Garanti, Tanem, Stasik, A, Burrow, AJ, Alhnan, MA and Wan, Ka-Wai (2016) Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles. International Journal of Pharmaceutics, 500 (1-2). pp. 305-315. ISSN 0378-5173
PDF (Version of Record)
- Published Version
Restricted to Repository staff only Available under License Creative Commons Attribution Non-commercial No Derivatives. 2MB |
Official URL: http://dx.doi.org/10.1016/j.ijpharm.2016.01.018
Abstract
Asiatic acid (AA), a pentacyclic triterpene found in Centella Asiatica, has shown neuroprotective and anti-cancer activity against glioma. However, owing to its poor aqueous solubility, effective delivery and absorption across biological barriers, in particular the blood brain barrier (BBB), are challenging. Solid lipid nanoparticles (SLNs) have shown a promising potential as a drug delivery system to carry lipophilic drugs across the BBB, a major obstacle in brain cancer therapy. Nevertheless, limited information is available about the cytotoxic mechanisms of nano-lipidic carriers with AA on normal and glioma cells. This study assessed the anti-cancer efficacy of AA-loaded SLNs against glioblastoma and their cellular uptake mechanism in comparison with SVG P12 (human foetal glial) cells. SLNs were systematically investigated for three different solid lipids; glyceryl monostearate (MS), glyceryl distearate (DS) and glyceryl tristearate (TS). The non-drug containing MS-SLNs (E-MS-SLNs) did not show any apparent toxicity towards normal SVG P12 cells, whilst the AA-loaded MS-SLNs (AA-MS-SLNs) displayed a more favourable drug release profile and higher cytotoxicity towards U87 MG cells. Therefore, MS-SLNs were chosen for further in vitro studies. Cytotoxicity studies of SLNs (±AA) were performed using MTT assay where AA-SLNs showed significantly higher cytotoxicity towards U87 MG cells than SVG P12 normal cells, as confirmed by flow cell cytometry. Cellular uptake of SLNs also appeared to be preferentially facilitated by energy-dependent endocytosis as evidenced by fluorescence imaging and flow cell cytometry. Using the Annexin V-PI double staining technique, it was found that these AA-MS-SLNs displayed concentration-dependent apoptotic activity on glioma cells, which further confirms the potential of exploiting these AA-loaded MS-SLNs for brain cancer therapy.
Repository Staff Only: item control page