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Abstract 

 

Carbene intermediates can be generated by thermal, photochemical and transition metal 

catalysed processes from diazoalkanes.1 The carbene intermediates are very reactive and can 

add across double bonds to give 3–membered rings (cyclopropanes),2 insert into –OH bonds 

to give esters3 or ethers4 and insert into neighbouring –C–H bonds to give 4 or 5–membered 

rings, such as β– and γ–lactams5,6 or γ–lactones.7 Copper salts and complexes were amongst 

the first catalysts to be used for carbene generation from diazoalkanes.8 However, current 

tendencies are to use very expensive, especially, platinum group salts and complexes to 

generate the carbene intermediates, as yields and specificity tend to be higher.2,9 We have 

found that Cu2+–exchanged clay minerals (e.g. Wyoming bentonite) and zeolites (zeolite A), 

have proven to be very competitive in yield with such transition metal catalysts and they have 

the added advantage that the restricted reaction space within the zeolite pore or clay interlayer 

favours the more planar/less bulky product. With the clay minerals, when the layer spacing is 

kept low by judicious choice of mineral or solvent, the selectivity is improved. 

 

Herein we report a wide range of carbene addition (cyclopropane formation) and –C–H 

insertion reactions (β–lactam, γ–lactam and–lactone formation) catalysed by the Cu2+–

exchanged clay minerals and the stereo–chemical consequences of carrying out the reactions 

within the clay interlayer. Preliminary studies on the successful formation of aziridines from 

azides via nitrene intermediates with Cu2+–exchanged clay minerals are also reported. 
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 Chapter: General Introduction 

 

 Background 

Clays and modified clay minerals are layered materials and zeolites are cage structures with 

molecular sized pores. These minerals are used widely as catalysts for numerous synthetic 

organic reactions10 such as diazotisation reactions,6 formation of ethers, esters, lactones and 

cyclic anhydrides, synthesis of heterocyclic compounds and for several named reactions, e.g. 

aldol condensation, Michael addition, Diels-Alder reaction and Friedel-Crafts alkylation and 

acylation.11 Most of these catalytic reactions are carried out either in the interlamellar region 

of the clay minerals12 or within the pores of the zeolite and, due to steric constraints, they 

often prefer to proceed via less bulky intermediates to produce stereo- and regio-specific 

products.13,14 

 

 

 Aims of the research 

By exchanging the usual sodium or calcium ions present in between the aluminosilicate layers 

of clay minerals or within the pores of zeolites, for low valent transition metals, such as Cu2+ 

or Rh2+, a catalytic site highly restricted in size and shape can be produced. This leads to the 

possibility that, due to steric constraints, the less bulky isomer should be formed in these 

molecular dimension regions. Thus, chemical reactions carried out in these restricted 

environments would prefer to proceed via less bulky intermediates or transition states.12,15 

 

Thus, the main aims of this project were: 

i. To catalyse novel organic synthesis by generating reactive intermediates, such as 

carbenes (formed from diazoalkanes) or nitrenes (formed from azides), within the 

interlamellar region of a cation–exchanged clay mineral or zeolite pore. 

ii. To utilise the ability to modify the interlamellar distance of clay minerals to help control 

the regio- and stereo-chemical outcome of reactions carried out within the clay layers 

compared to free solution, i.e. reactions via less bulky intermediates should be more 

favoured within the restricted interlamellar region of the clay. 
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iii. To create a chiral environment within the clay interlamellar region to improve the 

enantioselectivity of asymmetric synthetic chemical reactions. 

 

The project was begun by generating carbene intermediates, catalytically, within the 

interlayer region or pore region of a cation exchanged clay mineral or zeolite. Since these 

aluminosilicate catalysts can have shape and size selectivity,12 they can be used to control the 

stereochemical outcome of organic reactions. This follows on from previous work in the 

group on clay mineral catalysed Diels-Alder reactions where a larger proportion of the less 

bulky, but less kinetically favoured exo-isomer can be produced within the clay catalyst.12 We 

are interested in using these carbene intermediates in the syntheses of molecules related to 

β-lactam antibiotics and pyrethrin pesticides; syntheses that proceed mainly through carbene 

generation in the interlayer or pore region, followed by cyclisation reactions, to produce 

regio–isomers of potentially biologically active chiral compounds. 

 

β-Lactams have been generated by intramolecular carbene insertion reactions by the action of 

transition metal catalysts (e.g. Cu2+) on diazoalkanes.1 Similarly, these reactive intermediates 

can also be trapped by alkenes to give cyclopropanes and this has been used to produce 

chrysanthemic acid derivatives that are precursors of pyrethrin pesticides.2 This 

cyclopropanation reaction is one of the most important transformations in organic synthesis, 

because of its versatile applications in natural product synthesis.2 

 

 

 Clay minerals as catalysts 

Clay minerals are useful for laboratory and industrial catalysts with excellent product, regio- 

and stereo-selectivity10,15 and as heterogeneous catalysts they have distinct advantages over 

homogeneous catalysts because of easy workup of the reaction mixture, i.e. the clay mineral 

catalyst can be removed easily. Clay minerals are layered silicates, which were found to be 

crystalline by X–ray diffraction studies.16,17 Clays and clay–supported chiral metal complexes 

have been used in asymmetric synthesis as they can absorb one enantiomer from a racemate 

differentially or absorb enantiomers equally from a non–racemic mixture; of which bentonite 

(montmorillonite) is found to be the best example.18 Initially, research on catalysis with clay 

minerals concentrated on either cation exchange of the clay to increase Brønsted or Lewis 
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acidity, or activation of the clay by treatment with strong acid,10,15 but more recent 

publications19 show the use of clay catalysts in redox processes, generation of reactive 

intermediates such as carbenes,20 carbocations, carbanions and also as supports for metal salts 

and complexes.21 

 

 

 Structures of clay minerals 

Clay is a term used in mineralogy to describe inorganic materials in the soil that have a 

particle size of less than 2µm.22 They are also classed as layered silicates or phyllosilicates.16 

Clay minerals are mainly made–up of two distinct building blocks (Figure 1): tetrahedral 

(mainly SiO2) and octahedral (mainly Al2O3, but possibly MgO). The tetrahedra usually have 

silicon in the centre surrounded on four corners by oxygen atoms, whilst the octahedra 

usually have six oxygen atoms or hydroxyl groups surrounding an aluminium or magnesium 

ion at the centre. 

 

Silica tetrahedra    Alumina octahedra 

    

 (Tetrahedral sheets)    (Octahedral sheets) 

 

Figure 1 The tetrahedral silica sheet and octahedral alumina sheets of clay minerals. 

 

In the clay minerals the tetrahedral sheet is comprised mainly of silica tetrahedra, while the 

octahedral sheets consist of aluminium, magnesium or iron oxides/hydroxides. The basic 

lamellar structure of clay minerals is obtained through combination of the tetrahedral and 

octahedral sheets by sharing oxygens between the sheets. Different clay minerals are formed 

by having different combinations of these two units (e.g. 1T : 1O or 2T : 1O) and by 
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substituting one cation for another. The interlamellar region is usually hydrated. Some typical 

compositions of the most common minerals are: 

1. Illite [K1.6Si6.4Al5.6O20(OH)4] + (H2O)x 

2. Vermiculite [Mg6.6Si6.8Al1.2O20(OH)4] + (H2O)x 

3. Montmorillonite [Na0.6Al3.4Mg0.6Si8O20(OH)4] + (H2O)x 

4. Hectorite [Li1.0Mg5.5Si8O20(OH)4] + (H2O)x 

 

Most naturally occurring clay minerals have layer charges due to isomorphous substitution,23 

which is the “substitution of one atom by another of similar size in the crystal lattice without 

changing the crystal structure of the mineral”.23 Isomorphous substitution of Al3+ for Si4+ in 

the tetrahedral layer or of Mg2+ for Al3+ in the octahedral layer results in a net negative charge 

on the clay sheet.23,24 This negative charge is neutralised by cations (e.g. Na+, K+, Ca2+ or 

Mg2+) in the interlamellar region that separates adjacent layers of platelets. This structure 

(Figure 2) makes montmorillonite chemically stable. 

 

 

 

Tetrahedral layer 

Octahedral layer 

Tetrahedral layer 

 

Interlayer space 

Containing water and 

solvated, exchangeable  

cations (Na+, K+, Mg2+, Ca2+) 

 

 

Figure 2 The basic structure of montmorillonite,17,25 a T: O: T dioctahedral 

arrangement with water and aquated cations in the interlayer space. Where 

d is the interlayer space. 

 

The specific characteristics of a montmorillonite vary due to: the size of the surface negative 

charge; where the charge resides (i.e. mainly on the tetrahedral or octahedral layer) and what 

interlayer cations are present. The natural cations can be exchanged for more useful cations 
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that can increase the catalytic activity of the mineral. Where Δd is the distance between the 

two layers of the clay mineral. 

 

 

 Acid activation of clay minerals 

Smectite (swelling) clays are often treated with a strong mineral acid (acid activated)22 to give 

materials of high surface area (increasing from ca. 60 m–2g–1 to ca. 300 m–2g–1), which have 

excellent activity as adsorbents26 and catalysts.27 The process of acid activation is quite severe 

(> 5 mol dm–3 hot mineral acid for several hours) and destroys the bentonite layer structure as 

it removes iron, aluminium and magnesium from the octahedral layer. Most of the edges of 

the bentonite clay particles become very disordered by the replacement of exchangeable 

cations Al3+ and H+–cations, which was shown by Scanning Electron Microscopy (SEM).28,29 

The characteristic surface properties of clays have long been used in bleaching and other 

adsorptive processes. For such purposes, individual clays possess widely differing 

properties.30 Acid–treated bentonites were once important catalysts in catalytic cracking,31 but 

they have now been superseded by zeolites. Another application of acid–activated clays is as 

a developer for carbonless copying paper,28 which requires a high brightness of the material. 

Acid activation improves the brightness mainly by removal of structural Fe3+-cations, which 

usually cause the clay to be a grey or yellow colour. 

 

Bentonite and Sepiolite types of clays have been studied intensively since they have catalytic 

and adsorptive properties. Some of the adsorptive properties of bentonite include the removal 

of a number of chemical species: e.g. amines (e.g. desorption of cyclohexylamine and 

pyridine from an acid-treated Wyoming bentonite),32 organic pigments (e.g. adsorption of β-

carotenes form acetone solution on modified bentonite),33 cations (Ni, Zn), phenols and 

ketones34 and pesticides.35 Sepiolite, a Mg silicate, because of its strong adsorbing power, has 

been used as a deodorant36 and to adsorb methylene blue,37 ammonium cations and 

ammonia,38 tetrahydropyran, tetrahydrofuran and 1,4-dioxane.39 The desorption of 

tetrahydropyran, tetrahydrofuran and 1,4-dioxane from Na+, Ca2+, Al3+ and Cr3+-exchanged 

montmorillonite has been studied using variable temperature infrared spectroscopy and 

thermogravimetric analysis.39 
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 Structures of zeolites 

Zeolites are framework aluminosilicates with accessible molecular size pores. Generally, Si4+ 

ions in the framework are replaced by Al3+ cations, which cause the framework to have a 

negative charge that is neutralised by exchangeable cations such as Na+, K+ or Ca2+ in normal 

usage.40 We were interested in two types of zeolites, 4A molecular sieves and ZSM-5, for this 

project. 

 

Type A molecular sieves have the cage structure shown in Figure 341 and 4A molecular sieves 

have the approximate elemental composition: Si Al Na O4,
42 as ca. half of the Si4+ cations in 

the framework have been replaced by Al3+-cations giving a negative charge that is neutralised 

by Na+. Typically, 4 Na+ cations reside in the opening of the 7.4 Å pores reducing the 

accessible pore diameter to ca. 4 Å (Figure 3).41 

 

 

 

Figure 3 Structure of zeolite A showing positioning of Na+ cations in 4A molecular 

sieves.41 (red, Si and blue, Al) 
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The ionic radius of 6-coordinate Na+ is 1.02 Å,43,44 giving a diameter of 2.04 Å plus the co-

ordinated waters, which reduces the accessible pore diameter to about 4 Å. However, only 

two Cu2+ cations will be required in the pore entrance, due to the 2+ charge, and the diameter 

of 6 co-ordinate Cu2+ is 1.46 Å plus co-ordinated waters.43 Thus, assuming that the Cu2+ 

cations will be as far apart as possible, the pore “entrance” should become a slot with 

maximum width 7.4 Å, but reduced to about 5 Å in “height”, thus giving a size restriction of 

about 5 Å for the smallest dimension of an isomer that might migrate out of the Cu2+-

exchanged A zeolite. 

 

ZSM-5 zeolite has the structure shown in Figure 4 with pore diameters of 5.4 Å,45 but as the 

Si/Al ratio is generally kept to 50-200, the effects of different cations on pore diameters 

should be minimal. 

 

 

 

Figure 4 Pore structure of ZSM-5.45,46 
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 Clay minerals as catalysts in synthetic organic reactions 

 Ether formation 

Primary alcohols 2 react with terminal alkenes 1 (e.g. 1-hexene) slowly at 150°C to form 

2-alkyl 3 and 3–alkyl ethers 4 in the presence of M3+- or M2+-exchanged montmorillonites 

(e.g. aluminium cation-exchanged montmorillonite) via rearrangement of the secondary 

carbocation intermediate (Scheme 1).47 These reactions are not truly catalytic as the interlayer 

water cannot be replenished effectively without reducing the acidity of the clay too far. 

 

 

 

Scheme 1 Formation of ethers in the presence of Al3+-cation-exchanged 

montmorillonite. 

 

M2+-exchanged clay minerals show some catalytic activity for this reaction, whilst 

M+-exchanged clays are essentially unreactive, thus confirming that the Brønsted acidity of 

the clay minerals is mainly due to dissociation of water molecules in the hydration sphere of 

exchangeable interlayer cations (Scheme 2).15 

 

 

 

Scheme 2 Dissociation of water molecules in the hydration sphere of the interlayer 

exchangeable cations. 

 

R' OH
M3+-clay

R

O R'

R

O R'

R
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[M(OH2)n]
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When isobutene 5 is reacted with methanol in the presence of clay minerals exchanged with 

different interlamellar cations, methyl tertiary-butyl ether (MTBE) 6 is produced in > 50% 

yields with trivalent (e.g. Fe3+, Cr3+ or Al3+) exchanged cations (Scheme 3). With acid-

activated clay catalysts (e.g. K-10, KSF and K306 from Süd Chemie) > 50% yield was 

obtained with K-10, KSF clays and low yields were obtained with K306 with monovalent or 

divalent interlamellar cations. Because of the greater polarising power of trivalent cations the 

interdependence of the acidity of the interlayer water48 and the Al3+-interlamellar cations gave 

high yields in K-10 or KSF, but low yields in K306, possibly due to the presence of 85% 

silica in this highly acid activated material. 

 

 

 

Scheme 3 Formation of methyl tertiary-butyl ether 6 from isobutene 5 and methanol 

in the presence of acid catalysts. 

 

When the same reaction was performed with different solvents such as tetrahydrofuran, 

1,4-dioxane, n-pentane, diethylene glycol, diethyl ether, N-methylmorpholine and 

1,2-dimethoxyethane; different yields were obtained. This illustrates the important role of the 

solvent in determining the distribution of reactants and products that can be formed either in 

the interlamellar region, if it is accessible, or outside the clay if not. n-Pentane gives low 

yields as the interlayer regions become inaccessible as the interlayer distance becomes very 

small and reactions occur predominantly on the outer surface. In contrast, it was found that 

solvents that caused higher interlayer spacing, as determined from X-ray diffraction data, also 

gave low yields. This is a result of a balance of two effects: (i) more coordinating solvents 

tend to push the layers apart, thus making the interlayer cations more accessible; however, (ii) 

these more coordinating solvents reduce the acidity of the protons present in the interlayer 

resulting in slower reactions. 

 

CH3OH
O

H

5 6 7 8
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Equimolar amounts of glycerol 9 with benzyl alcohol 10 were reacted in the presence of 

different ZSM-5 type catalysts (Table 1), to give mixtures of monobenzyl glyceryl ethers 11 

and 12, dibenzyl glyceryl ethers 13 and 14 and dibenzyl ether 15 (Scheme 4). The yields of 

monobenzyl glyceryl ether, dibenzyl glyceryl ether and dibenzyl ether vary with a series of 

ZSM-5 type catalysts having different pore sizes and SiO2 to Al2O3 ratios (Table 1).49 

 

 

Scheme 4 Catalysed reaction of glycerol 9 with benzyl alcohol 10.49 

 

Table 1: Zeolite catalysed etherficaton of glycerol with benzyl alcohol 

Type of catalyst Pore size  

(Å) 

SiO2/Al2O3 Yield % of  

11 & 12 

Yield % of  

13 & 14 

Yield % of 

15 

Beta type 7 75 24 5 3 

ZSM-5 type  5 80 57 1 2 

ZSM-5 type  5 30 80 <1 <1 

ZSM-5 type  5 50 86 <1 <1 

 

The results from the Table 1 showed zeolite catalysts were effective for the synthesis of 

monobenzyl glyceryl ethers, formed more than 95% selectivity, especially using ZSM-5 type 

with (SiO2/Al2O3 = 30 and 50, respectively) target compounds 11 and 12 were obtained in > 

80% yields; when compared to ZSM-5 (SiO2/Al2O3 = 80) which gave only 57% of the target 

compounds 11 and 12. With the increase in ratio of SiO2 to Al2O3 the hydrophilicity of the 

surface of ZSM-5 also increases. The results from Table 1 shows that both the pore size and 

hydrophilic-lipophilic surface of zeolites will govern the selectivities and yields of reaction 

products. 

 

 

HO
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 Synthesis of heterocyclic compounds 

Dihydrothiazines such as 18, synthesised from thioamide 16 and α,β–unsaturated ketone 17 in 

the presence of acid catalysts,50 are important in the synthesis of cephalosporin antibiotics. 

Similar types of reactions in toluene with Al3+–, Cr3+– or Fe3+–exchanged montmorillonites as 

a catalyst, also gives dihydrothiazines (Scheme 5).50 

 

 

Scheme 5 Synthesis of dihydrothiazines from thioamides and α,β-unsaturated 

ketones. 

 

From the literature,51 formation of 3-substitiuted isoquinolines 19 was catalysed by clay 

mineral supported transition metal catalysts (AgI–K10 clay)51 at 100°C in DMF for 6 h 

(Scheme 6).52 Control experiments showed that no desired product was obtained in the 

absence of clay catalyst at room temperature, or even at 100°C. Reactions were carried out at 

different temperatures (50, 75 and 100°C), with the optimum yield at 100°C. The use of K10 

clay had several advantages, like ease of handling, non-corrosiveness and low cost. 

 

 

 

Scheme 6 Synthesis of 3-substitiuted isoquinolines in the presence of AgI–K10 clay 

catalyst. 
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A further example, employing microwave irradiation of a mixture of α–tosyloxyketones 21 

and thioamides 22 in the presence of montmorillonite K-10 clay gave bridgehead thiazoles 23 

(3–aryl–5,6–dihydroimidazo[2,1–b][1,3]thiazoles) (Scheme 7);53 a method that is easy and 

quick, when compared to conventional methods of synthesis, which are normally difficult, 

require a longer heating time and employ highly active α–haloketones54 or 

α-tosyloxyketones55 under strongly acidic conditions. The reactions of tosyloxyketones with 

ethylenethioureas remain incomplete on heating in an oil bath (conventional method); 

whereas, in a microwave–accelerated method using montmorillonite K-10 clay as adsorbent 

and catalyst, the reaction completed within a very short time scale (~3 min) with excellent 

yields.53 

 

 

 

Scheme 7 Preparation of bridgehead thiazoles using montmorillonite K-10 clay. 

 

Various proportions (0.25, 0.50 and 0.75 x CEC) of organic amines adsorbed on Al-PILC 

catalysts56 have been used to catalyse the reaction of aromatic aldehydes 25 with 

ortho-phenylenediamine or ortho-aminothiophenol 2457 to form benzimidazole 26 and 

benzothiazole derivatives 27 (Scheme 8). In the synthesis of benzimidazole and benzothiazole 

derivatives there is an influence of number and size of the pillars in the interlayer region, 

which influenced the cation exchange capacity (CEC) of the clay mineral. 
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Scheme 8 Synthesis of 2-arylbenzimidazoles and benzothiazoles catalysed by 

diethylamine supported on Al-pillared clay.56 

 

 

 Formation of aziridine derivatives 

Dibromo compounds 28 react with primary aliphatic amines 29 in the presence of bentonite 

clay catalyst as a solid support under solvent–free conditions to give functionalised aziridine 

derivatives58 30 and 31 (Scheme 9).59 Microwave irradiation or classical heating methods 

both accelerated the aziridine formation.58,60 

 

 

 

Scheme 9 Synthesis of aziridines using bentonite. 

 

From the literature,61 when ethyl diazoacetate 33 with Schiff bases 32 reacted in the presence 

of montmorillonite K-10 as catalyst at room temperature for 2 h formed cis-aziridines62 34 in 

high diastereoselectivity (>99%) and excellent yields (82–91%) (Scheme 10). It has showed 
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that K-10 was the best catalyst among the several other acid catalysts, such as H4W12SiO40, 

Nafion-H, Amberlist-15, and Nafion-H on silicon, in achieving the highest 

diastereoselectivity. 

 

 

 

Scheme 10 cis-Aziridine formation from imine 32 and ethyl diazoacetate 33 using 

montmorillonite K-10 as catalyst. 

 

 

 Acid catalysed Pinacol-rearrangements 

On heating, tertiary 1,2–glycols 35 (e.g. 2,3–diphenylbutan–2,3–diol) undergo acid catalysed 

Pinacol–rearrangement to give two ketones63 37 and 38 in preference to simple dehydration 

36. The Brønsted acidity of montmorillonite clays is suitable for catalysing this 

rearrangement and excellent results were achieved.64 

 

The selectivity of reaction of 2,3–diphenylbutan–2,3–diol 35 adsorbed in the interlayer space 

of layer silicates (homoionic montmorillonites) has been reported and also by thermal 

treatment,65 pinacol rearranges quantitatively to pinacolone in the intracrystalline 

environment of these solids, the reaction being clearly preferred to the intramolecular 

dehydration. In the same way, 2,3–diphenyl–2,3–butanediol gives two ketones, the reaction 

being also different from that taking place in homogeneous conditions. The extent and the 

selectivity of both reactions have been correlated with the acidity of the interlayer cations 

(Scheme 11). 
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Scheme 11 Pinacol rearrangement of 1,2–diols in the presence of Ca2+-montmorillonite 

and in homogeneous conditions (DMSO).65 

 

Various catalysts such as acidic zeolites, heteropoly acids, metal oxides and cation exchanged 

clays are the most well-known heterogeneous catalysts for the direct acylation. In organic 

synthesis out of various solid acid catalysts employed in organic synthesis, acidic clays are 

the most efficient because of their abundant availability and easy modification.66 

 

 

 Aldol reactions 

Condensation reaction of glycol aldehydes to monosaccharaides (mainly hexoses) in the 

presence of Na+ montmorillonite as catalyst occurs by an aldol process.67,68 Similarly, 

Al3+-exchanged montmorillonites catalyse the cross–aldol addition of silylenol ethers 40 to 

aldehydes 39, ketones or acetals,69 for example, silyl ketene acetals and carbonyls give 

3-silyl-ether esters 41 (Scheme 12).70 

 

 

 

Scheme 12 Cross-aldol reaction of silylenol ethers with ketones in the presence of Al3+-

clay. 
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 Cycloaddition reactions (Diels-Alder reaction) 

Diels-Alder reactions, such as cyclodimerisation of oleic acid with acid-activated clays, is an 

industrially important reaction.71 Another example of a Diels-Alder reaction catalysed by a 

clay mineral,72 is the dimerisation of 1,3-butadiene s-cis 42 and s-trans 42 and in the presence 

of Cu+-montmorillonite at 100ºC to form vinyl cyclohexene 43 (Scheme 13). 

 

 

 

Scheme 13 Cyclodimerisation of 1,3-butadiene with Cu+-acid–activated clay. 

 

 

 Stereochemistry of Diels-Alder reaction, formation of endo-46 and exo-47 

products 

A modest degree of selectivity for the less bulky isomer has been observed in Diels-Alder 

reactions catalysed by transition metal cation-exchanged clay minerals at ambient temperature 

in a variety of solvents.73,74 In the Diels-Alder reaction, α,β–unsaturated carbonyl compounds, 

such as methyl vinyl ketone, methyl acrylate and methyl methacrylate were used as the 

dienophile and cyclopentadiene, furan, pyrrole or cyclohexa–1,3–diene were employed as the 

diene. 

 

Cu+-montmorillonite

100ºC

1,3-butadiene, 42 (s-cis & s-trans)

43
s-cis s-trans
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For example, when cyclopentadiene 44 reacts with methyl vinyl ketone 45 catalysed by 

various clay minerals (e.g. Cr3+-Tonsil 13, montmorillonite), a mixture of endo-46 and exo-47 

isomers was obtained (Scheme 14) that differed from that in free solution. e.g. 9 : 1 With 

Cr3+-Tonsil 13 clay compared to 19 : 1 in free solution.12 

 

 

 

Scheme 14 Diels-Alder reaction of methyl vinyl ketone 45 with 1,3-cyclopentadiene 44 

in the presence of cation exchanged clay mineral. 

 

The preferred formation of the endo-isomer 46 in uncatalysed reactions at room temperature 

is explained by the more favourable secondary orbital overlap interactions that occur in the 

transition state (Figure 5) during formation of the endo-isomer 46 when compared to the 

exo-isomer 47. 
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Figure 5 The transition states for the formation of endo- 46 and exo-isomers 47 in a 

Diels-Alder reaction.12 

 

The ratios of the endo- 46 to exo- 47 isomers could be changed by manipulation of the 

inter-layer reaction space of the clay catalyst. Lowering the basal spacing, Δd, gave increased 

selection for the kinetically less favoured, but less bulky, exo-isomer 47. A small increase in 
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exo-isomer selectivity was observed with solvents that reduced the interlayer spacing, e.g. see 

Table 2. 

 

Table 2 Effects of various solvents on the Cr3+-exchanged clay catalysed Diels-Alder 

reaction of 1,3-cyclopentadiene with methyl vinyl ketone.12 

 

Solvents % Yield in 

20 min 

endo– : exo– 

isomer ratio 

 Δd/Å 

Dichloromethane 92 8.5 : 1  6.8 

Chloroform 58 7.0 : 1  7.5 

Benzene 87 9.0 : 1  8.7 

Chlorobenzene 92 9.1 : 1  7.7 

Tetrachloromethane 90 9.2 : 1  7.5 

 

Increasing the layer charge72 of the Cr3+-exchanged mineral decreased the endo : exo ratio, 

for example: Tonsil-13 montmorillonite (layer charge 0.37) gave an endo : exo ratio of 9 : 1, 

Brett’s Fullers earth (layer charge 0.60) gave 6 : 1 and the most spectacular result was 

obtained with a synthetic expanding vermiculite (layer charge 0.65), which gave 2.5 : 1. 

 

 

 Stereo–control of Diels-Alder reactions in clay minerals 

Diels-Alder reactions75 between various dienes and dienophiles have been catalysed by a 

montmorillonite supported chiral amine catalyst, (5S)-2,2,3-trimethyl-5-phenylethyl-4-

imidazolinone hydrochloride with good yields and high enantiomeric excess (ee) values 

compared to the reaction carried out with the non-supported organo-catalyst. The cations 

present in between the interlayer space of a Na+-montmorillonite 48 were replaced with the 

chiral amine 49,75 thus forming an effective cationic chiral organo catalyst 50 (Figure 6) for 

carrying out asymmetric Diels-Alder reactions. 
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 48 49 50 

 

Figure 6 Ion exchange of chiral amine catalyst75 with Na+-montmorillonite. 

 

The reaction of cyclohexa-1,3-diene 51 with acrolein 52 in the presence of the chiral 

amine-montmorillonite in acetonitrile at room temperature with stirring for 48 h afforded a 

yield of 82% and a high enantioselectivity (endo = 92% ee, 96 : 4 endo-/exo- isomers) of the 

enantio-enriched cycloaddition products endo- 53 and exo- 54 (Scheme 15). This result was 

slightly lower than that obtained when employing the homogeneous organocatalyst (82% 

yield, endo = 94% ee, 93 : 7 endo-/exo- isomers).76 

 

 

 

Scheme 15 Asymmetric Diels-Alder reaction catalysed by a chiral organoclay. 

 

The chiral amine-montmorillonite appears to expand the interlayer space75 of the 

montmorillonite by acting as a macro counter anion with low nucleophilicity which entraps 

the organic molecules while maintaining its natural catalytic activity. The chiral catalyst was 

readily reusable without any decrease in activity or enantioselectivity. 
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 Carbenes 

Carbenes are uncharged, divalent and highly electron deficient species since the carbene 

carbon has only 6 electrons in the valence shell, making the carbenes highly electrophilic 

species. Carbenes can be divided into two classes based on the electronic spins, the first one 

is a singlet state and the second one is a triplet state. 

 

Singlet carbene: 

 

In singlet carbenes77,78 the two non-bonded valence electrons on the electron-deficient carbon 

are in the same orbital and they are spin antiparallel giving rise to a diamagnetic, trigonal 

planar, sp2 hybridised intermediate with, bond angles of 103º (Figure 7). 

 

 

 

Figure 7 sp2-hybrid structure of singlet state. 

 

Triplet carbene: 

 

In triplet carbenes78 the two non-bonded valence electrons on the electron deficient carbon are 

in different orbitals, they have either bent or linear structures with sp2 or sp hybridised 

carbons. Most of the carbenes have a non-linear triplet ground state; however, those with 

heteroatoms such as oxygen, nitrogen, sulfur or halides directly bonded to the divalent carbon 

are linear. Triplet carbenes are paramagnetic diradicals, whose spin can be observed by 

electron spin resonance spectroscopy.79 In the triplet methylene, for example, the bond angle 

is 125-140º (Figure 8).80 
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Figure 8 sp–hybrid structure of singlet state. 

 

 

 Generation and reactions of carbenes from diazoalkanes 

Carbenes can be generated by various methods based on elimination or fragmentation 

reactions. They mainly involve the breaking of rather weak bonds and the formation of a 

small thermodynamically stable by-product, such as dinitrogen, from diazo compounds such 

as ethyl diazoacetate 33 (EDA). Diazo compounds were first prepared by Theodor Curtius81 

in 1883 and they have become widely used precursors in synthetic chemistry. Diazo 

compounds are unstable and sensitive to light and heat and because of their toxic and 

explosive nature they should be handled with care. They possess an essentially 1,3–dipolar 

structure (Scheme 16) and are easy to prepare using the diazo transfer reactions from 

arenesulfonyl azides.82 

 

 

 

Scheme 16 1,3–Dipolar nature of the diazo group indicating the possibility of 

resonance stabilisation. 

 

Both thermal and photochemical generation of carbenes produce high energy intermediates, 

leading to unselective reactions.83 The stability of various diazo compounds depends on the 

substituents present. Resonance stabilisation of the carbene by electron withdrawing groups 
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such as esters can give a more stable intermediate leading to a modest degree of selectivity in 

reactions.84 

 

Under the influence of transition metal catalysts, diazo compounds generate carbene 

intermediates easily, eliminating dinitrogen as a by-product. Initially, copper powder or 

copper salts were used for such purposes,85,86 but more recently there has been greater usage 

of the highly expensive platinum, rhodium or ruthenium complexes for generating the 

carbene intermediate.87 For example, the use of dirhodium(II) tetraacetate, catalysed carbene 

C-H insertion reactions at room temperature, or slightly above, by Demonceau et al.,88,89 was 

a proven breakthrough for selectivity, for example the reaction of ethyl diazoacetate 33 with 

alkanes 55, 59 and 64 (Scheme 17). 

 

 

 

Scheme 17 The reaction of ethyl diazoacetate 33 with alkanes 55, 59 and 64 in the 

presence of dirhodium(II) tetraacetate. 

 

The carbene intermediates generated from these transition metals are not in the free carbene 

state, but the carbenes are coordinated to the transition metal and are often referred to as 

metallocarbenes or carbenoids, which are usually represented by a ligand, L, containing a 

formal metal–carbon double bond. Transition metal carbenes possess the same electron 

deficient nature as free carbenes and can undergo the same types of chemical reactions, but in 

a more selective manner. 
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 The Bamford–Stevens reaction 

Diazo compounds which are unstable and low molecular weight are often better used as 

precursors for carbene generation.90 For example, the simplest way of preparing diazo 

precursors is from hydrazines90 (formed from ketones) in the presence of oxidants such as 

mercury(II) oxide (HgO),90 or lead(IV) acetate (Pb(C2H3O2)4).
90,91 

 

The most widely used carbene precursors are tosylhydrazones which can be prepared readily 

from aldehydes or ketones by reaction with 4-toluenesulfonyl hydrazide.92 The 

tosylhydrazone, 67, on removal of the acidic –NH proton with a base such as sodium 

methoxide or sodium hydride, gives the tosyl hydrazine sodium salt 68, which can be 

isolated.93 The tosyl hydrazine sodium salt, under photochemical or thermal conditions, 

generates the carbene intermediate, 69 as shown below (Scheme 18).94 

 

 

 

Scheme 18 Bamford–Stevens reaction: formation of carbenes 69 from tosylhydrazones 

67. 

 

 

 Carbene generation via Ketenes 

Diphenylketene 70 was the first ketene prepared95 and characterised by Hermann Staudinger 

in 1905.95 The preparation involved the reaction of 2–chlorodiphenylacetyl chloride 71 with 

zinc (Scheme 19). 
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Scheme 19 Diphenylketene 71 formation from 2–chlorodiphenylacetyl chloride 70 in 

the presence of zinc. 

 

Diphenylketene 71 undergoes thermolysis with loss of –CO to form diphenyl carbene 72, 

which then cyclises forming fluorene 73 (Scheme 20).95 

 

 

 

Scheme 20 Diphenylketene cyclisation to form fluorene. 

 

Ketenes, however, are not readily available precursors and they can easily polymerise under 

the reaction conditions, so are not common precursors for carbenes. 

 

 

 Generation of carbenes from ylides 

Ylides96 are species that consist mainly of a positively charged heteroatom (e.g. X+ = N, P, S 

or SO) linked to a carbon atom possessing unpaired electrons. 
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Ylides can undergo useful synthetic transformations97 where they can react in a similar 

manner to diazo compounds. 

 

Phosphorus and sulfur ylides are well-known reagents in synthetic chemistry and they can 

react with carbonyl compounds to form alkenes (the Wittig reaction) and epoxides, 

respectively; while, reaction of the carbene with a second mole of ylide will produce 

dibenzoylethylene 76, which can subsequently combine with either 74 or 75 to produce 

cyclopropane 77.96 

 

 

 

Scheme 21 Photolysis of a sulfur ylide forming cyclopropanes through a carbene 

intermediate 75. 

 

Photolysis of ylide 74 in the presence of an alcohol and cyclohexene produced the bicyclic 

cyclopropane 81, confirming that the reaction was proceeding via carbene intermediate 75. 

Irradiation in ethanol gave an approximately 48% yields of three volatile products and 

40-45% yield of 78. The volatile materials were recognised as ethyl phenylacetate 78, 

acetophenone 79 and propiophenone 80 (Scheme 21).96 
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 Generation of carbenes from epoxides and cyclopropanes 

The three membered rings of epoxides and cyclopropanes have steric strain and a high ground 

state energy, e.g. epoxide 82 can decompose to give carbene intermediate 83 simply on 

photolysis or heating with formation of the thermodynamically stable fragment, benzaldehyde 

84 (Scheme 22).98 

 

 

 

Scheme 22 Carbene generation from an epoxide 82. 

 

Synthesis of an arylcarbene from an epoxide is rarely used.99 Similarly, the products 86 and 

87 formed from cyclopropane 85 decomposition are the reverse of the formation of 

cyclopropane from carbene and alkene (Scheme 23).96 

 

 

 

Scheme 23 Carbene generation from cyclopropane 85. 

 

 

 Generation of carbenes from heterocyclic compounds 

On irradiation or heating, five membered heterocyclic compounds,100 decompose to 

carbenes,101 e.g. carbene 89, can be formed by extrusion of thermodynamically stable 

fragments like ester 90. For example 1,5-dihydro-1,3,4-oxadiazoles 88 decompose at about 
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80ºC with loss of dinitrogen followed by the carbonyl fragment to give carbenes 89 (Scheme 

24). 

 

 

 

Scheme 24 Decomposition of five–membered heterocyclic compounds 88 to carbenes 

89. 

 

 

 Generation of carbenes by α-elimination 

α-Elimination is one of the most important routes for generating carbenes. In the early 1950s, 

Hine and co-workers102 investigated the mechanism of the hydrolysis of chloroform 91 under 

basic conditions, with the formation of carbon monoxide 95 and formate 96 as side products. 

Kinetic studies showed the mechanism for carbene formation involves the rapid formation of 

the stabilised dichloromethyl anion 93, then the rate determining loss of chloride by 

α-elimination (Scheme 25), followed by trapping of the carbene by the aqueous solvent to 

give the hydroxy carbene 94, which eliminates to 95 and 96. 

 

 

 

Scheme 25 Generation of carbenes by an α-elimination reaction. 
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 Stereochemistry of catalytic carbene insertion reactions and examples 

In synthetic chemistry, a general method for making carbocycles and heterocycles is by 

metal-catalysed decomposition of diazocarbonyl compounds103 forming a new 

carbon-carbon bond which relates directly to the level of site-(regio) selectivity in the 

carbon-hydrogen insertion reactions.104 

 

For example, the diazo ketone 97, catalysed by dirhodium(II) tetraacetate, undergoes efficient 

cyclisation since the methylene C-H and carbenoid centre were in close proximity, so 

producing cyclopentanone 98 (Scheme 26).104 

 

 

 

Scheme 26 Dirhodium(II) tetraacetate catalysed C-H insertion in steroid synthesis.104 

 

Taber,105 has shown the high yield formation of cyclopentanes from long chain diazo ketones 

catalysed by dirhodium(II) tetraacetate and this author also described the reactivity order of 

insertions to be: 3° C -H > 2° C-H > 1° C-H (Scheme 27). 

 

 

 

Scheme 27 Dirhodium(II) tetraacetate catalysed synthesis of cyclopentanes. 
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In a similar way, Stork showed that the regioselectivity of cyclopentane formation can be 

modified by the electronic effects of both electron withdrawing (EWG) and electron donating 

(EDG) groups in a molecule (Scheme 28).83,106 

 

 

 

Scheme 28 Conversion of α-diazocarbonyl ester 105 to cyclopentanone 107. 

 

In 1982, Doyle,107 explained that the reactivity of chemically inequivalent C-H bonds 

equidistant from the diazo group (from which a carbene is generated) of α-diazoesters will 

produce different isomeric ratios with the stereoselectivity depending on steric, 

conformational and electronic factors in the molecule (Figure 9). 

 

 

 

Figure 9 Steric and electronic effects with electron withdrawing and electron donating 

groups present on the molecule.107 
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change on the carbene carbon is an alternative way of altering the electronic character of the 

intermediate. For example, the less electron withdrawing groups tend to make diazo 

compounds more unreactive to metal-carbene formation, even though once formed the 

intermediate exhibits an increased stability and selectivity (Figure 10)105,106 

 

 

Figure 10 Stability and selectivity in the presence of electron withdrawing groups.105,108 

 

In a similar manner, intramolecular bond formation in α-diazoacetamides has also shown 

various electronic and conformational effects (Scheme 29). 

 

 

 

Scheme 29 General scheme for β-lactam 110 and γ-lactam 109 formation from 

α-diazoacetamides 108. 

 

One of the most important factors in determining the chemo- and regio-selectivity in the 

intramolecular insertion reactions of α-diazoacetamide is the α-substituent,109 which controls 
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group adjacent to the diazo group makes the molecule less reactive towards metal-carbene 

formation.110 For example, when dirhodium(II) tetraacetate is used as catalyst with 

N-benzyl-N-tert-butyldiazoacetoacetamide 111 (R=CH3CO), which has a (more stable) 

α-substituent, it afforded the trans-β-lactam 112 exclusively,108 whereas carbene addition to 

the aromatic ring 113 was the only product observed when the deacylated substrate 111 

(R=H) (less stable) was treated with Rh2(OAc)4 (Scheme 30). 

 

 

 

Scheme 30 Effect of the α-substituent on product selectivity in the presence of a 

dirhodium tetraacetate. 

 

Studies reported in the literature109 on a sequence of diazoacetamides with different 

substituents on the carbene carbon atom emphasise the α-substituent influence on the 

regioselectivity.109 Higher selectivity towards γ-lactam 119 formation was obtained when less 

electron-withdrawing substituents were attached to the carbene carbon atom 117 (Scheme 

31). 

 

 

 

Scheme 31 α-Diazoacetamides forming β-lactam and a γ-lactam in the presence of 

dirhodium tetraacetate.108 
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Since the benzene sulfonyl group is less electron-withdrawing than its carbonyl counterpart, 

which stabilises the electrophilic carbenoid carbon, thereby causing the insertion reaction to 

proceed through a relatively late transition state with the PhSO2 substituent 117, thus forming 

the -lactam ring 119 exclusively. 

 

Nonetheless, as Jung et al.,111 and Afonso et al.,112 have rationalised on the basis of the 

existing literature,104 the enhanced regioselectivity observed for both α-diazoacetamides (R = 

COCH3, R’ = t-Bu and R = CO2CH3, R’ = PMP (p-methoxyphenyl)) result from a 

combination of conformational and stereoelectronic effects (Scheme 32). The carbene 

electrophilicity appears to be of pivotal importance; presumably because the –C-H insertion 

proceeds via a later transition state due to the extra stabilisation added by the phenylsulfonyl 

and phosphoryl moieties, which are not as electron-withdrawing as their carbonyl counterpart 

in α-diazoacetamide. 

 

 

 

Scheme 32 Favoured transition state forming γ-lactam 122. 

 

Scheme 33 shows the N-substituent effect, which has a greater influence on the chemo-, 

regio- and stereo-selectivity111 of the -C-H insertion processes than electronic factors,104 for 
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125, despite the fact that the β-lactam results from the insertion into a more activated C-H 

bond. 

 

 

 

Scheme 33 The effect of the N-substituent on the insertion reaction in the presence of 

dirhodium tetraacetate. 

 

 

 Stereochemistry of catalytic carbene addition reactions 

In carbene addition reactions, the stereochemistry depends mainly on whether the addition to 

alkenes occurs via singlet or triplet spin state carbenes. The orbitals involved in the 

cyclisation are shown in Figure 11. 

 

 

 

Figure 11 Proposed intermediates of HOMOolefin and LUMOcarbene molecular orbitals 

involved in the determination of the stereochemistry of addition of triplet 

carbenes to alkenes. 

 

Alkenes react with singlet carbenes in a concerted fashion with retention of the alkene 
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through a concerted transition state involving the empty carbene p-orbital with the filled 

π-orbital of the double bond. The “non least motion” approach leads to a favourable 

molecular orbital interaction between LUMOcarbene and HOMOolefin (The “least motion” 

approach leads to destabilising MO interaction). 

 

 

 

Figure 12 Proposed diradical intermediates involved in the determination of the 

stereochemistry of addition of triplet carbenes to alkenes. 

 

In contrast, alkenes react with triplet (i.e. diradical) carbenes in a stepwise fashion resulting in 

the loss of alkene stereochemistry in the cyclopropane product (Figure 12).115 In 1966 Nozaki 

and co-workers116 described the asymmetric catalytic93 decomposition of ethyl diazoacetate in 

alkenes as solvent/reactant using a soluble chiral copper(II) complex 126 to give optically 

active cyclopropanes 127 and 128 with small enantiomeric excesses (Scheme 34); the 

intermediate being a chiral carbene-copper complex.117 
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Scheme 34 Asymmetric catalytic decomposition of ethyl diazoacetate 33 with styrene 

87 in the presence of chiral copper(II) complex. 

 

This showed the possibility that both yield and selectivity can be improved by using suitable 

ligands, an excess of styrene to diazoacetate and by slow addition of the diazoacetate. Using 

lower concentrations of alkenes or a faster addition rate of the diazoacetate leads to increased 

formation of carbene dimers (diethyl fumarate and diethyl maleate). 

 

The other example for cyclopropane formation is by reacting alkenes with diazoacetate 33 by 

using metal organic framework (MOF)117 materials that contain either copper [Cu3(BTC)2] or 

gold IRMOF-3-Si-Au centres with diazoacetate (IRMOF: Isoreticular Metal Organic 

Framework). This is the first example using MOF materials to induce a carbene transfer 

reaction from a diazo compound (Scheme 35). 
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Scheme 35 MOF materials containing either Cu or Au centers used as catalysts for the 

cyclopropanation of alkenes with ethyl diazoacetate. 

 

 

 

Figure 13 Crystal structure of the [Cu3(BTC)2] MOF.117 

 

Figure 13 shows the typical structure of a MOF material; the (BTC = benzene-1,3,5-

tricarboxylate) structure comprises two types of “cage” and two types of “window” that 

separate these cages. 9 Å windows with a square cross-section interconnect the large cages 
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and these cages are also connected to tetrahedral-shaped pockets of approximately 6 Å 

through triangular-shaped windows of approximately 4.6 Å. 

 

By using Cu3(BTC)2 as catalyst, styrene 87 was converted almost completely into 

cyclopropanecarboxylate with high yield (98%) and ca. 70% trans-selectivity. The 

selectivities for a cyclic olefin (cyclohexene 131) and a terminal alkene (DMHD 133) were 

found to be very high (ca. 100%), but with low yield (60%) compared to styrene for the 

DMHD. However, when using IRMOF-3-Si-Au solid catalyst at room temperature, 

conversions of up to 42% were obtained for the cyclopropanation of styrene with EDA; this 

MOF was also an active catalyst for the cyclopropanation of a variety of alkenes with EDA 

(Table 3). It appears that gold-containing MOFs can also be an interesting solid catalyst for 

cyclopropanation reactions, although the activity is lower than for the copper containing 

MOF. Thus activity of the catalyst appears to be due to mainly: 

 

1. The availability of significant numbers of accessible sites due to the open MOF crystal 

structure (Figure 13). 

2. The reversible coordination of organic linkers with the metal atom and 

3. The influence of the electrostatic field in the cavity by the partially charged framework. 

 

Table 3 Cyclopropanation of alkenes with a [Cu3(BTC)2] and IRMOF-3-Si-Au based 

catalysts with EDA. 

 [Cu3(BTC)2]  IRMOF-3-Si-Au  

Alkenes Yield 

[%]a 

d.r 

[%]b 

Yield d.r 

[%]b 

Styrene 87 98 71 42 54 

β-methyl styrene 129 50 67 40 59 

Cyclohexene 131 99 98 50 100 

DMHD 133 60 100 25 100 
[a] Yield of cyclopropane; the remaining diazo compound was converted into coupling products. 

[b] Diastereomeric ratio: trans/cis. 

 

These materials have been shown to be good heterogeneous catalysts with good yields and 

very high chemo- and diastereo-selectivities (Table 3) which is due to the high surface area 

inside their pores and their tunable structures (Scheme 35). 
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 Nitrenes 

Nitrenes are six electron, neutral, monovalent, highly reactive nitrogen intermediates and 

were first suggested by Tiemann in 1891118 as intermediates in the Lossen 

rearrangement119,120 and subsequently adopted by Curtius to explain various reactions of 

azides.120 The chemistry of nitrenes closely parallel that of the carbenes in virtually all 

respects. Like carbenes, nitrenes can also have two spin states depending on whether the two 

non-bonding electrons have their spins paired (singlet) or parallel (triplet) (Figure 14). 

 

 

 

Figure 14 Hybrid structures of nitrene molecule. 

 

 

 Generation of nitrenes 

Nitrenes can be generated by methods that parallel those used for carbene generation, for 

example, from: azides (c.f. diazoalkanes), isocyanates (c.f. ketenes), ylides and by 

α-elimination from certain heterocycles.121,122 

 

 

 From azides 

The most widely used precursors for nitrene generation are azides. They are similar to diazo 

compounds as they have a linear 1,3–dipolar structure (Scheme 36)122 and can be prepared 

readily by introduction of the N3
– ion from inorganic salts such as sodium azide.121 
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Scheme 36 1,3–Dipolar nature of azides. 

 

The thermal stability of the azides depends upon the substituent on the nitrogen. The loss of 

nitrogen in azide reactions is rate determining being largely interdependent of the nature of 

the solvent and the concentration of any other compounds present.123 Whereas most azides 

decompose thermally in the 100-200ºC range, some are much less stable, particularly those in 

which the loss of nitrogen can be assisted in some way (Scheme 37).123 

 

In some reactions, nitrenes are not involved in product formation, for example in the facile 

formation of anthranils 139 from ortho–azido aromatic ketones 138,124 the reaction proceeds 

by an electrocyclisation followed by loss of nitrogen.125,126 

 

 

 

Scheme 37 Decomposition of an ortho–substituted aromatic azide 138. 

 

 

 Via isocyanate-type molecules 

The formation of nitrenes by elimination of –CO to form aryl isocyanates on heating would 

be analogous to the high temperature formation of carbenes from ketenes and once again an 

unfeasible synthetic method since the process is energetically unfavourable.127 The related 

N-thionylaniline 141 (Ar–N=S=O), which can be prepared readily from anilines 140 and 
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thionyl chloride, decompose much more readily to nitrenes 142 thermally with extrusion of 

(-SO) (Scheme 38).127 

 

 

 

Scheme 38 Formation of an aryl nitrene from a N-thionylaniline. 

 

 From ylides 

The phosphorus and sulfur ylides of nitrogen are known as iminophosphoranes and 

iminosulfuranes (sulfimides) respectively.128 Nitrenes can be generated from both of these 

ylides by irradiation. For example, photolysis of the S,S–dimethyl sulfimide derived from N–

phenylbenzamidine 143 (X = SMe2) gives a high yield of 2–phenylbenzimidazole 148 which 

proceeds through cyclisation of an intermediate imidoylnitrene 147, forming an aromatic 

ring.129 Thermolysis of the corresponding nitrogen–nitrogen ylide 144 (X = NMe3), (an 

aminimide) gives the same product (Scheme 39), as does photolysis of 1,5–diphenyltetrazole 

145 and 3,4–diphenyl–1,2,4–oxadiazol–5–one 146,130 strongly suggestive of a common 

nitrene intermediate 147. 

 

 

Scheme 39 Cyclisation of imidoylnitrene generated from different precursors. 
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 Nitrene formation from various heterocycles 

Five–membered heterocyclic rings, including those with aromatic stabilisation, which are 

able to undergo fragmentation with extrusion of carbon dioxide (–CO2) or nitrogen (–N2) 

from the five-membered heterocyclic rings, can decompose readily to give nitrenes on 

irradiation or vapour phase thermolysis, e.g. 1,4,2–dioxazol–5–ones 149 (Scheme 40) lose 

carbon dioxide on heating or irradiation to form acylnitrenes 150. Other examples involving 

tetrazoles131 or an oxadiazolone120 are also known. 

 

 

 

Scheme 40 Nitrene formation via decomposition of 1,4,2–dioxazol–5–ones. 

 

Dibenzothiophene N-substituted sulfilimines 151 have the ability to act as photochemical 

nitrene sources in the presence of several trapping reagents, such as sulfides, olefins, or 

phosphorus compounds.132 In these reactions, the corresponding imino–transfer compounds, 

namely sulfilimines 153, aziridines 154 and iminophosphoranes 155, were formed in good 

yields, indicating that dibenzothiophene N-tosyl and N-acyl sulfilimines can be good nitrene 

sources (Scheme 41).132 
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Scheme 41 Generation of nitrenes by the photolysis of N-substituted 

iminodibenzothiophene. 

 

 

 Nitrene formation by α-elimination 

As in carbene chemistry, elimination reactions in nitrene chemistry are less significant in their 

synthetic usefulness. A few substrates, such as N,O–bis(trimethylsilyl)hydroxylamines 157 

(Figure 15),133 can undergo thermal α-elimination. 

 

 

 

Figure 15 N,O-bis(trimethylsilyl)hydroxylamine. 
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nitrogen. Since N–halo compounds are often unstable and are prone to radical and ionic 
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(RNHOSO2Ar); this type of reaction is best known for (ethoxycarbonyl)nitrene. By using an 
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product distribution is obtained as with thermolysis or photolysis of C2H5CO2N3 159 (Scheme 

42).134,135 

 

 

 

Scheme 42 Generation of (ethoxycarbonyl)nitrene 160 by α-elimination. 

 

 

 Stereochemistry of nitrene addition reactions 

The chemistry of nitrenes closely parallels that of carbenes in virtually all aspects. Like 

carbenes, nitrenes may also consist of two spin states depending on whether the two 

non-bonding electrons have their spins paired or parallel.136 The energy difference between 

the singlet and triplet states is usually much larger for nitrenes than for carbenes, being 

estimated at 145 kJ mol–1 for nitrene (–NH) itself compared with 32–42 kJ mol–1 for 

methylene (-CH2).
137 In the most simple linear imidogen nitrene (:N-H), out of six available 

electrons two form a covalent bond with hydrogen, two of them form a free electron pair and 

the remaining two electrons occupy degenerate p orbitals. The low energy form of the 

imidogen, which is consistent with Hund's rule, is a triplet with one electron in each of the p 

orbitals and the high energy form is the singlet state with an electron pair filling one p orbital 

and the other one vacant. The main factor is that the nitrogen is more electronegative than 

carbon and therefore holds its electrons closer to the nucleus, which favours the singlet state. 

The nature of the substituents on the nitrogen will affect both the multiplicity and the normal 

electrophilic reactivity of nitrenes, thus strong donorsubstituents like amino groups 

stabilise the singlet state significantly causing the nitrene to exhibit nucleophilic 

character.138The stereochemistry of addition of nitrenes to alkenes to form aziridines 
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depends very strongly on whether the singlet or triplet states are involved (Figure 16). Singlet 

states tend to favour cis-addition, while triplet states require spin inversion to occur and this 

delay allows rotation giving both cis- and trans-addition. 

 

 

 

Figure 16 Stereochemistry of nitrene cycloaddition reactions. 

 

Catalytic nitrene formation is useful in aziridine synthesis (Scheme 43). Aziridine 162 can be 

formed from phenylsulfonyl azide 161 and styrene 87 in the presence of the copper catalysts, 

copper(II) chloride or Cu(acac)2, with 4A molecular sieves as a co-catalyst which also helps 

in the removal of water molecules to maintain dry reaction conditions.139 

 

 

 

Scheme 43 Formation of aziridine by utilising copper catalysts Cu(acac)2 and CuCl2. 
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Aziridine 162 can be formed in the presence of the copper catalysts: copper chloride and 

Cu(acac)2, using 4A molecular sieves as a co-catalyst for reacting phenylsulfonyl azide 161 

with styrene 87. Benzaldehyde was observed as a by-product in these aziridination reactions. 

Residual water in the reaction mixtures, added with the solvent could hydrolyse the nitrene 

donor to iodosylbenzene and this is most likely to provide the pathway for the benzaldehyde 

by-product formation. 4A Molecular sieves as a co-catalyst will help in reducing the 

formation of by-product by absorption of water molecules. 

 

  

 

Scheme 44 Formation of aziridine by utilising copper catalyst (Cu(OTf)2) and chiral 

ligand. 

 

Similarly, formation of aziridine 164 in the presence of copper catalysts from styrene 87 with 

copper-exchanged zeolite Y (CuHY) or copper(II) triflate (trifluoromethanesulfonate) 

(Cu(OTf)2 can be carried out using PhI=NTs 163 as nitrene donor (Scheme 44).140 

 

The heterogeneous catalyst, CuHY, is found to give enhanced enantioselection for a range of 

bis(oxazolines) when compared to the homogeneous catalyst; the effect is considered to be 

due to the confinement of the catalyst within the micropores of the zeolite. With CuHY as 

heterogeneous catalyst high ees were obtained in acetonitrile solvent. 
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Initially, we will examine the stereochemical consequences of carrying out the synthesis of: 

 

i. β-lactam rings in compounds similar to penicillin antibiotics by intramolecular 

carbene insertion into C-H bonds. 

ii. then cyclopropane rings for chrysanthemic acid related pesticides by carbene addition 

to alkenes. 

iii. and finally aziridines via nitrene addition to alkenes. 

 

In the literature141,142 there are many examples of preparation of carbenes and nitrenes by 

photochemical, thermal and catalytic (using transition metal catalysts) methods. We will 

compare the stereochemical outcome of thermal, photochemical and catalytic reactions in free 

solution with catalysed (Cu2+) reactions within the restricted environment of a clay mineral 

interlayer or a zeolite pore. 
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 Chapter: Carbene Insertion Reactions 

 

 Introduction to carbene and carbene catalysed reactions 

Carbenes are highly electron deficient since the carbene carbon has only 6 electrons in the 

valence shell, making the carbenes highly electrophilic species that can react with many 

and bonds. Carbenes can be generated from diazoalkanes by thermal, photochemical 

and catalytic means.143 Catalytic carbene formation processes are usually carried out with 

transition metal cations, e.g. Cu2+, Rh2+ or Pd2+ and they tend to give enhanced selectivity and 

the opportunity for the thermodynamically more favoured product to predominate. It is our 

intention to generate the carbene intermediate within the restricted environment of either the 

interlamellar region of a clay mineral or the pore of a zeolite. The clay mineral or zeolite 

would first be exchanged with Cu2+ cations to provide the catalytic site and the carbene could 

then react to give a product that could be size selected. 

 

Figure 17 illustrates the generation of carbene intermediates within the restricted environment 

of a clay interlayer or a zeolite pore. The reactive carbene could then react either 

intramolecularly or with another reactant present within the mineral or zeolite pore. 

 

 

Figure 17 Possible mechanism for copper(II) catalysed carbene generation in clay 

minerals or zeolites. 

 

There are two major classes of carbene reactions that were of immediate interest as they could 

provide size selection of isomers while producing compounds with potential bioactivity: 

 

1. Intramolecular carbene insertion into C–H bonds – e.g. in the formation of ring systems 

such as β-lactams which are potential antibiotics (this Chapter). 
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2. Carbene addition across double bonds (–C = C–) to form cyclopropanes – e.g. synthesis of 

chrysanthemic acid derivatives which are potential insecticides (Chapter 3). 

 

 

 Synthesis of diazo ester amides 

The methylene group of malonyl compounds can be converted readily to a diazo group by 

reaction with an azide and a base. Malonic acid half ester144 derivatives are important 

intermediates for the synthesis of pharmaceuticals and natural products145,146 and they can be 

converted to amides and then ultimately to -lactams via the malonyl carbene derivative. 

 

Methyl half ester 167 was synthesised from methyl malonate 165 by reacting with potassium 

hydroxide in methanol to give the half ester salt 166 (Scheme 45), which crystallised out. The 

salt 166 was converted to the half-ester 167 by reaction with 1M hydrochloric acid.145 The 

benzyl half ester 169 was synthesised from malonic acid 168 and benzyl bromide, 

triethylamine as a base in acetonitrile under reflux (Scheme 45).147 

 

 

 

Scheme 45 General method for the preparation of half esters 167 and 170 from methyl 

malonate and malonic acid. 
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Then half esters 167, 170 were converted to amides (Scheme 46) and then to diazo 

compounds, which were finally converted to -lactams by carbene insertion reactions 

(Scheme 47). 

 

 

Scheme 46 Proposed synthetic route to coupled products 

 

 

Scheme 47 Proposed synthetic route to -lactams. 

 

The monomethyl malonic acid 167 and monobenzyl malonic acid 170 were then coupled, 

using N,N’-dicyclohexylcarbodiimide (DCC), with a series of acylic (e.g. diethylamine or 

ethylphenylamine)7,148 and cyclic aliphatic amines149,150 (e.g. piperidine or pyrrolidine)151 to 

form amides (e.g. See Scheme 46).152,153 These amides were then reacted with diazo transfer 

reagent, initially 4-carboxybenzenesulfonyl azide, but subsequently, p-toluenesulfonyl azide 

(p-TSAz) 182 to form the dicarbonyl diazo intermediates needed for carbene formation (See 

Table 4).7,151 
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Scheme 48 Example synthesis of an α-diazocarbonyl compound. 

 

Insertion of the diazo function at the methylene group flanked by the two carbonyls in the 

remaining malonyl amides was done in preference with p-toluenesulfonyl azide (Scheme 48), 

as initial reactions done with the more stable p-carboxybenzenesulfonyl azide as a diazo 

transfer reagent, gave separation problems and lower yields of < 50%, with the remaining 

material left as unreacted starting material and decomposition products. Furthermore, 

increasing the equivalents of base and heating for longer hours did not improve the yields. 

Reaction progress was monitored initially by TLC, then by loss of the azide peak at 2200 cm-1 

in the IR spectrum and by the disappearance of the singlet peak at  3.34 in the 1H-NMR 

spectrum, which corresponds to the methylene (-CH2) flanked between the two carbonyl 

groups. 

 

Even though, p-toluenesulfonyl azide is the more hazardous, with a higher impact sensitivity, 

lower decomposition initiation temperature and a larger heat of decomposition, it was chosen 

as the preferred diazo transfer reagent in later reactions as p-carboxybenzenesulfonyl azide is 

a much more expensive reagent that requires 2 moles of base per mole of substrate, which is 

not ideal for base sensitive substrates. The p-TSAz, was prepared in the laboratory by the 

literature method.7 Use of p-TSAz in the reaction improved the yield to > 50% and also led to 

fewer separation problems compared to p-carboxybenzenesulfonyl azide. 
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Table 4 Malonyl amides and diazocarbonyl compounds synthesised. 

Malonyl amides Yield % diazocarbonyl compounds  Yield % 
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 Catalysed carbene reactions of diazo ester amides 

Our main aim was to catalyse novel organic syntheses by generating reactive carbene 

intermediates from diazoalkanes on Cu(II) cation exchanged within either the interlamellar 

region of a clay mineral or the pores of a zeolite catalyst. While a zeolite will present a fixed 

reaction space that can help control the regio- and stereo-chemical outcome of the ring 

closure reactions; the interlamellar distance of clay minerals can be manipulated, so helping 

to control a wider range of reactions compared to free solution, i.e. reactions via less bulky 

intermediates should be more favoured within these restricted regions within the clay 

minerals. 

 

 

 Reactions of methyl N,N-diethylamidodiazomalonate (methyl 2-diazo-2-

(diethylcarbamoyl)acetate) 183 

Carbene intermediates, formed from methyl N,N-diethylamidodiazomalonate 183 by thermal 

reaction and copper(II) sulfate, Cu(II) clay mineral or Cu(II) zeolite catalysed reactions, 

yielded a mixture of the -lactam diastereomers 193 and 194 with small amounts of the 

-lactam 195 (Scheme 49). 

 

 

 

Scheme 49 Synthetic route to β-lactams 193 and 194 (39 : 61 ratio) and γ-lactam 195. 

 

Intramolecular carbene insertion into an ethyl methylene C–H bond forms a new carbon–

carbon (C–C) bond giving a β-lactam ring (Scheme 50): 
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Scheme 50 Mechanism for the formation of β-lactam rings 193 and 194. 

 

Another possibility is the intramolecular carbene insertion into the methyl C–H bond to form 

a new C–C bond giving a γ-lactam ring 195 (Scheme 51). This is obviously a less favoured 

route as only ca. 8% yield of this product was produced compared to ca. 70% of the 

β-lactams.104 

 

 

 

Scheme 51 Mechanism for the formation of the γ-lactam ring 195. 

 

 

 Assignment of the structures of the β-lactam isomers from methyl 
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was obtained by a reaction of the diazo ester 183 with Cu(II) cation exchanged Wyoming 

bentonite in benzonitrile or acetonitrile as solvents. These reaction conditions gave good 

yields of products, typically ca. 70% for these reactions and other diazo ester reactions and so 

were used generally for the product isomer identifications. 
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The cis- and trans-diastereomers 193 and 194 (39 : 61 ratio) were identified based on 

assignment of the 1H-NMR (Figures 22 and 19), 13C-NMR, 1H-1H 2D COSY and 1H-1H 2D 

NOESY (Figures 23 and 20) spectra of the partially purified cis- and trans-diastereomers 193 

and 194. 

 

 

 

Figure 18 1H NMR assignments for the trans-β-lactam isomer 194. 

 

 

Figure 19 1H NMR spectrum of trans--lactam diastereomer 194. 
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Figure 20 NOESY spectrum of trans-β-lactam 194. 

 

From the 1H-NMR spectra (Figures 22 and 19), the doublet peaks at δ 4.05 (J = 5.67 Hz) and 

δ 3.56 (J = 2.25 Hz) were identified as the cis- and trans-protons in the β-lactam ring. 

 

 

1.38

 

3.97

 

3.56
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Figure 21 1H NMR assignments of the cis-isomer of β-lactam 193. 

 

 

 

Figure 22 1H-NMR spectrum of cis-isomer of β-lactam diastereomer 193. 
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Figure 23 NOESY spectrum of partially purified cis-isomer 193. 

 

Figure 24 Expansion of -lactam CH region 

4.05 

1.32 
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From the 1H-NMR spectra (Figures 19 and 22), the doublet peaks at δ 3.56 and δ 4.05 were 

assigned to the trans- and cis-isomers respectively and thus in benzonitrile as solvent the 

trans-isomer was identified as the major isomer. 

 

The literature values found for the trans-β-lactam 194 were: 1H-NMR (200 MHz, CDCl3, 

ppm) δ 3.94 (dq, J = 2.25 and 6.17 Hz, 1H), 3.34 (s, 3H), 3.52 (d, J = 2.25 Hz, 1H), 3.37 (dt, 

J = 21.54 and 7.26 Hz, 1H), 3.08 (dt, J = 21.17 and 6.92 Hz, 1H), 1.36 (d, J = 6.17 Hz, 3H), 

1.18 (t, J = 7.32 Hz, 3H).7 As can be seen, the quoted J values were not matching in the 

literature,7 which may be due to print errors or the authors mis-quoting the coupling constant 

(J) values for the trans-isomer 194. However, their values are close enough to help confirm 

our assignment. 

 

The peak at δ 3.56 (d, J = 2.25 Hz, 1H) Figure 19 which corresponds to a CH on the 

β-lactam ring, matches well with the literature values 3.52 (d, J = 2.25 Hz, 1H), whereas in 

Figure 22 there is no doublet peak in the δ 3.52 region, as there would be for the cis-isomer. 

The peak at 3.98 (dq, J = 2.25 and 6.20 Hz, 1H) matches with the literature value 3.94 (dq, J 

= 2.25 and 6.17 Hz, 1H) and similarly the two pentets of the CH2 at 3.40 (J = 7.26 Hz, 1H) 

and 3.10 (J = 7.22 Hz, 1H). 

 

From Figures 20 and 23, we concluded that there is an NOE effect between resonances δ 1.38 

and δ 3.56 in the NOESY spectrum of the trans-isomer 194 (Figure 20) and another NOE 

effect between δ 1.32 and 4.05 in the NOESY spectrum of the cis-isomer 193 (Figure 23); 

suggesting that in both cases these proton pairs are cis- to one another. 

 

A small proportion (< 10%) of the γ-lactam isomer 195 was also found in the crude 1H NMR 

spectrum. 
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Figure 25 GC-Ms showing the ratio of cis- and trans-isomers at RT 7.56 and 7.20 min 

respectively. 

 

From Figure 25 the peaks at RT 7.56 and 7.20 with m/z 171, 156, 143, 100. The intense peak 

at 7.20 corresponds to the trans-isomer, which was also confirmed by 1H-NMR spectroscopy 

(Figures 19 and 22). 

 

 

 Computational details for diastereomers 

Quantum mechanics calculations were performed to determine accurate energy differences 

between the diastereomers 193 and 194. The diastereomer energies were optimised using 

density functional theory (DFT). For this purpose, the B3LYP function with the 6-31+(d) 

basis set (B3LYP/6-31+(d)) was employed for all the elements. Minimum energy geometries 



60  
 

 

were confirmed via vibrational frequency calculations. The Gaussian03 program was used for 

the calculations.154 

 

 

 Relative stabilities and bulkiness of the -lactam diastereomers 193 and 194 

Using VIs computer modelling, the energy differences of the cis- and trans--lactam 

diastereomers 193 and 194 were calculated: 

 

Ecis-isomer - Etrans-isomer = -592.9164121 – (-592.9169626) Hartree = 0.0005505*627.509391 

kcal/mol = 0.3454 kcal/mol. 

 

Thus, the lower energy trans-diastereomer 194 would be expected to be the favoured isomer 

at equilibrium in free solution. However, this is not always the case as formation of a more 

stable intermediate can lead to a minor product, while a less stable intermediate can lead to a 

major product. This can be explained by the Curtin-Hammett principle,155 case–II, the 

Curtin-Hammett principle in chemical kinetics was proposed by David Yarrow Curtin and 

Louis Plack Hammett156 and it mainly states that, for a reaction that has a pair of reactive 

intermediates or reactants that interconvert rapidly (as is usually the case for conformational 

isomers), with each going irreversibly to a different product, the product ratio will depend 

both on the difference in energy between the conformers and the free energy of the transition 

state going to each product. An example is found in the alkylation of tropanes 196 (Scheme 

52).157,158 

 

 

Scheme 52 Alkyaltion of tropanes with iodomethane to form the less stable 

intermediate155 leading to the major product158 following the Curtin-

Hammett principle. 

N N N N

KKax Keq
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As a result, the product distribution will not necessarily reflect the equilibrium distribution of 

the two intermediates. The Curtin-Hammett principle has been invoked to explain selectivity 

in a variety of stereo- and regio-selective reactions. This is an example of a Curtin-Hammett 

scenario in which the less-stable intermediate is significantly more reactive than the more 

stable intermediate that predominates in solution.158 Because substrate isomerisation is fast, 

during the course of reaction excess substrate of the more stable form can be converted into 

the less stable form, which then undergoes rapid and irreversible C–C (carbon–carbon) bond 

formation to produce the desired product. Thus, many essentially irreversible reactions, give 

the kinetic product rather than the more stable thermodynamic product, which for most of our 

-lactams will be the trans-diastereomer (Schemes 53 and 54). 

 

Thermodynamically: 

 

 

Scheme 53 Formation of more stable trans-β-lactam 194 under thermodynamic 

conditions. 

Kinetically: 

 

 

Scheme 54 Formation of less stable cis-β-lactam 193 under kinetic control conditions. 
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 Chem 3D modelling 

The structures of the cis- and trans-diastereomers 193 and 194, were drawn in ChemDraw 

then copied to Chem 3D (Ultra, version 9), where the energies of the structures were 

minimised using the MM2 procedure and the molecules were rotated in 3 dimensions to 

display their more planar aspects. The models were copied to Microsoft Word, arranged so 

that they had the same atom and bond sizes and their smallest dimensions compared.159 

Comparison of these energy minimised Chem 3D structures gives a reasonable estimate of the 

relative sizes of the diastereomers 193 and 194 (Figure 26). 

 

 

 cis 193, slightly less bulky   trans 194, slightly bulky 

 

Figure 26 Chem 3D models of the structures of diastereomers 193 and 194, arranged to 

show the smallest dimension of the molecules. 

 

The trans-diastereomer 194 is more stable and would be expected to predominate slightly in 

free solution at high temperatures and to become more predominant in low energy catalysed 

processes. However, the relative “heights” of the cis- and trans-diastereomers shows that the 

cis-diastereomer 193 should be slightly less bulky and should be formed more readily if the 

environment is more restricted. In addition it is noticeable that the lower energy trans-isomer 

is less sterically constrained as the molecule is wider and also “longer” (not shown). Size 

selectivity due to the dimensions of these molecules will be looked for in the catalysed 

reactions, especially in the restricted environments of the zeolites. 
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 Comparison of the carbene insertion reactions of methyl N,N-diethylamido-

diazomalonate 183 

In the literature,160 photolysis of the related diazo compound N,N-diethyldiazoacetamide 197 

in 1,4-dioxane as solvent gave 57% of β-lactam 198 insertions at the two active –C-H 

positions of the -NCH2 and 43% of γ-lactam 199 at the three less active -NCH2CH3 positions 

(Scheme 55).84,160 Thus we would expect that a mixture of the β-lactam and -lactam should 

also be formed by methyl N,N-diethylamidodiazomalonate 183 under high energy photolytic 

conditions. 

 

 

 

Scheme 55 Photolytic reaction of N,N-diethyldiazoacetamide forming β-lactam 198 and 

of γ-lactam 199. 

 

Heating methyl N,N-diethylamidodiazomalonate 183 under reflux in acetonitrile (ca. 80°C) 

overnight gave ca. 60% combined isolated yield of products with cis/trans ratio 65 : 35, but 

there were carbene dimers and unreacted starting material left after >16 hours. A 

bis-acetylacetonatocopper(II) catalysed –C-H insertion reaction, of methyl 

N,N-diethylamidodiazomalonate 183 at 75°C in acetonitrile as solvent, gave a mixture of 

β-lactam diastereomers 193 and 194 with cis-/trans-isomer ratio 36 : 64, but with only 40% 

yield, due to extensive carbene dimer by-product formation along with the γ-lactam 195. 

These results are similar to those above, for the photolysis of the diazoacetamide 197 

(Scheme 55) and are in contrast to a dirhodium tetraacetate catalysed reaction in 

dichloromethane, which has been reported in the literature to give the trans-diastereomer 194 

(Scheme 56) exclusively, in 40% yield (the remainder being unreacted starting material),7 

thus showing that a lower energy catalysed reaction can favour the slightly lower energy 

trans-isomer. 
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Scheme 56 Catalysed reaction of methyl N,N-diethylamidodiazomalonate 183 in the 

presence of dirhodium tetraacetate, forming the trans--lactam 194 

exclusively. 

 

In order to determine whether there was any size selectivity apparent for catalytic reaction of 

the methyl ester 183 within a clay mineral interlayer, Cu(II)-exchanged Wyoming bentonite 

was heated with the methyl N,N-diethylamidodiazomalonate 183 at 75°C in acetonitrile to 

give mainly cis- and trans--lactams 193 and 194 (ca. 70% combined isolated yield) in the 

ratio 39 : 61 with ca. 8% of the -lactam 195 (Scheme 49). These catalysed reactions were 

essentially complete in about 1-2 hours, but reflux was continued overnight to ensure 

complete conversion of diazoalkanes. Other catalysts such as Cu(II)-exchanged zeolites 4A 

and ZSM-5 were also utilised to find out whether there was selectivity of cis- over trans-

isomer based on their pore sizes. 

 

Both Cu(II) cation exchanged zeolites, should have an accessible pore size of about 5.5 Å 

(see Section 1.3.3) and reactions in acetonitrile solvent with Cu(II)-exchanged 4A zeolite, 

gave ca. 59% combined isolated yield with a cis-/trans-isomer ratio of 60 : 40, while ZSM-5 

gave ca. 60% combined isolated yield with cis-/trans-isomer ratio of 46 : 54. These results 

are summarised in Table 5. 
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Table 5 Summary of isolated yields and isomer ratios for the formation of -lactams 

193 and 194 in acetonitrile. 

Catalyst %Yield of -lactams 

193 & 194 

cis-/trans-diastereomer ratio 

No catalyst 60 65 : 35 

Cu(II)acac2 catalyst 40 36 : 64 

Rh2(OAc)4 (in CH2Cl2)
7 40 (60% unreacted) 00 : 100 (reported) 

Cu(II) Wyoming bentonite 70 39 : 61 

Cu(II) 4A zeolite (ca. 5.5 

Å).161 See Section 1.3.3 

60 60 : 40 

Cu(II) ZSM-5 zeolite (5.4 -

5.6 Å)162 (Si : Al = (90 : 1) 

60 46 : 54 

 

The uncatalysed reaction gives the cis-isomer in nearly two-fold excess, suggesting that the 

reaction is under kinetic control. However, when a good, low energy pathway catalyst such as 

dirhodium tetraacetate is used the more thermodynamically stable trans-isomer is produced 

almost exclusively. When the less active catalyst Cu(II)acac2 is used the isomer ratio begins 

to favour the more stable trans-isomer as does the reaction catalysed by Cu(II)-Wyoming 

bentonite, suggesting that there is little size selectivity in the bentonite interlayer in this case. 

However, the zeolite catalysts with their fixed reaction spaces do begin to show size 

selectivity with their pore access of ca. 5.5 Å. 

 

Organic solvents can have a profound effect upon the interlayer distance in clay minerals,84,163 

so we were able to manipulate the interlayer distance by changing the reaction solvent for the 

Cu(II)-Wyoming bentonite catalysed reaction. The interlayer separation of the mineral with 

various solvents was determined using powder X-ray diffraction of the clay mineral wetted 

with the solvent. Evaporation of the solvent was minimised at the typical ambient temperature 

in the XRD instrument of around 35-40°C, by enclosing the sample with Mylar (X-ray film, 

TF-125). It was assumed, with a fair degree of assurance, that in the reactions carried out, the 

differences in interlayer separation of each clay mineral would follow a similar trend to those 

determined for the dried Cu(II)-clay minerals as there were too many solvent/clay mineral 

combinations to measure during the instrument time available. The yields and isomer ratios 

obtained with Cu(II)-exchanged Wyoming bentonite in different solvents, that produced 

differing layer spacings, are compared in Table 6. 
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Table 6 Yields, isomer ratios and measured (XRD) d values for Cu(II)-exchanged 

Wyoming bentonite in various solvents. 

Solvent %Yield of 

-lactams 

193 & 194 

cis-/trans-

diastereomer 

ratio 

Interlayer distance of Cu2+-Wyoming 

bentonite, d (Å), assuming the clay 

layers ≈ 9.6 Å164 

Acetonitrile 70 39 : 61 3.52 

Benzonitrile 67 45 : 55 5.90 

Toluene 20 53 : 47 3.36 

Acetone 40 36 : 64 3.40 

Tetrahydrofuran 38 47 : 53 3.80 

Chloroform 50 34 : 66 3.56 

Ethylbenzene * * 5.02 

Dichloromethane 45 30 : 70 3.52 

1,4-Dioxane * * 5.02 

* Less than 10% product formed in ethylbenzene and 1,4-dioxane solvents. 

 

The results from Table 6 show that there are modest solvent effects on selectivity, yield and 

isomer ratio of diastereomers, but that under the conditions of the experiment (all compared at 

80°C or at the reflux temperature of lower boiling solvents), there does not appear to be a 

simple correlation of measured interlayer distance with preferred formation of the slightly 

less bulky cis--lactam-isomer, 194. Benzonitrile and acetonitrile were found to be the best 

solvents in terms of yields and cis : trans ratios. Both solvents gave ca. 70% combined 

isolated yield and acetonitrile gave a cis-/trans-isomer ratio 39 : 61, while benzonitrile gave 

the cis-/trans-isomer ratio 45 : 55, however, we had expected the lower d with acetonitrile to 

give more of the less bulky cis-isomer. As this is not the case, the solvent packing in the 

interlayer region must also be affecting the available reaction space. In addition, solvent 

molecules often stack within clay interlayers (see Figure 27) and this stacking can increase 

with temperature, thus as the XRD measurements were made at about 35-40°C at the ambient 

temperature of the diffractometer, whilst the reactions were carried out at 80°C, making the 

value of the interlayer separation during reaction uncertain. 
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clay layers 

 

Figure 27 Expansion of interlayer space by the stacking of acetonitrile which may push 

the layers further apart during heating from 3.52 Ǻ to > 3.52 Ǻ. 

 

With some of the solvents, i.e. 1,4-dioxane, tetrahydrofuran and ethylbenzene the reactions 

did not proceeded smoothly and many of them formed complex mixtures along with low 

product formation. The reasons may be due to the carbene intermediate forming carbene 

dimers or inserting into solvent -CH bonds such as that shown for tetrahydrofuran in Figure 

28.165,166 Similar solvent insertion reactions could occur with 1,4-dioxane and with the 

activated CH2 of ethylbenzene. 

 

 

 

Figure 28 Possible active CH positions on tetrahydrofuran solvent and reactant in 

carbene insertion reactions. 

 

 

C

C

N

N

H

H

HH

H

H

O

O

O

N

H

Reactive carbene 
   intermediate

Active C-H

O
H

Tetrahydrofuran

O

O

O

N

Reactive carbene 
   intermediate

Active C-H



68  
 

 

 Effect of varying the layer charge of a clay mineral on the ratio of 

diastereomers 193 and 194 

In order to control the size of the reaction space further, a series of Cu2+-clay mineral 

catalysts with a variety of layer charges, which should provide increasingly restrictive 

interlayer reaction spaces as the layer charge increases, were examined. These included 

(Wyoming bentonite, Brett’s Fullers earth, Los Trancos, Fulacolor (acid activated Los 

Trancos) and a carbene modified Cu(II)-Wyoming bentonite) as described in Section 2.3.1.7 

(Scheme 57), each of which has a different interlayer spacing (d ranging from 5.92 - 2.52 

Å). With the zeolites, there should be little advantage from the pore height with diazoester 

183, but there may be a selection effect due to the greater width of the trans--lactam; these 

results are collected in Table 7. 

 

These results show that the clay catalysts give lower selectivity for CH insertion reactions 

within the interlayer, whereas the zeolites, with their more fixed reaction spaces showed more 

effective results in terms of selectivity and yields. The reason may be due to the fact that the 

size of the less bulky cis-isomer is ≈ 5.20 Å from the Chem 3D model structures and the 

interlayer spacing of the clay minerals used can be roughly of the same size as this from XRD 

measurements after wetting with solvent, while in ZSM-5 zeolite the normal pore size (5.4 Å) 

was very similar to the width of the less bulky, more planar isomer. 

 

The solvents, acetonitrile and benzonitrile have proven to be the best solvents for β-lactam 

ring formation and exclusion of the -lactam. This is probably due to the co-ordination of 

acetonitrile within the interlayer space of the clay minerals, which can push the layers even 

further apart on heating, which would disfavour the formation of the less bulky/more planar 

isomer. 

 

The yields for Brett’s Fullers earth were lower than for the other minerals, suggesting that the 

higher layer charge may be restricting access to the Cu(II)-cations in the interlayer. The Los 

Trancos and Fulacolor gave similar yields to those of Wyoming bentonite. The cis-/trans-

isomer ratios Brett’s Fuller earth were 37 : 63 in acetonitrile (56% yield) and 56 : 44 in 

acetone (30%). Thus suggesting that access to the interlayer is more difficult in acetone, but a 

more restricted reaction space favours the less bulky cis-isomer. 
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Table 7 Measured yield, isomer ratios and d values for clay minerals in various 

solvents 

Cu(II)-

exchanged 

mineral 

Solvents %Yield of 

-lactams 

193 & 194 

cis-/trans-

diastereomer 

ratio 

Interlayer distance of Cu(II)-

clay mineral, d (Å), assuming 

the clay layers ≈ 9.6 Å164 

Wyoming 

bentonite 

No solvent 

Acetonitrile 

Benzonitrile 

THF 

Acetone 

 

70 

67 

40 

20 

 

39 : 61 

45 : 55 

39 : 61 

29 : 81 

2.52 

3.52 

5.92 

3.8 

3.4 

Modified 

clay 

Al-O-EA 

(see next 

Section) 

No solvent 

Acetonitrile 

Benzonitrile 

Acetone 

THF 

Toluene 

 

66 

65 

39 

40 

 

46 : 54  

57 : 43 

43 : 57 

39 : 61 

60 : 40 

3.09 

Brett’s 

Fullers Earth 

No solvent 

Acetonitrile 

Acetone 

 

 

56 

30 

 

 

37 : 63  

56 : 44 

 

2.52 

- 

- 

Los Trancos No solvent 

Acetonitrile 

Benzonitrile 

Toluene 

THF 

 

48 

55 

50 

53 

 

32 : 68  

34 : 66 

45 : 55  

47 : 53  

2.64 

- 

- 

- 

- 

Fulacolor No solvent 

Acetonitrile 

Benzonitrile 

Toluene 

Acetone 

 

40 

48 

50 

46 

 

32 : 68  

33 : 77  

46 : 54  

56 : 44  

2.74 

- 

- 

- 

ZSM-5  

Acetonitrile  

Benzonitrile 

Toluene 

 

 

60 

62 

70 

 

46 : 54  

50 : 50 

58 : 42  

Pore size 5.4 - 5.6 Å 

4A 

molecular 

sieves  

 

Acetonitrile 

Benzonitrile 

Toluene 

 

59 

65 

63 

 

60 : 40 

50 : 50 

37 : 63 

The pore size is ca. 5.5 by 7.4 

Å, see Chapter 1.3.3. 

 

Acetone and toluene tended to give higher proportions of the cis-isomer in most cases, 

suggesting that their relative bulkiness is further restricting the reaction environment. The 



70  
 

 

Cu2+-exchanged 4A zeolite catalyst showed decreasing cis-isomer selectivity on going from 

acetonitrile, to benzonitrile to toluene, whereas ZSM-5 showed the opposite effect. This may 

be due to the larger solvent molecule providing a more restricted reaction environment in the 

5.5 Å channels of ZSM-5, whilst the 4A zeolite has a much larger cage to carry out its 

reactions in (> 11 Å) and is not so dependent on solvent constraints. 

 

 

 Modification of the interlayer region of a clay mineral 

The hydrogen atoms of the bridging –OH groups of the octahedral layer of a T:O:T clay 

mineral sits in the central space of the hexasiloxy rings of the tetrahedral layer (Figure 2 in 

Chapter 1). As diazoalkanes can be used to form carbenes in Cu(II) exchanged clay mineral 

interlayers, it was hoped that simply reacting a diazo ester, such as ethyl diazoacetate 33, 

within an interlayer would insert the carbene into the H-O bond, binding the organic moiety 

within the clay interlayer region (Scheme 57). This should further restrict the interlayer 

region and perhaps give higher size selectivity. 

 

 

 

Scheme 57 Carbene insertion onto the Al-OH bond to form more stereo restricted 

environment. 

 

Ethyl diazoacetate solution in dichloromethane was heated at 40°C with stirring for 18 h with 

Wyoming bentonite 200 and then washed with dichloromethane to remove excess ethyl 

diazoacetate and any carbene dimers (dimethyl fumarate and dimethyl maleate) from the 

interlayer (Scheme 57). FT-IR spectroscopy showed the presence of carbonyl groups in the 

modified clay mineral 201; 1731 cm–1 for the stretching frequency of the ester –C=O 
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functional group, confirming binding of the carbene to the clay mineral. The interlayer 

spacing, d, was shown to be 3.09 Å, confirming that the interlayer spacing had increased 

from the 2.74 Å in the Cu2+-clay. 

 

Some interesting results observed by utilising modified clay mineral 201 were, for example 

the ratio of cis-/trans-isomer ratio 45 : 55 with Cu2+-exchanged Wyoming bentonite in 

benzonitrile solvent was increased to 57 : 43 with the modified clay mineral 201 (ca. ≈ 70% 

yield), which has d 5.92 Å. By reacting methyl N,N-diethylamidodiazomalonate 183 with 

modified clay 201 in acetonitrile or benzonitrile as solvent, the cis-/trans-isomer ratios of 46 : 

54 and 57 : 43, respectively, had increased compared to the Cu2+-Wyoming bentonite of 39 : 

61 and 45 : 55 in the same solvents. The proportion of the less bulky product was increased in 

both the solvents, which shows that the modification of the clay mineral (Al-O-EA) had 

influenced the regioselectivity of the C-H insertion reaction for -lactam formation, but with 

a consequent increase in the γ-CH insertion reaction to form the γ-lactam product. 

 

The better competition between the cis- and trans-isomers 193 and 194 in the modified 

catalyst 200, may be due to the more restricted catalytic environment within the clay due to 

the carbene insertion into the Al-OH bond, slowing down the reaction slightly and allowing 

the proportion of the kinetic cis-product to increase. 

 

In the presence of the modified clay catalyst in toluene solvent the proportion of the 

cis-isomer 193 (60 : 40 with very low yields) had increased nearly to the ratio of the 

non-catalysed reaction (ca. 60% 65 : 35), once again with increased formation of γ-lactam 

195 (Figure 29). 
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Figure 29 1H-NMR spectrum of product from the Al-O-EA (modified clay mineral) 

catalysis of ring closure of methyl N,N-diethylamidodiazomalonate in 

toluene. 

 

 

 Conclusions for reactions of methyl N,N-diethylamidodiazomalonate 183 

Reaction in the interlamellar region of Cu2+-exchanged clay mineral should favour the more 

planar/less bulky isomer. However we found some interesting results: in most cases when 

using Cu(II)-exchanged clay mineral and zeolite catalysts in the carbene insertion reaction of 

183, the reactions were much faster than the uncatalysed reactions in all solvents and tended 

to give higher yields of the -lactam products 193 and 194, with low proportions of -lactam 

195. When compared to the dirhodium tetraacetate catalysed reaction from the literature,7 

which appeared to have formed the more thermodynamically stable trans-isomer 194, 

exclusively, the mineral catalysed processes gave a mixture of cis-/trans-isomers with good 

yields. The proportion of the less bulky cis-isomer could be improved by judicious choice of 

solvent, clay mineral layer charge or zeolite type, but even with the best of these the 
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proportion of the slightly less bulky cis-isomer could not be improved over the catalyst free 

reaction. This suggests that the catalysed reaction, which usually favours the thermodynamic 

trans-product 194, can be overcome to a small degree during the reaction of diazo compound 

183 in the restricted inner regions of the mineral catalysts, but that the size difference of the 

-lactam diastereomers 193 and 194 is not great enough to allow great size selection. 

 

The obvious course of action would be to increase the size of the diazoalkane reactant 

molecule to try and induce size selectivity, thus we next examined benzyl 

N,N-diethylamidodiazomalonate 184. Originally, we expected the larger size of the benzyl 

ester group to confer greater steric constraints and improve the selectivity for the less bulky 

cis-isomer 193 or 202, however, as will be shown in the following sections, this proved to be 

erroneous due to the planarity of the benzyl group. 

 

 

 Carbene reactions of benzyl N,N-diethylamidodiazomalonate 

(benzyl 2-diazo-2-(diethylcarbamoyl)acetate) 184 

Carbene intermediates were formed from benzyl N,N-diethylamidodiazomalonate 184 by 

photolysis, thermolysis and catalysis with copper(II) sulfate, Cu(II) clay minerals or Cu(II) 

zeolites to yield a mixture of the β-lactam diastereomers 202 and 203 with small amounts of 

the γ-lactam 204 (Scheme 58) by carbene insertion into the nearby C-H bonds. 

 

 

 

Scheme 58 Synthetic route to β-lactams 202 and 203 (35 : 65) and γ-lactam 204. 
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Another possibility is the intramolecular carbene insertion into the terminal CH3 of the 

N-ethyl group (-NCH2CH3) in 184 to form a new (carbon–carbon) C–C bond and giving a 

γ-lactam ring 204 (Scheme 59). 

 

 

 

Scheme 59 Mechanism for the formation of the γ-lactam ring. 

 

 

 Assignment of the structures of the benzyloxy β-lactam isomers 202 and 203 

The cis- and trans-diastereomers 202 and 203 (Figure 33 & 31) were identified in a similar 

manner to the methyl ester isomers 193 and 194, based on assignment of the 1H NMR 

(Figures 19 and 22), 13C NMR, 1H-1H 2D COSY and 1H-1H 2D NOESY (Figures 20 and 23) 

spectra of partially purified cis- and trans-diastereomers 193 and 194. 
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Figure 30 trans-isomer of β-lactam 203. 

 

 

 

Figure 31 1H-NMR spectrum of trans lactam diastereomers in the mixture 202 and 

203. 
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Figure 32 cis-isomer of β-lactam 202. 

 

 

Figure 33 1H NMR spectrum of cis -lactam diastereomer in the mixture 202 and 203. 
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Figure 34 NOESY spectrum of cis-β-lactam diastereomer in the mixture 202 and 203. 

 

From the 1H-NMR spectra of the benzyl esters 202 and 203 (Figures 33 and 31), the doublet 

peaks at δ 4.08 (J = 5.65 Hz) and δ 3.60 (J = 2.20 Hz) were identified as the cis- and trans-

protons respectively in the β-lactam rings. This is in agreement with the 1H-NMR spectra of 

the methyl esters (Figures 19 and 22), where the doublet peaks at δ 3.56 (J = 2.25 Hz) and δ 

4.05 (J = 5.67 Hz) were attributed to the cis- and trans-protons respectively in the β-lactam 

rings. 

 

 

 Relative stabilities and bulkiness of the -lactam diastereomers 202 and 203 

Using VIs computer modelling, the energy differences between of the cis- and trans--lactam 

diastereomers 202 and 203 were calculated: 

 

Ecis-isomer – Etrans-isomer = –823.9178268–(–823.9188763) Hartree = 0.0010495*627.509391 

kcal/mol = 0.6585 = kcal/mol. 

3.97

 

1.37
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Thus, the lower energy trans-diastereomer 203 would be expected to be the favoured isomer 

at equilibrium in free solution. In a similar manner as with the methyl esters 193 and 194 (see 

Section 2.3.1), application of the Curtin-Hammett principle, case 1,167 once again leads us to 

expect that a more stable intermediate will lead to the formation of the trans-isomer 203 as 

the major product under thermal conditions (Scheme 60). 

 

However, under kinetic control the intramolecular carbene insertion reaction will undergo 

carbon–carbon bond formation at a rate dependent on the energy of the transition state. The 

major isomer (cis-) will be formed via the lower energy transition state 1, while the minor 

isomer (trans-) will be formed from the higher energy transition state 2. Thus, according to 

the Curtin-Hammett principle, case 2,157 the cis-isomer should be the major-isomer under 

kinetic conditions (Scheme 61). 

 

Thus, we would expect the more stable trans-isomer to form as the major product under 

thermal conditions without catalyst, while with catalysts, under kinetic control, we would 

expect the less stable isomer to form as the major product. Thus, according to the Curtin-

Hammett principle, case 2, the trans-isomer should be the major-isomer under 

thermodynamic conditions (Scheme 61). This would favour our intention to increase the 

proportion of the less bulky isomer forming within the clay mineral interlamellar region or 

zeolite pores. 

 

Thermodynamically: 

 

 

 

Scheme 60 Expected formation of the more stable trans-β-lactam 203 under 

thermodynamic conditions. 
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Kinetically: 

 

 

 

Scheme 61 Formation of less stable cis-β-lactam 202 under kinetic control conditions. 

 

We had hoped that the greater steric demands of the benzyl group over the methyl group used 

previously should enhance the selectivity for the less bulky isomer. Once again, changing the 

solvent, which can be responsible for expanding the interlayer distance, should also have a 

significant effect on the selectivity over free solution reactions. 

 

Energy minimised Chem 3D structures give an estimate of the relative sizes of the 

diastereomers (Figure 35). 
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Figure 35 Chem 3D models of the structures of diastereomers 202 and 203. 

 

fast slowN

O

O

O
N

O

O

O

N

O

O

O
N

O

O

O

K2K1 K

transition 
   state-2

transition 
   state-1

cis isomer trans isomer
major product minor product



80  
 

 

Unfortunately, due to the planarity of the benzene ring these Chem 3D models (Figure 35) 

showed that the cis- and trans-isomers 202 and 203 had very little difference in height, 

however, the cis-isomer is narrower than the trans- and this may allow size selectivity. 

 

This leads us to expect that neither the cis- nor the trans-diastereomer should predominate in 

free solution with the possibility of the trans-isomer becoming more predominant in low 

energy catalysed processes, whereas, the cis-diastereomer 202 is narrower and should be 

formed more readily in a narrow, restricted environment such as a zeolite pore, but not 

necessarily in a clay mineral interlayer. 

 

 

 Results of carbene reactions of benzyl N,N-diethylamidodiazomalonate 184 

Similar to methyl N,N-diethylamidodiazomalonate 183, benzyl N,N-diethylamidodiazo-

malonate 184 reacted without catalyst at 75°C in acetonitrile solvent to give a mixture of 

β-lactam diastereomers 202 and 203 with cis-/trans-isomer ratio 29 : 71. 

 

Benzyl N,N-diethylamidodiazomalonate 184 was heated under reflux with (Cu(acac)2) as 

catalyst at 75°C in acetonitrile solvent overnight, resulting in a complex mixture containing 

several by-products, but the β-lactam isomers were formed in less than 5% yield. 

 

In order to determine whether there was any change in selectivity on replacing the methyl 

ester by the more bulky benzyl ester, catalytic reaction of benzyl N,N-diethylamidodiazo-

malonate 184 at 75°C within the clay mineral interlayer of Cu(II)-exchanged Wyoming 

bentonite in acetonitrile solvent gave a good yield of cis- and trans-β-lactams 202 and 203 

(ca. 70% combined isolated yield) in the ratio 35 : 65 with ca. 5% of the γ-lactam 204 

(Scheme 58). Thus, using the clay catalyst increased the proportion of what had been 

assumed to be the less bulky cis-isomer slightly compared to the uncatalysed reaction. Cu(II)-

exchanged zeolite catalysts in acetonitrile solvent gave ca. 68% combined isolated yield with 

4A zeolite with a cis-/trans-ratio of 71 : 29 and with ZSM-5 ca. 66% combined isolated yield 

with a cis-/trans-ratio of 62 : 38. 
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The ratio of cis- to trans-isomers (71 : 29) almost inverted compared to the uncatalysed 

reaction and when compared to the ratio obtained for the methyl ester under similar reaction 

conditions. Thus the benzyl ester 184 does give the less bulky isomer as a major product 

within the pores of the zeolites, but not within the interlayer space of the clay mineral with 

both acetonitrile and benzonitrile as solvent. 

 

 

 Effects of varying the solvent on the interlayer spacing of clay minerals 

As discussed in Section 2.3.1.5 for the methyl ester 183 the solvent can have a profound 

effect within the clay minerals on the coordination of the carbene intermediate and on the 

release of the final product from the interlayer space of clay minerals. The effect of solvent on 

the interlayer space and reaction is shown in Table 8. 

 

Table 8 Yields, isomer ratios and measured (XRD) d values for Cu(II)-Wyoming 

bentonite in various solvents. 

Solvent %Yield of 

-lactams 

202 & 203 

cis-/trans-

diastereomer 

ratio 

Interlayer distance of Wyoming 

bentonite, d (Å), assuming the clay 

layers ≈ 9.6 Å164 

Acetonitrile 59 35 : 65 3.52 

Benzonitrile 66 47 : 53 5.90 

Toluene 60 55 : 45 3.36 

Acetone 28 44 : 56 3.40 

Tetrahydrofuran 20 69 : 31 3.80 

*Chloroform - - 3.56 

*Ethylbenzene - - 5.02 

*Dichloromethane - - 3.52 

*1,4-Dioxane - - 5.02 

* Poor yields of product were obtained in the solvents chloroform, ethylbenzene, 

dichloromethane and 1,4-dioxane. 

 

Interestingly, the proportion of the cis--lactam isomer 202 increased in most other solvents 

and almost reached 70 : 30 in THF, but unfortunately the yield was low in this case probably 

due to carbene insertion into solvent C-H bonds. This effect may be due to the increasing 

bulkiness of the solvent further constraining the reaction space in the mineral interlayer. 
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 Effect of varying the layer charge of a clay mineral on the diastereomers 202 

and 203 

As discussed in Section 2.3.1.5 the effect of increasing the clay mineral layer charge can 

create a more restricted environment. The effects of changing solvents for the benzyl ester 

184 are shown in Table 9. 

 

Table 9 Measured yield, isomer ratios and d values for clay minerals in various 

solvents. 

Clay Mineral Solvents %Yield of 

-lactams 

202 & 203 

cis-/trans-

diastereomer 

ratio 

Interlayer distance of Cu(II)-

clay mineral, d (Å), assuming 

the clay layers ≈ 9.6 Å164 

Wyoming 

bentonite 

Acetonitrile 

Benzonitrile 

THF 

Acetone 

Toluene 

59 

66 

20 

38 

60 

33 : 61 

47 : 53 

69 : 31 

44 : 56 

55 : 45 

3.52 

5.90 

3.80 

3.40 

3.36 

Modified clay 

Al-O-EA 

No solvent 

Acetonitrile 

Benzonitrile 

 

 

48 

78 

 

 

36 : 64 

49 : 51 

 

3.09 

 

 

 

Brett’s 

Fullers earth 

No solvent 

Acetonitrile 

 

50 

 

 

43 : 57 

2.52 

- 

ZSM-5  

Acetonitrile 

Benzonitrile 

Acetone 

Toluene 

1,4-dioxane 

THF 

 

66 

70 

26 

70 

- 

- 

 

62 : 38 

54 : 46 

33 : 67 

62 : 38 

- 

- 

Pore size 5.4 - 5.6 Å 

4A molecular 

sieves  

 

Acetonitrile 

Benzonitrile 

Acetone 

1,4-dioxane 

THF 

 

68 

71 

24 

- 

- 

 

71 : 29 

75 : 25 

76 : 24 

- 

- 

Pore size 5.5 - 7.4 Å 
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Once again, the lower layer spacing for Brett’s Fullers earth enabled more of the less bulky 

cis-isomer to form. Acetone, tetrahydrofuran and 1,4-dioxane were poor solvents in all cases. 

For the zeolite catalysts, except for acetone, changing the solvent had little effect on the 

reaction yields or isomer preference. The best yield of β-lactams was found with Al-O-EA 

modified Cu(II)-Wyoming bentonite with benzonitrile solvent, but the isomer ratio was 

almost 50 : 50. 

 

 

 Conclusions for reactions of benzyl N,N-diethylamidodiazomalonate 184 

Due to the ester methyl group in cis- and trans--lactam isomers 193 and 194 there is a 

noticeable difference in the smallest molecular dimension; however, the greater planarity of 

the benzyl group in the cis- and trans--lactam isomers 202 and 203 results in a negligible 

difference in the smallest dimension of the molecules. There is a reasonable difference in the 

width of the two isomers, however, (the cis-isomer 202 being narrower) and this may lead to 

size selectivity. Thus we found that size selectivity in Cu(II)-exchanged clay minerals, where 

there is only one dimension of constraint, was minimal unless sterically demanding solvent or 

Al-O-EA modifications were present. In contrast, when Cu(II)-exchanged zeolite catalysts, 

which have two dimensions of constraint within their pores, were used, the narrower cis-

isomer 202 became highly favoured, the greatest difference being seen for acetonitrile where 

ca. 35% cis-isomer 202 was formed in Wyoming bentonite, ca. 43% in Brett’s Fullers earth 

and ca. 71% in zeolite A. 

 

 

 Carbene reactions of methyl N-ethyl-N-phenylamidodiazomalonate 

(methyl 2-diazo-2-[ethyl(phenyl)carbamoyl]acetate) 185 

Similar to diazo compounds 183 and 184, carbene intermediates were formed from methyl 

N-ethyl-N-phenylamidodiazomalonate 185 by thermolysis, while catalysis with Cu(II) clay 

minerals or Cu(II) zeolites gave a mixture of β-lactam diastereomers 205 and 206 as minor 

products with carbene insertion onto the ortho–CH of aromatic ring to form the indolidine 

207 as a major product (Scheme 62). 
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Scheme 62 Methyl N–ethyl-N-phenylamidodiazomalonate 185 insertion reactions 

forming cis- 205 and trans- 206 -lactams (37 : 63) and aromatic C-H 

insertion reaction product 207. 

 

Intramolecular carbene insertion into an ethyl methylene C–H bond forms a new carbon–

carbon (C–C) bond giving a β-lactam rings 205 and 206 (Scheme 63). 

 

 

 

Scheme 63 Mechanism for the formation of β-lactam ring. 

 

Another possibility is the intramolecular carbene insertion onto the ortho -C-H of the 

aromatic ring forming indolidine product 207 (Scheme 64). 
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Scheme 64 Carbene insertion into the ortho-CH of the aromatic ring to form an 

indolidine product 

 

 

 

Scheme 65 Keto-enol isomerism of indolidine product 207. 

 

 

 Structure assignment of the -lactams 205, 206 and indolidine product 207 

The cis- and trans-diastereomers 205 and 206 were identified in a similar manner to the 

products obtained from methyl ester 183 and benzyl ester 184, based on the assignment of 

their 1H NMR spectra of the crude of cis- and trans-diastereomers 205 and 206. 

 

 

 

Figure 36 Crude mixture showing cis- and trans-diastereomers 205 and 206. 

 

From the crude 1H-NMR spectra of the β-lactams 205 and 206 the doublet peaks at 

3H, J = 6.39 Hz) were assigned to the cis–isomer and 1.59 (3H, J = 6.11 Hz) to the 

trans-diastereomer. The yields of these products was very low (<10 mg) so further 
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characterisation was not carried out. The products were more clearly defined in the benzyl 

ester molecule 186 discussed in Section 2.6.1.1. 

 

 

Figure 37 Indolidine product 207 resulting from carbene insertion into the ortho-

aromatic –CH position. 

 

 

Figure 38 1H-NMR spectrum of carbene insertion product, forming indolidine 207. 

 

The 1H-NMR spectrum (Figure 38) showing aromatic protons with doublets at 6.89 and 

7.29 and two triplets at 7.09 and 7.38 confirms compound 207 as a disubstituted aromatic 
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product and a broad (1H) singlet peak at  4.23 peak corresponds to –OH which may be due 

to phenolic compound 207 (Scheme 65) rearrangement of proton at E (Figure 37). The low  

value for the phenolic peak at 4.23 is probably due to the electron rich pyrrole ring lowering 

the chemical shift of the OH attached and also by H-bonding to the ester C=O. 

 

 

 Relative stabilities and bulkiness of the -lactam diastereomers 205 and 206 

Using VIs computer modelling, the energy difference of the cis- and trans--lactam 

diastereomers 205 and 206 were calculated: 

 

Ecis-isomer – Etrans-isomer = –745.311475–(–745.312885) Hartree = 0.0014108*627.509391 

kcal/mol = 0.8852 kcal/mol. Thus, the lower energy trans-diastereomer would be expected to 

be the favoured isomer at equilibrium in free solution. 

 

Thus the lower energy trans diastereomer 206 would be expected to be the favoured isomer in 

free solution in the similar manner to the methyl and benzyl ester -lactams 193, 194 and 202, 

203. However, under kinetic control the carbene insertion reaction should undergo C-C bond 

formation at a rate dependent on the energy of the transition state. As discussed in section 

2.4.1.2 the major (cis) isomer 202 will be formed via the lower energy transition state, while 

the minor (trans) isomer 203 will be formed from the higher energy transition state. 

 

In the similar way to 183 and 184, we expect that under thermal conditions without catalyst 

the more stable trans-isomer 206 should be formed as the major product. While with 

catalysts, under kinetic control, we would expect the less stable trans-isomer 206 to form as 

the minor isomer and the cis-isomer 205 as major product. Catalysed reactions within the 

interlayer space of clay minerals or the fixed pores of zeolites should increase the proportion 

of the more planar/less bulky cis-isomer. The sterically demanding N-phenyl group should 

enhance the selectivity of the less bulky isomer and it would be expected that changing the 

solvent within the clay minerals to affect the interlayer distance, should also have significant 

effect on the selectivity when compared to free solution reactions. Figure 39 shows energy 

minimised Chem 3D models of the cis- 205 and trans--lactam 206 isomers arranged to show 
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their smallest dimension. The trans-isomer 206 can be seen to be the more bulky isomer in 

this case, by some margin. 

 

       

cis-isomer, less bulky    trans-isomer, bulky 

Figure 39 Chem 3D models of the structures of diastereomers 205 and 206. 

 

Based on the Chem 3D structures (Figure 39) and VIs modelling, the trans-isomer 206 was 

found to be the more bulky and the thermodynamically favoured isomer and so should 

predominate in free solution, but there is the possibility of the less bulky cis-isomer becoming 

more predominant in lower energy catalysed processes. Under the restricted environment of 

the clay minerals, the cis-isomer, which is less bulky/more planar, should be more favoured. 

 

 

 Results of carbene reactions of methyl N-ethyl-N-phenylamidodiazomalonate 

185 

Similar to the reactions with methyl N,N-diethylamidodiazomalonate 183 and benzyl 

N,N-diethylamidodiazomalonate 184, N-ethyl-N-phenylamidodiazomalonate 185 reacted with 

Cu2+-Wyoming bentonite catalyst at 75°C in acetonitrile solvent to give a less than 10% yield 

(from crude) of a mixture of β-lactam diastereomers cis-isomer 205 and trans-isomer 206 in 

the ratio 37 : 63 (minor product) with carbene insertion at the ortho C-H of the aromatic ring 

producing the major indolidine product 207 (Figure 38) in ca. 38% isolated yield, whereas the 

uncatalysed reaction proceeded mainly through carbene insertion at the ortho-CH position of 

the aromatic ring with no β-lactam ring formation. Similarly, in benzonitrile without catalyst 

the reaction gave mixture of β-lactam diastereomers 205 and 206 with cis-/trans- isomer ratio 

of 24 : 76 (less than 10% yield from crude) and again the major cyclised products formed and 
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with Cu2+-Wyoming bentonite, reaction proceeded to form indolidine 207. When the same 

reaction was performed without catalyst in CDCl3 solvent, monitoring every hour by 

1H-NMR spectroscopy and TLC showed there was little progress of the reaction even after 16 

h at 75ºC, with only minor product formation, whereas in the Cu2+-clay mineral, 1H–NMR 

spectroscopy of the crude mixture showed progress in the reaction leading to carbene 

insertion into the ortho –CH position of the aromatic ring to give the indolidine product 207. 

 

For the formation of the minor β-lactam ring products, cis-isomer 205 and trans-isomer 206, 

there was a strong solvent effect on the regioselectivity, however, the competitive ortho–

aromatic CH insertion reaction was favoured in all cases. 

 

There are literature examples of carbene insertion reactions into the ortho –CH of the 

aromatic ring to form indolidine products, for example see Scheme 66.104  

 

 

 

Scheme 66 Carbene insertion reactions forming the β-lactam 209 and indolidine 210 

products.104 

 

Scheme 67 shows the effects of α-substituents such as –H 212 and –COCH3 213, on the C-H 

insertion into aromatic rings in the presence of dirhodium tetraacetate catalyst; showing that 

the α-substituent on the carbenoid carbon can have an effect on the chemoselectivity of the 

rhodium carbenoid. 
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Scheme 67 Efficient carbene –C–H insertion into the aromatic ring with dirhodium 

tetraacetate. 

 

The above example shows the effect of N-substituent and α-substituent of the diazo carbonyl 

compound favouring the carbene insertion at the ortho–CH position of the aromatic ring in 

the presence of a rhodium catalyst. Similarly, the carbene generated from methyl 

N-ethyl-N-phenylamidodiazomalonate 185 in the presence of Cu2+-Wyoming bentonite 

catalyst favoured the insertion into the ortho-CH of the aromatic ring to give 207 and less 

towards the β-lactam ring formation cis-isomer 205 and trans-isomer 206. 

 

 

 Conclusions for reactions of methyl N-ethyl-N-phenylamidodiazomalonate 185 

The Chem 3D models of cis- and trans--lactam isomers 205 and 206 (Figure 38), showed 

that the size difference is mainly due to the bulky phenyl group giving a large “height” 

difference between the more bulky trans-isomer and less bulky cis-isomer. We found some 

quite obvious parallel results on comparison with diazoesters 183 and 184. By using 

Cu(II)-exchanged Wyoming bentonite in the carbene insertion reaction of 185, the reactions 

were much faster than the uncatalysed reactions in benzonitrile and acetonitrile solvents and 

gave indolidine 207 as the major product and with much lower yields of the -lactam 

products 205 and 206. The results obtained with insertion reactions of 185 are quite similar to 

literature reports168 where the reaction favoured the formation of indolidine product 207 

(Scheme 62). This shows that the N-phenyl substituent in 185 leads to insertion into the 

ortho–CH of the aromatic ring to form the indolidine product rather than the possibility of the 

less bulky cis-isomer 205. Thus, in this case the Cu2+-exchanged clay minerals can also help 

in formation of aromatic ring indolidine products. 
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 Carbene reactions of benzyl N–ethylphenylamidodiazomalonate 

(benzyl 2-diazo-2-[ethyl(phenyl)carbamoyl]acetate) 186 

Similar to methyl ester 183, benzyl N–ethyl-N-phenylamidodiazomalonate 186 undergoes 

intramolecular carbene insertion reactions in the presence of Cu2+-Wyoming bentonite 

catalyst to give a mixture of β-lactam ring compounds 214 and 215 as minor products, with 

carbene insertion into the ortho–CH of the aromatic ring to form the indolidine 216 as major 

product (Scheme 68). 

 

 

 

Scheme 68 Benzyl N–ethyl-N-phenylamidodiazomalonate 186 insertion reactions to 

form β-lactams 214 and 215 (13 : 87) and aromatic -C-H insertion product 

216. 

 

The possible carbene insertion reactions with benzyl N–ethyl-N-phenylamidodiazomalonate 

186 are discussed below (Scheme 69). 

 

 

 

Scheme 69 Formation of β-lactam ring compounds 214 and 215. 
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Another possibility is the intramolecular carbene insertion onto the ortho -C-H of the 

aromatic ring forming indolidine product 216 (Scheme 70). 

 

 

 

Scheme 70 Carbene insertion into the ortho-CH position of the aromatic ring forming 

indolidine 216. 

 

 

 Structure assignment of the β-lactam isomers 214, 215 and indolidine 216 

The cis- and trans-diastereomers 214 and 215 were identified in a similar manner to the 

products obtained from methyl esters 183, 185 and benzyl ester 184, based on the assignment 

of the 1H NMR spectra (Figure 41) of the cis- and trans-diastereomers 214 and 215. 

 

 

 

Figure 40 cis/trans β-lactam diastereomers 214 and 215. 
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Figure 41 1H-NMR showing mixture of cis-/trans- diastereomers 214 and 215. 

 

From the 1H-NMR spectrum (Figure 41), the coupling constant values at  4.20 (d, J = 6.20 

Hz, 1H, N-CH) were assigned to the cis-isomer and d, J = 2.49 Hz, 1H, N-CH) the 

trans-isomer respectively. 

 

Carbene insertion into the aromatic ring should give the expected indolidine product 216 

(Figure 41), but there was also competition with carbene insertion into the active CH of the 

acetonitrile to form 216a which was evident from spectral data (Figure 43). 
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Figure 42 Carbene insertion at aromatic -C-H forming indolidine product 216a. 

 

 

 

Figure 43 Carbene insertion into the ortho–CH of the aromatic ring to form an 

indolidine product 216a. 

 

The 1H-NMR spectrum (Figure 43) shows a three protons non-coupling methyl singlet, δ 

2.43, that is similar to the methyl substituted product found during reaction of diazo 
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compound 183 in acetonitrile, which may be due to interaction of the solvent, acetonitrile, 

with the left over active -CH after the predominant insertion of the carbene intermediate into 

the -CH of the aromatic ring. 

 

 

 Relative stabilities and bulkiness of the -lactam diastereomers 214 and 215. 

Using VIs computer modelling, the energy differences of the cis- and trans--lactam 

diastereomers 214 and 215 were calculated. 

 

Ecis-isomer - Etrans-isomer = –976.3130908–(–976.3145004) Hartree = 0.0014096*627.509391 

kcal/mol = 0.8845 kcal/mol. Thus, the lower energy trans-diastereomer would be expected to 

be the favoured isomer at equilibrium in free solution. 

 

Thus the lower energy trans diastereomer 215 would be expected to be the favoured isomer in 

free solution in a similar manner to 183, 184 and 185 reactions. As discussed in sections 

2.4.1.2 and 2.5.1.2 the major cis-isomer 214 will be formed via the lower energy transition 

state, while the minor trans-isomer will be formed from the higher energy transition state. 

 

In a similar way to 183, 184 and 185, we would expect that the more stable trans-isomer 215 

should be formed as the major product, under thermal conditions without catalyst and the cis-

isomer 214 should be formed as minor product. While with catalysts, under kinetic control, 

we would expect the less stable cis-isomer 214 to form as the major isomer. As expected 

reaction within the interlayer space of clay minerals or fixed pores of zeolites should increase 

the proportion of the more planar/less bulky trans-isomer 215. Due to the steric demands of 

the phenyl group and also on changing solvents within the clay minerals it should be possible 

to enhance the selectivity for the less bulky isomer when compared to free solution reactions. 

 

Figure 43 shows energy minimised Chem 3D models of the cis- 214 and trans- 215 isomers 

arranged to show their smallest dimension. The cis-isomer 214 can be seen to be the more 

bulky isomer in this case, by a small margin. 
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cis- bulky      trans- less bulky 

 

Figure 44 Chem 3D models of the structures of diastereomers 214 and 215. 

 

Thus, from the Chem 3D model structures (Figure 44) and VIs calculated stabilisation energy 

values showed that the trans isomer is less bulky and lower in energy (-976.3145004) 

compared to the cis-isomer which gives information that the less bulky trans-isomer is 

expected to be the favoured isomer at equilibrium in free solution. 

 

 

 Results of carbene reactions of benzyl N–ethyl-N-phenyldiazomalonate 186. 

Similar to diazo compounds 183, 184 and 185, compound 186 reacted with Cu2+-Wyoming 

bentonite at 75°C in acetonitrile solvent to give a mixture of β-lactam diastereomers 214 and 

215 with cis-/trans-isomer ratio 13 : 87 (isolated yield ca. 10%) (minor product) and also 

carbene insertion at the ortho position of the aromatic ring in ca. 36% isolated yield, whereas 

the uncatalysed reaction proceeded mainly through carbene insertion at the ortho-CH position 

of the aromatic ring with no β-lactam ring formation. 
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 Effect of the substituent on the α-diazo carbonyl compounds N-benzyl-N-tert-

butyl-2-diazoacetamide 206 and methyl 2-diazo-3-(methyl(phenyl)amino)-3-

oxopropanoate 209. 

From the literature,169 due to the steric hindrance of the bulky benzyl group, formation of a 

β-lactam ring is more favoured, but when the same reactions were performed without catalyst 

there was minor product formation and the reaction did not go to completion at 75ºC. 

Examples of possible carbene insertion reactions dependent upon N-substituent were similar 

to those shown in Scheme 67. 

 

 

 Conclusions for reactions of benzyl N-ethyl-N-phenylamidodiazomalonate 186. 

Due to the benzyl ester group in 214 and 215 there is a noticeable difference in the smallest 

molecular dimension. However, due to the planarity of the N-phenyl groups, the cis- and 

trans--lactam isomers 214 and 215 are both narrow so there is little “height” difference, but 

by comparing the width of the cis- and trans--lactam isomers 214 and 215 there is a 

noticeable difference in size showing the cis-isomer is more bulky compared to the trans-

isomer. This leads us to expect that under free solution reaction conditions the low energy 

trans-isomer should be more favoured. Under catalytic and in free solution reaction 

conditions, because of a low energy transition state the less bulky trans-isomer should be 

favoured as the major isomer and the more bulky cis-isomer as the minor product. Similar to 

the reaction of methyl N-ethyl-N-phenylamidodiazomalonate 185, the benzyl N-ethyl—

N-phenylamidodiazomalonate 186, would be expected to form the more planar/less bulky 

isomer within the interlamellar region of Cu2+-exchanged clay minerals. Reactions with the 

Cu(II)-exchanged Wyoming bentonite were much faster than for the uncatalysed reaction and 

gave the indolidine product 216a as the major product and much lower yields of the -lactam 

products 214 and 215. The results obtained with insertion reactions of 186 are quite similar to 

literature reports and the reaction is favoured towards the formation of indolidine product 

213, Scheme 67. This shows that the N-phenyl substituent in both 185 and 186 leads to 

insertion into the ortho–CH of the aromatic ring to form indolidine products 207 and 216a. 

Thus both examples, 185 and 186, prove that using Cu2+-exchanged clay mineral catalysts 

can also help in the formation of indolidine type rings. 
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Thus we were interested in finding out the stereoselectivity effects within the restricted 

interlayer space of the clay mineral and fixed pores of zeolites with molecules that have 

cyclic amines (piperidine and pyrrolidine) attached to the diazo carbonyl group and also the 

effects of both the methoxy and benzyloxy substituted compounds, due to their differences in 

molecular sizes. 

 

 

 Carbene reactions of methyl N-piperidinodiazomalonate (methyl 2-

diazo-3-oxo-3-(piperidin-1-yl)propanoate) 187. 

Carbene intermediates were formed from methyl N-piperidinodiazomalonate 187 by 

photolysis, thermolysis and catalysis with copper(II) sulfate, Cu(II) clay minerals or Cu(II) 

zeolites to yield a mixture of the β-lactam diastereomers 217 and 218 (Scheme 71), together 

with small amounts of dimers 219 and 220 (Scheme 72) and a small amount of amino acid 

formed due to β-lactam ring cleavage. 

 

 

 

Scheme 71 Methyl N-piperidinodiazomalonate 187 insertion reaction forming β-lactam 

ring. 

 

There is also a possibility of dimer formation with carbene addition reactions. 
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Scheme 72 Methyl N-piperidinodiazomalonate 187 insertion reaction forming trans- 

219 and cis-220 dimers. 

 

 

 Assignment of the structure of the bicyclic β-lactam isomer 218 

The literature170 1H–NMR spectra for the β-lactam isomers 217 and 218 were obtained on 

Varian T60 and A60A spectrometers and are reported in parts per million  downfield of 

internal TMS. These 1H-NMR do not provide sufficient information for differentiating 

between the two isomers 217 and 218. We attempted to analyse the compounds based on 

assignment of their 1H-NMR, 13C-NMR, 1H-1H 2D COSY and 1H-1H 2D NOESY spectra. In 

the literature,171,172 we found two bicyclic molecules 218a and 218b (Figure 45) which were 

nearly identical to 218 except for having different functional groups at position R (Figure 44). 

The literature data for 218a and 218b were quite useful for predicting the coupling constant 

(J) values and for identifying the δ values and splitting patterns of the piperidine ring 

hydrogens of 218 (Figure 46). Comparison with the literature values for acid molecule 218a 

showed that the δ value at 3.75 (d, J = 1.80 Hz, 1H) with a 1.80 Hz coupling constant can be 

used to establish that the C-6 and C-7 protons are for the trans β-lactam.172 

 

The 1H NMR spectrum of the partially purified trans β-lactam isomer 218 (Figure 46) has a 

resonance δ 3.69 (d, J = 1.90 Hz, 1H), which is consistent with the literature values for 

analogue 218a.172 In a similar manner, the literature values of 7-bromo-1-

azabicyclo[4.2.0]octan-8-one 218b were useful for resolving the splitting pattern of the 

piperidine ring hydrogens which were close to the values for the trans β-lactam 218, as 

discussed in Table 10. 
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Figure 45 Structures of the substituted bicyclic β-lactam isomers 

 

 

 

Figure 46 1H NMR spectrum of partially purified trans β-lactam isomer 218 
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Table 10 Assignments of 1H NMR of bicyclic systems 218 and 218b 

  

  values and (J) coupling  

Constants of 218 

  values and (J) coupling  

Constants of 218b 

3a, 3b,  

4a, 4b 

1.16 – 1.73 (m, 4H) 15a, 15b, 

16a, 16b 

1.18 – 1.70 (m, 4H) 

5b 1.83 - 1.95 (m, 1H) 18b 1.85 (m, 1H) 

5a 2.05 – 2.18 (m, 1H) 18a 2.12 (m, 1H) 

2b 

 

2.79 (ddd, J = 4.50, 11.60, 

13.70 Hz, 1H) 

14b 

 

2.74 (ddd, J = 4.33, 11.77, 

13.47 Hz, 1H) 

C6-H 

 

3.65 (ddd, J = 1.90, 4.50, 

10.50 Hz, 1H) 

19a 

 

3.51 (ddd, J = 1.04, 4.47, 

10.69 Hz, 1H) 

C7-H 3.69 (d, J = 1.90 Hz, 1H) 20a 4.39 (d, J = 1.13 Hz) 

-OCH3 3.76 (s, 3H, -OCH3) - - 

2a 3.84 (dd, J = 4.50, 13.70 Hz) 14a 3.81(dd, J = 4.52, 13.19 Hz) 

 

 

 Relative stabilities and bulkiness of the -lactam diastereomers 217 and 218. 

Using VIs computer modelling, the energy differences of the cis- and trans--lactam 

diastereomers 217 and 218 were calculated: 

 

Ecis-isomer - Etrans-isomer = -631.0110152–(–631.0129177) Hartree = 0.0019025*627.509391 

kcal/mol = 1.1938 kcal/mol. Thus, the lower energy trans-diastereomer would be expected to 

be the favoured isomer at equilibrium in free solution. 

 

Thus, from VIs computer modelling and Chem 3D model structures calculation showed that 

the trans-form, with the less stable energy transition state should be favoured as a major 

isomer in free solution reaction. 
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cis isomer     trans isomer 

 

Figure 47 Chem 3D model structures of cis- 217 and trans- 218 diastereomers. 

 

There is a slight increase in bulkiness with the cis-isomer due to additional interactions 

between the carbonyl oxygen and the hydrogens of the piperidine ring. Due to these 

interactions the cis-isomer 217 is the slightly more bulky and stable isomer whereas for the 

flatter trans-isomer 218, there is no such interaction and from Chem 3D models (Figure 47) 

the cis-isomer 217 looks more bulky than the trans-isomer 218. 

 

 

 Results of carbene reactions of methyl N-piperidinodiazomalonate 187 

Similar to other diazo carbonyl compounds, methyl N-piperidinodiazomalonate 187 reacted 

without catalyst at 75°C in acetonitrile solvent to give a mixture of β-lactam diastereomers 

217 and 218 with cis-/trans-isomer ratio 2 : 98 (isolated yield ca. 66%). Reaction was faster 

when compared to uncatalysed, i.e. without catalyst under thermal conditions. In contrast, 

when a free solution catalysed reaction of methyl N-piperidinodiazomalonate 187, heated 

under reflux with (Cu(acac)2) as catalyst at 75°C in acetonitrile solvent overnight, the result 

was a complex mixture containing several by-products, with no β-lactam isomers being 

formed. When the same reaction was performed under photolytic conditions using 

dichloromethane as a solvent, the less bulky trans-isomer was formed as the major product 

with (ca. 60% isolated yield). 
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From the literature,170 the photolysis of bicyclic diazo tetramic acid 221 gave β-lactams 217 

and 218 with 65% yield as a 2 : 5 mixture (Scheme 73).-Lactam 217 epimerised to 218 with 

great ease, even in the apparent absence of a proton carrier, thus leaving the relative amounts 

of 217 and 218 initially formed open to question. 

 

 

 

Scheme 73 Photolysis of tetramic acid to β-lactam isomers. 

 

When the carbene insertion reactions (Scheme 71) were performed with the Cu(II)-exchanged 

mineral catalysts in acetonitrile or benzonitrile solvent, it was surprising that this reaction 

once again formed the trans-isomer 218 as the major product with a cis-/trans-isomer ratio of 

2 : 98. This may be due to the restrictions in the interlayer space of clay minerals or zeolites. 

Benzonitrile solvent gave the highest yield with acetonitrile next and other solvents forming 

various solvent insertion products. 
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Figure 48 Mechanism of carbene formation in cation exchanged–clay mineral in order 

to form less bulky β-lactam. 
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ethylbenzene and 1,4-dioxane the major products were the carbene dimers 219 and 220 

(Scheme 72). This was similar to the dimer formation from ethyl diazoacetate 33 giving the 

dimers diethyl fumarate 232 and diethyl maleate 233, which will be discussed in Chapter 3. 

 

 

 Effects of varying the solvent on the interlayer spacing of clay minerals 

Table 11 shows the effect of changing solvent on the yields of the carbene insertion reaction 

of 187. 

 

Table 11 Measured (XRD) d values for Cu(II)-Wyoming bentonite in various 

solvents 

Solvent %Yield of 

-lactams 

217 & 218 

trans-

diastereomer 

ratio 

Interlayer distance of Wyoming 

bentonite, d (Å), assuming the clay 

layers ≈ 9.6 Å164 

Acetonitrile 66 98 (trans) 3.52 

Benzonitrile 72 98 (trans) 5.90 

Toluene 28 98 (trans) 3.36 

Acetone - - 3.40 

Tetrahydrofuran - - 3.80 

Others: 

Chloroform 

D2O 

 

60 

- 

 

98 (trans) 

- 

 

3.56 

Ethylbenzene - - 5.02 

Dichloromethane - - 3.52 

1,4-Dioxane - - 5.02 

 

Thus good yields were obtained in benzonitrile, acetonitrile and chloroform whereas in other 

solvents like ethylbenzene, 1,4-dioxane, etc., there may be the difficulty of insertion at the 

active –CH position of the solvent and also the starting material was leading to carbene dimer 

products. Dichloromethane was a low boiling solvent and the reaction was only initiated at 

>75°C. 

 

Due to the complexities with identification by 1H-NMR spectroscopy, GC/MS was used to 

quantify the isomer ratios, Figure 49. The GC-MS spectra of cis- 217 and trans- 218 
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diastereomers showed m/z: 183 (M+), 155 (M+ –CO), 124 (M+ –CO2Me) and 83 

(C-N=CH(CH2)4
+). 

 

 

 

Figure 49 Reaction in benzonitrile solvent using clay mineral catalyst. 

 

 

Major trans, 218 

 

Minor cis, 217 
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 Conclusions for reactions of methyl N-piperidinodiazomalonate 187 

Due to the arrangement of the bulky piperidine and ester methyl groups in the cis- and trans-

-lactam isomers 217 and 218 there is a noticeable difference in the smallest molecular 

dimension; there is a reasonable difference in the width of the two isomers, the trans-isomer 

being narrower, may lead to size selectivity. The bulkiness of the cis-isomer was further 

increased by interaction of the carbonyl oxygen and the hydrogen of the piperidine group, 

thus we found that size selectivity during the catalysed reaction within the restricted 

interlamellar region of the Cu2+-exchanged clay mineral, favoured the more planar/less bulky 

trans-isomer. However, we found some interesting results: in most cases when using 

Cu(II)-exchanged clay mineral and zeolite catalysts in the carbene insertion reaction of 187, 

the reactions were much faster than the uncatalysed reactions in all solvents and tended to 

give higher yields of the -lactam products 217 (minor) and 218 (major) together with small 

amounts of carbene dimer by-products 219 and 220 and some ring-opened lactam acid. 

 

Thus, it then led us to explore the effects of the more sterically demanding bulky benzyl ester 

group attached as in 188, to see if this would show differences in size similar to that observed 

for the other two isomers. 

 

 

 Carbene reactions of benzyl piperidinodiazomalonate compound 

(benzyl 2-diazo-3-oxo-3-(piperidin-1-yl)propanoate) 188 

Carbene intermediates were formed from benzyl piperidinodiazomalonate 188 by photolysis, 

thermolysis and catalysis with: copper(II) sulfate, Cu(II) clay minerals or Cu(II) zeolites, to 

yield a mixture of the β-lactam diastereomers 221 and 222 (Scheme 74), with small amounts 

of dimers 223 and 224 (Scheme 75) and the lactam acid formed by β-lactam ring cleavage. 

 



107  
 

 

 

Scheme 74 Carbene insertion reaction of piperidine benzyl diazo compound 188 forming 

β-lactams 221 and 222. 

 

Possibility: 

 

 

 

Scheme 75 Carbene addition reaction forming dimers 223 and 224. 

 

 

 Assignment of the structures of the β-lactam isomers 221 and 222 

This was done in the usual manner from the nmr spectra (including Figure 51). 
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Figure 50 trans-isomer of β-lactam 222 

 

 

 

Figure 51 1H-NMR of trans β-lactam 222. 
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Table 12 Assignments of the 1H NMR Spectra of bicyclic -lactams 222 and 218b 

  values and (J) coupling  

Constants of 222  

  values and (J) coupling  

Constants of 218b 

3a1, 3b1,  

4a1, 4b1 

1.09 – 1.65 (m, 4H) 15a, 15b, 

16a, 16b 

1.18 – 1.70 (m, 4H) 

5b1 1.71 – 1. 87 (m, 1H) 18b 1.85 (m, 1H) 

5a1 1.93 – 2.08 (m, 1H) 18a 2.12 (m, 1H) 

2b1 

 

2.68 (ddd, J = 4.60, 11.60, 

13.60 Hz, 1H) 

14b 

 

2.74 (ddd, J = 4.33, 11.77, 

13.47 Hz, 1H) 

C6-H 

 

3.55 (ddd, J = 1.80, 4.30, 

10.50 Hz, 1H) 

19a 

 

3.51 (ddd, J = 1.04, 4.47, 10.69 

Hz, 1H) 

C7-H 3.62 (d, J = 1.80 Hz, 1H) 20a 4.39 (d, J = 1.13 Hz) 

2a1 3.74 (dd, J = 4.60, 13.60 

Hz) 

14a 3.81 (dd, J = 4.52, 13.19 Hz) 

-OCH2 5.10 (dd, J = 12.30 Hz, 

2H, -OCH2Ph) 

- - 

Ar-H  7.14 – 7.32 (m, 5H, Ar-H) - - 

 

From Table 12, the δ values of the benzyl trans β-lactam 222 were consistent with those 

reported for the trans β-lactam methoxy and bromo compounds 218 and 218b. The singlet 

peak at δ 5.22 that corresponds to the benzylic CH2 (PhCH2) of the diazo compound 188 had 

disappeared and a new dd had formed at δ 5.10, which represents the diastreomeric CH2 of 

the benzylic group and also the C7-H of the β-lactam ring, with a coupling constant J = 1.80 

Hz, which was also consistent with the data for 218 and 218b. 

 

 

 Relative stabilities and bulkiness of the -lactam diastereomers 221 and 222 

Using VIs computer modelling, the energy differences of the cis- and trans--lactam 

diastereomers 221 and 222 were calculated: 

 

Ecis-isomer - Etrans-isomer = -862.0131511–(–862.0156775) Hartree = 0.0025264*627.509391 

kcal/mol = 1.5853 kcal/mol. Thus, the lower energy trans-diastereomer 222 would be 

expected to be the favoured isomer at equilibrium in free solution. 

 

Thus in comparison with the methyl ester and benzyl ester cis- 221 and the trans-isomer 222 

and the more bulky cis- and less bulky trans will be assumed to be size difference by width of 
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both isomers. Thus, under thermodynamic conditions the less stable trans-isomer should form 

as a major isomer and the cis-isomer as the minor isomer. 

 

 

 Effects of varying the solvent on the interlayer spacing of clay minerals 

Similar to those listed in Table 11, Table 13 shows that there is also an effect on the yields of 

the carbene insertion reactions of 188. When compared, the yields from benzonitrile to 

acetonitrile and chloroform are good. This shows that by judicious choice of solvents such as 

acetonitrile and benzonitrile, the interlayer space of the clay mineral can be kept just wide 

enough to form the less bulky trans-isomer. In other solvents like ethylbenzene and 

1,4-dioxane, there may be loss of yield due to the insertion at the active –CH position of the 

starting material, which leads to dimer products and other major impurities; whereas 

dichloromethane is a low boiling solvent and the reaction appears to be initiated at > 75°C. 

 

Table 13 Measured (XRD) d values for Cu(II)-Wyoming bentonite in various 

solvents 

Solvent %Yield of 

-lactams 

221 & 222 

trans-/cis-

diastereomer 

ratio 

Interlayer distance of Wyoming 

bentonite, d (Å), assuming the clay 

layers ≈ 9.6 Å164 

Acetonitrile 64 98% (trans) 3.52 

Benzonitrile 68 98% (trans) 5.90 

Toluene 20 98% (trans) 3.36 

Acetone - - 3.40 

Tetrahydrofuran - - 3.80 

Others 

Chloroform 

 

58 

 

98% (trans) 

 

3.56 

D2O - - - 

Ethylbenzene - - 5.02 

Dichloromethane - - 3.52 

1,4-Dioxane - - 5.02 

 

 

 Results of carbene reactions of benzyl piperidinodiazomalonate compound 188 

By using chloroform as a solvent with Cu2+-clay mineral we observed four different products. 

One pair is the trans- and cis-β-lactam isomers, of which the trans-isomer was the major 
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product and the second pair are the cis- and-trans alkenes due to carbene dimer formation 

from the carbene intermediates. This reaction is proof that, the syntheses of cyclopropane 

rings using ethyl diazoacetate with various alkenes will form diethyl fumarate and diethyl 

maleate (Scheme 80) as minor products along with cyclopropane rings as will be discussed in 

Chapter 3. This reaction was also carried out thermally without using catalyst and also by 

using catalysts such as Brett’s Fullers earth, Los Trancos and Cu2+-Al-O-EA in various 

solvents such as 1,4-dioxane, toluene, chloroform and benzonitrile. 

 

 

 Conclusions for reactions of benzyl piperidine diazomalonate 188 

Similar to the reaction with 187, the benzyl piperidino diazo compound 188 should undergo 

reaction within the restricted interlamellar region of the Cu2+-exchanged clay mineral to 

favour the more planar/less bulky trans-isomer. By using Cu(II)-exchanged clay mineral and 

zeolite catalysts in the carbene insertion reaction of 188, the reactions were much faster than 

the uncatalysed reactions in all solvents and tended to give higher yields of the -lactam 

products 221 (minor) and 222 (major), as well as carbene dimer by-products 223 and 224. 

When compared to the uncatalysed reaction in free solution, the mineral catalysed processes 

gave a mixture of the cis-isomer 221 (minor) and the more thermodynamically stable 

trans-isomer 222, with good yields. The proportion of the less bulky cis-isomer could be 

improved by judicious choice of solvent, clay mineral layer charge or zeolite type, but even 

with the best of these the proportion of the slightly less bulky cis-isomer could not be 

improved over the catalyst free reaction. This suggests that the catalysed reaction, which 

usually favours the thermodynamic trans-product 222, can be overcome to a small degree 

during the reaction of diazo compound 188 in the restricted inner regions of the mineral 

catalysts, but that the size difference of the -lactam diastereomers 221 and 222 is not great 

enough to allow great size selection. 

 

Thus we were led to choose to examine five membered ring heterocyclic ring systems which 

showed a greater difference in size of the two diastereomers from Chem 3D modelling and to 

find out whether the restricted environment will show greater stereoselectivity for 

diastereomer formation within the clay mineral interlayers or in fixed pores of zeolites. 
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 Carbene reactions of methyl pyrrolidinodiazomalonate (methyl 

2-diazo-3-oxo-3-(pyrrolidin-1-yl)propanoate) 189 

The conversion of methyl pyrrolidinodiazomalonate 189 to the -lactams 225 and 226 

(Scheme 76) was attempted by the usual means, however only carbene dimers 227 and 228 

(Scheme 77) were formed. 

 

 

 

Scheme 76 Carbene insertion reaction of methyl pyrrolidinodiazomalonate 189 to form 

β-lactams 225 and 226. 

 

 

 

Scheme 77 Carbene addition reaction forming dimers 227 and 228. 

 

 

 Attempted assignment of the structures of the β-lactam isomers 225 and 226 

The complex 1H-NMR spectrum (Figure 52) shows the formation of carbene dimer products 

only, with broad resonances attributed to the pyrrolidine protons at and 1.80 - 1.93, 
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the methoxy peaks in the 3.7 - 3.8 region with a complex mixture of cis- and trans-dimers 

and small amounts of the lactam acid were also seen. 

 

 

 

Figure 52 Dimer products from methyl pyrrolidinodiazomalonate 189. 

 

 

 Relative stabilities and bulkiness of the -lactam diastereomers 225 and 226 

Using VIs computer modelling, the energy differences of the cis- and trans--lactam 

diastereomers 225 and 226 were calculated: 

 

Ecis-isomer - Etrans-isomer = -862.0131511–(–862.0156775) Hartree = 0.0025264*627.509391 

kcal/mol = 1.5853 kcal/mol. Thus, the lower energy trans-diastereomer would be expected to 

be the favoured isomer at equilibrium in free solution. 
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Thus from VIs computer modelling and the Chem 3D model structures (Figure 53) shows the 

cis-isomer should be less stable, but could still form as the major isomer in free kinetic 

controlled solution reactions. 

 

  

cis isomer     trans isomer 

 

Figure 53 Chem 3D structures of the diastereomers 225 and 226. 

 

 

 Conclusions for reactions of methyl pyrrolidinodiazomalonate 189 

On using uncatalysed and clay mineral catalysed reactions we found that there were no 

-lactam products from this precursor 189, the five membered ring of pyrrolidine was unable 

to undergo carbene addition reactions, but instead formed carbene dimers. This suggests that 

either the pyrolidine C-H bonds are too far away to allow easy carbene insertion, or the very 

strained 4,5-bicyclic ring system would be expected to ring open rapidly under the hydrolytic 

conditions within the clay mineral. This is supported by the literature,7 when diazo compound 

189 was treated with dirhodium tetraacetate in dichloromethane solvent, the reaction did not 

proceed as expected from Scheme 77 and only starting material 189 was recovered. 
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 Carbene insertion reaction of methyl 1-phenylethylamidodiazo-

malonate (methyl 2-diazo-2-[(1-phenylethyl)carbamoyl]acetate) 

191. 

It was hoped that the diazo compound 191 would present the possibility of greater steric 

hindrance, so helping choice of the less bulky isomer and giving either -lactams 229 or 230 

or a -lactam product (Scheme 78). 

 

 

 

Scheme 78 Proposed reaction of methyl 1-phenylethylamidodiazomalonate 191 in the 

presence of Cu2+-Wyoming bentonite catalyst. 

 

When this reaction was performed in acetonitrile and benzonitrile solvents with clay and 

zeolite catalysts, none of the desired compounds formed, only complex crude mixtures were 

formed that did not appear to contain the desired β-lactams 229 and 230. 

 

 

 Relative stabilities and bulkiness of the -lactam diastereomers 229 and 230 

Using VIs computer modelling, the energy differences of the cis- and trans--lactam 

diastereomers 229 and 230 were calculated: 

 

Ecis-isomer - Etrans-isomer = -745.3047582–(–745.3059464) Hartree = 0.0011882*627.509391 

kcal/mol = 0.74560 kcal/mol. Thus, the lower energy trans-diastereomer would be expected 

to be the favoured isomer at equilibrium in free solution. 

 

As no useful products were found this line of investigation was discontinued. 
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 Attempted carbene insertion reaction of methyl N,N-diphenyl-

diazomalonamide (methyl 2-diazo-2-(N,N-diphenylcarbamoyl)-

acetate) 192. 

It was hoped that carbene insertion into one of the ortho- CH groups of the phenyls of the 

N,N-diphenyl malonamide 192 would produce the N-phenyl indolone 231 (Scheme 79). 

 

 

Scheme 79 Proposed carbene insertion reaction of methyl N,N-diphenyldiazomalonate 

192 to form cyclised product 231. 

 

However, once again this compound proved to be too bulky and difficult to fit into the 

interlayer space of clay catalysts or zeolite pores. As feared this molecule 192 did not form 

cyclised product 231 even in solvents such as acetonitrile, benzonitrile and toluene that had 

previously been shown to give good yields. 

 

 

 Conclusions 

Small carbene precursors such as diazo esters 183 - 186 in Cu(II)-exchanged clay mineral or 

zeolite catalysts gave good yields of -lactam compounds with small quantities of -lactam 

by-product, but little carbene dimers. The benzyl esters 184 and 186 gave small quantities of 

the benzyl C-H insertion -lactam products also. As the bulkiness of the products increased, 

some selectivity for the less bulky isomer could be achieved within the mineral, the best 

results being within the restricted pores of the zeolites. Changes in solvent gave some useful 
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selectivity as long as the solvent did not have active C-H groups in the solvent, which 

competed with the intramolecular C-H insertion reactions. N-Phenyl substituted compounds 

showed strong competition for indolidine formation over -lactams. Six membered ring 

piperidino compounds 187 and 188, showed excellent selectivity for the trans--lactam 

isomers (> 98%), but the C-H groups of the corresponding five membered ring pyrrolidine 

compounds appeared to be too far away from the carbene centre for ring formation and 

carbene dimers were the only recognisable products. Very sterically demanding 

1-phenylethylamido and N,N-diphenylamido compounds did not give any of the desired 

products as, presumably they had difficulty entering the clay or zeolite catalysts. 

 

 

 

Figure 54 Increase in bulkiness as the N-substituent changes. 

 

It appears that as the bulkiness increases from mono lactam ring with less bulky methoxy 

group to benzyl group and up to the β-lactam rings with phenyl groups (Figure 54) it becomes 

difficult to enter into the interlayer space of the clay mineral and as a result the reaction 

favours reaction outside the mineral, i.e. as that in free solution. However, the β-lactam ring 

can cleave in the presence of water and the clay mineral contains water in the interlayer space 

meaning that it can be difficult to maintain the lactam rings that have been formed, but in 

many cases good yields can be obtained. For these molecules we tried different catalysts 

(Zeolites ZSM-5, 4A and Cu2+-Al-O-EA) and solvents such as dichloromethane, 1,4-dioxane, 

toluene, chloroform and benzonitrile to produce the more favoured less bulky/more planar 

isomer within the catalysts. 
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 Chapter: Carbene Addition Reactions 

 

 Introduction of catalysed reactions of carbene addition 

Cyclopropane is the highly strained smallest cycloalkane, which can be easily isolated and 

stored. The estimated total ring strain in cyclopropane is 28 kcal/mol (from heats of 

combustion measurements). For the cyclopropane ring C-C bond, when this value is 

compared with the strength of a typical C–C bond (ca. 88 kcal/mol), it has been shown that 

ring strain considerably weakens the C–C bonds of the ring. Hence, cyclopropane is much 

more reactive than acyclic alkanes and other cycloalkanes such as cyclohexane and 

cyclopentane. 

 

In the current project we attempted diastereoselective cyclopropanation, by catalysed carbene 

addition onto alkenes within the interlamellar region of the cation exchanged Cu2+-clay 

mineral catalyst to determine whether we could modify the stereo-chemical outcome of 

reactions within the clay layers compared to free solution reactions, i.e. reactions via less 

bulky intermediates should be more favoured in the restricted interlamellar region of the clay 

mineral. 

 

For example:– 

 

 

 

Figure 55 Formation of the less bulky cis-isomer (pyrethrin pesticide) should be more 

favoured in the interlamellar region of the clay mineral. 

 

By exchanging the usual sodium ions present in between the aluminosilicate layers of clay 

minerals, for a low valent transition metal, such as Cu2+, a catalytic site highly restricted in 

size and shape will be produced. This leads to the possibility that the less bulky diastereomer 

CO2C2H5
CO2C2H5

trans,134cis, 244
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should be formed in this restricted environment. Due to steric constraints, chemical reactions 

carried out in the interlamellar region of clay minerals prefer to proceed via less bulky 

intermediates. Our primary aim was to study the chemoselectivity and diastereoselectivity of 

the cyclopropanation reactions. So, in the first instance, we wished to determine whether the 

less bulky diastereomer would be preferred in model catalysed reactions of a diazoalkane 

with simple alkenes within the interlamellar region of a cation exchanged Cu2+-clay mineral, 

using dry dichloromethane as the solvent. Initially, we focused on three different types of 

alkenes (see Table 14) styrene 87, linear alkenes (1–hexene 234), cyclic alkenes (cyclohexene 

131, 1,5-cyclooctadiene 238), dienes (isoprene 241, 2,5–dimethyl–2,4–hexadiene 133 

(DMHD)) and trans-cinnamic acid 245 with EDA 33 (ethyl diazoacetate) as the 

cyclopropanating agent. To evaluate the catalysed reactions, we performed reactions in 

different solvents with various catalysts such as Cu2+-cation exchanged clay minerals (mainly 

Wyoming Bentonite) and zeolites (ZSM-5 and 4A molecular sieves). 

 

 

 Synthesis of cyclopropane rings from various alkenes 

Cyclopropane ring formation reactions are amongst the most important reactions of carbenes. 

Alkenes such as styrene 87, 1-hexene 234, cyclohexene 131, 1,5-cyclooctadiene 238, 

isoprene 241 and 2,5–dimethyl–2,4–hexadiene 133 were reacted with a diazo compound 

(ethyl diazoacetate 33), that forms a carbene intermediate in the presence of Cu2+-cation 

exchanged clay mineral and zeolite catalysts, using dichloromethane as a solvent, to give 

cyclopropane rings showing cis-/trans-diastereomers and endo-/exo-isomers (Table 14). 
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Table 14 Cyclopropanes synthesised from alkenes and ethyl diazoacetate. 

 

Starting material Cyclopropanes, cis-/trans- or endo-/exo- % Yield 

Styrene 87 

 

75 

*1-Hexene 234 

 

- 

Cyclohexene 131 

 

15 

1,5-Cyclooctadiene 

238 

 

12 

*Isoprene 241 

 

- 

2,5–Dimethyl–2,4–

hexadiene 133 

 

48 

trans-cinnamic acid 

245 

 

54 

* Reactions of EDA with 1-hexene and isoprene formed complex mixture. 
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 Carbene addition reaction with EDA and styrene 87 

From the literature,8,173 carbene intermediates have been generated from ethyl diazoacetate 33 

(EDA) in the presence of platinum and rhodium complexes and they have been reacted with 

styrene 87 to form cis- and trans-cyclopropanes 127 and 128, as major products and diethyl 

fumarate 232 and diethyl maleate 233 carbene dimers as minor products of the carbene 

addition reaction. Similarly, we have used Cu2+-Wyoming bentonite as catalyst to form the 

cis- and trans-cyclopropanes 127 and 128 from styrene 87 (Scheme 80). 

 

 

 

Scheme 80 Cyclopropanation of styrene with EDA in the presence of Cu2+-Wyoming 

bentonite with minor by-products diethyl fumarate 232 and diethyl maleate 

233. 

 

 

 Assignment of the structures of the cis- 127 and trans-isomers 128 of the 

cyclopropane from styrene 87 

The cis- and trans-diastereomers 127 and 128 (45 : 55) were identified based on the 

assignment of their 1H NMR (Figures 57 and 59), 13C NMR, 1H-1H 2D COSY and 1H-1H 2D 

NOESY spectra. 
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Figure 56 trans-Isomer 128 from styrene cyclopropanation. 

 

 

 

Figure 57 1H-NMR spectrum of the trans-cyclopropane isomer 128 from styrene 87. 
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Figure 58 cis-Isomer 127 from styrene cyclopropanation. 

 

 

 

Figure 59 1H-NMR spectrum of the cis-isomer 127 from styrene cyclopropanation. 

 

Based on the literature values,8,174 the protons at 1.90 (Figure 57) and 2.06 (Figure 59) were 

assigned to trans-isomer 128 and cis-isomer 127. The other values were also consistent with 

the literature comparative data shown below in Table 15, and also from the crude spectra the 

minor products diethyl fumarate 132 and diethyl maleate 133 showed, the peaks at δ 6.88 

(2H, s, -CHtrans) and 6.20 (2H, s, -CHcis) consistent with the literature.175 
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Table 15 Comparative 1H NMR data for cis- 127 and trans-isomers 128 

 
 

 

 

  
 

 

 

 

Experimental  Literature  Experimental  Literature  

2.06 (ddd, 1H, J = 

9.30, 7.90, 5.70 Hz, 

ArCHC) 

2.06 (ddd, 1H, J = 

9.30, 7.90, 5.70 Hz, 

ArCHC) 

1.90 (1H, ddd, J = 

8.20, 5.20, 4.30 Hz 

ArCHE) 

1.90 (1H, ddd, J = 

8.20, 5.20, 4.30 Hz 

ArCHE) 

2.57 (dd, 1H, J = 8.90, 

16.60 Hz, CHDCO2Et 

2.56 (dd, 1H, J = 8.90, 

16.55 Hz, CHDCO2Et) 

2.52 (1H, ddd, J = 

9.20, 6.40, 4.30, 

CHDCO2Et) 

2.52 (1H, ddd, J = 

9.20, 6.40, 4.30, 

CHDCO2Et) 

 

 

 Relative bulkiness of the diastereomers 127 and 128 from Chem 3D models 

Energy minimised Chem 3D structures give an estimate of the relative sizes of the 

diastereomers (Figure 60). 

 

 

 

 

 

 

 

cis 127, bulky   trans 128, less bulky 

 

Figure 60 Chem 3D models of the structures of diastereomers 127 and 128. 

 

The Chem 3D model structures (Figure 60) were generated by drawing the “all trans” 

conformation (longest open chain arrangement of the molecules) of both the cis- 127 and 

trans- styrene 128 cyclopropanes in Chem Draw and copying them to Chem 3D. The 

structures were energy minimised using the MM2 procedure and the structures checked to 
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ensure that the “all trans” configuration had been retained: if not then the structures were 

altered and re-minimised to produce the lowest energy “all trans” configurations. The 

trans-isomer showed the lower energy in MM2 process (by about 6 kcal mol-1). The 

structures were copied to Microsoft Word and resized so that all atoms of each type were the 

same size in both structures. Two horizontal lines were used to help compare the sizes of the 

structures. Figure 60 shows that the cis-isomer 127 is more bulky than the trans-isomer 128 

across its smallest dimension. Thus we expect that within the restricted environment of the 

clay minerals or the pores of the zeolite the less bulky trans-isomer 128 should be formed as 

the major product and the cis-isomer 127 as the minor product. 

 

Using VIs computer modelling, the energy differences of the cis- and trans-cyclopropane 

isomers 127 - 128 were calculated: 

 

Ecis-isomer – Etrans-isomer = –576.8477579 – (–576.8525282) Hartree = 0.00477037*627.509391 

kcal/mol = 2.993451974 kcal/mol. 

 

This more accurate method, considering all conformations confirms that the trans-isomer 128 

is more stable by about 3 kcal mol-1. 

 

As the trans-diastereomer 128 is more stable it would be expected to predominate slightly in 

free solution at high temperatures and to become more predominant in low energy catalysed 

processes. Furthermore, from the Chem 3D structures the relative “heights” of the 

diastereomers cis- and trans- show that the trans-diastereomer 128 should be less bulky with 

respect to a clay mineral interlayer and should be formed more readily if the environment is 

more restricted. Thus, the lower energy, less sterically constrained trans-isomer 128 should 

predominate both in solution and within the interlayer region of a clay mineral. 

 

 

 Results of the carbene addition reaction of EDA to styrene 127 

Under thermal, uncatalysed conditions, reaction of ethyl diazoacetate 33 with styrene 127 

gave carbene dimers (diethyl fumarate 232 and diethyl maleate 233) as the major products 

with a complex mixture of impurities, while in the presence of Cu2+-Wyoming bentonite 
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formed cis- 127 and trans-cyclopropanes 128 as major products with the carbene dimers 232 

and 233 as minor products. When a similar reaction was catalysed by copper complexes of 

biaryldiimine, the ratio of cis- 127 and trans-cyclopropanes 128 obtained was 18 : 82 (ca. 

isolated yield 94%) whereas in Wyoming bentonite with dichloromethane as solvent, the ratio 

of cis- 127 and trans-cyclopropanes 128 was 45 : 55 (ca. isolated yield 75%), see Table 16. 

This ratio was about as expected from the small energy difference of the two isomers and 

suggests that there is little constraining effect by the clay mineral layers in this case. From the 

Chem 3D model, the cis-isomer 127 has an approximate “height” of 4.1 Å, which is larger 

than the estimated interlayer distance () of 3.52 Å (Table 16) at ambient temperature for 

the Cu2+-Wyoming bentonite expanded with dichloromethane. Thus, it is possible that the 

reactants themselves may be increasing the  so that there is little constraining effect. 

 

 

 Effects of varying the solvent on the interlayer spacing of clay mineral and the 

ratio of diastereomers 127 and 128. 

Different solvents (Table 16), such as chloroform, toluene and ethyl acetate, affect the  of 

the Cu2+-Wyoming bentonite, thus, if a significantly smaller  can be achieved then the 

proportion of the more bulky cis-isomer 127 should be decreased. The estimated  for the 

Cu2+-Wyoming bentonite with toluene as solvent (3.36 Å) was lower than that with 

dichloromethane and the cis-/trans-isomer ratio decreased, as hoped, to 34 : 66, showing that 

the clay mineral layers were beginning to exert a constraining effect on the reaction. 

Unfortunately, the lower  also made access of the reactants to the interlayer catalytic sites 

more difficult and the yield (49%) was reduced as a consequence. These effects were also 

seen with chloroform as solvent, where a lower proportion of the cis-isomer 127 (32 : 68) was 

accompanied by an lower yield (30%). The  value with chloroform as solvent (3.56 Å) 

suggests that the degree of constraint should be similar to that with dichloromethane, 

however, the yield and isomer ratio suggests that the strongly hydrogen-bonding chloroform 

may hold the layers together much tighter and so preventing the reactants from increasing the 

d value. Ethyl acetate showed intermediate results, but unfortunately the XRD measurement 

of the d value was unreliable in this case. 
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Table 16 Measured (XRD) d values for Cu(II)-Wyoming bentonite in various 

solvents. 

Solvents % Yield of isomers 

127 & 128. 

cis-/trans-

diastereomer 

ratio. 

Interlayer distance of Cu(II) 

Wyoming bentonite, d (Å), 

assuming the clay layers ≈ 9.6 Å164 

CHCl3 30 32 : 68 3.56 

CH2Cl2 75 45 : 55 3.52 

Ph-CH3 49 34 : 66 3.36 

EtOAc 45 43 : 57 - 

 

Using carbene modified (Al-O-EA) Cu2+-Wyoming bentonite (see Section 2.3.1.7) as catalyst 

(Table 17) increased the proportion of the more bulky cis-isomer 127 to about parity with the 

trans-isomer (cis-/trans- (52 : 48, ca. isolated yield 50%)) (Table 17), suggesting that there is 

little constrain in this case and carbene insertion into the AlO-H bonds of the Cu2+-Wyoming 

bentonite is increasing the d value for all solvents. The zeolite, ZSM-5, should not show this 

problem of carbene insertion as there are no bridging AlO-H groups in its structure and we 

found that a lower proportion of the cis-isomer (30 : 70, yield 52%) was indeed obtained 

within the 5.4 - 5.6 Å zeolite pores (Table 17). 

 

Table 17 Measured yield, isomer ratios and d values for clay minerals in various 

catalysts. 

Cu2+-

exchanged 

mineral  

Solvents % Yield of 

isomers 127 & 

128 

cis-/trans-

diastereomer 

ratio 

Interlayer distance of Cu(II)-

clay mineral, d (Å), 

assuming the clay layers ≈ 

9.6 Å164 or smaller pore 

diameter of zeolites 

Wyoming 

bentonite 

CH2Cl2 75 45 : 55 3.52 

 

Carbene 

Modified clay 

CH2Cl2 50 52 : 48 3.09 (no solvent) 

ZSM-5 CH2Cl2 52 30 : 70 5.4 - 5.6 Å 

 

 

 Conclusions 

By considering the relative sizes of the smallest molecular dimensions of the cis- 127 and 

trans-128 styrene cyclopropane isomers, formation of the more bulky and higher energy 
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cis-isomer should be less favoured both in free solution and within the interlayer region of a 

clay mineral. However, the “height” of the more bulky cis-isomer 127 (ca. 4.1 Å) is not too 

much larger than the  of the clay mineral in most solvents (ca. 3.5 Å) (Table 16) and so 

there is little selection for the less bulky trans-isomer 128 until the  is decreased to ca. 3.36 

Å by using toluene as solvent (cis-/trans- 34 : 66). The yield of cyclopropane product 

decreases as the cis-/trans-isomer ratio decreases, suggesting that access to the interlayer 

region is becoming more difficult. The fixed pore size (ca. 5.5 Å) of the zeolite ZSM-5 gives 

a similar selectivity (cis-/trans- 30 : 70) (Table 17) to that with the Wyoming bentonite and 

toluene, suggesting that the reactants and/or products are also increasing the  of the clay 

mineral. 

 

To see what effect a less polar alkene would have on the selectivity, we then chose a linear 

alkene (1-hexene 234) to determine whether there would be less effect on the  of the clay 

mineral. 

 

 

 Carbene addition reaction to 1-hexene 234. 

Ruthenium-catalysed asymmetric cyclopropanation of 1-hexene 234 has been reported to 

form both cis- 235 and trans- isomers 236 of the cyclopropane (cis-/trans- 52 : 48, yield 

73%).176 Thus, we attempted the same reaction with Cu2+-Wyoming bentonite to see whether 

we could form both the cis- 235 and trans-cyclopropane 236 isomers (Scheme 81). 

 

 

 

Scheme 81 Cyclopropanation of 1-hexene in the presence of Wyoming bentonite 
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 Relative bulkiness of the diastereomers 235 and 236 from Chem 3D models. 

Energy minimised Chem 3D structures give an estimate of the relative sizes of the 

diastereomers (Figure 61). 

 

 

 

 

 

 

cis- bulky    trans- less bulky 

 

Figure 61 Chem 3D structures of cis- 235 and trans- 236 1-hexene cyclopropanes. 

 

Using VIs computer modelling, the energy differences of the cis- and trans-cyclopropane 

isomers 235 and 236 were calculated: 

 

Ecis-isomer – Etrans-isomer = –385.1062298 –(–385.1087901) Hartree = 0.00256*627.509391 

kcal/mol = 1.606574643 kcal/mol. 

 

From the Chem 3D modelling (Figure 61) the higher energy cis-isomer 235 looks more bulky 

than the trans-isomer 236, so the trans-isomer 236 should be more favoured within the 

interlamellar region of clay mineral or pores of zeolite. 

 

 

 Results of carbene addition reaction of 1-hexene 234 

The Cu2+-Wyoming bentonite catalysed reaction appeared to form both the cis- 235 and 

trans-cyclopropane 236 isomers. However, the reaction mixture was complex and it was very 

difficult to purify the crude material. Thus, we were unable to get useful results with this 

linear alkene and we decided that no more time could be spent on this reaction. 
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 Conclusions 

The failure of this reaction may be due to the low polarity alkane chain not “pushing” the 

layers of the clay mineral far enough apart to allow reaction to occur. Thus we were led to 

choose more hindered cyclic alkenes, such as cyclohexene 131 and 1,5-cyclooctadiene 238 to 

find whether reaction would take place and if diastereoselectivity of the cyclopropanation 

within the interlamellar region of clay mineral and pores of zeolite could be observed. 

 

 

 Carbene addition reaction to cyclohexene 131. 

When an EDA carbene addition to cyclohexene reaction was attempted with rhenium(I) 

bipyridine or terpyridine tricarbonyl complexes, cyclopropane products were not observed.2 

Whereas in the presence of Cu2+-Wyoming bentonite as catalyst, endo- 132 and exo- 237 

cyclopropanes were formed as major products and diethyl fumarate 232 and diethyl maleate 

233 carbene dimers as minor products (Scheme 82). 

 

 

 

Scheme 82 Cyclopropanation of cyclohexene 131 in the presence of Cu2+-Wyoming 

bentonite catalyst 
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 Assignment of the structure of the 7-exo-ethoxycarbonylbicyclo[4.1.0]heptane 

237 

 

 

Figure 62 7-exo-ethoxycarbonylbicyclo[4.1.0]heptane 

 

The 1H NMR spectrum (Figure 63) of partially purified 7-exo-

ethoxycarbonylbicyclo[4.1.0]heptane 237 was consistent with reported values,13,177 however, 

the literature values for both endo- 132 and exo- 237 isomers were simply given as a range of 

protons (Table 18) and no coupling constant (J) values were mentioned to help differentiate 

the cyclopropane C-Hs from the endo- 132 or exo- 237 isomers. The literature178 values for a 

similar example, for the cyclopropane from 1,5-cyclooctadiene 238 showed the protons as 

clearly differentiated for both the endo- 239 and exo- 240 isomers with distinct J values and 

triplets at δ 1.18 (J = 4.80 Hz) for the exo- isomer 240 and 1.70 (J = 8.80 Hz) for the endo-

isomer. These compounds are discussed in more detail in Section 3.6 (Table 20). With the aid 

of the δ and J values for the endo- 239 and exo- 240 isomers from 1,5-cyclooctadiene, the 

major cyclopropane isomer from cyclohexene 131 was identified as the exo-isomer 237 from 

a triplet δ 1.37 with J = 4.35 Hz (Figure 63). 
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Figure 63 1H-NMR spectrum of the partially purified exo-isomer 237 of the EDA 

cyclopropanated cyclohexene. 

 

Table 18 Literature 1H NMR assignments and comparison of endo- 132 and exo- 237 

isomers of EDA cyclopropanated cyclohexene 131.13 

7-endo-ethoxycarbonylbicyclo[4.1.0] 

heptane 132 

7-exo-ethoxycarbonylbicyclo[4.1.0] 

heptane 237 

δ 1.20 - 1.39 (m, 5H, CH2 and OCH2CH3) 1.05 – 1.98 (11 H, m) 

1.40 - 1.45 (m, 1H, CH) 1.25 (3H, t, CO2CH2CH3, 3JH H = 7.10 Hz) 

1.46 - 1.56 (dd, 1H, J = 9.80, 7.80 Hz, CH) - 

1.56 - 1.73 (m, 2H, CH2) - 

1.75 - 1.93 (m, 2H, CH2) - 

4.10 (q, 2H, J=7.10 Hz, OCH2CH3) 4.10 (2H, q, CO2CH2CH3, 3JH H = 7.10 Hz) 
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 Relative bulkiness of the diastereomers 132 and 237 from Chem 3D model 

Energy minimised Chem 3D structures give an estimate of the relative sizes of the 

diastereomers (Figure 64). 

 

 

 

 

 

 

 

 

 

endo bulky     exo less bulky 

 

Figure 64 Chem 3D model structures of endo- 132 and exo- 237 cyclopropane isomers 

from cyclohexene 131 

 

Using VIs computer modelling, the energy difference of the endo- 132 and exo-diastereomers 

237 were calculated: 

 

Eendo-isomer – Eexo-isomer = –501.8338082– (–501.8389947) Hartree = 0.005186*627.509391 

kcal/mol = 3.254571 kcal/mol. 

 

Thus, showing that the higher energy endo-isomer 132 should be disfavoured in the reaction. 

Chem 3D model structures of the endo- 132 and exo- 237 isomers (Figure 64) showed that the 

endo-isomer 132 is more bulky than the exo-isomer 237 isomer. Thus we expect that within 

the restricted environment of the clay minerals or the pores of the zeolite the less bulky 

exo-isomer 237 should be formed as the major product and the endo-isomer 132 as a minor 

product. The exo-diastereomer 237 is more stable and expected to predominate slightly in free 

solution at high temperatures and to become more predominant in low energy catalysed 

processes. 
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 Results of carbene addition reaction of cyclohexene 131 

Similar to styrene 87 and 1-hexene 234, cyclohexene 131 was reacted first under uncatalysed 

conditions, unfortunately without using catalyst, thermally formed major products were the 

carbene dimers (diethyl fumarate 232 and diethyl maleate 233) and with no cyclopropane ring 

formation. From the literature, when the similar reaction was performed in rhenium(I) 

bipyridine and terpyridine tricarbonyl complexes2 reaction was not progressed at all. Whereas 

in Cu2+-exchanged Wyoming bentonite in dichloromethane solvent favoured in the formation 

of endo-132 and exo- 237 isomer (34 : 66 ca isolated yield 15%). The experimental results 

shown exo- 237 isomer as a major product based on the 1H NMR and GC-MS. 

 

 

 Effects of varying the solvent on the interlayer spacing of clay mineral and the 

ratio of diastereomers 132 and 237. 

In order to see the effects of changing the solvent on the selectivity of the cyclopropanation of 

cyclohexene, the reaction was performed with various solvents such as toluene, ethyl acetate, 

1,4-dichloromethane, 1,4-dioxane and 1,2-dichloroethane (Table 19). The best results were 

obtained with dichloromethane (∆d 3.52) (31 : 69 ca. isolated yield 15%) and we also 

expected toluene to have similar selectivity having (∆d 3.36) but the results from the crude 

mixture showed carbene dimers (diethyl fumarate 232 and diethyl maleate 233) as major 

products, with less than 10% yield of cyclopropanes. Other solvents gave complex mixtures 

with no cyclopropane product evident. 
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Table 19 Measured (XRD) d values for Cu(II)-Wyoming bentonite in various 

solvents. 

Solvents % Yield of 

endo-/exo- 

132 & 237 

endo-/exo-

ratio 

Interlayer distance of Cu(II) 

Wyoming bentonite, d (Å), 

assuming the clay layers ≈ 9.6 Å164  

Dichloromethane 15 31 : 69 3.52 

*Toluene < 10 - 3.36 

*Ethyl acetate - - - 

*1,4-Dioxane - - 5.02 

*1,2-Dichloroethane - - - 

* Solvents showed complex mixtures and in toluene < 10 product with major impurities. 

 

Both Cu(II) Wyoming bentonite and carbene modified (Al-O-EA) Cu2+-Wyoming bentonite 

as catalyst (Table 20) gave the less bulky exo-isomer 237 as the major product, 31 : 69 ca. 

isolated yield 15% and 34 : 66 ca. isolated yield 12%, respectively showing that both 

Wyoming bentonite and modified clay were giving good selectivity for the less bulky exo-

isomer 237. 

 

Table 20 Measured yield, isomer ratios and d values for clay minerals in various 

catalysts. 

Cu2+-

exchanged 

mineral 

Solvents % Yield of 

endo-/exo- 

132 & 237 

endo-/exo-

diastereomer 

ratio 

Interlayer distance of Cu(II)-

clay mineral, d (Å), 

assuming the clay layers ≈ 

9.6 Å164 or smaller pore 

diameter of zeolites 

Wyoming 

bentonite 

CH2Cl2 15 31 : 69 3.52 

 

Carbene 

Modified clay 

CH2Cl2 12 34 : 66 3.09 (no solvent) 

 

 

 Conclusions 

The Chem 3D model structures of the endo- 132 and exo- 237 isomers (Figure 64) showed 

the the endo-isomer 132 to be more bulky than the exo-isomer 237. As expected under 

catalytic conditions the less bulky exo-isomer 237 formed as the major product and the 

endo-isomer 132 as the minor product (endo-/exo- ratio 31 : 69 ca. isolated yield 15%) with 



136  
 

 

Cu2+-Wyoming bentonite (endo-/exo- ratio 34 : 66 ca. isolated yield 12%) with modified clay 

(Table 20). These results show that with dichloromethane as solvent we are getting more 

selectivity of the less bulky exo-isomer 237. The failure of the other solvents: 1,4-dioxane, 

ethyl acetate and 1,2-dichloroethane, may be due to competing carbene insertion into solvent 

molecules in the highly restricted mineral interlayer. 

 

We then decided to use 1,5-cyclooctadiene 238 as reactant to see if two possible alkene 

reaction sites per molecule might improve the yield of cyclopropane products with clay 

minerals or zeolite catalysts. 

 

 

 Carbene addition reaction of 1,5-cyclooctadiene 238 

Dirhodium tetraacetate has been reported in the literature,178,179 to catalyse the reaction of 

1,5-cyclooctadiene 238 with EDA to form the endo- 239 and exo-isomers 240 (46 : 54). 

Similar to cyclohexene 131, 1,5-cyclooctadiene reacted in the presence of cation exchanged 

clay catalyst formed endo- 239 and exo- 240 isomers (Scheme 83). 

 

 

 

Scheme 83 Mixture of endo-/exo-isomers of cyclopropanated 1,5-cyclooctadiene 238. 

 

 

 Assignment of the structures of the endo-/exo-isomers 239 and 240. 

The 1H NMR spectrum (Figure 65) of the partially purified exo-isomer 240 showed triplets at 

δ 1.18 (J = 4.80 Hz) for the exo-isomer 240 and 1.70 (J = 8.80 Hz) for the endo-isomer 239. 

These values were consistent with the literature values for the exo- 240 and endo- 239 
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isomers,178 triplet at 1.18 (J = 4.80 Hz) and 1.70 (J = 8.80 Hz). Table 21 compares the 

experimental and literature 1H NMR data. 

 

 

 

 

 

Figure 65 Partially purified exo- 240 (major) and endo- 239 (minor) isomers 

cyclopropanated 1,5-cyclooctadiene 238. 
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Table 21 Exo-ethyl bicyclo[6.1.0]non-4-ene-9-carboxylate 240 

Experimental values  Literature values 

1.18 (t, J = 4.80 Hz, 1H) 1.18 (t, J = 4.80 Hz, 1H) 

1.25 (t, J = 7.20 Hz, 3H) 1.25 (t, J = 7.20 Hz, 3H) 

1.49 – 1.59 (m, 4H) 

 

1.43 – 1.53 (m, 2H) 

1.53 – 1.59 (m, 2H) 

2.04 – 2.31 (m, 6H) 

 

 

2.04 – 2.13 (m, 2H) 

2.16 – 2.24 (m, 2H) 

2.27 – 2.35 (m, 2H) 

4.11 (q, J = 7.20 Hz, 2H) 4.10 (q, J = 7.20 Hz, 2H) 

5.39 – 5.65 (m, 2H) 5.60 – 5.68 (m, 2H) 

 

 

 Relative bulkiness of the diastereomers 239 and 240 from Chem 3D model 

Energy minimised Chem 3D structures give an estimate of the relative sizes of the 

diastereomers (Figure 66). 

 

 

 

 

 

 

 

 

endo bulky      exo less bulky 

Figure 66 Chem 3D structures of endo- 239 and exo- 240 cyclopropane isomers from 

1,5-cyclooctadiene 

 

Using VIs computer modelling, the energy differences of the endo- and exo- diastereomers 

239 and 240 were calculated: 

 

Eendo-isomer – Eexo-isomer = –579.2194379 –(–579.2317306) Hartree = 0.012293*627.509391 

kcal/mol = 7.713772 kcal/mol. 
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Chem 3D model structures (Figure 66) for the cyclopropanated 1,5-cyclooctadiene isomers, 

showed that just as with the cyclopropanated cyclohexene isomers 132 and 237, the 

endo-isomer 239 was more bulky than the exo-isomer 240. Thus we expect that within the 

restricted environment of a clay mineral or the pores of a zeolite the less bulky exo-isomer 

239 should be formed as the major product and the endo-isomer 240 as a minor product. The 

exo-isomer 240 is more stable and would be expected to be more predominant in low energy 

catalysed processes and to predominate slightly in free solution at high temperatures, whereas 

the bulky endo-isomer 239 should form as the minor product in both cases. 

 

 

 Results of carbene addition reaction of EDA to 1,5-cyclooctadiene 238 

The dirhodium tetraacetate catalysed reaction of EDA with 1,5-cyclooctadiene 238 has been 

reported to form the endo-/exo-isomers 239 and 240 in the ratio: 46 : 54,178,179 Under 

uncatalysed conditions only carbene dimers 232 and 233 were formed with no cyclopropane 

formation. In the presence of both Cu2+-Wyoming bentonite or Cu2+-ZSM-5 catalyst both 

endo- 239 and exo- 240 isomers were formed with an isomer ratio 20 : 80 with the clay (ca. 

isolated yield 12%) and ratio 10 : 90 with ZSM-5 (ca. isolated yield 10%), based on 1H NMR 

spectroscopic and GC-MS data (Table 22). 

 

 

 Conclusions 

When compared to the literature,178 the proportion of the less bulky exo-isomer 240 has 

increased quite dramatically from 46 : 54 to 20 : 80 in the Wyoming bentonite and 10 : 90 in 

the more restricted ZSM-5. However, the yields were still low and having twice as many 

alkene bonds does not seem to affect the yield. 

 

We then focused on the simple 1,3-diene 133, isoprene 241 followed by the more complex 

chrysanthemic acid precursor 2,5–dimethyl–2,4–hexadiene 133 to determine whether 

diastereoselectivity can be achieved in the cyclopropanation reaction when using clay and 

zeolite catalysts. 
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 Carbene addition reaction of EDA to isoprene 241 

Isoprene 241 was reacted with EDA using Cu2+-Wyoming bentonite to form both cis- 242 and 

trans-cyclopropanes 243 (Scheme 84). 

 

 

 

Scheme 84 Cyclopropanation of isoprene 241 with EDA in the presence of 

Cu2+-Wyoming bentonite catalyst. 

 

 

 Assignment of the structures of the cis-/trans-isomers 242 and 243 from the EDA 

cyclopropanation of isoprene 241 

The literature values for the 1H NMR spectrum of ethyl 2-(2-isopropenyl)cyclopropane-l-

carboxylate 242 and 243,180 were given as ranges of δ values for a mixture of E-, (trans) 243 

and Z-, (cis) 242 isomers, δ 4.05 and 4.00 (q, 2H, CH2CH3, E and Z) and a triplet at δ 1.25 

(CH2CH3, E) and a triplet at 1.20 (CH2CH3, Z). 
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Figure 67 1H-NMR spectrum of the partially purified crude isoprene reaction mixture. 

 

The Cu2+-Wyoming bentonite catalysed cyclopropanation of isoprene 241 with EDA in 

dichloromethane gave less than 10% yield. The 1H-NMR spectrum of the partially purified 

crude material showed a mixture of roughly equal amounts of cis- 242 and trans- 243 

cyclopropane isomers and the carbene dimer (δ 6.23 (double bond C=CH) and CH2CH3 of 

diethyl maleate). Based on only 1H-NMR data (Figure 67) it was difficult to differentiate 

between the cis- 242 and trans- 243 isomers. Due to the low yields obtained for this reaction 

and the apparently roughly equal amounts of the cis- 242 and trans-isomers 243, it was 

decided not to continue with this reaction. 

 

 

 Relative bulkiness of the diastereomers 242 and 243 from Chem 3D model 

Energy minimised Chem 3D structures give an estimate of the relative sizes of the 

diastereomers (Figure 68). 

 

Diethyl maleate 
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Using VIs computer modelling, the energy differences of the cis- and trans--lactam 

diastereomers 242 and 243 were calculated: 

 

Ecis-isomer - Etrans-isomer = -462.5035312– (-462.5084723) Hartree = 0.004941*627.509391 

kcal/mol = 3.100612 kcal/mol. 

 

                     

cis- bulky     trans- less bulky 

 

Figure 68 Chem 3D structures of cis- 242 and trans- 243 cyclopropanes from addition 

of EDA to isoprene 241. 

 

 

 Results of carbene addition reaction of EDA to isoprene 241 

Under uncatalysed conditions there are no cyclopropane products formed and shows only a 

complex mixture. When reacted with EDA in the presence of Cu2+-Wyoming bentonite in 

dichloromethane solvent the reaction did not proceeded smoothly and formed only a complex, 

crude and difficult to analyse product mixture, the investigation was discontinued. 

 

 

 Conclusions 

Even though the same reaction is reported in the literature180 proceeded smoothly, similarly to 

the attempted 1-hexene cyclopropanation reaction, this reaction failed to give recognisable 

cis- 242 and trans-cyclopropane 243 products and we found that this reaction is of no use 

under mineral catalysed conditions due to the complex mixture formed. Failure of this 
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reaction may be due to competition of the two double bonds in isoprene or to a Diels-Alder 

dimerisation reaction of the diene, which can be catalysed by Cu2+-exchanged clay minerals.12 

 

We then choose to investigate the cyclopropanation of the hindered symmetrical diene, 2,5–

dimethyl–2,4–hexadiene 133, to determine whether stereoselectivity can be achieved under 

mineral catalysed conditions. 

 

 

 Carbene addition reaction of 2,5–dimethyl–2,4–hexadiene 133 with 

EDA. 

Carbenes generated from EDA have been reported2,151 to undergo addition reactions to the 

diene 133 to form both the cis- 244 and trans- 134 cyclopropanes as the major products and 

diethyl fumarate 232 and diethyl maleate 233 carbene dimers as the minor products. 

Cu2+-exchanged Wyoming bentonite with dichloromethane as solvent gave the 

cis-/trans-isomers 244 and 134 (45 : 55) (Scheme 85) in reasonable yield (ca. isolated 48%) 

(Table 21). 

 

 

 

Scheme 85 Cyclopropane formation of 2,5–dimethyl–2,4–hexadiene 133. 

 

 

 Assignment of the structures of the cis- 244 and trans- 134 isomers 

The cis- 244 and trans- 134 diastereomers were identified based on the assignment of their 

1H-NMR (Figures 70), 13C NMR, 1H-1H 2D COSY and 1H-1H 2D NOESY spectra. 
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Figure 69 trans-Isomer 134 of the cyclopropane from 2,5–dimethyl–2,4–hexadiene 133 

and EDA. 

 

 

Figure 70 1H-NMR spectrum of the (major) trans-isomer 134 from the partially 

purified mixture of cis-/trans-cyclopropanes from 2,5–dimethyl–2,4–

hexadiene 133 and EDA 33. 
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Figure 71 The cis-cyclopropane 244 from 2,5–dimethyl–2,4–hexadiene 131 and EDA 

 

Based on the literature values,8,181 the 1HNMR spectrum of trans-isomer 134 from diene 131 

should show a characteristic resonance at  4.89 (d, 1H, C=CH) and the cis-isomer 244 at  

5.39 (d, 1H, -C=CH). The cis-/trans- isomer ratios were calculated from the 1H-NMR spectra, 

based on the integration values of the characteristic doublets at  4.88 (1H, -C=CH) and 

5.39 (1H, -C=CH) (Figure 70). 

 

 

 Relative bulkiness of the diastereomers 244 and 134 from Chem 3D model 

Energy minimised Chem 3D structures give an estimate of the relative sizes of the 

diastereomers (Figure 72). 
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Figure 72 Chem 3D structures of cis- 244 and trans- 134 isomers of the cyclopropane 

from 2,5-dimethyl–2,4–hexadiene 133 and EDA. 

 

Using VIs computer modelling, the energy difference of the cis- and trans--lactam 

diastereomers 244 and 134 were calculated: 

 

Ecis-isomer - Etrans-isomer = -580.4559561– (-580.4586209) Hartree = 0.002665*627.509391 

kcal/mol = 1.672206 kcal/mol 

 

The Chem 3D model structures (Figure 72) of the cis- 244 and trans- 134 cyclopropanes from 

2,5-dimethyl–2,4–hexadiene 133 showed that the cis-isomer 244 was very slightly less bulky 

than the trans-isomer 134, but is of higher energy in its extended conformation. Thus we 

expect the less bulky cis-isomer 244 as the major product and the trans-isomer 134 as a minor 

product when the reaction occurs within the restricted environment of the clay minerals or the 

pores of the zeolites, but from their relative energies the trans-isomer 134 may be preferred in 

a non-constrained environment. 

 

 

 Effects of varying the solvent or the interlayer spacing of clay minerals on the 

ratio of diastereomers 244 and 134 

Reaction in 1,4-dioxane as solvent gave an isolated yield of ca. 35% with cis-/trans-isomer 

ratio of 30 : 70, while in 1,2-dichloroethane the ca. isolated yield was 40% with cis-/trans- 

isomer ratio of 36 : 64. In chloroform or ethyl acetate as solvent the ratio of the cis-/trans- 

isomers was lower compared to other solvents (Table 22). Dichloromethane and toluene were 

found to be the best solvents for selection of the less bulky cis-isomer due to their keeping the 

interlayer distance fairly close (3.52 Å and 3.36 Å) respectively (Table 22). 
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Table 22 Measured (XRD) d values for Cu(II)-Wyoming bentonite in various 

solvents. 

Solvents % Yield of 

cis-/trans- 

diastereomers 

244 & 134 

cis-/trans- 

diastereomer 

ratio 

Interlayer distance of Cu(II) 

exchanged Wyoming bentonite, 

d (Å), assuming the clay layers 

≈ 9.6 Å164  

Dichloromethane 48 45 : 55 3.52 

Chloroform 46 33 : 67 - 

Ethyl acetate 45 37 : 63 - 

Toluene 32 42 : 58 3.36 

1,4-Dioxane 35 30 : 70 - 

1,2-Dichloroethane 40 36 : 64 - 

 

 

 Effect of varying the layer charge of a clay mineral on the ratios of diastereomers 

244 and 134 

The Cu2+-carbene modified clay (Al-O-EA) catalyst gave similar results to those of 

Cu2+-Wyoming bentonite (Table 23). While Cu2+-ZSM-5 gave a slightly increased proportion 

of the more energetically favoured trans-isomer 134. 

 

Table 23 Measured yield, isomer ratios and d values for clay minerals in various 

solvents. 

Cu2+-

exchanged 

clay mineral  

Solvent % Yield of 

cyclopropanes 

244 & 134 

cis-/trans-

diastereomer 

ratio 

Interlayer distance of Cu(II)-

clay mineral, d (Å), 

assuming the clay layers ≈ 

9.6 Å164 

Wyoming 

bentonite 

CH2Cl2 48 45 : 55 3.52 

Modified clay CH2Cl2 44 45 : 55 > 3.09 

ZSM-5 CH2Cl2 47 38 : 62 5.4 - 5.6 

 

 

 Conclusions 

Chem 3D model structures (Figure 72) of both the cis- 244 and trans- isomers 134 showed 

that the cis-isomer 244 is slightly less bulky than the trans-isomer 134. However, 
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thermodynamically more stable trans-isomer 244 should be favoured in free solution 

reactions, whereas under constrained catalytic conditions the less bulky cis-isomer 134 should 

be favoured. When this reaction is compared with the literature2 (30 : 70 ca. isolated yield 

68%) the proportion of the cis-isomer has increased within the Cu2+-Wyoming bentonite (45 : 

55 ca. isolated yield 48%) suggesting that there is some size selectivity occurring. 

 

The final reactant choosen was trans-cinnamic acid 245 to see if the carbene would select the 

alkene or carboxylic acid OH on reaction with EDA in the presence of the mineral catalysts. 

 

 

 Carbene addition reaction of EDA to trans-cinnamic acid 245 

When trans-cinnamaldehyde was reacted with EDA in the presence of a rhodium catalyst,182 

only CH the insertion product was formed. Similarly, the insertion product was also produced 

when the trans-cinnamic acid 245 was reacted in the presence of Cu2+-clay catalysts (Scheme 

86). These demonstrate that carbene insertion into activated CH’s is preferred to addition 

across a conjugated C=C. 

 

 

 

Scheme 86 Carbene insertion into trans-cinnamic acid 245. 

 

 

 Assignment of the structure of the insertion product of trans-cinnamic acid 245 

The 1H-NMR spectrum (Figure 74) of the purified product from Cu2+-Wyoming bentonite 

catalysed carbene insertion of EDA into the OH of trans-cinnamic acid (Figure 73) in 

dichloromethane showed doublet peaks at δ 6.41 (1H, J = 16.00 Hz, Ar-CH=CH) and δ 7.64 

(1H, J = 16.00 Hz, Ar-CH=CH), which confirms that the trans-double bond is still in the 
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molecule, while the singlet at δ 4.60 for the CH2 (methylene group) confirms the formation of 

the ester. 

 

 

Figure 73 Insertion product of trans-cinnamic acid 245 to form the β-keto ester 246. 

 

 

 

Figure 74 Insertion product of trans-cinnamic acid 245 forming β-keto esters. 
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 Conclusions 

Similar to the carbene insertion reactions in Chapter 2, carbene addition reactions across 

double bonds are expected to favour the formation of less bulky products within the 

interlamellar region of caly catalysts or pores of zeolite. Except for very non-polar alkenes, 

some cyclopropanes were formed, even for poor substrates like cyclohexene 131 and 

1,5-cyclooctadiene 238. Generally, if reaction occurred at all, reaction within the restricted 

region of Cu2+-exchanged clay minerals showed only modest selectivity for the less bulky 

isomer, probably due to the reactants themselves altering the d of the clay mineral. 

Somewhat better selectivity was seen with Cu2+-ZSM-5, but only in cases where the size of 

the molecule approached the pore diameter. In many cases the generated carbenes from EDA 

favoured the formation of the carbene dimers, diethyl fumarate 232 and diethyl maleate 233. 

The yields were very low in most of the carbene additions compared to literature values, 

probably due to the competing reaction of carbene insertion into the Al-O-H of the octahedral 

layer of the clay mineral. Carbene insertion reaction into the functional groups of compounds 

such as trans-cinnamic acid 245 to give the ester 246, also occurred readily. 

 

In order to get around the apparent problems of carbene insertion into the AlO-H bond of the 

clay mineral we decided to see whether a more bulky diazo compound would have more 

difficulty in carrying out this insertion reaction and, so improve the yield of the 

cyclopropanation reaction. Thus, we used a series of more sterically demanding azo 

dicarbonyl compounds for Cu2+-mineral catalysed cyclopropanation reactions. 

 

 

 Cyclopropane formation with more sterically demanding 

diazodicarbonyl compounds 

The cyclopropane ring is an important component of many natural products and synthetic 

drugs.183 Cyclopropane rings having two geminal electron-withdrawing groups are required 

precursors of biologically important cyclopropyl α- and β-amino acids.184 Generation of 

cyclopropane gem-diesters by transisition metal catalysed intermolecular cyclopropanation 

from readily available alkenes and the corresponding diazo reagent appears to be an efficient 

and easy process.185 
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Our aim was to synthesise cyclopropane rings bearing geminal dicarboxy groups (Table 24) 

to, hopefully, give increased yields over EDA reactions and to improve stereoselectivity of 

the reactions within the restricted environment of mineral catalysts. In order to prepare a 

racemic cyclopropane, we chose the diazodicarbonyl compound 1,3–dimethyl 

2-diazopropanedioate 247, as it can be synthesised easily from dimethyl malonate and 

p-TSAz.186 Methyl N-piperidinodiazomalonate 187 and methyl pyrrolidinodiazomalonate 189 

were available from our previous work on -lactam formation (Chapter 2). The methyl 

piperidinodiazomalonate 187 did not give any -lactam in dichloromethane as solvent and the 

more strained pyrolidino--lactam possible from the diazodicarbonyl 189 was not formed 

under the usual reaction conditions. Each of these diazodicarbonyl compounds were reacted 

with styrene as this tended to give reasonable yields with EDA (Table 24). 

 

Table 24 Cyclopropane ring formation with various diazo reagents with styrene in the 

presence of Cu(II) exchanged Wyoming bentonite. 

Diazo reagents  Cyclopropanes % Yield 
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 Catalysed cyclopropane ring formation between styrene 87 and 

1,3–dimethyl 2–diazopropanedioate 247 

1,3–Dimethyl 2-diazopropanedioate 247 has been reported to react with styrene 87 in the 

presence of the rhodium catalyst (Rh2(esp)2) to form the cyclopropane product 248.185 The 

same reaction performed in the presence of Cu2+-Wyoming bentonite also formed the 

cyclopropane product 248 (Scheme 87). 

 

 

 

Scheme 87 Synthesis of methyl 2-phenyl-cyclopropane-1,1-dicarboxylic acid methyl 

ester 248 in the presence of Cu(II) Wyoming bentonite. 

 

 

 Assignment of the structure of the 2-phenyl-cyclopropane-1,1-dicarboxylic acid 

methyl ester 248 

 

 

The data from the 1H NMR spectrum, showed two double doublets at δ 1.77 (J = 9.20, 5.20 

Hz cyclopropyl CH), δ 2.23 (J = 8.0, 5.20 Hz, cyclopropyl CH) and a triplet at δ 3.25 (J = 

8.70 Hz, Ph-CH) which matched reasonably well with the literature values dds at 1.73 (dd, J 

= 9.20, 5.20 Hz, 1H) and 2.19 (dd, J = 8.0, 5.20 Hz, 1H) and a triplet at 3.23 (t, J = 8.60 Hz, 
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1H); other values were also consistent with the literature185,187 comparative data shown in 

Table 25. 

 

Table 25 Comparative 1H NMR data for 2-phenyl-cyclopropane-1,1-dicarboxylic acid 

methyl ester 248. 

Literature187 Experimental 

1.73 (dd, J = 9.20, 5.20 Hz, 1H) 1.77 (dd, 1H, J = 9.20, 5.20 Hz, CH 

(cyclopropyl)) 

2.19 (dd, J = 5.20, 8.00 Hz, 1H) 2.23 (dd, 1H, J = 5.20, 8.00 Hz, CH 

(cyclopropyl)) 

3.23 (t, J = 8.60 Hz, 1H) 3.25 (t, 1H, J = 8.70 Hz, Ar-CH) 

3.36 (s, 3H) 3.42 (s, 3H, -OCH3) 

3.79 (s, 3H) 3.84 (s, 3H, -OCH3) 

7.18 - 7.29 (m, 5H) 7.19 – 7.43 (m, 5H, Ar-H) 

 

 

 Results for 2-phenyl-cyclopropane-1,1-dicarboxylic acid methyl ester 248. 

Initially, styrene 87 was reacted with 1,3–dimethyl 2–diazopropanedioate 247 without 

catalyst under thermal conditions and the reaction gave no cyclopropane product. In the 

literature reaction catalysed by the rhodium catalyst, (Rh2(esp)2), 2-phenyl-cyclopropane-1,1-

dicarboxylic acid methyl ester 248 was formed with an isolated yield of ca. 93%).186 When 

the same reaction was performed using Cu2+-Wyoming bentonite as a catalyst in 

dichloromethane, no reaction was seen. However, in acetonitrile the cyclopropane 248 was 

formed in low yield (ca. isolated yield 10%). Unfortunately, in this case, the hoped for 

increase in yield were not obtained. 

 

 

 Catalysed cyclopropane ring formation between styrene 87 and 

N-piperidinodiazomalonate 187 

Methyl N-piperidinodiazomalonate 187 was reported to react with styrene 87 in the presence 

of the rhodium catalyst (Rh2(oct)4) to form cyclopropane 249 in 29% yield.188 Similarly, 

when the same reaction was performed in the presence of Cu2+-Wyoming bentonite in 

dichloromethane, there was no reaction, but in acetonitrile, the intramolecular insertion 



154  
 

 

reaction products cis- 217 and trans-β-lactams 218 were obtained as the major product, with 

the cyclopropane 249 as minor product (Scheme 88). 

 

 

Scheme 88 Synthesis of methyl 2-phenyl-1-(piperidine-1-carbonyl) cyclopropane 

carboxylate 249 in the presence of Cu(II) Wyoming bentonite. 

 

 

 Assignment of the structure of the methyl 2-phenyl-1-(piperidine-1-carbonyl) 

cyclopropane carboxylate 249. 

The data from the 1H NMR spectra (Table 26) showed the dd at δ 2.13 (J = 5.10, 8.02 

Hz, -CH, cyclopropane ring) and a triplet at δ 3.18 (J = 8.40 Hz, PhCH) were consistent with 

the literature dd at 2.16 (J = 5.0, 8.20 Hz, 1H) and a triplet at 3.18 (J = 8.40 Hz, 1H); other 

values matched with the literature151,188 comparative data shown in Table 26. 
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Table 26 Comparative 1H NMR data for methyl 2-phenyl-1-(piperidine-1-carbonyl) 

cyclopropane carboxylate 

Literature188 Experimental 

1.52 - 1.63 (m, 7H) 1.47 – 1.68 (m, 7H, C-H piperidine ring) 

2.16 (dd, J = 5.0, 8.20 Hz, 1H) 2.13 (dd, J = 5.10, 8.02 Hz, 1H, C-H 

(cyclopropyl)) 

3.18 (t, J = 8.40 Hz, 1H) 3.18 (t, J = 8.40 Hz, 1H, Ar-CH) 

3.39 (s, 3H) 3.39 (s, 3H, -OCH3) 

3.40 - 3.58 (m, 4H) 3.41 – 3.65 (m, 4H, CH piperidine ring, C-H 

(cyclopropyl)) 

7.18 - 7.26 (m, 5H) 7.01 – 7.31 (m, 5H, Ar-H) 

 

 

 Results for methyl 2-phenyl-1-(piperidine-1-carbonyl) cyclopropane carboxylate 

249. 

Methyl N-piperidinodiazomalonate 187 did not react with styrene without catalyst. The same 

reaction catalysed by Cu2+-Wyoming bentonite in dichloromethane, once again, failed.  

However, in acetonitrile cyclopropane 249 was formed in low yield (ca. isolated yield 12%), 

the major products being the carbene insertion reaction β-lactam products 217 and 218 as 

expected from Section 2.7. The yield might have been improve if the reaction had occurred in 

dichloromethane, which we had found did not give -lactam products with Cu2+-Wyoming 

bentonite, but these did show that intramolecular carbene insertion occurs more readily than 

carbene addition to a double bond. A higher yield of cyclopropane product 249 might have 

been achieved if a large excess of styrene were used in the reaction, but this was not done as 

styrene can polymerise within cation exchanged clay minerals. 

 

 

 Catalysed cyclopropane ring formation between styrene 87 and 

N-pyrrolidinediazomalonate 189 

Methyl N-pyrrolidine diazomalonate 189 has been reported to react with styrene 87 in the 

presence of rhodium tetraoctanoate catalyst to form the cyclopropane 250.188 Once again, the 

same reaction performed in the presence of Cu2+-Wyoming bentonite in dichloromethane 
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failed to occur. Again, in acetonitrile the cyclopropane product 250 were formed as minor 

products with carbene dimers 227 and 228 as major products (Scheme 89). 

 

 

 

Scheme 89 Synthesis of methyl 2-phenyl-1-(pyrrolidine-1-carbonyl) cyclopropane 

carboxylate 250 in the presence of Cu(II) Wyoming bentonite. 

 

 

 Assignment of the structure methyl-2-phenyl-1-(pyrrolidine-1-carbonyl) 

cyclopropane carboxylate 250 

The data from the 1H NMR spectrum showed dds at δ 1.52 (J = 4.90, 9.10 Hz, CH 

cyclopropane) and at 2.19 (J = 4.90, 8.00 Hz, CH cyclopropane) which were consistent with 

the literature188 comparative data as shown in Table 27. 
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Table 27 Comparative 1H-NMR data for methyl 2-phenyl-1-(pyrrolidine-1-carbonyl) 

cyclopropane carboxylate 250 

Literature188 Experimental 

1.53 (dd, J = 4.70, 9.10 Hz, 1H) 1.52 (dd, J = 4.90, 9.10 Hz, 1H, C-H 

cyclopropyl ring) 

1.87 – 2.01 (m, 4H) 1.78 - 2.01 (m, 4H, pyrrolidine ring) 

2.21 (dd, J = 4.70, 7.90 Hz, 1H) 2.19 (dd, J = 4.90, 8.00 Hz, 1H, Cyclopropyl-

CH) 

3.27 – 3.41 (m, 2H) 3.28 – 3.41 (m, 2H, N-CH, Ar-CH 

cyclopropyl) 

3.42 (s, 3H) 3.42 (s, 3H, -OCH3) 

3.50 – 3.78 (m, 3H) 3.72 – 3.96 (m, 3H, C-H pyrrolidine ring) 

7.22 - 7.30 (m, 5H) 7.21 – 7.32 (m, 5H, Ar-H) 

 

 

 Results for methyl 2-phenyl-1-(pyrrolidine-1-carbonyl)cyclopropane carboxylate 

250 

In a similar manner to 247 and 187, methyl N-pyrrolidinediazomalonate 189 did not react 

with styrene without catalyst or with Cu2+-Wyoming bentonite in dichloromethane. Once 

again, under catalytic conditions in acetonitrile in the presence of Cu2+-Wyoming bentonite, 

cyclopropanes 250 were formed in low yield (ca. isolated yield 12%) with the major products 

being the carbene dimers 227 and 228 (> 50% yield from the crude). Compared to the 

reported yield with the rhodium catalyst (Rh2(oct)4) (79%),187 methyl 2-phenyl-1-

(pyrrolidine-1-carbonyl)cyclopropane carboxylate 250 was formed in low yield (ca isolated 

yield 10%) with Cu2+-Wyoming bentonite. 

 

 

 Conclusions 

Similar to carbene addition reaction with alkene and EDA, we were also attempted the same 

reaction with different diazo reagent which are readily available 247, 187 and 189 to form 

respective cyclopropane rings. The first diazo molecule 247 having less bulky geminal ester 

groups when it reaches the interlayer space unable to push the layers expand and resulting in 

less selectivity cyclopropane ring formation (ca isolated yield 10%) compared to literature (ca 

isolated yield 93%). Similarly, the methyl N-piperidinodiazomalonate 187, having carbonyl 
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groups from methyl ester and piperidine amide were more bulkier than in the 247, but this 

molecule 187 is more preferred to carbene insertion reaction products 217 and 218 β-lactams 

(> 50% yield from the crude) and with minor cyclopropane ring 249 (ca isolated yield 12%) 

reasonable to literature (ca isolated yield 29%). The N-pyrrolidinediazomalonate 189, similar 

to 187 favoured to carbene insertion reaction dimer formation 227 and 228 as a major product 

and minor cyclopropane ring 250 product (ca isolated yield 12%) obtained with low yield 

compared to literature (ca isolated yiled 79%). 
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 Chapter: Nitrenes 

 

 Introduction of nitrenes addition reactions 

Nitrenes are uncharged, electron deficient molecular species that contain a monovalent 

nitrogen atom surrounded by a sextet of electrons.139 Aziridines are useful synthetic 

intermediates, which can be used in the preparation of nitrogen–containing functional 

compounds via ring opening and ring expansion reactions.189 They are also found in some 

natural products as well as biologically active compounds such as mitomycins and 

azinomycins.82 

 

Metal catalysed nitrene transfer reactions such as aziridination of alkenes have an important 

applications in synthetic chemistry. In the recently reported literature,190 there has been a 

wide range of interest in the use of organic azides as nitrogen-transfer reagents because 

nitrogen gas is formed as a by-product, which is non-hazardous to the environment. In the 

literature,191 copper-catalysed aziridination of styrene with copper-exchanged zeolite Y 

(CuHY) and copper (ii) triflate (trifluoromethanesulfonate) (Cu(OTf)2) have been reported as 

catalysts. Thus, reactions in the pores of zeolites have been demonstrated as effective 

immobilised catalysts and we wanted to explore the possibility of using other mesoporous 

materials for generating nitrene intermediates to form aziridine rings. Similar to the catalysed 

carbene addition and insertion reactions described in Chapter 2 and 3, we attempted to 

generate nitrenes within the restricted environment of the Cu2+-exchanged clay mineral or 

zeolites. 
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Table 28 Aziridination of styrene with various aryl azides in the presence of 

Cu2+-Wyoming bentonite catalyst 

Aryl azides Product (% yield) 

 
 

12% 

  
Complex crude 

  
Complex crude 

 

 

 Catalysed nitrene addition reaction 

The literature reports that when styrene 87 was reacted with p-toluenesulfonyl azide in the 

presence of 4A MS an aziridine 251 was formed.192 When the same reaction was performed 

thermally under uncatalysed condition there was no product formed. Whereas, on using 

Cu2+-Wyoming bentonite as a catalyst we were able to form aziridine 251 from styrene 87 

and p-toluenesulfonyl azide 182 (Scheme 90). 

 

 

 

Scheme 90 Nitrene addition reaction in the presence of Cu2+-Wyoming bentonite. 
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 Assignment of the structure N-(p-tolylsulfonyl)-2-phenylaziridine 251 

 

Figure 75 N-(p-Tolylsulfonyl)-2-phenylaziridine 251 

 

From the 1H NMR spectrum of the partially purified of N-(p-tolylsulfonyl)-2-phenylaziridine 

251 (Figure 76) the δ values at 2.98 (d, J = 7.20 Hz, 1H) corresponds to the aziridine ring 

hydrogen, which is consistent with the literature139 value at 2.99 (d, J = 7.20 Hz, 1H). The 

other values also consistent with the literature comparative data shown in Table 29. 

 

 

 

Figure 76 1H-NMR of the partially purified N-(p-tolylsulfonyl)-2-phenylaziridine 
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Table 29 Comparative 1H NMR data of N-(p-tolylsulfonyl)-2-phenylaziridine 251 

Literature Experimental 

2.38 (d, J = 4.40 Hz, 1H) 

2.43 (s, 3H) 

2.41 – 2.47 (m, 4H, Ph-CH3, CHE aziridine) 

2.98 (d, J = 7.20 Hz, 1H) 2.98 (d, J = 7.20 Hz, 1H, CHD aziridine) 

3.78 (dd, J = 4.40, 7.20 Hz, 1H) 3.78 (dd, J = 5.44, 7.20 Hz, 1H, Ar-CH) 

7.20 (m, 2H) 

7.27 – 7.31 (m, 3H) 

7.33 (d, J = 8.40 Hz, 2H) 

7.87 (d, J = 8.40 Hz, 2H) 

7.17 – 7.47 (m, 6H, Ar-H) 

7.82 – 7.99 (m, 3H, Ar-H) 

 

 

 Results for p-toluenesulfonyl azide 182 addition onto styrene 87 

Our initial aim was to show whether the restricted environment of a Cu2+-clay mineral will 

allow a nitrene intermediate to be produced and then lead to aziridine ring formation in a 

similar manner to that reported in the literature for a zeolite:192 where styrene was reacted 

with p-toluenesulfonyl azide in dichloromethane in the presence of 4A MS to yield 94% 

aziridine 251. We attempted the same nitrene addition reaction with Cu2+-Wyoming 

bentonite, initially using dichloromethane as a solvent, but found no reaction even under 

reflux conditions. Then by using acetonitrile as the solvent, with Cu2+-Wyoming bentonite as 

catalyst, we succeded in forming the aziridine 251 in low yield (ca. isolated yield 12%). 

 

Although the yield was low and we did not have time to try optimisation of solvents, etc., this 

result still made us optimistic that there was for future development of syntheses for various 

pharmaceutical products by using different alkenes to react with p-toluenesulfonyl azide 

within the interlamellar region of clay catalysts. 

 

We then attempted the nitrene addition reaction with two different aryl azide diazo reagents 

252 and 254 available in our laboratory to see if reaction within the clay minerals would 

favour aziridine ring formation. 
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 Results for nitrene addition reaction onto the styrene 87 with 

diphenylphosphoryl azide 252 

In accord with a literature synthesis,193 we attempted to form an aziridine ring using 

diphenylphosphoryl azide 252 as a nitrene source for reaction with styrene in the presence of 

Cu2+-Wyoming bentonite (Scheme 91). The 1H-NMR spectrum of the crude reaction product 

showed a complex mixture. The failure of this reaction may be due to the bulkiness of the 

arylphosphorylazide reagent 252, which has two benzoxy groups that could be hindering 

access to the interlayer space of the clay mineral. 

 

 

 

Scheme 91 Attempted synthesis of an aziridine ring with diphenylphosphoryl azide 252 

and styrene 87 using Cu2+-Wyoming bentonite as catalyst. 

 

Aziridine ring formation was attempted using 4-(azidosulfonyl)benzoic acid 254 in the 

presence of Cu2+-Wyoming bentonite catalyst (Scheme 92), but once again the reaction 

showed a complex mixture from the crude 1H NMR spectrum. The reaction failure may be 

due to the acid group present in the aryl azide reagent ring-opening the aziridine to give 

amines, which may go on to form a complex mixture. 

 

 

 

Scheme 92 Attempted synthesis of an aziridine ring with 4-(azidosulfonyl)benzoic acid 

254 and styrene 87 using Cu2+-Wyoming bentonite as catalyst. 
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 Conclusions for nitrene addition reactions of styrene 87 

We attempted the nitrene addition reaction with three different aryl azide diazo reagents 182, 

252 and 254 (Table 28)3 to see if reaction within the clay minerals would favour aziridine 

ring formation. Only the p-toluenesulfonyl azide gave a recognisable aziridine 251 in low 

yield; while both the other azides gave complex mixtures. This suggests that care must be 

taken in the choise of azides if the aziridination reaction is to succeed. 
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 Chapter: Experimental 

 

 Instruments and Materials 

Nuclear magnetic resonance spectra (1H, 13C, DEPT 135, COSY, HMQC, NOESY) were 

recorded either on a Bruker DPX 250 MHz or on Bruker Avance 300 MHz or 400 MHz 

spectrometers with tetramethylsilane (TMS) as internal standard for 1H NMR and 

deuteriochloroform (CDCl3, δC 77.23 ppm) for 13C–NMR unless otherwise stated. Chemical 

shifts for 1H NMR spectra are recorded in parts per million (ppm) from TMS with the solvent 

resonance as the internal standard (chloroform, δ 7.27 ppm) if TMS was not present. Data are 

reported as follows: chemical shift (), the abbreviations used for the multiplicity of the 1H 

NMR signals are (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet 

of doublets, dt = double triplet, dq = double quartet and br = broad), coupling constant (J) in 

Hertz (Hz), then integration. Chemical shifts for 13C NMR spectra are recorded in parts per 

million from tetramethylsilane using the central peak of deuterochloroform (77.23 ppm) as 

the internal standard. When ambiguous, proton and carbon assignments were established 

using COSY, HSQC and DEPT experiments. Mass spectra were recorded on a Thermo 

Scientific Trace GC Ultra DSQ II using Electron Ionisation (GCMS–EI) Infrared spectra 

were recorded on a NICOLET IR 2000 FT-IR spectrometer and are reported in reciprocal 

centimeters (cm-1), Thin Layer Chromatography (TLC) was carried out on Machery–Nagel 

polygram Sil/G/UV254 pre–coated plates. X–Ray diffraction (XRD) was recorded on an 

EQUINOX-2000 X-ray diffractometer for measuring the interlayer distance of clay minerals 

and XRF elemental analyses were carried out on a BRUKER D2 PHASER. 

 

 

 Purification and cation exchange of the minerals 

Clay samples were first purified by a sedimentation process. This process was based on 

Stokes Law25. Stokes law relates the force on a particle (F), the particle radius (r), the 

viscosity () of the liquid that the particle is in and the terminal velocity (v) of the particle. 

The mathematical statement of Stokes law is: 
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F = 6rv 

 

If we consider the density of the particle (), minus the density of water to be * and for 

convenience assume that all the particles are spherical,194 then: 

 

F = mg 

 

But m = * 

 

F = *gV 

 

= 1.33r3*g 

 

Thus 6rv = 1.33r3*g 

 

v = 1.33r2*g / (6) 

 

As time (t) = distance (d) /velocity (v) 

 

t = 6d/ (1.33r2*g) 

 

Using this equation, we can calculate the time required for the clay particles below a certain 

size to drop below a certain level from a well–dispersed clay/water suspension. 

 

If we take the viscosity of water,, as 10–3 Kgm–1s–1 at 20ºC, the particle density, , as 

2.65x10–3 Kgm–3 then * is 1.65x10–3 Kgm–3. The acceleration due to gravity, g, is 9.81 ms–2. 

As we require clay particles of less than 2m the radius of the particle, r, is 10–6m. This gives 

a settling time of at least 7.7 h. 

 

Typically, Wyoming bentonite (25 g) was taken in a 5 L beaker marked with a line about 2 

cm from the top and another line10 cm below. 1M NaCl solution was added up to the top line 

and the mixture was stirred well before sonicating for 15–20 min in a sonicator bath. The 
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suspension was allowed to settle for about 7 h 15 min and the top 10 cm were siphoned off or 

decanted, if the solution were clear, from the 5 L beaker. The remaining suspension was 

topped up to the upper 10 cm line with deionised water and the stirring, sonication, settling, 

siphoning and topping up sequence repeated until little or no clay suspension was received. 

The siphoned suspensions were collected in 2.5 litre bottles and allowed to settle until clear. 

The majority of the clear liquid was decanted off and the clay mineral re-suspended and 

transferred to a centrifuge bottle and centrifuged for 15-30 minutes until a tight deposit was 

obtained. The aqueous layer was decanted and tested with AgNO3 solution to check the 

presence of chloride ions by precipitation of AgCl (silver chloride). The clay deposit was 

washed until chloride free by repeated re-suspendion in deionised water and centrifugation. 

When the clay layer was chloride free it was transferred to a filter paper under suction on a 

Buchner funnel until no more water was removed. The filter cake was transferred to a watch 

glass and kept at 75ºC for 16 h until dry, then ground to a fine powder using a mortar and 

pestle. 

 

 

 XRD Characterisation 

X–ray diffraction of clay minerals wetted with different solvents can help determine the 

alterations in the interlayer spacing by assuming that the montmorillonite layers themselves 

are 9.66 Å. Thus, the interlayer distance (d Å) of clay minerals wetted with solvents of 

interest were measured by using XRD. 

 

Sample preparation: About 0.05 g of clay mineral samples were placed on the sample holder 

and the sample was wetted by careful spraying of the respective solvents onto the flat clay 

surface which was then covered and sealed with Mylar film to avoid solvent evaporation. The 

sample holder was placed in the powder X-ray diffractometer and the diffraction trace 

(Intensity vs. 2) recorded. The 2 value is converted to a distance, d, by means of the Bragg 

relationship195: n = 2d sin(), which for n = 1 and small angles, , approximates closely to: d 

=  / 2 Å  x-ray wavelength used. The initial broad peak (d001) of the 

diffraction trace represents the interlayer spacing (dspacing) from which the interlayer distance 

(Δd) is calculated on the basis of the formula: Δd = dspacing – 9.66 Å. Where the value 9.66 Å 

represents the repeat distance of a fully collapsed clay mineral layer. 
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The value of d depends upon the degree of hydration of the clay mineral, the size of the 

interlayer cation and the stacking/interaction of solvent molecules within the interlayer. Thus, 

e.g. the dried Cu2+-exchanged Wyoming bentonite has a 0.85 Å larger d than the 

non-exchanged Wyoming bentonite, due to the relative sizes of the Cu2+ and Na+ cations. The 

effects of changing solvents on the d are recorded in Table 30. 

 

 

Table 30 The interlayer distance, Δd (Å) of clay minerals are measured by using XRD. 

S. No Clay minerals and in different solvents Δd = spacing – 9.66 Å 

1 Purified clay 1.89 

2 Cu2+–clay 2.74 

3 Acetonitrile 3.52 

4 Dichloromethane 3.52 

5 Toluene 3.36 

6 1,4–Dioxane 5.02 

7 Ethyl benzene 5.02 

8 Benzonitrile 5.90 

9 Cu2+–Al–O–EA 3.09 
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 Synthesis and characterisation of β-lactams 

 Synthesis of monomethyl malonic acid (3-methoxy-3-oxopropanoic acid) 167 

from dimethyl malonate 165  

 

 

This was synthesised according to a reported procedure.145 

Potassium hydroxide (25.0 g, 445.0 mmol) in methanol (58.0 mL) was added dropwise (15 

min) to a stirring solution of dimethyl malonate 165 (50.0 g, 378.0 mmol) in methanol (100.0 

mL) with occasional cooling to room temperature. After further stirring for 15 min, the 

reaction mixture was acidified with concentrated HCl (hydrochloric acid) and filtered. The 

filter cake (KCl potassium chloride) was washed with methanol (200.0 mL) and the combined 

filtrate and washings were concentrated on a rotary evaporator. The residual liquid was 

dissolved in dichloromethane (500.0 mL) and the small amount of salts filtered off. The 

filtrate was again evaporated on a rotary evaporator to give methyl malonate 167 (30.0 g, 

67%) as a colourless oil. 1H NMR (300 MHz, CDCl3): δ 3.47 (s, 2H, CH2), 3.79 (s, 

3H, -OCH3), 10.0 (s, COOH); 13C NMR (75 MHz, CDCl3): δ 40.80, 52.81, 167.29, 171.42; 

IR (ATR): 593, 659, 776, 891, 1014, 1154, 1206, 1327, 1408, 1438, 1712, 2958; GC–MS: 

m/z: 118, 119, 101, 74, 59, 44. 

 

 

 Synthesis of benzyl malonate (3-(benzyloxy)-3-oxopropanoic acid) 170 from 

malonic acid 168 

 

 

This was synthesised according to a reported procedure.196 
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Triethylamine (19.40 g, 191.0 mmol) was added to a solution of malonic acid 168 (20.0 g, 

192.0 mmol) in acetonitrile (50.0 mL). To the cooled reaction mixture benzyl bromide (32.80 

g, 191.0 mmol) was added dropwise over 30 min. The reaction mixture was heated under 

reflux for 1 h and the solvent evaporated under vacuum to give the crude product. The crude 

oil was dissolved in dichloromethane (50.0 mL) and washed with brine solution (40.0 mL) 

and water (40.0 mL). The solvent was evaporated under vacuum to get the crude product 

(26.0 g) the crude compound was purified by silica gel column chromatography and the 

compound 170 was eluted (solvents: (30 : 70) EtOAc : pet ether) as a white solid (15.0 g, 

40%). 1H NMR (300 MHz, CDCl3,) δ 3.49 (s, 2H, CH2), 5.22 (s, 2H, Ph–CH2), 7.37 (m, 5H, 

Ar–H), 11.00 (br s, 1H, COOH); 13C NMR (75 MHz, CDCl3): δ 40.71, 67.71, 128.44, 128.65, 

128.69, 134.86, 166.71, 171.30; IR (ATR): 596, 698, 665, 698, 753, 841, 900, 979, 1164, 

1306, 1331, 1432, 1706, 2947; GC–MS: m/z 194, 107, 91, 79, 60, 51. 

 

 

 Synthesis of methyl-2-(diethylcarbamoyl)acetate 171  

 

 

This was synthesised according to a reported procedure.148 

N,N’-Dicyclohexylcarbodiimide (1.65 g, 8.00 mmol) in dichloromethane (8.00 mL) was 

added to a stirred solution of methyl malonate 167 (1.00 g, 8.00 mmol) in dichloromethane 

(10.0 mL) and diethylamine (1.60 g, 8.80 mmol) was added to the reaction mixture in a drop 

wise manner for 30 min. The reaction mixture was stirred for 4 h at 40°C and then cooled to 

room temperature, filtered off and the solid was washed with dichloromethane (10.0 mL), 

filtrate was washed with water (10.0 mL) and brine solution (20.0 mL). Then the 

dichloromethane was evaporated under vacuum to get the crude oily compound 1.40 g. The 

crude compound was purified by silica gel column chromatography, solvents: (40 : 60) 

EtOAc : pet ether as eluent to get the pure yellow oil. 171 (0.82 g, 63%). 1H NMR (300 MHz, 

CDCl3): δ 1.13 (t, J = 7.20 Hz, 3H, N-CH2CH3), 1.19 (t, J = 7.20 Hz, 3H, N-CH2CH3), 3.29 

(q, J = 7.20 Hz, 2H, N–CH2), 3.38 (q, J = 7.20 Hz, 2H, N–CH2), 3.43 (s, 2H, CH2), 3.74 (s, 
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3H, –OCH3); 
13C NMR (75 MHz, CDCl3): δ 12.94, 14.25, 40.40, 41.16, 42.74, 52.53, 165.13, 

168.46; IR (ATR): 573, 626, 788, 899, 950, 1025, 1097, 1137, 1163, 1216, 1247, 1322, 1364, 

1433, 1638, 1740, 2162, 2934; GC–MS: RT (8.21): 173, 156, 143, 124, 112, 96, 84, 68. 

 

 

 Synthesis of benzyl 2–(diethylcarbamoyl) acetate 172 

 

 

This was synthesised according to a reported procedure.78,148 

172 was synthesised as for 171 using benzyl malonic acid 170 (1.00 g, 5.15 mmol), DCC 

(1.07 g, 5.15 mmol) and diethyl amine (0.37 g, 5.10 mmol) to give the product 172 as a 

yellow oil (0.80 g, 62%). 1H NMR (300 MHz, CDCl3): δ 1.07 (dt, J = 7.07, 7.07 Hz, 6H, 

N-CH2CH3), 3.19 (q, J = 7.07 Hz, 2H, N-CH2), 3.32 (q, J = 7.07 Hz, 2H, N-CH2), 3.41 (s, 

2H, CH2), 5.12 (s, 2H, Ph–CH2), 7.19 - 7.31 (m, 5H, Ar–H); 13C NMR (75 MHz, CDCl3): δ 

12.73, 14.01, 40.13, 41.06, 42.61, 66.72, 128.23, 128.27, 128.49, 135.47, 167.64, 164.95; IR 

(ATR): 491, 592, 742, 787, 906, 998, 1098, 1137, 1241, 1279, 1319, 1377, 1452, 1640, 1738, 

2030, 2160, 2934, 2973; GC–MS: 250, 181, 158, 140, 115, 100, 91, 72. 

 

 

 Synthesis of methyl 2–[ethyl (phenyl) carbamoyl] acetate 173 

 

 

173 was synthesised as for 171 using methyl malonate (1.00 g, 8.46 mmol), DCC (1.74 g, 

8.46 mmol) and N–ethyl aniline (1.02 g, 8.46 mmol) to give the product 173 as a colourless 

oil (0.80 g, 43%). 1H NMR (300 MHz, CDCl3): δ 1.04 (t, J = 7.10 Hz, 3H, N-CH2CH3), 3.07 

(s, 2H, CH2), 3.56 (s, 3H, -OCH3), 3.67 (q, J = 7.10, 2H, N–CH2), 7.11 (d, J = 7.10 Hz, 2H, 
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Ar–H ortho), 7.28 - 7.43 (m, 3H, Ar–H para and meta); 13C NMR (75 MHz, CDCl3): δ 12.83, 

41.66, 44.15, 52.13, 52.33, 128.28, 128.40, 129.84, 141.51, 165.33, 168.18; IR (ATR): 559, 

663, 701, 952, 1090, 1130, 1157, 1240, 1323, 1404, 1494, 1593, 1655, 1741, 1973, 2032, 

2156, 2935; GC–MS: 222, 190, 148, 121, 120, 106, 93, 77, 59. 

 

 

 Synthesis of benzyl 2–[ethyl (phenyl) carbamoyl] acetate 174 

 

 

174 was synthesised as for 171 using benzyl malonic acid (1.00 g, 5.15 mmol), DCC (1.07 g, 

5.15 mmol) and N–ethyl aniline (0.62 g, 5.19 mmol) to give the product 174 as a yellow oil 

(0.75 g, 48%). 1H NMR (300 MHz, CDCl3): δ 1.12 (t, J = 7.20 Hz, 3H, N-CH2CH3), 3.20 (s, 

2H, N-CH2), 3.77 (q, J = 7.20 Hz, 2H, CH2), 5.10 (s, 2H, Ph–CH2), 7.06 – 7.19 (m, 2H, Ar–

H), 7.29 - 7.45 (m, 8H, Ar–H); 13C NMR (75 MHz, CDCl3): δ 12.91, 31.13, 41.96, 44.31, 

66.96, 76.86, 128.35, 128.38, 128.54, 129.84, 135.45, 141.70, 165.27, 167.64; IR (ATR): 

494, 562, 664, 699, 746, 769, 908, 997, 1089, 1130, 1153, 1232, 1321, 1405, 1451, 1493, 

1593, 1655, 1738, 2934; GC-MS : m/z 297. 

 

 

 Synthesis of methyl 3–Oxo–3–(piperidin–1–yl)propanoate 175 

 

 

This was synthesised according to a reported procedure.87 

175 was synthesised as for 171 using methyl malonate 167 (1.00 g, 8.46 mmol), DCC (1.74 g, 

8.46 mmol) and piperidine (0.72 g, 8.45 mmol) to give the product 175 as a yellow oil (1.00 
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g, 63%). 1H NMR (300 MHz, CDCl3): δ 1.44 - 1.64 (m, 6H, -N-(CH2)3), 3.30 (t, J = 5.60 Hz, 

2H, N-CH2), 3.39 (s, 2H, CH2), 3.49 (t, J = 5.60 Hz, 2H, N–CH2), 3.71 (s, 3H, -OCH3); 
13C 

NMR (75 MHz, CDCl3): δ 24.29, 25.33, 26.18, 40.98, 42.90, 47.70, 52.30, 164.02, 168.22; IR 

(ATR): 604, 668, 754, 856, 914, 945, 989, 1021, 1153, 1189, 1227, 1254, 1312, 1433, 1632, 

1736, 2023, 2876, 2954, 3470; GC–MS: m/z 185, 154, 126, 97, 84, 69, 59. 

 

 

 Synthesis of benzyl 3–oxo–3–(pyrrolidin–1–yl) propanoate 176 

 

 

176 was synthesised as for 171 using benzyl malonic acid (1.00 g, 5.15 mmol), DCC (1.07 g, 

5.15 mmol) and piperidine (0.44 g, 5.16 mmol) to give the product 176 as a colourless oil 

(0.90 g, 66%). 1H NMR (300 MHz, CDCl3): δ 1.35 - 1.60 (m, 6H, -(CH2)3), 3.23 (t, J = 5.70 

Hz, 2H, N-CH2), 3.47 (t, J = 5.70 Hz, 2H, N-CH2), 3.41 (s, 2H, CH2), 5.22 (s, 2H, Ph-CH2), 

7.18 - 7.36 (m, 5H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 24.30, 26.10, 25.33, 41.55, 42.95, 

47.51, 66.97, 128.40, 128.56, 163.93, 167.63; IR (ATR): 460, 535, 587, 640, 697, 741, 852, 

894, 998, 1084, 1153, 1219, 1311, 1373, 1443, 1639, 1739, 1979, 2853, 2930, 3318; GC–MS: 

262, 170, 91, 84. 

 

 

 Synthesis of methyl 3–oxo–3–(pyrrolidine–1–yl) propanoate 177 

 

 

177 was synthesised as for 171 using methyl malonate (1.00 g, 8.46 mmol), DCC (1.74 g, 

8.46 mmol) and pyrrolidine (0.60 g, 8.46 mmol) to give the product 177 as a colourless oil 
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(0.99 g, 68%). 1H NMR (300 MHz, CDCl3): δ 1.80 - 1.20 (m, 4H, N-(CH2)2), 3.33 – 3.53 (m, 

6H, N-CH2CH2 & CH2), 3.70 (s, 3H, -OCH3); 
13C NMR (75 MHz, CDCl3): δ 24.37, 25.98, 

42.17, 42.28, 45.89, 52.40, 164.23, 168.03; IR (ATR): 3470, 2954, 2876, 2023, 1736, 1632, 

1433, 1312, 1254, 1227, 1189, 1153, 1021, 989, 945, 914, 856, 754, 668, 604; GC–MS: m/z 

171, 101, 84, 70, 59. 

 

 

 Synthesis of benzyl 3–oxo–3–(pyrrolidine–1–yl) propanoate 178 

 

 

178 was synthesised as for 171 using benzyl malonic acid (1.00 g, 5.15 mmol), DCC (1.07 g, 

5.15 mmol) and pyrrolidine (0.38 g, 5.20 mmol) to give the product 178 as a colourless oil 

(0.80 g, 64%). 1H-NMR (300 MHz, CDCl3): δ 1.75 - 2.05 (m, 4H, N-CH2), 3.40 (t, J = 6.60 

Hz, 2H, N-CH2), 3.45 (s, 2H, CH2), 3.50 (t, J = 6.60 Hz, 2H, N-CH2), 5.17 (s, 2H, Ph–CH2), 

7.29 - 7.43 (m, 5H, Ar–H); 13C NMR (75 MHz, CDCl3): δ 26.18, 47.10, 43.03, 46.37, 67.29, 

128.56, 128.40, 135.40, 163.95, 167.60; IR (ATR): 492, 606, 697, 742, 844, 996, 1029, 1143, 

1267, 1328, 1373, 1454, 1498, 1729, 1968, 2163, 2982; GC-MS : m/z 247. 

 

 

 Synthesis of methyl 2–[(1–phenylethyl) carbamoyl] acetate 179 

 

 

179 was synthesised as for 171 using methyl malonate (1.00 g, 8.46 mmol), DCC (1.74 g, 

8.46 mmol) and 1–phenylethan–1–amine (1.02 g, 8.46 mmol) to give the product 179 as a 

colourless oil (0.80 g, 43%). 1H NMR (300 MHz, CDCl3): δ 1.54 (d, J = 7.20 Hz, 3H, CH3), 

3.40 (s, 2H, CH2), 3.70 (s, 3H, -OCH3), 5.20 (q, J = 7.20 Hz, 1H, Ar-CH), 7.24 - 7.50 (m, 5H, 
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Ar–H), 7.99 (brs, 1H, N–H); 13C NMR (75 MHz, CDCl3): δ 21.00, 49.00, 52.00, 125.00, 

127.00, 128.23, 145.00, 165.00, 168.00; IR (ATR): 555, 596, 680, 745, 945, 1025, 1278, 

1346, 1428, 1509, 1637, 1679, 3324; GC-MS: m/z 221. 

 

 

 Synthesis of 4–methylbenzene–1–sulfonyl azide  

 

 

This was synthesised according to a reported procedure.197 

p–Toluenesulfonyl chloride 181 (1.0 g, 5.24 mmol) and sodium azide (0.34 g, 5.24 mmol) 

dissolved in 1 : 1 ratio of water (15.0 mL) and isopropyl alcohol (15.0 mL) and stirred 

overnight. From this reaction mixture, solvent was evaporated on the rotavapor to get the 

crude compound and then the crude compound was purified by silica gel column 

chromatography (solvents (10 : 90) EtOAc : hexane) to get pure colourless oil 182 (0.75 g, 

67%). 1H NMR (300 MHz, CDCl3): δ 2.35 (s, 3H, Ph-CH3), 7.27 (d, J = 8.20 Hz, 2H, Ar-H), 

7.70 (d, J = 8.20 Hz, 2H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 21.40, 127.00, 130.10, 

135.10, 146.12; IR (ATR): 500, 535, 586, 657, 701, 741, 812, 1084, 1161, 1297, 1366, 1452, 

1594, 2122, 2358; GC–MS: 197, 185, 155, 121, 91, 65, 45. 

 

 

 Synthesis of methyl N,N-diethylamidodiazomalonate (methyl 2-diazo-2-

(diethylcarbamoyl)acetate) 183 

 

This was synthesised according to a reported procedure.7 
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p–Toluenesulfonyl azide 182 (0.68 g, 3.46 mmol) was suspended in a stirred solution of 

methyl 2–(diethylcarbamoyl)acetate 171 (0.50 g, 2.89 mmol) in dry acetonitrile (4.00 mL). 

The mixture was stirred at room temperature for 30 min and dry triethylamine (0.35 g, 3.46 

mmol) was added all at once, and then stirred for 36 h. The reaction mixture was filtered and 

washed with excess dichloromethane (20.0 mL) the filtrate was washed with water (10.0 mL) 

and brine solution (20.0 mL) dried, and evaporated to give crude compound (1.00 g). The 

crude compound was purified by column chromatography on silica gel using (solvent (60 : 

40) EtOAc/pet ether) to get the pure compound 183 (0.40 g, 70%) as a yellow oil. 1H NMR 

(300 MHz, CDCl3): δ 1.19 (t, J = 7.10 Hz, 6H, N-(CH2CH3)2), 3.39 (q, J = 7.10 Hz, 4H, 

N-(CH2)2), 3.79 (s, 3H, -OCH3); 
13C NMR (75 MHz, CDCl3): δ 13.23, 41.84, 52.16, 66.06, 

160.48, 163.10; IR (ATR): 606, 646, 716, 754, 799, 861, 931, 954, 1009, 1088, 1143, 1187, 

1215, 1271, 1292, 1347, 1361, 1379, 1421, 1618, 1710, 2120, 2876, 2972, 3498; GC–MS: 

199, 184, 155, 140, 122, 99. 

 

 

 Synthesis of benzyl N,N-diethylamidodiazomalonate (benzyl 2-diazo-2-

(diethylcarbamoyl)acetate) 184 

 

 

184 was synthesised as for 183 using benzyl 2–(diethyl carbamoyl) acetate (1.0 g, 4.04 

mmol), p–toluenesulfonyl azide (0.94 g, 4.80 mmol) and dry triethylamine (0.48 g, 4.80 

mmol) to give the product 184 (0.80 g, 72%) as a yellow oil. 1H–NMR (300 MHz, CDCl3): δ 

1.20 (t, J = 7.10 Hz, 6H, N-(CH2CH3)2), 3.41 (q, J = 7.10 Hz, 4H, N-(CH2)2), 5.24 (s, 2H, Ph-

CH2), 7.32 – 7.44 (m, 5H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 13.31, 41.96, 66.28, 128.27, 

128.56, 128.64, 128.72, 135.49, 160.51, 162.51; IR (ATR): 496, 525, 559, 595, 647, 697, 

750, 779, 859, 909, 949, 1069, 1142, 1213, 1270, 1377, 1423, 1620, 1706, 2123, 2972; GC–

MS: 276, 248, 219, 176, 158, 131, 128, 91. 
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 Synthesis of methyl N-ethyl-N-phenylamidodiazomalonate (methyl 2-diazo-2-

[ethyl(phenyl)carbamoyl]acetate) 185 

 

 

185 was synthesised as for 183 using methyl 2–[ethyl (phenyl) carbamoyl] acetate (1.0 g, 

4.52 mmol), p–toluenesulfonyl azide (1.06 g, 5.40 mmol) and dry triethylamine (0.54 g, 5.33 

mmol) to give the product 185 (0.58 g, 54%) as a yellow oil. 1H–NMR (300 MHz, CDCl3): δ 

1.62 (t, J = 7.05 Hz, 3H, N-CH2CH3), 3.56 (s, 3H, -OCH3), 3.84 (q, J = 7.05 Hz, 2H, N-CH2), 

7.17 (d, 2H, J = 7.10 Hz, Ar-H ortho), 7.23 - 7.31 (m, 1H, Ar-H para), 7.37 (t, J = 7.10 Hz, 

2H, Ar–H meta); 13C-NMR (75 MHz, CDCl3): δ 12.81, 45.81, 52.11, 66.37, 126.71, 127.16, 

129.47, 141.81, 160.18, 162.72; IR (ATR): 487, 532, 578, 697, 748, 766, 861, 963, 1034, 

1104, 1141, 1190, 1301, 1387, 1435, 1493, 1591, 1628, 1689, 1723, 2115, 2952; MS: m/z 

247. 

 

 

 Synthesis of methyl N-piperidinodiazomalonate (methyl 2-diazo-3-oxo-3-

(piperidin-1-yl)propanoate) 187 

 

 

187 was synthesised as for 183 using methyl 3–oxo–3–(piperidin–1–yl)propanoate (1.00 g, 

5.40 mmol), p–toluenesulfonyl azide (1.27 g, 6.40 mmol) and dry triethylamine (0.65 g, 6.42 

mmol) to give the product 187 (0.70 g, 62%) as a yellow oil. 1H–NMR (300 MHz, CDCl3): δ 

1.59 (br s, 6H, N–(CH2)3), 3.42 (br s, 4H, N–(CH2)2), 3.78 (s, 3H, -OCH3); 
13C NMR (75 
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MHz, CDCl3): δ 24.38, 25.82, 46.88, 52.18, 66.36, 160.16, 162.8; IR (ATR): 877, 952, 1007, 

1097, 1141, 1186, 1264, 1293, 1351, 1427, 1620, 1711, 2121, 2937; GC-MS: m/z 211, 184, 

155, 113. 

 

 

 Synthesis of benzyl piperidinodiazomalonate (benzyl 2-diazo-3-oxo-3-(piperidin-

1-yl)propanoate) 188 

 

 

188 was synthesised as for 183 using benzyl 3–oxo–3–(piperidin–1–yl)propanoate (1.0 g, 

3.83 mmol), p–toluenesulfonyl azide (0.90 g, 4.59 mmol) and dry triethylamine (0.46 g, 4.59 

mmol) to give the product 188 (0.71 g, 71%) as a yellow oil. 1H NMR (300 MHz, CDCl3): δ 

1.50 - 1.68 (m, 6H, N–(CH2)3), 3.25 - 3.45 (m, 4H, N–(CH2)2), 5.22 (s, 2H, Ph–CH2), 

7.25 - 7.45 (m, 5H, Ar–H); 13C-NMR (75 MHz, CDCl3): δ 24.29, 25.33, 26.10, 41.55, 42.99, 

47.55, 66.74, 128.40, 128.56, 128.60, 135.42, 163.95, 167.62; IR (ATR): 594, 649, 697, 750, 

852, 907, 951, 1004, 1086, 1142, 1179, 1285, 1376, 1429, 1497, 1621, 1706, 1762, 2124, 

2855, 2936; GC-MS: m/z 287. 

 

 

 Synthesis of methyl N-pyrrolidinodiazomalonate (methyl 2-diazo-3-oxo-3-

(pyrrolidin-1-yl)propanoate) 189 
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189 was synthesised as for 183 using methyl 3–oxo–3–(pyrrolidine–1–yl) propanoate (1.0 g, 

5.84 mmol), p–toluenesulfonyl azide (1.37 g, 6.96 mmol) and dry triethylamine (0.70 g, 6.96 

mmol) to give the product 189 (0.69 g, 60%) as a yellow oil 1H NMR (300 MHz, CDCl3): δ 

1.81 – 1.98 (m, 4H, N-(CH2)2), 3.20 - 3.90 (m, 4H, N-CH2(CH2)2), 3.80 (s, 3H, -OCH3); 
13C 

NMR (75 MHz, CDCl3): δ 25.12, 47.89, 52.10, 66.68, 159.39, 162.48; IR (ATR): 455, 535, 

566, 647, 710, 752, 795, 845, 887, 917, 955, 1033, 1101, 1188, 1230, 1288, 1343, 1405, 

1612, 1711, 2122, 2882, 2956; GC–MS: 198, 139, 110, 98, 82, 70, 55. 

 

 

 Synthesis of benzyl N-pyrrolidinodiazomalonate (benzyl 2-diazo-3-oxo-3-

(pyrrolidin-1-yl)propanoat) 190 

 

 

190 was synthesised as for 183 using benzyl 3–oxo–3–(pyrrolidine–1–yl) propanoate (1.0 g, 

4.04 mmol), p–toluenesulfonyl azide (0.94 g, 4.80 mmol) and dry triethylamine (0.48 g, 4.80 

mmol) to give the product 190 (0.70 g, 64%) as a yellow oil. 1H NMR (300 MHz, CDCl3): δ 

1.70 - 1.86 (m, 4H, N-(CH2)2), 3.31 - 3.49 (m, 4H, N-CH2(CH2)2), 5.23 (s, 2H, Ph–CH2), 7.19 

- 7.38 (m, 5H, Ar–H); 13C NMR (75 MHz, CDCl3): δ 24.01, 47.96, 66.70, 128.17, 128.47, 

128.65, 135.43, 159.44, 161.88; IR (ATR): 492, 606, 697, 742, 844, 996, 1029, 1143, 1267, 

1328, 1373, 1454, 1498, 1729, 1968, 2163, 2982. MS: m/z 273. 

 

 

 Synthesis of methyl 1-phenylethylamidodiazo-malonate (methyl 2-diazo-2-[(1-

phenylethyl)carbamoyl]acetate) 191 
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191 was synthesised as for 183 using methyl 2–[(1–phenylethyl) carbamoyl] acetate(1.0 g, 

4.52 mmol), p–toluenesulfonyl azide (1.06 g, 5.40 mmol) and dry triethylamine (0.54 g, 5.33 

mmol) to give the product 191 (0.60 g, 54%) as a yellow oil. 1H NMR (300 MHz, CDCl3): δ 

1.56 (d, J = 7.20 Hz, 3H, CH3), 3.70 (s, 3H, -OCH3), 5.20 (q, J = 7.20 Hz, 1H, Ar-CH), 

7.21 - 7.44 (m, 5H, Ar–H), 8.0 (brs, 1H, N–H); 13C NMR (75 MHz, CDCl3): δ 22.52, 36.72, 

49.00, 52.00, 127.32, 127.49, 128.67, 143.28, 159.66, 164.99; IR (ATR): 533, 555, 596, 698, 

755, 950, 1017, 1268, 1326, 1438, 1519, 1647, 1689, 2135, 3344; GC-MS: m/z 247. 

 

 

 Syntheses of methyl (±)-cis –1–ethyl–2–methyl–4–oxoazetidine–3–carboxylate 

193 and methyl (±)-trans –1–ethyl–2–methyl–4–oxoazetidine–3–carboxylate 194 

(β-lactams) and methyl 1–ethyl–2–oxopyrrolidine–3–carboxylate 195 (γ-lactam) 

This was synthesised according to a reported procedure.7 

Cu2+-clay mineral (0.05 g) in dry acetonitrile (1.00 mL) was stirred for 1 h at room 

temperature under a nitrogen atmosphere and to this stirred solution methyl 

N,N-diethylamidodiazomalonate 183 (0.10 g, 0.50 mmol) was added and the reaction mixture 

was heated at 80ºC overnight. The reaction mixture was cooled to room temperature and the 

catalyst was removed by simple vacuum filtration and washed with excess of 

dichloromethane (4.00 mL). The filtrate was concentrated in vaccuo using a rotavapor to get 

the crude compound, which was purified by silica gel column chromatography using 

(solvents: (20 : 80) EtOAc : hexane) to obtain the top spot γ-lactam 195 (10 mg, 11%), 

(solvents: (30 : 70) EtOAc : hexane) to obtain upper spot trans-isomer 194 (34 mg, 40%) and 

(solvents: (40 : 60) EtOAc : hexane) bottom spot cis-isomer 193 (26 mg, 30%). 
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 Methyl (±)-cis –1–ethyl–2–methyl–4–oxoazetidine–3–carboxylate 193  

 

 

1H NMR (300 MHz, CDCl3): δ 1.17 (t, J = 7.20 Hz, 3H, N-CH2CH3), 1.32 (d, J = 6.30 Hz, 

3H, CH3), 3.12 (dt, J = 7.20, 14.30 Hz, 1H, N-CHACH3), 3.41 (dt, J = 7.20, 14.30 Hz, 1H, 

N-CHBCH3), 3.76 (s, 3H, -OCH3), 3.95 (dq, J = 5.67, 6.30 Hz, 1H, -CH-N-CH2CH3), 4.05 (d, 

J = 5.67 Hz, 1H, CH-CO2CH3); 
13C NMR (75 MHz, CDCl3): δ 12.81, 14.43, 17.65, 34.82, 

49.29, 56.65, 161.59, 167.17; IR (ATR): 552, 717, 790, 950, 1023, 1061, 1172, 1229, 1381, 

1411, 1641, 1438, 1730, 2975; GC–MS: 172, 156, 143, 128, 100, 85, 69, 56. 

 

 

 Methyl (±)-trans–1–ethyl–2–methyl–4–oxoazetidine–3–carboxylate 194  

 

 

1H NMR (300 MHz, CDCl3): δ 1.19 (t, J = 7.20 Hz, 3H, N-CH2CH3), 1.38 (d, J = 6.30 Hz, 

3H, CH3), 3.10 (dt, J = 7.20, 14.30 Hz, 1H, N-CH), 3.39 (dt, J = 7.20, 14.30 Hz, 1H, N-CH), 

3.56 (d, J = 2.25 Hz, 1H, CH-CO2CH3), 3.76 (s, 3H, -OCH3), 3.97 (dq, J = 2.25, 6.30 Hz, 1H, 

-CH-N-CH2CH3); 
13C NMR (75 MHz, CDCl3): δ 13.29, 18.05, 35.45, 50.53, 52.70, 60.68, 

161.35, 167.96; IR (ATR): 552, 717, 790, 950, 1023, 1061, 1172, 1229, 1381, 1411, 1641, 

1438, 1730, 2975; GC–MS: 172, 156, 143, 128, 100, 85, 69, 56. 
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 Methyl 1–ethyl–2–oxopyrrolidine–3–carboxylate 195 

 

 

1H NMR (300 MHz, CDCl3): δ 1.12 (m, 3H, N-CH2CH3), 1.20 - 1.25 (m, 2H, N-CH2), 

2.30 - 2.39 (m, 1H, N-CHAHB), 2.20 - 2.27 (m, 1H, N-CHAHB), 3.36 (m, 3H, N-CH2 

pyrrolidine ring, CH), 3.76 (s, 3H, -OCH3); 
13C NMR (75 MHz, CDCl3): δ 12.51, 23.40, 

39.99, 43.18, 48.90, 52.00, 169.31, 170.39; IR (ATR): 490, 596, 697, 739, 914, 973, 1024, 

1079, 1160, 1225, 1275, 1332, 1379, 1454, 1494, 1684, 1734, 1979, 2038, 2163, 2337, 2360, 

2935; MS m/z: 171. 

 

 

 Synthesis of benzyl(±)-cis–1–ethyl–2–methyl–4–oxoazetidine–3–carboxylate 202, 

benzyl(±)-trans–1–ethyl–2–methyl–4–oxoazetidine–3–carboxylate 203 (β-lactams) 

and benzyl-1–ethyl–2–oxopyrrolidine–3–carboxylate 204 (γ-lactam). 

202, 203 and 204 were synthesised as for 193, 194 and 195 using benzyl 

N,N-diethylamidodiazomalonate 184 (0.10 g, 0.36 mmol), Cu2+-clay mineral (0.05 g) to give 

the benzyl (±)-cis–1–ethyl–2–methyl–4–oxoazetidine–3–carboxylate 202 (23.0 mg, 25%), 

benzyl (±)-trans–1–ethyl–2–methyl–4–oxoazetidine–3–carboxylate 203 (30.0 mg, 34%) and 

(γ-lactam) benzyl-1–ethyl–2–oxopyrrolidine–3–carboxylate 204 (10.0 mg, 11%) as a yellow 

oil. 
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 Benzyl (±)-cis –1–ethyl–2–methyl–4–oxoazetidine–3–carboxylate 202 

 

 

1H NMR (300 MHz, CDCl3): δ 1.18 (t, J = 7.20 Hz, 3H, N-CH2CH3), 1.37 (d, J = 6.20 Hz, 

3H, CH3), 3.11 (dt, J = 7.20, 14.30 Hz, 1H, N-CHA), 3.41 (dt, J = 7.20, 14.30 Hz, 1H, 

N-CHB), 3.97 (dq, J = 5.65, 6.20 Hz, 1H, -CH-N-CH2CH3), 4.08 (d, J = 5.65, 1H, 

CH-CO2CH2Ph), 5.21 (dd, J = 8.20 Hz, 2H, Ph-CH2), 7.36 - 7.40 (m, 5H, Ar-H); 13C NMR 

(75 MHz, CDCl3): δ 12.66, 17.93, 35.17, 49.86, 60.19, 67.05, 128.21, 128.47, 128.55, 135.47, 

167.54, 164.85; IR (ATR): 480, 590, 697, 720, 949, 1008, 1071, 1168, 1220, 1287, 1380, 

1411, 1453, 1485, 1647, 1720, 1750, 2979; GC–MS: 247, 219, 156, 128, 107, 91, 69. 

 

 

 Benzyl (±)-trans–1–ethyl–2–methyl–4–oxoazetidine–3–carboxylate 203 

 

 

1H NMR (300 MHz, CDCl3) δ 1.19 (t, J = 7.20 Hz, 3H, N-CH2CH3), 1.37 (d, J = 6.20 Hz, 

3H, CH3), 3.11 (dt, J = 7.20, 14.30 Hz, 1H, N-CHA), 3.40 (dt, J = 7.20, 14.30 Hz, 1H, N-
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CHB), 3.98 (dq, J = 2.20, 6.20 Hz, 1H, CH-N-CH2CH3), 3.60 (d, J = 2.20 Hz, 1H, CH-

CO2CH2Ph), 5.20 (dd, J = 8.20 Hz, 2H, Ph-CH2), 7.31 – 7.40 (m, 5H, Ar-H); 13C NMR (75 

MHz, CDCl3): δ 13.17, 17.92, 35.55, 49.80, 60.19, 67.18, 128.22, 128.36, 128.60. 135.47, 

167.54, 164.85; IR (ATR): 491, 596, 697, 742, 949, 1008, 1081, 1168, 1226, 1297, 1380, 

1411, 1453, 1495, 1647, 1728, 1754, 2975; GC–MS: 247, 219, 156, 128, 107, 91. 

 

 

 Benzyl 1–ethyl–2–oxopyrrolidine–3–carboxylate 204 

 

 

1H NMR (300 MHz, CDCl3): δ 1.12 (t, J = 7.20 Hz, 3H, N-CH2CH3), 1.22 - 1.31 (m, 2H, 

N-CH2, pyrrolidine ring), 2.20 - 2.34 (m, 1H, N-CHAHB, pyrrolidine ring), 2.35 - 2.48 (m, 

1H, N-CHAHB, pyrrolidine ring), 3.30 – 3.60 (m, 3H, N-CH2CH3, CH), 5.21 (s, 2H, Ph-CH2), 

7.30 - 7.40 (m, 5H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 12.51, 22.46, 37.81, 45.18, 48.84, 

67.29, 128.20, 128.30, 128.68, 135.70, 169.31, 170.39; IR (ATR): 1160, 1225, 1275, 1332, 

1379, 1454, 1494, 1684, 1734, 2038, 2163, 2337, 2360, 2958; GC-Ms: m/z: 247, 156, 138, 

113, 91. 

 

 

 Syntheses of 1–ethyl–2,3–dihydro–1H–indol–2–one 207 and benzyl (±)–2-cis–

methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 205 and benzyl (±)–2-trans–

methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 206 (β-lactams, minor 

products). 

205, 206 and 207 were synthesised as for 193 and 194 using ethyl 2–diazo–2–[ethyl (phenyl) 

carbamoyl] acetate (0.10 g, 0.40 mmol), Cu2+-clay mineral (0.05 g) to give the products 1–

ethyl–2,3–dihydro–1H–indol–2–one 207 (0.015 g, 0.06 mmol) (major product), benzyl (±)–

N
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2-cis–methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 205 and benzyl (±)–2-trans–

methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 206 (β-lactams, minor products). 

 

 

 benzyl (±)–2-cis–methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 205 and 

benzyl (±)–2-trans–methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 206 

These minor compounds 205 and 206 were only identified by GC-MS (m/z: 219) as there was 

insufficient product to even give a crude 1H NMR spectrum. 

 

 1–Ethyl–2,3–dihydro–1H–indol–2–one 207 

 

 

1H NMR (300 MHz, CDCl3): δ 1.29 (t, J = 7.30 Hz, 3H, N-CH2CH3), 3.72 – 3.82 (m, 5H, 

N-CH2CH3 & -OCH3), 4.23 (s, 1H, OH), 6.89 (d, J = 7.90 Hz, 1H), 7.09 (t, J = 7.80 Hz, 1H), 

7.29 (d, J = 7.90 Hz, 1H), 7.38 (t, J = 7.80 Hz, 1H); 13C NMR (75 MHz, CDCl3): δ 17.13, 

59.0, 80.0, 121.92, 123.22, 123.79, 124.07, 126.64, 127.32, 130.78, 166.0, 173.0; IR (ATR): 

550, 674, 799, 960, 1000, 1120, 1139, 1170, 1228, 1257, 1340, 1465, 1609, 1756, 1957, 

1999, 2021, 2083, 2168, 2361, 2922, 3329; MS: m/z 219. 

 

 

 Syntheses of benzyl (±)-cis–2–methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 

214 and benzyl (±)-trans–2–methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 

215 and 1-ethyl-2-methyl-1H-indole-3-carboxylate 216. 

214, 215 and 216 were synthesised as for 193, 194 & 195 using benzyl N,N-

diethylamidodiazomalonate 184 (0.10 g, 0.31 mmol), Cu2+-clay mineral (0.05 g) to give the 
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products benzyl (±)-cis–2–methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 214, benzyl 

(±)-trans–2–methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 215 (β-lactams 214 and 215 

(0.010 g, 11%)) and 1-ethyl-3a-methoxy-3H-cyclohepta[b]pyrrol-2-one 216 as a yellow oil 

(0.015 g, 23%) (cyclised product). 

 

 

 benzyl (±)-cis–2–methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 214 

 

 

1H NMR (300 MHz, CDCl3): δ 1.34 (d, J = 6.27 Hz, 3H, CH3), 4.20 (d, J = 6.20 Hz, 1H, 

CH-CO2CH2Ph), 4.40 (dq, J = 6.39, 6.20 Hz, 1H, N-CH), 5.20 (m, 2H, Ph-CH2), 7.05 - 7.10 

(m, 2H, Ar-H), 7.19 - 7.28 (m, 8H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 17.76, 45.34, 50.86, 

60.91, 67.48, 124.00, 128.25, 128.47, 128.68, 135.15, 136.0, 158.0, 166.0; IR (ATR): 481, 

596, 697, 742, 940, 1008, 1079, 1148, 1226, 1297, 1378, 1400, 1423, 1485, 1647, 1718, 

1744, 2985; GC-MS: m/z: 295. 
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 benzyl (±)-trans–2–methyl–4–oxo–3–phenylcyclobutane–1–carboxylate 215 

 

 

1H NMR (300 MHz, CDCl3): δ 1.46 (d, J = 6.27 Hz, 3H, CH3), 3.70 (d, J = 2.49 Hz, 1H, 

CH-CO2CH2Ph), 4.40 (dq, J = 6.11, 2.49 Hz, 1H, N-CH), 5.21 (m, 2H, Ph-CH2), 7.05 - 7.19 

(m, 2H, Ar-H), 7.23 - 7.28 (m, 8H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 14.45, 45.90, 50.86, 

60.84, 67.48, 124.00, 128.25, 128.47, 128.68, 135.15, 136.0, 158.0, 166.0; IR (ATR); 489, 

586, 687, 732, 940, 1059, 1140, 1226, 1287, 1368, 1405, 1420, 1490, 1637, 1720, 1734, 

2975; GC-MS: m/z: 295. 

 

 

  1-Ethyl-2-methyl-1H-indole-3-carboxylate 216a 

 

 

1H NMR (300 MHz, CDCl3): δ 1.21 (t, J = 7.10 Hz, 3H), 2.41 (s, 3H), 3.83 (q, J = 7.10 Hz, 

2H), 5.15 (s, 2H), 6.77 – 7.05 (m, 3H), 7.21 – 7.30 (m, 7H); 13C NMR (75 MHz, CDCl3): δ 

13.21, 14.45, 46.0, 65.51, 117.65, 117.95, 118.05, 121.81, 128.38, 128.93, 129.54, 136.41, 

144.00, 155.00, 156.00, 160.75; IR (ATR): 1122, 1149, 1190, 1228, 1259, 1350, 1377, 1465, 

1489, 1609, 1700, 1756, 1957, 1999, 2021, 2083, 2168, 2361, 2922, 3329; MS: 294. 
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 Syntheses of methyl (±)-cis–8–oxo–1–azabicyclo [4.2.0] octane–7–carboxylate 217 

and methyl (±)-trans–8–oxo–1–azabicyclo [4.2.0]octane–7–carboxylate 218 

 

 

217 and 218 were synthesised as for 193, 194 using methyl N-piperidinodiazomalonate 187 

(0.12 g, 0.57 mmol), Cu2+-clay mineral (0.05 g) to give the products methyl (±)trans–8–oxo–

1–azabicyclo [4.2.0] octane–7–carboxylate 218 (0.066 g, 66%) (major) and methyl (±)cis–8–

oxo–1–azabicyclo [4.2.0] octane–7–carboxylate 217 (minor) as a yellow oil. 

 

 

 methyl (±)-cis–8–oxo–1–azabicyclo [4.2.0] octane–7–carboxylate 217 

There was insufficient of the product 217 for characterisation by spectroscopic means, only 

identified by GC–MS: (RT 9.11 minor): 183, 155, 124, 96, 81, 55. 

 

 

 Methyl (±)-trans–8–oxo–1–azabicyclo [4.2.0]octane–7–carboxylate 218 

1H NMR (300 MHz, CDCl3): δ 1.16 – 1.73 (m, 4H, 3a, 3b, 4a, 4b), 1.83 - 1.95 (m, 1H, 5b), 

2.05 – 2.18 (m, 1H, 5a), 2.79 (ddd, J = 4.50, 11.60, 13.70 Hz, 1H, 2b), 3.65 (ddd, J = 1.90, 

4.50, 10.50 Hz, 1H, C6-H), 3.69 (d, J = 1.90 Hz, 1H, C7-H), 3.76 (s, 3H, -OCH3), 3.84 (dd, J 

= 4.50, 13.70 Hz, 2a); 13C NMR (75 MHz, CDCl3): δ 22.01, 24.16, 29.77, 39.36, 51.00, 

52.65, 61.84, 161.52, 167.02; IR (ATR): 511, 568, 702, 771, 803, 867, 916, 1039, 1082, 

1136, 1203, 1340, 1444, 1584, 1635, 1697, 1739, 1972, 2027, 2160, 2199, 2882, 2955, 3342; 

GC–MS: (RT 9.07major): 183, 155, 124, 113, 81, 55; 

 

N

O

H
H

H3CO2C

H

H

H

H
H

H

H

H

2a

2b

3a

3b

4a

4b
5a

5b

6
7

218



189  
 

 

 Syntheses of benzyl (±)-trans–8–oxo–1–azabicyclo [4.2.0] octane–7–carboxylate 

222 and benzyl (±)-cis–8–oxo–1–azabicyclo [4.2.0] octane–7–carboxylate 221 (β-

lactams) 

 

 

221 and 222 were synthesised as for 193 and 194 using benzyl N-piperidinodiazomalonate 

188 (0.10 g, 0.35 mmol), Cu2+-clay mineral (0.05 g) to give the products benzyl (±)trans–8–

oxo–1–azabicyclo [4.2.0] octane–7–carboxylate 222 (major) (0.068 g, 68%) and benzyl 

(±)cis–8–oxo–1–azabicyclo [4.2.0] octane–7–carboxylate 221 (minor) as a yellow oil 

 

 

 Benzyl (±)-cis–8–oxo–1–azabicyclo [4.2.0] octane–7–carboxylate 221 

There was insufficient of the product 221 for characterisation by spectroscopic means, only 

identified by GC–MS (RT= 9.12): m/z: 243. 

 

 

 Benzyl (±)-trans–8–oxo–1–azabicyclo [4.2.0] octane–7–carboxylate 222 

1H NMR (300 MHz, CDCl3): δ 1.09 – 1.65 (m, 4H, 3a1, 3b1, 4a1, 4b1), 1.71 – 1.87 (m, 1H, 

5b1), 1.93 - 2.08 (m, 1H, 5a1), 2.68 (ddd, J = 4.60, 11.60, 13.60 Hz, 1H, 2b1), 3.55 (ddd, J = 

1.80, 4.30, 10.50 Hz, 1H, C6-H), 3.62 (d, J = 1.80 Hz, 1H, C7-H), 3.74 (dd, J = 4.60, 13.60 

Hz, 2a1), 5.10 (dd, J = 12.30 Hz, 2H, -OCH2Ph), 7.14 – 7.32 (m, 5H, Ar-H); 13C NMR (75 

MHz, CDCl3): δ 21.81, 24.09, 29.56, 39.15, 50.77, 61.85, 67.08, 128.49, 128.26, 128.18, 

135.23, 160.16, 167.26; IR (ATR): 411, 463, 582, 697, 743, 834, 941, 976, 1027, 1081, 1151, 
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1177, 1216, 1304, 1274, 1330, 1380, 1404, 1447, 1497, 1650, 1726, 1755, 2858, 2941; GC-

MS (RT): m/z: 243. 

 

 

 Synthesis and characterisation of cyclopropanation reactions 

 General method for the preparation of cyclopropanes; synthesis of ethyl cis–2–

phenylcyclopropane–1–carboxylate 127 and ethyl trans–2–phenylcyclopropane–

1–carboxylate 128 from styrene 87 and EDA 33. 

This was synthesised according to a reported procedure.8 

Cu2+-clay mineral (0.05 g) in dry dichloromethane was stirred for 1 h at room temperature 

under nitrogen atmosphere and to this stirred solution, styrene 87 (0.39 g, 4.63 mmol) was 

added and further stirred for 30 min at room temperature. Then ethyl diazoacetate (0.10 g, 

0.87 mmol) was added slowly in a dropwise manner over 10 h at room temperature. The 

resulting mixture was heated to 40ºC overnight. The course of the reaction was monitored by 

TLC and IR until the complete disappearance of diazo peak 2220 cm–1 from ethyl 

diazoacetate. The reaction mixture was then cooled to room temperature and the catalyst 

removed by simple filtration and washed with excess dichloromethane (4.0 mL). The filtrate 

was concentrated in vaccuo and purified by silica gel column chromatography using (solvents 

(0.5 : 9.5) EtOAc : hexane) to obtain pure compounds 127 (0.050 g, 30%) and 128 (0.075 g, 

45%). 

 

 Ethyl cis–2–phenylcyclopropane–1–carboxylate 127 

 

 

1H NMR (300 MHz, CDCl3): δ 0.96 (d, J = 7.10 Hz, 3H, CH3CH2O), 1.27 – 1.38 (m, 1H, 

CH2, cyclopropyl C-H), 1.70 (ddd, J = 9.30, 7.40, 5.30 Hz, 1H, CH2, cyclopropyl C-H), 2.06 
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(ddd, J = 9.30, 7.90, 5.70 Hz, 1H, Ar-CH ), 2.57 (dd, J = 8.90, 16.60 Hz, 1H, CHCO2Et), 

3.86 (d, J = 7.10 Hz, 2H, OCH2CH3), 7.16 – 7.33 (m, 5H, Ar-H); 13C NMR (75 MHz, 

CDCl3): δ 10.98, 13.80, 21.17, 25.57, 60.26, 126.48, 127.92, 129.31, 136.4, 170.69; IR 

(ATR): 613, 696, 722, 754, 781, 793, 851, 907, 952, 1019, 1039, 1078, 1176, 1219, 1268, 

1324, 1336, 1382, 1404, 1457, 1497, 1604, 1720, 2774, 2030, 2343, 2904, 2980, 3027, 3090; 

GC–MS: (RT = 8.56 cis minor): m/z: 190 (M+), 162 (PhCH (CH2) CHCO2
+), 145 (PhCH 

(CH2) CHCO+), 117 (PhCH (CH2) CH+). 

 

 

 Ethyl trans–2–phenylcyclopropane–1–carboxylate174 128 

 

 

1H NMR (300 MHz, CDCl3): δ 1.24 – 1.35 (m, 4H, CH2 (cyclopropyl C-H), CH3CH2O), 1.60 

(ddd, J = 9.20, 5.20, 4.60 Hz, 1H, CH2 (cyclopropyl C-H)), 1.90 (ddd, J = 8.20, 5.20, 4.30 Hz, 

1H, Ar-CH), 2.52 (ddd, J = 9.20, 6.40, 4.30 Hz, 1H, CHCO2Et), 4.17 (q, J = 7.0 Hz, 2H, 

OCH2CH3), 7.07 – 7.13 (m, 2H, Ar-H), 7.17 – 7.32 (m, 3H, Ar-H); 13C NMR (75 MHz, 

CDCl3): δ 14.51, 17.40, 24.75, 26.40, 61.00, 126.66, 126.99, 128.99, 140.64, 173.96; IR 

(ATR): 696, 722, 754, 786, 790, 851, 907, 952, 1010, 1039, 1070, 1176, 1219, 1268, 1324, 

1336, 1382, 1404, 1457, 1497, 1604, 1720, 2774, 2030, 2343, 2904, 2980, 3027; GC–MS 

(RT = 8.28 trans major): 190 (M+), 162 (PhCH (CH2) CHCO2
+), 145 (PhCH (CH2) CHCO+), 

117 (PhCH (CH2) CH+). 
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 Syntheses of 7–endo–ethoxycarbonyl bicyclo[4.1.0]heptane 132 and 7-exo-

ethoxycarbonylbicyclo[4.1.0]heptane 237. 

 

 

132 and 237 was synthesised as for 127 and 128 using Cu2+-clay mineral (0.05 g) in dry 

dichloromethane (4.0 mL), cyclohexene 131 (0.35 g, 4.26 mmol) with ethyl diazoacetate 

(0.10 g, 0.87 mmol) to give a mixture of 132 (endo, minor) and 237 (exo, major) (0.022 g, 

15%) as an oil. 

 

 

 7-endo-Ethoxycarbonylbicyclo[4.1.0]heptane 132 

Because of insufficient of the product 132 for characterisation by spectroscopic means, only 

identified by GC–MS: (RT 7.10 endo minor): 168, 140, 122, 94, 79, 67. 

 

 

 7-exo-Ethoxycarbonylbicyclo[4.1.0]heptane 237 

1H NMR (300 MHz, CDCl3): δ 1.10 – 1.34 (m, 5H, OCH2CH3, CH2 cyclohexane ring), 1.38 

(t, J = 4.30 Hz, CHCO2Et), 1.56 – 1.63 (m, 2H, CH2), 1.64 - 1.76 (m, 2H, CH2), 1.82 – 1.92 

(m, 2H, CH2), 4.12 (q, J = 7.10 Hz, 2H, OCH2CH3); 
13C NMR (75 MHz, CDCl3): δ 14.02, 

17.08, 20.95, 22.05, 130.29, 134.51, 174.7, 171.8; IR (ATR): 701, 734, 844, 1031, 1112, 

1174, 1266, 1456, 1380, 1715, 1943, 2034, 2167, 2337, 2360, 2980, 3443, 3729; GC–MS 

(RT = 7.31 exo major): 168, 140, 122, 94, 79, 67. 
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 Syntheses of endo-ethyl bicyclo[6.1.0]non-4-ene-9-carboxylate 239 and exo-ethyl 

bicyclo[6.1.0]non-4-ene-carboxylate 240. 

 

 

239 and 240 were synthesised as for 127 and 128 using Cu2+-Wyoming bentonite (0.05 g) in 

dry dichloromethane (4.0 mL), 1,5-cyclooctadiene 238 (0.47 g, 4.33 mmol) with ethyl 

diazoacetate (0.10 g, 0.87 mmol) to give 242 (endo, minor) and 243 (exo, major) (0.020 g, 

12%) as an oil. 

 

 

 endo-Ethyl bicyclo[6.1.0]non-4-ene-9-carboxylate 239 

Because of insufficient of the product 239 for characterisation by spectroscopic means, only 

identified by GC–MS: (RT 8.64 endo minor): 195, 166, 138, 105, 91. 

 

 

 exo-Ethyl bicyclo[6.1.0]non-4-ene-9-carboxylate 240. 

1H NMR (300 MHz, CDCl3): δ 1.18 (t, J = 4.80 Hz, 1H, C-H exo), 1.25 (t, J = 7.20 Hz, 3H, 

CH2CH3), 1.49 - 1.59 (m, 4H), 2.04 – 2.31 (m, 6H), 4.11 (q, J = 7.20 Hz, 2H, CH2CH3), 5.39 

– 5.65 (m, 2H, -HC = CH); 13C NMR (75 MHz, CDCl3): δ 14.33, 26.67, 27.70, 27.78, 28.20, 

60.82, 129.61, 174.66. IR (ATR): 1027, 1096, 1157, 1261, 1375, 1454, 1719, 2155, 2360, 

2952, 3479; GC-MS: (RT 8.82): 195, 166, 138, 105, 91. 

 

 

H

H
CO2Et

H

H

H

H

CO2Et

exo, 240endo, 239
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 Syntheses of cis-ethyl 2,2–dimethyl–3–(2–methylpropenyl)cyclopropane–1–

carboxylate 244 and trans-ethyl 2,2–dimethyl–3–(2–methylpropenyl)cyclo-

propane–1–carboxylate 134. 

244 and 134 was synthesised as for 127 and 128 using Cu2+-clay mineral (0.05 g) in dry 

dichloromethane (4.0 mL), 2,5-dimethyl-2,4-hexadiene 133 (0.48 g, 4.30 mmol) with ethyl 

diazoacetate (0.10 g, 0.87 mmol) to give 244 and 134 (0.070 g, 48%) as an oil. 

 

 cis-Ethyl 2,2–dimethyl–3–(2–methylpropenyl)cyclopropane–1–carboxylate 244 

 

 

1H NMR (300 MHz, CDCl3): δ 1.20 (s, 3H, C(CH3)), 1.21 – 1.28 (m, 6H, C(CH3)2/CH2CH3), 

1.64 (d, J = 8.80 Hz, 1H, H-C1), 1.69 (s, 6H, (CH3)2C=CHcis), 1.87 (t, J = 8.70 Hz, 1H, 

H-C2), 4.00 – 4.20 (m, 2H, CH2CH3), 5.34 – 5.44 (m, 1H, C=CH); 13C NMR (75 MHz, 

CDCl3): δ 14.40, 22.18, 24.14, 26.00, 28.00, 60.21, 125.74, 128.27, 131.19, 173.29; IR 

(ATR): 856, 1028, 1160, 1100, 1374, 1437, 1722, 2064, 2183, 2220, 2970, 3456; GC–MS: 

(RT = 6.94 cis minor): m/z 196, 181, 153, 123, 107, 95, 91, 81. 

 

 

 trans-Ethyl 2,2–dimethyl–3–(2–methylpropenyl)cyclopropane–1–carboxylate 

134 

 

 

1H NMR (300 MHz, CDCl3): δ 1.12 (s, 3H, C(CH3)), 1.22 – 1.26 (m, 6H, C(CH3)2/CH2CH3), 

1.37 (d, J = 5.40 Hz, 1H, H-C1), 1.71 (s, 6H, (CH3)2C=CHtrans), 1.99 – 2.09 (m, 1H, H-C2), 

4.02 (m, 2H, CH2CH3), 4.73 - 5.07 (m, 1H, C=CH); 13C NMR (75 MHz, CDCl3): δ 18.50, 

CO2C2H5

cis, 244

CO2C2H5

trans,134
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22.18, 25.50, 26.00, 28.00, 60.21, 121.19, 128.25, 135.40, 172.54; IR (ATR): 444, 856, 1028, 

1175, 1115, 1374, 1447, 1722, 2002, 2064, 2173, 2226, 2978, 3456; GC–MS: (RT = 6.99 

trans major): m/z 196, 181, 153, 123, 107, 95, 91, 81. 

 

 

 Synthesis of 3–hydroxy–5–phenyl–pent–4–enolic acid ethyl ester 

 

 

246 was synthesised as for 127 and 128 using Cu2+-clay mineral (0.05 g) in dry 

dichloromethane, trans-cinnamic acid 245 (0.30 g, 2.02 mmol) with ethyl diazoacetate (0.10 

g, 0.87 mmol) to give 246 (0.10 g, 54%) as a oil. 1H NMR (300 MHz, CDCl3): δ 1.18 (t, J = 

7.10 Hz, 3H, CH2CH3), 4.13 (q, J = 7.10 Hz, 2H, CH2CH3), 4.62 (s, 2H, CH2), 6.41 (d, J = 

16.0 Hz, 1H, Ar-CH=CH), 7.20 - 7.27 (m, 3H, Ar-H), 7.32 – 7.42 (m, 2H, Ar-H), 7.66 (d, J = 

16.0 Hz, 1H, Ar-CH=CH); 13C NMR (75 MHz, CDCl3): δ 14.16, 60.89, 61.50, 116.75, 

128.26, 128.94, 130.61, 134.14, 146.27, 166.20, 167.98; MS: m/z 234. 

 

 

 Synthesis and characterisation of cyclopropanes from other diazo 

compounds 

 General method for the preparation of cyclopropanes: 2–phenyl–cyclopropane–

1,1–dicarboxylic acid methyl ester 248 

 

 

O

O CO2C2H5

246

248

CO2CH3

CO2CH3
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Cu2+–clay mineral (0.10 g) was dissolved in acetonitrile (2.0 mL) and stirred for 1 h at room 

temperature. Styrene 87 (0.32 g, 3.07 mmol) was added to this reaction mixture and 1,3–

dimethyl 2–diazopropanedioate 247 (0.10 g, 0.63 mmol) was added slowly in a dropwise 

manner over 2 h. The reaction mixture was then heated under reflux overnight, cooled to 

room temperature, filtered under vacuum and washed with excess of dichloromethane. The 

combined filtrate was evaporated on a rotavapor to give the crude product, which was 

purified by column chromatography; the pure compound 248 was eluted with (20 : 80) 

EtOAc/hexane, which on rotary evaporation gave a colourless oil (0.015 g, 10%). 

 

1H NMR (300 MHz, CDCl3): δ 1.77 (dd, 1H, J = 9.20, 5.20 Hz, CH (cyclopropyl)), 2.23 (dd, 

1H, J = 8.0, 5.20 Hz, CH (cyclopropyl)), 3.25 (t, 1H, J = 8.70 Hz, Ar-CH), 3.42 (s, 3H, -

OCH3), 3.84 (s, 3H, -OCH3), 7.19 – 7.43 (m, 5H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 19.0, 

32.40, 37.10; 52.0, 52.60, 127.30, 128.0, 128.30, 134.50, 166.90, 170.10; IR (ATR): 1082, 

1130, 1207, 1277, 1332, 1416, 1726, 2980; GC-MS: 234. 

 

 Synthesis of cis–methyl 2–phenyl–1–(piperidine–1–carbonyl) cyclopropane 

carboxylates 249 

 

The compound 249 was synthesised by using Cu2+–clay mineral (0.10 g) in acetonitrile (2.0 

mL), styrene 87 (0.24 g, 2.3.0 mmol), methyl N-piperidinodiazomalonate 187 (0.10 g, 0.47 

mmol) which gave the pure compound as a colourless oil 249 (0.015 g, 12%). 1H-NMR (300 

MHz, CDCl3): δ 1.47 – 1.68 (m, 7H, C-H piperidine ring), 2.13 (dd, J = 8.02, 5.10 Hz, 1H, 

C-H (cyclopropyl)), 3.18 (t, J = 8.40 Hz, 1H, Ar-CH), 3.39 (s, 3H, -OCH3), 3.41 – 3.65 (m, 

4H, CH piperidine ring, C-H (cyclopropyl)), 7.01 – 7.31 (m, 5H, Ar-H); 13C-NMR (75 MHz, 

CDCl3): δ 18.0, 24.7, 25.5, 26.0, 32.1, 37.7, 43.6, 46.8, 52.3, 129.2, 128.1, 127.2, 135.3, 

166.6, 168.8; IR (ATR) 1135, 1334, 1434, 1511, 1638, 1715, 2884, 2946, 3008, 3039; 

GC-MS: 287, 255, 227, 202, 170, 144, 115, 84. 

 

O
O

O

N

249
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 Methyl–2–phenyl–1–(pyrrolidine–1–carbonyl) cyclopropane carboxylate 250 

 

 

The compounds 250 were synthesised by using Cu2+–clay mineral (0.10 g) in acetonitrile (2.0 

mL) and styrene 87 (0.26 g, 2.5 mmol), methyl pyrrolidinodiazomalonate 189 (0.10 g, 0.50 

mmol) was reacted to form the compound 250 as a colourless oil (0.016 g, 12%). 1H NMR 

(300 MHz, CDCl3): δ 1.52 (dd, J = 4.90, 9.10 Hz, 1H, C-H cyclopropyl ring), 1.78 - 2.01 (m, 

4H, pyrrolidine ring), 2.19 (dd, J = 4.90, 8.00 Hz, 1H, Ar-CH), 3.28 – 3.41 (m, 2H, N-CH, 

C-H cyclopropyl), 3.42 (s, 3H, -OCH3), 3.72 – 3.96 (m, 3H, C-H pyrrolidine ring), 7.21 –7.32 

(m, 5H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 14.10, 17.60, 24.40, 26.30, 31.40, 38.80, 

46.60, 46.70, 61.30, 129.20, 128.10, 127.20, 135.50, 166.60, 168.30; IR (ATR): 1142, 1310, 

1426, 1637, 1724, 2875, 2973, 3008, 3038; GC-MS: 274. 

 

  

O
O

O

N

250
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 Synthesis and characterisation of nitrene addition reaction 

products 

 General method for the preparation of aziridines: N-(p-tolylsulfonyl)-2-

phenylaziridine 249 

 

 

 

Cu2+-clay mineral (0.10 g) was dissolved in acetonitrile (2.0 mL) and stirred for 1 h at room 

temperature to this reaction mixture styrene 87 (0.26 g, 2.50 mmol) was added and the p–

toluenesulfonyl azide 182 (0.10 g, 0.50 mmol) was added slowly dropwise for 2 h. Then the 

reaction mixture was refluxed for overnight and then cooled to room temperature, filtered 

under vacuum, washed with excess of dichloromethane. Then the filtrate was collected and 

evaporated under rotavapor to get crude product, the crude product was purified by column 

chromatography to elute the pure compound 249 at (solvent (40 : 60) EtOAc/hexane) as a 

colourless oil (0.016 g, 12%). 1H NMR (300 MHz, CDCl3): δ 2.41 – 2.47 (m, 4H, Ph-CH3, 

CH2), 2.98 (d, J = 7.20 Hz, 1H, CH2), 3.78 (dd, J = 7.20, 5.44 Hz, 1H, Ar-CH), 7.17 – 7.47 

(m, 6H, Ar-H), 7.82 – 7.99 (m, 3H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 21.71, 36.00, 

41.09, 126.62, 127.99, 128.36, 128.62, 129.83, 135.02, 135.09, 144.72; IR (ATR): 3267, 

3062, 2360, 2336, 2924, 2131, 2003, 1682, 1597, 1493, 1450, 333, 1161, 1088, 813, 750, 

698, 667, 592, 543, 414; MS: m/z: 274. 

 

N
S
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 Attempted synthesis of diphenyl (2-phenylaziridin-1-yl)phosphonate 

 

 

The synthesis of compound 253 was attempted as for 251 by using Cu2+-Wyoming bentonite 

(0.10 g) in acetonitrile (2.0 mL) with styrene 87 (0.20 g, 1.90 mmol) and diphenylphosphoryl 

azide 252 (0.10 g, 0.36 mmol). The reaction showed a complex mixture and when the crude 

product was purified by column chromatography the desired product 253 was not found by 

1H NMR spectroscopy. 

 

 

 Attempted synthesis of 4-[(2-phenylaziridin-1-yl)sulfonyl]benzoic acid 255 

 

 

The synthesis of compound 255 was attempted as for 251 using Cu2+-Wyoming bentonite 

(0.10 g) in acetonitrile (2.0 mL) with styrene 87 (0.20 g, 1.90 mmol) and 

4-(azidosulfonyl)benzoic acid 254 (0.10 g, 0.44 mmol). The reaction gave a complex crude 

mixture which on attempted purification by column chromatography showed none of the 

required product 255 by 1H NMR spectroscopy. 
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 Future work 

 

 Asymmetric synthesis with carbocations 

The following work should be examined to further understand these catalytic systems: 

 

 Asymmetric synthesis with carbocations 

As many pharmaceuticals, flavours, fragrances, food and feed additives and agrochemicals 

contain elements of chirality and most are required to be enantiomerically pure before they 

can be used. Introduction of a chiral unit into the currently achiral groups to determine 

whether a chiral centre can induce preference for one of the possible stereoisomers, which 

will give an advantage as we can use biologically active chiral compounds.198 

 

 

 Chiral carbanion reactions 

Clay minerals have been used for supporting Grignard reagents without decomposition. 

Asymmetric syntheses via chiral carbanions derived from these organometallic reagents are 

well known.199 We would aim to determine whether we can improve the stereo–selectivity of 

reactions of chiral Grignard reagents with prochiral carbonyl compounds or achiral Grignard 

reagents with chiral carbonyl compounds, on intercalating the Grignard reagent into a clay 

interlayer. 

 

 

 Enantioselective reactions within clay interlayers 

Up to now we will have examined the potential for regio– and stereo–control of reactions by 

clay minerals. However, it may be possible to exert improved enantio–selectivity on reactions 

if the clay interlayer is made into a chiral environment. There are two simple methods for 

creating a chiral environment within the clay interlayer; the first is simply to make the clay 

interlayer chiral. This can be done either by displacing the water from the interlayer with an 
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optically active solvent, e.g. an ether for Grignard reactions, an alcohol for aldol reactions, a 

haloalkane for carbene reactions, etc., or by having an un–reactive optically active compound 

either in solution or intercalated into the interlayer, e.g. a chiral tetra–alkyl ammonium ion 

(forming a chiral organoclay). 

 

The second method would be to convert the clay layer to an optically active organoclay layer. 

Carbenes generated in the clay interlayer have been observed to insert into the H–O–Al bond 

of the clay layers. This work will be extended by generation and insertion of a chiral carbene 

into the clay interlayer surface, thus creating a chiral interlayer environment. This chiral clay 

material will then be used to induce stereo–selectivity into catalysed reactions, for example 

other carbene insertions, carbocation rearrangements and carbanion reactions carried out in 

the clay interlayer. 
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Abstract 

Carbene intermediates can be generated by thermal, photochemical and transition metal 

catalysed processes from diazoalkanes.i The carbene intermediates are very reactive and can 

add across double bonds to give 3-membered rings (cyclopropanes),ii insert into OH bonds to 

give esters and insert into neighbouring C-H bonds to give 4 or 5-membered rings, such as - 

and -lactams or -lactones. Copper salts and complexes were amongst the first catalysts to 

be used for carbene generation from diazoalkanes.iii However, current tendencies are to use 

very expensive, especially, platinum group salts and complexes to generate the carbene 

intermediates, as yields and specificity tend to be higher. We have found. On the other hand, 

that Cu (II) exchanged clay minerals, e.g. Wyoming bentonite, have proven to be very 

competitive in yield with these transition metal catalysts and they have the added tendency 

that the restricted reaction space within the clay interlayer favours the more planar/less bulky 

product when the layer spacing is kept low by judicious choice of solvent. 

Herein we report a wide range of carbene addition (cyclopropane formation) and C-H 

insertion reactions (-lactam, -lactam and -lactone formation) catalysed by the Cu(II) 

exchanged clay minerals and the stereochemical consequences of carrying out the reactions 

within the clay interlayer. 
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