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Abstract— It has been shown that nonlinear discrete maps can display extremely rich behaviour and under certain parameter conditions 

to show chaotic phenomenon. This work looks at adaptive control feedback systems which can be represented as nonlinear discrete maps 

and shows how model mismatch can lead to undesired complicated and chaotic behaviour. Moreover that a discrete-time adaptive control 

system which can display chaotic behaviour can be extended into higher order systems and the results show that under certain parameter 

conditions, the higher order systems also behave chaotically. A generalised equation form for the eigenvalues is also given. 

 

Index Terms— Adaptive Feedback Control Systems, Bifurcation, Chaos, Nonlinear Mappings, Simulation  

——————————      —————————— 

1 INTRODUCTION                                                                     

Chaos theory looks at the study of deterministic dynamical 
systems that are very sensitive to initial conditions. Small dif-
ferences in initial conditions can lead to widely diverging out-
comes, for such systems making long term predictions gener-
ally becomes impossible. Chaotic phenomena have been ob-
served in numerous systems in the science and engineering 
fields [1].  Lorenz [2] made early studies in the changes in the 
atmosphere which tended to display erratic and unpredictable 
behaviour. In more recent years, with potential application in 
engineering fields the study and control of chaotic systems has 
become important specifically chaos control and synchroniza-
tion [3].  
    Adaptive feedback control starts with a system model with 
known or unknown parameters. Parameter adaptive control 
looks at global behaviour and a set of parameters which are 
manipulated by the observer. The observed behaviour is com-
pared with the desired one and corrections made using the 
system parameters. It is know that adaptive control inherently 
leads to a nonlinear closed-loop system, even in the situation 
where we have a linear plant or a linear model of the plant, 
when a linear output feedback law is used and where the 
feedback parameters are estimated from input and output da-
ta. Adaptive systems can be thought of as being asymptotical-
ly linear when the feedback parameters have converged to 
some steady state. The study considers what sort of dynamical 
effects on the performance of the adaptive system the nonline-
ar features can have 
 
    A discrete adaptive system can be represented as a nonline-

ar discrete map. It has been shown that a one-dimensional 
nonlinear map [4], [5], a one-dimensional map with a quadrat-

ic nonlinearity known as the logistic map [6], exhibit unpre-
dictable and chaotic phenomena. Ydstie [7] has shown how a 
simple model-reference adaptive system (MRAC) character-
ised by a third order nonlinear discrete map with no external 
forcing can exhibit chaotic behaviour. More recently, due the 
potential applications in a variety of disciples, chaos control 
has become an important consideration like the area of secure 
communications [8].  

    In this paper a general nth order plant is taken with in-
creasing order model assumptions and using analysis and 
simulation show that complex dynamics and chaotic behav-
iour can occur for higher order systems for certain parameter 
values. A general closed form equation is developed giving 
the eigenvalue structure for the nth order plant with a first 
order model assumption. This provides insight into the unsta-
ble behaviour of our systems. 

2 GENERAL BACKGROUND 

In model–reference adaptive control, the basic idea is to com-
pare the behaviour of the controlled plant with that of refer-
ence model representing the desired performance and attempt 
to reduce the difference between them by changing the con-
troller parameters in an appropriate manner. The basic struc-
ture is as shown in fig 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Model – reference adaptive control system structure. 
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 The general adaptive control system is designed by combin-

ing a particular estimation technique with a control law. 
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              (   ) 
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For simplicity   (   )    and (          ( )  ( )       )  

 

It is assumed that the system can be adequately represent-

ed as a first-order model, 
 

 ( )    ̂ (   ) (   )   (   ) 

 

where    ̂  is an estimate of   . 

 

The desired output  ( ) is be equal to some reference value 

  , we can choose  ( ) using an adaptive control law to 

achieve closed-loop stability and to asymptotically achieve 

zero tracking error. 

 ( )        ̂ ( ) ( ) 

An algorithm we use to give   ̂  , an estimate of the  actual 

parameter   . 

 ̂ ( )    ̂ (   )    (   ) ( ) 

 

Where   is the adaptation rate and  ( ) denotes model error. 

 
 

 

3  GENERAL NTH ORDER PLANT, FIRST  ORDER MODEL 

 

Plant:           ( )   ∑     (   ) 
     (   ) 

Model:        ( )    ̂ (   ) (   )   (   ) 

Control Law:         ( )        ̂ ( ) ( ) 

Estimation Algorithm: 

 ̂ ( )    ̂ (   )    (   )   ( )    ̂ (   ) (   )

  (   )  

 This produces a sequence of parameters 

{  ̂ ( )       with controls  {  ( )      , given      ̂ ( ). 

Closed-loop system equations become: 

 ( )   ∑     (   )

 

   

      ̂ (   ) (   ) 

 ̂ ( )    ̂ (   )      (   )    ( )        

In order to facilitate analysis and simulation we can rewrite 

the above equations as a set of (n+1) first order equations: 

Let           ( )     (   )  

  ( )     (   ) 

  

    ( )       (   ) 

               ( )    (   )  

So,  

 ( )       ̂ (   )  (   )  ∑           (   )

   

   

    

 ̂ ( )    ̂ (   )      (   )    ( )        

 

4 EQUILIBRIUM POINTS 

 

Replacing   by     in the left hand side equations gives: 

  (   )   (   ) 

 ( )      

 ̂     ∑    

 

   

 

 

From which is it can be seen that if there is no plant to 

model mismatch ( i.e.  n=1 ) then our parameter estimate   ̂ ( ) 

at equilibrium is equal to   . 
 

 

5 EIGENSTRUCTURE FOR THE GENERAL MODEL 

 

The set of (n+1) first order equations represents a nonlinear 

discrete mapping. The stability of the adaptive system can be 

determined by looking at the eigenvalue structure of the Jaco-

bian matrix at the fixed point. 

Linearization of the system equations at the equilibrium 

point gives the Jacobian of first partial derivatives     : 
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where, the matrix of first partial derivatives      is given by : 
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The characteristic equation  ( ) for     is given  

by      
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A concise algebraic form for   ( ) is: 
 

 

 

 

 

 

 

 

So,    ( )    is a polynomial equation giving the eigenvalues 

for a general nth order plant with a first order model assump-

tion. 

 

 

6 ANALYSIS AND SIMULATION RESULTS 

The simplest case in our general representation model with 

n=2 has been shown to exhibit chaotic behaviour under certain 

parameter conditions, Ydstie [3]. We consider a plant which is 

now of third order assuming it can be modelled by a first or-

der system ( i.e. n=3 ). 

6.1  THIRD ORDER PLANT WITH FIRST ORDER MODEL 

Our system equations become: 
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The above equations can be represented as a nonlinear dis-

crete mapping   (         ̂ )           where (         ̂ ) 

is the state vector,   (            ) is a vector of parame-

ters.  

The eigenstructure for this system is given by the characteris-

tic equation,   ( )    with n=3, 
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By varying different parameters of  , we can observe the 

system’s dynamical behaviour. Letting parameter    vary over 

a range of values from 0.2 to 0.8, with  
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Fig. 2 shows  ( ) as    ranges from 0.2 - 0.8.  
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Fig. 3 below shows   ( ) chaotic for 2000 iterations. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 below shows the corresponding phase-plane plot of y(i) 
and a(i). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

It is also seen that as    increases from 0.2 to 0.8 and the sys-

tem becomes more unstable and eventually chaotic, that one of 

the eigenvalues becomes greater than one in modulus. 
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Similar type of behaviour can be observed if other parameters 

are varied 
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and let      [ 0.0,  0.032 ] be the bifurcation parameter. 

 

Fig. 5 below shows the results for the parameter      [ 0.001,  

0.032 ]. 
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Fig. 3 -  Plot of 𝑦(𝑖) 
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Again from the simulation results in Fig. 5, the system going 
through various bifurcations, from stable to limit cycle to peri-
od doubling through to chaotic behaviour as parameter  p 
gradually increases. 
 

 

6.2  THIRD ORDER PLANT WITH SECOND ORDER MODEL 

 

It is now possible to assume a model which is second order 

and thus a better approximation to our third order plant. It is  

expected that system to be more structurally stable as parame-

ter values are varied than our first order model assumption. 

The corresponding set of first order equations become: 
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Since we have a single reference input value  ( )      and 

we are estimating two parameters   ̂  ,  ̂  then both  ̂  and  ̂  

cannot be determined explicitly and so we do not have a 

unique equilibrium point. We can still simulate our system 

equations above to see our system behaviour for different pa-

rameter values. 
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Fig. 6 shows  ( ) as    ranges from 0.1 – 0.63.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 DISCUSSIONS AND CONCLUSIONS 

It is seen that model reference adaptive systems which can 
be represented as nonlinear discrete maps undergo various 
bifurcations before the system becomes unstable and eventual-
ly unbounded. Before the system becomes unbounded it 
traverses a region of increasingly complex dynamics charac-
terised by random unpredictable behaviour which is termed 
as chaotic. A similar type of behaviour was observed for dif-
ferent bifurcation parameter values. A discrete time adaptive 
control system which had shown to display chaotic behaviour 
was extended into a higher order system. It was shown that 
the higher order system was also likely to display chaotic be-
haviour under certain parameter conditions. Observations of 
chaotic behaviour for higher order plants with first order 
model assumptions were expected because these  higher order 
systems can be reduced back into second and third order sys-
tems by choosing the appropriate parameter values. A gener-
alised analytical form for the characteristic equation was de-
termined and this allowed the parameter values to be deter-
mined for which the system just becomes unstable. However, 
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to find the values of the bifurcation parameter for which cha-
otic behaviour occurs simulation was used. 

When a second order model assumption to the third order 
plant was used, the system was found to be stable for a larger 
range of parameter values. It was seen in section 6.2 as the 
parameter a3 was increased beyond a critical point the system 
no longer converged to the desired value but began to diverge 
slowly and gradually became unbounded. Chaotic behaviour 
was not observed as in the previous section, and a possible 
suggestion for this could be that the system does not have 
unique equilibrium points as was the case for the earlier sys-
tems we studied with a first order model assumption. The 
chaotic phenomena was generally associated with the equilib-
rium point continually bifurcating from a stable fixed point to 
a limit cycle and through continuous period doubling and 
eventually leading to complex chaotic behaviour.  
From a control aspect, it is important to know the dynamical 
behaviour of a system for different parameter values. It is rea-
sonable to assume that local stability can be maintained if the 
period doubling phenomena can be avoided. Knowledge of 
the overall system behaviour for different parameter values is 
crucial in attaining any desired type of behaviour or maybe 
avoids an undesirable type of behaviour. 
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