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ABSTRACT
Continuous and precise space-based photometry has made it possible to measure the orbital
frequency modulation of pulsating stars in binary systems with extremely high precision
over long time spans. Frequency modulation caused by binary orbital motion manifests itself
as a multiplet with equal spacing of the orbital frequency in the Fourier transform. The
amplitudes and phases of the peaks in these multiplets reflect the orbital properties, hence
the orbital parameters can be extracted by analysing such precise photometric data alone. We
derive analytically the theoretical relations between the multiplet properties and the orbital
parameters, and present a method for determining these parameters, including the eccentricity
and the argument of periapsis, from a quintuplet or a higher order multiplet. This is achievable
with the photometry alone, without spectroscopic radial velocity measurements. We apply this
method to Kepler mission data of KIC 8264492, KIC 9651065, and KIC 10990452, each of
which is shown to have an eccentricity exceeding 0.5. Radial velocity curves are also derived
from the Kepler photometric data. We demonstrate that the results are in good agreement with
those obtained by another technique based on the analysis of the pulsation phases.

Key words: asteroseismology – techniques: radial velocities – stars: individual:
KIC 8264492 – stars: individual: KIC 9651065 – stars: individual: KIC 10990452 – stars:
oscillations.

1 IN T RO D U C T I O N

The study of binary and multiple stars provides the best measure-
ments of stellar parameters, giving direct, nearly model-independent
knowledge of stellar masses, and radii as well from eclipsing bina-
ries. These are fundamental to our understanding of stellar structure
and evolution, the bedrock upon which much of stellar astrophysics
rests. Asteroseismology can now also provide stellar masses and
radii, and even ages for individual stars, but our confidence in aster-
oseismology rests on calibration of asteroseismic masses and radii
with those determined from binary stars.

The primary observational data for binary star studies are the
light curve and radial velocity curve. Additional constraints are
given by measurement of stellar effective temperature, Teff, from
spectroscopy, and, for a few stars, stellar radius from interferometry.
In the case of Teff and interferometric radius, single measurements
are sufficient. The light curve and radial velocity curve, however,

�E-mail: shibahashi@astron.s.u-tokyo.ac.jp

are by definition time series, and it is these that demand so much
time and effort from observers.

Traditionally, light curves have been measured with ground-based
photometry from a single observing site in one or more photometric
bandpasses. Radial velocity curves have been measured by obtain-
ing spectra from a single site repeatedly until the orbital phase is
well covered. So, a large amount of observing time is required, often
on large telescopes for fainter stars. This is the traditional bottle-
neck to binary star studies, and until recently the result has been
that high-precision masses and radii for stars were only known for
a matter of hundreds of stars. That all of stellar structure and evo-
lution theory, and beyond that galactic astronomy, should be based
on such a sparse base has been a significant concern.

Now the study of stellar light curves has been revolutionized.
Whereas until recently light curves were studied for no more than
a few stars from a few sites, for a limited number of nights per year
with great gaps in the data, we now have nearly continuous space-
based photometry for hundreds of thousands of stars. Whereas from
the ground photometric measurements were precise to parts per
thousand, or in the best cases, about 10 times better than that, the
space data give precision as good as parts per million. The satellite
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telescope photometry revolution has a pedigree from the Canadian
MOST mission,1 through the ESA CoRoT mission2 to the NASA
Kepler mission,3 and it anticipates the upcoming NASA mission
TESS4 and ESA mission PLATO.5

It is the Kepler mission that has led to the greatest results, with –
as of this writing – over 4600 exoplanet candidate discoveries,6,7,8

over 1800 confirmed exoplanets, asteroseismic results for thousands
of pulsating stars, and with light curves of more than 2700 eclipsing
binary stars.9 The main Kepler mission data set provides 4 yr of
nearly continuous photometric white light data with 30-min time
resolution for 150 000 stars, with further data for shorter time spans
for another 50 000 stars. The follow-up studies for exoplanets in-
volve many hundreds of astronomers and require large amounts of
ground-based telescope time – often on some of the world’s largest
telescopes – for radial velocity measurements necessary to confirm
that masses are indeed planetary. The thousands of binary stars also
require large amounts of ground-based telescope time to acquire the
radial velocities needed for full astrophysical study of the multiple
systems.

The impediment in these studies is the acquisition of the spectra
that have traditionally been used to measure radial velocity from
the Doppler shift of wavelength of spectral lines. However, Doppler
shift can be measured for any astrophysical source of a stable fre-
quency. We have developed two methods to do this directly from
Kepler mission photometric light curves for pulsating stars, without
recourse to ground-based observations, where the pulsation fre-
quencies are the standard, rather than spectroscopic wavelength.
These methods obviate the need for any ground-based observations
to determine radial velocity, and they provide nearly continuous
radial velocity curves that also cover the entire Kepler 4-yr obser-
vational time span – an unreachable goal with ground-based radial
velocity measurements. Our methods are limited to stars with stable
pulsation frequencies, but there are thousands of these in the Kepler
data with amplitudes high enough to apply our techniques.

Our two methods are the frequency modulation (FM) method
(Shibahashi & Kurtz 2012) and the phase modulation (PM) method
(Murphy et al. 2014; see also Balona 2014; Koen 2014). Our tech-
niques are related to older observed-minus-calculated (O − C) meth-
ods of studying stellar frequency variability, but the FM and PM
techniques both have the advantage that they use the entire data
set for maximum signal-to-noise ratio and that they are particularly
suited to multimode pulsators. The FM technique has the highest
possible frequency resolution, and the PM technique is both eas-
ily automated and can combine the results from many pulsation
frequencies easily. In addition, many studies of pulsating stars for
asteroseismic inference begin with the frequency spectrum, and the
FM technique shows explicitly the patterns expected in an amplitude
spectrum, or power spectrum, for pulsation frequencies undergoing
periodic Doppler shifts from binary orbital motion.

We have demonstrated the validity of the FM method by showing
the consistent results obtained from it when compared to a tra-
ditional eclipsing binary light-curve analysis (Kurtz et al. 2015).

1 http://most.astro.ubc.ca/
2 http://sci.esa.int/corot/
3 http://kepler.nasa.gov
4 http://space.mit.edu/TESS/
5 http://sci.esa.int/plato/
6 http://exoplanets.org/
7 http://exoplanetarchive.ipac.caltech.edu
8 http://kepler.nasa.gov/Mission/discoveries/
9 http://keplerebs.villanova.edu

Furthermore, the FM technique is also applicable to non-eclipsing
systems and is a powerful tool to determine the orbital parameters.

In practice, the information desired from the radial velocity curve
includes the orbital period, the mass function, f (m1, m2, sin i), the
orbital semimajor axes, a1sin i and a2sin i, the eccentricity, e, the
angle between the nodal point and the periapsis, � , and the time
of periapsis passage, tp. Shibahashi & Kurtz (2012) showed how
to derive all of these except e and � from photometric data using
the FM method, while Murphy et al. (2014) showed how to derive
all of them from the PM method. In this paper, we show how to
extract e and � with the FM method. We also show how to derive
a radial velocity curve from the FM method, because many investi-
gators have developed software to analyse binary star orbits using
light curves combined with radial velocity curves. For example, the
preeminent program for binary star analysis is now PHOEBE,10 which
is designed for radial velocity curve input (Prša & Zwitter 2005).
We emphasize that the FM technique can provide directly all the
information that is extracted from the radial velocity curve, but we
also provide the method to generate the radial velocity curve itself,
both for input to programs such as PHOEBE, and because the radial
velocity curve is visually helpful for thinking about the binary star
orbit.

We have discussed Doppler shift to help visualize what our tech-
niques do, but the FM and PM methods do not rely directly on
Doppler shift; they are built on the equivalent Rømer time delay.
In Sections 2– 4 of this paper, we derive the relations to determine
the mass function, orbital semimajor axis for a pulsating compo-
nent, eccentricity, � , and tp, as well as the radial velocity curve,
from the frequencies, amplitudes, and phases of the components of
a multiplet in the Fourier spectrum, which are split by the orbital
frequency of the binary star.

In Section 5, we provide some examples using Kepler data for
stars with high eccentricity. We compare the results with those
obtained with the PM method, and discuss the circumstances for
which FM or PM is the preferable technique. We show that the
method is robust, and that it is capable of detecting companions
with masses down to brown dwarf (m ≤ 0.08 M�) and even super-
Jupiter masses (m ≤ 0.03 M�).

2 T H E L I G H T T R AV E L T I M E E F F E C T O N
PU LSATIO N IN A BINA RY STA R

Let us consider a star sinusoidally pulsating with a single angular
frequency ω0 in a binary. We name the stars ‘1’ and ‘2’, and suppose
that star 1 is pulsating. As the pulsating star moves in its binary orbit,
the path length of the light between us and the star varies, leading
to a periodic variation in the arrival time of the signal at Earth. The
difference in the light arrival time, τ (t), compared to the case of a
signal arriving from the barycentre of the binary system is given
by

τ (t) := 1

c

∫ t

0
vrad(t ′) dt ′, (1)

where c is the speed of the light and vrad(t) denotes the radial
velocity, due to the orbital motion, of the star 1 at the time t, where
the epoch is the time at which the star passes the nodal point (‘N’ in
Fig. 1) directed towards us. We follow the convention that the sign
of the radial velocity is positive when the star is receding from us.
Hereafter, we call τ (t) the ‘time delay’. With the help of equation (1)

10 http://phoebe-project.org/1.0
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Figure 1. Top: schematic side view of the orbital plane, seen from a faraway
point along the intersection of the orbital plane and the celestial sphere,
NFN′, where the points N and N′ are the nodal points, respectively, and the
point F is the barycentre of the binary system; that is, a focus of the orbital
ellipses. The orbital plane is inclined to the celestial sphere by the angle i,
which ranges from 0 to π. In the case of 0 ≤ i < π/2, the orbital motion
is in the direction of increasing position angle of the star, while in the case
of π/2 < i ≤ π, the motion is the opposite. The z-axis is the line of sight
towards us, and z = 0 is the plane tangential to the celestial sphere. Bottom:
schematic top view of the orbital plane along the normal to that plane. The
periapsis of the elliptical orbit is P. The angle measured from the nodal point
N, where the motion of the star is directed towards us, to the periapsis in
the direction of the orbital motion of the star is denoted as � . The star is
located, at this moment, at S on the orbital ellipse, for which the focus is
F. The semimajor axis is a1 and the eccentricity is e. Then OF is a1e. The
distance between the focus, F, and the star, S, is r. The angle PFS is ‘the
true anomaly’, f, measured from the periapsis to the star at the moment in
the direction of the orbital motion of the star. ‘The eccentric anomaly’, u,
also measured in the direction of the orbital motion of the star, is defined
through the circumscribed circle that is concentric with the orbital ellipse.

for the time delay, the observed luminosity variation at time t is
written as

�L(t) = A cos {ω0[ t − τ (t) ] + φ } , (2)

where A is the amplitude of pulsational luminosity variation and φ

denotes the pulsation phase at t = 0. In the following, we derive
the Fourier transform of the luminosity variation with the form of
equation (2).

2.1 The radial velocity as a function of time

First, we have to derive the radial velocity as a function of time.
Let us suppose a plane that is tangential to the celestial sphere on
which the barycentre of the binary is located, and let the z-axis that
is perpendicular to this plane and passing through the barycentre of

the binary be along the line of sight towards us (see Fig. 1). The
orbital plane of the binary motion is assumed to be inclined to the
celestial sphere by the angle i, which ranges from 0 to π. The orbital
motion of the star is in the direction of increasing position angle,
if 0 ≤ i < π/2, and in the direction of decreasing position angle,
if π/2 < i ≤ π. We write the semimajor axis and the eccentricity
of the orbit as a1 and e, respectively. Let � be the angle measured
from the nodal point N, where the motion of the star is directed
towards us, to the periapsis in the direction of the orbital motion of
the star. Also let f be the ‘true anomaly’, which is the instantaneous
angle measured from the periapsis to the star in the direction of
the orbital motion of the star, and let r be the distance between the
barycentre and the star.11

To make some complicated formulae derived later in this paper
more easily traceable, we must repeat the fundamental derivation
of the radial velocity as a function of time, although it was already
given in Shibahashi & Kurtz (2012). The z-coordinate of the position
of the star is written as

z = r sin(f + � ) sin i, (3)

and the radial velocity, vrad := −dz/dt, is

vrad = −
[

dr

dt
sin(f + � ) + r

df

dt
cos(f + � )

]
sin i. (4)

With the help of the known laws of motion in an ellipse (e.g.
Brouwer & Clemence 1961),

r
df

dt
= a1�(1 + e cos f )√

1 − e2
(5)

and

dr

dt
= a1�e sin f√

1 − e2
, (6)

the radial velocity of star 1 along the line of sight is expressed as

vrad = −�a1 sin i√
1 − e2

[cos(f + � ) + e cos � ] , (7)

where � denotes the orbital angular frequency. The time depen-
dence of radial velocity is implicitly expressed by the true anomaly
f, which can be written in terms of ‘the eccentric anomaly’, u (see
Fig. 1), defined through the circumscribed circle that is concentric
with the orbital ellipse, satisfying

r cos f = a1(cos u − e) (8)

and

r sin f = a1

√
1 − e2 sin u. (9)

The eccentric anomaly u is written as

u = �(t − tp) + 2
∞∑

n=1

1

n
Jn(ne) sin n�(t − tp), (10)

where Jn(x) denotes the Bessel function of the first kind of integer
order n, and tp denotes the time of the periapsis passage of the star.

11 The range of i, the definition of � , and the sign of z are often differently
given by different authors. It should also be noted here that we cannot
distinguish a motion illustrated in Fig. 1 and a motion in the inverted image
of the bottom panel of Fig. 1 from the radial velocity measurement alone.
The former is a prograde motion, while the latter is a retrograde motion with
the same value of � , but with the inclination angle being the supplementary
angle of i shown in the top panel of Fig. 1.

MNRAS 450, 3999–4015 (2015)
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Figure 2. e(1 − e2)−1/2J ′
n(ne)/Jn(ne) for n = 1 (red), n = 2 (green), n = 3

(blue), and n = 4 (magenta) as functions of eccentricity e. This shows that
e(1 − e2)−1/2J ′

n(ne)/Jn(ne) for n = 1, . . . , 4 is ∼1 except for cases of large
e, which means ϑ(e, � ) 	 � except for cases of large e. This characteristic
is used later in Section 3.3.

The trigonometric functions of the true anomaly f are expressed
in terms of a series expansion of trigonometric functions of the
time after the star passed the periapsis with Bessel coefficients (see
Appendix A):

cos f = −e + 2(1 − e2)

e

∞∑
n=1

Jn(ne) cos n�(t − tp), (11)

sin f = 2
√

1 − e2

∞∑
n=1

Jn
′(ne) sin n�(t − tp), (12)

where Jn
′(x) := dJn(x)/dx. The radial velocity is then written ex-

plicitly as a function of time:

vrad(t) = −�a1 sin i

∞∑
n=1

nξn(e, � ) cos [n�(t − tp) + ϑn], (13)

where

ξn(e, � ) := 2

√
1 − e2

ne
Jn(ne)

×
√

cos2 � +
(

e√
1 − e2

J ′
n(ne)

Jn(ne)

)2

sin2 � (14)

and

ϑn(e, � ) := arctan

[
e√

1 − e2

J ′
n(ne)

Jn(ne)
tan �

]
, (15)

where arctan(x) returns the principal value of the inverse tangent
of x. As seen in Fig. 2, in the case of e � 0.5, the factor in front of
tan � in the right-hand side of equation (15) is close to unity.

Since

J ′
n(ne)

Jn(ne)
= 1

e
−

[
ne/2

(n + 1) −
n2e2/2

(n + 2) −
n3e3/2

(n + 3) −
· · ·

]
, (16)

where the series in square brackets denotes continued fractions,
the � -dependence of ξ n(e, � ) is weak for e 
 1, but it becomes
substantial with the increase of e (see Fig. 3). Also, since

Jn(x) =
∞∑

k=0

(−1)k
(x/2)n+2k

(n + k)! k!
, (17)

Figure 3. The coefficients of ξ1(e, � ) (purple), ξ2(e, � ) (green), ξ3(e,
� ) (blue), and ξ4(e, � ) (magenta) for the Fourier amplitudes of the PM as
functions of eccentricity e. The band of each curve shows the range of �

from 0 to 2π. The � -dependence of ξ2, ξ3, and ξ4 is substantially weaker
than ξ1 in a wide range of e. This figure is used later in Section 3.3.

the lowest order of the series expansion of ξ n(e, � ) in terms of
power of e is e n − 1; ξ n(e, � ) ∼ O(en − 1) for e 
 1.

2.2 The time delay as a function of time

Integrating equation (13), we obtain an expression for the time delay
as a function of time

τ (t) = −a1 sin i

c

∞∑
n=1

ξn sin[n�(t − tp) + ϑn] − τ0, (18)

where

τ0(e, � ) := −a1 sin i

c

∞∑
n=1

ξn sin(−n�tp + ϑn). (19)

Fig. 3 shows ξ 1, ξ 2, ξ 3, and ξ 4(e, � ) as functions of eccentricity
e. The band of each curve shows the range of � from 0 to 2π.
It is seen that the � -dependence of ξ 2, ξ 3, and ξ 4 is substantially
weaker in a wide range of e than is the case of ξ 1. This is because
the terms ξ 2, ξ 3, ξ 4 and the higher terms represent a departure from
a pure sinusoidal variation with the orbital angular frequency �,
which is essentially caused by the eccentricity of the orbit. On the
other hand, ξ 1(e, � ) shows substantial � -dependence, in particular
with increase in e. This is because the projected light travel time
is dependent not only on the eccentricity of the orbit, but also
on the direction of the apparent elongation of the projected orbit,
particularly in cases of high eccentricity.

2.3 Phase modulation

Shibahashi & Kurtz (2012) define a parameter α that measures the
amplitude of the PM when the pulsation frequency is treated as
fixed:

α := a1ω0 sin i

c
, (20)

which is the ratio between the light travel time across the projected
semimajor axis and the pulsation period of the mode in considera-
tion. It should be noted that the value of α is dependent on the mode
frequency. The larger the orbit size and the shorter the pulsation

MNRAS 450, 3999–4015 (2015)
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period, the larger the resulting PM. Then the observed luminosity
variation, whose amplitude is assumed to be unity, is rewritten as

�L(t) = cos

[
(ω0t + ϕ) + α

∞∑
n=1

ξn sin (n�t + θn)

]
, (21)

where

ϕ := φ + ω0τ0 (22)

and

θn := ϑn − n�tp. (23)

If we regard equation (21) as luminosity variation with the intrinsic
angular frequency ω0, the pulsation phase is regarded as being
modulated by the orbital motion.

3 M E T H O D O L O G Y F O R D E T E R M I N I N G
B I NA RY PA R A M E T E R S FRO M PH OTO M E T RY

The problem we address here is how to reproduce the radial velocity
vrad(t) from the observed luminosity variation given by equation
(21), where vrad(t) is rewritten as

vrad(t) = −�c

ω0
α

∞∑
n=1

nξn cos[n�t + θn], (24)

or equivalently, how to deduce the orbital parameters, that is, the
orbital angular frequency �, the semimajor axis a1, the eccentric-
ity e, the angle between the periapsis and the nodal point � , and
the time of periastron passage of the star tp.

3.1 Fourier transform of the luminosity variation

Here we describe the Fourier analysis of the luminosity variation,
given by equation (21), showing periodic PM. This is done with the
help of Bessel functions, written with arbitrary real x and θ :

e±ix sin θ =
∞∑

n=−∞
Jn(x)e±inθ . (25)

Applying this, we rewrite equation (21) as

�L(t) = �
[

ei(ω0t+ϕ)
∞∏

n=1

eiαξn sin(n�t+θn)

]

= �
{

ei(ω0t+ϕ) lim
N→∞

∞∑
k1=−∞

· · ·
∞∑

kN =−∞

[
N∏

n=1

Jkn (αξn)

]

× exp

[
i

N∑
n=1

kn(n�t + θn)

]}
, (26)

where �(x) means the real part of x and N denotes a large number.
This means that a frequency multiplet appears around the intrinsic
frequency ω0 in the frequency spectrum, and that each component
of the multiplet is separated from its neighbouring components by
the orbital frequency �:

�L(t) = �
{
A0eiω0t +

∞∑
m=1

(A+mei(ω0+m�)t + A−mei(ω0−m�)t
)}

,

(27)

where A0 and A±m are the complex amplitudes of the central peak
and the sidelobes separated from the central component by ±m�,
respectively.

3.2 Truncation in the case of α < 1

It is straightforward to compute numerically the terms in equation
(26) for a given set of binary parameters. The purpose of the this
present paper is, however, the reverse: we deduce the binary param-
eters from the Fourier transform of the light curve. An important
point is that the complex amplitudes, A0 and A±m, are determined
by the quantities that characterize the binary system, α, ξ n(e, � ),
θn(e, � ), allowing us to inversely determine those binary parame-
ters from the amplitude spectrum of the oscillations.

In the following, we derive analytical expressions of the Fourier
transform of the light curve in terms of the binary parameters. In
practice, we truncate the infinite expansion series in equation (26)
with a finite number of terms, N. There appear (2N + 1)N cross-
terms, and it is neither practical nor necessary to take account of all
the terms. Rather, it is better to keep only the leading terms. Indeed,
in the case of α < 1, the Bessel functions with the argument of αξ n

become negligibly small with the increase of n and the order kn.
Hereafter, we limit ourselves to consider the cases of α < 1; that is,
the cases for which the light travel time across the projected orbit is
longer than the pulsation period.

Later, in Section 7, we will demonstrate some observational ex-
amples that show up to septuplets, nonuplets, and even undecuplets.
So, here we truncate the infinite series of equation (26) with N = 5.
Then, equation (26) produces (2N + 1)N = 115 = 161 051 cross-
terms. Among them, we discard terms separated from the central
peak at ω0 further than ±6� and keep only the undecuplet. For each
frequency component of m�, we keep only the terms up to O(α2).

Then, equation (27) shows that the light-time effect in a binary
star leads to a frequency undecuplet, ω = ω0 ± m� (m = 1, . . . , 5),
for which complex amplitudes of the first and second sidelobes are
given as

A±1

A0
= ±

(
J1(αξ1)

J0(αξ1)

)
e±iθ1

[
1 ∓

(
J1(αξ2)

J0(αξ2)

)
e±i(θ2−2θ1)

]
(28)

and

A±2

A0
	 ±

(
J1(αξ2)

J0(αξ2)

)
e±iθ2

×
[

1 ±
(

J1(αξ2)

J0(αξ2)

)−1 (
J2(αξ1)

J0(αξ1)

)
e∓i(θ2−2θ1)

]
, (29)

respectively. The complex amplitudes of the higher order sidelobes
are given in Appendix B.

3.3 Amplitude ratios and phase differences between the
sidelobes and the central component

Let A0 and φ0 be the amplitude and the phase of the central com-
ponent of the multiplet at the angular frequency ω0, and let A±m

and φ±m be the amplitudes and the phases of the ±mth sidelobes,
respectively. In the following, we derive the amplitude ratios and the
phase differences between the sidelobes and the central component.

3.3.1 The case of the first sidelobes

From equation (28), the amplitude ratio between the first sidelobes
(m = 1) and the central peak is given, up to the order of O(αξ1), by

A+1 + A−1

A0
	 2

(
J1(αξ1)

J0(αξ1)

)
(30)
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and

A+1 − A−1

A+1 + A−1
	 −

(
J1(αξ2)

J0(αξ2)

)
cos(2ϑ1 − ϑ2). (31)

Equation (31) indicates whether A+1 or A−1 has the higher ampli-
tude, according to the sign of cos (2ϑ1 − ϑ2). If e 
 1, ϑ i 	 �

(see Section 2.1). Hence, in such a case, whether A+1 or A−1 has
the higher amplitude is determined by cos � . For 0 ≤ � < π/2
or 3π/2 < � ≤ 2π, A−1 > A+1, while, for π/2 < � < 3π/2,
A+1 > A−1. When � = π/2 or � = 3π/2, that is, when the peri-
apsis or the apoapsis is towards the observer, the amplitudes of A+1

and A−1 are equal to each other.
Also, the phase differences between the first sidelobes and the

central component are given as

φ±1 − φ0 := arg

(A±1

A0

)
± �t

	
(π

2
∓ π

2

)

± (�t + θ1) +
(

J1(αξ2)

J0(αξ2)

)
sin(2ϑ1 − ϑ2). (32)

Let us choose the zero-point for the phases so that the phases of
the first sidelobes are equal. This condition is fulfilled twice during
one orbital period, at t = t0 being

�t0 + θ1 =
(

k + 1

2

)
π, (33)

where

k =
⎧⎨
⎩

0 and 1 if 0 ≤ θ1 ≤ π/2
1 and 2 if π/2 ≤ θ1 ≤ 3π/2
2 and 3 if 3π/2 ≤ θ1 < 2π.

(34)

At each of these phases, the Fourier component proportional to
cos �t of the radial velocity becomes zero. In the case of a circular
orbit, this corresponds to the moment at which the orbital motion
of the star is perpendicular to the line of sight. At t = t0,

φ±1(t0) − φ0 = ±
(

k ± 1

2

)
π +

(
J1(αξ2)

J0(αξ2)

)
sin(2ϑ1 − ϑ2),

(35)

which means that the phases of the first sidelobes apparently differ
from that of the central peak approximately by either +π/2 or
−π/2. This can be used to confirm that FM is caused by the orbital
motion. Equation (35) also indicates that the deviation of the phase
difference from +π/2 or −π/2 is dependent on the sign of sin (2ϑ2

− ϑ1). Since ϑ i 	 � , this means that the phase difference is slightly
larger (smaller) if the periapsis is in the far (near) side of the orbit,
with respect to us.

3.3.2 The case of the second sidelobes

Similarly, up to the order of O(αξ2),

A+2 + A−2

A0
	 2

(
J1(αξ2)

J0(αξ2)

)
(36)

and

A+2 − A−2

A+2 + A−2
	

(
J1(αξ2)

J0(αξ2)

)−1 (
J2(αξ1)

J0(αξ1)

)
cos(2ϑ1 − ϑ2). (37)

Equation (37) indicates whether A+2 or A−2 has the higher amplitude
is determined by the sign of cos (2ϑ1 − ϑ2). Note that if A+1 is
higher (lower) than A−1, then A+2 is lower (higher) than A−2.

Figure 4. The ratio of 2J1(x)/J0(x) as a function of x. For x 
 1, it is
well approximated by x as shown. For the whole range of 0 ≥ x ≥ 1, it
is well approximated by a polynomial of the fifth order, which is derived
from equation (17). From the value of (A+m + A−m)/A0, the value of αξm

satisfying equation (42) is obtained.

Also the phase differences are

φ±2 − φ0 := arg

(A±2

A0

)
± 2�t

	
(π

2
∓ π

2

)
± (2�t + θ2)

−
(

J1(αξ2)

J0(αξ2)

)−1 (
J2(αξ1)

J0(αξ1)

)
sin(2ϑ1 − ϑ2). (38)

Hence, at t = t0,

φ+2(t0) − φ−2(t0) = −π + 2(2�t0 + θ2). (39)

Combining equations (33) and (39), we obtain

2(θ2 − 2θ1) = [φ+2(t0) − φ−2(t0)] − (4k + 1)π, (40)

equivalently,

2ϑ1 − ϑ2 = −1

2
[φ+2(t0) − φ−2(t0)] + π

2
. (41)

It should be noted that there remains an uncertainty of 2nπ in
the measured phase difference, φ+2(t0) − φ−2(t0), where n is an
integer, and then we cannot uniquely determine (2ϑ1 − ϑ2) from
this equation alone. This uncertainty can be eliminated, however, by
taking account of the inequality of A±1 and the deviation of φ±1(t0)
− φ0 from ±π/2.

3.3.3 General description: the higher order sidelobes

Similarly, up to O(αξm), for the m-th sidelobes (m ≥ 1),

A+m + A−m

A0
	 2

(
J1(αξm)

J0(αξm)

)
. (42)

Since the value of the left-hand side is observationally obtained,
this equation determines the value of αξm. A practical numerical
method of solving equation (42) is given in Section 4.1. The graphic
solutions are shown in Fig. 4. Also,

φ+m(t0) − φ−m(t0) = −π + 2(m�t0 + θm). (43)

This relation allows us to deduce

2(θm − mθ1) = [φ+m(t0) − φ−m(t0)] − (m − 1)π. (44)
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3.4 Formal reconstruction of radial velocity from photometry

Equation (42) indicates that the value of αξm is observationally de-
termined from the amplitude ratio between the sum of the sidelobes
and the central peak. The graphical solution is shown in Fig. 4. The
solution is numerically obtained with sufficient accuracy by ex-
panding the Bessel functions Jn(x) up to the fifth power of x. On the
other hand, the phase differences between the sidelobes determine
θm from equation (44), where θ1 is given by equation (33).

By substituting the values of αξm and θm into equation (24), we
can formally reconstruct the radial velocity as a continuous function
of time from photometry alone:

vrad,M (t) = −�c

ω0

M∑
m=1

mαξm cos(m�t + θm)

= −�c

ω0

M∑
m=1

mαξm cos

[
m�

(
t + θ1

�

)
+ (θm − mθ1)

]
,

(45)

where M is the number of components in the multiplet. In the
limiting case of M → ∞, this is the time-varying radial velocity
component, added to the systemic velocity, that would be measured
by spectroscopy. The number of terms, M, is, however, very limited
and not large enough in practical cases, hence we need to devise a
more practical way of solving the problem. Nevertheless, equation
(45) is instructive in the sense that it proves that the radial velocity
can be reproduced from the frequency spectrum of the photometric
variations.

4 FM M E T H O D

The amplitudes and phases of the multiplet components are deter-
mined by the binary orbit. Hence, inversely, once we have observed
the frequency spectrum of a pulsating star in a binary system, we
can extract information of the binary orbit. Essentially, this is the
FM method (Shibahashi & Kurtz 2012).

While the strict values of the orbital elements can be obtained
by analysing the continuous radial velocity, (equation 45), if the
number of components of the multiplet M is large enough, in prac-
tice M is limited to 3 or 4. With such a limited number of terms,
equation (45) may still substantially deviate from the real radial
velocity. In order to improve this, we derive the orbital parameters
first and reconstruct the radial velocity in the case of M → ∞.
It is then instructive to derive some ‘easy solutions’ of the orbital
parameters to illustrate the technique. More approximate solutions
can be obtained directly from the Fourier transform of the light
curve without carrying out further numerical computations. In this
section, we treat such cases.

4.1 The eccentricity, e

Equation (42) leads to the following relation between the amplitudes
of the m + 1th and mth sidelobes:

A+(m+1) + A−(m+1)

A−m + A−m

= J1(αξm+1)

J0(αξm+1)

/
J1(αξm)

J0(αξm)
(46)

=: Rm(α, e, � ). (47)

The RHS of equation (46), defined as R(α, e, � ), is a function of
α, e, and � , while the LHS is observable. Fig. 5 shows R(α, e, � )

Figure 5. Rm(α, e,� ), for a fixed value of α = 0.217, as a function of e.
The width of each curve shows the range of � from 0 to 2π.

as a function of e, for m = 1, 2, and 3, for a fixed value of α = 0.217.
The width of each curve shows the range of � from 0 to 2π.

In the case of αξm 
 1, J1(αξm) 	 αξm/2 and J0(αξm) 	 1,
hence

Rm 	 ξm+1

ξm

(48)

and then R is regarded as being no longer dependent on α. It
should be noted that, while {ξm} are dependent on e and � , the
ratios {ξm + 1/ξm}, and then Rm, are dependent mainly on e, but
relatively weakly on � (see Fig. 5). A good initial guess for the
eccentricity is then derived from the amplitude ratio of the (m + 1)th
sidelobes and mth sidelobes. Indeed, as seen in equation (14), the
ratio ξm + 1/ξm is, in a good approximation, given by

ξm+1

ξm

	 m

m + 1

Jm+1((m + 1)e)

Jm(me)
. (49)

Whether or not αξm 
 1 can be checked by seeing the amplitude
ratio of the sidelobe to the central component:

A+m + A−m

A0
= 2

J1(αξm)

J0(αξm)
(50)

=: Sm(αξm). (51)

If αξm 
 1, Sm(αξm) 	 αξm 
 1. So, if the amplitude ratio is
substantially smaller than unity, the assumption of αξm 
 1 is
justified. In such a case, the eccentricity is estimated as (Shibahashi
& Kurtz 2012)

e 	 2
A+2 + A−2

A+1 + A−1
. (52)

Use of equation (49) for more than two values of m determines
multiple values of e, each with its own uncertainty. The final value
of e should be determined as a weighted average of those, which,
given that Am decreases as m increases, will lead to the eccentricity
being dominated by the ξ 1 and ξ 2 terms.

4.2 The angle between the periapsis and the nodal point, �

The angles ϑ1 and ϑ2 are regarded as functions of � alone, since
the eccentricity e has already been obtained. The angle � between
the periapsis and the nodal point is then derived from equation (41).
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In the case of e 
 1, as seen in Fig. 2, the e-dependence of both
ϑ1 and ϑ2 is weak, and 2ϑ1 − ϑ2 	 � . Hence, in such a case,

� 	 −1

2
[φ+2(t0) − φ−2(t0)] + π

2
. (53)

The uncertainty in φ+2(t0) − φ−2(t0) by 2nπ can be eliminated by
taking the inequality of A±1 and the deviation of φ±1(t0) − φ0 from
π/2 into account.

It should be noted that the angle � is obtained from information
of the second sidelobes. If the amplitudes of A±2 are not statistically
significant, we have to conclude that the orbit is close to a circular
one.

4.3 The projected semimajor axis, a1 sin i

By substituting the values of e and � thus obtained into the first
line of equation (14), we estimate ξ 1(e, � ). The value of α is then
obtained by dividing αξm (equation 51) by ξm. Then, the projected
semimajor axis is derived by equation (20):

a1 sin i = α

ω0
c. (54)

4.4 The mass function, f (m1, m2, sin i)

Once the value of a1sin i is derived, with the help of the pulsation
frequency and the orbital period, the mass function can be derived:

f (m1, m2, sin i) := m3
2 sin3 i

(m1 + m2)2

= α3 P 3
osc

P 2
orb

c3

2πG
, (55)

where G is the gravitational constant. With a suitable asteroseismic
estimate (or a reasonable assumption) of the primary mass, the
minimum mass of the secondary star, m2sin i, can be deduced.

4.5 The radial velocity curve deduced from photometry

Once e and � are determined, we can deduce cos f and sin f from
equations (11) and (12), respectively, as functions of the mean
anomaly, �(t − tp), all the terms of ξ n(e, � ) and ϑ(e, � ). Then
substituting them, along with asin i and �, into equation (7), we
obtain the radial velocity as a function of the orbital phase.

4.6 Iteration for an improvement of parameters

Once the value of � is estimated, we may iterate the above-
mentioned processes, by taking account of the � -dependences of
ξm. The value of � newly derived in this way may be slightly
different from that obtained previously. The iteration should be re-
peated until consistent solutions are obtained. An initial guess for ξ

is obtained by ignoring � -dependence: ξ (0)
m = ξ (e(0), � = 0). The

first iteration gives ξ (1) = ξ (e(0), � (0)). We improve the value of e
as e(1) by adopting ξ (1), and then � (1). We repeat these processes
until we get consistent solutions. Fig. 3 is not used in this process,
but it is illustrative.

5 E X A M P L E S W I T H R E A L Kepler DATA

The Kepler mission accumulated time series of photometric data
of about 200 000 stars from 2009–2013. The long time base and
high duty cycle of Kepler data make them the data of choice for

Figure 6. An amplitude spectrum for the Q5 SC data of KIC 9651065. The
four highest amplitude peaks were studied in LC. There are no significant
peaks above 50 d−1.

FM analyses. Here we present examples for three highly eccentric
Kepler targets: KIC 9651065, KIC 10990452, and KIC 8264492. In
each case, we use multiscale, maximum a posteriori pipeline data
collected with long cadence (LC, 29.45-min) sampling.

5.1 KIC 9651065

KIC 9651065 is a Kp = 11.1 binary system showing first, second,
and third FM sidelobes, hence it has high eccentricity. According to
Huber et al. (2014), its effective temperature and gravity are Teff =
7014+128

−164 K and log g = 3.833+0.132
−0.127 (cgs units), and its mass is

m1 = 1.703+0.161
−0.185 M�, which we round off to Teff = 7400 ± 150 K,

log g = 3.83 ± 0.13, and m1 = 1.70 ± 0.17 M�

5.1.1 Kepler mission data

The Kepler mission data available for this star are Q0–17 LC data,
and Q5.1–5.3, Q7.1–7.3 short cadence (SC) data with 1-min inte-
gration time. An examination of the Q5 SC data shows that there
are no significant peaks with amplitudes greater than 10 μmag at
frequencies higher than 60 d−1. In the frequency range 0–50 d−1 the
four highest amplitude peaks were studied for FM. Fig. 6 shows the
amplitude spectrum for the Q5 SC data in the frequency range 0–
50 d−1 where the highest peaks chosen for analysis can be seen. They
are in order of amplitude: ν1 = 19.477 68 d−1, ν2 = 30.801 89 d−1,
ν3 = 21.712 14 d−1, and ν4 = 36.146 43 d−1. There is no clear
separation of p-mode and g-mode frequency ranges; there are peaks
in all frequency ranges, suggesting p modes, g modes, and mixed
modes.

The Q0, Q1, and Q17 LC data were of shorter duration than full
quarters, and they had a significant slope from the pipeline reduc-
tions. We therefore chose to analyse the Q2–16 LC data covering
a time span of 1388.2 d. We begin the discussion of the analysis
with the highest amplitude peak at 19.477 68 d−1. Fig. 7 shows the
pre-whitening process. The first, second, and third FM sidelobes are
significant and detected. There is some amplitude and/or FM of the
ν1 mode, hence there is amplitude left near to that frequency after
pre-whitening. This is astrophysical, since amplitude and frequency
variations on the time-scale of this data set are common in δ Sct
stars (see e.g. Bowman & Kurtz 2014).

This process was carried out for the other three of the highest four
peaks. Figures are not shown for these other peaks. The results are
given in Table 1. In the small sections of the amplitude spectrum be-
tween significant peaks the highest noise peaks have amplitudes of
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Figure 7. Amplitude spectra for KIC 9651065 for the Q2–16 LC data. The top-left panel shows the highest amplitude pulsation peak at ν1 = 19.477 68 d−1.
The top-right panel shows the amplitude spectrum after pre-whitening ν1 where two equally spaced sidelobes can be seen easily. These are the first FM
sidelobes. A careful examination shows the second and third FM sidelobes also. The bottom-left panel shows the amplitude spectrum after pre-whitening ν1

and its first FM sidelobes, where the second and third sidelobes can be seen. The remaining variance close to the mode peak after pre-whitening the second and
third sidelobes is seen in the bottom-right panel; this is caused by amplitude modulation of the mode frequency over the time span of the data set, a common
characteristic of δ Sct stars. The highest remaining peak may be that of an independent pulsation mode.

8 μmag. The error on the amplitude determination is taken to be one
quarter of that, with phase and frequency errors scaled accordingly
(Montgomery & O’ Donoghue 1999). The formal least-squares er-
rors contain variance from all the peaks, so must be scaled down by
this estimate.

5.1.2 FM analysis

For all four modes presented in Table 1 all sidelobes are equally
split from the central frequency, being consistent with theoretical
expectation of FM stars. This splitting gives the orbital frequency,
νorb = 0.003 6524 ± 0.000 0036 d−1 (Porb = 273.8 ± 0.3 d), where
we have taken the best value here to be from the splitting of the
first sidelobes of the highest amplitude mode. The zero-point for
the phases has been chosen to be a time when the phases of the first
sidelobes of the highest amplitude peak are equal. The phases of
the first sidelobes are close to π/2 rad out of phase with the central
peak. That they are slightly less than this is a consequence of the
values of the eccentricity and argument of periapsis. The same is
true for the other modes within the error bars. Furthermore, the
phase relation (φ+n − φ−n) for n = 2, 3, 4 is the same within the
errors for the ν1 and ν2 modes. As for the ν3 and ν4 modes, the
uncertainty is too large to confirm this. These facts are consistent
with the theory for FM discussed in Section 3.3.

For each set of sidelobes, the values of mαξm and θm − mθ1

that were derived by equations (42) and (44), respectively, are
summarized in Table 2. The eccentricity e is then estimated from
the first and second sidelobes around ν1 by equation (52) to be
e = 0.569 ± 0.030. The technique explained in Section 4.1 and
inspection of Fig. 3 give the coefficient ξ 1(e, � ) = 0.840 ± 0.015.

Using this value and the amplitude ratio for ν1,
αξ 1 = 0.2247 ± 0.0015, we obtain α = 0.2675 ± 0.0018.
The mass function is then estimated to be 0.0992 ± 0.0057, which
gives a minimum secondary mass of m2 = 0.87 ± 0.02 M�
based on an assumption of m1 = 1.7 M�, so the secondary is
probably a main-sequence G star. We derive the semimajor axis
of the primary star about the barycentre from equation (20) to be
a1sin i = 0.378 ± 0.007 au from the data for ν1.

The facts that A+2 − A−2 < 0 and 〈φ±1〉 − φ0 > −π/2 indicate
0 < 2ϑ1 − ϑ2 < π. The phase difference between φ+2 and φ−2,
along with this constraint, leads to 2ϑ1 − ϑ2 = 2.17 ± 0.03 rad.
With use of the derived value of e, this gives � = 2.22 ± 0.04 rad.

Fig. 8 shows the radial velocity curve of KIC 9651065 derived
from the Kepler photometric data alone. This demonstrates again
that the present FM method extracts binary information from the
Kepler light curve without spectroscopic observations.

5.1.3 Comparison with the result obtained by PM

Murphy et al. (2014) developed a different method, by which the
PM in the time domain of intrinsic pulsation frequencies of the star
is tracked. In this method, first of all, the frequency of the central
component of the multiplet is measured in the Fourier transform.
Then the light curve is divided into short segments and, with the
frequency fixed, the pulsation phase in each segment is measured
by a least-squares method. This provides us with ‘time delays’ τ (t)
as a function of time, where τ (t) is defined as in equation (1).
Then by carrying out a Fourier analysis, we obtain the amplitudes
αω−1

0 ξn(e, � ) and phases ϑn(e, � ) given in equation (18) for n = 1,
2, 3, . . . . The amplitude ratios between ξ n and ξ n + 1 allow us to
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Table 1. A least-squares fit of the frequency septuplet for the highest amplitude mode to the Q2–Q16 Kepler data for KIC 9651065. The
frequencies of the multiplet are separated by the orbital frequency, νorb = 0.003 6524 ± 0.000 0036 d−1 (Porb = 273.8 ± 0.3 d). Column
4 shows that the first sidelobe phases are close to π/2 = 1.57 rad out of phase with the central peak, as required by theory for FM. The
zero-point for the phases has been chosen to be a time when the phases of the first sidelobes are equal, t0 = BJD 2455783.05262, for the
first multiplet. Column 5 shows that the phases of the first sidelobes of the other multiplets are equal within the errors at this time.

Frequency Amplitude Phase 〈φ±1〉 − φ0 φ+m − φ−m
A+m+A−m

A0

A+m−A−m
A+m+A−m

(d−1) (mmag) (rad) (rad) (rad)

19.466 72 0.0223 ± 0.0020 −1.4619 ± 0.0896
19.470 37 0.0613 ± 0.0020 0.7396 ± 0.0326
19.474 02 0.2213 ± 0.0020 −3.1416 ± 0.0090
19.477 68 1.9308 ± 0.0020 −1.5919 ± 0.0010 −1.550 ± 0.007
19.481 33 0.2153 ± 0.0020 −3.1415 ± 0.0093 0.000 ± 0.013 0.2261 ± 0.0029 −0.014 ± 0.006
19.484 98 0.0443 ± 0.0020 −0.4639 ± 0.0452 −1.204 ± 0.056 0.0547 ± 0.0015 −0.161 ± 0.027
19.488 63 0.0152 ± 0.0020 2.1830 ± 0.1314 3.645 ± 0.132 0.0194 ± 0.0015 −0.189 ± 0.077
21.701 18 0.0096 ± 0.0020 0.5094 ± 0.2090
21.704 83 0.0332 ± 0.0020 2.5352 ± 0.0602
21.708 48 0.1163 ± 0.0020 −1.4206 ± 0.0172
21.712 14 0.8504 ± 0.0020 0.1291 ± 0.0024 −1.558 ± 0.012
21.715 79 0.1182 ± 0.0020 −1.4362 ± 0.0169 −0.016 ± 0.024 0.2758 ± 0.0034 0.008 ± 0.012
21.719 44 0.0195 ± 0.0020 1.3598 ± 0.1024 −1.175 ± 0.119 0.0466 ± 0.0033 −0.346 ± 0.076
21.723 09 0.0064 ± 0.0020 −2.1510 ± 0.3116 −2.660 ± 0.312 0.0188 ± 0.0033 −0.200 ± 0.180
30.790 94 0.0184 ± 0.0020 −1.8457 ± 0.1088
30.794 59 0.0398 ± 0.0020 −0.1224 ± 0.0503
30.798 24 0.1291 ± 0.0020 2.4607 ± 0.0155
30.801 89 0.7021 ± 0.0020 −2.3441 ± 0.0028 −1.516 ± 0.011
30.805 55 0.1365 ± 0.0020 2.3847 ± 0.0147 −0.076 ± 0.021 0.3783 ± 0.0042 0.028 ± 0.011
30.809 20 0.0301 ± 0.0020 −0.8970 ± 0.0664 −0.775 ± 0.083 0.0996 ± 0.0040 −0.139 ± 0.041
30.812 85 0.0075 ± 0.0020 0.4618 ± 0.2682 2.308 ± 0.269 0.0369 ± 0.0040 −0.421 ± 0.118
36.135 47 0.0189 ± 0.0020 −2.1439 ± 0.1061
36.139 13 0.0389 ± 0.0020 −0.4995 ± 0.0515
36.142 78 0.0683 ± 0.0020 2.8955 ± 0.0293
36.146 43 0.2864 ± 0.0020 −1.9325 ± 0.0070 −1.484 ± 0.022
36.150 08 0.0659 ± 0.0020 2.8373 ± 0.0304 −0.058 ± 0.042 0.4686 ± 0.0104 −0.018 ± 0.021
36.153 74 0.0107 ± 0.0020 −0.7266 ± 0.1873 −0.227 ± 0.194 0.1732 ± 0.0099 −0.569 ± 0.066
36.157 39 0.0084 ± 0.0020 1.8010 ± 0.2372 3.945 ± 0.239 0.0953 ± 0.0099 −0.385 ± 0.111

Table 2. The estimated quantities of the terms for KIC 9651065, mαξm

and θm, appearing in the expression of the radial velocity. Column 1
shows the frequency of the central peak, and Column 2 shows its ratio to
the orbital frequency. Here c is the speed of light. Column 4 shows mαξm

estimated from equation (42). Column 5 shows θm − mθ1 estimated by
equation (44).

νpuls (νorb/νpuls)c m mαξm θm − mθ1

(d−1) (km s−1) (rad)

19.477 68 57.0 ± 0.2 1 0.2247 ± 0.0015 0.000 ± 0.007
2 0.1094 ± 0.0030 0.969 ± 0.028
3 0.0582 ± 0.0045 4.964 ± 0.066

21.712 14 51.1 ± 0.2 1 0.2732 ± 0.0033 −0.008 ± 0.012
2 0.0932 ± 0.0066 0.983 ± 0.059
3 0.0564 ± 0.0099 4.953 ± 0.156

30.801 89 36.1 ± 0.1 1 0.3717 ± 0.0040 −0.038 ± 0.011
2 0.1992 ± 0.0080 1.184 ± 0.042
3 0.1107 ± 0.0120 4.295 ± 0.134

36.146 43 30.7 ± 0.1 1 0.4563 ± 0.0096 −0.029 ± 0.021
2 0.3452 ± 0.0194 1.457 ± 0.097
3 0.2856 ± 0.0297 5.114 ± 0.120

estimate the eccentricity e. On the other hand, the radial velocity is
deduced as a function of time by taking the time derivative of the
time delay,

vrad(t) = c
dτ

dt
. (56)

Figure 8. The radial velocity curve, derived from the Kepler photometric
data with the FM method, of KIC 9651065. The zero-point for the orbital
phase corresponds to the periapsis passage of the star.

Then, from the maximum and minimum radial velocity, along with
the eccentricity deduced from the amplitude ratios, the projected
semimajor axis is deduced:

a1 sin i = 1

2�

√
1 − e2(vrad,max − vrad,min). (57)

The angle � is also deduced from vrad, max and vrad, min:

cos � = −1

e

[
vrad,max + vrad,min

vrad,max − vrad,min

]
. (58)
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Table 3. Comparison of the binary parameters of KIC 9651065
derived with the FM method and the PM method.

Quantity PM FM

Porb (d) 272.70 ± 0.82 273.80 ± 0.30
e 0.47 ± 0.03 0.57 ± 0.03
� (rad) 2.01 ± 0.30 2.22 ± 0.04
a1sin i (au) 0.37 ± 0.02 0.38 ± 0.01
f(m1, m2, sin i) (M�) 0.0916 ± 0.0108 0.0992 ± 0.0057

Figure 9. Amplitude spectrum of the LC Q1–16 data for KIC 10990452.
Most of the variance is in the p mode frequency range with a dominant
highest peak at ν1 = 17.723 74 d−1.

Murphy et al. (2014) applied this PM method to several pulsating
stars observed by the Kepler Mission, including KIC 9651065. They
derived the orbital elements of this star, as well as the radial velocity
curve. The results obtained in this paper by the FM method and their
PM results are in good agreement (see Table 3).

It should be noted here that the PM method has been further
developed by Murphy & Shibahashi (2015). The latest method de-
rives directly the orbital elements without converting time delays to
radial velocities, offering higher precision.

5.2 KIC 10990452

KIC 10990452 is a Kp = 12.4 binary system showing first, second,
third, and one component of the fourth FM sidelobes, indicating that
the system is highly eccentric. According to Huber et al. (2014), its
effective temperature and gravity are Teff = 7585+244

−287 K and log g =
4.022+0.126

−0.316 (cgs units), and its mass is m = 1.691+0.332
−0.219 M�, which

we round to Teff = 7600 ± 250 K, log g = 4.02 ± 0.13, and
m1 = 1.69 ± 0.33 M�. These are consistent with the original
KIC parameters. We used Q1–16 data in our analysis, which have
gaps because the star fell on the failed Module 3. Light curves in
quarters Q7, Q11, and Q15 are therefore missing. The short 9.7-d
engineering Q0 and the short 31-d final Q17 were not included.

Fig. 9 shows the LC amplitude spectrum where it can be seen
that there is a dominant highest peak. We examine that and the
second highest amplitude peak next to it for FM. The top-left panel
of Fig. 10 shows the highest peak at ν1 = 17.723 74 d−1 and the
second highest peak close to it, ν2 = 17.856 83 d−1. Because of
the complexity of the spectral window caused by the gaps in the
data, the window patterns for the two frequencies interfere, so they
must be modelled together. The top-right panel shows the amplitude
spectrum after the highest two mode peaks have been pre-whitened;
the FM sidelobes are apparent for both modes. The left panel is one

step further with pre-whitening of the first sidelobes, too. The re-
maining central amplitude of ν2 represents amplitude modulation
over the time span of the data set – either astrophysical or instru-
mental. Given that ν1 does not show this as much, it is probably
astrophysical. The right panel shows the third sidelobes and the
low-frequency component of the fourth sidelobes.

When searching for significant peaks associated with pulsation
modes among thousands of independent frequencies in the ampli-
tude spectrum – as we do in this case – it is found that the highest
noise peaks have amplitudes about four times that of the rms noise
in amplitude. The least-squares fitting that we do to find frequen-
cies, amplitudes, and phases estimates the errors based on the total
variance in the data. Since there are so many other pulsation fre-
quencies present that have not been modelled, the noise is not white
and errors are significantly overestimated. We therefore looked at a
section of the amplitude spectrum that is pure noise and found that
the highest noise peaks are around 12 μmag. The amplitude error
was therefore scaled to one quarter of that, or 3 μmag. The phase
and frequency errors were scaled by the same factor, since the errors
on those quantities are proportional to the amplitude signal-to-noise
ratio (Montgomery & O’ Donoghue 1999).

The results of the least-squares fits of the two pulsation mode
peaks and their first, second, third, and fourth FM sidelobes
are given in Table 4. All sidelobes are equally split from the
central frequency, and are consistent with theoretical expecta-
tion for FM stars. This splitting gives the orbital frequency,
νorb = 0.008 190 ± 0.000 024 d−1 (Porb = 122.11 ± 0.36 d). The
zero-point for the phases has been chosen to be a time when the
phases of the first sidelobes of the highest amplitude peak are equal.
The phases of the first sidelobes are π/2 rad out of phase with the
central peak. The same is true for the second highest amplitude
mode with ν2. Furthermore, the phase relation (φ+m − φ−m) for
m = 2, 3, 4 is the same within the errors for the two modes. These
facts are consistent with theory for FM discussed in Section 3.3.

For each set of sidelobes, the values of mαξm and θm − mθ1

were derived by equations (42) and (44), respectively, and are sum-
marized in Table 5. The values of these quantities derived from ν1

and ν2 are in good agreement, and this is consistent with theoretical
expectation of FM stars. The eccentricity e is then estimated from
the first and second sidelobes around ν1 by equation (52) to be
e = 0.569 ± 0.030.

The technique explained in Section 4.1 and inspection of Fig. 3
gives the coefficient ξ 1(e, � ) = 0.815 ± 0.015. Using this value
and the amplitude ratio for ν1, αξ 1 = 0.0640 ± 0.0015, we obtain
α = 0.0785 ± 0.002. The mass function is determined from these
values to be f(m1, m2, sin i) = 0.0163 ± 0.0011 M�. Assuming
m1 = 1.7 M� (Huber et al. 2014) gives a minimum secondary
mass of m2 = 0.41 ± 0.01 M�, so the secondary is probably a
main-sequence M or K star. We also derive the semimajor axis of
the primary star about the barycentre. From equation (20), we find
a1sin i = 0.122 ± 0.003 au from the data for ν1.

The facts that A+1 − A−1 < 0 and 〈φ±1〉 − φ0 < −π/2 indicate
that 3π/2 < 2ϑ1 − ϑ2 < 2π. The phase difference between φ+2 and
φ−2, along with this constraint, leads to 2ϑ1 − ϑ2 = 5.79 ± 0.05 rad.
With use of the derived value of e, this gives � = 5.85 ± 0.05 rad.
These results are summarized in Table 6, and they are in good
agreement with the results derived from the PM method (Murphy
& Shibahashi 2015).

Fig. 11 shows the radial velocity curve of KIC 10990452 derived
from the Kepler photometric data alone. This demonstrates that the
present FM method extracts binary information from the Kepler
light curve without spectroscopic observations.
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Figure 10. Top left: amplitude spectrum for KIC 10990452 in the frequency range of the two highest amplitude p-mode peaks. The spectral window has
significant sidelobes because of the missing quarters of data. Top right: this panel shows the first FM sidelobes after pre-whitening by ν1 and ν2; further
sidelobes can be seen. Bottom left: the this panel shows the data after pre-whitening by the first sidelobes, too, where the second and third sidelobes are easily
visible. Bottom right: in this panel the third sidelobes are easily seen for both main frequencies, and the low-frequency fourth sidelobe is also seen for the ν1

group.

Table 4. A least-squares fit of the frequency nonuplets for the two highest amplitude modes to the Q1–Q16 Kepler data for
KIC 10990452. The frequencies of the multiplet are separated by the orbital frequency, νorb = 0.008 190 ± 0.000 024 d−1

(Porb = 122.11 ± 0.36 d). The zero-point for the phases has been chosen to be a time when the phases of the first sidelobes
for the highest amplitude peak are equal, t0 = BJD 2455673.01863. Column 4 shows that the first sidelobe phases are π/2 = 1.57 rad
out of phase with the central peak, as required by theory for FM. Column 5 shows that the phases of the first sidelobes are equal
within the errors at this time.

Frequency Amplitude Phase 〈φ±1〉 − φ0 φ+m − φ−m
A+m+A−m

A0

A+m−A−m
A+m+A−m

(d−1) (mmag) (rad) (rad) (rad)

17.690 9790 0.018 ± 0.003 0.7772 ± 0.1691
17.699 1685 0.021 ± 0.003 −0.1864 ± 0.1450
17.707 3581 0.044 ± 0.003 −1.0048 ± 0.0684
17.715 5476 0.194 ± 0.003 −2.1688 ± 0.0154
17.723 7371 5.654 ± 0.003 −0.6296 ± 0.0005 −1.539 ± 0.012
17.731 9266 0.168 ± 0.003 −2.1688 ± 0.0179 0.000 ± 0.024 0.064 ± 0.001 −0.072 ± 0.012
17.740 1161 0.052 ± 0.003 3.1176 ± 0.0577 4.122 ± 0.090 0.017 ± 0.001 0.083 ± 0.044
17.748 3056 0.027 ± 0.003 1.6975 ± 0.1114 1.884 ± 0.113 0.008 ± 0.001 0.125 ± 0.089
17.756 4952 0.010 ± 0.003 0.4999 ± 0.3118 −0.277 ± 0.312 0.005 ± 0.001 −0.286 ± 0.158
17.824 0752 0.002 ± 0.003 −2.5761 ± 1.3006
17.832 2647 0.011 ± 0.003 2.1708 ± 0.2699
17.840 4542 0.026 ± 0.003 1.6322 ± 0.1155
17.848 6437 0.095 ± 0.003 0.4765 ± 0.0317
17.856 8332 2.674 ± 0.003 1.9836 ± 0.0011 −1.501 ± 0.024
17.865 0228 0.083 ± 0.003 0.4883 ± 0.0362 0.012 ± 0.048 0.067 ± 0.002 −0.067 ± 0.024
17.873 2123 0.029 ± 0.003 −0.6460 ± 0.1022 −2.278 ± 0.154 0.021 ± 0.002 0.055 ± 0.077
17.881 4018 0.009 ± 0.003 −1.8700 ± 0.3233 −4.041 ± 0.325 0.007 ± 0.002 −0.100 ± 0.213
17.889 5913 0.004 ± 0.003 −2.4669 ± 0.6935 0.109 ± 0.694 0.002 ± 0.002 0.333 ± 0.745
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Table 5. The estimated quantities of the terms for KIC 10990452,
mαξm and θm, appearing in the expression of the radial velocity. They
are estimated from the frequency nonuplets for the two highest ampli-
tude modes, ν1 and ν2, shown in Table 4. Column 1 shows the frequency
of the central peak, and Column 2 shows its ratio to the orbital fre-
quency. Here c is the speed of light. Column 4 shows mαξm estimated
from equation (42). Column 5 shows θm estimated by equation (44).

νpuls (νorb/νpuls)c m mαξm θm − mθ1

(d−1) (km s−1) (rad)

17.723 7371 138.5 ± 0.4 1 0.064 ± 0.001 0.000 ± 0.012
2 0.034 ± 0.002 3.632 ± 0.045
3 0.025 ± 0.003 4.084 ± 0.056
4 0.020 ± 0.004 4.574 ± 0.156

17.856 8332 137.4 ± 0.4 1 0.067 ± 0.002 0.006 ± 0.024
2 0.042 ± 0.004 3.573 ± 0.077
3 0.021 ± 0.006 4.263 ± 0.162
4 0.008 ± 0.008 4.767 ± 0.347

Table 6. The binary parameters of KIC 10990452
derived with the FM method.

Quantity PM FM

Porb (d) 122.10 ± 0.21 122.11 ± 0.36
e 0.55 ± 0.03 0.57 ± 0.03
� (rad) 5.81 ± 0.05 5.85 ± 0.05
a1sin i (au) 0.123 ± 0.016 0.122 ± 0.023

Figure 11. The radial velocity curve, derived from the Kepler photometric
data with the FM method, of KIC 10990452. The zero-point for the orbital
phase corresponds to the periapsis passage of the star.

5.3 The highly eccentric star KIC 8264492

5.3.1 PM analysis

KIC 8264492 is a binary with a δ Sct star component. Huber et al.
(2014) give Teff = 7992+231

−315 K, log g = 3.947+0.199
−0.224 (cgs units), and

M = 1.87 M�. The binary nature of KIC 8264492 was discovered
using the PM method (Murphy et al. 2014). The Fourier transform
of its light curve (Fig. 12a) shows a dense frequency spectrum,
in which the highest amplitude peak occurs at 31.29 d−1. This
peak is distinguished from its Nyquist alias at 17.7 d−1 by the
larger amplitude of the former (Murphy, Shibahashi & Kurtz 2013).
The non-sinusoidal nature of the time delays indicated the orbit
is highly eccentric, which is confirmed by the high amplitude of

the harmonics (see fig. 21 of Murphy & Shibahashi 2015). From
the amplitude ratios of those harmonics, a graphic solution for the
eccentricity, e 	 0.73 ± 0.05, is obtained with the help of Fig. 5.

5.3.2 FM analysis

The following FM analysis is based on the highest amplitude peak
from Fig. 12(a). We removed just over 5000 points from the start of
the Q0–Q16 LC data set because of some trends and flux disconti-
nuities in the early quarters. The data set we used has 64 031 LC
points, and is 1318.9-d long (BJD 2455072.035 to 2456390.959).

Fig. 13(a) zooms in on the highest peak at ν1 = 31.292 0323 d−1.
The first sidelobes are clearly visible, separated from the central
peak by 0.004 d−1. Fig. 13(b) shows the amplitude spectrum after
the central peak (at the dashed red line) has been pre-whitened. The
FM sidelobes are apparent, as shown by arrows, at exact multiples
of the orbital frequency distant from the central peak.

Table 7 gives the frequencies, amplitudes, phases and their uncer-
tainties for the three highest amplitude modes and their detectable
pairs of sidelobes. We determined the orbital frequency splitting
from the splitting of the first pair of sidelobes with respect to the
central component, νorb = 0.003 9621 ± 0.000 0087 d−1, giving
Porb = 252.39 ± 0.56 d.

For each set of sidelobes, the values of mαξm and θm − mθ1

were derived by equations (42) and (44), respectively, and are
summarized in Table 8. The eccentricity e is then estimated from
the first and second sidelobes around ν1 by equation (52) to be
e = 0.761 ± 0.045.

The technique explained in Section 4.1 and inspection of Fig. 3
gives the coefficient ξ 1(e, � ) = 0.630 ± 0.030. Using this value
and the amplitude ratio for ν1, αξ 1 = 0.369 ± 0.004, we ob-
tain α = 0.577 ± 0.028. The mass function is determined from
these values to be f(m1, m2, sin i) = 0.274 ± 0.040 M�. As-
suming m1 = 1.87 M� gives a minimum secondary mass of
m2 = 1.44 ± 0.10 M�. We also derive the semimajor axis of
the primary star about the barycentre. From equation (20), we find
a1sin i = 0.508 ± 0.024 au from the data for ν1.

The minimum mass derived above puts the star in the mid-F
range, or more massive. That suggests that some of the peaks seen
in Fig. 12(a) may come from pulsations in the secondary. However,
no evidence of antiphase time delay variations in p modes are found,
and g modes are low amplitude and not PM sensitive.

The facts that A+2 − A−2 > 0 for ν1 and 〈φ±1〉 − φ0 < −π/2
for ν2 indicate 3π/2 < 2ϑ1 − ϑ2 < 2π. The phase difference be-
tween φ+2 and φ−2, along with this constraint, leads to 2ϑ1 −
ϑ2 = 5.20 ± 0.04 rad. With use of the derived value of e, this gives
� = 5.28 ± 0.04 rad.

The upper panel of Fig. 14 shows the radial velocity curve of
KIC 8264492 derived with the FM method from the Kepler pho-
tometric data alone. The time delay is also derived with the FM
method. The lower panel of Fig. 14 shows the variation in the light
arrival time with respect to the barycentre. This is in good agree-
ment with time delays derived by the PM method (see Murphy &
Shibahashi 2015).

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have shown in this paper that the Fourier transform of the light
curve of a pulsating star in a binary system leads to frequency
multiplets in the amplitude spectra and that all the binary orbital
information traditionally derived from spectroscopic radial velocity
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Figure 12. Fourier transform for KIC 8264492 from 5.0 to 43.9 d−1. The highest peak is real and is used in our FM analysis. The frequencies used for the
PM analysis are ν1. . . ν9 = 31.29, 23.92, 33.76, 34.21, 23.54, 21.14, 24.47, 20.99 and 13.53 d−1. The dashed red line represents the Nyquist frequency of the
Kepler LC data.

Figure 13. (a): The amplitude spectrum for KIC 8264492, centred and zoomed on the highest peak. Sidelobes are visible without pre-whitening the central
peak, but in panel (b) the same region is shown with the central peak pre-whitened (at the dashed red line). Arrows are drawn at exact multiples of the orbital
frequency distant from the central peak, showing that four pairs of sidelobes are easily identified.

measurements can be derived from the frequency splitting and the
amplitudes and phases of the components of the frequency multi-
plet. This is an extension of the FM method described in Shiba-
hashi & Kurtz (2012), in which the case of e 
 1 was mainly
discussed. We have improved the applicability to highly eccentric
cases, and presented a method for determining binary orbital pa-
rameters, including the eccentricity and the argument of periapsis,
from photometry alone.

The orbital elements to be determined are (i) the orbital angular
frequency, �, (ii) the projected semimajor axis, asin i, (iii) the ec-
centricity, e, and (iv) the argument of the periapsis, � . Hence, we
need at least four independent relations among the components of
the frequency multiplet. The orbital angular frequency is directly
measured from the frequency spacing of the adjacent components of
the multiplet. The combination of the amplitude ratio of the sum of a
pair of ±1-components to the central component, (A+1 + A−1)/A0,
and the ratio for the case of ±2-components, (A+2 + A−2)/A0, gives
a1sin i and e. The phase information of the first and the second side-
lobes leads to the argument of the periapsis. Careful examination of
the phase differences also indicates whether the periapsis is located

at the far side or the near side of the orbit, with respect to us. Hence,
even if both components of the binary are pulsating, we can separate
the pulsation spectra of two pulsating stars.

Binary information can be extracted by the PM method (Murphy
et al. 2014; Murphy & Shibahashi 2015). The present FM method
and the PM analysis are complementary. The PM analysis offers a
clear visualization of the binary orbit in the time domain by dividing
the light curve into segments, while the present FM method utilizes
the full frequency resolution of the data in the Fourier domain,
and leads to high precision, particularly in the case of short-period
binaries.

For pulsating stars, such as δ Sct stars, with many significant
peaks in the amplitude spectrum, some care is needed to test for
possible unresolved contamination of FM multiplet components by
other, independent mode or combination frequencies. This is easily
done for multiperiodic pulsators, because the amplitude and phase
relationships for each FM multiplet must agree within the relations
given in this paper. In the PM method, unresolved contamination
results in obvious outliers in the time delay diagram, again making
it easy recognize and discard contaminated mode frequencies.

MNRAS 450, 3999–4015 (2015)

 at T
he L

ibrary on February 17, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


FM stars II 4013

Table 7. A least-squares fit of the frequency undecuplet for the three highest amplitude modes in the KIC 8264492 data set. The zero-point in time was set at
BJD = 2455754.1266, so that the first sidelobes of the highest amplitude mode had exactly equal phases. From the first pair of sidelobes, we obtain a frequency
splitting of 0.003 9621 ± 0.000 0087 d−1, giving Porb = 252.39 ± 0.56 d. Frequency uncertainties were calculated from a separate non-linear least-squares
calculation where sidelobes were not forced to be equally split by the orbital frequency, and should therefore be taken as representative, only. Since only three
modes were investigated, there is substantial variance left in the data. Treating the remaining variance would reduce the errors. The fact that the differences
between the phases of the first sidelobes and the central peak for each mode are so close to π/2 confirms the binarity within the FM theory.

m Frequency Amplitude Phase 〈φ±1〉 − φ0 φ+m − φ−m
A+m+A−m

A0

A+m−A−m
A+m+A−m

(d−1) (mmag) (rad) (rad) (rad)

−5 31.272 2205 ± 0.000 1598 0.009 ± 0.003 1.495 ± 0.380
−4 31.276 1829 ± 0.000 1108 0.013 ± 0.003 1.065 ± 0.263
−3 31.280 1453 ± 0.000 0539 0.027 ± 0.003 0.244 ± 0.128
−2 31.284 1076 ± 0.000 0300 0.048 ± 0.003 −0.115 ± 0.071
−1 31.288 0700 ± 0.000 0086 0.167 ± 0.003 −0.239 ± 0.020

0 31.292 0323 ± 0.000 0016 0.893 ± 0.003 1.336 ± 0.004 −1.575 ± 0.015
+1 31.295 9947 ± 0.000 0085 0.168 ± 0.003 −0.239 ± 0.020 0.000 ± 0.028 0.375 ± 0.005 0.003 ± 0.013
+2 31.299 9571 ± 0.000 0229 0.063 ± 0.003 −1.083 ± 0.054 −0.968 ± 0.089 0.124 ± 0.005 0.135 ± 0.039
+3 31.303 9194 ± 0.000 0330 0.043 ± 0.003 −2.138 ± 0.078 −2.382 ± 0.081 0.078 ± 0.005 0.229 ± 0.062
+4 31.307 8818 ± 0.000 0984 0.015 ± 0.003 −2.579 ± 0.232 −3.644 ± 0.232 0.031 ± 0.005 0.071 ± 0.152
+5 31.311 8441 ± 0.000 1587 0.009 ± 0.003 −2.401 ± 0.375 −3.896 ± 0.376 0.020 ± 0.005 0.000 ± 0.236
−2 23.910 4185 ± 0.000 0399 0.036 ± 0.003 −2.877 ± 0.094
−1 23.914 3809 ± 0.000 0144 0.099 ± 0.003 2.654 ± 0.034

0 23.918 3432 ± 0.000 0022 0.656 ± 0.003 −2.102 ± 0.005 −1.624 ± 0.025
+1 23.922 3056 ± 0.000 0150 0.095 ± 0.003 2.461 ± 0.036 −0.193 ± 0.050 0.296 ± 0.007 −0.021 ± 0.022
+2 23.926 2680 ± 0.000 0441 0.032 ± 0.003 1.861 ± 0.105 4.738 ± 0.141 0.104 ± 0.006 −0.059 ± 0.062
−4 33.744 8167 ± 0.000 1495 0.010 ± 0.003 −2.397 ± 0.353
−3 33.748 7790 ± 0.000 1168 0.012 ± 0.003 −2.600 ± 0.275
−2 33.752 7414 ± 0.000 0533 0.027 ± 0.003 −2.810 ± 0.125
−1 33.756 7037 ± 0.000 0156 0.092 ± 0.003 −2.975 ± 0.037

0 33.760 6661 ± 0.000 0034 0.426 ± 0.003 −1.401 ± 0.008 −1.625 ± 0.028
+1 33.764 6285 ± 0.000 0163 0.088 ± 0.003 −3.076 ± 0.039 −0.101 ± 0.054 0.423 ± 0.010 −0.022 ± 0.024
+2 33.768 5908 ± 0.000 0468 0.031 ± 0.003 2.520 ± 0.110 5.330 ± 0.167 0.136 ± 0.010 0.069 ± 0.073
+3 33.772 5532 ± 0.000 1162 0.012 ± 0.003 1.799 ± 0.277 4.399 ± 0.280 0.056 ± 0.010 0.000 ± 0.177
+4 33.776 5155 ± 0.000 2028 0.007 ± 0.003 0.969 ± 0.479 3.396 ± 0.479 0.040 ± 0.010 −0.176 ± 0.253

Table 8. The estimated quantities of the terms for KIC 8264492, mαξm

and θm, appearing in the expression of the radial velocity. They are es-
timated from the frequency nonuplets for the three highest amplitude
modes, ν1, ν2, and ν3, shown in Table 7. Column 1 shows the frequency
of the central peak, and Column 2 shows its ratio to the orbital frequency.
Here c is the speed of light. Column 4 shows mαξm estimated from
equation (42). Column 5 shows θm estimated by equation (44).

νpuls (νorb/νpuls)c m mαξm θm − mθ1

(d−1) (km s−1) (rad)

31.292 0323 38.0 ± 0.1 1 0.369 ± 0.004 0.000 ± 0.014
2 0.248 ± 0.010 1.087 ± 0.045
3 0.234 ± 0.015 1.951 ± 0.040
4 0.124 ± 0.020 2.890 ± 0.116
5 0.100 ± 0.025 4.335 ± 0.188

23.918 3432 49.7 ± 0.1 1 0.293 ± 0.007 −0.097 ± 0.025
2 0.208 ± 0.012 3.940 ± 0.071

33.760 6661 35.2 ± 0.1 1 0.414 ± 0.009 −0.051 ± 0.027
2 0.272 ± 0.020 4.236 ± 0.083
3 0.168 ± 0.030 5.344 ± 0.014
4 0.160 ± 0.040 6.395 ± 0.240

A promising application of our method is in the search for exo-
planets orbiting pulsating δ Scuti stars, or more generally, exoplan-
ets around upper main-sequence stars. Both the transit method and
the ground-based Doppler method, which are widely used in the
search for exoplanets around solar-like stars and have discovered
most of the known exoplanets to date, are more difficult to apply
for upper main-sequence stars. Planetary transits are smaller in the

Table 9. Comparison of the binary parameters of KIC 8264492
derived with the FM method and the PM method.

Quantity PM FM

Porb (d) 253.78 ± 1.03 252.39 ± 0.56
e 0.67 ± 0.04 0.76 ± 0.05
� (rad) 5.28 ± 0.05 5.28 ± 0.04
a1sin i (au) 0.41 ± 0.05 0.51 ± 0.02
f(m1, m2, sin i) (M�) 0.143 ± 0.054 0.274 ± 0.040

case of upper main-sequence stars because of the much larger stellar
discs. On the other hand, the typical rotationally broadened spectral
lines of A-type and earlier type stars make it harder to detect the
Doppler shift of spectral lines. Our new technique of photometric
measurement of binary orbital parameters opens a possibility of ex-
oplanet detection around upper main-sequence pulsating stars, such
as δ Sct stars, and around compact pulsating stars.

Another application of the present method is at the opposite
extreme, that is, in the search for invisible massive companions in
binary systems. If a pulsating δ Sct star forms a binary system with
a star born initially with mass less than about 8 M� but more than
the pulsating star itself, the massive component must have already
evolved into a white dwarf while the less massive component is still
in the main-sequence stage as a pulsating δ Sct star. The mass of
the white dwarf must be less than the Chandrasekhar mass limit,
but still be of ∼1 M�, and the star must be too faint to be detected.
On the other hand, if a binary system is composed of a δ Sct
star and a star born initially more massive than ∼8 M� but less
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Figure 14. Upper panel: the radial velocity curve, derived from the Kepler
photometric data with the FM method, of KIC 8264492. The zero-point for
the orbital phase corresponds to the periapsis passage of the star. Lower
panel: the time delay of KIC 8264492, derived with the FM method. The
time delay shown here is the difference in the light arrival time, compared
with the case where the star lies at the barycentre of the binary system.

than ∼30 M�, the massive star must have already been turned to a
neutron star, probably with mass ∼1 M�, and the star must be again
undetectable except perhaps as a pulsar. Although the survival of the
companion after the explosion of the massive star is uncertain from
the theoretical viewpoint, we know of binary systems composed of
a neutron star and either an early-type massive star, as a high-mass
X-ray binary, or a cool star, as a low-mass X-ray binary. Hence it
seems natural to expect a binary system of a neutron star and an
A-type δ Sct star. The further extreme case is a star born with
an initial mass � 30 M�. Such a star becomes a black hole. A
well-known binary system composed of a black hole candidate is
Cygnus X-1, whose companion is a blue supergiant variable star. If
a black hole forms a binary system with a δ Sct star, the present FM
technique is a unique, promising method of finding such an exotic
system.
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MNRAS, 446, 1223
Montgomery M. H., O’ Donoghue D., 1999, Delta Scuti Star Newsl., 13, 28
Murphy S. J., Shibahashi H., 2015, MNRAS, 000–000
Murphy S. J., Shibahashi H., Kurtz D. W., 2013, MNRAS, 430, 2986
Murphy S. J., Bedding T. R., Shibahashi H., Kurtz D. W., Kjeldsen H., 2014,

MNRAS, 441, 2515
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A P P E N D I X A : D E R I VAT I O N O F E QUAT I O N S
( 1 1 ) A N D ( 1 2 )

We need to write the radial velocity as an explicit function of time.
In doing so, the essential point is how to express trigonometric
functions of the true anomaly f as an explicit function of time. In
this appendix, we derive these expressions.

A1 Derivation of equation (11)

Let us first consider cos f. The distance r between the barycentre and
the star is expressed with help of a combination of the semimajor
axis a1, the eccentricity e and the true anomaly f:

r = a1(1 − e2)

1 + e cos f
, (A1)

and then

cos f = 1

e

[
(1 − e2)

a1

r
− 1

]
. (A2)

Since, with the help of the eccentric anomaly u, as derived from
equations (8) and (9),

r = a1(1 − e cos u), (A3)

the term a1/r in the right-hand-side of equation (A2) is

a1

r
= 1

1 − e cos u
. (A4)

Kepler’s equation links the eccentric anomaly u with the time after
the periapsis passage:

u − e sin u = �(t − tp). (A5)

The partial derivative of u with respect to t leads to

∂u

∂t
= �

1 − e cos u
, (A6)

and then, with the help of equations (A4) and (A6), equation (A2)
is reduced to

cos f = 1

e

[
(1 − e2)

1

�

∂u

∂t
− 1

]
. (A7)

The eccentric anomaly u is expressed as a solution of Kepler’s
equation, in terms of Fourier expansion with respect to the time
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after periapsis passage (see textbooks on celestial mechanics e.g.
Brouwer & Clemence 1961):

u = �(t − tp) + 2
∞∑

n=1

1

n
Jn(ne) sin n�(t − tp). (A8)

Then,

1

�

∂u

∂t
= 1 + 2

∞∑
n=1

Jn(ne) cos n�(t − tp). (A9)

Substituting equation (A9) into equation (A7), we reach the expres-
sion given in equation (11):

cos f = −e + 2(1 − e2)

e

∞∑
n=1

Jn(ne) cos n�(t − tp). (A10)

A2 Derivation of equation (12)

Next, let us consider sin f. From equation (9)

sin f =
√

1 − e2
a1

r
sin u. (A11)

The partial derivative of u given in equation (A5) with respect to e
leads to
∂u

∂e
= sin u

1 − e cos u
. (A12)

Then, with the help of equation (A4),

sin f =
√

1 − e2
∂u

∂e
. (A13)

On the other hand, from equation (A8),

∂u

∂e
= 2

∞∑
n=1

Jn
′(ne) sin n�(t − tp), (A14)

where Jn
′(x) := dJn(x)/dx. Hence, we obtain the expression given

in equation (12):

sin f = 2
√

1 − e2

∞∑
n=1

Jn
′(ne) sin n�(t − tp). (A15)

A P P E N D I X B : A F R E QU E N C Y U N D E C U P L E T

In Section 3.2, we truncated the infinite series of equation (26) with
N = 5, and derived the relations between the complex amplitudes
of the first and second sidelobes. The complex amplitudes of the
higher order sidelobes of the undecuplet are given as follows:

A±1

A0
= ±

(
J1(αξ1)

J0(αξ1)

) [{
1 ∓

(
J1(αξ2)

J0(αξ2)

)
cos (2ϑ1 − ϑ2)

}

+ i

(
J1(αξ2)

J0(αξ2)

)
sin(2ϑ1 − ϑ2)

]
e±iθ1 , (B1)

A±2

A0
	 ±

(
J1(αξ2)

J0(αξ2)

)

×
{[

1 ±
(

J1(αξ2)

J0(αξ2)

)−1 (
J2(αξ1)

J0(αξ1)

)
cos (2ϑ1 − ϑ2)

]

+ i

[(
J1(αξ2)

J0(αξ2)

)−1 (
J2(αξ1)

J0(αξ1)

)
sin(2ϑ1 − ϑ2)

]}
e±iθ2 .

(B2)

A±3

A0
= ±

(
J1(αξ3)

J0(αξ3)

) {[
1 ±

(
J1(αξ3)

J0(αξ3)

)−1

×
(

J1(αξ1)J1(αξ2)

J0(αξ1)J0(αξ2)

)
cos (ϑ1 + ϑ2 − ϑ3)

]

− i

[(
J1(αξ3)

J0(αξ3)

)−1 (
J1(αξ1)J1(αξ2)

J0(αξ1)J0(αξ2)

)

× sin(ϑ1 + ϑ2 − ϑ3)

]}
e±iθ3 , (B3)

A±4

A0
	 ±

(
J1(αξ4)

J0(αξ4)

) {[
1 ±

(
J1(αξ4)

J0(αξ4)

)−1

×
{(

J2(αξ2)

J0(αξ2)

)
cos(2ϑ2 − ϑ4)

+
(

J1(αξ1)J1(αξ3)

J0(αξ1)J0(αξ3)

)
cos(ϑ1 + ϑ3 − ϑ4)

}]

+ i

[(
J1(αξ4)

J0(αξ4)

)−1 (
J2(αξ2)

J0(αξ2)

)
sin(2ϑ2 − ϑ4)

+
(

J1(αξ4)

J0(αξ4)

)−1 (
J1(αξ1)J1(αξ3)

J0(αξ1)J0(αξ3)

)

× sin(ϑ1 + ϑ3 − ϑ4)

]}
e±iθ4 , (B4)

and

A±5

A0
= ±

(
J1(αξ5)

J0(αξ5)

) {[
1 ±

(
J1(αξ5)

J0(αξ5)

)−1

×
{(

J1(αξ2)J1(αξ3)

J0(αξ2)J0(αξ3)

)
cos(ϑ2 + ϑ3 − ϑ5)

+
(

J1(αξ1)J1(αξ4)

J0(αξ1)J0(αξ4)

)
cos(ϑ1 + ϑ4 − ϑ5)

}]

+ i

(
J1(αξ5)

J0(αξ5)

)−1

×
[(

J1(αξ2)J1(αξ3)

J0(αξ2)J0(αξ3)

)
sin(ϑ2 + ϑ3 − ϑ5)

+
(

J1(αξ1)J1(αξ4)

J0(αξ1)J0(αξ4)

)

× sin(ϑ1 + ϑ4 − ϑ5)

]}
e±iθ5 . (B5)
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