional stiffness GJ calculated from CBCSA match well with experimental data, with
the maximum percentage difference (5.58%) occurring for the flapwise stiffness El ;

and 2) the torsional stiffness GJ predicted by CBCSA is more accurate than that

obtained from PreComp.

3.7. Summary

In this chapter, a mathematical model for accurate and rapid calculation of the cross-
sectional properties of wind turbine blades has been developed by incorporating the
classical lamination theory (CLT) with the extended Bredt-Batho shear flow theory
(EBSFT). A flowchart of the mathematical model, illustrating the detailed procedure for
calculating cross-sectional properties of composite blades, is presented. The
mathematical model considers both the web effects and warping effects of the blades,
and is presented in a code called CBCSA (Composite Blade Cross-Section Analysis),
developed using MATLAB. A series of benchmark computational tests are performed
for isotropic and composite blades, and the results demonstrate that:
e CBCSA can rapidly extract the cross-sectional properties of the composite blades,
usually in a fraction of a second, which is much faster than a 3D finite-element

based method.
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e Good agreement is achieved in comparison with the data from experiment and
finite-element analysis, which indicates CBCSA has sufficient accuracy for the
calculation of the cross-sectional properties of the composite blades.

e CBCSA provides a more accurate torsional stiffness calculation than the previously
available tool PreComp due to the consideration of the shear web effects by using
EBSFT.

The obtained cross-sectional properties of wind turbine composite blades are used as
input information to construct the blade structural model, which is presented in Chapter
4,
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CHAPTER 4 BLADE STRUCTURAL
MODELLING

4.1. Introduction

As discussed in Chapter 2, in order to perform aeroelastic analysis of wind turbine
blades, a blade structural model, which determines the blade structural dynamic
responses, has to be included. Due to the increasing size and flexibility of large wind
turbine blades, the blades often experience large deflections, which introduce significant
geometric nonlinearities. In order to take account of geometric nonlinearities, wind
turbine blades in this thesis are modelled based on a mixed-form formulation of

geometrically exact beam theory (GEBT) [36], which is detailed in this chapter.

The mixed-form formulation of GEBT, which introduces Lagrange multiplier to satisfy
the equations of motion with constitutive and kinematic relationships, is capable of
handling large deflections, large rotations and geometric nonlinearities. It allows the
lowest order of shape functions for all dependent variables, which makes it a viable

solution for modelling geometric nonlinearities.

The main contents of this chapter are taken from the manuscript (Appendix G2)
submitted for publication in Energy (Elsevier), and more details are provided in this

chapter.

This chapter is structured as follows. Section 4.2 describes the main coordinate systems
used in blade structural modelling. Section 4.3 presents the equations of motion of
nonlinear beam. Section 4.4 derives the mixed variational formula of nonlinear beam by
introducing both constitutive and kinematic relationships to the equations of motion,

followed by a chapter summary in Section 4.5.
4.2. Coordinate Systems

In order to fully describe the geometry and deflection of a wind turbine blade for

aeroelastic modelling, three coordinate systems are adopted, i.e. 1) the global frame,
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which aligns with the wind turbine rotor and defines the rotor parameters; 2) the un-
deformed blade frame, which aligns with the original blade and defines the blade
parameters; and 3) the deformed blade frame, which aligns with the deformed blade.
This section illustrates the three coordinate systems and the transformation matrices

among them.

4.2.1. Main Coordinate Systems

Three main coordinate systems, i.e. the global frame G, the un-deformed blade frame

b and the deformed blade frame B, are chosen for the analysis of wind turbine blades,
as shown in Fig. 4.1. The global frame G, having its axes labelled G,, G,, and G;, is
rotating along with the wind turbine rotor. Axes G, and G, are along with and
perpendicular to the wind turbine rotor axis, respectively. The un-deformed blade frame
b, having its axes labelled b,, b,, and b, is attached to each un-deformed blade
element. Axes b, and b,, located in each un-deformed airfoil plane, are perpendicular
and parallel to the chord line of each un-deformed blade element, respectively. The
deformed blade frame B, having its axes B,, B,, and B,, is attached to each deformed
blade element. Axes B, and B, , located in each deformed airfoil plane, are

perpendicular and parallel to the chord line of each deformed blade element,
respectively. All the three coordinate systems obey the right hand rule. The details of

the three coordinate systems can be found in Appendix Al.

Figure 4.1. Main coordinate systems

63



4.2.2. Transformation Matrices

A vector given in a frame can be transformed into another frame using transformation

matrices. The transformation matrix C°®, which transfers vectors from the global frame

G into the un-deformed blade frame b, is given by:

1 0 0 cosp, —sing, O
C™=|0 cosH, sind, |sing cosp O (4.1)
0 -sin@, coso, 0 0 1

where g, is the rotor cone angle (see Fig. 4.2), the angle between the blade axis and

rotor plane; @, is the twist angle of each blade element (see Fig. 4.3), the angle between

the chord line and the blade reference plane. Obviously, the transformation matrix C°°
is time independent, i.e. C*® =0.
B

Blade axis

e

Rotor plane

Figure 4.2. Rotor cone angle

e

s

Blade reference plane

y’

Chord line

Figure 4.3. Blade-element twist angle

According to Euler’s theorem of rigid-body motion [36], any rotational motion can be
characterized by the magnitude of rotation S, and a 3-by-1 unit vector e, which

describes the rotation axis. On the basis of the Euler’s theorem, the transformation

64



matrix C® , which transfers vectors from the un-deformed blade frame b into the

deformed blade frame B, can be expressed in terms of Rodrigues parameters [36] @ as:

a-toro)a+Loo -5
cor-—4 2 (4.2)
1+°0'0
4
100
where T is the transpose symbol; 4 is the 3-by-3 identity matrix (O 1 0f;
0 01

0=2etan(B,/2); e=[el e2 e3] and e'e=1.

Introducing another set of Rodrigues parameters @, such that 6, :(CbG)Te, the

transformation vector C°®¢, which transfers vectors given in the global frame G into

the deformed blade frame B, is obtained by:

CB® =c'eC (4.3)
where
(1—4110;06)A+;060; —0,
C= : (4.4)
1+Z¢9(§¢9G

Having obtained C® and C®°, the following relations can be easily established:
CbB :(C Bb)-r (4.5)

ceB _ (C BG)T (4.6)
4.3. Equations of Motion

The geometrically exact equations of motion, which exactly describe the behaviour of
an initially curved and twisted beam as a set of mathematical functions in terms of
spatial coordinates and time, can be derived from Hamilton’s extended principle, kinetic

energy and strain energy.
4.3.1. Hamilton’s Extended Principle

Hamilton’s extended principle is expressed as [36]:
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j” j [3(K . —Sg )+8W Jdx dt = 5A @.7)

where t, and t, are arbitrary fixed times; L is the length of the blade; & is the
Lagrangean variation operator for a fixed time; K. and S. are the kinetic and strain

energy, respectively; W is the virtual work of applied loads; 64 is the virtual action

at the ends of time interval and at the ends of the blade.
4.3.2. Kinetic Energy

The variation of kinetic energy required in Eq. (4.7) can be written as:

8K, =8V, P, +802, H, (4.8)
where V, and @, are the column matrices that contain linear and angular velocities of
the deformed beam reference line measured in the frame B, respectively; P, and H,
are the column matrices that contain the linear and angular momenta measured in the

frame B, respectively. SVBT and SQBT can be expressed in terms of the virtual

displacement %B and virtual rotation @B using the following equations [36]:

o T
8Vg =80y —805 25—y Vi (4.9)
L] T T ~
80 =dyy —dwy 2 (4.10)

where the overhead dot denotes the time derivative; the over-head tilde operator (~)

defines a second-order skew-symmetric tensor corresponding to the given vector. For
example, given 2, =[Q,, s, 2.l !58 can be expressed as:

_ 0 _Qsa Qsz
Q. =| Q. 0 -9 (4.11)
_‘QBZ ‘QBl 0

Substituting Egs. (4.9) and (4.10) into Eq. (4.8) gives:

T e T
K ¢ (qu —305 25—y V, JPB{M —SWBTQBJHB (4.12)
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4.3.3. Strain Energy

The variation of strain energy required in Eq. (4.7) can be written as:
8Sg =8y Fy +0k' My (4.13)
where » and x are the column matrices that contain force and moment strains,

respectively; F, and M are the column matrices that contain the force and moment
resultants measured in the frame B, respectively. 8y' and 8x' can be expressed in

terms of the virtual displacement S_qB and virtual rotation ET//B using the following
equations [36]:
N\T
— —T5 T/~ ~
Sy" =(6q5j ~305 Ky —dwy (6,+7) (4.14)

~

N
oic" =[eﬂ) ~Sw, K, (4.15)
where K, is the curvature vector for the deformed beam; e, =[1L 0 Of ; the prime

symbol () denotes the spatial derivative.

Substituting Egs. (4.14) and (4.15) into Eq. (4.13) gives:

1A T . . . - - _f
0Sg :[(SQB j _SqBTKB _S'I/BT(el"‘J’)]FB +[(6WB j

T

—SVBTRB}MB (4.16)

4.3.4. Geometrically Exact Equations of Motion

The virtual work of the applied loads appearing in Eq. (4.7) is given by:
SW =3, f, +0w, My (4.17)
where f; and m, are column matrices that contain applied forces and moments per

unit length measured in the frame B, respectively.
Recalling that 6A in Eq. (4.7) is the virtual action at the ends of the time interval and at
the ends of the blade, the mathematical expression of dA can be written as:
L—Ta~r —7T A | t—T~ —7T A~ |t
sA= [ (SqBTPB +8¢//BTHB) dx, - (BqBTFB +op, M, | dt (4.18)
t 1 0

where the overhead hat denotes the discrete boundary values.
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Substituting Egs. (4.12), (4.16), (4.17) and (4.18) into Eq. (4.7) yields:

o T

t, oL = g~ 1~ —T ~
-L-L 00g —00g 25—y Vg [Py +| 0wy —0wg 25 Hg

L T L e o T T~
—((SQBJ -80; K —dyg (el"'y)]FB_((SWBj RL KB]MB (4.19)

£y, + 5y g

Lf—Ts —T.~ |2 ty[=—T .~ —T.~ |"
:_L(qu Py +0y/5 Hs)t Xm‘_L (qu Fe +3yg MB] dt

0

After integrating Eq. (4.19) by parts with respect to the time to remove the time

derivatives of the virtual quantities, one obtains:
N T

t, eL e _— — T ~ . ~
_L _[0 {(&]B ) FB +(5WB j MB +5(18 (_ KBFB + PB +'QBPB)

—T( = ~ ~ . ~ ~ —T ——T
+ 0y (_ KgeMg _(e1+?’)FB +Hg +92:H; +VBPB)_&IB fo—owy ma}bﬁdt (4.20)

t, [——T ~ — 71~ |t

:L (5(15 Fg +5’/’B MB)Odt
Eq. (4.20) is the geometrically exact equations of motion of a beam expressed in the
frame B . With the help of transformation matrices, the displacement and rotation

components can be expressed in global frame G, which are independent of blade

geometry and deflection. The details are discussed below.

PZB and !~28 in Eq. (4.20) can be expressed in terms of C®® and C*® using [132]:
K, =ce(ce) (4.21)
Q, =-C®C® 1CPp C® (4.22)
where @ is the column matrix that contains the angular velocity of un-deformed beam

reference line measured in frame G.

The virtual displacement % , virtual rotation dyg , linear momentum P, and angular
momentum H, measured in frame B are related to the virtual displacement oug ,
virtual rotation ?% linear momentum P; and angular momentum H; measured in

frame G by a transformation matrix C ¢, respectively:
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80, =C®°5u, (4.23)

Sys =C* Sy (4.24)
H,=C"°°H, (4.25)
P, =C°P, (4.26)

With the help of Egs. (4.21) ~ (4.26), the following relations can be easily established:

N\T
[RN— _T —~
(Bqa j Fy (60, | KoFs = (00 T C°F, (4.27)
N\ o N\
(&/IB ] Mg _(&//B) KeMg :(&//G j C®M, (4.28)
C®(Hy + 2H, )= He +@,CH, (4.29)
C® (P, + 2P )= P, +@,C*°P, (4.30)

With the help of Egs. (4.23) ~ (4.30), Eq. (4.20) can be rewritten in the following form:
N\T
fﬂ{&chBFB +(§G j C®® M, +dul (Ps +@,CP, )

— T _ _ . -~ n
48y, (-C®(E,+7)Fy+ Ho +3,CH, +CV,P,) (431
— Ul f—Swg C%®my }mdt

t, T~ —T1.~ |t
:L (5uG F, + 0w, MGJOdt

Eq. (4.31) is the geometrically exact equations of motion of a beam expressed in the

global frame G.

4.4. Mixed Variational Formula of Nonlinear Beam

Apart from the equations of motion derived in above section, the kinematical and
constitutive relations are required in order to have a complete formulation to solve

problems in general.

4.4.1. Kinematical Relations

According to Hodges [36], the inverse kinematical relations are given by:
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u, =C™(e, +y)-e, —k,u, (4.32)

u, =C"™V, -V, —@,U, (4.33)
' 1~ 1 T Bb

0'=| 4+20+700 (re +k, —C®%, ) (4.34)
0 :(A +%§ +%00T j(gB —C%a0,) (4.35)

where u, is the column matrix that contains displacement of the beam reference line
measured in the frame b; @ is the column matrix that contains Rodrigues parameters;
k, is the curvature vector for the un-deformed beam; v, is the column matrix that
contains velocity of the un-deformed beam reference line measured in the frame b ; o,

is the column matrix that contains angular velocity of the un-deformed beam reference

line measured in the frame b .

As it can be seen from Egs. (4.32) to (4.35), the kinematical relations are nonlinear,

taking account of geometric nonlinearities.

4.4.2. Constitutive Relations

For beams having small strain, the constitutive equations are linear. The generalized

strain-force relations are given by:

{i} - s{:\:ﬂB } (4.36)

where S is the constitutive matrix. The expression of fully coupled constitutive matrix
can be found in Refs. [36, 133]. For the sake of simplicity, all coupling terms in

constitutive matrix S are ignored, and then it can be then expressed as:

[1/EA 0 0 0 0 0
0 1GK, 0 0 0 0
0 0 1/GK, 0 0 0
S= (4.37)
0 0 0 1Gl 0 0
0 0 0 0 1/El, O
0 0 0 0 0 1/El,

where EA is the axial stiffness; GK, and GK, are the edgewise and flapwise shear

stiffness, respectively; GJ is the torsional stiffness; El, and El, are the edgewise and
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flapwise bending stiffness, respectively. Note that if shear deformation is ignored,

1/GK, and 1/GK, in Eq. (4.37) become zero.

Similarly, the generalized momentum-velocity relations are given by:

Pe = Ve 4.38
o f=la) (139

where 1, is the mass matrix. If the locus of the mass centre is chosen as reference line,

the mass matrix 1,, can be expressed as:

u 0 0 0 0 0
0 u O 0 0 0
0 0 u 0 0 0
Iy = (4.39)
0 0 O rhol, +rhol, 0 0
0 0O 0 rhol, 0
0 0 0 0 0  rholy |

where 4 is the mass per unit length of the blade element; rhol, and rhol, are

edgewise and flapwise moments of inertia, respectively.

4.4.3. Closing the Formulation

The inverse kinematical relations Eqgs. (4.32), (4.33), (4.34) and (4.35) can be
considered to be constraints to Eq.(4.20). These constraints can be introduced with the

help of Lagrange multipliers [36]. Thus, the following formulation is obtained:
N T
t, oL —_— R —— —T ~ . ~
J.tl .[o {(éqs ) FB +(&/]B j MB +5QB (_ KBFB + PB +‘QBPB)
_T -~ ~ ~ . -~ -~
4y (-KoMy— (8 +7)Fs + Hy + @y Hy +V Py )

+oF (e1 +k,u, —C™ (e, +y))+ M [(A+%§ +%00T j(C B — K — kb)]

NT O N\T
_(é?j U ‘[5”' ) 0 (4.40)
B (4050 Yoo

—T —T
_EqB fB_§WB meXidt
—T

—T A —T A L
:J':z(anTFB+&//BTMB—éF U, —oM 0) dt

where
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SF =C"™5F, (4.41)

L A+§0

oM =| —5— M, (4.42)
1+-0'6
4

8P =C"™5P, (4.43)

o A+;§

OH = —=—16H, (4.44)
1+20T0

Eqg. (4.40) is the mixed-form formulation of GEBT expressed in the frame B . The
displacement and rotation components can be expressed in global frame G, which are
independent of blade geometry and deflection, with the help of transformation matrices.

The details will be discussed below.

PZB and sz in Eq. (4.40) can be expressed in terms of C® and C* using [132]:
K, =c®(ce® ) (4.45)
f)B =—CP°C® 1 C®p,C®® (4.46)
where @ is the column matrix that contains the angular velocity of un-deformed beam

reference line measured in frame G.

The virtual displacement % , virtual rotation dyg , linear momentum P, and angular
momentum H_, measured in frame B are related to the virtual displacement oug ,
virtual rotation 676 linear momentum P; and angular momentum H; measured in

frame G by a transformation matrix C ¢, respectively:

80, =C 55U, (4.47)
Sy =C 8y, (4.48)
H,=C"°°H, (4.49)
P, =CP"°P, (4.50)
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With the help of Egs. (4.45) ~ (4.50), the following relations can be easily established:

N\T
(Bqa j Fy — (60, | KoFs = (0u, T C°F, (451)
N\ o N\
(&/IB j Mg _(&//B) KeMg :(&//G j C®M, (4.52)
C®(Hy + 2H, )= He +@,CH, (4.53)
C® (P, + 2, P, )= P, +@,C*°P, (4.54)

Eb and @, in Eq. (4.40) can be expressed in terms of C" and C® using [132]:
k, =C™(C®) (4.55)

®, =C*w,C® (4.56)

Defining 0F, =C®0F , oM, =C®oM , 3P, =C® 3P, oH, =(4-0/2+06" 14H
and with the help of Egs. (4.47) ~ (4.56), Eq. (4.40) can be rewritten in the following

form:

N\T
[ {suchBFB (B0 | comg vour(p, +cep,)

+61//GT(—CGB(§1+;7)FB +H, +@,C®H, +CGB\75PB)

-i_S?GT (_CGB(el+y)+CGbel)+6MGT(—[A+%§G +%0G06TJCGISKJ

—(Ej Ug —(SMGIJ 0, (4.57)

A-0,12
T—aG
1+0%0, 14

+EET(CGBVB —C®V, —@gUg —UG)+8HGT[QB —w, —C"®

—SULC®® f,— Sy, C°®m, }dxidt

A T . n L
_ :(suGTFG+5y,GTMG-8FGTaG—SMGTGGJOdt
Eq. (4.57) is the mixed-form formulation of GEBT expressed in the global frame G. In
Eq. (4.57), ug, 05, F;, M, Py and H; are considered to be the fundamental

unknown variables. » and x can be expressed in terms of F; and My using Eq.

(4.36). V and 2 are related to P; and Hy through Eq.(4.38). Eq. (4.57) contains all

the information needed for the finite-element implementation of the geometrically exact
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beam theory. In addition to time-dependent analysis and modal analysis, Eq. (4.57) can
also be used for static analysis when all time-dependent variables in Eq. (4.57) are

eliminated.

4.5. Summary

In this chapter, a blade structural model based on the mixed-form formulation of GEBT
was presented. Three coordinate systems, i.e. the global frame, the un-deformed blade
frame and the deformed blade frame, were illustrated and the transformation matrices
among them were derived. The geometrically exact equations of motion of an initially
curved and twisted beam were derived from Hamilton’s extended principle, kinetic
energy and strain energy. The geometric nonlinearities are taken into account by
nonlinear kinematical relations. The kinematical and constitutive relations were
introduced to the equations of motion as constraints with the help of Lagrange
multipliers. The resulting mixed-form formulation of GEBT expressed in the deformed
blade frame was then transformed into the global frame with the help of transformation

matrices.
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CHAPTER S5 BLADE LOAD
MODELLING

5.1. Introduction

As discussed in Chapter 2, blade load modelling is an essential part for aeroelastic
analysis of wind turbine blades. In order to perform reliable aeroelastic analysis of wind

turbine blades, the loads on the blades need to be accurately modelled.

This chapter summarises the methods used for blade load modelling. The most
important sources of loads on wind turbine blades are aerodynamic loads, which are
exerted by the airflow passing the blades. As reviewed in Chapter 2, compared to other
aerodynamic models, the BEM model is fast and is capable of providing accurate results.
For this reason, the BEM model is chosen in this thesis to calculate the aerodynamic
loads. In order to accurately predict unsteady aerodynamic loads, the BEM model used
in this thesis is extended to an unsteady aerodynamic model through combining with the
Beddoes-Leishman (BL) dynamic stall model. In addition to aerodynamics loads, the
gravity loads, which are introduced by the gravity of the blades, and the centrifugal
loads, which are caused by the rotation of the blades, are also important sources of loads
on the blades. The sum of aerodynamic loads, gravity loads and centrifugal loads yields
the applied loads, which are applied on the blade structure as distributed loads. Fig.5.1

illustrates the relationship among the loads on a wind turbine blade.

Applied loads

. : : : 1
‘Aerodynamic loads| | Gravity loads Centrifugal loads

(due to wind) ‘ (due to blade mass) (due to blade rotation)

Figure 5.1. Loads on a wind turbine blade
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The main contents of this chapter are taken from the manuscript (Appendix G2)
submitted for publication in Energy (Elsevier), and the improvements? since the

submission are also presented in this chapter.

This chapter is structured as follows. Section 5.2 introduces the aerodynamic load
calculation based on combining the BEM model with the BL dynamic stall model. The
gravity loads and centrifugal loads are summarised in Sections 5.3 and 5.4, respectively.

Section 5.5 illustrates the applied loads, followed by a chapter summary in Section 5.6.
5.2. Aerodynamic Loads

In this thesis, the aerodynamic loads are calculated based on combining the BEM model
with the BL dynamic stall model. The BEM model with both tip loss correction and
wake state consideration is briefly summarised in Section 5.2.1. The main equations and
nomenclatures involved in the BEM model can be found in Appendix B. The BL
dynamic stall model is illustrated in Section 5.2.2, followed by a flowchart in Section

5.2.3 illustrating the combination of the BEM model and the BL dynamic stall model.
5.2.1. BEM Model

The BEM model was developed through the combination of blade element theory and
blade momentum theory. The blade element theory discretises the blade into several
elements and ignores the mutual influence between two adjacent elements. The
aerodynamic loads on each element are dependent on its local airfoil characteristics, i.e.
its lift and drag coefficients. The sum of these loads yields the total loads on the blade.
The blade momentum theory introduces the axial induction factor a and angular
induction factor a’' to calculate the induced velocity in the axial and tangential
directions, respectively. The induced velocity will affect the angle of attack of the blade
and therefore influence the aerodynamic loads calculated by the above blade element
theory. Combining blade element theory with blade momentum theory provides a
solution to obtain the performance parameters of each blade element, such as axial
induction factor a and angular induction factor a’, through an iterative procedure,

which is summarised below [39, 134]:

2 Since the submission, improvements have been made to extend the BEM model to an unsteady aerodynamic model by
combining it with the BL dynamic stall model.
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1) Use an estimate to obtain the initial axial induction factor a and angular induction
factor a’. In this study, zero initial values are used for both axial induction factor a

and angular induction factor a':

=0 (5.2)

2) Start the iterative procedure for the jth iteration. For the first iteration ( ] =1), follow

step 1. Calculate the relative wind angle ¢; and the Prandtl tip loss factor F

(t-a, N, +v,, ]

(1+aj)Qr +v,

Ftip—loosj = (chOs—l exp(_[(BN /2)[1— (I’/R)]]]] (5.4)
‘ V4 (r/R)sing;

where v, and v, are respectively the out-of-plane and in-plane velocities of the blade

ip-loss, j :

¢, = arctan( (5.3)

element (see Fig. B.2 in Appendix B); v,, and v, are generally ignored in a typical
BEM model, but they are considered in this thesis to take account of blade motions in
the calculation of aerodynamic loads; V, is the upcoming wind velocity on each blade
element; Q is the rotor rotational speed; r is the distance from the blade element to the
rotor centre; By, is the number of blades; R is the blade radius. In this study, V, and r

are calculated based on the deformed blade geometry to take account of the blade

deflection in the calculation of aerodynamic loads.

The Prandtl tip loss factor F, in Eq. (5.4) is used to take account of the influence

ip—loss, j
of vortices shedding from the blade tip on the induced velocity. From Eq. (5.4) we can
see that the Prandtl tip loss factor is always between 0 and 1.

3) Determine the local angle of attack of the blade element:
a;=¢;-0, (5.5)
where 0 is the twist angle of each blade element (see Fig. 4.3), previously defined in

Section 4.2.2.

Then obtain the lift coefficient C, ; and drag coefficient C, ; from the airfoil lift and

drag coefficient curves against the angle of attack.
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4) Update the axial induction factor a and angular induction factor @’ for the next

iteration, considering the drag effects:

1
aj, = — (5.6)
1+ 4'F'cip—loss,jSIrl (¢j) i
c'(C,;cosp; +C, ;sinp;) H
. 1
A= 4F ) 1oss ; SINQ; COSQ,; (5.7)

c'(C,;sing; —C, ; cosp;)
The parameter o’ in Eq. (5.6) is the local solidity, defined by:
o'=Bc/2ar (5.8)

where ¢ is the chord of the blade element.

The parameter H in Eq. (5.6) is used for the situation when large axial induction factor
occurs. When the axial induction factor a is greater than 0.5, wind turbine blades get

into turbulent wake state, and the expression of thrust coefficient [134]:

C, =4a(l-a) (5.9)
needs to be replaced by the empirical expression [135]:
C, =0.6+0.61a+0.79° (5.10)

To obtain a better transition, the above empirical model is used for the situation that a
is greater than 0.3539 rather than 0.5 [135]. The parameter H is defined as [135]:

for ., <0.3539 H =1.0 (5.11)
for a,,, >0.3539,H = dal-a) (5.12)
(0.6+0.61a+0.79%>)

The above process is repeated until the deviation between the new and previous

induction factors is within an acceptable tolerance. Then confirm the local relative wind

angle ¢, tip loss factor F,

tip—loss 1

angle of attack o , lift coefficient C, and drag

coefficient C, for each blade element.

Having determined the above performance parameters for each blade element, the
normal force per unit length dF,, and tangential force per unit length dF; on each blade
element (see Fig. B.2 in Appendix B) are respectively calculated by:
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dFy = Fyp_ioss 2 AU 21 (C, COS@ + Cy sing)c (5.13)

dF; = Fip 1056 %pu 2 (C,sinp—C, cosg)c (5.14)

where , is the air density, U, is the relative wind velocity.

The above aerodynamic loads on each blade element are calculated with respect to the

deformed blade frame B and can be stored in the aerodynamic-force vector F2 :

aero *

Fo. =|dF, (5.15)

Fig. 5.2 presents the flowchart of the aerodynamic load calculation based on the BEM

model.

[ Initialise induction factors aand a' using Egs. (5.1) and (5.2)

!
Calculate relative wind angle ¢ and Prandtl tip
loss factor F,_,, , using Eqs.(5.3) and (5.4)
W

[ Calculate angle of attack ot using Eq. (5.5) ]

[ Obtain static €, and €, from airfoil table ]

[ Update aand a'using Eqgs. (5.6) and (5.7) ]
v

a o' within - No
tolerance?

J{ Yes

Confirm @and F__,
\!
Confirm angle of attack «

V:
Static C, and C,

. d’ "
l Calculate aerodynamic loads 4F, and JF, using Egs. (5.13) and (5.14) ]
Vi

[ Output aerodynamic-force vector F2  using Eq. (5.15) ]

Figure 5.2. Flowchart of aerodynamic load calculation based on the BEM model
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5.2.2. Beddoes-Leishman (BL) Dynamic Stall Model

The BEM model illustrated in the above section is based on quasi-steady assumption.
However, practical aerodynamic loads are unsteady due to sudden change in wind, such
as wind shear and atmospheric turbulence. In order to take account of the unsteady

effects, a dynamic stall model is required.

Dynamic stall is a phenomenon associated with the separation of the boundary layer.
During the dynamic stall, the boundary layer initially separates at the trailing edge, and
gradually shifts to leading edge with the increasing angles of attack [20]. The angle of
attack of rotating blades changes dynamically due to sudden change in wind, such as
wind shear and atmospheric turbulence. The response introduced by changing angle of
attack is dependent on whether the boundary layer is separated and will have a time

delay.

In order to take account of dynamic stall effects in aerodynamic load calculation, the BL
dynamic stall model [53] is used in this thesis. Even though dynamic stall process
comprises various intrinsically related phenomena, Beddoes and Leishman managed to
decompose it into three distinct models, i.e. 1) an attached flow model, which calculates
the unsteady attached force coefficients; 2) a separated flow model, which uses the force
coefficients obtained in the attached flow model as input to recalculate the force
coefficients through taking account of unsteady separated flow effects, such as pressure
lag, viscous lag and unsteady trailing edge separation point; 3) a vortex lift model,
which adds the vortex contribution to the results from the separated flow model,

yielding the total unsteady force coefficients on the airfoil.
5.2.2.1. Attached Flow Model
For unsteady attached flow, the normal force coefficient on an airfoil can be split into

two components, i.e. a circulatory component and an impulsive component, which are

considered separately in the attached flow model.
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e Circulatory Component

According to Ref. [53], the circulatory normal force coefficient Cﬁvn resulted from an

accumulating series of time step inputs in the angle of attack can be calculated by:

Crn=CpaOle, (5.16)

where n denotes the nth time step, C,, is the static C,, curve slope near zero lift,

o, 18 the equivalent angle of attack at the nth time step. o, can be expressed as :

o, =0, — X, =Y, (5.17)

where o, is the angle of attack at the nth time step. X, and Y, in Eq. (5.17) are
deficiency functions at the n th time step, respectively defined as:
X, =X, + AAa e *"? (5.18)
Y, =Y, e + AAa e M (5.19)
where A4, is the change in angle of attack at the nth time step, i.e. Aa, =a, -0, ;;

, A, and A, are empirical constants. As given in Ref. [136], the suggested values
4 g gg

for these constant are:

A =03, A =07,A,=0.14, A, =0.53.

AS in Eq. (5.18) is the dimensionless time and can be expressed in terms of relative

wind speed U, time interval At and chord c using the following equation:

As = JmAt (5.20)
c/2

e Impulsive Component

For an airfoil undergoing rapid motion, there exists an impulsive force due to local
pressure variations. The impulsive normal force coefficient Cll\l,n can be calculated

using [53]:

3 (Aa
C =— L-D 5.21
. Urel ( At nj ( )

D, in Eq. (5.21) is another deficiency function, defined as:
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—At —At
Ac, — A
D, =D, %" +(%je2m (5.22)

where Ao, is the change in angle of attack at the n—1th time step, i.e.
Aa, =0, -0, ,; K, is a function of Mach number, and for incompressible flow it

becomes a constant with suggested value of 0.75 given in Ref. [136]. T, in Eq. (5.22) is

the non-circulatory time constant, defined as:

T, =— (5.23)

where @, is the speed of sound.

e Total Attached Flow Normal Force Coefficient

The total unsteady attached-flow normal force coefficient C, . Is obtained by summing

the circulatory normal force coefficient C » and the impulsive normal force coefficient
Cun:

Cyn=Cyn+Cun (5.24)
5.2.2.2. Separated Flow Model

The relationship between static normal force coefficient C, and the dimensionless

suction side separation point position f can be established using Kirchoff theory [53]:

Cy :CNa(l—i_\/T} (a_ao) (5.25)

2

where o is the angle of attack; o, is the angle of attack for zero lift; f is measured

from the leading edge, meaning that f =0 when the flow is fully separated and f =1

when the flow is entirely attached.

Inverting Eq. (5.25) and using airfoil’s static characteristic yields separation point

position f as a function of angle of attack «, obtaining f (OL).
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For unsteady flow, there exists a time delay in the leading edge pressure response with
respect to the attached flow normal force coefficient C;, - In order to take account of
the time delay, another deficiency function D, , is introduced in the calculation of the

normal force coefficient C;,  :

Cln=Cyn—Ds, (5.26)

D, in Eq. (5.26) can be expressed as:
-as -as
DP,n = DF’,n—le Te +(Clz,n _Cls,n—l 2T (527)
where T, is the pressure-lag time constant. As given in Ref. [136], the suggested value

of Ty is 1.5.

In order to obtain effective separation point f,, another effective angle of attack o, o s

introduced, defined as:
Cl,\l n CNO

5.28
" c.. (5.28)

Oy

where C,, is the normal force coefficient at zero angle of attack.

No

Having obtained the effective angle of attack o, , the effective separation point f is

then obtained from the static separation point characteristic:

f/="f(o, ) (5.29)

It should be noted that there exists a time delay in the boundary layer’s response for
unsteady conditions. This unsteady effect can be taken into account by applying a first

order lag to the effective separation point:

f/=f/—-D;, (5.30)
where D, is another deficiency function, defined by:
s —as
Df,n = Df,n—le K +(fn,_ fn'—l)eﬂf (531)
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T, in Eq.(5.31) is the viscous-lag time constant. As given in Ref. [136], the suggested

value of T, is 5.

At last, the unsteady normal force coefficient CNf’n accounting for both pressure lag and

viscous lag can be calculated with the effective unsteady edge separation point f”

using the Kirchhoff relation [53]:

1+ /7
Cl\fl,n :CNaLTn] 0LEq,n +Clll,n (532)

5.2.2.3. Vortex Lift Model

In this model, the contribution of vortex lift to the unsteady normal force coefficient is
calculated. The vortex lift contribution is only calculated when the following condition
is satisfied:

T, <T

v,n vi

(5.33)

where T, is an empirical time constant, with suggested value of 5 given in Ref. [136].

vl

7,, in Eq. (5.33) is the vortex time parameter, defined as:
dt o
Tyn =Tyna +——=V,q045,if C >C, (5.34)
' ’ c/2 ’ ’
7,,=0,if C{  <Cy, AAa, >0 (5.35)

where C, | is the critical value of normal coefficient. According to Ref. [136], C | can

be assumed to be the maximum static normal coefficient.

The vortex lift C, | is obtained using the following equation:
Cy =Ciall-Ky,) (5.36)
where Cﬁ’n is the circulatory normal force coefficient (see Eq. (5.16)); K , is defined

as:

P 2
N =w (5.37)
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Then, the total accumulated vortex contribution C‘,ﬂyn is obtained using the following

equation:

-AS
-A
C\I\/l,n = C\N/’n_le T +(Cv,n _CV,n—l{?SJ (5.38)

where T, is the vortex delay constant. As given in Ref. [136], the suggested value of T,

is 6.
5.2.2.4. Model Outputs and Flowchart

The total unsteady normal force coefficient C  is obtained by summing the unsteady

separated term C,| . and the vortex lift term Cy ,:

CN,n :Cl\fl,n+c\l\/l,n (539)

According to Ref. [53], the unsteady tangential force coefficient C. | can be obtained
using:

Cep = 1Cya02 oo T (5.40)
where 7 is the recovery factor, which is used to account for the fact that the airfoil
usually does not realize all of the tangential pressure obtained in potential flow. # can

be attained empirically from static airfoil aerodynamic data, and its typical value is 0.95

[53].

Having obtained the unsteady normal force coefficient C  and unsteady tangential

force coefficient C_ , the unsteady lift coefficient C,  and unsteady drag coefficient

c,n?

C,, can be respectively obtained using the following equations:

C:I,n :CN,n COS(¢)+CC,n Sln(q)) (541)

Cyn =Cunsin(e)—Ce . sin(p) (5.42)

In order to illustrate the calculation process, a flowchart of the BL dynamic stall model

is presented in Fig. 5.3, showing an open loop system.
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| alt) I

Attached flow model

) CS
¢ Circulatory component C (see Eq. (5.16))
» Impulsive component C}, (see Eq. (5.21)) J
w 1

CE=CS+CL
(see Eq. (5.24))
v

Separated flow model

e Steady characteristic f{c) (see Eq. (5.25))

e () (seeEq. (5.26))
e Effective separation point /* (see Eq. (3.30))

C{(see Eq.(3.32))

v
. 5 : o C’ (see Eq. (5.38
Unsteady C. Unsteady C, 1 wloee B O ( Vortex lift model
(see Eq.(5.40)) (see Eq.(5.39)) j L Vortex lift C, (see Eq. (5.36))

WV

Unsteady C, and C, (see
Eqgs. (5.41) and (5.42))

Figure 5.3. Flowchart of the BL dynamic stall model

5.2.3. Flowchart of Aerodynamic Load Calculation Based on
Combining the BEM Model with the BL Dynamic Stall Model

The BEM model presented in Section 5.2.1 can be extend to an unsteady aerodynamic
model by combining with the BL dynamic stall model presented in Section 5.2.2.
Through slightly modifying the flowchart presented in Fig. 5.2, the flowchart of the
aerodynamic load calculation based on combing the BEM model with the BL dynamic
stall model is illustrated in Fig. 5.4.
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[ Tnitialise induction factars aand o using Egs. (5.1) and (5.2) |

it
Calculate relative wind angle ¢, and Prandt] tip
loss factor F,__,.. , using Eqs.(3.3) and (5.4)
il

’ Calculate angle of attack o | using Eg. (3.5) ]

[ Obtain static €, and C, from airfoil table ]
!

[ Update o and o using Ege. (5.6) and (5.7) ]
W

No

a .4 within
tolerance?

L fes

’ Confirm ¢ and A ]

v
Confirm angle of attack o

Yes
Unsteady? )l Drmamic stall model I

Mo
Wy

+ [ Unsteady C, and C, }
[ Static C, and C, ]
11" |
[ Calculate aerodynamic loads &F, and dF using Eqs. (3.13)and (3.14) ]e

[ Output aerodynamic-force vector F2  using Eq. (3.13) ]

Figure 5.4. Flowchart of aerodynamic load calculation based on combining the BEM
model with the BL dynamic stall model

5.3. Gravity Loads

For large wind turbine blades, gravity is an important source of loading. Taking account
of the tilt angle S, (see Fig. 5.5), the angle between the shaft and the horizontal axis,
and the azimuth angle f, (see Fig. 5.6), the position of the blade in the circumferential
direction of the wind turbine rotor axis, the gravity-force vector F> of a blade element

with respect to the global frame G is given by:
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cosp, 0 —sing, | cosp, sing, 0| -—gu
FS=| 0 1 0 —sing, cosp, 0|0 (5.43)

g
sing, 0 cosp, 0 0 1j0

where g is the gravity constant, x is the mass per unit length of each blade element.

Shaft axis

b

Horizontal axis

Figure 5.5. Tilt angle

B

Figure 5.6. Azimuth angle

The force vector F;° with respect to the global frame G can be transformed into the

deformed blade frame B using the following equation:
F2=C®°°FZS (5.44)

where C®¢ is the transformation matrix (see Eq. 4.3), previously defined in Section

4.2.2.

5.4. Centrifugal Loads
Due to the rotation of the wind turbine blades, centrifugal loads have to be considered.
Taking account of the azimuth angle f,, the centrifugal-force vector F¢ of a blade

element with respect to the global frame G is given by:

88



cospB, 0 —sing, | rQ®u
Fé=| o 1 0 |o (5.45)
sing, 0 cospg, |0

The force vector F¢ can be transformed into the deformed blade frame B using the
following equation:

F°=CP°F? (5.46)

5.5. Applied Loads

Having obtained the aerodynamic force F2 , gravity force ng and centrifugal force

F.? on each blade element, the applied force F. on each blade element is obtained by
summing these forces (in vector form):

Fo =F2 + FgB +F? (5.47)

aero

5.6. Summary

This chapter presented the methods used for calculating the main sources of loads on a
wind turbine blade, i.e. 1) aerodynamic loads, which are contributed by the wind
passing the blade; 2) gravity loads, which are introduced by the gravity of the blade; and
3) centrifugal loads, which are caused by the rotation of the blade. The aerodynamic
loads were calculated based on combining the BEM model with the BL dynamic stall
model. The calculated aerodynamic loads, gravity loads and centrifugal loads were
stored in a vector form and transformed to the deformed blade frame with the help of
transformation matrices. The applied loads were then obtained by summing these load

vectors.

Chapter 6 presents the implementation of the nonlinear aeroelastic model by coupling

the blade structural model and blade load model.
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CHAPTER 6 IMPLEMENTATION  OF
THE NONLINEAR AEROELASTIC
MODEL

6.1. Introduction

The blade structural model and blade load model have been presented in Chapters 4 and
5, respectively. The blade structural model is based on a mixed-form formulation of
geometrically exact beam theory (GEBT), which can be used for static analysis, time-
dependent analysis and modal analysis. The blade load model takes account of
aerodynamic loads, gravity loads and centrifugal loads. This chapter details the
implementation of the nonlinear aeroelastic model by coupling the blade structural
model and blade load model. The strategies for applying the nonlinear aeroelastic model
to four types of studies, i.e. static analysis, modal analysis, time-dependent analysis and

stability analysis, are also presented in this chapter.

COMSOL Multiphysics [137] is used to achieve the implementation. The choice is
mainly based on the fact that COMSOL Multiphysics 1) allows equation-based
modelling, e.g. the chance to define a partial differential equation (PDE) by its weak
form using COMSOL 1D Weak Form PDE module; 2) enables MATLAB functions in
model settings definition, such as boundary conditions and material properties; and 3)
provides interfaces between its graphical user interface (GUI) and MATLAB, which
enables direct use of MATLAB scripts in building COMSOL model.

This chapter is structured as follows. Section 6.2 presents the strategy used for coupling
the blade structural modelling module and the blade load modelling module to yield a
nonlinear aeroelastic model; Section 6.3 addresses the strategies for applying the
nonlinear aeroelastic model to four types of studies, including static analysis, modal
analysis, time-dependent analysis and stability analysis; And Section 6.4 summarises
the findings of this chapter.
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6.2. Coupling Strategy

Based on the methods presented in Chapter 5, a blade load modelling module is
developed using MATLAB to calculate the applied forces F,. (see Eq. (5.47)). The
blade load modelling module takes account of the aerodynamic loads (calculated based
on combing the BEM model and the BL dynamic stall model), gravity loads and
centrifugal loads, as presented in Chapter 5. GEBT is not available in COMSOL
Multiphysics, but COMSOL Multiphysics allows equation-based modelling, e.g. the
chance to define a partial differential equation (PDE) by its weak form. The mixed-form
formulation of GEBT (see Eq. (4.57)) is implemented using COMSOL 1D Weak Form

PDE module, yielding a blade structural modelling module.

In order to facilitate illustration, Eq. (5.47) for the applied forces F, and Eq. (4.57) for

the mixed-form formualtion of GEBT are respectively rewritten below:

Fra =Fao+F, +F° (6.1)
T .
{&'TCGB j C® M, + Ul (P +@,C*P,)

+ope - +7)Fs + Hg +@,C%H, +CV, P, )

+ ok, (-co®(e l+y)+CGbel)+é]\/|GT(—(A+%5G+%0606T]CGbkj

( j G _(é]vle ) 0 (6.2)

) T A-0,12
5P (CGBV CGbe a)GU uG)+é]_|G (QB_ —Cbemae]

—sulce® fB—WGTCGBmexldt

1. — T~ —T TA |t
:(5”6 Fe +ops Mg —dF; Ug —Mg 0@)

0

All variables in Egs. (6.1) and (6.2) have been defined in Chapters 5 and 4, respectively.

In Eq. (6.2), Ug, 0;, Fg, Mg, Py and Hy are considered to be the fundamental
unknown variables, i.e. dependent variables. » and x can be expressed in terms of F;

and M; using Eq. (4.36). Vg and £; are related to Py and Hj through Eq.(4.38). In
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order to facilitate illustration, Eqs. (4.36) and Eq. (4.38) are respectively rewritten

7| Fs

sl
Pe =1 Ve 6.4
o f=la)

where S is the constitutive matrix (see Eq. (4.37)), 1,, is the mass matrix (see

below:

Eq.(4.39)). S and I,, contains cross-sectional properties, such as flapwise stiffness

and mass per unit length. Theses cross-sectional properties are used as the input data to
define a beam element, and each beam element is allowed to have diffferent cross-

sectional properties.

All parameters in Eq. (6.2) are defined as 1) global variables, such as time, which are
applied to the entire model and do not depend on the geometry; or 2) local variables,
such as cross-sectional properties, which vary along the blade span. Eq. (6.2) is in its
weakest possible form, which means the lowest order of shape functions can be used.

Therefore, linear (first-order) Lagrange element is used for the discretisation of
dependent variables (ug,0;, Fz, My, Py and Hy). The combination of blade load

modelling module and blade structural modelling module is achieved by replacing fg

in Eq. (6.2) with F> (see Eq. (6.1)) calculated using MATLAB program.

6.3. Types of Studies

The implemented nonlinear aeroelastic model can be used for four types of studies,
including static analysis, modal analysis, time-dependent analysis and stability analysis,

as illustrated in Fig. 6.1.
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Figure 6.1. Types of studies for the nonlinear aeroelastic model

Each type of study in Fig. 6.1 is detailed below.
6.3.1. Static Analysis

For the static analysis, the type of study in COMSOL is set to Stationary, and Eq. (6.2)

is reduced to the following form by neglecting all time-dependent variables (i.e. Py ,

Hg, P and Hy):

N\T
IOL{éu’GTCGBFB+(5y/G j CoEM,

+§'/’GT(_CGB(€1+37)FB)

+5FGT(_CGB(el+y)+CGbel)+5MGT(—(A+%§G+%0GQGTJCG%€J

N\T N\T
—[5&, ] " —(5MG j 0,

~5ugC FABL_él//GT CGBmB}j)ﬁ

(6.5)

L

T & T - T A T A
:[5% Fo+0ws M.-0F, Gg—J Mg 06]

0

In Eq. (6.5), Us, 0;, Fz, Mg are considered to be the fundamental unknown

variables. F is the applied forces (see Eq. 6.1) calculated using MALTAB program.
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6.3.2. Modal Analysis

For the modal analysis, also known as eigenfrequency analysis, the type of study in
COMSOL is set to Eigenfrequency. The mathematic equations involved in the modal

analysis are briefly summarised in Appendix C.

6.3.3. Time-dependent Analysis

For the time-dependent analysis, the type of study in COMSOL is set to Time
Dependent. The generalized-alpha method [137], which is an implicit and second-order
accurate method with a parameter alpha to control the numerical time step, is used for
time-stepping scheme. In generalized-alpha method, the time step can be set manually,

which provides the flexibility for controlling the convergence and computational time.

The computational scheme of the nonlinear aeroelastic model for time-dependent

analysis can be divided into the following major steps:

1. Read input file. The main input parameters of the model are 1) the blade structural
properties, such as flapwise stiffness and mass per unit length; and 2) the blade
aerodynamic data, such as airfoil aerodynamic data, chord and twist angle
distributions. These parameters are stored in a .txt file which can be read by
MATLAB function.

2. Construct blade geometry using a series of 1D elements. The blade is represented as
a series of 1D elements and each element is allowed to have different cross-sectional

properties, such as flapwise stiffness and mass per unit length [32].
3. Initialise the dependent variables, such as u; and @, and global variables, such as

time.

4. Perform blade load modelling using MATLAB function to calculate the applied
loads, including aerodynamic loads (based on combining the BEM model with the
BL dynamic stall model), gravity loads and centrifugal loads.

5. Apply the loads on the blade and perform blade structural modelling based on the
mixed-form formulation of GEBT to calculate the deflections of the blade.

6. Go back to step 4 to update the applied loads according to the feedback of blade
deflections and global variables.
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7. If the current simulation time is less than total simulation time, repeat steps 5-6
using current solution as the initial values for the subsequent steps; otherwise, end
the simulation and output results.

The flowchart of the nonlinear aeroelastic model for time-dependent analysis is shown
in Fig. 6.2.

/ Read wput file /

Construct blade geometry using a series of 1D elements

Initialisation
| Applied loads
Blade load modelling (MATLAB function) [ > Blade structural modelling
* aerodyvnamic  loads  (based on L (based on mixed-form formulation
combi .- o the BEM model with the BL Feedback at every time step of GEBT. implemented in
dynamic stall model) " COMSOL 1D PDE module)
gravity loads (‘ ]
trifugal load:
centrifugal loads « Blade deflection

| s Global variables

¥

No Total
simulation
time?

l Yes
/ End and output results /

Figure 6.2. Flowchart of the nonlinear aeroelastic model for time-dependent analysis

6.3.4. Stability Analysis

The main objective of stability analysis of wind turbine blades is to check the
aeroelastic stability of the blade by examining the damping ratio of the blade. The
damping ratio is a sum of structural damping ratio and aerodynamic damping ratio. The
stability analysis in this thesis is based on the direct eigenanalysis approach. This
approach is useful for modal-interaction dominated instabilities. It is efficient and

capable of accurately capturing all participant modes. Fig. 6.3 illustrates the flowchart
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of the stability analysis based on the direct eigenanalysis approach. Based on the

flowchart, a stability analysis module is developed using MATLAB.

[ Obtain periodic steady state solutions ]

[ Extract periodic state-space matrices ]

[ Average the state-space matrices to eliminate periodic terms ]

[ Eigenanalysis to obtain frequencies and damping ratios ]

Figure 6.3. Flowchart of stability analysis based on direct eigenanalysis approach

Each step of the flowchart in Fig. 6.3 is detailed below.

6.3.4.1. Obtain Periodic Steady-state Solutions

The first step is to determine a linearisation point, also known as an equilibrium point,
to linearise the nonlinear aeroelastic model. For a time-dependent nonlinear system, the
steady-state solution is generally chosen as the linearisation point. For a rotating wind
turbine blade, this linearisation point is periodic, i.e. the steady-state solutions depend
on the rotor azimuth position. This periodicity is driven by applied loads (the sum of
aerodynamic loads, gravity loads and centrifugal loads), which depend on the rotor
azimuth position. In COMSOL, the periodic steady-state solutions can be obtained

through performing a series of steady-state analysis by changing rotor azimuth position.

6.3.4.2. Extract Periodic State-space Matrices

Once a periodic steady-state solution has been obtained, the solution is then chosen as a
linearisation position to extract the system matrices, including the mass matrix M, the

damping matrix C , the stiffness matrix K and the load matrix F . These system
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matrices can be used to find the state-space representation of the nonlinear aeroelastic

model. The state-space modelling is briefly summarised below.

The general second-order system equations are in the following form:
MX+Cx+Kx=F (6.6)
where X1is a vector containing dependent variables. For a wind turbine blade, X is also
known as degrees of freedom (DOFs) vector. For instance, if a blade is discretised into a
series of blade elements connected by nodes, the length of vector X at each node is six,

i.e. three translation DOFs and three rotation DOFs.

In order to derive the state space equations, the following equation is introduced:

Mx — MX = 0 (6.7)

Combining Egs. (6.6) and (6.7) in one equation yields:

Az+Bz=E (6.8)
where 7is the state-space vector. A,B, E and z in Eq. (6.8) are respectively given by:
A= C M (6.9)
(M 0] '

B= K0 6.10
o _m (6.10)

E= F 6.11
=(4 6.1)

o
7=|’ (6.12)
X

Eq. (6.8) can be rewritten as a standard form of the state-space:

Z=Az+Bgu (6.13)
where A is the state-space matrix of the system, B, is the input matrix of the

system, U is the input vector. Ay, and B, in Eq. (6.13) are respectively given by:

0 |
= 6.14
AS)’S - MflK _ Mlc:| ( )
0
&“:_M4F (6.15)
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In summary, having obtained the mass matrix M, the damping matrix C, the stiffness

matrix K and the load matrix F , the state-space matrix A

o and the input matrix B

sys

can be respectively calculated using Egs. (6.14) and (6.15).

6.3.4.3. Average the State-space Matrices to Eliminate Periodic Terms

Due to the rotation of wind turbine blades, the steady-state solutions are periodic,
resulting in periodic state-space matrices. A direct eigenanalysis on the periodic state-
space matrices yields periodic eigenvalues, which are physically meaningless. In order

to eliminate the periodic terms, it is necessary to average the state-space matrices
obtained at different rotor azimuth positions. The averaged state-space matrix ASS can

sys

be obtained using the following equation:

Ny
g ;Asys,l

o 6.16
yS NA ( )

where A ; is the static-space matrix obtained at ith azimuth position, N, is the total

number of azimuth positions.

6.3.4.4. Eigenanalysis to Obtain Frequencies and Damping Ratios

avg

In this step, eigenanalysis on averaged state-space matrix Agg

is performed, yielding

N pairs of eigenvalues and N eigenvectors, where N is the total number of degrees of

freedom. Each pair of eigenvalues 4, , is generally in the following form:

ﬂmzzNRiNli (6.17)

where N, is the real part number and N, is the imaginary part number.

Each pair eigenvalues ﬂm can also be written as the following form (see Eq. C.9 in
Appendix C):

Ay =—Eork wyJE7 -1 (6.18)
where ¢ is the damping ratio, @ is the un-damped frequency. It should be noted that

the steady-state solutions obtained in Section 6.3.4.1 vary with wind speeds because
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aerodynamic loads depend on wind speeds. Therefore, eigenvalues 4, , , damping ratio

¢ and un-damped frequency @ in Eq. (6.18) also change with wind speed.

Through comparing Egs. (6.17) and (6.18), the un-damped frequency @ and damping
ratio & can be respectively expressed in terms of N, and N, using the following
equations:

w=+NZ+N; (6.19)

o Ne (6.20)

JNZ +N?

Having obtained the un-damped frequency @ and the damping ratio & , the damped

frequency @, is calculated by:

0y = \J1- & (6.21)

It should be noted that damped frequency @, in Eq. (6.21) also varies with wind speed
because both un-damped frequency @ and the damping ratio ¢ change with wind

speed.

The unit of both un-damped frequency @ and damped frequency w, is rad/s and can

be transformed to Hz using the following equations:

f, =2 (6.22)
27
form = ‘2”_0 (6.23)
T

where f,, and fD,Hz are the un-damped and damped frequencies in Hz, respectively.

The eigenvectors provide the corresponding mode shapes, which are essential

information to identify stability modes.

6.4. Summary

In this chapter, the implementation of the nonlinear aeroelastic model using COMSOL

Multiphysics was presented. A blade load modelling module was developed using
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MATLAB based on the methods presented in Chapter 5. The blade load modelling
module takes account of aerodynamic loads, gravity loads and centrifugal loads. Based
on the mixed-form formulation of GEBT presented in Chapter 4, a blade structural
modelling module was established using COMSOL 1D Weak Form PDE module. The
strategy used for coupling the blade load modelling module and blade structural
modelling module to vyield a nonlinear aeroelastic model was presented. The
implemented nonlinear aeroelastic model can be used for four types of studies, i.e. static
analysis, modal analysis, time-dependent analysis and stability analysis. The strategy

used for each type of study was discussed.

Chapter 7 presents the validation of the nonlinear aeroelastic model by a series of

benchmark calculation tests.
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CHAPTER 7 VALIDATION OF THE
NONLINEAR AEROELASTIC MODEL

7.1. Introduction

A nonlinear aeroelastic model, called NAM_WTB (Nonlinear Aeroelastic Model for
Wind Turbine Blades), is developed based on the strategy presented in Chapter 6. In
order to validate the NAM_WTB, a series of benchmark calculation tests are performed,

which are presented in this chapter.

The main components of the NAM_WTB, i.e. the aerodynamic part and the structural
part, are validated first, followed by a case study to validate the aeroelastic simulation

results.

Section 7.2 presents the validation of the aerodynamic part of the NAM_WTB. The
components of the aerodynamic part of NAM_WTB, i.e. the BEM model and the BL
dynamic stall model, are validated separately through two case studies. In the first case
study, the BEM model in NAM_WTB is validated against WT_Perf [138], which is an
existing widely used BEM-based aerodynamic code. A wind turbine blade with rotor
radius of 13.757m is chosen as an example. In this case study, the dynamic stall effects
are ignored. In the second case study, the BL dynamic stall model in NAM_WTB is
validated against experimental 2D unsteady aerodynamic data. S809 and S814 airfoils,

which are two widely used wind turbine dedicated airfoils, are chosen as examples.

Section 7.3 presents the validation of the structural part of the NAM_WTB. Two case
studies have been performed for the validation. In the first case study, an experimentally
large-deflection cantilever beam is chosen as an example. The static tip deflections of
the cantilever beam calculated using the structural part of the NAM_WTB are compared
with experimental results obtained in the laboratory. The COMSOL Euler-Bernoulli
beam model, which is a widely used linear beam model, is also used in this case study
for comparison purpose. In the second case study, a practical wind turbine blade is
chosen. The natural frequencies calculated using the structural part of the NAM_WTB

are validated against measured values.
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Section 7.4 presents the validation of the aeroelastic simulation results of the
NAM_WTB against FAST [26], which is an existing well-known aeroelastic code. A
10m-diameter rotor R&D wind turbine is chosen as the case study. In this case study, in
addition to aerodynamic loads, the gravity loads and centrifugal loads are also taken
into account, and the blade is considered flexible. Moreover, dynamic stall effects are

taken into account.

Finally, a chapter summary is presented in Section 7.5.

7.2. Validation of the Aerodynamic Part of NAM_WTB

The aerodynamic part of the NAM_WTB comprises two components, i.e. the BEM
model and the BL dynamic stall model. The two components of the aerodynamic part of
the NAM_WTB are validated separately through two case studies. In the first case study,
the BEM model of the NAM_WTB is validated against WT_Perf [138], which is an
existing widely used BEM-based aerodynamic code. A wind turbine blade with rotor
radius of 13.757m, which is a representative of medium-size wind turbine blades, is
chosen in the case study. In this case study, the dynamic stall effects are ignored. In the
second case study, the BL dynamic stall model of the NAM_WTB is validated against
experimental 2D unsteady aerodynamic data, and S809 and S814 airfoils, which are

widely used wind turbine dedicated airfoils, are chosen in the case study.

7.2.1. BEM Model Validation

In this case study, the BEM model in the NAM_WTB is validated against WT_Perf
[138], which is a wind turbine aerodynamic performance predictor developed by
Andrew Platt at National Renewable Energy Laboratory (NREL) based on BEM. The
wind turbine model used in this case study is the AWT-27CR2 wind turbine, which is a
two-bladed research wind turbine, and the main parameters of the wind turbine are

summarised in Table 7.1.
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Table 7.1. Main parameters of the AWT-27CR2 wind turbine

Parameters Values
Rated power (KW) 300
Number of blades 2
Rotor radius (m) 13.757
Rated rotor speed (rpm) 53.333
Cone angle (deg.) 7
Tilt angle (deg.) 0

The chord and twist angle distributions of the AWT-27CR2 wind turbine blade are
depicted in Fig.7.1. The corresponding numerical values can be found in Appendix D.
The details of the AWT-27CR2 wind turbine, such as its airfoil aerodynamic data, can
be found from the test file of WT_Perf [138].

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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O' r r r r r r r S
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r'R

Figure 7.1. Chord and twist angle distributions of the AWT-27CR2 wind turbine blade

Both NAM_WTB and WT_Perf are used to predict the aerodynamic performance of the
AWT-27CR2 wind turbine. In this case, both yaw angle and pitch angle are 0°, and the
rotor speed is at rated value (53.333rpm). For the sake of simplicity, the gravity loads
and centrifugal loads of the blade are ignored, and the blade is assumed rigid, i.e. no

deflections are considered in the calculation of the aerodynamic performance.
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Additionally, dynamic stall effects are ignored in this case study. Figs. 7.2, 7.3 and 7.4
respectively show the comparisons of the axial induction factor, angular induction factor
and normal force distributions along the wind turbine blade at free stream wind speed of
15m/s.
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Figure 7.2. Calculated axial induction factor distribution at wind speed of 15m/s
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Figure 7.3. Calculated angular induction factor distribution at wind speed of 15m/s
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Figure 7.4. Calculated normal force distribution at wind speed of 15m/s

The results in Figs. 7.2, 7.3 and 7.4 demonstrate that the calculated axial induction
factor, angular induction factor and normal force distributions along the wind turbine
blade from NAM_WTB agree with those from WT_Perf very well. This means that the
BEM model in the NAM_WTB can be utilized for aerodynamic loads predictions of
wind turbine blades.

7.2.2. Dynamic Stall Model Validation

In this case study, the BL dynamic stall model, a component of the aerodynamic part of
the NAM_WTB, is validated against experimental 2D unsteady aerodynamic data. The
examples used in this case study are the S809 and S814 airfoils, which are widely used
wind turbine dedicated airfoils. The geometries of S809 and S814 airfoils are depicted
in Fig. 7.5.
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Figure 7.5. Geometries of S809 and S814 airfoils

The aerodynamic measurements of S809 and S814 airfoils, such as measured lift and
drag coefficients, are available from the Ohio State University (OSU) database [139].
In this case study, the Reynolds number is set to 1E6, and the angle of attack o varies
sinusoidally with an oscillation frequency 1.2Hz and 10° amplitude around 14° mean
AOAZ,

The BL dynamic stall model in the NAM_WTB is used to predict the instantaneous

unsteady normal force coefficient C,, of the S809 and S814 airfoils. In this case, the

airfoil oscillates in torsional mode only, and both flapping motion and bending-torsion
coupling motion are ignored. The comparison between the predicted unsteady values,
static measurements and unsteady measurements for the S809 and S814 airfoils are

shown in Figs. 7.6 and 7.7, respectively.

3 In the OSU unsteady aerodynamic database, the angle of attack (AOA) amplitude

is 5°or 10°, and the mean AOA is 8°, 14° or 20°.
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Figure 7.6. Normal force coefficient of S809 airfoil

o5l — Static measures
BL dynamic stall model in NAM_WTB

—+— Unsteady measures
2 [ -

0.5 A

0 5 10 15 20 25
Angle of attack (deg.)

Figure 7.7. Normal force coefficient of S814 airfoil

From Figs. 7.6 and 7.7 we can see that 1) the static measurements show significant
difference from the unsteady measurements; 2) the results from the BL dynamic stall

model in the NAM_WTB show reasonable agreement with the unsteady measurements.

It can also be noticed that there are two values of C, at each angle of attack for
dynamic stall case, and the higher value of C, occurs when angle of attack is

increasing. This is a consequence of the dynamic stall phenomenon. As it can be seen
from Figs. 7.6 and 7.7, starting from the point of minimum angle of attack, the unsteady

C, follows the static C,, until the static C reduces due to increasing trailing edge
separation (1.e. the static stall). The unsteady C, , however, continues increasing almost
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linearly until a breakdown, occurring when the leading edge vortex has travelled past
the airfoil trailing edge. At the breakdown point, massive flow are separated and the

unsteady C,, drops to levels far below the typical values of the static C,, curve. There
is a time delay to recover more regular behavior, and the unsteady C, remains below

the static C,, for most of the remaining cycle.

This case study demonstrates that the BL dynamic stall model in the NAM_WTB can

be utilized for predicting unsteady airfoil aerodynamic coefficients.

7.3. Validation of the Structural Part of NAM_WTB

In order to validate the structural part of the NAM_WTB, two case studies have been
performed. The first case study compares both the structural part of the NAM_WTB
and the COMSOL Euler-Bernoulli beam model with experimental results obtained in
laboratory. In this case study, the static deflections of an experimentally large-deflection
cantilever beam are investigated, and the details of the experiment are presented. In the
second case study, the modal analysis results from structural part of the NAM_WTB are
validated against the experimental data, and a practical wind turbine blade is chosen as

an example.
7.3.1. Static Deflection of Large-deflection Beam

This case study aims to verify the accuracy of the structural part of the NAM_WTB and
demonstrate its nonlinear capability by comparing both the structural part of the
NAM_WTB and the COMSOL Euler-Bernoulli beam model with experimental results
obtained in the laboratory. The example used here is an experimentally large-deflection
cantilever beam. Fig. 7.8 depicts the photograph of the experimental system, which is
made up of a steel beam, fixed at one end and loaded at the free end. A vertical ruler is
used to measure the vertical deflection of the beam at the free end. The length of the
beam is 0.48m and it has a uniform rectangular cross-section of width 0.02m and height
0.0012m.
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Figure 7.8. Experimentally cantilever beam

Both the NAM_WTB and COMSOL Euler-Bernoulli beam model are used to
numerically calculate the tip deflection of the cantilever beam. The value of Young’s
modulus used in the numerical calculation is 2.0E11Pa (typical value of Young’s
modulus for steel). The weight of the beam, 0.87N, is taken into account in the
numerical calculation by applying a uniform distribution load over its entire length with
the value of 1.81N/m. Six values of tip load, i.e. 0, 1.176, 2.156, 3.136, 4.116 and
5.096N, are used for both experimental test and numerical calculation. The comparison
between the predicted vertical tip deflection and measured values are shown in Fig. 7.9
and Table 7.2, where relative differences are obtained with respect to the measured

values.
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Figure 7.9. Tip deflection of the cantilever beam
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Table 7.2. Tip deflection of the cantilever beam

Tip Vertical tip deflection (m) %Diff. %Diff
load  Experiment COMSOL NAM _WTB (COMSOL (NAM_WTB)
(N) Euler- Euler-
Bernoulli Bernoulli
beam beam)

0 0.0200 0.0206 0.0205 3.00 2.50
1.176 0.0940 0.0961 0.0926 2.23 1.49
2.156 0.1490 0.1588 0.1444 6.58 3.09
3.136 0.1930 0.2216 0.1870 14.82 3.11
4,116 0.2300 0.2843 0.2213 23.61 3.78
5.096 0.2550 0.3470 0.2486 36.08 251

From Fig. 7.9 and Table 7.2 we can see that 1) the tip deflections calculated using
COMSOL Euler-Bernoulli beam model increase linearly and do not coincide with
experimental data for the cases when the tip loads are over 3.136N, with maximum
percentage difference of 36.08% occurring when the tip load is 5.096N; 2) the tip
deflections predicted using the NAM_WTB increases nonlinearly and show good
agreement with experimental data for all cases, with the maximum percentage
difference 3.78% occurring when the tip load is 4.116N; 3) the COMSOL Euler-
Bernoulli beam model overestimates tip deflections when large deflections occur

because it fails to capture geometric nonlinearities.

This case study clearly demonstrates that 1) the NAW_WTB is capable of handling
geometric nonlinearities arising from large deflections; 2) when the deflection is small,
the error introduced by linear assumptions, e.g. the assumption adopted in the
COMSOL Euler-Bernoulli beam model, can be ignored; however, when large deflection

occurs, the error introduced by linear assumptions should be quantified.

7.3.2. Modal Analysis of Truncated RB70 Blade

This case study aims to validate the modal analysis results from the structural part of the
NAM_WTB against experimental data. The example used here is the truncated RB70

wind turbine blade [140], which has been subjected to the eigenmode validation within
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the STABTOOL-3 research project [141]. The chord and twist angle distributions of the
truncated RB70 wind turbine blade are depicted in Fig. 7.10.
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Figure 7.10. Chord and twist angle distributions of the truncated RB70 wind turbine
blade

The distributions of bending stiffness and mass per unit length of the truncated RB70
wind turbine blade are respectively shown in Figs. 7.11 and 7.12, and its details can be
found in Ref. [140].
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Figure 7.11. Bending stiffness distribution of the truncated RB70 wind turbine blade
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Figure 7.12. Mass per unit length distribution of the truncated
RB70 wind turbine blade

NAM_WTB is used to perform modal analysis of the truncated RB70 blade. The
fundamental mathematic equations involved in the modal analysis can be found in
Appendix C. In this case study, the blade is non-rotating and free-vibration (no loads on
the blade). The predicted values are compared with measured values reported in Ref.
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[142] as shown in Fig. 7.13 and Table 7.3, where the relative differences are observed

with respect to the measured values.
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Figure 7.13. Flapwise and edgewise mode frequencies of the truncated RB70 wind
turbine blade

Table 7.3. Flapwise and edgewise mode frequencies of the truncated RB70 wind turbine

blade
Mode frequencies Measured values NAM_WTB Diff. (%)
[142]
1% flapwise (Hz) 1.582 1.637 3.48
2" flapwise (Hz) 4.630 5.061 9.31
3" flapwise (Hz) 10.199 11.152 9.34
1% edgewise (Hz) 2.174 2.173 0.05
2" edgewise (Hz) 7.962 7.772 2.39
3" edgewise (Hz) 18.138 17.133 5.54

As can be seen from Fig. 7.13 and Table 7.3, the flapwise and edgewise blade mode
frequencies calculated from the NAM_WTB match well with the experimental data,

with the maximum percentage difference (9.34%) occurring for the 3 flapwise mode.

This case study not only further validates the structural part of the NAM_WTB, but also
demonstrates that representing wind turbine blades as a series of 1D beam elements

provides reasonable accuracy if the beam model is constructed properly.
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7.4. Validation of Aeroelastic Simulation

NAM_WTB

Results of

This case study aims to validate the NAM_WTB against FAST [26], which is a widely
used linear aeroelastic code developed by NREL based on combining BEM with modal

approach. The wind turbine model used in this case study is NREL Phase VI wind

turbine [143], which is a 10m-diameter rotor research wind turbine. The main
parameters of the turbine are listed in Table 7.4.

Table 7.4. Main parameters of the NREL Phase VI wind turbine

Parameters

Values

Rated power (kW)
Number of blades
Rotor radius (m)
Rotor speed (rpm)
Cone angle (deg.)
Tilt angle (deg.)

20

2
5.029
71.9

0

The chord and twist angle distributions of NREL Phase VI wind turbine blade are
depicted in Fig. 7.14, and its details can be found in Ref. [143] and Appendix E.
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Figure 7.14. Chord and twist angle distributions of the NREL Phase VI wind turbine

blade
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Both NAM_WTB and FAST are used to perform aeroelastic modelling of NREL Phase
VI rotor. In this case, yaw angle, pitch angle and rotor speed are 0°, 4.815° and
71.9rpm, respectively. The gravity loads and centrifugal loads are taken into account,
and the blade is considered flexible. Additionally, dynamic stall effects are considered.
The calculated blade root load and blade tip deflection at free stream wind speed of

10m/s are shown in Figs. 7.15 and 7.16 respectively.
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Figure 7.15. Calculated blade root load at wind speed 10m/s
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Figure 7.16. Calculated blade tip deflection at wind speed 10m/s

Figs. 7.15 and 7.16 demonstrate that the results from NAM_WTB show good agreement
with those from FAST for this case study. Fig. 7.16 also indicates that the tip deflection
of the blade used in this case study is very small due to the quite stiff blade design of the
NREL Phase VI wind turbine. This case study demonstrates that both NAM_WTB and

FAST work well for small deflections.
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7.5. Summary

In this chapter, the nonlinear aeroelastic model NAM_WTB was validated by a series of
benchmark calculation tests. The key components of the NAM_WTB, i.e. the
aerodynamic part (based on combining the BEM model and the BL dynamic stall model)
and the structural part (based on a mixed-form formulation of GEBT) were validated
separately. Then a case study was performed to validate the aeroelastic simulation

results.

Close agreement with existing widely used BEM-based aerodynamic code WT _perf
confirms the validity of the BEM model in the NAM_WTB for aerodynamic load
prediction for wind turbine blades. Additionally, the predicted unsteady aerodynamic
coefficients from the BL dynamic stall model in the NAM_WTB showed good
agreement with experimental data. This further confirms the capability of the

aerodynamic part of the NAM_WTB for unsteady aerodynamic load calculation.

Close agreement with experimental data for large beam deflections demonstrates the
capability of the structural part of NAM_WTB to handle geometric nonlinearities when
compared with COMSOL Euler-Bernoulli beam model. Moreover, close agreement
with experimental data for the modal analysis of a practical wind turbine blade further
validates the structural part of the NAM_WTB. It also demonstrates that representing
the blades as a series of 1D beam elements provides reasonable accuracy if the beam

model is constructed properly.

The aeroelastic simulation results of NAM_WTB were validated against the well-
known aeroelastic code FAST. In this case study, the blade deflections are very small,
and the results of NAM_WTB are consistent with the results of linear aeroelastic code
FAST, which indicates geometric nonlinearities can be ignored for small blade

deflections.

Chapter 8 presents the application of NAM_WTB, including the aeroelastic simulation
of a parked wind turbine blade and the stability analysis of the blade.
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CHAPTER 8 APPLICATION OF THE
NONLINEAR AEROELASTIC MODEL

8.1. Introduction

In Chapter 7, NAM_WTB (Nonlinear Aeroelastic Model for Wind Turbine Blades) has
been validated through a series of case studies. This chapter presents the application of
NAM_WTB on aeroelastic modelling of large wind turbine blades.

The wind turbine model used in this chapter is the WindPACT 1.5MW wind turbine
[144], which is a reference wind turbine created by NREL. NAM_WTB is applied to
simulate the parked WindPACT 1.5MW wind turbine blade and to perform stability

analysis of the blade.

This chapter is structured as follows. Section 8.2 introduces the WindPACT 1.5MW
wind turbine. Section 8.3 presents the application of NAM_WTB on the aeroelastic
simulation of the parked WindPACT 1.5MW wind turbine blade. Section 8.4 presents
the application of NAM_WTB on the stability analysis of the WindPACT 1.5MW wind

turbine blade, followed by a chapter summary in Section 8.5.

8.2. WIndPACT 1.5MW Wind Turbine

WindPACT 1.5MW wind turbine [144] is a reference wind turbine designed by NREL
for the Wind Partnership for Advanced Component Technologies (WindPACT) project
between years 2000 and 2002. In the WindPACT project, the effects of the main wind
turbine components (such as blades and generator) on the cost of energy (COE) have
been investigated. The ultimate goal of the WindPACT project is to identify technology
improvements to reduce the COE of wind turbines in low-wind-speed sites. The details
of WindPACT project can be found in Ref. [145].

WindPACT 1.5MW wind turbine is a three-bladed horizontal-axis wind turbine. Its

main parameters are summarised in Table 8.1.
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Table 8.1. Main parameters of the WindPACT 1.5MW wind turbine

Parameters Values
Rated power (MW) 15
Number of blades 3
Rotor radius (m) 35
Cone angle (deg.) 0
Tilt angle (deg.) 5

The chord and twist angle distributions of the WindPACT 1.5MW wind turbine blade

are shown in Fig. 8.1 and Table 8.2, and its structural properties can be found in

Appendix F.
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Figure 8.1. Chord and twist angle distributions of WindPACT 1.5MW wind turbine
blade
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Table 8.2. Chord ant twist angle distributions of the WindPACT 1.5MW wind turbine
blade

r (m) Chord Twist angle Airfoil
¢ (m) 0, (deg.)

2.858 1.949 111 cylinder
5.075 2.269 11.1 S818
7.292 2.589 111 S818
9.508 2.743 10.41 S818
11.725 2.578 8.38 S818
13.942 2.412 6.35 S818
16.158 2.247 4.33 S818
18.375 2.082 2.85 S825
20.592 1.916 2.22 S825
22.808 1.751 1.58 S825
25.025 1.585 0.95 S825
27.242 1.427 0.53 S825
29.458 1.278 0.38 S825
31.675 1.129 0.23 S826
33.892 0.98 0.08 S826

8.3. Aeroelastic Simulation of Parked WIindPACT 1.5MW
Wind Turbine Blade

This case study aims to investigate the effects of large blade deflections on the
aeroelastic modelling of wind turbine blades. Both NAM_WTB and FAST are used to
perform aeroelastic modelling of the parked WindPACT 1.5MW wind turbine blade. In
this case study, the rotor rotational speed, yaw angle and blade pitch angle are Orpm, 0°
and 2°, respectively. For the sake of simplicity, the dynamic stall effects are ignored.
Additionally, in order to investigate the large deflection effects, the flapwise stiffness of
the WindPACT 1.5MW wind turbine blade in this case study is adjusted by a factor of

0.2 to make the blade more flexible.

The calculated flapwise tip deflections at free-stream wind speeds between 15m/s and
50m/s are depicted in Fig. 8.2. For comparison purposes, Fig. 8.2 also presents the
results from a linear aeroelastic model, BEM_COMSOL-Euler-Bernoulli-beam, which
is based on combining BEM and COMSOL Euler-Bernoulli beam model and is
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implemented by replacing the structural part of NAM_WTB with COMSOL Euler-

Bernoulli beam model.
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Figure 8.2. Calculated flapwise tip deflection

Fig. 8.2 clearly shows that 1) the results from BEM_COMSOL-Euler-Bernoulli-beam
show good agreement with the results from FAST for all cases; 2) for this case study,
when wind speed below 30m/s, the results from NAM_WTB show good agreement
with the results from FAST; 3) as wind speed further increases, the difference between
NAM_WTB and FAST gets larger, with maximum percentage difference 23%, which
occurs for the case study when the wind speed achieves 50m/s, and the blade tip
deflection predicted by NAM_WTB is less than that predicted by FAST.

It should be noted that the only difference between BEM_COMSOL-Euler-Bernoulli-
beam and NAM_WTB is that the former one uses the COMSOL Euler-Bernoulli beam
model for the structural part while the latter one uses GEBT. As demonstrated in the
previous case study (see Section 7.3.1) of the experimentally large-deflection cantilever
beam, COMSOL Euler-Bernoulli beam model overestimates tip deflections when large
deflections occur because it fails to capture geometric nonlinearities. Since NAM_WTB
uses GEBT for the structural part, the effects of geometric nonlinearities are taken into
account. Therefore, NAM_WTB can provide more reliable aeroelastic modelling than
linear aeroelastic models, such as FAST and BEM_COMSOL-Euler-Bernoulli-beam,
for the cases when large deflections occur. No general conclusion can be drawn, but in

this case study it seems like geometric nonlinearities are to be expected when the ratio
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of blade deflection to blade radius exceeds 12% (corresponding to wind speed of 30m/s

in this case study).

This case study clearly demonstrates that when the blade deflection is small, the errors
introduced by small deflection assumptions, e.g. the assumption adopted in FAST, can
be ignored. However, as the blade deflection increases, the errors introduced by these
assumptions should be quantified.

8.4. Stability Analysis of WindPACT 1.5MW Wind Turbine
Blade

In this case study, the stability behaviour of the WindPACT 1.5MW wind turbine blade
Is investigated. The WindPACT 1.5MW wind turbine blade is simulated at different
operating points, which are defined by free-stream wind speed, blade pitch angle and
rotor rotational speed. The rated wind speed of WindPACT 1.5MW wind turbine blade
is 11.5m/s. At wind speeds above the rated wind speed, the blade pitch angle increases
while the rotor rotational speed is held constant at the rated value (20rpm) to maintain
rated power output. In order to investigate the effects of rotor rotational speed on the
stability behaviour of the blade, two operating conditions are considered, i.e. 1)
operating condition A, in which the rotor rotational speed is held constant at the rated
value; and 2) operating condition B, in which the roror rotational speed is held constant
at 40rpm (double of the rated value). In this case study, the simulation wind speeds are
12, 15, 18, 21, 24 and 27, and the corresponding rotor rotational speed and blade pitch
angle under both operating conditions A and B are shown in Figure 8.3.

121



60 T T T T

—+— Pitch angle (deg.): operating condition A

ol —#— Rotor rotational speed (rpm): operating condition A |
—=— Pitch angle (deg.): operating condition B

—% Rotor rotational speed (rpm): operating condition B

40

10 !

r r r r
12 15 18 21 24 27

Wind speed (m/s)

Figure 8.3. Rotor rotational speed and blade pitch angle against wind speed

Based on the method presented in Section 6.3.4, NAM_WTB is used to calculate the
damped frequencies and damping ratios of the WindPACT 1.5MW wind turbine blade
operating under both conditions A and B. The resulting damped frequency and damping
ratio distributions for both flapwise and edgewise modes are shown in Figs. 8.4 and 8.5,

respectively.
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Figure 8.4. Damped frequencies of WindPACT 1.5MW wind turbine blade
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Figure 8.5. Damping ratio of WindPACT 1.5MW wind turbine blade

As can be seen from Figs. 8.4 and 8.5, under both operating condition A (rotor
rotational speed is 20rpm) and operating condition B (rotor rotational speed is 40rpm),
it is observed that 1) both the damped frequencies and amping ratio fo the 1% edgewise
mode are insensitive to the wind speed; 2) damped frequencies of the 1% flapwise model
decreases gradually as wind speed goes up, reaching lowest value at wind speed 24m/s;
3) damping ratio of the 1% edgewise mode is much lower than the damping ratio of the
1%t flapwise mode, indicating that edgewise instability is more like to occur than

flapwise instability.

Figs. 8.4 and 8.5 also show that 1) the damped frequencies under operating condition B
are higher than those under operating condition A, indicating that the damped frequency
is increased with rotor rotational speed; 2) the damping ratio of the 1% edgewise mode
under operating condition B becomes negative at wind speeds above 15m/s, indicating
that improper rotor rotational speed (40rpm in this case) can result in edgewise
instability.
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8.5. Summary

In this chapter, the nonlinear aeroelastic model NAM_WTB was applied to simulate the
parked WindPACT 1.5MW wind turbine blade and to perform aeroelastic stability

analysis of the blade.

Taking account of geometric nonlinearities resulted from large blade deflections,
significantly reduced tip deflection based on the presented NAM_WTB code is
observed comparing with the linear aeroelastic code FAST. This difference in deflection
could be vital for blade designers. No general conclusion can be drawn, but in the
presented case study it seems like geometric nonlinearities are to be expected when the

ratio of blade deflection to blade radius exceeds 12%.

The stability behaviour of the WindPAC 1.5MW wind turbine blade was investigated.
NAM_WTB was used to calculate the damped frequencies and damping ratios of both
1% flapwise and 1% edgewise modes of the blade. Results show that damping ratio of the
1% edgewise mode is much lower than the damping ratio of the 1% flapwise mode,
indicating that edgewise instability is more likely to occur than flapwise instability. It is
also demonstrated that improper rotor rotational speeds can result in edgewise
instability.

Next chapter presents the conclusions of the thesis and summarises the

recommendations for future work.
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CHAPTER 9 CONCLUSIONS AND
FUTURE RESEARCH

This thesis presents the research on nonlinear aeroelastic modelling of large wind
turbine composite blades. The conclusions of the thesis are presented in Section 9.1,

and the recommendations for future works are presented in Section 9.2.
9.1. Conclusions

With the increasing size and flexibility of large wind turbine blades, aeroelasticity has
become a significant subject in wind turbine blade design. In the development of large
wind turbines, there have been some examples of commercial wind turbine blades
suffering from instability problems due to aeroelasticity. Those examples have

heightened the need for aeroelastic modelling of wind turbine blades.

In order to provide a reliable and efficient aeroelastic modelling of large wind turbine
blades, this project have developed 1) a cross-sectional model, which can extract cross-
sectional properties of wind turbine blade in a reliable and efficient way; and 2) a

nonlinear aeroelastic model, which is capable of handling large blade deflections.

The cross-sectional analysis model has been developed by incorporating the classical
lamination theory (CLT) with the extended Bredt-Batho shear flow theory (EBSFT).
The cross-sectional analysis model considers both the web effects and warping effects
of the blades, and is presented in a code called CBCSA (Composite Blade Cross-
Section Analysis), developed using MATLAB. A series of benchmark computational
tests have been performed for isotropic and composite blades. The results demonstrate
that
1. CBCSA can rapidly extract the cross-sectional properties of the composite
blades, usually in a fraction of a second, which is much faster than a 3D finite-
element based method.
2. Good agreement is achieved in comparison with the data from experiment and
finite-element analysis, which indicates CBCSA has sufficient accuracy for the
calculation of the cross-sectional properties of the composite blades.
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3. CBCSA provides a more accurate torsional stiffness calculation than previously
available tool PreComp due to the consideration of the shear web effects by
using EBSFT.

Additionally, a nonlinear aeroelastic model for large wind turbine blades has been
developed by combining 1) a blade structural model, which is based on a mixed-form
formulation of geometrically exact beam theory (GEBT), taking account of geometric
nonlinearities; and 2) a blade load model, which includes gravity loads, centrifugal
loads and aerodynamic loads. The aerodynamic loads are calculated based on
combining the blade element momentum (BEM) model with the Beddoes-Leishman
(BL) dynamic stall model. The nonlinear aeroelastic model takes account of large blade
deflections, and is presented in a code called NAM_WTB (Nonlinear Aeroelastic Model
for Wind Turbine Blades) based on COMSOL Multiphysics. NAM_WTB discretises
the wind turbine blade into a series of 1D elements using 1D finite-element approach,
which is computationally more efficient than 3D finite-element approaches. Validated
by a series of benchmark computational tests, the nonlinear aeroelastic model was
applied to the aeroelastic analysis of the parked WindPACT 1.5MW baseline wind
turbine and to the stability analysis of the blade. The following conclusions can be
drawn:

a) Close agreement with existing widely used BEM-based aerodynamic code
WT _Perf confirms the validity of the BEM model in the aerodynamic part of
NAM_WTB for aerodynamic load prediction for wind turbine blades.

b) Good agreement with unsteady airfoil experimental data confirms the validity of
the BL dynamic stall model in the aerodynamic part of NAM_WTB for
unsteady aerodynamic load predictions.

¢) Good agreement (with maximum percentage difference of 3.78%) is achieved in
comparison with the data from experiment of a large-deflection cantilever beam,
which indicates the NAM_WTB is capable of handling geometric nonlinearities
resulted from large deflections.

d) Good agreement (with maximum percentage difference of 9.34%) is achieved in
comparison with the data from modal experiment of a practical wind turbine
blade, which further validates the structural part of NAM_WTB. It also
demonstrates that representing the blade as a series of 1D beam elements

provides reasonable accuracy if the beam model is constructed properly.
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f)

9)

h)

In case of small deflections, the results of the NAM_WTB are consistent with
the results of the linear aeroelastic code FAST, which indicates geometric
nonlinearities can be ignored for small blade deflections.

Taking account of geometric nonlinearities resulted from large blade deflections,
significantly reduced tip deflection based on the presented NAM_WTB code is
observed comparing with the linear aeroelastic code FAST. This difference in
deflection could be vital for blade designers.

No general conclusion can be drawn, but in the presented case study it seems
like geometric nonlinearities are to be expected when the ratio of blade
deflection to blade radius exceeds 12%.

In the presented case study on the stability analysis of a large wind turbine blade,
the calculated damping ratio of the 1% edgewise model is much lower than the
calculated damping ratio of the 1% flapwise mode, indicating that edgewise
instability is more likely to occur than flapwise instability. It is also
demonstrated that improper rotor rotational speeds can result in edgewise
instability.

9.2. Recommendations for Future Research

It is recommended that future research work be undertaken in the following areas:

To apply the cross-sectional analysis model CBCSA and the nonlinear
aeroelastic model NAM_WTB to the optimisation of the blade structural layout
with the consideration of aeroelastic effects.

To conduct aeroelastic experiments to provide more available experimental data
for the benchmark test of the nonlinear aeroelastic model.

To extend the nonlinear aeroelastic model to a nonlinear aero-hydro-elastic
model for offshore wind turbine applications by introducing a reliable
hydrodynamic model to take account of hydrodynamic loads in offshore

environment.
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APPENDIX A MAIN COORDINATE SYSTEMS AND
DEGREES OF FREEDOME OF BLADES

This appendix presents the main coordinate system and degrees of freedom of wind
turbine blades.

Al. Main Coordinate Systems

Three main coordinate systems, i.e. the global frame G, the un-deformed blade frame
b and the deformed blade frame B, are chosen for the analysis of wind turbine blades,

as shown in Fig. A.1.

A.1. Main coordinate systems

The details of the three main coordinates systems are presented below.

e Global frame G
Origin: at hub centre (intersection of blade and shaft axes).

Axis G, : Perpendicular to Axes G, and G, to give a right-handed co-ordinate system.
Axis G, : along with the wind turbine rotor axis, and pointing towards the tower.

Axis G;: perpendicular to the wind turbine rotor axis.
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e Un-deformed blade frame b

Origin: at each un-deformed blade section.

Axis b, : Perpendicular to Axes b, and b;, to give a right-handed co-ordinate system.
Axis b, : located in each un-deformed airfoil plane, and perpendicular to the chord line
of each un-deformed blade element.

Axis b, : located in each un-deformed airfoil plane, and parallel to the chord line of each

un-deformed blade element.

e Deformed blade frame B

Origin: at each deformed blade section

Axis B, : Perpendicular to Axes B, and B,, to give a right-handed co-ordinate system.

Axis B,: located in each deformed airfoil plane, and perpendicular to the chord line of
each deformed blade element.

Axis B,: located in each deformed airfoil plane, and parallel to the chord line of each

deformed blade element.

A2. Degrees of Freedom of Blades

Fig. A.2 depicts the typical three degrees of freedom (DOFs) of a blade, i.e. torsional
(pitch), flapwise (flap) and edgewise (lag) DOFs. The torsional (pitch) DOF refers to
the freedom of movement of the blade about the blade pitch axis. The flapwise (flap)
DOF refers to the freedom of movement of the blade out of rotor rotational plane. The
edgewise (lag) DOF refers to the freedom of movement of the blade in the rotor
rotational plane.

Edgewise (lag) DOF

Torsional (pitch) DOF pr l Flapwise (flap) DOF

A.2. Degrees of freedom of a blade
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APPENDIX B BLADE ELEMENT MOMENTUM
THEORY

This appendix presents the fundamental equations involved in the blade element
momentum (BEM) theory, which is a combination of the blade momentum theory and

the blade element theory.
B1l. Blade Momentum Theory

The expression of aerodynamic forces on wind turbine blades can be derived from blade
momentum theory, which is developed based on the following main assumptions:

e The fluid is incompressible and homogenous.

e Both far upstream static pressure and far downstream static pressure are equal to

undisturbed atmospheric static pressure.

Fig. A.1 depicts a schematic of the parameters involved in the blade momentum theory.
In Fig. B.1, numbers 1, 2, 3, 4 respectively denote sections at far upstream, just in front
of rotor plane, just behind rotor plane, and far downstream. It is assumed that 1) o, the
angular velocity imparted to the flow stream by the rotating blade, is small when

compared to Q, the rotor angular velocity; and 2) far upstream pressure p, is equal to

far downstream pressure P,. The following analysis is based upon the use of an annular

stream tube with a radius r and a thickness dr, resulting in a cross-sectional area
2nrdr (see Fig. B.1).
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Figure B.1. Rotor geometry
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The mass flow rate along the annular element is determined by:
dm = p2rrdrU(l-a) (B.1)
where p is the air density; U is far upstream wind speed; a is the axial induction factor,

the fractional reduction in axial wind velocity between the free stream and rotor plane.

The linear momentum of the annular element at Sections 1 and 4 (see Fig. B.1) are
dmU and drmU (1-2a), respectively. Applying the conservation of linear momentum
to the annular element yields the expression of the thrust on it:

dT = pU?4a(l—a)rrdr (B.2)

Similarly, the expression of the torque on the annular element can be obtained by
applying the conservation of angular momentum to the element. It should be noted that
the angular velocity of the airflow relative to the rotor increases from Q to Q+ .
According to conservation of angular momentum, the torque equals the rate of change
of angular momentum of the control volume:

dQ = dm((Q+ o)r \r)—dm(Qr)r) = p2rrdru(l—a)or r) (B.3)

Defining the angular induction factor a’as % and substituting it into Eq. (B.3) yields:

dQ = 4a’(1-a)pUnrQdr (B.4)

Thus, from the blade momentum theory, the thrust dT and torque dQ on an annular

element are respectively defined by Eqgs. (B.2) and (B.4) as a function of axial induction

factor a and tangential induction factor a’.

B2. Blade Element Theory

The expression of aerodynamic forces on wind turbine blades can also be derived from
blade element theory. The blade element theory discretizes the blade into several
elements with the following assumptions:
e Elements are independent and no aerodynamic mutual influence between two
adjacent elements.
e The aerodynamic loads on each element are solely dependent on its local airfoil

characteristics, i.e. its lift and drag coefficients.
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Fig. B.2 depicts the relationships of the various velocities, angles and forces at the blade

section. In Fig. B.2, U, is the relative wind velocity; ¢ is the angle of relative wind,
the angle between the relative wind and the plane of blade rotation; o is the angle of
attack, the angle between the relative wind and the chord line of the section; 6, is the
section pitch angle, the angle between the chord line of the section and the plane of
blade rotation; 0., is the pitch angle at blade tip, the angle between the chord line of the
blade tip and the plane of blade rotation; 6 is the twist angle, the angle between the
chord line of the section and the chord line of the blade tip; dF; is the tangential force
one the section, which is tangential to the plane of blade rotation; dF, is the normal
force on the section, which is normal to the plane of blade rotation; dF, is the drag
force on the section, which is parallel to the relative wind speed; and dF, is the lift force

on the section, which is perpendicular to the relative wind speed.

Chord line

Plane of blade rotation

U(1-a) = Wind velocity at blade section
], = Relative wind velocity
V,p = out-of-plane blade element velocity
v, = in-plane blade element velocity
8,0 = Blade pitch angle
8, =Section twist angle
o =Angle of attack

8 _ = Section pitch angle

B
© =Angle of relative wind
Q = Rotor angular velocity

Figure B.2. Various velocities, angles, and forces at blade section

From Fig. B.2, the following relationships are established:
¢=0,+a (B.5)
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(l-al +v,

tan(g) = Qrayrsy, (B.6)
_U(l-a)
UreI - Sln((P) (87)

Vo, and v, in Eq. (B.6) respectively are out-of-plane and in-plane blade element
velocities, and they are generally ignored if the blade element motion is small. If v,

and v, are ignored, Eq. (B.6) becomes:

tan(¢) = % (B.8)

According to airfoil theory, the lift force dF _and drag force dF, on the section are

respectively calculated using the following equations:

C,cdr (B.9)

rel

dF, Uz
ZP

dF, = ; 2 C cdr (B.10)

rel

where C, and C, are the lift and drag coefficients of the airfoil section, respectively; ¢

is the chord length of the section.

The normal force dF, and tangential force dF; can be obtained by projecting the lift

force dF_and drag force dF, on the normal and tangential directions (see Fig. B.2):
dF, = dF_cos(e)+dF, sin(o) (B.11)
dF, =dF_sin(e)—dF, cos(o) (B.12)

Substituting Egs. (B.9) and (B.10) into Egs. (B.11) and (B.12), and with the help of
Eq.(B.7), one obtains:

dF, == UiL-a) (o) a) [C, cos(p)+ C, sin(p)lcdr (B.13)
sin?(¢p)

dF, = Ut-a)® [C, cos(p)—C, sin(p)ledr (B.14)
sin(o)
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If the rotor has B blades, the thrust force dT and the torque dQ on the section at a

distance r from the rotor centre are respectively calculated by:
dT = BdF, (B.15)

dQ = BrdF, (B.16)

Substituting Egs. (B.13) and (B.14) into Egs. (B.15) and (B.16) yields:

2 2
dT = o'mp—— &) i-a) [C, cos(p)+C, sin(e)]rdr (B.17)
sin”(p)
2
dQ=c'np ( (o )) [C, cos(¢)+C, sin(e)]r?dr (B.18)
where ¢’ is the local solidity, defined as
o' =B,c/2nr (B.19)

Thus, from the blade element theory, the thrust force and torque on an annular rotor
element can be expressed using Eqgs.(B.17) and (B.18), respectively.

B3. Combination of Blade Momentum Theory and Blade
Element Theory

The performance parameters of each blade element, such as axial induction factor a
and tangential induction factor a’, can be obtained by combining the blade element

theory with the blade momentum theory.

Equating Eq. (B.2), the thrust force expression from blade momentum theory, to Eq.
(B.17), the thrust force expression from blade element theory, one obtains the following

expression for axial induction factor a:

1
a= B.20
4sin’(¢) (8:20)
1+ -
o[C, cos(e)+C, sin(o)]

Similarly, equating Eq. (B.4), the torque expression from blade momentum theory, to
Eg. (B.18), the torque expression from blade element theory, one obtains the following

expression for tangential induction factor a’:
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1

(B.21)
4sin(¢)cos(o)

o[C, sin(p)-C, coslo)]
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APPENDIX C MODAL ANALYSIS

This appendix summarises the mathematic equations involved in the modal analysis of a
free-vibration system. A spring damper system with one degree of freedom, as

illustrated in Fig. C.1, is chosen as an example.

F

M

£ e

-

Figure C.1. A spring damper system with one degree of freedom

The governing equation for the system in Fig. C.1 can be written in a general matrix

form:
MX(t)+ Cx(t)+ Kx(t) = F (C.1)
where M, C and K are the mass, damping and stiffness of the system, respectively;

F is the applied load of the system; X is the dependent variable of the system.
Dropping the applied load F in Eq. (C.1) yields the governing equation of a free-
vibration system:

MX(t)+ Cx(t)+ Kx(t) =0 (C.2)
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The solution of Eq. (C.2) can be found by assuming it has the following type of

solution:

x(t)= X (t)e” (C3)

Substituting Eq. (C.3) into Eq. (C.2) gives:
(M2 +Ca+K)X(te" =0 (C.4)

Eq. (C.4) must hold for every value of t, resulting in:
(M2 +Ca+K)=0 (C.5)

Solving Eq. (C.5) yields two solutions for A :

Ay =—£J_riM\/c2 —4KM (C.6)

As can be seen from Eq. C.6, the solutions for A can be real or complex numbers,

depending on the sign of C* —4KM .

There are three possibilities for the sign of C? —4KM . The first case is that

C? —4KM is greater than zero. In this case, both 2, and 2, are negative real numbers.
The second case is that C* —4KM equals zero, resulting in both 4, and 2, are the

same negative real number. The last case is that C? —4KM is less than zero. In this case,

A, and 4, will be a complex conjugate pair.

Damping ratio ¢ is defined by:

C C

TV

c (C.7)

where ¢, is the critical damping coefficient; @ is the un-damped natural frequency,

defined by:

w=.— (C.8)

With the help of Eqg. (C.7), Eg. (C.6) can be written as:
A, =—(otwE2 -1 (C.9)
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The solutions for A are also in the following form:

Ay =A LA (C.10)

where A is the real part number and A, is the imaginary number.

Through comparing Egs. (C.9) and (C.10), the un-damped frequency @ and damping

ratio ¢ can be expressed in terms of A and A, using the following equations:

0=A 1 A (C.11)
PR (C.12)

VAT +A;

Having obtained the un-damped frequency @ and the damping ratio ¢ , the damped

frequency « is calculated by:

@p :a),/]_—fz (C.13)

The unit of both un-damped frequency @ and damped frequency «w, is rad/s and can

be transformed to Hz using the following equations:

frp = o (C.14)
27
for :‘Z’J_D (C.15)
T

where f,, and fD,HZ are the un-damped and damped frequencies in Hz, respectively.

The values of X in Eq. (C.4), which correspond to each eigenvalue, are called

eigenvectors and can be obtained by substituting calculated eigenvalues 4 back to Eq.

(C.4).
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APPENDIX D  AWT-2/CR2 WIND TURBINE BLADE
CONFIGURATION

In this appendix, the chord and twist angle distributions of the AWT-27CR2 wind
turbine blade are listed in Table D.1.

Table D.1. The chord and twist angle distributions of the AWT-27CR2 wind turbine

blade

r (m) Chord (m) Twist angle (deg.)
1.498 0.774 6.1
2.127 0.869 5.764
3.07 0.962 5.47
4.327 1.108 4.996
5.585 1.148 4.208
6.842 1.089 3.172
8.099 1.015 2.086
9.356 0.931 1.117
10.614 0.83 0.424
11.557 0.711 0.122
12.185 0.646 0.076
12.625 0.576 0.048
12.877 0.538 0.041
13.128 0.501 0.033
13.38 0.459 0.023
13.568 0.414 0.012
13.694 0.392 0.006
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APPENDIX E NREL PHASE VI WIND TURBINE BLADE
CONFIGURATION

In this appendix, the geometry shape data (i.e. chord and twist angle distributions) of the
NREL Phase VI wind turbine blade are listed in Table E.1, and the cross-sectional

properties of the blade are listed in Table E.2.

Table E.1. Chord ant twist angle distributions of the NREL Phase VI wind turbine blade

Chord Twist angle Airfoil
r(m)
¢ (m) Gp (deg.)

0.568 0.219 0 cylinder
0.88 0.181 -0.098 cylinder
1.232 0.714 19.423 S809
1.509 0.711 14.318 S809
171 0.691 10.971 S809
1.928 0.668 8.244 S809
2.146 0.647 6.164 S809
2.347 0.627 4.689 S809
2.548 0.606 3.499 S809
2.766 0.584 2.478 S809
2.984 0.561 1.686 S809
3.185 0.542 1.115 S809
3.386 0.522 0.666 S809
3.604 0.499 0.267 S809
3.822 0.478 -0.079 S809
4.023 0.457 -0.381 S809
4.224 0.437 -0.679 S809

4.4 0.419 -0.933 S809
4.576 0.401 -1.184 S809
4.778 0.381 -1.466 S809

4.954 0.363 -1.711 S809
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Table E.2a. Cross-sectional properties of NREL Phase VI wind turbine blade (part 1)

axial stiffness  flapwise stiffness  edgewise stiffness  Torsional stiffness

") EA (N) El, (Nm"2) El, (Nm"2) GJ (Nm"2)
0.568 1.46E+09 2.90E+06 1.12E+06 3.60E+06
0.88 4.02E+08 7.24E+05 2.80E+05 4.21E+05
1.232 4.06E+08 5.88E+05 1.14E+06 3.01E+06
1.509 3.84E+08 5.04E+05 1.15E+06 2.89E+06
1.71 3.65E+08 4.47E+05 1.10E+06 2.68E+06
1.928 3.58E+08 4.00E+05 1.08E+06 2.48E+06
2.146 3.54E+08 3.64E+05 1.05E+06 2.29E+06
2.347 3.21E+08 3.09E+05 8.32E+05 1.63E+06
2.548 2.94E+08 2.64E+05 7.33E+05 1.46E+06
2.766 2.68E+08 2.24E+05 6.40E+05 1.30E+06
2.984 2.48E+08 1.94E+05 5.58E+05 1.15E+06
3.185 2.35E+08 1.73E+05 4.93E+05 1.03E+06
3.386 2.18E+08 1.49E+05 4.32E+05 9.10E+05
3.604 2.00E+08 1.25E+05 3.72E+05 7.94E+05
3.822 1.82E+08 1.04E+05 3.18E+05 6.89E+05
4.023 1.66E+08 8.59E+04 2.70E+05 5.97E+05
4.224 1.51E+08 7.17E+04 2.33E+05 5.20E+05
4.4 1.37E+08 5.96E+04 1.99E+05 4.54E+05
4.576 1.24E+08 4.97E+04 1.71E+05 3.97E+05
4,778 1.09E+08 3.91E+04 1.41E+05 3.35E+05

4.954 9.69E+07 3.13E+04 1.18E+05 2.86E+05
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Table E.2b. Cross-sectional properties of NREL Phase VI wind turbine blade (part 2)

r(m) mass per unit length flapwise mass edgewise mass
1 (kg/m) moments of inertia moments of inertia
rhol, (kgm) rhol, (kgm)
0.568 49.933 0.067 0.067
0.88 10.233 0.04 0.04
1.232 15.88 0.038 0.461
1.509 15.634 0.034 0.452
1.71 15.118 0.031 0.422
1.928 14.781 0.028 0.397
2.146 14,512 0.026 0.372
2.347 12.372 0.02 0.277
2.548 11.744 0.017 0.247
2.766 11.136 0.015 0.218
2.984 10.634 0.013 0.191
3.185 10.254 0.012 0.169
3.386 9.79 0.01 0.149
3.604 9.313 0.009 0.129
3.822 8.851 0.008 0.111
4.023 8.414 0.006 0.096
4.224 8.01 0.006 0.083
4.4 7.651 0.005 0.072
4.576 7.291 0.004 0.062
4.778 6.888 0.003 0.052

4.954 6.536 0.003 0.044
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APPENDIX F WindPACT 15MW WIND TURBINE
BLADE CONFIGURATION

In this appendix, the geometry shape data (i.e. chord and twist angle distribution) of the
WindPACT 1.5MW wind turbine blade are listed in Table F.1, and the cross-sectional
properties of the blade are listed in Table F.2.

Table F.1. Chord ant twist angle distributions of the WindPACT 1.5MW wind turbine
blade
r (m) Chord Twist angle Airfoil

C(M 0, (deg.

2.858 1.949 111 cylinder
5.075 2.269 11.1 S818
7.292 2.589 111 S818
9.508 2.743 10.41 S818
11.725 2.578 8.38 S818
13.942 2.412 6.35 S818
16.158 2.247 4.33 S818
18.375 2.082 2.85 S825
20.592 1.916 2.22 S825
22.808 1.751 1.58 S825
25.025 1.585 0.95 S825
27.242 1.427 0.53 S825
29.458 1.278 0.38 S825
31.675 1.129 0.23 S826

33.892 0.98 0.08 5826
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Table F.2a. Cross-sectional properties of WindPACT 1.5MW wind turbine blade

(part 1)
r (m) axial stiffness flapwise stiffness  edgewise stiffness Torsional stiffness
EA (N) El, (Nm"2) El, (Nm"2) GJ (Nm"2)
2.858 2.63E+09 1.11E+09 1.14E+09 3.84E+08
5.075 2.57E+09 7.97E+08 9.76E+08 2.46E+08
7.292 2.51E+09 4.82E+08 8.12E+08 1.09E+08
9.508 2.41E+09 2.57E+08 6.66E+08 1.80E+07
11.725 2.24E+09 2.07E+08 5.52E+08 1.53E+07
13.942 2.08E+09 1.56E+08 4.38E+08 1.27E+07
16.158 1.91E+09 1.06E+08 3.25E+08 1.01E+07
18.375 1.71E+09 6.89E+07 2.37E+08 7.80E+06
20.592 1.45E+09 5.27E+07 1.89E+08 6.08E+06
22.808 1.19E+09 3.66E+07 1.41E+08 4.36E+06
25.025 9.31E+08 2.05E+07 9.25E+07 2.63E+06
27.242 7.12E+08 1.03E+07 5.93E+07 1.51E+06
29.458 5.43E+08 7.39E+06 4.46E+07 1.13E+06
31.675 3.73E+08 4.52E+06 2.99E+07 7.50E+05

33.892 2.03E+08 1.66E+06 1.52E+07 3.70E+05
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Table F.2b. Cross-sectional properties of WindPACT 1.5MW wind turbine blade

(part 2)
r(m)  mass per unit length  flapwise mass edgewise mass
w (kg/m) moments of inertia moments of inertia
rhol, (kgm) rhol, (kgm)

2.858 180.854 75.72 80.337

5.075 183.682 49.881 79.563

7.292 1.87E+02 24.043 78.79

9.508 1.84E+02 6.576 73.957
11.725 1.71E+02 5.206 61.317
13.942 1.59E+02 3.835 48.676
16.158 1.46E+02 2.464 36.037
18.375 1.31E+02 1.501 26.218
20.592 1.11E+02 1.162 20.726
22.808 9.19E+01 0.822 15.233
25.025 7.26E+01 0.484 9.74
27.242 5.62E+01 0.264 6.029
29.458 4.34E+01 0.194 4521
31.675 3.06E+01 0.124 3.011

33.892 1.78E+01 0.054 1.502
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A wind turbine blade generally has complex structures including several layers of composite materials
‘with shear webs. It is essential but also inherently difficult to accurately and rapidly calculate the cross-
sectional properties of a complex composite blade for the structural dynamics and aeroelasticity analysis
of the blade. In this paper, a novel mathematical model for calculating the cross-sectional properties of
composite blades has been developed by incorporating classical lamination theory (CLT) with extended
Bredt-Batho shear flow theory (EBSFT). The mathematical model considers the shear web effects and
warping effects of composite blades thus greatly improves the accuracy of torsional stiffness calculation
compared with the results from direct use of 3D laminate theories. It also avoids complicated post-
processing of force-displacement data from computationally expensive 3D finite-element analysis
(FEA) thus considerably improves the computational efficiency. A Matlab program was developed to
verify the accuracy and efficiency of the mathematical model and a series of benchmark calculation tests
were undertaken. The results show that good agreement is achieved comparing with the data from
experiment and FEA, and improved accuracy of torsional stiffness calculation due to consideration of the

shear web effects is observed comparing with an existing cross-sectional analysis code PreComp.

Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Modern wind turbine blades generally are made of thin-walled
shells with composite materials. Cross-sectional properties of the
thin-walled shells, such as mass per unit length and sectional
stiffness, of the composite blade are essential information for the
structural dynamics and aeroelasticity analysis of the wind turbine
blade, which is often represented as one-dimensional (1D) beam
elements instead of three-dimensional (3D) shell elements [1].
However, due to the intrinsic nature of composite materials and the
complexity of blade structural topologies, it is quite challenging to
obtain the cross-sectional properties of a wind turbine blade.

Various methods have been proposed for calculating the cross-
sectional properties of wind turbine blades, ranging from compli-
cated finite-element techniques and 3D laminate theories to the
simple two-dimensional (2D) lamination theory. The most so-
phisticated method to extract the cross-sectional properties of

* Corresponding author. Tel.: +44 (0)1900 605665x1069.
E-mail addresses: Xiongwei.Liu@Cumbria.ac.uk, xiongweiliu@263.net (X. Liu).

wind turbine blades is based on 3D finite-element techniques. 3D
finite-element techniques, despite their ability for accurate stress
and displacement analysis, cannot directly yield the cross-sectional
properties of wind turbine blades. It relies on computationally
complicated post-processing of force-displacement data [2]. One
such post-processing tool is BPE (Blade Properties Extractor) [3],
which is developed by Sandia National Laboratories and Global
Energy Concepts. Currently, BPE is a module of NuMAD (Numerical
Manufacturing And Design) [4], which is a windows based pre/
post-processor to generate the 3D finite-element models of wind
turbine blades. BPE applies a series of unit loads at the blade tip and
transfers the displacement results of the 3D finite-element model
of the blade to a series of MATLAB routines, which extract the
stiffness matrices for the equivalent beam elements. In principle,
BPE should be able to provide the most accurate cross-sectional
properties because all 3D information can be captured by the 3D
finite-element model. However, there are seemingly several chal-
lenges facing this method. Firstly, application of loads must be
performed carefully to minimize the boundary layer effects. Addi-
tionally, the cross-sectional properties estimated by BPE are sen-
sitive to the length of the blade segment, which one chooses to

0960-1481/$ — see front matter Crown Copyright @ 2013 Published by Elsevier Ltd. All rights reserved.

x.doi.org/10.1016/j.renene.2013,10.046
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perform the finite-element analysis. Changing the length of the
blade segment may even result in a singular stiffness matrix under
some extreme situations [5].

Several other cross-sectional analysis tools based on 2D finite-
element techniques have also been developed. Cesnik and Hodges
[6] developed VABS (Variational Asymptotic Beam Sectional anal-
ysis) based on variational asymptotic method, which replaces a 3D
structural model with a 2D model in terms of an asymptotic series
of several small parameters of the structure. VABS requires a 2D
finite-element discretization of the cross-section to generate its
input files, which are the 2D mesh of the cross-section and the
corresponding materials. For a practical wind turbine blade made of
layers of composites, the generation of VABS input files is very
tedious and requires a separate pre-processor called PreVABS [7].
Recently, Blasques [8] developed a cross-sectional analysis tool
called BECAS based on anisotropic beam theory, which is originally
presented by Gianotto et al. [9] for estimating the stiffness and the
stresses of inhomogeneous anisotropic beams. Similar to VABS,
BECAS also requires a 2D finite-element discretization of the cross-
section. A separate pre-processor called Airfoil2BECAS [10], which
is a python program, is needed to generate the input files for BECAS.
Currently, the cross-section in Airfoil2BECAS is limited to 8 distinct
regions, where layup and thickness information can be assigned.

Researchers have tried to obtain structural properties directly
using 3D laminate theories. However, these theories cannot accu-
rately estimate the torsional stiffness, which is overestimated by as
much as 50—80 times using these theories [2]. The torsional stiff-
ness is hard to evaluate because it is significantly affected by shear
web effects and warping effects, which are difficult to model. This is
particularly true for wind turbine blades, which commonly use
asymmetrical cross-sections with several shear webs.

Compared to the finite-element techniques and 3D laminate
theories, classical lamination theory (CLT) [11], which is an exten-
sion of the classical plate theory [ 12] to laminated plates, is fast and
reasonably accurate. CLT can be used to combine properties and the
angle of each ply in a pre-specified stacking sequence to calculate
the overall effective performance for a laminate structure. Based on
several reasonable assumptions, such as plane stress and linear
strain, CLT transfers a complicated 3D elasticity problem to a
solvable 2D problem [13]. Among the above assumptions, the
assumption “each ply is under the condition of plane stress” is
acceptable for composite blade due to the fact that wind turbine
blades are thin-walled structures of composites.

CLT has been widely used for analyzing structural performance
of composite materials [14,15]. In terms of composite blades, Bir
[2,16] developed PreComp (Pre-processor for computing Composite
blade properties) at National Renewable Energy Laboratory (NREL)
based on CLT. PreComp does not need a separate pre-processor to
generate the input files, which are the geometric shape and internal
structural layout of the blade, and allows an arbitrary number of
webs and a general layup of composite laminates. However, Pre-
Comp ignores the effects of shear webs in the calculation of the
torsional stiffness, In other words, if the number of webs on a cross-
section is changed, no change in torsional stiffness will be observed
using PreComp. This is invalid for a practical blade cross-section,
where the torsional stiffness will be enhanced as the number of
shear webs increases.

For a closed thin-walled cross-section, Bredt-Batho shear flow
theory (BSFT) [17] can be used to determine the torsional stiffness
of the cross-section. BSFT is developed based on the assumption
that the torsional stress is uniformly distributed across the thick-
ness of the cross-section. Experiments show that this assumption is
acceptable for most thin-walled cross-sections [18]. BSFT implicitly
includes the dominant warping effects and it can provide reason-
able results for the torsional stiffness of the closed thin-walled

cross-section [18]. However, the original BSFT is developed for a
single-cell cross-section. In order to apply BSFT to a practical wind
turbine blade cross-section with shear webs, an extension of BSFT
to cover multi-cells is required.

This paper attempts to incorporate CLT with an extended Bredt-
Batho shear flow theory (EBSFT) [19] to develop a mathematical
model, which extracts the cross-sectional properties of wind tur-
bine blades in a fast and reliable way. Based on the mathematical
model, a Matlab program is developed. In order to validate the
developed program, a series of benchmark tests are performed for
isotropic and composite blades as compared with ANSYS, PreComp
and experimental data.

This paper is structured as follows. CLT and BSFT are summa-
rized in Sections 2 and 3 respectively. EBSFT is discussed in Section
4, Section 5 details the development of a new mathematical model
for cross-sectional analysis by incorporating CLT with EBSFT. Re-
sults and discussions are provided in Section 6, followed by a
conclusion in Section 7.

2. Classical lamination theory (CLT)

CLT is an extension of the classical plate theory to laminated
plates. The main assumptions of CLT are the Kirchhoff hypotheses
[11]:

e Straight lines which are perpendicular to the mid-surface before
deformation remain straight after deformation.

« The transverse normals are inextensible.

« The transverse normals rotate so that they are always perpen-
dicular to the mid-surface.

The first two assumptions indicate that the transverse
displacement is independent of the thickness coordination and the
transverse normal strain is zero. The third assumption implies that
transverse shear strains are zero. These assumptions are acceptable
for thin laminates in most cases [11].

CLT has wide applications including stress and strain analysis of
laminate plates. The validity of CLT has been established by
comparing with experimental results and the exact solutions of the
general elastic problems [20]. In terms of cross-sectional analysis,
CLT can be used to calculate the effective engineering constants of
angled plies.

The coordinate system used for an angled ply for the cross-
sectional analysis using CLT is shown in Fig. 1.

The directions 1 and 2 constitute principal material coordinates
while the directions x and y constitute global coordinates. The di-
rections 1 and 2 are parallel and perpendicular to the fiber direction
respectively.

The materials considered with CLT are orthotropic. The stress—
strain relationship in principal material coordinates for an ortho-
tropic material under plane stress condition can be expressed as:

Y

e

Fig. 1. Principal material and global coordinates.

X
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B St Sz 0 ][
e | =52 Sn 0|0 (1)
Y12 0 0 Se]Lm2

In Eq. (1), the components of matrix [S] are calculated by:

Si = 1/E (2)
S12 = —via/Ey (3)
S22 = 1/E; (4)
Se6 = 1/Gi2 (5

where E; and E; are the Young's modulus along the direction 1 and
direction 2, respectively; vy, is the Poisson’s ratio and Gy is the
shear modulus. All of these constants are called engineering con-
stants of a unidirectional ply.

The inverse matrix [Q] of the matrix [S] in Eq. (1) is called
reduced stiffness matrix [21], given as follows:

7 Qi Q2 0 ][e
g2 | = |Q2 Qu 0 ||& (6)
T12 0 0 Qs l712
where:
Qu = 522/(511522 *5%2) (7)
Qz = —Si2/ (S8 - ) ®)
Q2 = 511/(511522 —5%2) (9)
Qs6 = 1/S66 (10)

The stress—strain relations in Eq. (6) for the principal material
coordinates can be transformed into a global coordinate system
using:

(% Ex
{!’y] = M7 QIRITIRI [Py } (11)

Txy Txy

where, [T] is the transformation matrix, [Q] is the reduced stiffness
matrix in Eq. (6), [R] is the Reuter matrix [21]. [T] and [R] are defined
as:

cos?(a) sin?(a) —2 sin(a)cos(a)
[T = [ sin?(a) cos?(a) 2 sin(a)cos(a) }
sin(ajcos(®) —sin(a)cos(@) cos?(a) — sin’(a)
(12)
100
R = [O 1 0} (13)
00 2

where, a is the ply angle, i.e. the angle between the direction 1 and
direction x in Fig. 1.

The effective engineering constants of an angled ply can be
expressed in terms of the engineering constants of a unidirectional
ply using the following equations:

17 d { (can vary along )

Middle line

Fig. 2. Closed thin-walled cross-section.

E)l"]y - 1 1 2 jlz 1cind (]4)
Aeost (@) + (m—{%)sm (a)cos?(a) + gsin(a)

1

4, 4:8v 2 |cin?
[5+j¢”—c—u]sm (a)cos2 (a) +

G = (15)

sin(e)+cos? (a)
G2

where, EIY and GEY are the effective Young's modulus along the
direction x (Fig. 1) and effective shear modulus of an angled ply,
respectively.

3. Bredt-Batho shear flow theory (BSFT)

In the case of a closed thin-walled cross-section, the assumption
that the torsional stress t evenly distributes across the thickness of
the cross-section is acceptable in most situations. The product of
the torsional stress t and the thickness t refers to shear flow [18]:

A (16)

Based on the above assumption, a shear flow theory called
Bredt-Batho shear flow theory (BSFT) [ 18] is developed to evaluate
stresses and deformations in structures with closed thin-walled
cross-section under torsion.

The torsional stiffness GJ of the closed thin-walled cross-section
(e.g. the cross-section in Fig. 2) can be obtained using BSFT:

4472

g ="
Ld

(17)

where, A" is the area enclosed by the middle line of the wall, t is the
thickness of the wall, G is the shear modulus, and s is the perimeter
coordinate. It is should be noted that the ¢ and G can vary along s if
the cross-section consists of several segments having variable wall
thickness and different material properties.

4. Extended Bredt-Batho shear flow theory (EBSFT)

The original BSFT mentioned above is developed for a single-cell
cross-section, which means no shear webs are included. To apply
BSFT in a practical wind turbine blade cross-section with shear
webs, an extension of BSFT to cover multi-cell is required.

Taking a wind turbine blade cross-section with one shear web in
Fig. 3 as an example, the torsional moment M is expressed as [19]:

shear web

Fig. 3. Blade cross-section with one shear web,
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M = 2(qiA; + 243 (18)
where, g; and g, are the shear flow of cells 1 and 2, respectively;
Ay and A; are the area enclosed by the middle line of the wall of
cells 1 and 2, respectively.

The twist angles (; and f,) of cells 1 and 2 are respectively
expressed as:

1
b= (m { as/t—a; [ ds/r) (19)

i2

/ ds/t) (20)

1
fy = — _
2~ 264, (quds/ = |
& 21

Assuming the twist angles of the two cells are the same, we
obtain:

0y =0, =10 (21)
Reformulating Egs. (19) and (20), we obtain:
0n1q1 +012q2 — 2416 = 0 (22)
61241 + 022Gz — 2A20 = 0O (23)
where 4 is warping flexibility:
ds
o = }{a (24)
1
ds
by = f & (25)
2
ds
bz =0n=- [ 7 (26)

12

The Egs. (18), (22) and (23) can also be written in matrix format:

AT
M =2[A"]'[q (7)
(Bllg) = 26[A") (28)
where:
[&] = [:i} (29)
2
=[] (30
o= (o 5] gl
The torsional stiffness is given by:
G = % (32)

Substituting Eqs. (27) and (28) into Eq. (32) gives:

Gl - 4[A']T[6]" [a]

For a wind turbine blade cross-section with arbitrary shear
webs, the torsional stiffness can be expressed in the form of Eq.
(33). For a blade cross-section with two shear webs, [§] and [A"]
becomes:

(33)

[511 6 O ]
[0] = 621 02 023 (34)
0 b5 b33
A
[A] = |4 (35)
A

5. A new mathematical model for cross-sectional analysis by
incorporating CLT and EBSFT

In order to determine the cross-sectional properties of wind
turbine blades, all cross-sectional laminates are discretised into
many area segments. Each area segment encloses several angled
plies. The effective engineering constants of each angled ply are
obtained using CLT. A weighting method [22] is used to calculate
the equivalent properties of each area segment and the elastic
center location of the cross-section. Firstly, the area moments of
inertia of each area segment are calculated with respect to its local
axes and centroid, and then transformed to the elastic axes and
center of the cross-section using transform-axis formula and
parallel-axis theorem [23]. Based on the transferred area moments
of inertia and calculated equivalent properties of each area
segment, the contributions of each area segment to the cross-
sectional properties are calculated. The torsional stiffness is ob-
tained using EBSFT while the other cross-sectional properties are
obtained by means of adding the contributions of all the area
segments. Based on the above strategy, a mathematical model for
cross-sectional analysis is developed. The flow chart of the model is
shown in Fig. 4.

Each step of the flow chart in Fig. 4 is detailed as follows:

1) Input data

The model requires cross-sectional external shape (chord, twist
and airfoil coordinates) and internal laminate layup (laminate
schedule, ply angle and material engineering constants) as inputs.

2) Transform coordinates to reference axes

In the cross-sectional analysis, bending stiffness including both
flapwise and edgewise stiffness is generally referred to the elastic
center (Xg, Yg), of which the location is measured from the reference
axes of the cross-section, as shown in Fig. 5. Therefore, it is
necessary to add a step to transfer the input airfoil data to reference
axes if the input data refer to different axes.

As shown in Fig. 5, Xg and Y are the reference axes while Xand Y
are the elastic axes. The directions of Xg and Yg are parallel and
perpendicular to the chord direction of the blade cross-section
respectively. The location of reference point O can be specified
arbitrarily and usually is identical to the aerodynamic center of the
blade cross-section. The directions of X and Y are parallel to the
reference axes Xg and Yg, respectively.
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‘ 2) Transform coordinates to reference axes ‘

v

| 3) Discretise cross-sectional I

into many area |

v

| 4) Caleulate effective engineering constants of cach angled ply using CLT |

2

| 5) Calculate equivalent properties of each area segment |

| 6) Calculate elastic centre of the cross-section |

v

| 7) Calculate arca moments of inertia of cach area segment |

v

| 8) Transfer the arca moments of inertia of each area segment to elastic axes and centre of the cross-section

v

‘ 9) Sum contributions of all area segments to obtain overall sectional properties |

v

| 10) Determine torsional stiffness using EBSFT ‘

Fig. 4. Flow chart of the mathematical model.

Elastic centre (Xp. Ye)

Fig. 5. Reference axes.
3) Discretize cross-sectional laminates into many area segments

In this step, all cross-sectional laminates are discretised into
many area segments. Each area segment encloses several plies.
Taking a typical blade cross-section with one shear web in Fig. 6 as
an example, the cross-sectional laminates are discretised into 110
area segments and the area segment “ab” encloses three different
plies.

4) Calculate effective engineering constants of each angled ply
using CLT

In order to achieve better structural performance, some plies are
generally placed at an angle. Therefore, it requires a step to obtain
the effective engineering constants of angled plies. By giving the
engineering constants (Eq, Ey, G12,v12) and ply angle a, the effective
Young’s modulus E2Y and shear modulus G,'(’jy of each angled ply are

—
a Ay
s ply2 |y
Yw

Yy can .

(XeYz)
DR

Shear web
-
L

Fig. 6. Discretization of a typical blade cross-section with one shear web,

determined using Eqs. (14) and (15) mentioned in Section 2
respectively.

5) Calculate equivalent properties of each area segment

Because each area segment encloses several plies having
different material properties, a weighting method is used to
represent the non-uniform distribution of materials as a single
material having equivalent properties. The actual thickness and area
of each segment are maintained. For instance, the equivalent rep-
resentations of the area segment “ab” in Fig. 6 are shown in Fig. 7.

The equivalent Young’s modulusEzgs, thickness tagy and area
Aogh of each area segment can be expressed as:

m Eply ply
it E

Ee = = (36)
Sy e
s€; - l
tes = >_tPY (37)
1
& 1 o I
A:\Z% = ZA,FY = thywseg (38)
i=1 i=1

where i indicates the ith ply in an area segment, m is the number of
plies in an area segment, EEV',»Y is the effective Young’s modulus of the

wi/-"’*/ FW\/
IMI b ':>a - .b
T

Fig. 7. Equivalent representations of area segment.
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ith ply, t]”'y and Afly are the thickness and area of the ith ply
respectively, Wseg is the width of an area segment.
The same method can be used to determine the equivalent

densitypecy and equivalent shear modulus Geg; of each segment by

simply replacing the effective Young's modulus Ef_',)’ in Eq. (36) with

ity oPlY i ply - .
the density pf'¥ and effective shear modulus ny_f respectively:

m ly ¢l
seg z|=1ﬂ?yf,py

Peqi = Z:ﬂ 1f!]|y (39)
=15
m - cply ply
cses Z 1nyl[i (40)

equ — m - ply
i=1lh

6) Calculate elastic center of the cross-section

The elastic center (Xg,Yg) of the cross-section can also be
calculated using weighting method:

N seg.l pseg.loseg. |
S Edqn Adqu Ko e

Xp = 2=l=1equ (41)
N A I
I Eedi Acdt
N seg.l psegloseg |
Y = i1 Eeqi Acqn Ye (42)

n seg,l nseg,l
ST Eequ Addu

where I indicates the Ith area segment, N is the number of area
segments, Excs’ and AZE! are the equivalent Young's modulus and
area of the Ith area segment respectively, %%/ and y£®' are the
centroid coordinates of the Ith area segment.

7) Calculate area moments of inertia of each area segment
The area moments of inertia of each area segment with respect

to its local axes (e.g. the X — y axes in Fig. 7) can be calculated using
an integration scheme:

1~ [ yaxay “3)
seg _ 2 AvdT

0= /x dxdy (44)
5 — / ydxdy (45)

where ¥ and I%g are the area moment of inertia about ¥ axis and y

axis respectively, I%g is the product of inertia.

8) Transfer the area moments of inertia of each area segment to
elastic axes and center of the cross-section

[t should be noted that the above calculated area moments of
inertia are calculated with respect to the local axes and centroid of
each area segment. However, the cross-sectional properties
including both flapwise stiffness and edgewise stiffness are
generally referred to the elastic axes and center of the cross-section.
Therefore, a transformation is necessary. Using the transform-axis
formula, the area moments of inertia around the local axes of
each area segment can be transferred to that around the axes which
are parallel to the elastic axes of the cross-section:

Seg | seg  yseg  gseg
_— 1 +ly_y +Im I

e = Sy %cosZm—Iggsin2w (46)
[ R e
I = =2 7 WX W 3 ¥_cos 2¢ +I§g sin 2¢ (47)

where ¢ is the angle between the local axes of each area segment
and the elastic axes of the cross-section.

Then, using the parallel-axis theorem, the calculated area mo-
ments of inertia can be further transferred to elastic center (Xg, Yg)
of the cross-section:

15 = (55F) + ALk (2% - Xe)? (48)
I = (58 + Ak (7% — ve)? (49)

9) Sum contributions of all area segments to obtain overall
sectional properties

The overall cross-sectional properties including axial stiffness
EA, flapwise stiffness Ely, edgewise stiffness Ely and mass per unit
length w are obtained by summing the contributions of all area
segments:

N
EA = S EREIASE (50)
I=1
N segl i
Ely = IZEH,%, [ (51)
=1
N seg.l 1
Ely = S EGHRY (52)
I=1
ul I 1
W= oA (53)
I=1

10) Determine torsional stiffness using EBSFT

The torsional stiffness is determined using EBSFT mentioned in
Section 4. Taking the blade cross-section with one shear web in
Fig. 6 as an example, having obtained the width weeg (approximate
ds if the wseg is small enough), equivalent thickness g and shear
modulus Gegy of each segment in step 5), the components of the
warping flexibility matrix (6] can be calculated using Egs. (24)—(26).
Then the torsional stiffness is determined using Eq. (33).

11) Output results

After all calculations are done, the model will output the cross-
sectional properties including axial stiffness EA, flapwise stiffness
Ely, edgewise stiffness Ely, mass per unit length ¢ and torsional
stiffness GJ.

6. Results and discussion

Based on the above mathematical model, a cross-sectional
analysis program, which is named as CBCSA (Composite Blade
Cross-Section Analysis), is developed using Matlab. CBCSA allows
arbitrary geometric shape and internal structural layout of the
blade, It directly extracts the cross-sectional properties of the blade
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A Panel ¥
Shear Web 2

e

Te

Fig. 8. Schematic of the cross-section of the SERI-8 blade.

Table 1

Geometric data [24].
Station# Chord (m) Twvist (°) Airfoil
4 1.092 15.7 5807
6 0.665 0.59 S805A

and runs fast, usually in a fraction of a second. Additionally, the
shear web effects and warping effects are taken into account by
CBCSA due to the usage of EBSFT in the calculation of torsional
stiffness. In order to validate CBCSA, the following benchmark tests
are performed.

6.1. Case study A

For the first case study, we compare the performance of CBCSA
with analysis done with PreComp for a SERI-8 blade [24]. The sta-
tions 4 and 6 of the SERI-8 blade are chosen as examples. The
schematic of the cross-section of the SERI-8 blade is shown in Fig. 8.

The geometric data of the wind turbine blade cross-sections at
the stations 4 and 6 is shown in Table 1.

Four materials are used within the structure, labeled Mat,
DblBias, Uni and Balsa. The orthotropic material properties used in
the model are shown in Table 2.

The orientation of plies used in Ref. [24] is limited to 90°, here
our case study also demonstrates the effects of ply angles at 45° and
0°. Ply angles are set in the composites lay-up, as shown in Table 3.
The composites lay-up in Table 3 is used for both stations 4 and 6.

Table 2
Material properties [24].
Property Mat DblBias Uni Balsa
E, (GPa) 7.58 111 45.8 0.12
E; (GPa) 7.58 111 101 0.12
Gy (GPa) 400 6.89 6.89 0.02
" 0.30 0.39 030 030
p (kg/m®) 1690 1660 1990 230
Table 3
Composites lay-up [24].
Name Number Ply angle Ply Thickness
of plies (degree) name (mm)
Le 1 90 Mat 121
4 45 DbiBias 1.21
Cap 1 90 Mat 1.21
6 0 Uni 093
Panel 1 90 Mat 1.21
1 45 DbiBias 1.21
1 0 Balsa 5
1 45 DblBias 1.21
Shear webs 1 45 DblBias 1.21
1and2 1 0 Balsa 8
1 45 DbiBias 1.21
Te 1 90 Mat 1.21
1 45 DblBias 1.21

Table 4

Calculated cross-sectional propetrties of the blade cross-section at station 4.
Cross-sectional properties PreComp CBCSA %Diff
EA (N) 2.7830E+08 2.7829E+08 0.01
Ely (N-m?) 1.6670E+06 1.6692E +06 0.13
Ely (N-m?) 1.4640E+07 1.4641E+07 0.01
GJ (N-m?) 5.0530E+05 7.3768E+05 4599
1 (kg/m) 2.2950E+01 2.2952E+01 0.01

Table 5

Calculated cross-sectional properties of the blade cross-section at station 6.
Cross-sectional properties PreComp CBCSA ZDiff.
EA(N) 1.6580E+08 1.6584E+08 0.02
Ely (N-m?) 1.9940E-+05 1.9953E+05 0.07
Ely (N-m?) 3.1960E+06 3.1953E+06 0.02
GJ (N-m?) 6.7830E+04 8.9811E+04 3241
1 (kgfm) 1.3510E-+01 1.3506E+01 0.03

Both PreComp and CBCSA are used to calculate the properties of
the cross-sections. Resulting cross-sectional properties for stations
4 and 6 are presented in Tables 4 and 5, respectively.

Tables 4 and 5 indicate that the results from CBCSA agree with
those from PreComp very well except the torsional stiffness. The
torsional stiffness predicted by PreComp is lower than that ob-
tained using CBCAS. Following case studies demonstrate that
CBCAS has higher accuracy for the calculation of torsional stiffness
than PreComp due to the consideration of the effects of shear webs.

6.2. Case study B

This case study allows comparison of CBCSA with both PreComp
and ANSYS for a blade profile with and without shear webs. The
first example considered here is an isotropic blade cross-section
without a shear web, as shown in Fig. 9. The geometric data and
material properties of the cross-section are listed in Table 6.

The comparison of cross-sectional properties calculated using
CBCAS, PreComp and ANSYS is shown in Table 7, where the relative
differences are obtained with respect to the CBCAS results.

From Table 7 we can see that the predictions of the CBCAS are in
good agreement with PreComp and ANSYS for the isotropic blade
cross-section without a shear web.

The next example considered is the isotropic blade with two
shear webs, located at 0.2¢ and 0.5¢, as shown in Fig. 10.

The thickness of both webs is 0.003 m. Other properties of the
cross-section remain the same as those used in the first example.

‘<l I ——

Fig. 9. Schematic of an isotropic blade cross-section without shear web.

an

Table 6
Geometric data and material properties of the isotropic blade
cross-section.

Properties Values

E (GPa) 210

v 03

p (kg/m?) 7850
Airfoil NACA0012
Chord (m) 0.12

t(m) 0.000675
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Table 7

Calculated cross-sectional properties of an isotropic blade cross-section without shear web.

Cross-sectional properties CBCAS PreComp %Diff. (PreComp) ANSYS %Diff. (ANSYS)
EA(N) 3.4721E+07 3.4720E+07 0.01 3.4105E+07 1.97
Ely (N-m?) 8.6756E+02 8.6760E+02 0.01 8.6646E+02 013
Ely (N-m?) 4.2866E+04 4.2870E-+04 0.01 4.0789E+04 485
G (N-m?) 1.0848E+03 1.0850E+03 0.02 1.1197E+03 322
w (kgfm) 1.2979E+00 1.2980E+00 0.01 1.2718E+00 201
Shear web 1 Table 9
Shear web 2 Geometric data and material properties of the blade [25].
/ 4 Properties Values
E; (GPa) 131
E; (GPa) 93
Gy (GP 5.86
Fig. 10. Schematic of an isotropic blade cross-section with two shear webs. V"; (©Pa) 04
Airfoil NACA0012
Length (m) 06414
The comparison of cross-sectional properties calculated using Chord (m) 0.0762
CBCAS, PreComp and ANSYS is shown in Table 8, where the relative Ply thickness (m) 0.000127

differences are obtained with respect to the ANSYS results.

From Table 8 it can be seen that the results predicted by CBCSA
match well with those of ANSYS, with the maximum percentage
difference (6.68%) occurring for the edgewise stiffness (Ely). It can
be observed that for this cross-section with two shear webs, the
torsional stiffness predicted by PreComp is exactly the same as the
case without shear web mentioned in the previous example. This
indicates that PreComp does not account for the effects of shear
webs in the calculation of torsional stiffness. Since CBCAS uses
EBSFT to determine the torsional stiffness, the effects of shear webs
are taken into account. Therefore, CBCAS can provide more realistic
torsional stiffness than PreComp.

6.3. Case study C

The final case study aims to verify improved accuracy of
torsional stiffness calculation of CBCSA by comparing CBCSA and
PreComp with the experimental data [25]. The example considered
here is an extension-torsional coupled blade with two-cell cross-
section [25], as shown in Fig. 11,

The skin of the cross-section has [15/—15] layups whereas the D-
type spar consists of [0/15];. The geometric data and material
properties of the blade are listed in Table 9.

Both CBCSA and PreComp are used to calculate the properties of
the cross-section. Predicted values are compared with measured
values reported in Ref. [25], as shown in Table 10.

Table 8
Calculated cross-sectional properties of an isotropic blade cross-section with two
shear webs.

Cross- ANSYS CBCAS S%Diff. PreComp %Diff.
sectional (CBCAS) (PreComp)
properties

EA (N) 4.9057E+-07 5.1396E+07 4.77 5.1400E+07  4.78

Ely (N-mz) 1.0439E+03 1.1121E+03 653 1.1120E+03 6.52

Ely (N-m?) 48368E+04 5.1601E+04 668 5.3190E+04  9.97

GJ (N-m?)  1.2480E+03 1.1871E+03 4.88 1.0850E+03 13.06

© (kgfm) 1.8304E+00 1.9212E+00 4.96 1.9210E+00  4.95

Cell 1 Cell2

Fig. 11. Two-cell cross-section.

From Table 10 we can see that a good correlation is achieved
between CBCSA and experimental data. The torsional stiffness
predicted by CBCSA is more accurate than that obtained from
PreComp.

7. Conclusion

In this work, a novel mathematical model and method for ac-
curate and rapid calculation of the cross-sectional properties of
wind turbine blades has been developed by incorporating the
classical lamination theory (CLT) with the extended Bredt-Batho
shear flow theory (EBSFT). The mathematical model considers
both the web effects and warping effects of the blades, and is
presented in a code called CBCSA (Composite Blade Cross-Section
Analysis), developed using Matlab. A series of benchmark compu-
tational tests are performed for isotropic and composite blades, and
the results demonstrate that:

1) CBCSA can rapidly extract the cross-sectional properties of the
composite blades, usually in a fraction of a second, which is
much faster than a finite-element method.

2) Good agreement is achieved in comparison with the data from
experiment and finite-element analysis, which indicates CBCSA
has sufficient accuracy for the calculation of the cross-sectional
properties of the composite blades.

3) CBCSA provides a more accurate torsional stiffness calculation
than previously available tool PreComp due to the consideration
of the shear web effects by using EBSFT.

It is believed that CBCSA can be used as a useful pre-processor,
which can accurately and rapidly calculate the cross-sectional

Table 10

Cross-sectional properties of the two-cell cross-section.
Cross- Experiment CBCSA %Error PreComp %Error
sectional [25] (CBCSA) (PreComp)
properties
EA(N) - 8.1336E+06 — 8.1340E+06 —
Ely (N-m?)  7.7141E+01 8.1449E+01 558 81531E+01 569
Ely (N-m?) — 3.4529E+03 — 34530E+03 —
GJ (N-m?)  2.5427E+01 2.4443E401 3.87 1.9330E+01 23.98
u(kgim) — 1.3485E-01 — 1.3480E-01 —
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properties of modern wind turbine blades made from composites,
thus providing important information for both structural dynamics
and aeroelasticity analysis of the blades, and also for topological
structure optimization of the blades.
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Due to the increasing size and flexibility of large wind turbine blades, accurate and reliable aeroelastic
modelling is playing an important role for the design of large wind turbines. Most existing aeroelastic
models are linear models based on assumption of small blade deflections. This assumption is not valid
anymore for very flexible blade design because such blades often experience large deflections. In this
paper, a novel nonlinear aeroelastic model for large wind turbine blades has been developed by
combining BEM (blade element momentum) theory and mixed-form formulation of GEBT (geometrically
exact beam theory). The nonlinear aeroelastic model takes account of large blade deflections and thus
greatly improves the accuracy of aeroelastic analysis of wind turbine blades. The nonlinear aeroelastic
model is implemented in COMSOL Multiphysics and validated with a series of benchmark calculation
tests. The results show that good agreement is achieved when compared with experimental data, and its
capability of handling large deflections is demonstrated. Finally the nonlinear aercelastic model is
applied to aeroelastic modelling of the parked WindPACT 1.5 MW baseline wind turbine, and reduced
flapwise deflection from the nonlinear aeroelastic model is observed compared to the linear aeroelastic

code FAST (Fatigue, Aerodynamics, Structures, and Turbulence).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decade, wind energy has received tremendous
attention from the public, politicians and energy industry due to its
potential to tackle the energy security and climate change, and
wind turbine technology has experienced great advancement. The
power rating of wind turbines has gone up to 8 MW recently [1],
and the potential of 10—20 MW wind turbine is being investigated
[2]. The increasing size of large wind turbines introduces several
new technical challenges, and one of the major challenges facing
wind turbine designers today is the aeroelastic effect of the wind
turbine blades, which is caused by the interaction between the
aerodynamic loads on the blades and the structural dynamics of the
blades [3]. Specifically, during the operation of a wind turbine, the
blades experience deformation due to aerodynamic loads exerted
by the airflow passing the blades. The deformed blade affects, in
turn, the flow field around the blade, which in return influences the
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aerodynamic loads on the blade. The interaction between the
aerodynamic loads and structural deformation may result in
aeroelastic problems, such as flapwise instability, edgewise insta-
bility and flutter, which can be devastating to the blades and wind
turbine [4]. Therefore, developing a reliable and efficient aero-
elastic model to investigate aeroelastic characterisation of wind
turbine blades is of great importance for the development of large
wind turbines.

Due to the fact that the aeroelastic effects are introduced by the
interaction between the aerodynamic loads and structural defor-
mation, an aeroelastic model should contain an aerodynamic part
to calculate the aerodynamic loads and a structural part to deter-
mine the structural dynamic responses.

For the aerodynamic part, four types of aerodynamic models
have been used in aeroelastic modelling of wind turbine blades,
including BEM (blade element momentum) model, lifting panel
and vortex model, actuator line model and CFD (computational
fluid dynamic) model, The BEM model, which is the combination
of blade element theory and blade momentum theory, was origi-
nally proposed by Glauert [5] and then improved by several re-
searchers through introducing corrections, such as Prandtl's tip
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Nomenclature

aa axial and angular induction factors, respectively

by,ba,bs  orthonormal triad of un-deformed blade frame b

By,B3,B;  orthonormal triad of deformed blade frame B

c chord

GGy lift and drag coefficients, respectively

Cr thrust coefficient

CVC,CCP P8 CBDCOB CBC (ransformation matrices between frames

dFy, dF; blade-element normal and tangential forces per unit
length, respectively

e unit vector describing the rotation axis
e n o o)
I column matrix that contains applied forces per unit

length measured in frame B

column matrices that contain the force resultants
measured in frames B and G, respectively

Fiip — 10ss Prandtl tip loss factor

Fg.Fc

FE.F? centrifugal-load vector with respect to frames G and B,
respectively

MgM; column matrices that contain the moment resultants
measured in frames B and G, respectively

Py.P; column matrices that contain the linear momentum
measured in frames B and G, respectively

r distance from blade element to the rotor centre

R blade radius

S constitutive matrix

S strain energy

Ltz arbitrary fixed times

T transpose symbol

Uup column matrix that contains displacement of beam
reference line measured in frame b

Urel relative wind speed

Vp column matrix that contains linear velocity of the un-
deformed beam reference line measured in frame b

Vg Ve  column matrices that contain linear velocities of
deformed beam reference line measured in frames B
and G, respectively

EAG]  axial and torsional stiffness, respectively

0.0¢ Rodrigues parameters

b twist angle of each blade element

P air density

7 local solidity

By number of blade

Fg,FgB gravity-load vector with respect to frames G and B,
respectively

Fi.ro aerodynamic-load vector

FRL applied-load vector

g gravity constant
G1,G2,G3 orthonormal triad of global frame G

HgHg  column matrices that contain the angular momentum
measured in frames G and B, respectively

ig,i3 flapwise and edgewise moments of inertia,
respectively

In mass matrix

ky curvature vector for the un-deformed beam

Kp curvature vector for the deformed beam

Kg kinetic energy

L length of the blade

mg column matrix that contains applied moments per unit
length measured in frame B

El,El;  edgewise and flapwise bending stiffness, respectively

GK3,GK3 edgewise and flapwise shear stiffness, respectively

o angle of attack

B81.02,81 cone angle, tilt angle, azimuth angle, respectively

B magnitude of rotation

6 Lagrangean variation

A virtual action at the ends of time interval and at the

ends of the blade

éqg.oug virtual displacement measured in frames B and G,
respectively

1 virtual work of applied loads

&yp.o¥g virtual rotation measured in frames B and G,
respectively

@ angle of relative wind

1K column matrices that contain force and momentum
strains, respectively

u mass per unit length of each blade element

wpte  column matrices that contain angular velocity of the

un-deformed beam reference line measured in frames
b and G, respectively
Q rotor rotational speed
column matrices that contain angular velocities of
deformed beam reference line measured in frames B
and G, respectively
() defines a second-order, skew-symmetric tensor
corresponding to the given vector

loss correction [6] and thrust coefficient correction [7]. Compared
to other aerodynamic models, the BEM model is fast (i.e. efficient)
and able to provide accurate results (i.e. reliable) when reliable
airfoil aerodynamic data are available. For this reason, BEM model
has been used for the aerodynamic part by most aeroelastic codes
[4]. In order to better model the wake dynamics of wind turbines,
the lifting panel and vortex model [8], in which the trailing and
shed vorticity in the wake are represented by lifting lines or sur-
faces, also found applications in aeroelastic codes. However, this
model tends to diverge due to intrinsic singularities of the vortex
panels in the developing wake [9]. The actuator line model, in
which the blade is represented by a line with distributed loads on
the line and the flow field around the blade is governed by
Navier—Stokes equations, was originally developed by Serensen
|10] for improving the accuracy of the wake modelling. However,
solving the Navier—Stokes equations is more time-consuming than

BEM, and the actuator line model, in which the distributed loads
on the blade are calculated based on blade element theory and
tabulated airfoil data, does not predict aerodynamic loads more
accurately than the BEM model [11]. With the advancement of
computing resources, CFD has received great attention in recent
years. The CFD method solves the governing equations of fluid
flow at thousands of positions on and around the blade in an
iterative process, which does not require predetermined airfoil's
aerodynamic data for the calculation. However, the CFD method is
incapable of providing reliable results when high angle of attack
occurs [12], which limits its application in aeroelastic modelling of
certain types of wind turbines, e.g. stall-controlled turbines.
Additionally, the CFD method is still computationally too expen-
sive and not efficient enough for fluid-structure interaction anal-
ysis, which is the major barrier of its application in aeroelastic
modelling [13]. Concerning computational accuracy and efficiency,
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the BEM model is chosen as the aerodynamic part of aeroelastic
modelling in this study.

For the structural part, wind turbine blades can be modelled
using either 3D (three-dimensional) FEM (finite-element method)
with shell elements or 1D (one-dimensional) equivalent beam
model with beam elements. The 3D FEM is an incredible tool for
examining the stress distribution within a blade, which is appli-
cable and valuable for “static” stress analysis. However, the 3D FEM
is computationally too expensive and this drawback limits its
application in aeroelastic modelling, which demands continuous
fluid-structure interaction, i.e. interactive aerodynamic loads
calculation and structure deflection analysis. Compared to the 3D
FEM, the 1D beam model is much fast and saves much computa-
tional time and is capable of providing reasonable accuracy, which
is only slightly less accurate than 3D FEM [14]. For this reason, in
the present study, wind turbine blade structure is represented as a
series of 1D beam elements instead of 3D shell elements. The 1D
beam elements are characterised by cross-sectional properties, e.g.
sectional stiffness, which can be obtained using cross-sectional
analysis tools, such as VABS [15], PreComp [16] and CBCSA [17].

In order to discretise the blade into a series of 1D beam elements,
three methods are often used in aeroelastic modelling of wind tur-
bine blades [ 13]: modal approach, MBD (multi-body dynamics) and
1D FEM (finite-element method). The modal approach, in which the
blade deflection shape is described as a linear combination of a few
shape functions, is computationally efficient due to the simple way
of reducing the number of degrees of freedom. The MBD method,
which connects different rigid parts through springs and hinges, is
computationally more expensive than the modal approach. The 1D
FEM approach finds approximate solutions of 1D beam problems by
the analysis of an assemblage of finite elements, which are inter-
connected by nodal points. The 1D FEM allows a more comprehen-
sive and accurate deformation description of wind turbine blades,
and it only requires slightly more computational resources than the
other two discretisation approaches. Therefore, the 1D FEM is
adopted for the discretization of wind turbine blades in this study.

There are several aeroelastic models available today for wind
turbine blades, such as PHATAS (Program for Horizontal Axis wind
Turbine Analysis Simulation) [18], FAST (Fatigue, Aerodynamics,
Structures, and Turbulence) [19] and GH (Garrad Hassan)-Bladed
[20]. Almost all of them are linear models based on assumption
of small blade deflections, and do not take account of large
deflection effects on modelling responses and loads [13]. However,
with the increasing size and flexibility of large wind turbine blades,
this assumption is not valid anymore because the blades often
experience large deflections, which introduce significant geometric
nonlinearities. Therefore, developing a nonlinear aeroelastic model
to take account of geometric nonlinearities is essential for accurate
aeroelastic modelling of large wind turbine blades.

So far, only few nonlinear aeroelastic models have been devel-
oped. One example is HAWC2 (Horizontal Axis Wind turbine
simulation Code 2nd generation) [21], which is an in-house
nonlinear aeroelastic model developed by DTU (Technical Univer-
sity of Denmark). The aerodynamic model of HAWC2 is based on
BEM and its structural model is based on a MBD formulation where
each body is a linear Timoshenko beam element, which is an
extension of Euler-Bernoulli beam element [22] to cover shear
deformation. The geometric nonlinearities are captured by the
MBD formulation, in which the flexible blades are modelled, for
example, by 40 bodies each. However, if only one body per blade is
used, HAWC2 will become a linear model because the Timoshenko
beam model in each body is linear. In other words, the results of
HAWC2 are sensitive to the number of bodies, which one chooses to
model the flexible blade. Additionally, HAWC2 contains assumption
that relative displacement between two adjacent bodies is small

and it assumes some simplifications for the kinematic equations,
which introduces uncertainties in its results.

An alternative way to handle the geometric nonlinearities is the
GEBT (geometrically exact beam theory) [23], in which the
deformed beam geometry, i.e. the displacements and rotations of
the beam reference line, is represented exactly. Various nonlinear
formulations have been proposed for GEBT, which can be classified
on the basis of solution methodology, namely displacement-based
formulation, strain-based formulation and mixed-form formula-
tion [24]. The main differences between these formulations are the
definition of the independent variables and the treatment of the
rotation of the beam reference line in the solution. The
displacement-based formulation defines the displacements and
rotations of the beam reference line as the irreducible set of inde-
pendent variables, which include high order nonlinearities. The
main advantage of this formulation is that the displacement con-
straints can be easily applied. However, the solution of this
formulation demands high computational cost due to its high order
nonlinearities. In order to solve the geometrically nonlinear beam
problems more efficiently, an alternative way is the strain-based
formulation, which uses the strains and curvatures of the beam
reference line as the primary variables to represent the beam
deformation. A more efficient way to solve the geometrically
nonlinear beams is to use the mixed-form formulation proposed by
Hodges [25], which introduces Lagrange multipliers to satisfy the
equations of motion with constitutive and kinematic relationships.
The mixed-from formulation allows the lowest order of shape
functions for all independent variables, which makes it a viable
solution for modelling geometric nonlinearities, and it has been
widely used for flexible aircraft wings [26].

The similarities between the aircraft wings and wind turbine
blades, i.e. both of them are long, slender and flexible structures,
provide us with the possibility to borrow the aeroelastic modelling
techniques from aircraft applications for wind turbine blades. To
the best of the authors’ knowledge, the combination of BEM and
GEBT for aeroelastic modelling of wind turbine blades has not been
found in the literature. This paper attempts to combine BEM with
the mixed-form formulation of GEBT proposed by Hodges [25] to
develop a nonlinear aeroelastic model, which takes account of large
blade deflections. An aerodynamic model is developed using
MATLAB based on BEM theory with both Prandtl's tip loss correc-
tion [6] and thrust coefficient correction [27]. A blade structural
model is established based on the mixed-form formulation of GEBT
[25] and discretised by a 1D finite-element scheme using COMSOL
Multiphysics [28]. The coupling of the blade aerodynamic model
and structural model is implemented in COMSOL Multiphysics. The
resulting nonlinear aeroelastic model is validated by a series of
benchmark tests as compared with FAST and experimental data,
and applied to aeroelastic modelling of the parked WindPACT
1.5 MW baseline wind turbine [29], a representative of megawatt-
class horizontal-axis wind turbines.

This paper is structured as follows. Section 2 describes the main
coordinate systems used in this study. Section 3 introduces the
aerodynamic loads calculation based on BEM. The gravity loads and
centrifugal loads are summarised in Section 4, and the applied
loads are illustrated in Section 5. Section 6 details the blade
structural model based on a mixed formulation of GEBT. Section 7
illustrates the implementation of the nonlinear aeroelastic model
in COMSOL Multiphysics, Results and discussions are provided in
Section 8, followed by a conclusion in Section 9.

2. Coordinate systems

In order to fully describe the geometry and deflection of a wind
turbine blade for aeroelastic modelling, this paper adopts three
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coordinate systems, i.e. the global frame, which aligns with the
wind turbine rotor and defines the rotor parameters; the un-
deformed blade frame, which aligns with the original blade and
defines the blade parameters; and the deformed blade frame,
which aligns with the deformed blade. This section illustrates the
three coordinate systems and the transformation matrices among
them.

2.1, Main coordinate systems

Three main coordinate systems, i.e. the global frame G, the un-
deformed blade frame b and the deformed blade frame B, are
chosen for the analysis of wind turbine blades, as shown in Fig. 1.
The global frame G, having its axes labelled Gy, G2, and Gs, is rotating
along with the wind turbine rotor. Axes Gz and Gs are along with
and perpendicular to the wind turbine rotor axis, respectively. The
un-deformed blade frame b, having its axes labelled b4, bz, and bs, is
attached to each un-deformed blade element. Axes b and bs,
located in each un-deformed airfoil plane, are perpendicular and
parallel to the chord line of each un-deformed blade element,
respectively. The deformed blade frame B, having its axes By, Bz, and
Bs, is attached to each deformed blade element. Axes By and Bs,
located in each deformed airfoil plane, are perpendicular and par-
allel to the chord line of each deformed blade element, respectively.
All the three coordinate systems obey the right hand rule.

2.2. Transformation matrices

Avector given in a frame can be transformed into another frame
using transformation matrices. The transformation matrix
which transfers vectors from the global frame G into the un-
deformed blade frame b, is given by:

1 0 0 cos; —sing; 0
' = |0 cos@, singy||sing; cosg, O m
0 -sindp cosfy 0 0 1

where (31 is the rotor cone angle (see Fig. 2a), the angle between the
blade axis and rotor plane; #, is the twist angle of each blade
element (see Fig. 2b), the angle between the chord line and the
blade reference plane. Obviously, the transformation matrix % s
time independent, i.e. €~ = 0.

According to Euler's theorem of rigid-body motion [25], any
rotational motion can be characterized by the magnitude of

Fig. 1. Main coordinate systems.

rotation @, and a 3-by-1 unit vector e, which describes the rotation
axis. On the basis of the Euler's theorem, the transformation matrix
€, which transfers vectors from the un-deformed blade frame b
into the deformed blade frame B, can be expressed in terms of
Rodrigues parameters [25] 8 as:

(l —ﬁﬂTy)A+§aaT—&
o 2
o= 1+3070 @

where T is the transpose symbol; A is the 3-by-3 identity matrix

1 00
[U 1 0/[;0=2etan(8,2);e=[el e2 e3]" andele=1.
001
Introducing another set of Rodrigues parameters ¢ such that
¢ = (€479, the transformation vector C5¢, which transfers vectors
given in the global frame G into the deformed blade frame B, is
obtained by:

B¢ — c¥ec 3)
where
(1 - ;]{HEB,;) A+1060L - b

c= 4
1+16L0c “)

Having obtained ® and % the following relations can be
easily established:

B _ (Cm:)T (5)

T

[acg (C"G) (6)

3. Aerodynamic loads

In this study, the aerodynamic loads are calculated based on
BEM theory, which has been widely used in industrial practice to
predict aerodynamic loads on wind turbine blades.

BEM theory was developed through the combination of blade
element theory and blade momentum theory. The blade element
theory discretises the blade into several elements and ignores
the mutual influence between two adjacent elements. The
aerodynamic loads on each element are dependent on its local
airfoil characteristics, i.e. its lift and drag coefficients. The sum
of these loads yields the total loads on the blade. The blade
momentum theory introduces the axial induction factor a and
angular induction factor a to calculate the induced velocity in
the axial and tangential directions, respectively. The induced
velocity will affect the angle of attack of the blade
thereby influencing the aerodynamic loads calculated by the
above blade element theory. Combining blade element theory
and blade momentum theory provides a solution to obtain
the performance parameters of each blade element, such
as axial induction factor a and angular induction factor a’.
through an iterative procedure, which is summarized below
[30,31]:

1) Use an estimate to obtain the initial axial induction factor a and
angular induction factor . In this study, zero initial values are
used for both axial induction factor a and angular induction
factora’:
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B
a Blade axis

e

Rotor plane

a4

Blade reference plane

Chord line

Fig. 2. a. Rotor cone angle. b. blade-element twist angle,

a4 =0 (7)

a; =0 (8)

2) Start the iterative procedure for the jth iteration. For the first
iteration (j = 1), follow step 1. Calculate the relative wind angle
pj and the Prandtl tip loss factor Fip — oss,

(1 —aj)Vngvgp) ©)

(1+a})er+vp

exp(_ ((BN/QJU _—(r/Rn))} (10)

(r/R)sin ¢;
where vop and vjp are the blade element velocities, and they are
generally ignored if the blade motion is small; Vg is the upcoming
wind velocity on each blade element; @ is the rotor rotation
speed; r is the distance from the blade element to the rotor centre;
By is the number of blade; R is the blade radius. In this study, Vg
and r are calculated based on the deformed blade geometry to take
account of the blade deflection in the calculation of aerodynamic
loads.

The Prandt] tip loss factor Fiip — 10ssj in Eq. (10) is used to take
account of the influence of vortices shedding from the blade tip on
the induced velocity. From Eq. (10) we can see that the Prandtl tip
loss factor is always between 0 and 1.

@ = arctan(

2 —1
Ftip—lonsj = (; cos

3) Determine the local angle of attack of the blade element:

(1)

Then obtain the lift coefficient (j; and drag coefficient Cy; from
the airfoil lift and drag coefficient curve against the angle of attack.

aj = @j — Op

4) Update the axial induction factor a and angular induction factor
a for the next iteration, considering the drag effects:

1
Qi = (12)
1+ AFip.jossy Sin” (7 1
o' (Cyy €05 g+Cyy Sin o) H
1
U =
a}\ 1= AFijp_ioss) $IN @ COS g 1 (13)

o' (Gyj sin g;—Cyy €OS ;)
The parameter o in Eq. (12) is the local solidity, defined by:

o' = Byc/2ar (14)
where c is the chord of the blade element.

The parameter H in Eq. (12) is used for the situation when large
axial induction factor occurs. When the axial induction factor a is
greater than 0.5, the expression of thrust coefficient [30]:

Cr = 4a(1 — a) (15)
needs to be replaced by the empirical expression [27]:
Cr = 0.6+ 0.61a + 0.794° (16)

To obtain a better transition, the above empirical model is used
for the situation that a is greater than 0.3539 rather than 0.5 [27].
The parameter H is defined as [27]:

fora;.; <0.3539, H=1.0 (17)

4a(1 —a)

fora;.1>0.353%, H = 553 0610+ 0.7907)

(18)

The above process is repeated until the deviation between the
new and previous induction factors is within an acceptable
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tolerance. Then confirm the local relative wind angle ¢, tip loss
factor Fiip 1055, angle of attack a, lift coefficient G, and drag coef-
ficient Cy for each blade element.

Having determined the above performance parameters for each
blade element, the normal force per unit length dFy and tangential
force per unit length dF; on each blade element are respectively
calculated by:

1 .
dFy = Fup- s U2 (€ 05 0+ Cysin o ) (19)

1 .
dFy = F(jp,msjpufel (C, sin ¢ — C4 cos (/J) c (20)

where p is the air density, Uy is the relative wind velocity.
The above aerodynamic loads on each blade element are
calculated with respect to the deformed blade frame B and can be

. ) . B .
stored in the aerodynamic-load vector Fgq.,:

0
FB.0 = |:ng:| (21)
Fr

4. Gravity loads and centrifugal loads

In addition to aerodynamic loads, the gravity loads and cen-
trifugal loads on each blade element should be taken into account
in the calculation of the applied loads, which are applied on the
deformed blade structure as distributed loads.

4.1. Gravity loads

For large wind turbine blades, gravity is an important source of
loading. Taking account of the tilt angle §> (see Fig. 3a), the angle
between the shaft and the horizontal axis, and the azimuth angle 4
(see Fig. 3b), the position of the blade in the circumferential di-
rection of the wind turbine rotor axis, the gravity-load vector Fg of
a blade element with respect to the global frame G is given by:

cospBy 0 —sings cosfB; sing, 0] [-gu
F§ = 0 1 0 —sinfgp cos@; 0|0
sinBg3 0 cospfs 0 0 1]]0
(22)
a
Shaft axis
A
I Horizontal axis

Fig. 3. a. Tilt angle. b. Azimuth angle.

where g is the gravity constant, g is the mass per unit length of each
blade element.

In this study, loads will be applied on the deformed blade
structure. Therefore, the load vector Fg with respect to the global
frame G needs to be transformed into the deformed blade frame B
using the following equation:

B BG G
FE = CBOFS (23)

4.2. Centrifugal loads

Due to the rotation of the wind turbine blades, centrifugal loads
have to be considered. Taking account of the azimuth angle g3, the
centrifugal-load vector FE of a blade element with respect to the
global frame G is given by:

cosfs 0 —sings][ro?u
FE=| 0 1 0 0 (24)
sinfgs 0 cos@s 0

The load vector FS can be transformed into the deformed blade
frame B using the following equation:

F8 = CB¢F¢ (25)

5. Applied loads

Having obtained the acrodynamic load F&,,,, gravity load Fg and
centrifugal load FE on each blade element, the applied load F§; on
each blade element is obtained by summing these loads (in vector
form):

Fiy = Fhero + Fg + F2 (26)

6. Structural model

To perform aeroelastic analysis of wind turbine blades, a
structural model, which determines the blade structural dynamic
responses, has to be included. In this study, wind turbine blades are
modelled based on a mixed-form formulation of GEBT (geometri-
cally exact beam theory), which will be detailed in this section.

6.1. Equations of motion

The geometrically exact equations of motion, which exactly
describe the behaviour of an initially curved and twisted beam as a
set of mathematical functions in terms of spatial coordinates and
time, can be derived from Hamilton's extended principle, kinetic
energy and strain energy.

6.1.1. Hamilton's extended principle
Hamilton's extended principle is expressed as [25]:
oL
f 6(Ks — Sg) + sW]dx; dt = 64 @7
b0
where t; and t; are arbitrary fixed times; L is the length of the
blade; ¢ is the Lagrangean variation operator for a fixed time; Kg
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and Sg are the kinetic and strain energy, respectively; éW is the
virtual work of applied loads; 8A is the virtual action at the ends of
time interval and at the ends of the blade.

6.1.2. Kinetic energy
The variation of kinetic energy required in Eq. (27) can be
written as:

oKg = 6VPg + 6Q%Hg (28)

where Vg and Qg are the column matrices that contain linear and
angular velocities of the deformed beam reference line measured in
the frame B, respectively; Pg and Hg are the column matrices that
contain the linear and angular momenta measured in the frame B,
respectively. 5V and 32]; can be expressed in terms of the virtual
displacement 3qg and virtual rotation éyg using the following
equations [25]:

o« T
— —T 5 —T
oVp =3Gg —oqg g — v Vp (29)

« T
_— —T =
0Qp =g - o¥g 2 (30)

where the overhead dot denotes the time derivative; the overhead
tilde operator (*) defines a second-order, skew-symmetric tensor

corresponding to the given vector. For example, given
Qp=(Cp Qp 53], 25 can be expressed as:
B 0 - O
Qp= | 53 0 -Qp (31)
~Qp 0
Substituting Eqs. (29) and (30) into Eq. (28) gives:
o T . -
oKg = (Wn — g Q5 — Yp Vn) Py
(32)

o T
+ (m —mﬁ‘zs)uﬂ

6.1.3. Strain energy
The variation of strain energy required in Eq. (27) can be written
as:

68 — 6y Fg + o« Mg (33)

where y and k are the column matrices that contain force and
moment strains, respectively; Fg and Mg are the column matrices
that contain the force and moment resultants measured in the
frame B, respectively. 4y" and ék” can be expressed in terms of the
virtual displacement 3gg and virtual rotation dyg using the
following equations [25]:

— T —7- —_ T .
oy = (3a5) - g Kg— o0 (8, +7) (34)

" = (3vs) sk (35)

where Kg is the curvature vector for the deformed beam;
e, =[1 0 0]7; the prime symbol ()’ denotes the spatial
derivative.

Substituting Egs. (34) and (35) into Eq. (33) gives:

i — T, -
38 = ( (3as') —3as Kn — g (& +7) |Fa
T o (36)
+ ((Wﬂ) — oyp KB)MB

6.1.4. Geometrically exact equations of motion
The virtual work of the applied loads appearing in Eq. (27) is
given by:

SW =35 g + 505 mp (37)

where fg and mg are column matrices that contain applied forces
and moments per unit length measured in the frame B, respectively.

Recalling that dA in Eq. (27) is the virtual action at the ends of
the time interval and at the ends of the blade, the mathematical
expression of 6A can be written as:

L &
—Tw =T |2 —T= | —T= |
aA:[(ﬁqﬂ Pp+avg H,,)| dx; — / (an Fp+avg MB)| dr
. t . 0
0 4
(38)
where the overhead hat denotes the discrete boundary values.
Substituting Eqgs. (32) and (36)—(38) into Eq. (27) yields:

& L T .
J [ (- 70 e (5
oo

T T e T,
- awsTﬂa)Hs - ((dqs) ~ 345’ Ky — 3vp' (&1 + 7))FB

T

~ ((#%)" - 5"k | My - 5 i+ 5 g
L 6
= -/(@Tﬁﬂ +Mrﬁ3)|ijdx1 - [ (mTFB+mTHu)‘zd[
0 i 501

After integrating Eq. (39) by parts with respect to the time to
remove the time derivatives of the virtual quantities, one obtains:

6oL
: T AT 1
] /{(5‘15’) Fg + (ﬁlﬁa’) Mg + oqp (*KBFB
i
+PB +§BPB‘) +MT( *RBMB — (e, +¥)Fg +HB
+QpHg + |7nps) — g fp — 5¥p mp }dﬁﬁ de
6
et 1L
= [ (%0aF+ 705 ) |t (40)
f

Eq. (40) is the geometrically exact equations of motion of a beam
expressed in the frame B.

6.2. Mixed variational formula of nonlinear beam
Apart from the equations of motion derived in above section, the

kinematical and constitutive relations are required in order to have
a complete formulation to solve problems in general.
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6.2.1. Kinematical relations
According to Hodges [25], the inverse kinematical relations are
given by:

up = Cbﬂ(el +v)—e —fc,,u,, (41)

tiy = CYBVg — vy — aopity (42)

r_ 1. 1.7 Bb

07(A+50 Zoo)(wrk,,_c.' kt,) (43)

o= (n+19+1oem (.sz —C’"’w) (44)
2" 74 B b

where uy, is the column matrix that contains displacement of the
beam reference line measured in the frame b; @ is the column
matrix that contains Rodrigues parameters; kp is the curvature
vector for the un-deformed beam; vp is the column matrix that
contains velocity of the un-deformed beam reference line
measured in the frame b; wy is the column matrix that contains

4

b

AR ()

where Iy is the mass matrix. If the locus of the mass centre is
chosen as reference line, the mass matrix Iy; can be expressed as:

w00 0 00
0O 0O 0O 0O
loowx 0 o0 o0
mM=10 00 iy+is 0 0 (48)
000 0 i o0
000 0 0 i

where u is the mass per unit length of the blade element; i and i3
are edgewise and flapwise moments of inertia, respectively.

6.2.3. Closing the formulation

The inverse kinematical relations Eqs. (41)—(44) can be
considered to be constraints to Eq. (40). These constraints can be
introduced with the help of Lagrange multipliers [25]. Thus, the
following formulation is obtained:

L
[ [{ 5!]3 FB + (5\(/5 ) MB + 0qg ( KgFg + Pg + ﬂgpﬂ) + 0y ( KgMp — (€1 +¥)Fg + Hg + QgHp + Vﬂpg)
0

+oF (91 + ke, — CPBley + 7)) . (W) uy + oM ((A +%& +%687) (C‘"’ki1 — k- kb)) - (W’) 9GP (v,, + opuy — CYBVg

iy )~ H ( (A + %9 + }1 99”) (c‘"’m,, -

angular velocity of the un-deformed beam reference line measured
in the frame b.

6.2.2. Constitute relations
For beams having small strain, the constitutive equations are
linear. The generalized strain-force relations are given by:

| _ o/ Fs
{5} s
where § is the constitutive matrix. If all coupling terms are ignored,
the constitutive matrix § can be expressed as:

1/EA 0 0 0 0 0
0 1/GK, 0 0 0 0

o 0 1/GKy 0O 0 0

S=1| o 0 0 1/G] 0 0 (46)
0 0 0 0 1/El; 0
0 0 0 0 0 1/Ek

where EA is the axial stiffness; GK; and GK3 are the edgewise and
flapwise shear stiffness, respectively; GJ is the torsional stiffness;
El; and El3 are the edgewise and flapwise bending stiffness,
respectively. Note that if shear deformation is ignored, 1/GK; and 1/
GKj3 in Eq. (46) become zero.

Similarly, the generalized momentum—velocity relations are
given by:

[F)
. - - S Y
o) + e) ~ 3 f5 — 5 mp Hdx,de = / (75 Fs-+ 595 My — GF ity — M )| dt

t

(49)
where
oF = C*B5Fy (50)
— A+10
M= | —2_|M 51
T+4070) " e
3P = C"Bspg (52)
_— A+30
H=|—2_|6H 53
T+10Tg |"" 55

Eq. (49) is the mixed-form formulation of GEBT expressed in the
frame B. The displacement and rotation components can be
expressed in global frame G, which are independent of blade ge-
ometry and deflection, with the help of transformation matrices.
The details will be discussed below.

Kg and 25 in Eq. (49) can be expressed in terms of €%¢ and €%
using [32]:

Kg = CBS (cGB)' (54)
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g — —C2CCOB | B4, B (55)
where ¢ is the column matrix that contains the angular velocity of
un-deformed beam reference line measured in frame G.

The virtual displacement 3qg, virtual rotation 3y, linear mo-
mentum Pg, and angular momentum Hg measured in frame B are
related to the virtual displacement dug, virtual rotation dy, linear
momentum P¢ and angular momentum Hg measured in frame G by
a transformation matrix €%, respectively:

Bqg = CBC%uy (56)
Byg = CBC%yc (57)
Hg — CPCH (58)
Pg = CB%p; (59)

With the help of Eqgs. (54)—(59), the following relations can be
easily established:

(55') ' Fo — () KsFs = (3ug) C"Fy (60)
(m')TMB - (M)TRBMB = (M’) TCGBMH (61)
CGB(HB + 9383) = HG + L;)GCGBHB (62)
facd (PB + !)B.PB) = P + €S8Py (63)

ky, and &y, in Eq. (49) can be expressed in terms of C*¢ and €%?
using [32]:

~ ’

ky = c"“(c“") (64)

oy = Chc(bcc‘;b (65)
Defining  3Fg — C*P3F, Mg — CS"6M,  3Pg — C*YsP,

SH¢ = (A — 0/2 + 00" /4)5H, and with the help of Eqs. (56)—(65),
Eq. (49) can be rewritten in the following form:

L

Lo

Eq. (66) is the mixed-form formulation of GEBT expressed in
the global frame G. In Eq. (66), ug, 0¢g, Fg, Mg, Pg, and Hg are
considered to be the fundamental unknown variables. y and k can
be expressed in terms of Fg and Mg using Eq. (45). Vg and 2 are
related to Pg and Hp through Eq. (47). Eq. (66) contains all the
information needed for the finite-element implementation of the
geomedtrically exact beam theory. In addition to time-dependent
analysis and modal analysis, Eq. (66) can also be used for static
analysis when all time-dependent variables in Eq. (66) are
eliminated.

7. Implementation of the nonlinear aeroelastic model in
COMSOL Multiphysics

COMSOL Multiphysics [28] is used to implement the nonlinear
aeroelastic model. The choice is mainly based on the fact that
COMSOL Multiphysics 1) allows equation-based modelling, e.g. the
chance to define a PDE (partial differential equation) by its weak
form; 2) enables MATLAB functions in model settings definition,
such as boundary conditions and material properties; and 3) pro-
vides interfaces between its GUI (graphical user interface) and
MATLAB, which enables direct use of MATLAB scripts in building
COMSOL model.

Based on the methods discussed in Sections 3, 4 and 5, a MAT-
LAB program is developed to calculate the applied loads F§; (see Eq.
(26)), including the aerodynamic loads (calculated based on BEM),
gravity loads and centrifugal loads. The mixed-form formulation of
GEBT (see Eq. (66)) is implemented using COMSOL 1D Weak Form
PDE module. All parameters in Eq. (66) are defined as global and
local variables. The combination of BEM and GEBT is achieved by
replacing fg in Eq. (66) with Fi; calculated using MATLAB program.
The computational scheme of the nonlinear aeroelastic model can
be divided into the following major steps:

1) Read input file. The main input parameters of the model are the
blade structural properties, such as mass per unit length and
cross-sectional stiffness, and blade aerodynamic shape, such as
chord and twist. These parameters are stored in a .txt file which
can be read by MATLAB function.

2) Construct blade geometry using a series of 1D elements. The
blade is represented as a series of 1D elements and each element
is allowed to have different cross-sectional properties, such as
flapwise stiffness and edgewise stiffness [17]. The physics-
controlled mesh tool with finer element size, which automati-

5]
AT . — i L _ "
/ {(“JECGBFB-F(é\U(;’) CCHMB-F(SHE(PG-F(:JGCGBPB) +6¢GT(—CCB(C1 +’?)Fﬂ+Hg+wGCGBHB+CGBV3PB) +6FGI (

T —_ 1- 1 T J—
—CPley +4)+Ce, ) - (F¢) ug +aMg ( - (A+§ﬂc +Za,;0§> chk) - (M) 0g+ PG (€PVp— v, — igug

N A—0bg/2
l!(,') I(SHGT(.QH wp Cﬁci‘:/a )

G
1+a£0(;/4

tz
g L
6u£(‘cﬂf5 WTCGBMB}CUHCHZ/(MTFG t 5WGTMG ﬁFGTllG ‘SMCTHG)‘DCM

f
(66)
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Fig. 4. Flowchart of the nonlinear aeroelastic model.

Table 1

Main parameters of the AWT-27CR2 wind turbine.
Parameters Values
Rated power (kW) 300
Number of blade 2
Rotor radius (m) 13.757
Rated rotor speed (rpm) 53.333
Cone angle (deg.) 7
Tilt angle (deg.) 0

cally generates meshes that are adapted to the physics in the
model, is used in COMSOL Multiphysics to create the mesh.
Initialize the independent variables, e.g. blade displacements,
and global variables, e.g. time.

w

)
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Fig. 5. Calculated axial induction factor distribution.

4) Perform blade load modelling to calculate the applied loads,
including aerodynamic loads (based on BEM), gravity loads and
centrifugal loads, using MATLAB function.

5) Apply the loads on the blade and perform blade structural
modelling based on the fixed-form formulation of GEBT to
calculate the deflection of the blade.

6) Go back to step 4 to update the applied loads according to the
feedback of blade deflection and global variables.

7) If the current simulation time is less than total simulation time,
repeat steps 5—6 using current solution as the initial values for
the subsequent steps; otherwise, end the simulation and output
results.

The flowchart of the nonlinear aeroelastic model is shown in
Fig. 4.

8. Results and discussion

A new nonlinear aeroelastic model, NAM_WTB (Nonlinear
Aeroelastic Model for Wind Turbine Blades), is developed based on
the above flowchart and validated by a series of benchmark
calculation tests. The main components of the NAM_WTB, i.e. the
aerodynamic part based on BEM and the structural part based on
mixed-form formulation of GEBT, are validated separately. Then a
case study is performed to validate the aeroelastic simulation re-
sults. After the validation, the nonlinear aeroelastic model is
applied to aeroelastic analysis of the parked WindPACT 1.5 MW
baseline wind turbine.

8.1. Validation

The validation of the NAM_WTB comprises three parts: 1)
validation of its aerodynamic part against an existing widely used
aerodynamic code; 2) validation of its structural part against
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Fig. 6. Calculated angular induction factor distribution.

experimental data; and 3) validation of its aeroelastic simulation
results against an existing well-known aeroelastic code.

8.1.1. Validation of the aerodynamic part of NAM_WTB

For the first case study, the aerodynamic part of the NAM_WTB
is validated against WT_Perf [33], which is a wind turbine aero-
dynamic performance predictor developed by Andrew Platt at
NREL (National Renewable Energy Laboratory) based on BEM the-
ory. The wind turbine model used in this case study is the AWT-
27CR2 wind turbine and the main parameters of the wind tur-
bine are summarized in Table 1. The details of the AWT-27CR2 wind
turbine, e.g. its airfoil aerodynamic data, can be found from the test
file of WT_Perf [33].

Both NAM_WTB and WT_Perf are used to predict the aero-
dynamic performance of the AWT-27CR2 wind turbine. In this case,
both yaw angle and pitch angle are 0°, and rotor speed is at rated
value (53.333 rpm). For the sake of simplicity, the gravity loads and
centrifugal loads of the blade are ignored, and the blade is assumed
rigid, i.e. no deflections are considered in the calculation of the
aerodynamic performance. Figs. 57 show the comparisons of the
axial induction factor, angular induction factor and normal force
distributions along the wind turbine blade at free stream wind
speed of 12 m/s, respectively.
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Fig. 7. Calculated normal force distribution.

Fig. 8. Experimentally cantilever beam.
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Fig. 9. Tip deflection of the cantilever beam.
Table 2
Tip deflection of the cantilever beam.
Tip  Vertical tip deflection (m) %Diff. (COMSOL  %Diff
load G periment COMSOL Ealer NAM_wTB LUicT-Bernoulli (NAM_WTE)
(N) " beam)
Bernoulli beam
0 0.0200 0.0206 0.0205 3.00 250
1.176 0.0940 0.0961 0.0926 223 149
2156 0.1490 0.1588 0.1444 6.58 3.09
3.136 0.1930 02216 0.1870 14.82 311
4.116 0.2300 0.2843 02213 23.61 378
5.096 0.2550 03470 0.2486 36.08 251
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4 Table 3
—_ Flapwise and edgewise mode frequencies of the truncated RB70 blade.
5 3 P T 1 Mode Measured values [36] NAM_WTB Diff. (%)
©
‘6 p 7 N 1st flapwise (Hz) 1.582 1.637 348
£ 2 " T _ 1 2nd flapwise (Hz) 4.630 5.061 931
O — 3rd flapwise (Hz) 10.199 11.152 9.34
1 L L L L L N L L 1st edgewise (Hz) 2174 2173 0.05
0 01 02 03 04 05 06 07 08 09 1 2nd edgewise (Hz) 7.962 7972 239
R 3rd edgewise (Hz) 18.138 17.133 5.54
20
- ‘\\ . .
o 15 g part of NAM_WTB and COMSOL Euler-Bernoulli beam model with
2 experimental results obtained in the laboratory. The example used
= ~ ] . X N N X
% 10 ~— here is an experimentally large-deflection cantilever beam. Fig. 8
T 5 — ] depicts the photograph of the experimental system, which is
= i made up of a steel beam, fixed at one end and loaded at the free
0 . \ ' . . A . . . . N : .
o 01 02 03 04 05 06 07 08 08 1 end. A vertical ruler is used to measure the verFlcal deﬂectloq of the
R beam at the free end. The length of the beam is 0.48 m and it has a

Fig. 10. Chord and twist distribution of the truncated RB70 wind turbine blade.

The results in Figs. 57 demonstrate that the calculated axial
induction factor, angular induction factor and normal force distri-
butions along the wind turbine blade from NAM_WTB agree with
those from WT_Perf very well. This means that the aerodynamic
part of NAM_WTB can be utilized well for aerodynamic loads
predictions of wind turbine blades.

8.1.2. Validation of the structural part of NAM_WTB

In order to validate the structural part of NAM_WTB, two case
studies have been performed. The first case study compares both
the structural part of NAM_WTB and the COMSOL Euler-Bernoulli
beam model with experimental results obtained in laboratory.
The static deflections of an experimentally large-deflection canti-
lever beam are investigated in this case study. For the second case
study, the modal analysis results from structural part of NAM_WTB
are validated against experimental data, and a practical wind tur-
bine blade is chosen as an example.

8.1.2.1. Static deflection of large-deflection beam. This case study
aims to verify the accuracy of the structural part of NAM_WTB and
demonstrate its nonlinear capability by comparing the structural

uniform rectangular cross-section of width 0.02 m and height
0.0012 m.

Both NAM_WTB and COMSOL Euler-Bernoulli beam model are
used to numerically calculate the tip deflection of the cantilever
beam. The value of Young's modulus used in the numerical calcu-
lation is 2.0E11Pa (typical value of Young's modulus for steel). The
weight of the beam, 0.87 N, is taken into account in the numerical
calculation by applying a uniform distribution load over its entire
length with the value of 1.81 N/m. Six values of tip load, i.e. 0, 1.176,
2.156, 3.136, 4.116 and 5.096 N, are used for both experimental test
and numerical calculation. The comparison between the predicted
vertical tip deflection and measured values are shown in Fig. 9 and
Table 2, where relative differences are obtained with respect to the
measured values.

From Fig. 9 and Table 2 we can see that 1) the tip deflections
calculated using COMSOL Euler-Bernoulli beam model increase
linearly and do not coincide with experimental data for the cases
that tip loads over 3.136 N, with maximum percentage difference of
36.08% occurring when the tip load is 5.096 N; 2) the tip deflections
predicted using NAM_WTB increases nonlinearly and show good
agreement with experimental data for all cases, with the maximum
percentage difference 3.78% occurring when the tip load is 4.116 N;
3) COMSOL Euler-Bernoulli beam model overestimates tip de-
flections when large deflections occur because it fails to capture
geometric nonlinearities.

This case study clearly demonstrates that 1) NAW_WTB is
capable of handling geometric nonlinearities arising from large
deflections; 2) when the deflection is small, the error introduced by
linear assumptions, e.g. the assumption adopted in COMSOL Euler-
Bernoulli beam model, can be ignored; however, when large
deflection occurs, the error introduced by linear assumptions
should be quantified.

8.1.2.2. Modal analysis of truncated RB70 blade. This case study
aims to validate the modal analysis results from the structural part
of NAM_WTB against experimental data. The example used here is

25
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N
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Fig. 11. Flapwise and edgewise mode frequencies of the truncated RB70 blade.

Table 4

Main parameters of the NREL Phase VI wind turbine.
Parameters Values
Rated power (kW) 20
Number of blade 2
Rotor radius (m) 5.029
Rated rotor speed (rpm) 719
Cone angle (deg.) 0
Tilt angle (deg.) 0
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Fig. 12. Calculated blade root load.

the truncated RB70 wind turbine blade [34], which has been sub-
jected to the eigenmode validation within the STABTOOL-3
research project [35]. The chord and twist distributions of the
truncated RB70 wind turbine blade are depicted in Fig. 10, and its
details can be obtained from Ref. [34].

NAM_WTB is used to perform modal analysis of the truncated
RB70 blade. In this case study, the blade is non-rotating and free-
vibration (no loads on the blade). The predicted values are
compared with measured values reported in Ref. [36], as shown in
Fig. 11 and Table 3, where the relative differences are obtained with
respect to the measured values.

As can be seen from Fig. 11 and Table 3, the flapwise and
edgewise blade mode frequencies calculated from NAM_WTB
match well with experimental data, with the maximum percentage
difference (9.34%) occurring for the 3rd flapwise mode.

This case study not only further validates the structural part of
NAM_WTB, but also demonstrates that representing wind turbine
blades as a series of 1D beam elements provides reasonable accu-
racy if the beam model is constructed properly.

8.1.3. Validation of aeroelastic simulation results of NAM_WTB
This case study aims to validate the NAM_WTB against FAST
[19], which is a linear aeroelastic code developed by NREL based on
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Fig. 13. Calculated blade tip deflection.

combined BEM and modal approach. The wind turbine model used
in this case study is NREL Phase VI wind turbine [37], which is a
10 m-diameter rotor research wind turbine, The main parameters
of the turbine are listed in Table 4 and its details can be obtained
from Ref. [37].

Both NAM_WTB and FAST are used to perform aeroelastic
modelling of the NREL Phase VI rotor. In this case, yaw angle, pitch
angle and rotor speed are 0°, 4.815° and 71.9 rpm, respectively. The
gravity loads and centrifugal loads are taken into account, and the
blade is considered flexible. The resulting blade root load and blade
tip deflection at free stream wind speed of 7 m/fs are shown in
Figs. 12 and 13 respectively.

Figs. 12 and 13 demonstrate that the results from NAM_WTB
show good agreement with those from FAST for this case study.
Fig. 13 also indicates that the tip deflection of the blade used in this
case study is very small, which is caused by the quite stiff blade
design of the NREL Phase VI wind turbine. This case study dem-
onstrates that both NAM_WTB and FAST work well for small
deflections.

8.2. Aeroelastic simulation of parked WindPACT 1.5 MW baseline
wind turbine

This case study aims to investigate the effects of large blade
deflections on the aercelastic modelling of wind turbine blades.
The wind turbine model used in this case study is the WindPACT
1.5 MW baseline wind turbine [29], a reference turbine created by
NREL. Its main parameters are summarized in Table 5. In order to
investigate the large blade deflection effects, the flapwise stiffness
of the WindPACT 1.5 MW wind turbine blade is adjusted by a factor
of 0.2 to make the blade more flexible.

Both NAM_WTB and FAST are used to perform aeroelastic
modelling of the parked WindPACT 1.5 MW wind turbine blade. In
this case, yaw angle, pitch angle and rotor speed are 0°, 2° and
0 rpm, respectively. The resulting flapwise tip deflections at free-
stream wind speeds between 15 m/s and 50 m/s are depicted in
Fig. 14. For comparison purpose, Fig. 14 also presents the results
from a linear aeroelastic model, BEM_COMSOL-Euler-Bernoulli-
beam, which is based on combining BEM and COMSOL Euler-
Bernoulli beam model and is implemented by replacing the struc-
tural part of NAM_WTB with COMSOL Euler-Bernoulli beam model.

Fig. 14 clearly shows that 1) the results from BEM_COMSOL-
Euler-Bernoulli-beam show good agreement with the results
from FAST for all cases; 2) for this case study, when wind speed is
lower than 30 my/s, the results from NAM_WTB show good agree-
ment with the results from FAST; 3) as wind speed further in-
creases, the difference between NAM_WTB and FAST gets big, with
maximum percentage difference 23%, which occurs for the case
study when the wind speed achieves 50 m/s, and the blade tip
deflection predicted by NAM_WTB is less than that predicted by
FAST.

It should be noted that the only difference between
BEM_COMSOL-Euler-Bernoulli-beam and NAM_WTB is that the

Table 5
Main parameters of the WindPACT 1.5 MW baseline wind
turbine.
Parameters Values
Rated power (MW) 15
Number of blade 3
Rotor radius (m) 35
Rated rotor speed (rpm) 20
Cone angle (deg.) 0
Tilt angle (deg.) 5
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Fig. 14. Calculated flapwise tip deflection.

former one uses the COMSOL Euler-Bernoulli beam model for the
structural part while the latter one uses GEBT. As demonstrated in
the previous case study of the experimentally large-deflection
cantilever beam, COMSOL Euler-Bernoulli beam model over-
estimates tip deflections when large deflections occur because it
fails to capture geometric nonlinearities. Since NAM_WTB uses
GEBT for the structural part, the effects of geometric nonlinearities
are taken into account. Therefore, NAM_WTB can provide more
reliable aeroelastic modelling than linear aeroelastic models, such
as FAST and BEM_COMSOL-Euler-Bernoulli-beam, for the cases
when large deflections occur.

This case study clearly demonstrates that when the blade
deflection is small, the errors introduced by small deflection as-
sumptions, e.g. the assumption adopted in FAST, can be ignored.
However, as the blade deflection increases, the errors introduced by
these assumptions should be quantified.

9. Conclusion

In this work, a novel nonlinear aeroelastic model for large wind
turbine blades has been developed by combining BEM (blade
element momentum) theory with a mixed-form formulation of
GEBT (geometrically exact beam theory). The nonlinear aeroelastic
model takes account of large blade deflections, and is presented
here in a code called NAM_WTB (Nonlinear Aeroelastic Model for
Wind Turbine Blades) based on COMSOL Multiphysics. NAM_WTB
discretises the wind turbine blade into a series of 1D elements
using 1D finite-element approach, which is computationally more
efficient than 3D finite-element approaches. Validated by a series of
benchmark computational tests, the nonlinear aeroelastic model
was applied to the aeroelastic analysis of the parked WindPACT
1.5 MW baseline wind turbine. The following conclusions can be
drawn from the present study:

1) The aerodynamic part of the NAM_WTB is sufficient accurate for
aerodynamic load predictions of wind turbine blades.

2) Good agreement (with maximum percentage difference of
3.78%) is achieved in comparison with the data from experiment
of a large-deflection cantilever beam, which indicates the
NAM_WTB is capable of handling geometric nonlinearities
resulted from large deflections.

3) Good agreement (with maximum percentage difference of
9.34%) is achieved in comparison with the data from modal
experiment of a practical wind turbine blade, which further
validates the structural part of NAM_WTB. It also demonstrates
that representing the blades as a series of 1D beam elements
provides reasonable accuracy if the beam model is constructed
properly.

In case of small deflections, the results of the NAM_WTB are

consistent with the results of the linear aeroelastic code FAST,

which indicates geometric nonlinearities can be ignored for
small blade deflections.

5) Taking account of geometric nonlinearities resulted from large
blade deflections, significantly reduced tip deflection based on
the presented NAM_WTB code is observed comparing with the
linear aeroelastic code FAST. This difference in deflection could
be vital for blade designers.

=

Based on the evidences presented in this paper, it is believed that
the NAW_WTB code is a reliable and efficient nonlinear aeroelastic
analysis tool for large wind turbine composite blades. Future works
include aercelastic optimisation based on NAW_WTB and aero-
elastic experiments to provide more available experimental data for
the benchmark test of the nonlinear aeroelastic model.
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FPFS wind turbine blade design to achieve a better power performance and low manufacturing cost. This

approach can be used for any practice of FPFS wind turbine blade design and refurbishment.
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1. Introduction

Small and medium size fixed-pitch fixed-speed (FPFS)
horizontal-axis wind turbines have found broad applications due to
their unique advantage of direct grid connection using induction
generators. Comparing to the fixed-pitch variable-speed (FPVS)
wind turbines with permanent magnet synchronous generators
which use complex power electronics for grid connection, FPFS
wind turbines have the advantage of being simple, robust and
reliable, well-proven and low cost.

FPVS wind turbine blade design provides the foundation for
small wind turbine blade design. For an FPVS wind turbine, the
blade design is based on a particular design tip speed ratio (TSR), i.e.
the optimum TSR 2, due to the assumption that the wind turbine
maintains the maximum power coefficient Cprmax at the design TSR
4o for wind speed up to rated wind speed. Therefore the design TSR
Jo is a very important design parameter for FPVS wind turbines.
Other design parameters, such as rated wind speed, airfoil shape
and design angle of attack, should also be considered carefully. To

* Corresponding author. Tel.: +44 0 1900 605665x1069.
E-mail addresses: Xiongwei.Liu@Cumbria.ac.uk, xiongweiliu@263.net (X. Liu).

make sure the power coefficient Cpg is maximum at the design TSR
Jo, the design angle of attack is often selected at the angle where
the lift to drag ratio is maximum. Once these fundamental design
parameters are selected, the aerodynamic shape, such as the chord
and twist radial profiles, is often obtained based on blade element
momentum (BEM) theory [1], which is widely used for wind tur-
bine blade design and analysis.

The blade design for an FPFS wind turbine differs from that for
an FPVS wind turbine. For an FPFS wind turbine, the rotor speed is
fixed and the TSR varies when the wind speed changes. The blade
design is based on a particular design wind speed with a particular
design TSR, which means only at the design wind speed the power
coefficient Cpg reaches its maximum value Cprmax. At both sides of
the design wind speed, the power coefficient Cpg will be lower than
the maximum value Cprmax-

Wind turbine blade design optimization has been one of the on-
going research and industrial practices during the last two decades
[2]. For FPVS wind turbines, typically, the fundamental design
objective is to maximize the power coefficient Cpg for low wind
speed (up to its rated value). Glauert [3] demonstrated that a con-
stant induction factor contributes to maximum efficiency for an
ideal rotor. Wilson et al. [4] extended Glauert's method and carried
out a local optimization analysis through maximizing the power

0960-1481/$ — see front matter Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.
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contribution at each radial section. The axial induction factors were
changed until the power output became stationary. Pandey et al. [5]
provided a more analytical approach to take the effects of drag and
finite number of blades into account in calculating the axial and
angular induction factors. The results showed good agreement with
those from Wilson’s method. For FPFS wind turbines, efforts have
been put on the determination of the optimal rotor speed and
design wind speed, which determine the design TSR at the design
wind speed. Given the fact that the TSR and angle of attack vary
with wind speed, using the optimal angle of attack, where the lift to
drag ratio reaches the maximum value for the chosen airfoil, for the
blade design may not provide the best solution. The authors
investigated the impact of design angle of attack along with design
TSR and design wind speed for an FPFS wind turbine, and the
outcome proves that the best solution does not necessarily use the
so-called optimal angle of attack as the design angle of attack [6].

Linearization of both the chord and twist angle radial profiles
has been general practice in wind turbine industry to minimize the
manufacturing cost of wind turbine blades. There are different
ways for the chord and twist angle linearization. Maalawi and Badr
[7] suggested that the linearized chord radial profile should be the
tangent line to the theoretical profile at 75% radial station while the
twist angle radial profile should be an exponential profile. Burton
etal.[8] drew a straight line through the 70% and 90% span points of
theoretical chord profile to linearize the chord. Manwell et al. [1]
provided two general linear expressions including three co-
efficients for linearized chord and twist angle radial profiles,
Obviously, these studies just demonstrate different ways to lin-
earize the chord and twist angle radial profiles, however do not
provide convincing evidence and scientific insight for the criteria of
the optimization.

The original chord and twist angle radial profiles are based on
a particular design wind speed and design TSR. Because the TSR
varies with wind speed for an FPFS wind speed, the originally
optimized chord and twist angle radial profiles may not necessarily
provide the best power performance for the wind turbine for
a particular site, i.e. for a particular wind speed Weibull distribu-
tion. Therefore, adjusting the chord and twist angle radial profiles
may offer an opportunity to optimize the wind turbine blade design
s0 as to achieve a further optimized power performance, apart from
low manufacturing cost.

In terms of mathematical algorithms for wind turbine blade
design optimization, Selig and Coverstone-Carroll [9] combined
a genetic algorithm (GA) with an inverse design method to opti-
mize blades of stall-regulated wind turbines. The optimum blade
chord and twist angle radial profiles were determined for max-
imizing annual energy production. Yurdusev et al. [10] used arti-
ficial neural network (ANN) to estimate the optimal TSR for wind
turbines. The ANN method was found to be more successful than
the traditional method in estimating the TSR due to its capabilities
of parallel data processing and generation. Liu et al. [11] adapted
the extended compact genetic algorithm (ECGA) to develop a gen-
eralized optimization program for blades of horizontal-axis wind
turbines. The program was used to optimize blades of a 1.3 MW
stall-regulated wind turbine showing 7.5% increase in annual en-
ergy production. Ceyhan [12] developed an aerodynamic design
and optimization tool for horizontal-axis wind turbines using both
the BEM theory and GA. Blades were optimized for the maximum
power output for a given wind speed. Chord, twist angle and a fixed
number of sectional airfoil profiles were considered as optimization
variables. However, these methods do not include the consid-
eration of chord and twist angle radial profile linearization, which
has been practiced in industrial scale wind turbine blade design.

The purpose of this paper is to demonstrate a novel approach for
the blade design optimization through adopting linear radial

profiles of the blade chord and twist angle and optimizing the slope
of these two lines. The baseline wind turbine used for this study is
a 25 kw FPFS wind turbine with a well-established airfoil for the
blade design.

In this paper, optimum rotor theory [1] is used for a preliminary
blade design of the wind turbine, the BEM theory with both Prandt!
tip loss correction and wake consideration is employed to calculate
the power performance of the blade. The linearization of the chord
and twist angle radial profiles is through fixing the values at the
blade tip and floating the values at the blade root based on the
preliminary blade design, and the best solution is determined using
the highest AEP for a particular wind speed Weibull distribution as
the optimization criteria with constraints of the top limit power
output of the wind turbine.

The paper is structured as follows, For a comprehensive un-
derstanding of the methodology, we briefly summarize the BEM
theory and the AEP calculation in Sections 2 and 3 respectively. The
baseline wind turbine is introduced in Section 4, and the blade
design parameters are discussed in Section 5. Section 6 summarizes
the wind turbine blade design theory and provides a preliminary
blade design. Section 7 analyses the performance of the preliminary
blade based on the BEM theory using MATLAB. Section 8 details the
optimizing design process, and Section 9 concludes the findings
with recommendations.

2. Blade element momentum (BEM) theory

Glauert developed the original BEM theory which combines
blade element theory, which is based on the airfoil aerodynamic
characteristics, and the momentum theory, which considers the
blade as a number of independent stream tubes and ignores the
spanwise flow [1]. In the BEM theory, the air flow through the rotor
is assumed to be axisymmetric. Eqs. (1) and (2) describe the mo-
mentum theory for each stream tube based on the conservation of
momentum in both axial and rotational directions:

dT = pV24a(1 — a)mrdr (1)

dQ = 4d'(1 — a)pVamriQdr (2)

where dTand dQ are the differential thrust force and torque, r is the
radius of the stream tube (or blade element), and Q is the angular
velocity of the wind turbine rotor.

Eqs. (3) and (4) describe the aerodynamic normal force, which is
the same as the thrust force in Eq. (1), and the torque of the blade
element, which is the same as the torque in Eq. (2), based on the
known airfoil lift and drag coefficients ¢; and Cy with assumed
induced relative wind velocity U to the airfoil:

dFy = B%prel(C,cos ¢ + Cysin @)cdr (3)
do = B%pUEE,(Qsin # — Cycos p)crdr (4)

where B is the blade number, p is the air density, ¢ is the angle of
relevant wind.

Combining the blade element theory and momentum theory
leads to both axial and angular induction factors a and @', which are
then used for the calculation of the induced relative wind velocity
Upel to the airfoil. The induced wind velocity is then used again for
the blade element aerodynamic forces calculation, and the above
procedure is repeated until the newly calculated induction factors
a and a', are within an acceptable tolerance of the previous ones,
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In the BEM theory, the accuracy of the airfoil aerodynamic
model, i.e. the lift and drag coefficients, is vital for the blade design,
load analysis and power performance prediction of a wind turbine.
A well-established airfoil aerodynamic model will enhance the
wind turbine blade design.

However, the BEM theory is based on a few assumptions and
does not accurately describe the real physics of a wind turbine. The
first and most important assumption that the air flow through the
rotor is axisymmetric is only an approximation with a finite num-
ber of blades, typically 3. The effects of the finite number of blades
result in the performance losses concentrated near the tip of the
blade, which is known as the tip losses and can be handled with the
well-accepted tip loss correction factor presented by Prandtl [1,13]:

F = %cos—l (exp( - (%))) ?

The tip loss correction factor, which is always between 0 and 1,
characterizes the reduction in the forces at a radius r along the
blade that is due to the tip loss at the end of the blade.

The results obtained from the BEM theory with tip loss correction
are generally in good agreement with field measurements for
attached flows on the surface of blades, i.e. under stall free condition
when the blade TSR is maintained at design TSR or higher. This makes
the BEM theory as a standard tool for wind turbine blade design.

3. Annual energy production (AEP) calculation

The AEP is calculated using the following formula [14]

1 cut _0I.|[
E = 8760 xompA [ 1 Cor(r)  frayleigh(¥)dlv (6)

cut in

where 7 is the transmission efficiency (in percentage) of both
mechanical and electronic systems of the wind turbine; p is the air
density; A is the swept area of the wind turbine rotor; Cpr(v) is the
rotor power coefficient of the wind turbine, which is derived from
the power performance analysis based on the BEM theory and is
a complex function of the wind speed v or TSR for an FPFS wind
turbine; frayleign(v) is the wind speed Rayleigh distribution.

4. Baseline wind turbine
Let's start from the baseline 25 kW FPFS wind turbine with a 4-
pole induction generator. This wind turbine is designed for a spe-

cific site with a low annual mean wind speed (AMWS) of 5 m/s. The
fundamental parameters of the wind turbine are listed in Table 1.

5. Blade design parameters
5.1. Design wind speed and rated wind speed

Different to variable-speed machines, there are two sets of wind
speed we should consider for an FPFS machine, i.e. design wind

Table 1

Fundamental design parameters of the baseline 25 kW wind turbine.
Parameters Unit Value
Generator rated power output, Pr w 25,000
Overall transmission efficiency, n % 0.85
Wind turbine rated rotor power, Proor w 29,412
Number of blades, B 3
Rotor diameter m 15.0

speed Viesign and rated wind speed Vyated. At the design wind speed
Vdesign, the wind turbine rotor power coefficient Cpr achieves its
maximum value Cpgmax- At the rated wind speed Viareq, the wind
turbine rotor reaches its rated power Prqor, which corresponds to
the generator rated power output P. Considering the overall
transmission efficiency 7.

According to [EC61400-2 [15], the design wind speed Vgesign for
an FPFS wind turbine should be 1.4 times of the annual mean wind
speed Vamws. In this design case, Vamws is 5 m/s, therefore, Vgesign is
7 m/s.

The rated wind speed of an FPFS wind turbine is generally not
defined at this stage and will be determined from further calcu-
lation and analysis.

5.2. Rotor speed and design tip speed ratio

For most small wind turbines with 3 blades, the tip speed ratio
(TSR) at the design wind speed is in the range of 6—8 [16]. In this
case study, we choose the design TSR Jo = 6' at the design wind
speed 7 m/s, which corresponds to a blade tip speed of 42 m/s and
rotor speed of 53.5 rpm. Considering the operation wind speed
from 3 m/s to 18 m/s, the TSR 2 varies from 2.333 to 14.

5.3. Airfoil and design angle of attack

The airfoil used for the baseline wind turbine blade is
DU93W210 [17,18], which is a well-established and tested airfoil for
wind turbine blades. The airfoil's performance is affected by Rey-
nolds number (Re), which is defined as [1]:

Re = pUyec/n = (Inertial force)/(Viscous force) (7)

where, in terms of the airfoil, g is the air viscosity, Uy is the relative
wind velocity to the airfoil and c is the chord length of the airfoil.

If we estimate that the chord of the middle section of the 7.5 m
blade is 0.55 m, the range of Reynolds number can be obtained from
the relative wind velocity Urel, which is calculated from the velocity
triangle at the middle section of the blade. The estimated Reynolds
numbers are shown in Table 2.

As shown in Table 2, because the rotor speed is fixed, the Rey-
nolds number of this wind turbine does not vary significantly,
which is in the range of 800,000—1,100,000 when wind speed
varies from 3 m/s to 18 m/s. To simplify the design process, we
choose Reynolds number 1,000,000 as the design Reynolds num-
ber. It should be noted that this simplification may not be suitable
for the situation where Reynolds number varies significantly, such
as for the case of variable-speed large wind turbines. Fig. 1 depicts
the lift and drag coefficients and lift/drag ratio of the airfoil against
the interested angles of attack from 0 to 12° at Re = 1,000,000
[17,18].

The lift coefficient is 1.336 and the maximum lift/drag ratio is
118.021 at angle of attack 7.71° This angle will be selected as the
design angle of attack.? For FPFS wind turbines, when the wind
speed is higher than design wind speed, the blades operate at larger
angle of attack than 7.71°, up to 60° for example. Therefore, a wide
range of angles of attack is required for further calculation and
analysis. As shown in Fig. 2, the available (wind tunnel tested) lift
and drag coefficients from the limited range of angle of attack in
Fig. 1 can be expanded to the full 360° angle of attack using the
Viterna method [19], which has been widely used to predict the
post-stall performance of airfoils [20—22].

! For the TSR optimization, please refer to Ref. [10].
% For optimal design attack angle calculation, please refer to Ref, [6].
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Table 2

Estimated Reynolds numbers at different operation wind speed.
v (mfs) Vian (m/s) Uret (m/s) Re
3 21 212 802,944
6 21 21.8 826,681
9 21 22.8 864,797
12 21 242 915,497
15 21 25.8 976,823
18 21 27.7 1,046,910

(Note: Vian = rig-secion = (blade tip speed)/2 = 21 m/s, Uy = |/ V3, +12).

6. Preliminary blade design

The preliminary blade design of the wind turbine is to deter-
mine the chord and twist angle radial profiles of the blade based on
the above design parameters, including the rotor radius R = 7.5 m/s,
design tip speed ratio Ag = 6, number of blade B = 3, design angle of
attack adesign = 7.71, and the design lift coefficient Gy gesign = 1.336.
The blade is divided into 10 sections or elements. For each element,
the chord ¢; and twist angle 0,,; are calculated based on optimum
rotor theory [1], which is summarized here:

i = o(ri/R) (8)
2 a1
@ = (5) tan (;T,) 9)
8mr;
¢ = p—t—(1—cos g 10
! BCl.dcsgin.i( wl) (10)
Opi = @i — Xdesign,i (11)

where i indicates the ith blade section, 4;; is the speed ratio of the ith
blade section, r; is the distance from the ith blade section to the rotor
center, ¢; is the angle of relative wind at the ith blade section. Cjgesign,i
and agesign,i are the design lift coefficient and design angle of attack at
the ith blade section respectively. For the preliminary blade design, at
design wind speed 7 m/s, the design lift coefficient and design angle of
attack are considered constant along the blade, Therefore, in the fol-
lowing sections, we use Cjdesign and (design to represent Cdesigni and
Cgesign,i respectively.

Figs. 3 and 4 show the calculated initial chord and twist angle
radial profiles based on Eqgs. (8)—(11). The chord at the blade root
section (0.1R) is over 1 m, and the twist angle distributes from 32.5°
at the blade root to —1° at the blade.

a)
14 0.05
—al /
Cd )
12 7 0.04
!
/
1 / 0.03
/
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08 / 0.02
08]_ - — 0.01
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Angle of attack (degree)

Lift (C,) and drag (C,) coefficients

7. Wind turbine rotor performance analysis

The wind turbine rotor power is contributed from each in-
dividual blade element of the three blades, and therefore the
calculation is based on each blade element’s performance
analysis.

The performance parameters of each blade element is calcu-
lated through an iterative procedure [1,23], which is summarized
below:

(1) Estimate an initial (the first iterative) value for the axial in-
duction factor a and angular induction factor a’:

wia = (3)an” (}) (12)

AP — (13)

[1 . 4sin’ (¢; 1) ]

7;C designCOS i1

1-3a;;

T ag) -1 @

aiy
where i indicates the ith blade element. zr: is the local solidity,
defined by:

o} = Bei/2mr; (15)
(2) start the iterative procedure for the jth iteration. For the first

iteration, follow step 1), j = 1. Calculate the relative wind angle
and Prandtl tip loss factor:

tan ¢;; = (16)

(1 + ﬂf_j) A

2\ (B/2)[1 — (ri/R)]
F;J = (E)COS l{exp(f( (rj/R)sinqa,J ))} 17)
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Fig. 1. Aerodynamic characteristics of DU93W210 airfoil at Re = 1,000,000,
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Fig. 2. Lift and drag coefficients of DUI3W210 at full 360° range of angle of attack
based on Viterna method.

(3) Then calculate the local angle of attack of the ith blade element:

i = ojj— O (18)

followed by Ci;; and Cgjj, which are obtained from the airfoil lift
and drag coefficient curve against the angle of attack, as illustrated
in Figs. 1 and 2.

(4) Then update the axial induction factor a and angular induction
factor @’ for next iteration, considering the drag effects:

1

Gijq = (19)
i1 { 4F,j5in2(qpu) ]}
1+ - I
alf (C,_,-jcas ?ij+ Cd_fjsm qoj_j)
, 1
Gij = 4F;jsin ;€05 @y 1 (20)
a; (qusin ®ij — CgjCOS rpgj)
1.2
1 ]
Eos 1
2
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04 T~ 1
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R

Fig. 3. Chord profile,
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Fig. 4. Twist angle profile.

The parameter H is introduced for the situation when large in-
duction factors occur. When the axial induction factor a is greater
than 0.5, the expression for thrust coefficient [1]:

Cr = 4a(1-a) (21)
must be replaced by the empirical expression [23]:
Cr = 0.6+ 0.61a+0.79¢* (22)

In order to obtain a smoother transition, GH-bladed adopted
a transition to the empirical model for axial induction factor greater
than 0.3539 rather than 0.5.

The parameter H is defined as follows [23]:
fora;;,, <0.3539,H = 1.0 (23)
4a(1 —a)

foraj;,, >03530,H = Sal-a)
Or dige1 = {06+ 061a+0.79¢7)

(24)

If the deviation between the j + 1th and the jth induction factors
is within an acceptable tolerance, then confirm the local relative
wind angle ¢; tip loss factor F; and angle of attack j, which de-
termines the local lift and drag coefficients C;; and Cy; for the ith
blade element; (if not, then go back to step 2).

Having obtained the above performance parameters for each
blade element, according to Eq. (4), the torque generated by the
blade element is equal to [1]:

1 )
dQ; = FiB5pUsy,;(Cyisin o; — Cgcos gy)ciridr (25)

The total rotor torque and power are calculated from Ref. [1]:

Q=) dg

i=1

(26)

P =QQ (27)

The wind turbine rotor power coefficient is then determined by
Manwell [1]:

(28)

Based on the above procedure, a Matlab program is developed to
calculate the Cpg—A curve. For verification purpose, GH-bladed
software is also employed for the calculation of the Cpr—A curve.
As shown in Fig. 5, the result from Matlab program agrees with GH-
bladed software very well,
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Fig. 5. Calculated Cpr— curve,

The calculated wind turbine rotor power curve is shown in
Fig. 6, which indicates at wind speed of 13 m/s, the wind turbine
rotor power reaches its top value 30.47 kW, which is slightly higher
than the rated value 29.412 kW, as listed in Table 1. This is
acceptable, because the generator can tolerate up to 20% over-
loading. It should be noted that when the wind speed is above the
design wind speed, the angle of attack is above the design (optimal)
value, stall will take place, particularly when the wind speed is well
above the design wind speed. A more accurate calculation is needed
to consider stall-delay [24], dynamic stall [25] and other 3D effects,
for industrial design practice.

Given the annual mean wind speed (AMWS), using Eq. (6), the
annual energy production (AEP) is calculated, as listed in Table 3.

8. Blade design optimization
8.1. Method

The chord and twist angle of the preliminary blade design are
non-linear profiles, as shown in Figs. 3 and 4. For easy manufacture
purpose, the chord and twist angle radial profiles are generally
linearized in industrial practice. Apart from that, optimum rotor
theory only guarantees that the blade works at the optimal con-
dition when the wind turbine operates at the design wind speed
7 m[s. Therefore, the aerodynamic performance of the preliminary

35 T T 4 T v -

Rotor power output [kW]
- - N N w
o 19, o o o

(S

2 4 6 8 10 12 14 16 18
Wind speed [m/s]

0 I L .

Fig. 6. Calculated power curve of the wind turbine rotor,

Table 3

Annual energy production (AEP).
AMWS (m/s) AEP (kWh}
4.0 36,186
4.5 48,828
5.0 61,605
55 74,011
6.0 85,604
6.5 96,408
7.0 105,984

blade is not necessarily better than a linearized one. In other words,
a better performance may be achieved through linearization of the
chord and twist angle radial profiles. As shown in Figs. 3 and 4, the
value of the chord and twist angle decreases gradually from the
blade root to the blade tip. In order to linearize the chord and twist
angle radial profiles, one way3 is to fix the chord and twist angle at
the blade tip, and change the value at the blade root to linearize the
chord and twist angle radial profiles using the following equations:

m-1r
N R

Cin = Co + (0.7¢ 9 — Cro) n=12.,N+1

(29)

Bin = b0+ (B0 — B0 %% n=12..N+1  (30)
where n indicates the nth linearized chord line, c;, is the chord at
the ith blade element of the nth linearized chord line, 4;, is the
twist angle at the ith blade element of the nth linearized twist line.
¢ and cyp are the chords at the blade tip and root of the pre-
liminary blade respectively, fo and #¢ are the twist angles at the
blade tip and root of the preliminary blade respectively, N is the
number of division.

8.2, Result

Assuming the number of division N = 18 for Eq. (29) and N = 30
for Eq. (30),* which results in 589 combinations with 19 choices of
chord profile lines and 31 choices of twist angle profile lines, as
shown in Figs. 7 and 8. Following the same procedures outlined in
Section 7, the annual energy production (AEP) of the 589 combi-
nations of the wind turbine blade design for an annual mean wind
speed (AMWS) of 5 mfs are calculated, and the outcomes are
illustrated in Fig. 9.

Fig. 9 reveals:

(1) For any linearized twist angle profile, the AEP increases with
the blade root chord.

(2) When the blade root chord is larger than 0.598 m, the AEP of
the linearized blade is higher than that of the preliminary
blade (61,605 kWh) for a certain range of blade root twist
angle.

(3) For any linearized chord, the relationship between the AEP and
the blade root twist angle appears similar to a parabolic curve,
and when the blade root twist angle is about 17.5°, the AEP
achieves its maximum value.

3 There are other ways to do so, this paper aims to demonstrate the optimization
strategy, and is not intended to try all the other different ways.

4 We tried different N before we start to write the paper. Finally, we choose
N =18 and N = 30 for the linearized equation of the chord and twist respectively.
The changing steps of the twist and chord at the blade root are about 1° and 0.
026 m respectively, which are small enough for this case study.
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Fig. 9. AEP of the 589 design solutions for AMWS 5 m/s,
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(4) If we only consider the highest AEP as the optimization criteria,
the best linearized blade is the one which has a blade root
chord of 0.754 m and a blade root twist angle of 17.5° as shown
in Fig. 9. However, the baseline wind turbine is a 25 kW wind
turbine, the maximum overloading to the generator is assumed
to be 120%. Therefore the maximum rotor power should be
limited to 29,412 W*120% = 35,294 W, which should be added
as a constraint for the blade design optimization. Considering
the maximum rotor power constraint, the optimal blade is the
one which has a blade root chord of 0.728 m and a blade root
twist angle of 14.02°.

The radial profiles of the chord and twist angle of the optimal
blade are depicted in Figs. 10 and 11 along with the profiles of those
of the preliminary blade.

Figs. 10 and 11 reveal that the optimal blade simplifies the ge-
ometry of the blade, and at the same time removes materials close
to the blade root, which should reduce the manufacturing cost of
the blade.

Fig. 12 compares the calculated power coefficients of both the
preliminary blade and the optimal blade, which reveals that the
power coefficient of the optimal blade has a wide “flat top”
curve, which is desirable for the wind turbine; and the power
coefficient of the optimal blade has higher value than that of
the preliminary blade with only exceptions for the tip speed
ratio between 5.4 and 7.3, which is near the design tip speed
ratio of 6.

11 — Optimial blade
1 Preliminary blade

ovs \
04 \
03

0.2

0 01 02 03 04 05 06 07 08 09 1
R

Fig. 10. Chord profiles of the optimal blade and the preliminary blade.
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Fig. 11. Twist angle profiles of the optimal blade and the preliminary blade,
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Fig. 12. Power coefficient of the optimal blade and the preliminary blade.
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Fig. 13. Rotor power output of the optimal blade and the preliminary blade.

The calculated wind turbine rotor power curves of the pre-
liminary blade and the optimal blade are shown in Fig. 13. The
outcome demonstrates that the output from the optimal blade
design is higher than that from the preliminary blade design with
only exceptions for the wind speed between 6 m/s and 7.6 m/s,
which is near the design wind speed 7 m/s. It also shows that the
top rotor power is 34.85 kW, which happens at wind speed 15 m/s
and is within the 120% overloading limit.

The calculated AEP of the wind turbine with the optimal blade
and preliminary blade is shown in Table 4. The outcome demon-
strates that there is a significant increase of the AEP of the optimal
blade design for the whole range of annual mean wind speed from
4.0 m/s to 7.0 m/s.

Table 4

AEP of the optimal blade and the preliminary blade.
AMWS  AEP (kWh)_preliminary ~ AEP (kWh)_optimal Increase rate
(m/s) blade blade
4.0 36,186 37,246 2.93%
4.5 48,828 50,285 2.98%
50 61,605 63,656 333%
5.5 74,011 76,847 3.83%
6.0 85,694 89,498 4.44%
6.5 96,408 101,348 5.12%
7.0 105,984 112,198 5.86%
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and rec

This paper presents a heuristic approach for the blade design
optimization through linearization of both the chord and twist
angle radial profiles for fixed-pitch fixed-speed small wind
turbines through the case study of a 25 kW baseline wind tur-
bine with DU93W210 airfoil. The conclusions and recommen-
dations are:

(1) Linearization of the chord and twist angle radial profiles with
fixed values at the blade tip from a preliminary blade design
offers a promising optimization strategy for FPFS wind turbine
blade design to improve power performance and reduce both
materials and manufacturing cost.

(2) With consideration of the constraints for top limit of the
maximum rotor power, an optimal blade design is achieved
through linearization of the chord and twist angle radial pro-
files with fixed values at the blade tip, and the optimal design
achieves an improvement of 3.33% higher annual energy pro-
duction than its preliminary design version at the design
annual mean wind speed 5 m/s for the case study baseline
wind turbine, with a reduced materials and manufacturing cost
for the blade, which is difficult to estimate the value at the
design stage.

(3) This method can be used for any practice of fixed-pitch fixed-
speed wind turbine blade design.

(4) This method can be used for wind turbine blade refurbishment
based on an existing baseline wind turbine, which uses the
existing gearbox and generator with fixed rotor speed.
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ABSTRACT

The aerodynanuc performance of a wind turbine depends very much on its blade geometnic design, typically based on
the blade element momentum (BEM) theory, which divides the blade into several blade elements. In current blade design
practices based on Schmitz rotor design theory, the blade geometric parameters including chord and twist angle
distibutions are determined based on airfoil asrodynamic data at a specific Reynolds number However, rotating wind
turbine blade elements operate at different Reynolds mumbers due to vanable wind speed and different blade span
locations. Therefore, the blade design through Schmitz rotor theory at a specific Reynolds number does not necessarily
provide the best power performance under operational conditions. This paper aims to provide an optimal blade design
strategy for honizontal-axis wind turbines operating at different Feynolds numbers. A fixed-pitch variable-speed (FPVS)
wind turbine with S809 airfoil 15 chosen as a case study and a Matlab program which considers Feynoelds mumber effects
15 developed to determune the optimuzed chord and twist angle distnbutions of the blade. The performance of the
optmuzed blade 15 compared with that of the prelmmary blade which 15 designed based on Schmutz rotor design theory
at a specific Reynolds number. The results demonstrate that the proposed blade design optimization strategy can improve
the power performance of the wind turbine. This approach can be further developed for any practice of horizontal axis
wind turbine blade design

Eeywords: Blade design, optimization, chord, twist angle, Feynolds number, wind turbine

1. INTRODUCTION

Blade design optimization is one of the major research and design areas for wind turbine technologies. Basically, there
are three rotor design models: Glavert model, Wilson model and Schmitz model. As an extension of Glanert model,
Wilson model includes the influence of the drag and tip loss[1]. Schmitz explained the aeredynamic design principle in a
new way and the design results of Schmitz model are coincident with those of Wilson model[2]. ALl the models caleulate
the chord and twist angle distnbutions on the basis of airfoil aeredynamic data at a specific Reynolds mumber. However,
rotating wind turbine blade elements operate at vanable Reynolds numbers due to variable wind speed and blade span
locations. This means blade design based on a specific Eeynolds number may not provide the best power performance.

The purpose of this paper is to demonstrate a heuristic approach for the blade desizn optimization for a fixed-pitch
variable-speed (FPVS) wind turbine operating at different Reynolds mumbers. The baseline wind turbine for the study is
a 25kW FPVS wind turbine with airfoil 5809 for the blade design.

In this paper, the Schmitz rotor design theory[3] is used to design the preliminary blade and a Matlab program is
developed to calculate the performance of the blade. Then the best chord and twist angle for each blade element are
optimized and determined considering the Reynelds number effects. The cnterion used for the optimization 1s the highest

anmual energy production (AEP) based on a particular wind speed Ravleigh distribution fh.le-lgh[v ). which is a special
case of Weibull distnbution. The AEP can be calculated using the following formmla[4]:

mated
fRay]eighh' H‘P) (1}

1 - . cut-out
E =8760 ~ (5 med [ V2 Cop (V) % fampiuenlV AV + By [
Where 1 is the transmission efficiency (in %) of both mechanical and electronic systems of the wind turbine, 0 is the

cut-in

air density, .4 is the swept area of the wind turbine rotor, Cpp (V) is the rotor power coefficient of the wind furbine.
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1. BASELINE WIND TURBINE INTRODUCTION

Let’s start from the baseline 25kW FPVS wind turbine. The wind furbine is designed for a specific site with anmal mean
wind speed of 6m's. The fundamental parameters of the wind turbine are listed in Table 1.

Table 1: Fundamental design parameters of the baseline 25kW wind furbine

Parameter name Vot Value
(enerator rated power output P,_ w 25000
Overall transmission efficiency 17 %o 0.86
Wind tubine rated rotor power Fyyor w 29070
Mumber of blades B 3
Rotor radius f m 75
Cut-m wind speed m's 3
Cut-out wind spead m's 16

3. BLADE DESIGN PARAMETERS
3.1 Design wind speed
According to IECG1400-2[3], the design wind speed Vduisn for a wind turbine can be estimated as 1.4 times of the
amnual mean wind speed Fyype . In this case, Fyype =0m's, therefore, I’d_s.m =84 m's. For a FPVS wind turbine,
the rated wind speed is generally equal to the design wind speed.
3.2 Rotor speed and design tip speed ratio
For most wind turbines with 3 blades, the tip speed ratio 4; at the design wind speed is in the range of 6~8[6]. In this
case, A, = 8. Therefore, the rotor speed is 85.6rpm and the blade tip speed is 67.2m/s at the design or rated wind speed.

3.3 Airfoil and design attack angle
The airfoil used for the baseline wind turbme 15 5209, and its performance 15 affected by Eeynolds mumber (Be), which is

defined by[3]:
Re=pV, ol u ()]
Where & is the air viscosity, qur is the relative wind velocity and € is the chord length of the airfoil.

Assuming the chord of the middle section of the blade is 0. 46m. the Reyneolds mumber can be calculated based on the
relative wind velocity I"',q.-, which 15 caleulated from the velocity tnangle at the muddle section of the blade. This paper

focuses on optinmzimg the performance of the blade operating between the cut-in wind speed and rated wind speed due to
we assume that the power output of the generator will remam at the rated power between the rated wind speed and cut-
out wind speed. The estmated Feynolds numbers of this wind turbine 15 m the range of 390,000~1,100,000 for wind
speed between cut-in and rated wind speed. Figure 1 depicts the CU/Cd of S800 airfoil agamst the mterested attack angles
from 0 to 20° with Reynolds number in the range of 300,000~1,200,000[7].

0
,"-_ —+—Re=310000
H F_;ia Re=500/100
i S “ﬁ —— Re=750,00
B | —=— RE=1 o0 000
d nf’ @ —B—R=1 200000
= / 2
; .

0 : C 5 >
Angle of Aitack [degrea)
Fig. 1. CV'Cd of 5809 with Fevnolds momber m the reange of 300,000~1.200,000
A moderate Beynolds mumber 15 generally chosen as the design Feynelds number for wind turbine blade design.
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Therefore, in the prelinumary design, Reynolds number 750,000" is chosen as the design Reynolds number, the Lift
coefficient 15 0.9 and maximum lift'drag ratio 15 64.7482 at attack angle 8.1°, which 1s selected as the design attack angle.

4. PRELIMINARY BLADE DESIGN

The blade geometry is divided imto 10 elements. Figure 2 and Figure 3 show the imtial chord and twist angle
distnbutions, which are obtamed with Schmtz rotor theory[3].
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Fig.2. Chord distnbution Fig 3. Twi:‘r:in,ﬂe distnbution
5. ROTOR PERFORMANCE ANALYSIS
5.1 Rotor performance analvsis ignoring Revnolds number effects

If the Reynolds mumber effects are ignored, the performance parameters of each blade element can be caleulated through
the following iterative method [3, 8]

Step 1: Guess an mitial value for the axial mduction factor @ and angular induction factor a.

Step 2: Begin the iterative solution procedure for the jth iteration of the ith blade element. For the first iteration, j =1.
Calculate the angle of the relative wind ¢, ; and tip loss factor F; ;.

Step3: Cj,; and C};, ; can be obtained from the airfoil aerodynamic model using:

& =0~ 0, (3)

where @, ; and 3” are the attack angle and twist angle at the ith blade element respectively.

Step 4: Update @ and a considering the drag effect for the next iteration.
Step 5: If the dewiation between the cwrent and previous induction factors is within an acceptable tolerance, then
calculate other performance parameters, such as ¢2; and /, ; otherwise start the procedure again from step 2.

Having cbtained the performance parameters of each blade element. the torque generated by the blade element is equal to:

1 .
dg, =BE V2 (C,sing, —C,, cosg,)crdr @

where B is the blade number, ¢, is the chord length at the ith blade element, 7; is the distance from the ith blade
element to the rotor center.

The total torque and rotor power output can be calculated from:
P=00= QZ dag, &)
f=1

where ) is the angular velocity of the wind turbine rotor.
The power coefficient can be determined by:

" The Reynolds number effects may be different if a different Reynolds number is selected in the preliminary design.
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Cp=P/(0.5% pRTY) (6

Based on the above method, a Matlab program has been developed to calculate the Cp — A curve. As shown in Figure 4,
the result from the Matlab program agrees with that from GH-Bladed software very well.

0.6
—+— (%H Bladed

E 04 EH —=—Matlsh M
% 02 "l
z
g 0 b

03 L L L L 1

4 ] a jlu] 12 14 16
Tip spesd ratio

Figd. C, — 1 curve
5.2 Rotor performance analvsis considering Revnolds number effects

Figure 4 shows that the power coefficient is related only to the tip speed ratio, which ignores the Reynolds mumber
effects. This means that if the tip speed ratio remains the same, the power coefficient will remain the same when the

wind speed varies. However, in practice this is invalid due to the fact that variable wind speed will affect the Eeynolds
nmumber, which in tumn has influence on the aerodynamic performance of the airfoil and the power coefficient of the blade.
Therefore Feynolds mumber effects should be considerad to improve the aceuracy of the blade aerodynamuc analysis.

In order to account for Beynelds number effects, another step in the iterative procedure, defined as Step 2b here, should
be added between Steps 2 and 3.

Step 2b: Calculate the relative wind speed and Feynolds mumber:
Vigsj =V(-a;;)/smo, U]
Re=oVig; il 1 @)

Apart from that, Step 3 should be changed to:
Step 3a: Use Equation (3) to calculate the attack angle.

Step 3b: Determine Cf.u and C'd.,”, through interpolation based en the aerodynamic models of the airfoil under

different Reynolds mumbers (please refer to Figure 1).

Based on the above method, the power coefficient of the blade at the design tip speed ratio & is recaleulated, as shown in
Figure 3, which indicates an apparent effect of the Reynolds mumber on the power coefficient at different wind speed.
046 - T . - .

045 E

044 i

0.43 1

Poweer cosfficiant

0427
3 4 5 [ T g a

wind spaad |miE]
Fiz 5. Power coefficient at design fip speed ratio 8 wath different wind speeds

Based on Eq.(1), the caleulated AEP which includes Beynolds mmmber effects is 92, 103kWh for anmnal mean wind speed
(AMWS) fm/'s.
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6. BLADE DESIGN OFTIMIZATION
6.1 Optimization method

The chord and twist angle distributions of the preliminary blade design are determined based on the airfoil aerodynamic
data at the specific Reynolds number 750,000 However, the operating wind furbine blade elements experience different
Reynelds numbers due to variable wind speed and different blade span locations. Therefore, the preliminary blade design
does not necessarily provide the best power performance under practical operation conditions with different Feynolds
mumbers along the blade span.

In order to find out whether a modified chord and twist angle distmbubion can make a difference on the power
performance considering the Reynoelds mmmber effects, a stop 1s defined along the chord distribution and twist angle
distnbution, as shown m Figure 6. There are two main reasons for choosing the boundanes of the stps of the chord and
twist angle distributions:
1) The preliminary blade design is already an optimal design based on Schmitz rotor design theory ignoring
Feynolds mumber effects at different blade elements. Therefore, it is believed that the best chord and twist angle
of each blade element considening Feynolds number effects should be close to the preliminary design value.

1) Apart from considering the lowest AEF, the cost of the blade manufacture should be also considered. Therefore,
the preliminary chord distribution is chosen as the upper boundary of the chord distnbution.

In order to narrow the range of the chord and twist angles for each blade element and thereby reducing the caleulation
time, the boundaries of the strips are determined by means of offsetting the preliminary chord and twist distributions, as
shown in figure 6, which are based on the following equations:

n—1 -
Cin =':C.~'_|:-_0-3)+0-3( 3 ) n=12__N=+1 ()

8, =6, —6}+12% n=12._ N+l (10)

where 7 indicates the 71 th case, ¢, and &, are the chord and twist angle at the 7 th blade element of the 7 th case

respectively. ¢, and & ; are the chord and twist angle at the 7 th blade element of preliminary blade respectively, N is
the munber of divisions.

[ s

i e —4—Prelirninary Chord o —+—Freliminary Tisl
= - i —E&—Upper Boundary T ol oa —&—Lipper Boundary
E, ™ ‘EL_\_ ——|_gwar Boundary o *, —— _graser Boundary
T os 2
= kil !
- g o Mﬁ J
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o nz2 1] o2 04 0E o0z 1
R

b) Twist Boundary

Fig. 6. Chord and twist angle boundary
Once the stip boundanes of the chord and twist angle distmbutions are defined. a Matlab program 15 dewveloped to
account for Feynolds number effects on each blade element based on the method described in section 5.2, which is then
used to calculate the performance of each combination of the chord and twist angles from the specified range. Through
searching and comparing all the combinations, the optimal chord and twist angle of each blade element can be
determined. The cnterion used for the optimization is the highest anmual energy production (AEF).

6.2 Result
Assuming the mumber of divisions N is 30 for Eq. (9) and /V is 120 for Eq. (10) results in 3751 combinations with 31
choices of chord and 121 choices of twist angle for each blade element Through companing the AEP of all the

combinations for each blade element, the optimal blade 15 deternuned. The distmbutions of the chord and fwist angle and
power coefficient of the optimal blade are depicted in Figures 8 and 9 along with the distnbutions of those of the
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preliminary blade.

Figure 7 shows that the chord distribution of the optimal design is almost identical to the preliminary design, and the
twist angle distmbution 15 shehtly improved with a reduced twist angle difference between the blade reot and blade tip.
Figure & demonstrates an apparent improvement of the power coefficient of the optimal blade comparng to the

preliminary blade.
12 =
: E\! —+— Pieliminary design —+— Pralimnary design
_ 1 —E&— Dptimal design T —E— Optimal degign |1
E s B i
= b =
5 0B \\"'xﬂ 5 10
2 E
0.4 =
i m .
o 0z 0.4 0& n.a 1 a 0.2 04 OE DE 1
'R s}
a) Chord dishibubions b) Twast distibutions
Fig. 7. Chord and twast angle distnbubons of the optimal blade and the prelimmary blade
0.48 :
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wind speed [rfs]
Fig 8. Power coefficient of the optimal blade and the preliminary blade

The calculated AEP of the wind turbine with the optimal blade for AMWS 6m's is 93 423kWh, which is 1.4% higher
than that of the preliminary blade.

7. CONCLUSIONS

This paper presents a heuristic approach for the blade design optimization for a fixed-pitch variable-speed (FPVS) wind
turbine operating at different Feynolds numbers through the case study of a 25kW baseline wind turbine with S2809
airfoil. The case study demonstrates that considering the Feynelds number effects on the aerodynamic model of the
airfoil, an optimal blade design is achieved through searching the optimal chord and twist angle for each blade element
within a specific range of options. Comparing with the preliminary blade design, the optimal design offers 1.4%
improvement of annual energy production at the design annual mean wind speed 6m/s for the baseline wind furbine.

References

1] T Guo, D. Wu, J. Xu and 5. Li, "The method of large-scale wind turbme blades design based on Matlab
programming.” 3009, pp. 1-5.

[21 L. Dong, M. Liao, ¥. Li, X Song, and K. Xu, "Study on Aercdynamic Design of Horizontal Axis Wind Turbine
Generator System.” 2009 pp. 841-844

[31 I E Manwell, J. G McGowan, and A. L. Rogers, Wind energy explained: Wiley Online Library, 2002.

[41 E. Hau, Wind turbines: fundamentals, tachnelogies, application, economics: Springer Verlag, 2006.

[51 I E. Commussion, "IEC §1400-2: Wind Turbines—Part 2: Design requirements for small wind turbines,” IEC,
2006.

[6] A, Tabesh and F. Iravani, "Small-signal dynamic model and analysis of a fixed-speed wind farm-a frequency
response approach.” Power Delivery, IEEE Transactions on, vol. 21, pp. T78-T87, 2006.

[ M. Hand, D. Simms, L. Fingersh, D. Jager, J. Cotrell. 5. Schreck, and 5. Larwood, "Unsteady aerodynamics
experiment phase VI: Wind tunnel test configurations and available data campaigns. Rapport technique,”
NEEL/TP-500-29953, National Eenewable Energy Lab., Golden, CO(US)2001.

[8] E. Bossany1, "GH bladed theory manual,” GH & Parmers Lid, 2003.

197



G5. Paper 5

Lin Wang, Xinzi Tang, and Xiongwei Liu, "Blade Design Optimisation for Fixed-Pitch

Fixed-Speed Wind Turbines," ISRN Renewable Energy, vol. 2012, Article ID 682859, 8

pages, 2012. doi:10.5402/2012/682859

198



International Scholarly Research Metwork
ISRN Renewable Energy

Volume 2012, Article 1D 682859, 8 pages
doi: 10,5402/ 301 2/68 2859

Research Article

Blade Design Optimisation for Fixed-Pitch

Fixed-Speed Wind Turbines

Lin Wang, Xinzi Tang, and Xiongwei Liu

Wind Energy Engineering Research Gro up, SrJranIaf Computing, Engineering ard PhysfmJ Sciemces,
University of Central Lancashire, Preston PRI 2HE, UK

Correspondence should be addressed to Xiongwei Liu, xlin9@udan.ac.uk
Received 7 April 2012; Accepted 4 fuly 2012
Academic Editors: A. Bosio, B. . Hyun, and Z. A. Zainal

Copyright @ 2012 Lin Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fixed-pitch fixed-speed (FPFS) wind turbines have some distinct advantages over other topologies for small wind turbines,
particularly for low wind speed sites. The blade design of FPFS wind turbines is fundamentally different to fived-pitch variable-
speed wind turbine blade design. Theoretically, it is difficult to obtain a global mathematical solution for the blade design
optimisation. Through case studies of a given baseline wind turbine and its blade airfoil, this paper aims to demonstrate a
practical method for optimum blade design of FPFS small wind turbines. The optimum blade design is based on the aerodynamic
characteristics of the airfodl, that is, the lift and drag coefficients, and the annual mean wind speed. The design parameters for the
blade optimisation include design wind speed, design tip speed ratio, and design attack angle. A series of design case studies using
various design parameters are investigated for the wind turbine blade design. The design outcomes are analyzed and compared to
each other against power performance of the rotor and annnal energy production. The design outcomes from the limited design
cases demonstrate clearly which blade design provides the best performance. This approach can be used for any practice of FPFS

wind turbine blade design and refurbishment.

1. Introduction

Wind energy has been receiving more and more attention
as one of the most viable renewable energy sources. Wind
turbine technologies have been developed to achieve better
performance for harvesting the energy in the wind in the last
two decades. One of the major R&D areas for wind turbine
technology development is blade design optimisation [1].

For small- and medium-size wind turbines, fixed-pitch
or stall-regulated horizontal-axis wind turbine is one of the
two common topologies in both research and industrial sec-
tors, and the other one is pitch-controlled wind turbine [2].

For fixed-pitch wind turbines, there are two different
rotor speed control strategies, that is, fixed speed and variable
speed [2, 3].

Due to the nature of fixed-speed control, a fixed-pitch
fixed-speed (FPFS) wind turbine uses asynchronous or
induction generator with gearbox connected to the rotor, and
the generator can be directly tied to the grid [2].

Because of the unique advantage of direct grid connec-
tion using asynchronous generators, even though with rela-
tive lower rotor power coefficient Cpy, than its variable-speed
version at wind speed away from design wind speed, there are
still much interest in both research and industrial sectors in
developing efficient wind turbines of the type [4-6].

It is obvious that the rotor design of fixed-speed wind
turbines differs from variable-speed wind turbines. There are
a few questions to ask so as to determine an optimal rotor or
blade design. What is the optimal design wind speed given
the rated power of the wind turbine and wind resources,
that is, annual mean wind speed? What is the optimal rotor
speed for the wind turbine? What is the best attack angle for
the blade design given the blade airfoil and its aerodynamic
characteristics?

Compared to variable-speed wind turbines which use
complicated converters for grid connection, fixed-speed
wind turbines have the advantageous of being simple, robust,
and reliable, well proven and of low cost [5]. Venkatesh
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and Kulkarni's research work demonstrated that with high
values of Weibulls shape parameter, FPFS wind turbines
are fairly competitive in terms of annual energy production
(AEP), which is about 88% of its variable-speed version [6].
Therefore, they are used widely in small and medium wind
energy market [7].

Blade aerodynamic design and analysis is the first step to
achieve the expected power performance. The blade design
parameters inchude airfoil shape, design attack angle, design
tip speed ratio, and rated wind speed, which are to be
considered in the wind turbine blade aerodynamic design
stage. The selection of these blade parameters is often based
on blade element momentum (BEM) theory [8].

Further blade design optimisation is essential to achieve
a better power performance. Previous research indicates that
wind turbine blade design optimisation has been carried out
based on BEM theory, generally in an iterative way [9]. Bak’s
research work on the sensitivity of key parameters in wind
turbine blade design on power performance demonstrated
that the design tip speed ratio should be between 5.5 and 8.5
depending on the airfoil performance [10].

Researchers have been trying to use advanced compu-
tational fluid dynamics (CFD) methods for wind turbine
blade design optimisation. For example, CFD was used
by Thumthae and Chitsomboon to calculate the optimal
attack angles so as to achieve maximum power outputs
for an untwisted horizontal axis wind turbine blade [11].
This is partly due to the flows passing through and around
the rotating blades tending to interact, which can only be
madelled in 3D flow domain. The other reason is that 2D
aerodynamic data from wind tunnel testing are generally not
available at high attack angles. At a high attack angle, the
flow around the airfoil starts to separate, which leads to stall.
3D CFD aerodynamic models have been therefore developed
with the aim to obtain a detailed 3D flow but have not yet
become a well-accepted engineering tool due to uncertainties
[12]. It remains a challenge to predict the stall accurately,
which is typical for FPFS wind turbines under high winds or
high attack angles. The aerodynamic behaviours of rotating
wind turbine blades at high attack angles have not been fully
understood.

Modern artificial intelligence (Al) control algorithms
are also used in wind turbine blade design optimisation.
For example, artificial neural networks were also presented
to estimate the optimal tip speed ratio for wind turbines
[13, 14]. However, the Al optimization methods are dealing
with individual design parameters, which are intertwined
and should be considered simultaneously. There is a need to
address the selection principles of these parameters before
executing blade design codes and evaluate the impacts of
these parameters on the annual energy production (AEP).

This paper aims to demonstrate a practical method
for the blade design optimisation for FPFS wind turbines
through a 10 kW wind turbine blade design case study using
airfoil DU93W210 based on maximum AEP for low wind
speed sites and, in particular, to highlight the importance of
selection of the design wind speed, design tip speed ratio, and
design airfoil attack angle for the optimum blade design.

ISEN Renewable Energy

In this paper, we put together different design cases of
the wind turbine blade and we use the Schmitz rotor theory
[8] to estimate the shape of blades. Then, we use GH-
Bladed [15] to calculate the performance of these blades. The
modelling of rotor aerodynamics provided by GH-Bladed
is based on the blade element momentum (BEM) theory
[8]. The criterion for the optimisation used in this paper is
the highest AEP based on a particular wind speed Weibulls
distribution.

This paper is structured in the following way. For a com-
prehensive understanding of the methodology, we briefly
summarize the AEP calculation in Section 2. The baseline
wind turbine is then introduced in Section 3. The design
parameters are discussed in Section 4. Section 5 details the
case studies with findings. Section 6 concludes the paper with
recommendations.

2. Annual Energy Production Calculation [16]
2.1. Wind Turbine Generator Power. The power output of a

wind turbine generator can be expressed as

P= lF’}CPRP!‘V]. (1

2
where x is the transmission efficiency of the wind turbine,
including both mechanical and electrical efficiency, Cpg is the
rotor power coefficient of the wind turbine, Cp = §Cpg is
the power coefficient of the wind turbine, p is the air density,
A = mR? is the rotor swept area, and v is the wind velocity.

2.2, Wind Speed Weibulls Distribution. The wind power
density is given by

1

P = ?p'ﬁ. (2)

The annual mean wind power density can be expressed as

— 1 1

- 3
P =3P % goep * .I-,m“”' (3)

Considering the natural wind speed frequency distribution
throughout the year, that is, Weibulls distribution:

kiv k-1 ¥ k
st =5(2) e (-(3)')
where k is the shape parameter and a is the scale parameter,

which depends on the wind resource of the site. The charac-
teristics of wind resources differ from site to site.

Then, we have the annual mean wind power density:

(4)

P = 20 fucbute(¥). (5)

If the shape parameter is unknown, the calculation of
the AEP for a wind turbine should be based on Rayleigh
distribution, which assumes a shape parameter of k = 2 in
‘Weibulls distribution:

II’,.I-!
Fraicgh(¥) = %%exp(—%?). (6)
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TaBLE 1: Basic design parameters of the base-line 10 kW at 9m/s
wind turbine.

Generator rated power output P, 10000 W
Transmission efficiency § 0.85%
Wind turbine rated rotor power Prosr 1765 W
Number of blades B 3
Rotor diameter 2.0m
Here, 7 is the annual mean wind speed (AMWS):

e )

V= 8760 Js Jweibulis v)dv.

2.3. Annual Energy Production. The AEP for a wind turbine
for a specific site can be expressed as

I cut owt
E = 8760 % E:;p.-tJ' V' Cpn(v) ¥ faaegnlv)dy, (8
cut in

where Cpg(v) is the rotor power coefficient of the wind
turbine, which is a complex function of the wind speed (or
tip speed ratio) for a fixed-pitch fixed-speed wind turbine.

3. Baseline Wind Turbine

Let us start from the baseline 10kW at 9m/s fixed-pitch
fixed-speed wind turbine with a 4-pole asynchronous gen-
erator. The basic parameters of the wind turbine are listed in
Table 1.

4. Design Parameters

4.1. Rotor Speed. Due to noise issue for small- and medium-
size wind turbines, which are generally installed close to
properties, the wind turbine blade tip speed should not
exceed 70 m/s.

For variable-speed machines, a high blade tip speed, such
as between 65m/s and 70m/s, is normally considered, so
as to achieve high rotor power coefficient Cpy and wind
turbine power performance [10]. However, for fixed-speed
machines, we should address the blade tip speed carefully.

Consider the operation wind speed from 3 m/s to 20 m/s
and define the blade tip speed 68 mJs, then the tip speed ratio
A in the operation wind speed range varies from 22.667 to
3.4, This basically means at low wind speed, such as at 5 mJ/s,
A = 13.6, the rotor power coefficient Cpg will be very low
[8]. If we define blade tip speed 40 m/s, then the tip speed
ratio A in the operation wind speed range varies from 13.333
to 2. Then at wind speed 5m/s, A = 8, which is likely to
exhibit much better performance for sites with low annual
mean wind speed.

Therefore, let us first consider three blade tip speeds
40 m/s, 50 m/s, and 60 m/s, which correspond to rotor speeds
84.883 rpm, 106.103 rpm, and 127.324 rpm, respectively.

CyCa

2 4 [ & 10 12 14
Angle of attack (deg)

— e = 400000

Frgune 1: Lift/drag ratio of airfoil DU93W210 at Re — 400,000

4.2, Airfoil and Design Attack Angle. The airfoil used for
the baseline wind turbine is DU93W210. The airfoil perfor-
mance is affected by Reynolds number, which is defined by
[8]:

pUL

Re = —,
&= (9

where, in terms of wind turbine airfoil, p is the air density, u
is the air viscosity, U is the relative wind velocity, and L is the
chord length of the airfoil.

Generally, the Reynolds mumber of each blade section
is not exactly the same. By means of estimation using the
method provided by Singh et al. [17], the Reynolds number
of each blade section is between 3 % 10° — 5 10° for this wind
type turbine. To simplify the design process, we choose the
Reynolds number 4 x 10° as the design Reynolds number.
The aerodynamic performance of DU93W210 airfoil at
different Reynolds numbers can be calculated using XFoil
software, which is widely used to design and analyze airfoils
|18]. Figure 1 depicts the lift/drag ratio of the airfoil against
the interested attack angles from 0 to 13°.

The maximum lift/drag ratio is C/Ca = 88.72 at attack
angle ap = 6.0°,

For the design cases, we offset one design attack angle
on both side of the attack angle o = 6.0° with maximum
lift/drag ratio, with a step of 0.5% in between, and the three
design attack angles are g = 5.5%, ap = 6.0°, and ap = 6.5°.
Table 2 lists their C, Cy, and Cy'C.

4.3. Design Wind Speed and Rated Wind Speed. Different to
variable-speed machines, there are two sets of wind speed we
should consider for fixed-speed machine, that is, maximum
power coefficient wind speed and rated wind speed V9. We
call the former the design wind speed Vawign, which means
at this wind speed, the rotor power coefficient Cpg achieves
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TanLE 2: Design attack angles and aerodynamics characteristics of
DU93W210 airfoil.

g () G G CCa
55 1129 0.0128 £8.20
6.0 1180 0.0133 B8.72
6.5 1.219 0.0144 B4.65

TagLe 3: Design tip speed ratio A, for the chosen blade tip speeds
and design wind speeds.

40 m/s 50mfs 60m/s
5.5m/s 7.273 S.091 10.909
6.5m/s 6.154 7.692 9231
7.5m/s 5.333 6.667 8
B.0m/s 5 6.25 15
B.5m/s 4.706 5.882 7.059
9.0m/s 4.444 5.5356 6667
TasLE 4: Design blade tip speed.

=5 l=6 lo=7 =8 L-=-9 Al-10
5.5m/s 38.5 44 495 55
6.5m/s 39 45.5 52 585 65
75mfs 375 45 525 &0 675
B.0m/s 40 48 56 64
Bim/s 425 51 50.5 ]
9.0m/s 45 54 63

its maximum value. At the rated wind speed V.4, the rotor
power achieves its nominal power output.

In terms of the Rayleigh distribution of wind speed, wind
turbine blade design should try to focus on the best power
performance at prevailing wind speed range. For sites with
low wind speed, the prevailing wind speed varies between
4m/s and 8 m/s.

Therefore, let us consider the design wind speeds Vieign
at 5.5 m/s, 6.5 m/s, 7.5 m/s, 8.0 m/s, 8.5 m/s, and 9.0 m/s.

Then, we have the design tip speed ratio Ay in terms of the
blade tip speeds in Section 4.2, which are listed in Table 3.

Now we have 18 different blade tip speed ratios listed in
Table 3. Obviously there is no point to consider all of them.
Let us choose 5, 6, 7, 8, 9, and 10 as the design tip speed
ratio Ay for the design cases, then we have 18 combinations
of design cases with three attack angles (as listed in Table 2).

For the operation, let us consider the combinations of tip
speeds listed in Table 4.

Take the example of 15 = 5, at design wind speed 7.5 m/s,
the tip speed is 37.5m/s, there are three design cases with
ap = 5.5%, ao = 6.0°, and an = 6.5%, respectively.

During the design exercise, we should make sure
that the maximum rotor power output does not exceed
11,765 W*120% = 14,118 W. We are designing a 10 kW wind
turbine, the maximum overloading to the generator is 120%,
and we should rule out any case with maximum rotor power
output over 14,118 W. Otherwise, we are not talking about
10kW wind turbine. Additionally, with this approach, the
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Rastar power outpat (W)

Hub wind speed (my/s)

—— aS5nafvs5s —— aS5naivBD
—— aSonafwes —— aSonaivis
—— a55narfv7s —— aS5Snaivel

Froune 2: Rotor power output based on ap - 5.5" and A, - 7.

rated wind speeds will result from further calculation and
analysis.

5. Design Case Studies

5.1. With Different Design Wind Speeds. Let us first consider
design attack angle ap = 5.57 and design tip speed ratio
Ap = 7. Using GH-Bladed we can calculate the rotor power
for design wind speed Viesn = 55m/fs, 6.5m/fs, 7.5mfs,
8 m/s, and 9 m/s, respectively, as depicted in Figure 2.

In Figure 2, for the expression “a®**na*v**", “a” rep-
resents attack angle, a55 means an = 55%; “na” represents
design tip speed ratio, na¥ means Ay = 7 “v” represents
design wind speed, v35 means Vyuge, = 5.5m/s.

Figure 2 reveals that design wind speed Viugn = 5.5m/s
and Vygen = 6.5m/fs are too low for the wind turbine
because the wind turbine rotor cannot achieve expected rotor
power output 11,765 W for the whole operation wind speed
range. Also, when the design wind speed is above 8.5m/s,
the rotor power output exceeds the rated power too much
and therefore is not a valid design as well. We should only
consider design wind speed between 7.5-8 m/s.

Figure 2 also reveals that with higher design wind speed,
the rotor exhibits higher power output when the wind speed
is higher than about 8 m/s; however, the rotor exhibits lower
power output when the wind speed is lower than about
8 m/s. Figure 3 enlarges the figure section for the wind speed
between 3-8 m/s. This figure also indicates that higher design
wind speed means higher cut-in wind speed.

Figure 4 shows the annual energy production (AEP) for
annual mean wind speed (AMWS) from 3.5 m/s to 8 m/s, and
Figure 5 enlarges the figure section for AMWS between 3.5—
4.5m/s.

Figures 4 and 5 reveal that with higher than 4.5m/s
AMWS, higher design wind speed exhibits higher AEP
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Rator power output (kW)

Hub wind speed (m/s)

—— abhmaivss —— aSSna7val
—— aS5naivis —— aSSpalves
— aS5pavis —— aSSpa7vel

Ficure 3: Rotor power output based on @ - 5.5° and A, - 7 for
wind speed between 3-8 m/s.

AET (IWh)

45 5 55 & 6.5 7
Anmal mean b wind speed (mJs)

—— aS5naivTs
—— aSsnarvid

Figuee 4; AEP based on o = 5.5 and A, = 7 for AMWS between
15-8mis.

However when the AWMS is less than 4.5m/s, things are
different. Generally when the AMWS is less than 4.5m/s,
wind energy project should not be considered. Therefore,
we can conclude here that design wind speed 8 m/s exhibits
better power performance than design wind speed 7.5 m/s.

5.2. With Different Design Artack Angles. Now let us consider
different design attack angles by keeping design wind speed
Viesign = 8m/s and design tip speed ratio 1y = 7. Figure &
depicts the rotor power performances of this set of design
cases.

L

AEP (KWh)

0.4 H H H H H H H H H H
34 35 36 37 38 3% 4 401 42 43 44 45
Annual mean hub wind speed (mJs)

—— absnaiv7s
—— abbna7vild

Froure 5: AEP based on ag - 5.5° and Ay = 7 for AMWS between
3.5-4.5mfs

Rotor power output (KW

Hub wind speed (m/s)

—— ab5maTval
—— ablnaTvil
—— ab5na7val

Figune 6: Rotor power output based on Vg = 8m/sand A, = 7.

Similar to Figure 2, in Figure 6, for the expression
“a***na*v**7, “a” represents attack angle, a55 means o, =
5.5% “na” represents design tip speed ratio, na7 means Ao =
7; "v" represents design wind speed, v80 means Vi, =
8.0m/s.

Figure 7 shows the annual energy production (AEP) for
annual mean wind speed {AMWS) from 3.5 m/s to 8 m/s.

Figures 6 and 7 demonstrate that oy = 5.57 exhibits better
power performance than a; = 6.0° and @, = 657, even
though the maximum lift/drag ratio appears at attack angle
ag = 6.0°
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Figure 7: AEP based on Vieye — 8m/fs and d; - 7 for AMWS
between 3.5-8m/s.
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5.3. With Different Design Tip Speed Ratio. Now let us
consider different design tip speed ratio by keeping design
wind speed Vg = 8 m/s and design attack angle ag = 5.5°.
Figure 8 depicts the rotor power performances of this set of
design cases.

Similar to Figure 2, in Figure 8, for the expression
“a***na*v**", “a” represents attack angle, a55 means ay =
5.5%; “na” represents design tip speed ratio, na7 means 14 =

7; “v” represents design wind speed, vB0 means Viegn =
8.0m/s.
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Ficure %: Rotor power output based on Vg, — 8m/s and @, -
5.5 for wind speed between 3—6 m/s.
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Ficure 10: AEP based on Vg = 8m/s and ay = 5.5° for AMWS
between 3.5-8 m/s.

Figure & demonstrates that with higher design tip speed
ratio, the rotor exhibits higher power output when the wind
speed is higher than about 7 m/s; however, the rotor exhibits
lower power output when the wind speed is lower than about
7 m/s. Figure 9 enlarges the figure section for the wind speed
between 3—6 m/s. This figure also shows that higher design
tip speed ratio means higher cut-in wind speed.

Figure 10 shows the annual energy production ( AEP) for
annual mean wind speed (AMWS) from 3.5 m/s to 8 m/s, and

Figure 11 enlarges the figure section for AMWS between 3.5—
7.0 m/s.
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Figure 11: AEP based on Vyegn — 8 m/s and ap - 5.5% for AMWS
between 3.5-7.0m/s.

Figures 10 and 11 reveal that with higher than roughly
6.35mfs AMWS, higher tip speed ratio exhibits higher
AEP. However when the AWMS is less than approximately
6.35 m/s, higher tip speed ratio exhibits lower AEP. At sites
in rural areas in the UK, the AMWS is unlikely to be
above 6.35m/s at the hub height for a 10 kW wind turbine.
Therefore, a low tip speed ratio should be considered, such
as Ag = 5-6if the AMWS is between 5 m/s and 6 m/s.

6. Conclusions and Recommendations

Through case studies, this paper demonstrates a practical
selection method for determining the optimum blade design
parameters, that is, design wind speed, tip speed ratio, and
attack angle, for a fixed-pitch fixed-speed small wind turbine
with a given baseline wind turbine and its blade airfoil. The
conclusions and recommendations are as follows:

(1) the best design attack angle for fixed-pitch fixed-
speed wind turbine is not necessarily the angle with
the maximum C/Cy. For the design case, the best
attack angle is @y = 5.5° even though the maximum
C1/Cq appears at the attack angle aq = 6.0%;

(2} the design wind speed should be considered carefully
for a baseline wind turbine with fixed-pitch fixed-
speed control strategy. If the design wind speed
is too low, the wind turbine rotor cannot achieve
expected rotor power output for the whole operating
wind speed range. If the design wind speed is too
high, the wind turbine rotor exceeds the rated power
too much. For the design case, design wind speed
Vdesign = 8 m/s exhibits best performance for any site
with annual mean speed above 4.5 m/s;

(3) in terms of design tip speed ratio for a fixed-pitch
fixed-speed wind turbine, low tip speed ratio is

recommended when the annual mean wind speed is
low. However, high tip speed ratio yields more energy
when the annual mean wind speed is high. For the
design case, Ay = 5-6 should be considered if the
annual mean wind speed is between 5 m/s and 6 m/s;

(4) this method can be used for any practice of fixed-
pitch fixed-speed wind turbine blade design;

(5) this method can be used for wind turbine blade
refurbishment. Due to use of the existing gearbox
and generator, the rotor speed is fixed, and there is
very limited space to change the rotor diameter and
blade tip speed. Therefore, when selecting the design
attack angle, design wind speed and design tip speed
ratio according to the findings of this paper, the above
constraint should be considered.
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