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a b s t r a c t 

In the recent years personal health monitoring systems have been gaining popularity, both as a result of 

the pull from the general population, keen to improve well-being and early detection of possibly seri- 

ous health conditions and the push from the industry eager to translate the current significant progress 

in computer vision and machine learning into commercial products. One of such systems is the Wize 

Mirror, built as a result of the FP7 funded SEMEOTICONS (SEMEiotic Oriented Technology for Individu- 

als CardiOmetabolic risk self-assessmeNt and Self-monitoring) project. The project aims to translate the 

semeiotic code of the human face into computational descriptors and measures, automatically extracted 

from videos, multispectral images, and 3D scans of the face. The multisensory platform, being developed 

as the result of that project, in the form of a smart mirror, looks for signs related to cardio-metabolic 

risks. The goal is to enable users to self-monitor their well-being status over time and improve their 

life-style via tailored user guidance. This paper is focused on the description of the part of that sys- 

tem, utilising computer vision and machine learning techniques to perform 3D morphological analysis 

of the face and recognition of psycho-somatic status both linked with cardio-metabolic risks. The paper 

describes the concepts, methods and the developed implementations as well as reports on the results 

obtained on both real and synthetic datasets. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

A healthy lifestyle has become universally recognized as a

ey factor in disease prevention. Efforts at promoting lifestyle

mprovements are now considered as a viable and effective way

or reducing the incidence of pathologies, such as cardiovascular

iseases and metabolic disorders. This coupled with the more

ctive role people aspire to have, so as to shift from passive

ecipients of care towards actively managing their own health, has

pened a new important prevention realm for the assistive tech-
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ologies. The health related self-monitoring and self-assessment

re gaining momentum. Many personal well-being and fitness

onitoring tools are available on the market, mainly in the

orm of wearable devices such as wristbands, smart-watches, eye

ear and wearable bio-monitors, as well as dedicated apps on

mart-devices such as MyFitnessPal, Endomondo, Argus, Googlefit.

t has been shown that these technologies are predominantly

mbraced by the younger generation (25–34 years old) focused on

tness, and the older users (55–64 years old) mainly interested

n improving overall health with the aim of improving the quality

f life and the life expectancy. Interestingly, in contrast with the

ncreasing acceptance of wearables, many of consumers stop using

he device within six months. In other words, in many cases

hese tools fail to drive long-term, sustained engagement and as a
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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Fig. 1. Illustrative representation of the Wize Mirror. On the right widgets panel with the user graphical interface, optionally this may also include: clock, weather forecast, 

news, etc. On the left pictorial representation of different devices used for data acquisition. 
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consequence, they fail to make a long-term impact on their users’

health. The authors believe that the key to successful deploy-

ment of self-assessment technologies is sustained engagement,

based on the promotion of behaviour change towards holistic

wellness. Enhancing wellness is an effective way to promote par-

ticipation and motivate people to change their habits. It is in this

context that the European project SEMEOTICONS ( SEMEOTICONS,

2013 ) has been launched. SEMEOTICONS started in November

2013, challenged with the development of a multisensory device

in the form of a mirror, called the Wize Mirror, which comfortably

fits at home, as a piece of house-ware, but also in pharmacies

or fitness centres. By analysing data acquired unobtrusively via a

suite of contactless sensors, the Wize Mirror detects on a regular

basis physiological changes relevant to cardio-metabolic risk fac-

tors. The computation and delivery of a comprehensive Wellness

Index enables individuals to estimate and track over time their

health status and their cardio-metabolic risk. Finally, the Wize

Mirror offers personalized guidance towards the achievement

of a correct lifestyle, via tailored coaching messages. The Wize

Mirror is designed to meet the two main objectives: stimulating

initial adoption and utilization, by providing a positive usage

experience; and supporting long-term engagement, by helping

people to establish new positive habits. To this end, the main

features of the Wize Mirror are: facilitation of daily unobtrusive

monitoring; automatic assessment of physiological conditions via

advanced integrated sensing and data processing algorithms as
ell as promotion of sustained behaviour change towards long-

erm wellness objectives. These functionalities are developed by

ntegrating theories, methods and tools from different disciplines

ncluding: computer science, physics, engineering, medicine, psy-

hology, motivation and communication science, social marketing,

ehavioural theories, and economics. 

From the technological perspective the Wize Mirror is a multi-

ensory platform in the form of a smart mirror (see Fig. 1 ) inte-

rating different sensors, including: 3D optical scanner, multispec-

ral cameras and gas detection sensor, collecting multidimensional

ata of individuals standing in front of the mirror. These data

re processed by dedicated algorithms, which extract a number of

iometric, morphometric and colorimetric descriptors, including:

GE- product concentration, cholesterol level, endothelium func-

ion, heart rate, heart rate variability, face morphometric param-

ters as well as indicators of stress, anxiety and fatigue levels. The

escriptors are integrated to define a virtual individual model for a

ellness index traced over time. The Wize Mirror also offers sug-

estions and coaching messages, with personalized user guidance,

imed at achieving and then maintaining a healthy life-style. 

The guiding principle behind the design of the Wize Mirror

as been that it should easily fit into daily-life settings, by max-

mising non-invasive and unobtrusive interaction with the users.

he focus of this paper is on a subset of sensors, methods and

rocesses deployed on the Wize Mirror using medical semeiotics

igns. The principle of medical semeiotics considers the face as an
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Fig. 2. Processing pipeline of the Wize Mirror methods described in this paper. 
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mportant source of information about the health status of individ-

als, produced by the combination of physical signs and expressive

eatures. Currently, based on their experience , medical doctors ac-

uire the ability of reading and interpreting the complex semeiotic

igns of patients’ faces. These signs usually suggest how to con-

uct the medical examination and may contribute to the diagno-

is. The paper describes a novel set of techniques developed and

mplemented to acquire and analyse semiotics signs. More specifi-

ally the paper describes the processing pipeline enabling face de-

ection, tracking, partition and 3D reconstruction. Whereas the ro-

ust real-time face detection and partition facilitates the described

nalysis of stress and anxiety forming the psycho-somatic descrip-

or of the cardio-metabolic risk, the 3D reconstruction provides re-

uired information for the estimation of the described overweight

nd obesity index forming part of the morphometric descriptor of

he cardio-metabolic risk. Fig. 2 gives a visual explanation of the

rocessing pipeline. The performance of the proposed techniques

s examined in some depth on real and synthetic datasets. 

The description of an overall concept of the inexpensive device

or self-monitoring and assessment of well-being to promote, im-

rove and maintain a healthy lifestyle is the key novel contribution

f this paper. The other technical contributions are linked to differ-

nt subsystems integrated on the mirror, these include: use of the

alman filter in conjunction with the random forest for face pose

redictions; the processing pipeline integrating face tracking, 3D

ose estimation, segmentation, range data scans alignment and fu-

ion for efficient and robust 3D face reconstruction; estimation of

ody weight and body weight variations using geometric features

xtracted from the 3D reconstruction of the face; the fusion of mo-

ion features from different facial areas for the assessment of the

sychological state with focus on stress and anxiety. 

The remainder of the paper is organised as follows.

ection 2 reports on the state of the art of the methods involved

d  
n the cardio-metabolic and psycho-somatic analyses performed

n this work. Section 3 and 4 provide details about the techniques

mployed for face pose estimation, tracking, face segmentation

nd 3D reconstruction. Section 5 shows how the morphological

nalysis of the face is carried out for assessing cardio-metabolic

isks and Section 6 describes the estimation of the face signs

sed for recognising different psycho-somatic states. Finally,

ection 7 summarises the main conclusions of the work presented.

. State of the art 

.1. Face tracking and 3D reconstruction 

Typically, 3D face reconstruction methods integrate raw data

rom different sensors (colour and/or depth) into a point cloud to

roduce a 3D face representation. In order to avoid points which

elong to the background or the other body parts, 3D head pose

stimation and tracking is needed to select the relevant informa-

ion for processing. By using the pose estimation a face segmen-

ation can be effectively preformed reducing errors in the recon-

truction phase. Additionally, the pose estimation and tracking pro-

ide information, needed for face normalization and partition, fa-

ilitating operations of other subsystems on the mirror, including

tress and anxiety analysis as well as multi-spectral measurements.

Head pose estimation and 3D tracking play an important role

n the automatic face analysis as an essential pre-processing step.

here has been a plethora of methods proposed in literature to

olve this problem ( Murphy-Chutorian and Trivedi, 2009 ). Al-

hough it is possible to estimate the 3D head pose using only

D images ( Raytchev et al., 2004 ), the robustness and accuracy

f these methods may not be suitable for many practical ap-

lications. On the other hand the pose estimation based on 3D

ata ( Smeets et al., 2013 ) could be very robust and accurate,
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3  
but the 3D data acquisition is costly and computationally inten-

sive. Indeed, the 3D face reconstruction is more challenging than

the head pose estimation. The recent advances in range data (2.5

D) sensing technologies and analysis seem to facilitate a suitable

compromise between cost, performance and system complexity.

The range/depth sensors are getting cheaper, more reliable and

widely used. For that reason, the range data is becoming the

modality of choice for solving different detection and estimation

problems. For example, there are approaches which use the range

data in combination with 2D image data. The method explained in

Cai et al. (2010) relies on a regularized maximum likelihood de-

formable model. The work described in Seeman et al. (2004) is a

neural network based system which runs at 10 fps. The approach

introduced in Bleiweiss and Werman (2010) is model-based and

it can maintain real-time performance. The method in Newcombe

et al. (2011) is based on the active appearance model (AAM) and

a depth-based constraint. It provides real-time tracking of human

faces in 2D and 3D. The mentioned method introduced a new con-

straint into AAM that uses depth data from sensors like Kinect. To

initialise the AAM fitting in each frame, an optical feature track-

ing is used to provide a location close to the target to improve the

convergence. The 3D location accuracy is improved by introducing

a depth fitting energy function, which is formulated in a similar

way to the iterative closest point algorithm (ICP) ( Besl and McKay,

1992 ). Moreover, the colour-based face segmentation is replaced

with the depth-based face segmentation and an L2-regularization

term. Using solely depth data, there are methods such as the one

described in Fanelli et al. (2011) , enabling a real time 3D head

pose estimation using consumer depth cameras. That method uses

a random regression forest to estimate the pose. The forest regres-

sion can be combined with the Kalman filter as described in Mou

and Wang (2012) , where the Kalman filter is used to refine the

noisy regression result. Another approach, which is based on par-

ticle swarm optimization is described in Padeleris et al. (2012) .

Real- time performance is achieved by the methods introduced in

Malassiotis and Strintzis (2005) and Choi et al. (2014) . The ap-

proach in Malassiotis and Strintzis (2005) uses global features and

exploitation of prior knowledge along with feature localization and

tracking techniques. In the work reported in Choi et al. (2014) a

3D face model is generated from a single frontal image. Then uni-

formly distributed random points are extracted and tracked in 2D.

Given the correspondences, the 3D head pose is estimated using

a RANSAC-PnP process. For the low-cost depth cameras, one of the

most widely used methods is described in Newcombe et al. (2011) .

That system is able to accurately map complex and arbitrary in-

door scenes in variable lighting conditions. All the input depth data

is fused into a global surface model in real-time. The sensor pose

is estimated by tracking the global model using a coarse-to-fine

iterative closest point (ICP) algorithm, and the data fusion is per-

formed by means of a truncated signed distance function (TSDF).

Due to the relatively good results obtained by the low-cost depth

cameras, they have become a popular choice for face reconstruc-

tion, where a great variety of methods can be found, such as ones

described in Hernandez et al. (2015) ; Huang et al. (2013) ; Macedo

et al. (2013) ; Zollhofer et al. (2011) . The authors of Macedo et al.

(2013) presented an extension of the algorithm from Newcombe

et al. (2011) to perform a real-time face tracking and modelling.

They proposed changing two steps of the original algorithm, pre-

processing and tracking. In the pre-processing stage a face detec-

tion algorithm is used to segment the face from the rest of the

image. For the tracking, they included an algorithm to solve oc-

clusions and real-time head pose estimation to give a new initial

guess to the ICP algorithm when it fails. Marching cubes is an-

other well-known technique for reconstruction and modelling. The

system developed in Huang et al. (2013) can automatically detect

the face region and track the head pose while incrementally inte-
rating the new data in a model. ICP is used for tracking the head

ose, then, a volumetric integration method is used to fuse all the

ata. Afterwards, a ray casting algorithm extracts the final vertices

f the model and marching cubes algorithm is used to generate

he polygonal mesh of the reconstructed face model. The method

n Hernandez et al. (2015) produces face models from a freely mov-

ng user without relying on any prior face model. The face is rep-

esented in cylindrical coordinates in order to perform filtering op-

rations. The reconstruction is initialized with a depth image, and

hen the subsequent point clouds are registered to the reference

ne using ICP. Temporal and spatial smoothing are applied to the

pdated model. Most of the methods rely on ICP rigid registration

lgorithm, however, the approach in Zollhofer et al. (2011) intro-

uces the advantages of using a robust non-rigid registration and

 deformable model. 

.2. Morphological analysis of cardio-metabolic risk 

Back in 1942, D’Arcy Wentworth Thompson expressed the im-

ortance of investigating biological form in a fully quantitative

anner ( Thompson, 1942 ): 

The study of form may be descriptive merely, or it may become an-

lytical. We begin by describing the shape of an object in the simple

ords of common speech: we end by defining it in the precise lan-

uage of mathematics; and the one method tends to follow the other

n strict scientific order and historical continuity. 

We may say that D’Arcy Thompson’s vision has come true: in

he last century, morphometrics came of age, as the discipline

ealing with the quantitative study of form Reyment (1996) . In

edicine, information about body size and shape has been used

raditionally by physicians to assess health or nutritional status

nd guide treatment, and many effort s have been put to recognize

he facial gestalt of some dismorphic syndrome ( Hammond, 2007 ).

owever, most of the studies correlating anthropometric measure-

ents with cardio-metabolic risk deal with the body rather than

he face. 

Simple parameters such as the waist circumference and the ab-

ominal sagittal diameter are known to correlate well with the

ody fat and have been used as predictors for metabolic disor-

ers and cardiovascular risk ( Li et al., 2007 ). The anthropometric

easurements collected by a 3D scanner were recently correlated

ith metabolic parameters in validation studies ( Lin et al., 2004;

ang et al., 2006; Wells et al., 2008 ). A relevant drawback is that

hese tools are not standardized: parameters strongly depend on

he acquisition device and on the subject pose, and do not pro-

ide a complete characterization of the body. Interesting results are

resented by Velardo and Dugelay (2010) : a model for the weight

stimation is retrieved via multiple regression on a set of anthro-

ometric features exploiting a large medical dataset for the model

raining, and validating the method both in ideal and real condi-

ions; here the set of geometric body measurements used is ex-

racted from the 2D body silhouette. More recently Giachetti and

olleagues in Giachetti et al. (2015) presented a pipeline for the au-

omatic extraction of health-related geometrical parameters from

eterogeneous body scans. Their aim was the computation of pa-

ameters independent of the precise location of anatomical land-

arks. The parameters computed included total body mesh vol-

me and area, trunk volume and area, maximal and minimal trunk

idth, maximal trunk section radius and area, eccentricity of an el-

ipse approximating the body. They correlated the parameters with

ody fat values estimated with a DXA (Dual-energy X-rays Absorp-

iometry) scanner, and found that several values were highly corre-

ated with total body less head (TBLH) fat and trunk fat. Moreover,

n Velardo et al. (2012) an automatic vision-based system was pro-

osed for estimating the subjects’ absolute weight from a frontal

D view of the user, acquired through a low cost depth sensor.
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otential applications include extreme environments and circum-

tances in which a standard scale cannot work or cannot be used:

n the space for monitoring astronauts’ weight, or in the hospitals,

or medical emergencies. 

Concerning faces, there is no consensus in the literature about

hich are the facial morphological correlates of body fat. A study

eported the relationship between facial adiposity and Visceral

besity (VO) and suggested that facial characteristics, such as

heek fat, are indicators of insulin resistance ( Sierra-Johnson and

ohnson, 2004 ). An increase in some facial dimensions was ob-

erved in a study about the face morphology of obese adolescents

 Ferrario et al., 2004 ): the authors observed that the face of obese

dolescents was wider transversally, deeper sagittally and shorter

ertically than matched controls. Djordjevic et al. (2013) reports

n analysis of the facial morphology of a large population of ado-

escents under the influence of confounding variables. Though the

tatistical univariate analysis showed that four principal face com-

onents (face height, asymmetry of the nasal tip and columella

ase, asymmetry of the nasal bridge, depth of the upper eye-

ids) correlated with insulin levels, the regression coefficients were

eak and no significance persisted in the multivariate analysis. 

The authors in Lee et al. (2012) proposed a prediction method

f normal and overweight females based on BMI using geomet-

ical facial features only. The features, measured on 2D images,

nclude Euclidean distances, angles and face areas defined by se-

ected soft-tissue landmarks. The study was completed in Lee and

im (2014) by investigating the association of visceral obesity with

acial characteristics, so as to determine the best predictor of nor-

al waist and visceral obesity among these characteristics. Cross-

ectional data were obtained from over 11 thousand adult Korean

en and women aged between 18 and 80 years. The study in Lee

nd Kim (2014) was the starting point of our research. We started

y reproducing and evaluating the measurements on 3D data, then

e added measures specifically defined on the 3D surface. 

.3. Stress and anxiety analysis 

Psychologists and biomedical scientists have studied stress in-

ensively for over 60 years, and the concept of stress has been the

ubject of scientific debate ever since its first use in physiologi-

al and biomedical research ( Selye, 1950 ). Stress was originally de-

ned as the non-specific response of the body to any unpleasant

timulus. Later, the concept was refined by distinguishing between

he terms ‘stressor’ and ‘stress response’: a stressor is a stimu-

us that threatens homoeostasis and the stress response is the

eaction of the organism aimed to regain homeostasis ( Koolhaas

t al., 2010 ). Stressful events cause dynamic changes in the hu-

an body. They can be observed by changes in the body’s re-

ponse signals, involuntary caused by the autonomic nervous sys-

em. Stress has a severe impact on the immune and cardiovascular

ystems if it is sufficiently powerful to overcome defence mech-

nisms, ( Sharma and Gedeon, 2012 ). Nevertheless, the stress re-

ponse evolved to help individuals survive, so that a lack of a suf-

cient stress response can often result in an inability to cope with

 stressor ( Romero, 2004 ). When a person is under stress, an in-

reased amount of stress hormones are released, accompanied by

hanges in heart rate, blood pressure, pupil diameter, breathing

attern, galvanic skin response, emotion, voice intonation and body

ose. Common techniques for detecting stress include the analysis

f physiological signals such as the electroencephalograph, blood

olume pulse, heart rate variability, galvanic skin response and

lectromyograph ( Sharma and Gedeon, 2012 ). The manifestation of

tress through visible facial expressions enables non-invasive tech-

iques for detecting and analysis ( Sharma and Gedeon, 2012 ). Fa-

ial muscle movements, such as head and mouth movements, have

een used to determine stress. Eye gaze spatial distribution, sac-
adic eye movements, pupil dilation, blink rates, eyebrow move-

ents and mouth deformation are features able to show stress

resence ( Sharma and Gedeon, 2012 ). In addition, jaw clenching,

rinding teeth, trembling of lips, and blushing are also signs of

tress ( The American Institute of Stress, 2015c ). 

Anxiety is a very common psychosomatic state, felt as

n unpleasant mood characterized by thoughts of worry or

ear ( Harrigan and O’Conell, 1996; Shin and Liberzon, 1996 ). A per-

on experiencing anxiety has thoughts that are actively assess-

ng a certain situation, sometimes even automatically and out-

ide of conscious attention, and developing predictions of how

ell they will cope based on past experiences. People with anx-

ety disorders may also have recurring intrusive thoughts or con-

erns that may lead to avoiding certain situations out of worry.

hey may also have physical symptoms such as sweating, trem-

ling, dizziness or a rapid heartbeat ( Anxiety, 2015a ). Anxiety has

een shown to inhibit social relationships, to impede cognition,

earning and performance, to contribute to psycho-physiological

isorders and is the primary symptom of a variety of disorders.

ndeed, dysfunctional levels of anticipation appear to manifest in

 number of anxiety disorders including specific phobia, gener-

lized anxiety disorder, social anxiety disorder and panic disor-

er ( Harrigan and O’Conell, 1996 ). Individuals with elevated anx-

ety are more likely to have a wide array of medical conditions

han those without anxiety, including cardiovascular, autoimmune,

nd neuro-degenerative diseases, and are at greater risk of early

ortality ( Niles et al., 2015 ). Anxiety and depressive disorders are

inked to a higher cardio-metabolic risk and a higher incidence of

cute cardiovascular events ( Sardinha and Nardi, 2012 ). Given the

mpact and the frequency with which anxiety occurs, it is criti-

al to investigate its manifestations, particularly those which may

eveal anxiety indirectly through non-verbal indices, such as fa-

ial movements. Research in non-verbal manifestation of anxiety

s not very common ( Chiarugi et al., 2014 ). Ekman and Friesen

1971) reported that, when a negative effect is experienced, it is

ften masked by another effect that the individual considers more

ppropriate. Anxiety is a composite effect with a strong connec-

ion to fear and therefore, when someone is anxious, we expect to

dentify facial movements related to fear such as raised eyebrows,

tretched lips horizontally, raised and tensed upper eyelid which

idens the eye, lip bite, lip wipe and increased eye movement

 Ekman and Friesen, 1971 ). Other anxiety specific manifestations

re shared with stress, such as increased eye blink rate ( Harrigan

nd O’Conell, 1996 ) and shortened breath ( Anxiety, 2015b ). In-

reased blinking is associated with increased sympathetic nervous

ystem activity that increases involuntary responses when peo-

le are emotionally aroused ( Harrigan and O’Conell, 1996 ), as a

esult, during anxiety the overall activity of facial muscles in-

reases ( Gunes and Piccardi, 2007 ). 

. Face 3D pose estimation and tracking 

The proposed approach is based on processing single depth

ata frame at a time, using a random forest model for face de-

ection and face/head pose regression ( Fanelli et al., 2011 ) and

hen applying the Kalman filter tracking ( Henriquez et al., 2014 ) to

he results from random forest pose regression. As result the ran-

om noise of the pose estimates are reduced leading to smoother

ose trajectories. Finally, a personalised mask alignment is per-

ormed to further improve accuracy of the face pose estimates.

he multi-level iterative closest point algorithm registration ( Quan

t al., 2010 ) method is applied for face alignment. The personalised

ask construction process is explained in Section 4 . The proposed

ace tracking has been designed to track the face pose in real-time

ithin a depth image sequence from the depth sensor. The imple-

ented approach relies on algorithms which are not computation-
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Fig. 3. Comparison between detected and tracked faces obtained with the random forest and Kalman filter (first row), and the refined head pose using the ICP algorithm 

(second row). The depth images have been coloured in order to facilitate the visualization, the colour information is not used in the process. 
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ally expensive. The high computational complexity is only required

in the training phase, but this phase is performed off-line. There-

fore, a face pose can be estimated in each video frame in real-time

using a single core processor (2GHz). The face pose tracking results

are subsequently used for 3D face reconstruction, described in

Section 4 , which in turn is used in the face morphological analysis

for cardio-metabolic risk assessment (see Section 5 ). The face pose

is also used to perform face partition required as a preprocessing

step for the stress and anxiety analysis described in Section 6 . 

3.1. Face pose estimation 

In the first stage of the face tracking process, the face pose is

estimated using the approach described in Fanelli et al. (2011) . A

discriminative random regression forest is used to classify depth

image patches between two different classes (face or no face) and

perform a regression in the continuous spaces of position and ori-

entation. The trees in the forest are trained to maximise two dif-

ferent measures (classification and regression). The data used for

training are depth images captured with the Kinect sensor. Each

one is labelled with the 3D face pose (x, y, z, pitch, yaw, roll). The

optimisation function consists of two main parts as it is shown in

Eq. 1, the class uncertainty U C and the regression entropy U R . There

are also other parameters such as the depth of the node d, and a λ
parameter to balance the importance of classification and regres-

sion depending on the depth of the tree node. 

argmax 
k 

(U C + (1 . 0 − e −
d 
λ ) U R ) . (1)

Once the training has been done, the resulting forest can be

used for classification and regression of the face pose from a depth

image. This process consists of extracting several patches from the

image and passing them through the forest. At the nodes, each

patch is tested with the sub-patch combination generated in the

training stage and continues to the left or right depending on the

test result. The test function ( Eq. 2 ) includes F 1 and F 2 sub-patches

size, integral images of these sub-patches ( I ( q )) and the threshold

( τ ). 

| F 1 | −1 
∑ 

q ∈ F 1 
I(q ) − | F 2 | −1 

∑ 

q ∈ F 2 
I(q ) ≥ τ. (2)

When a patch arrives at a node, the sub-patches are extracted

and their integrals are calculated. Depending on the result, the

patch is sent left or right. When the sample arrives at a leaf, it

produces one vote encoded by the information stored in that leaf.

The leaf could be a face leaf or a non-face leaf. After all the patches

have passed through all the trees, all the votes are processed by a

bottom-up clustering to remove outliers. All the votes inside the

distance of the average head diameter are grouped together. Then

10 mean shift iterations are executed in order to localise the cen-

troid of the clusters. Afterwards, if the number of votes exceeds
he threshold, a face is considered as detected. The pose result is

btained from the mean of the values stored in the leaves whose

otes were selected. 

.2. Face pose tracking 

The pose parameters, as estimated by the algorithm described

n the previous section, are often noisy when they are applied to

ndividual images in a video sequence. This is due to the detec-

ion was performed without imposing any temporal constraints.

o reduce the random error in the pose estimation and to avoid

ome missed detections, a tracking method is used for processing

f video sequences. This method is explained in detail in Henriquez

t al. (2014) . The method uses the Kalman filter to perform head

ose tracking, by filtering the measurements provided by the face

etector. Additionally, it can detect outliers and handle the miss-

ng measurements and introduces adaptive covariance estimation,

hich is useful, for example, when the average head movement

peed varies. The noise covariance is updated based on the vari-

nce estimates of the most recent measurements using a sliding

indow. 

.3. Face alignment based on 3D data 

This section describes a technique developed for alignment of a

ersonalised 3D mask to the depth data using the iterative closest

oint (ICP) registration algorithm ( Quan et al., 2010 ). Such mask

lignment is used in order to further increase pose estimation ac-

uracy. The personalised mask is built for each user, utilising the

D reconstruction algorithm described in Section 4 . When the face

s detected in the 3D space, the personalised mask is translated

nd rotated using the pose parameters calculated in the tracking

tage. The rotation matrix is defined by the three Euler angles, and

he translation vector containing the coordinates of the head cen-

re ( x, y, z ). All the points belonging to the mask are transformed

y using a rigid transformation model. After applying the transfor-

ation estimated by the tracker, the mask can fit the input data or

eing slightly misaligned (see Fig. 3 ) due to the error in the face

ose estimation. To tackle this problem, the location and orienta-

ion are refined by applying a rigid registration process between

he personalised mask and the input depth data using the corre-

pondence search. 

For 3D face alignment the real-time processing was achieved as

esult of a relatively small number of corresponding points used.

ith the face pose estimation, the 3D model is initialized close

o a correct matching position. Additionally, the random sampling

s used in the multi-resolution registration scheme, reducing even

ore the number of correspondences to be estimated. Random

ampling improves also convergence due to reduced correlation

ias between points used at the different resolution levels (see
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Fig. 4. Example of sub-sampling for four different levels to perform the multi-resolution registration. 

Table 1 

Sensitivity (True positive rate, TPR) and accuracy (Positive predictive 

value, PPV) experiments. First row contains the different thresholds 

used to consider a detection true positive. If the distance between the 

detected nose position and the ground truth is smaller than the thresh- 

old, it is a true positive, otherwise it is considered a false negative. A to- 

tal of 607 images were processed. RF represents the method described 

in Fanelli et al. (2011) , whereas WM represents the proposed method. 

5 10 15 20 25 

TPR RF 7 44 76 90 93 

WM 28 72 88 95 97 

PPV RF 7 46 80 95 98 

WM 30 75 89 95 97 
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ig. 4 ). Furthermore, in order to keep the real-time processing con-

traint at a high frame rate, only four iterations of the ICP are exe-

uted as the results showed to be suitable for the post-processing

y other functionalities of the system. 

.4. Experimental results 

As already explained (see Fig. 2 ), in the processing pipeline de-

cribed in this paper , the face pose estimation is used to facili-

ate the 3D face reconstruction (explained in the next section) and

he face detection for the stress and anxiety analysis (introduced

n Section 6 ). To maximise the data spatial resolution the Wize

irror camera acquiring images for the stress and anxiety analy-

is (S&A camera) is equipped with a narrow view lens. It is there-

ore essential to accurately detect the face position in front of the

irror so the acquisition from that camera could be suitably trig-

ered. To evaluate the effectiveness of the proposed solution for

hat purpose a set of experiments was carried out. They consisted

f applying the method from Fanelli et al. (2011) and the proposed

ethod to detect faces in three different sequences, with 607 im-

ge frames in total. Each of those frames is labelled with the nose

osition, therefore the sensitivity (true positive rate) and the pre-

ision (positive predictive value) of the methods were estimated

epending on the distance between the ground truth and the esti-

ated nose position. As in all the sequences there is a face present

n each frame, the true and false positives are defined by a thresh-

ld. Five different thresholds were used in the experiments. When

he detected nose position is further than the threshold from the

round truth, it is considered as a false positive (i.e., the face may

ot be fully included in the field of view of the S&A camera). If

he distance is smaller than the threshold, the result is counted as

 true positive. When the face is not detected, it is considered a

alse negative. The Table 1 shows the results corresponding to the

rue positive rate (TPR) and positive predictive value (PPV) for the
oth tested methods. It can be observed that the proposed method

s the one with bigger TPR for all the thresholds. This, in part, is

ecause the proposed method on average has smaller number of

alse negatives. In terms of the PPV, it can be seen in Table 1 that

he results provided by the proposed method improved the detec-

ion in most of the distance thresholds (5–25). Additionally, a qual-

tative comparison can be made by looking at the results showed

n Fig. 3 . It can be observed, that the orientation results provided

y RF method ( Fanelli et al., 2011 ) (shown in the top row) are not

s good as for the proposed method (shown in the bottom row).

his is despite the fact, that for the images shown in that figure

he RF had obtained similar results to the proposed method in the

ose distance experiments. 

. 3D face reconstruction 

The 3D reconstruction process is based on calculating the dif-

erent positions of the sensor and merging the 3D data from cap-

ured frames to reconstruct the scene ( Newcombe et al., 2011 ). The

ensor pose is calculated by tracking the depth data relative to

 global model using the iterative closest point algorithm. After-

ards, a truncated surface distance function is applied to merge

he new data with the reconstructed model. Finally the surface

s predicted using a ray casting algorithm. In order to extract

rom the depth data only the information representing the face,

he range data segmentation is needed. This step eliminates back-

round objects, body parts or hair from the reconstruction pro-

ess. Without the segmentation the reconstruction can be noisy

r/and heavily distorted. The proposed method introduces a modi-

cation to the technique proposed in Newcombe et al. (2011) and

xtended in Macedo et al. (2013) . The additional processing step

pplies a face segmentation method using an average face model

n order to obtain the region of interest for the reconstruction and

o invert the face movement to the equivalent sensor movement.

wo segmentation stages are applied, the first one is based only

n depth information and the second is using an average 3D face

odel/mask. 

.1. Face segmentation 

Normally, a face detection technique is used to localise the

ace centre and select the region of interest for the reconstruc-

ion ( Macedo et al., 2013 ). However, a depth segmentation method

an be as well an easy and fast way to remove from the image

hose background and body parts which can produce deformations

n the face reconstruction. The typical objects removed as part of

his process include: neck, shoulders or objects in the background.

he proposed depth segmentation is a variation of the technique
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Fig. 5. Comparison between the two different segmentation stages used for pre- 

processing the input depth data for subsequent 3D reconstruction. Input depth im- 

ages (left), depth segmentation (centre) and model segmentation (right). The colour 

images are only used to visualise the segmentation results. The colour information 

is not used in any of the segmentation methods. 

Fig. 6. Average face models used for face segmentation, generated using Face- 

Gen software. Model used for the reconstruction needed in morphological analysis 

of cardio-metabolic risks (left). Model utilised to build the personalised mask for 

tracking (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Plastic head model used for the reconstruction experiments (left), recon- 

structed model using the proposed method (right). 
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proposed in Zollhofer et al. (2011) , where using face landmarks as

seeds, the rest of the points belonging to the face are found with

a flood fill algorithm. In each recursion a four neighbourhood of

a current face point are checked in order to evaluate if the depth

values change by more than 5 mm. If the change is smaller, the

point is added to the segmented face. In the proposed modifica-

tion of the method the seed is initialised in the 2D projection of

the detected 3D head centre, which offers similar results without

the need for detecting more facial features. Some examples of face

segmentations are shown in Fig. 5 . 

It can be observed that in most cases the neck and chest

patches are included in the segmentation. This can be a problem

for the reconstruction process as these extra patches are unre-

liably included in some frames, producing distortions in the 3D

face reconstructions. Additionally this depth segmentation method

strongly depends on the posture of the user as it implicitly as-

sumes that the head is always at least 5 mm nearer to the sensor

than the rest of the neck or the upper body. As it was explained

above, the depth based segmentation method can fail if the thresh-

old to differentiate the face from the neck is not well chosen. The

optimal value of this threshold is subject specific and therefore dif-

ficult to select. To overcome this problem, a model segmentation

approach has been proposed. Based on the face pose estimation,

a 3D model is transformed to match the input depth data. The

matched model defines the points which are subsequently used

for the 3D face reconstruction. Two different average models have

been used for this purpose (see Fig. 6 ). One of them includes the

ears and is used for the 3D reconstruction which is the input for

morphological analysis of cardio-metabolic risk. The personalised

face mask for tracking is built using the model without ears. 

When the face is detected in the 3D space, using the method

explained in previous sections, the model is translated and rotated

using the estimated pose parameters as it is performed for the face

tracking. Then, all the points belonging to the model are trans-
ormed by using the estimated rigid transformation model and the

CP algorithm. Afterwards, all the points belonging to the model

re projected to a depth image using the camera calibration pa-

ameters building a depth sparse segmentation. In order to gener-

te a dense and continuous area instead of a set of points, mathe-

atical morphology is applied to the image (dilation and erosion),

ollowed by a contour detection and a flood fill algorithm to re-

ove holes. This technique provides more robust face segmenta-

ion for different subjects and varying postures (see Fig. 5 ). 

.2. Sensor pose estimation 

This stage of the process is based on the sensor pose estima-

ion proposed in Newcombe et al. (2011) . Originally, that recon-

truction method was designed to reconstruct static scenes of rigid

bjects by moving the sensor and capturing data from different

oints of view. The sensor pose is calculated by tracking the depth

ata relative to a global model using the iterative closest point

lgorithm. The reconstruction requirements for the studied sce-

ario are slightly different, as the sensor is in a fixed position and

he person is moving. Some modifications in the above explained

ethod were introduced in order to use it for face reconstruc-

ion. The person motion is reversed to estimate the relative mo-

ion of the sensor with the head being in a virtual fixed position.

he depth image is processed with the segmentation method ex-

lained in the previous section, and only the face region is used as

nput for the reconstruction method described in Newcombe et al.

2011) . Hence, when the only information available in the depth

ata is the user’s moving face, the system calculates the equivalent

ensor motion with the user’s face being still. After segmenting the

ace, this subsystem tracks the current sensor frame by aligning a

urface measurement against the model prediction by minimising

he cost function given in Eq. 3 . T k is the new sensor’s pose, V k 

s the vertex map of the new depth data in the sensor reference

rame, ˆ V k −1 ( ̂  u ) is the predicted vertex map and 

ˆ N k −1 is the pre-

icted normal map of the model in the global reference frame. The

orrespondence u → ˆ u between vertices is estimated as part of the

ptimisation process (see Newcombe et al., 2011 for more details).

(T k ) = 

∑ 

u 

‖ (T k V k (u ) − ˆ V k −1 ( ̂  u )) T ˆ N k −1 ( ̂  u ) ‖ 2 (3)

.3. Surface reconstruction 

The surface reconstruction is performed by means of a volumet-

ic truncated signed distance function (TSDF) (see Newcombe et al.,

011 ). After the sensor pose is estimated for a given depth frame,

hat frame is fused into one single 3D reconstruction containing

ata from previous depth frames. This global TSDF contains the fu-

ion of the registered depth frames. The reconstructed volume is

ormed by the weighted average of all individual TSDFs computed

or each depth map. This global fusion can be interpreted as de-

oising, with the global TSDF obtained from multiple noisy TSDF

easurements, see Eq. 4 where F R k are the truncated signed dis-

ance values, W R the corresponding weights and F the signed dis-

k 
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Fig. 8. Comparison between 3D reconstructions obtained using the proposed method. The images on the top represent the signed distance between the two reconstructions: 

the current reconstruction and a reference reconstruction. The histograms (on the bottom) are calculated with the number of points belonging to the reconstructed face 

(63,0 0 0 points on average) and clustered depending on their signed distance (in meters) to the reference scan. The average error for all the experiments is 1.7 ± 2.4 mm. 

Fig. 9. 3D geometric reconstruction results. RGB image (left), 3D reconstruction for 

morphological analysis of cardio-metabolic risk (centre), and personalised mask for 

face tracking (right). 
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ance function. 

in 

F ∈F 

∑ 

k 

‖ F R k W R k − F ‖ 2 (4)

After all the input depth maps have been fused to the global

odel, the reconstruction is complete and a ray casting algorithm

s applied in order to estimate the final surface ( Newcombe et al.,

011 ). A sample of the reconstruction results is shown in Fig. 9 .

here the middle column shows reconstructions obtained using

he depth segmentation technique, and the right column contains

he reconstructed faces using the model/mask based segmentation

ethod. It can be seen that the use of model segmentation pro-

ides a cleaner face reconstruction which can be used for face

racking and also for morphological analysis. 
.4. Experimental results 

The 3D face reconstruction method has been validated through

ifferent experiments, using a plastic head model and real faces.

ig. 7 shows, on the left, an image of the plastic head model

sed in the experiment, and on the right the corresponding recon-

tructed model using the proposed technique. 

The morphological analysis which is subsequently performed on

he 3D reconstructions is based on comparing different reconstruc-

ions from the same person obtained at different dates. Therefore,

t is important that the 3D scanner provides consistent and re-

eatable results and does not add random error in the reconstruc-

ions which may lead to errors in the analysis. To check the stabil-

ty of the 3D reconstruction obtained using the proposed method,

he reconstructions of the plastic head model were repeated mul-

iple times with differently acquired range data. In the first exper-

ment, four different reconstructions were compared to randomly

elected reconstruction treated as the reference reconstruction. The

lastic head model was scanned five times, from slightly different

ositions and inclinations in front of the sensor. The reconstruc-

ion process requires rotation of the user’s face, in this experiment

he plastic head model was rotated manually. As it can be seen in

ig. 8 , the average error is only 1.7 mm, which indicates that the

canner provides repeatable reconstructions from the same surface

ndependently from the small changes in the position or orienta-

ion. This is an important result as it shows that the random re-

onstruction error, which is difficult to correct, is small. 

Another experiment was performed using real faces. The users

otated their heads in front of the sensor and the depth data was

aptured. The face was tracked and segmented in each frame, and

he resulting segmented data was used for reconstruction. The re-

ults in Fig. 9 show that the proposed model based segmentation

s able to get rid of the hair, neck and shoulder regions (right col-

mn in the figure), which otherwise could introduce noise in the

ubsequent uses of the 3D reconstructed models, for instance if the

econstructed personalised face mask is used for tracking. 
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Fig. 10. The 23 landmarks used to analyse faces from the morphological viewpoint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

List of linear and planar measurements which were found to correlate 

with waist circumference in Lee and Kim (2014) . d E stands for Euclidean 

distance, d H horizontal (Euclidean) distance, d V vertical (Euclidean) dis- 

tance, and A (p 1 , . . . , p n ) is the area of the polygon formed by points 

p 1 , . . . , p n . Fig. 10 explains both the position and the label of the land- 

marks. 

FEATURE DESCRIPTION 

f 1 d H (8, 17) 

f 2 d V (5, 7) 

f 3 d E (3, 15) 

f 4 d E (1, 13) 

f 5 d E (2, 14) 

f 6 d H (22, 23) 

f 7 d E (22, 23) 

f 8 A (1, 13, 23, 14, 2, 22) 

f 9 A (2, 14, 15, 3) 

f 10 f 6/ f 3 

f 11 f 6/ d V (6, 5) 

f 12 f 3/ d V (6, 5) 

Fig. 11. Geodesic (left) and Euclidean (right) distance between two landmarks. 
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5. Morphological analysis of cardio-metabolic risk 

Our goal is the quantification of patterns in face shape variation

due to weight gain. Indeed, according to the semeiotic model of

the face for cardio-metabolic risk developed in SEMEOTICONS, the

face signs include signs of overweight and obesity. The signs must

be computed on a 3D face model reconstructed from range data

acquired by a 3D scanner, as described in the previous sections. 

Though several authors studied the application of anthropomet-

ric analysis to classify normal weight, overweight, and obese indi-

viduals, most of the methods in the literature are based on mea-

surements taken on the body of subjects, rather than on their face,

as foreseen in SEMEOTICONS’ Wize Mirror. Moreover, most of the

techniques considering faces are based on measures computed on

2D images rather than on 3D models. Finally, though it is well

known that the face is involved in the process of fat accumula-

tion, there is no consensus in the literature about which are the

facial morphological correlates of body fat. All these issues make

our task a challenging one. 

5.1. Landmark-based measurements 

The starting point of our research was the study in Lee and Kim

(2014) , whose authors computed a set of simple linear and pla-

nar measurements on 2D face images and evaluated the statistical

correlation of each measurement with waist circumference (and

hence visceral fat) on a set of 11,347 adult Korean men and women

aged between 18 and 80. The measurements included Euclidean

distances between the 23 anthropometric landmarks (cf. Fig. 10) ,

and areas of polygons enclosed by the landmarks. Table 2 lists the

measurements which were found to have strong correlation with

waist circumference (p-value less than 0.005). 

We implemented the measurements in Table 2 on 3D face data.

Moreover, thanks to the availability of complete 3D data rather

than 2D images only, we computed additional measures based

on geodesic distances between selected anthropometric landmarks.

Briefly speaking, geodesic distances measure the shortest path be-

tween two points along the surface, that is, the path one would
ollow if bounded to walk on the surface of the object ( Biasotti

t al., 2014 ). Therefore, geodesic distances capture information

hich is substantially different from their Euclidean counterpart.

his can be appreciated in the example in Fig. 11 , where the

eodesic distance (left) between the two landmarks measures the

ength of the path passing below the chin, whereas the Euclidean
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Fig. 12. Two views of each curve passing through four landmarks, on a 3D face 

model. In the first (resp. second) row is visualized the geodesic path a (resp. b ). 

Table 3 

The two geodesic-based features comput- 

ing the length of paths in Fig. 12 . 

FEATURE DESCRIPTION 

Lgeod a Length of the geodesic a 

Lgeod b Length of the geodesic b 
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Fig. 13. Sections given by the intersection of the 3D face mesh with equally-spaced 

planes perpendicular to the z -axis. 

Table 4 

List and description of sectional features. 

FEATURE DESCRIPTION 

meanLZ Average length of the sections 

meanAZ Average area of the polygons enclosed by the sections 

maxLZ Maximum length of the sections 

maxAZ Maximum area of the polygons enclosed by the sections 
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istance (right) measures the horizontal distance between the

oints. 

Our idea was to look for geodesic paths able to account for

eight variations. We experimented with paths passing through

ifferent sets of way-points, and found two sets of way-points

enerating informative paths ( Fig. 12 ). With the notation used by

arkas notation ( Farkas, 1994 ), the landmarks which define the two

eodesic paths a and b are: 

• geodesic path a: exocanthion (eye) left - 

subaurale (ear) left - subaurale right - exocanthion right ; 
• geodesic path b: alare (nose) left - subaurale left - subaurale

right - alare right. 

It cannot be assumed that a geodesic path joining landmarks

 and 14 always goes through the same surface for any real face,

.g. through the neck. Thus, in the real setting a proper con-

traint should be used in order to ensure the geodesic path passing

hrough the desired surface, e.g. adding a specific extra way-point

n the neck region. For the specific set of experiments reported

n this paper, it has been visually verified that both the geodesic

aths a and b pass through the desired region of the face. 

We computed the lengths of each path, and used them as fea-

ures to quantify facial changes due to weight gain, as summarized

n Table 3 . 

.2. Landmark-independent features 

A drawback of the measurements above is that they rely on

he accurate identification of anatomical landmarks on the 3D face

esh. As suggested in Giachetti et al. (2015) , whereas in the case

f manual anthropometric measurements landmarks are identified

y expert anthropometrists by observation and palpation, automat-

cally locating landmarks with optimal accuracy on 3D acquired

ata could be difficult. This holds especially for poorly geometri-

ally characterized landmarks, or landmarks located near regions

ubject to occlusions, for example due to the presence of hair.

ince small errors in detecting the landmarks on real data could af-

ect badly the feature computation, we decided to develop a tech-
ique based on shape features independent of the precise, opti-

al location of anatomical landmarks. We defined a set of pla-

ar curves given by the intersection of a face mesh with p parallel

lanes perpendicular to the z -axis ( Fig. 13 ). We experimented with

p = 10 . Slicing an object and evaluating sections is a classical idea

n geometry, which finds many different applications (including 3D

rinting technology). Among the many properties which can be

omputed on planar curves (e.g. curvature), we experimented with

verage and maximum lengths, which are easily computed from

canned data and robust to noise. 

.3. Experimental results 

Since our essential objective is the description of morpholog-

cal change over time on a subject, we must check whether our

echniques enable us to discover a trend in a longitudinal study.

o this end, we generated a dataset of synthetic 3D faces simulat-

ng weight changes using a parametric deformable model, namely

he Basel Face Model ( Paysan et al., 2009 ). The Basel Face Model

rovides specific parameters to be tuned for simulating fattening.

oreover, data are labelled with different sets of anatomical land-

arks (Farkas and MPEG4-FDP feature point coordinates and in-

ices). These characteristics make the Basel Face Model a natural

nd effective choice for producing synthetic data to help assessing

he techniques we developed. 

Twenty-five faces were randomly generated as seeds, and each

ace was morphed to simulate the process of gaining weight, with

0 equally spaced intervals. This gave a dataset of 250 faces,

ivided into 10 groups ordered according to increasing fatness.

ig. 14 shows a sequence of fattening faces of the same individual.

In the following we evaluate the features introduced above,

ith respect to the inter-cluster separability and with respect to

he history of an individual. Separability deals with the capability

f each feature in classifying a sample by weight, among the whole

ataset. The other criterion refers to the ability of reading correctly

he weight variations in an individual’s history. 

.3.1. Analysis of separability 

A first analysis serves to check whether the features listed in

able 2, 3 , and 4 are able to separate the faces of people in the 10

roups corresponding to different fatness levels. This can be quali-

atively and quantitatively measured by evaluating the inter-cluster

eparability and intra-cluster homogeneity of the 10 clusters in the

mbedding space given by the features. Fig. 16 shows the scatter

lots for the subjects belonging to three groups of fatness: level 1,

n red, level 5, in green, and level 10, in blue) in the embedding
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Fig. 14. A sequence of faces generated from the same seed, increasing weight in ten stages. 

Table 5 

List of all the features, compared each other with respect to the clus- 

ter separability. The five best (bold) performing features are: f 3, f 6, f 7, 

Lgeod a , Lgeod b . 

FEATURE Cluster separability Ranking 

f 1 69 .11 15 

f 2 198 .70 18 

f3 36 .73 1 

f 4 42 .50 8 

f 5 41 .21 7 

f6 38 .54 2 

f7 38 .58 3 

f 8 53 .52 12 

f 9 49 .07 11 

f 10 119 .90 17 

f 11 44 .05 9 

f 12 40 .42 6 

Lgeod a 39 .70 5 

Lgeod b 39 .19 4 

meanLZ 47 .92 10 

meanAZ 60 .45 13 

maxLZ 63 .44 14 

maxAZ 75 .06 16 

Fig. 15. A visualization of the features f 3, f 6, and f 7. Note: due to the symmetry of 

the face model used, f 6 and f 7 are equal. 

 

 

 

 

 

 

 

 

Fig. 16. Scatter plots for the subjects belonging to three groups of fatness: level 1, 

in red, level 5, in green, and level 10, in blue) in the embedding space given by the 

features f 1 and f 2, f 3 and f 6, f 11 and f 12, Lgeod a and Lgeod b , meanLZ and meanAZ . 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article). 
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space given by the features f 1 and f 2, f 3 and f 6, f 11 and f 12, Lgeod a
and Lgeod b , meanLZ and meanAZ . For each feature f , the separabil-

ity can be quantitatively measured by evaluating the total separa-

tion between clusters. Define μi as the centre of the i − th cluster,

i = 1 , . . . , 10 , with 10 the number of fatness levels in our dataset.

The total separation is defined as Haldiki et al. (2001) 

sep = 

D max 

D min 

10 ∑ 

i =1 

( 

10 ∑ 

j=1 

|| μi − μ j || 
) −1 

with D max (resp. D min ) the maximum (resp. minimum) distance be-

tween cluster centers. Table 5 summarizes the results: the best

performing features are the lengths of the geodesic paths (showed

in Fig. 12 ), and f 3, f 6, f 7 (in Fig. 15 ). 
From both a qualitative and quantitative analysis it can be ob-

erved that not all the features listed in Lee and Kim (2014) as

orrelated with waist circumference provide a good separation

mong people with different fatness levels. Moreover, the length of

eodesic paths on the 3D surface provides a comparable or better

lustering than the features in Lee and Kim (2014) . More notable

s the performance of sectional features: though extremely simple

o compute and completely independent of the pre-computation of

natomical landmarks, especially meanLZ seems to be able to iden-

ify facial characteristics correlated with the amount of fat. The
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Fig. 17. Graphs of a selection of the features ( f 3, Lgeod a , meanLZ ), computed on the whole dataset; with a zoom on the 7th seed. 
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erformance of sectional features will be further commented in

he next section about the monitoring of individual face changes. 

.3.2. Tracking individual changes 

Besides evaluating the capability of separating people in differ-

nt groups, we must also check whether our features enable us

o detect morphological changes over time on a subject. In other

ords, we must check if our features are able to discover a trend in

 longitudinal study, by tracking the facial morphological changes

n a single individual gaining weight. This is the usage scenario

n which the Wize Mirror will operate. A way to do this is visu-

lizing the behaviour of the linear and planar measures on each

f the 25 seeds in the dataset along the simulated weight gain. In

ther words, each individual has a trajectory graph which is made

f ten consecutive points. For a given trajectory, we can analyse

our attributes, namely location (the starting and ending points);

rientation (the direction of the vector between the endpoints); size

the magnitude of the vector between the endpoints); and shape .

n our context, the location depends on the specific, initial traits of

ach individual. The orientation is crucial: a consistent orientation

ould indicate that our technique is able to detect and encode the

rocess of getting weight. The size is a measure of the difference

n shape between the thinnest and the fattest morphing of the in-

ividual. The shape indicates how the features change along the

orphing process. 

Fig. 17 , first column, shows the trend of the features

 3, Lgeod a , meanLZ , computed on the whole dataset; for each plot,

he 25 lines represent the 25 seeds and the behaviour of the fea-

ure while simulating weight gain on that seed. 

A zoom on a single seed (7 th ) is showed in the last column

o better appreciate their attributes: the shape of each feature is

trictly increasing for all, and almost linear; the orientation (in-

reasing from left to right) is consistent with fattening. As regards

he size , we remark that its order of magnitude is 10 5 for f 3 and

geod a , while is 10 4 for meanLZ . For f 3 and Lgeod a , a linear trend
s showed, with an average slope (over the 25 seeds) of 6.79 ·
0 3 for f 3, and 21.27 · 10 3 for Lgeod a . This means that they are

xpected to track accurately the evolution of the face morphol-

gy while gaining weight, as envisaged in the Wize Mirror usage

cenarios. 

.4. Experiments on real data 

Our results on a synthetic dataset showed that most of the

easurements implemented are able to identify individual weight

ariation patterns, and to separate thinner from fatter people, to

 different extent. Each class of measurements has its pros and

ons. Landmark-based measures have the obvious drawback that

hey require a pre-processing step, which can affect the results

n real data. Landmark-independent measures strike a compromise

etween efficiency and efficacy, according to the Wize Mirror us-

ge scenarios. 

The present study on the geometric features able to account for

he body weight and body weight change from the 3D facial data

s relatively comprehensive but preliminary: a large testing on real

ace is required to validate all the measurements implemented,

hen to assess which one is the best performing in the task of

onitoring individual weight change. In the next few months, lon-

itudinal validation study will be conducted at three pilot sites on

pproximately sixty volunteers. This will serve to reinforce findings

eported in this paper. In order to verify that the most interesting

easurements implemented are feasible to be computed also on

eal data, a small test has been carried out on ten subjects with

he 3D data captured using method described in Section 4 . A sam-

le of these results is presented in Table 6 , while Fig. 18 shows the

catter plot of f 3 vs BMI and weight, LGeod a vs BMI and weight,

eanLZ vs BMI and weight for all subjects. 
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Fig. 18. Selected geometric features: f 3, f 6, Lgeod a , meanLZ , computed on a set of 10 subjects. Results are visualised as scatter plot of each feature vs BMI (blue) and weight 

(red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

6

 

s  

a  

a  

s  

r  

c  

t

 

o  

s  

o  
6. Stress and anxiety analysis 

6.1. Measures for stress and anxiety 

As mentioned in Section 2 , the facial signs of stress and anxiety

are the result of deviating motion patterns of facial musculature.

The two main regions that exhibit most of the muscular activity

are the eyes and the mouth. The third region is the head itself. In

order to cover these major regions in a non-invasive and integrated

approach for the detection of stress and anxiety, three methods

are applied, each targeting one of the three regions, with the re-

gion selection facilitated by the head pose estimation introduced

in Section 3 . 
f  

b  
.1.1. Eyelid motion 

The first method focuses on analysing eyelid related motion,

pecifically, the blink rate and eyelid opening. It uses active appear-

nce models (AAM) ( Cootes et al., 2001 ), which have been widely

pplied in facial expression analysis, as well as for facial expres-

ion classification ( Hamilton, 1959 ), as they provide a consistent

epresentation of the shape and appearance of the face. AAMs are

onsidered as models containing shape and texture for modelling

he human face. 

The applied AAM has 68 facial landmarks in total, out of which

nly 12 are used. The remaining landmarks were not removed

ince they help in aligning the AAM with the face, especially those

n the facial perimeter. Moreover, the usage of a complete (whole

ace) AAM is useful for extracting additional features such as eye-

row movements, head orientation and lip deformation for future
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Fig. 19. Eye opening average distance calculation between the two upper and lower eye-lid points (a) and variability of eye average distance and blink threshold (b). 

Table 6 

Results sample for 4 subjects. For each subject BMI and 

weight were collected ; and some of the geometric fea- 

tures implemented were computed: f 2, f 3, f 6, Lgeod a , 

meanLZ . 

FEATURE Sub 1 Sub 2 Sub 3 Sub 4 

BMI 21 .7 24 .6 28 .5 51 .8 

Weight(kg) 74 .2 71 .2 79 .6 168 .8 

f 2 29 .50 31 .58 34 .66 49 .31 

f 3 129 .57 128 .87 132 .05 138 .70 

f 6 147 .61 148 .53 154 .52 156 .04 

Lgeod a 472 .88 466 .18 482 .23 491 .42 

meanLZ 235 .3 236 .8 232 .8 241 .1 
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Fig. 20. Spatial distribution of landmarks on human face. 
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tudies. For extracting the blink rate, the AAM is used in order

o segment the eyelid area and to mark out the eyeball perime-

er with specific landmarks ( six landmark points for each eye).

hen, the average distance between the two upper and lower eye-

id points as shown in Fig. 19 (a) is calculated. Eye blinks can be

een as sharp negative spikes in the extracted signal as shown in

ig. 19 (b). 

A threshold is established after visual inspection of the data,

nd an eye blink is detected if the distance remains below that

hreshold for the next 100 ms. Extreme value analysis is performed

n the data, excluding outliers in case a specific subject has motor

ics, thus directly affecting the measured eye blinks. Finally, the eye

pening is calculated as the mean distance between the points of

pper and lower eyelid. 

raining and fitting the AAMs 

The shape model is built as a parametric set of facial shapes. A

acial shape is described as a set of L ∈ R 2 landmarks forming a

ector of coordinates X = [ { x 1 , y 1 } , { x 2 , y 2 } , . . . , { x L , y L } ] T . Their dis-

ribution on the human face is shown in Fig. 20 . A common mean

odel shape is formed by aligning face shapes through General-

zed Procrustes Analysis. The alignment of any new estimate leads

o the mean shape re-computation and the shapes are aligned

gain to this mean. This procedure is repeated until the mean

hape doesn’t change significantly within iterations (cf. Fig. 21 ). In

he next step, Principal Components Analysis (PCA) is employed,

rojecting data onto an orthonormal subspace in order to reduce

ata dimensionality. According to this procedure, shapes s are ex-

ressed as 

 = s 0 + 

∑ 

p i s i (5) 

here s 0 is the mean model shape and p i has the model shape

arameters. 

The appearance model is built as a parametric set of facial tex-

ures. A facial texture A of m pixels is represented by a vector of
ntensities g i : 

 (x ) = [ g 1 g 2 . . . g m 

] T ∀ x ∈ s 0 (6)

As with the shape model, the mean appearance A 0 and the ap-

earance eigen-images A i are normally computed by applying PCA

o a set of shape normalized training images. Each training image

s shape normalized by warping the training mesh onto the base

esh s 0 ( Matthew and Baker, 2004 ). After the use of PCA textures

 i can be expressed as 

 (x ) = A 0 (x ) + 

∑ 

λi A i (x ) (7)

here A 0 ( x ) is the mean model appearance and λi are the model

ppearance parameters. It is clear that the model (shape and ap-

earance) depends strongly on the image dataset used for its cre-

tion. When the model is created, its fitting to new images I or

ideo sequences turns to be the identification of shape parameters

 i and appearance parameters λi that produce the most accurate

t. This non-linear optimization problem pursuits to minimize the

bjective function 

 

x 

[ I(W (x ; p)) − A 0 (W (x ;�p))] 2 ∀ x ∈ s 0 (8) 

here W is a warping function. 

.1.2. Mouth activity 

The second method targets motion patterns of the mouth, espe-

ially high frequency patterns such as lip twitching, with the aim

o provide a quantitative analysis of mouth motion activity. The

ajority of related work on lip motion analysis deals with auto-

atic lip reading systems that aim to support audio-based speech

ecognition. In this context, Hojo and Hamada (2009) use space-

ime interest points, these are extensions of 2D interest point
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Fig. 21. Landmarks distribution (a); landmarks distribution after GPA alignment (b). 
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detectors that incorporate temporal information, while Mase and

Pentland (1991) use optical flow around the mouth. A further ap-

proach for real-time face and lip tracking with facial expression

recognition is described by Oliver et al. (20 0 0) , who use 2D blob

features and a hidden Markov model for their implementation. 

The algorithm that was implemented in this work for lip mo-

tion analysis uses optical flow, which is a velocity field that trans-

forms one image to the next image in a sequence. It works un-

der two assumptions. The motion must be smooth in relation to

the frame rate, and the brightness of moving pixels must be con-

stant. In this work, the velocity vector for each pixel is calcu-

lated by using dense optical flow as described by Farneback (2003) .

The mouth region of interest (ROI) is detected using the mask de-

scribed in Section 3.3 and split in two horizontal areas for defin-

ing the upper and lower lip regions. The upper area has a height

of 35% of the total mouth ROI height. The remaining 65% is for

the lower lip area, while the width is the same for all ROIs. The

maximum velocity is extracted for each of the two ROIs from the

computed velocity field , gained by applying optical flow only on

the Q channel of the YIQ transformed image, since the lips appear

brighter in this channel ( Thejaswi and Sengupta, 2008 ). Finally, for

each signal five features are extracted by using a sliding window

of 0.5 s in duration and an overlap of 50% over the maximum ve-

locity signal. This short duration reflects the short duration of lip

twitches, although a larger duration can be applied for gaining in-

formation for long term mouth activity patterns. The five extracted

features have been selected among other in order to produce the

best results concerning lip twitching detection. These features are:

• The variance of the signal inside the window. 
• The skewness of a sample distribution, which is defined as the

ratio of the 3rd central moment to the 3/2th power of the 2nd

central moment (the variance) of the samples. 
• The variance of the time intervals between any two subsequent

spikes or transients. This feature is used for estimating the peri-

odicity of the movements based on the observation that rhyth-

mic movements would produce variances close to zero. 
• The mean crossing rate, which is the rate of mean crossings

along the signal. 
• Dominant frequency, which is the frequency with the highest

power, derived from the power spectral density, which is calcu-

lated with the Discrete Fourier Transform (DFT). 

Finally, the 10 features in total (five for the upper lip ROI and

five for the lower lip ROI) are fed into a random forest classifier.

Random forests are a combination of tree predictors such that each

tree depends on the values of a random vector sampled indepen-

dently and with the same distribution for all trees in the forest. 
.1.3. Head motion 

The head motion algorithm is able to detect and measure move-

ents of a person’s head from a 2D video at the actual frame-rate.

he algorithm measures the head movements in terms of hori-

ontal and vertical deviations of specific reference points between

onsecutive frames. In Fig. 22 the flowchart of the algorithm is

hown. 

As implemented in the Wize Mirror, the algorithm starts with

he face detected using the robust face segmentation method ex-

lained in Section 4.1 . A local ROI has to be selected in absence

f, or with very low local movements in order to optimally mea-

ure the head motion and to discard movements that are related

ith facial expressions, such as mouth movements, eye blinks, and

ther facial expressions. According to Irani et al. (2014) the re-

ion between the eyes and mouth is the most appropriate region

ince it does not contain local movements and has the least possi-

le involvement with facial expressions. After the definition of the

OI, specific reference points (i.e. landmark points) that are located

t the four edges of the ROI are selected. Then, a tracker based

n optical flow ( Lucas and Kanade, 1981 ) is applied for tracking

he landmark point position in each frame. In order to keep only

he most stable reference points and discard erratic trajectories,

he maximum distance traveled by each point between consecu-

ive frames is calculated and points with a distance exceeding the

ode of the distribution are discarded ( Balakrishnan et al., 2013 ).

inally, the reliable reference point trajectories are analysed in or-

er to produce six different time series related to frame by frame

ovement and speed: the horizontal and vertical scalar compo-

ents, and the resulting vector ( Manousos et al., 2014 ). From the

bove time series, the mean, median and standard deviation in

oth x and y directions and the vector magnitudes of speed and

ovement have been extracted as representative features. 

.2. Assessment of the performance of each algorithm 

.2.1. Eyelid motion 

The algorithm was evaluated using the Pisa I experiment dataset .

his dataset was acquired during a campaign organised within the

ramework of the SEMEOTICONS project, where several videos of

3 participating subjects were collected. The videos were collected

hile participants were: (i) in a neutral state, (ii) while simulating

 situation of stress or anxiety, (iii) while performing a stressful

ask (e.g. Stroop test), and (iv) finally while watching a set of relax-

ng and stressful images and videos. After the session, the partic-

pants were asked to score their stress or anxiety perception . The

raining of the AAM model was performed using 138 images from

he dataset (including all subjects) from a population having both

yes open and eyes closed. 

An assessment, performed on 10 videos from five subjects (two

ideos for each subject) led to an accuracy for the eye blink rate
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Fig. 22. Flowchart of head motion algorithm. 
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Table 7 

Detailed performance results of the lip twitching detection algorithm. 

Class TP Rate FP Rate Precision Recall F-Measure 

Upper lip twitching 0 .734 0 .004 0 .922 0 .734 0 .817 

Lower lip twitching 0 .942 0 .007 0 .980 0 .942 0 .961 

No twitching 0 .987 0 .094 0 .957 0 .987 0 .972 

Weighted average 0 .961 0 .066 0 .961 0 .961 0 .961 
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easurement of about 93.5%. The effectiveness of the eye blink

etection algorithm strongly depends on the ability of the AAM

o accurately locate and track the eye region landmarks. The most

ommon reasons for errors include very rapid head movements, il-

umination variations (homogeneous and sufficient illumination is

eeded), out of plane face pose, eyeglasses and beard. 

.2.2. Mouth activity 

The evaluation of the method for measuring mouth activ-

ty, especially lip twitching, has been performed on 11 indica-

ive/synthetic video sequences. Since no measured information of

he dynamic characteristics of lip twitching could be found, dura-

ions and frequencies for a synthetic data set were based on re-

orts for eyelid and muscle myoclonia ( Alarcón and Valentn, 2012;

ojovic et al., 2011 ). The synthetic videos were created using the

D CAD software DAZ 3D 4.7. Specifically four different video clips

howing upper lip twitches were created by editing the “LipTop-

own” property of the mouth editor (maximum value: 0.20). In

ddition to the animated videos, one video showing real lower

ip twitching was found on YouTube (only lips visible, otherwise

nonymous). The remaining control video sequences included five

ubjects with no lip twitching from the Pisa I experiment dataset

nd one of a volunteer recorded with a webcam during loud read-

ng. The feature extraction process, as described above gave a total

f 1168 instances, 64 representing upper lip twitching, 310 repre-

enting lower lip twitching and 794 representing no twitching. The

utcome of a stratified 10 fold cross validation showed an over-

ll accuracy of 96.1%. A detailed performance per class is given in

able 7 . 

The results of the classification performance are very satisfac-

ory. A true positive rate of 0.942 and 0.987 for the lower lip

witching and the no twitching classes is a very good result, espe-

ially in conjunction with the equally high values for the precision.
egarding the upper lip twitching class, the performance is lower

0.734 for the TP rate). The confusion matrix showed that some

f the upper lip twitching instances were falsely classified as no

witching. This might be connected with the fact that all upper lip

witching videos were synthetically produced and compared to real

ideos for the other two classes. Concluding, the algorithm proves

he lip twitching detection possibility. 

.2.3. Head motion 

The evaluation was performed in order to determine that the

lgorithm measures were correct compared to a ground truth and

ith relative low accuracy errors. For this evaluation a testing

etup was developed, where 2D videos were acquired in a pre-

efined scenario. This scenario evaluates the accuracy of motion

easurements in comparison to a ground truth. The methodology

equires the capturing of videos with specific movements of a per-

on’s head in the 2D space, covering specific distances and running

t predefined speeds. The testing setup consisted of a flat board

ith a metric scale in mm printed on the horizontal and vertical

xes and a stationary camera positioned at a fixed distance. The

otion of the head was simulated by moving a face of a person

rinted on a second smaller board. The distance of the movements,

s well as the speed were measured using the scales and consid-
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Table 8 

Results of the head motion algorithm, the ground truth and the accuracy. 

Y Direction (mm and mm/sec) 

Video Feature Ground truth Measured Accuracy 

YMoveDown1 Speed 14 13 .7 98% 

Distance 42 39 .9 95% 

YMoveDown2 Speed 4 3 .4 85% 

Distance 4 3 .37 84% 

YMoveUp1 Speed 22 21 .8 99% 

Distance 45 43 .8 97% 

YMoveUp2 Speed 29 27 .7 95% 

Distance 58 55 .3 95% 

X Direction (mm and mm/sec) 

Video Feature Ground truth Measured Accuracy 

XMoveLeft1 Speed 26 25 96% 

Distance 127 124 .7 98% 

XMoveLeft2 Speed 53 42 .1 79% 

Distance 128 90 70% 

XMoveRight1 Speed 24 22 .9 95% 

Distance 115 113 .3 98% 

XMoveRight2 Speed 52 42 .2 81% 

(1 missing point) Distance 127 124 97% 
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ered to be the ground truth. The duration of the videos was also

pre-defined in order to extract the ground truth of speed. Eight

different videos were captured with horizontal and vertical move-

ments at various speeds (mm/s) and distances (mm). 

The results of the algorithm are reported in Table 8 . It is notice-

able that the average movement accuracy is about 92% compared

to the ground truth, while the average speed accuracy is about 91%.

Furthermore, for very small distances (i.e. in YMoveDown2 video)

the accuracy of the algorithm is reduced compared to larger dis-

tances (since a few pixels may represent a significant percentage

error). 

6.3. Assessment with respect to detection of stress and anxiety 

The three algorithms mentioned above were used in a prelim-

inary study to elaborate a set of facial features for the detection

of stress and anxiety as reported in Pediaditis et al. (2015) . For

this study videos from the Pisa I experiment dataset were employed.

They were recorded while the subjects were watching three clips,

which aimed to elicit the feelings of anxiety, stress and relaxation.

For each video the participant was asked to provide a rating for

the perceived affect, ranging from 1 to 5, where 1 stands for “Re-

laxed” and 5 for “Stress or Anxiety”. The latter represented a sin-

gle class since, according to expert psychologists opinion a correct

self-assessment of stress and anxiety cannot be taken for granted.

In addition, two psychologists reviewed in a blind manner, and in-

dependently the recorded videos. In case of a conflict, a third in-

dependent psychologist compared the data of the other two an-

notators. The selection of the video sequences was performed by

accumulating the labels for each class as given from the two ex-

perts in conjunction with the subjective rating given by each par-

ticipant. The selection resulted in 10 videos for the Relaxed class

and 12 for the Stress or Anxiety class. In addition to the three

algorithms mentioned above, a video-based heart rate estimation

method was used ( Christinaki et al., 2014 ) employing blind source

separation, as well as a mouth openness detection approach with

template matching. 

The fusion of all data was performed at the feature level in or-

der to create a single feature vector for the 22 instances (videos). A

statistical analysis of the data was initially performed to extract the

most prominent features. T-tests and one way ANOVA enabled to

identify and eliminate features that did not provide additional in-

formation with respect to the dataset. Subsequently, classification

experiments were performed using the data mining software Weka
3.7.12, and further feature selection was based on evaluating the

orth of a feature by measuring the Pearson’s correlation between

he feature itself and the class. After being sorted by their individ-

al evaluation, all features with a rank above 0.25 (32 features)

ere selected for further classification tests using a multilayer

erceptron artificial neural network (ANN). Leave-one-out cross-

alidation was chosen as an evaluation method, since it presents

he most reliable evaluation for small numbers of instances. Tests

nvolving additional classifiers, such as Naïve Bayes, SVM, Bayes

etwork and Decision tree showed that the ANN returned the best

esults in terms of balance between the two classes, while the

ther classifiers showed a tendency to high true positive rates for

nly one of the two classes. The selected ANN uses sigmoid nodes

nd backpropagation for training, and the number of hidden layers

s calculated based on the count of features plus the number of

lasses. In order to identify the smallest feature set that classifies

oth classes the best, given the circumstances, the aforementioned

etup was repeated multiple times. Each time the feature with the

owest rank (Pearson’s correlation) was removed, until only one

eature was left. 

The results showed that with feature sets of 9 and 10 features

n overall accuracy of 73% is reached. Some features, such as the

ye blink rate or the heart rate, that were expected to play a signif-

cant role in the classification process were not employed for the

bove result. This can be explained by the fact that the study did

ot take the personal baseline (e.g. heart rate in a relaxed state for

ach subject individually) into account, which could not be calcu-

ated due to the limited number of video clips after selection. 

. Conclusions 

This paper describes a part of the work and the results

btained within the framework of the European SEMEOTICONS

2013) project. The aim of the project is to develop a system which

onitors the user’s well-being over a period of time and provides

uggestions to improve and maintain a healthy lifestyle. The chal-

enge is to create a non-intrusive platform able to acquire multi-

odal data to detect signs of cardio-metabolic risks. In particular,

he techniques presented in this paper make possible to analyse

he morphology of the face in 3D and to recognise the psycho-

omatic status of the person in front of the mirror. 

The important aspect of the project is to design and develop

n inexpensive system so it could be deployed in a home envi-

onment. This prerequisite imposed a set of constraints on the de-

ign, in particular the system has to be constructed using afford-

ble sensors. From the output of these sensors, a 3D reconstruc-

ion of the face is created and the face is tracked. The proposed

ace 3D tracking, based on depth data, has shown to be robust,

roviding good results for face detection accuracy and face spacial

osition estimation. The tracking is performed in real time, which

s a requirement for the subsequent processing of the Wize Mir-

or multisensory data. This includes analysis of stress and anxiety,

oth described in the paper, but also multispectral measurements

ot discussed in this paper. Additionally, the use of the depth sen-

or has two more advantages: it can be used as a primary sensor

or creating 3D face reconstructions, making the mechanical design

impler; and the face pose estimation can be done just once in 3D

pace with subsequent projections of the estimated 3D pose onto

D coordinates of the remaining Wize Mirror image sensors. 

The proposed 3D reconstruction methodology has been shown

o have the required properties, including high repeatability. Suit-

ble results have also been obtained for the 3D face morphological

nalysis . It has been shown that the described features are able to

ppropriately encode the fat level. Using such features, a regular

attern is produced which can be used to analyse the fattening of

he individual. Hence, via 3D shape analysis, it is possible to auto-
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atically assess the weight gain which is one of the main factors

f cardio-metabolic risk. 

Regarding the analysis of stress and anxiety, the proposed algo-

ithms successfully extracted signs of those conditions. Particularly,

he signs considered are the eyelid motion, the mouth activity and

he head motion. The presented algorithms show the capability of

etecting and properly measuring the indicated facial signs with a

igh accuracy. These signs can then be employed to classify differ-

nt psycho-somatic states. 

The work presented shows that having a lifestyle-compatible

evice for health self-monitoring and self-assessment is a reality.

oreover, the users will not need to change their habits or interact

uch with the mirror in order to get a wellness assessment. The

rocess of acquiring data is performed while the users are standing

n front of it, possibly as a part of their daily routine. In the cur-

ent implementation, most of the acquisitions require a very short

ime, from just a couple of seconds for 3D reconstruction, to one

inute for emotion recognition. This non-obstructive characteris-

ic is a key requirement for the successful deployment of a self-

ssessment system. 
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