
Central Lancashire Online Knowledge (CLoK)

Title Perfluoroalkylated substances effects in Xenopus laevis A6 kidney epithelial 
cells determined by ATR-FTIR spectroscopy and chemometric analysis

Type Article
URL https://clok.uclan.ac.uk/16214/
DOI https://doi.org/10.1021/acs.chemrestox.6b00076
Date 2016
Citation Gorrochategui, Eva, Lacorte, Silvia, Tauler, Roma and Martin, Francis L 

(2016) Perfluoroalkylated substances effects in Xenopus laevis A6 kidney 
epithelial cells determined by ATR-FTIR spectroscopy and chemometric 
analysis. Chemical Research in Toxicology, 29 (5). pp. 924-932. ISSN 0893-
228X 

Creators Gorrochategui, Eva, Lacorte, Silvia, Tauler, Roma and Martin, Francis L

It is advisable to refer to the publisher’s version if you intend to cite from the work. 
https://doi.org/10.1021/acs.chemrestox.6b00076

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.  
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors 
and/or other copyright owners. Terms and conditions for use of this material are defined in the 
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/


Perfluoroalkylated Substance Effects in Xenopus laevis A6 Kidney
Epithelial Cells Determined by ATR-FTIR Spectroscopy and
Chemometric Analysis
Eva Gorrochategui,† Sílvia Lacorte,† Roma ̀ Tauler,† and Francis L. Martin*,‡,§

†Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior
de Investigaciones Científicas (CSIC), Barcelona 08034, Catalonia, Spain
‡Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
§School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, U.K.

*S Supporting Information

ABSTRACT: The effects of four perfluoroalkylated sub-
stances (PFASs), namely, perfluorobutanesulfonate (PFBS),
perfluorooctanoic acid (PFOA), perfluorooctanesulfonate
(PFOS), and perfluorononanoic acid (PFNA) were assessed
in Xenopus laevis A6 kidney epithelial cells by attenuated total
reflection Fourier-transform infrared (ATR-FTIR) spectrosco-
py and chemometric analysis. Principal component analysis−
linear discriminant analysis (PCA-LDA) was used to visualize
wavenumber-related alterations and ANOVA-simultaneous
component analysis (ASCA) allowed data processing consid-
ering the underlying experimental design. Both analyses
evidenced a higher impact of low-dose PFAS-treatments
(10−9 M) on A6 cells forming monolayers, while there was a
larger influence of high-dose PFAS-treatments (10−5 M) on A6 cells differentiated into dome structures. The observed dose−
response PFAS-induced effects were to some extent related to their cytotoxicity: the EC50-values of most influential PFAS-
treatments increased (PFOS < PFNA < PFOA ≪ PFBS), and higher-doses of these chemicals induced a larger impact. Major
spectral alterations were mainly attributed to DNA/RNA, secondary protein structure, lipids, and fatty acids. Finally, PFOS and
PFOA caused a decrease in A6 cell numbers compared to controls, whereas PFBS and PFNA did not significantly change cell
population levels. Overall, this work highlights the ability of PFASs to alter A6 cells, whether forming monolayers or
differentiated into dome structures, and the potential of PFOS and PFOA to induce cell death.

1. INTRODUCTION

Omic tools enable simultaneous and large-scale study of
molecules of exposed organisms to extract underlying
alterations caused by environmental stressors. State-of-the-art
omic techniques include microarray-based and sequencing
techniques,1 nuclear magnetic resonance spectroscopy,2 and
mass spectrometry.3 However, another technique valid for
omics, providing rapid and nondestructive analyses, is IR
spectroscopy.4 Over the last few decades, IR has become a
powerful methodology to study agriculture-related products
and plant materials.5−7 Recently, IR has provided excellent
results both in clinical research [e.g., discriminating benign
from malignant tumors in tissue samples such as the breast,8

colon,9 lung,10 or prostate,11 and examining biofluids, including
urine, saliva, serum, or whole blood]12−14 and in the
environmental field.15−18 Because of its capacity to interrogate
biochemical signals of stressed organisms, attenuated total
reflection Fourier-transform IR (ATR-FTIR) spectroscopy
shows great potential.

The use of ATR-FTIR spectroscopy to address biological
questions is viable since biomolecules with chemical bonds
having an electric dipole moment absorb in the mid-IR region
through their vibrations, giving rise to a detailed biomolecular
fingerprint in the form of an IR spectrum. The acquisition of
such fingerprints allows subsequent spectral classification with
computational methods and possibly permits biomarker
detection.19,20 Various chemometric methods are suitable for
IR data sets, both for exploratory or modeling purposes,
including principal component analysis (PCA) and linear
discriminant analysis (LDA).16,21,22 These methods allow data
reduction to facilitate the identification of wavenumber-related
spectral alterations associated with glycogen content, lipid
content, conformational changes and phosphorylation charac-
teristics in proteins or structural alterations in DNA/RNA.23,24

Another chemometric technique suited for the analysis of IR
data sets, especially for those obtained in multifactorial designs,
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such as that hereby presented, is ANOVA-simultaneous
component analysis (ASCA).25

Omic experiments focused on molecules with high environ-
mental persistence [e.g., perfluoroalkylated substances
(PFASs)] permit the investigation of unknown effects of
xenobiotics in target organisms. Preferred doses of exposure are
usually in the nanomolar scale, so as to reproduce real-world
low-doses. PFASs represent a large group of compounds highly
used in a variety of consumer products, very resistant to
degradation and with a high accumulation potential.26,27

Concerns about PFASs have risen due to their widespread
distribution and persistence in humans and the environment
but also due to their toxicity and ability to act as endocrine-
disrupting chemicals (EDCs)28 and obesogens.29 Some recent
studies suggest a capacity of PFASs to alter cellular membrane
lipids.30−32 Other biosystems might be affected by the presence
of PFASs, such as the A6 cell line.
The renal epithelial A6 cell line was produced in 1969 from

the renal uriniferous tubule of the adult African clawed frog
Xenopus laevis.33 It expresses the properties of tight epithelium,
renal distal tubules, and collecting ducts.34 At confluence, A6
cells can form an epithelial monolayer (Figure 1A,C,E) and
spontaneously differentiate into a dome structure (Figure
1B,D,F).35 Renal epithelial cells are specialized for absorption
or secretion, where the membrane facing the culture media is
the apical membrane, the membrane attached to the plastic
culture flask is the basement membrane, and the membrane

lying along the basement surface is the basolateral membrane
(Figure 1A,B). The apical membrane of A6 cells contains the
epithelial Na+ channel (ENaC), while Na+/K+-ATPase is in the
basolateral membrane.36 The incorporation of Na+ ions by
ENaC and their expulsion into the extracellular space by Na+/
K+-ATPases causes an accumulation of Na+ ions in the space
between A6 cells and the plastic culture flask. Subsequent
osmotic water inflow produces an elevation of the cell layer and
results in a dome formation (Figure 1B),37 a structure easily
seen by the microscope (Figure 1D,F). A6 cells forming domes
have distinct physiological and structural properties (e.g.,
changes in the cytoskeleton)38 than A6 cells forming
monolayers. Because it is easy to culture, the A6 cell line is
commonly used in space studies, and several studies investigate
the effects of gravitational forces on dome formation.35,37,39

However, little research has been conducted into the effects of
xenobiotics on A6 cells as a toxicological model to simulate the
effects on amphibians.
Within this context, the aim of this study was to examine the

alterations induced in A6 cells, forming monolayers or
differentiated into domes, exposed to four PFAS substances
[i.e., perfluorobutanesulfonate (PFBS), perfluorooctanesulfo-
nate (PFOS), perfluorooctanoic acid (PFOA), and perfluor-
ononanoic acid (PFNA)], using ATR-FTIR spectroscopy and
chemometric analysis [i.e., PCA-LDA and ASCA; see
Supporting Information (ESI) for a short description of these
methods]. In addition, a growth-curve experiment was

Figure 1. Schematic representation of Xenopus laevis A6 kidney epithelial cells forming a monolayer (A) and a dome (B). Direct inversion images of
Giemsa-stained A6 cells disposed on a monolayer (C) and forming a dome (D). Phase-contrast images of A6 cells disposed on a monolayer (E) and
forming a dome (F). (Scale bars = 150 μm). (G) Experimental design for the study of PFAS-induced effects (refer to section 2.3). (d = day).
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developed to determine whether the four distinct PFAS-
exposures differentially altered dose- and time-related cell
number increases in culture.

2. MATERIALS AND METHODS
2.1. Chemicals and Reagents. PFBS and PFOS were obtained

from Fluka (Austria), whereas PFOA and PFNA were purchased from
Sigma-Aldrich (Steinheim, Germany). Stock standard solutions and
serially diluted test solutions were prepared in DMSO. Cell culture
consumables were obtained from Invitrogen Life Technologies
(Paisley, UK), unless otherwise stated.
2.2. Cell Culture and Treatment. Xenopus laevis A6 kidney

epithelial cells were obtained from American Type Culture Collection
(ATCC CCL-102). They were cultured in modified L15 culture
medium consisting of 70% Leibovitz media, 19% Milli-Q water sterile
filtered through a 0.2 μM syringe filter, 10% fetal bovine serum (FBS),
and 1% penicillin/streptomycin, at 5% CO2 and 26 °C. Cells were
trypsinized before the incorporation of cell aliquots for routine culture
in T75 polystyrene flasks. Toward experiments, A6 cells were
disaggregated, resuspended in complete medium, and then seeded in
T25 flasks at a rate of 500,000 cells per flask whereupon they were
grown for the time required depending on the experiment (see section
2.3). For PFAS-treatment, 25 μL of stock solutions were added to 5
mL of the culture medium so that final exposure-doses ranged from 0
to 10−5 M [considering 0 M as zero-dose control, in which cells were
only exposed to the carrier solvent (DMSO)]. Following treatment,
cells were disaggregated into cell suspensions and immediately fixed
with 70% EtOH.
2.3. Experimental Design. The effects of the four PFAS

substances were studied on A6 cells forming monolayers or domes
in three distinct experiments [Figure 1G1,2,3]. In experiment 1
[Figure 1G1], PFAS-induced effects were evaluated in cells forming
confluent monolayers. Toward this, cells were seeded for 1-day prior
to PFAS-exposure for a further 1-day (2-day experiment) and final
fixation. In this experiment, cells were exposed to chemicals at six
concentrations (0, 10−9, 10−8, 10−7, 10−6, or 10−5 M). In experiments 2
and 3 [Figure 1G2,3, respectively], PFAS-effects were evaluated in

cells forming domes (9-day experiment). However, the introduction of
PFAS-treatment differed between them. In experiment 2 [Figure
1G2], following 1-day seeding and 1-day PFAS-exposure, the medium
was aspirated and cells were grown for further 7 days in fresh medium,
allowing dome formation, before final fixation. In contrast, in
experiment 3 [Figure 1G3], cells were grown for 8 days to allow
dome formation, followed by 1-day treatment exposure prior to
fixation. In experiment 2, cells were PFAS-exposed at four
concentrations (0, 10−9, 10−8, or 10−5 M), while in experiment 3,
three concentrations (0, 10−8, or 10−5 M) were tested.

Five independent experiments were performed for each treatment at
conditions 1 and 2 (i.e., 5 samples per category). Thus, the total
number of samples was 120 (i.e., 5 experiments × 4 PFASs × 6 doses)
and 80 (i.e., 5 experiments × 4 PFASs × 4 doses) at conditions 1 and
2, respectively. In the third conditions, two independent experiments
were performed, giving 2 samples per category. Hence, the total
number of samples in the latter case was 24 (i.e., 2 experiments × 4
PFASs × 3 doses). Low number of replicates was performed in
experiment 3, as the results obtained are used to extract tentative
conclusions about long-term PFAS-induced effects considering the
physiological conditions of cells forming domes.

2.4. ATR-FTIR Spectroscopy. Cellular material in 70% EtOH was
applied to 1 cm × 1 cm Low-E-reflective glass microscope slides
(Kevley Technologies, Chesterland, OH, USA) (Figure 1G) and
allowed to air-dry prior to storage in marked 30 mm Petri dishes kept
in a desiccated environment until analysis. IR spectra were obtained
using a Bruker Vector 22 FTIR spectrometer with a Helios ATR
attachment containing an ≈250 μm × 250 μm aperture diamond
crystal (Bruker Optics Ltd., Coventry, UK). The ATR crystal was
cleaned with sodium dodecyl sulfate (SDS; Sigma Chemical Co.); a
new background was taken prior the analysis of each new sample.
From each treatment flask (generating one slide), 10 IR spectra were
acquired from different locations across each sample. The spectral
resolution was 8 cm−1 giving data spacing of 4 cm−1. Spectra were
coadded for 32 scans; these were converted into absorbance units by
Bruker OPUS software.

Figure 2. One-D PCA-LDA score plots showing dose−response effects of PFBS, PFOA, PFOS, and PFNA in the three experiments. *Most
discriminant PFAS-treatment compared to the control.
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2.5. Spectral Preprocessing and Multivariate Data Analysis.
Raw IR spectra obtained from exposed and control samples were
preprocessed prior to chemometric analysis (see Figure S1). Initially,
using OPUS software, IR spectra were individually cut to include only
wavelengths between 1,800 and 900 cm−1 (235 wavenumbers at 4
cm−1 data spacing), the area associated with the biological spectral
fingerprints. Then, the baseline of the resulting data set was corrected
by applying Rubberband correction methods, and spectra were
subsequently normalized to Amide I (i.e., 1,650 cm−1). Afterward,
spectra were mean-centered, and finally, the class of the sample was
defined.
2.5.1. Principal Component Analysis Plus Linear Discriminant

Analysis (PCA-LDA). PCA-LDA15,16,21,22 was applied to the spectral
data sets using MATLAB 8.3.0 R2014a (The Math Works, Natick,
MA, USA) and the IrootLab toolbox (http://irootlab.googlecode.
com).40 As stated in the Theory section, PCA allows for the reduction
of the number of variables in the spectral data set, whose small number
of principal components (PCs) can capture 95% of the variance
present in the original data set. In this study, the first 10 PCs were
used. A total of 12 PCA-LDA analyses were performed, considering 4
PFASs and 3 experiments. For each model, the results of the analysis
were visualized through one-dimensional (1-D) scores plots (Figure 2)
and cluster vectors plots (see Figure S2). Scores plots were used to
study dose−response effects of PFASs, by examining the proximity in
multivariate distance between exposed and control samples. Primary
wavenumbers important for such discrimination were visualized in
cluster vectors plots.22,24

2.5.2. ANOVA-Simultaneous Component Analysis (ASCA).
ASCA25 (see ESI) was applied to three well-balanced spectral data
sets (see Figure S3) by using PLS Toolbox 7.8 (eigenvector Research
Inc., Wenatche, WA, USA) working in a MATLAB 8.3.0 R2014a
environment (The Math Works, Natick, MA, USA). In these ASCA
models, the effects of two categorical factors [i.e., type of chemical,
with four levels (PFBS, PFOS, PFOA, or PFNA), and dose of
exposure, with a number of levels differing among experiments (see
section 2.3)] and interaction were studied. Statistical significances of
the two factors and interaction were evaluated by a permutation test,
using 10,000 permutations.41

2.6. Microscopic Images. 2.6.1. Cell Fixation. A6 cells coming
from 90% confluent T75 flasks were disaggregated, resuspended in
complete medium, and seeded in plastic culture tissue coverslips
(Sarstedt, USA) in 30 mm Petri dishes at a rate of 200,000 cells per
Petri dish and allowed to attach overnight at 26 °C. Then, cells were
grown for 2 days, when they formed a confluent monolayer, or for 9
days, when they formed domes. Finally, cells were fixed using 70%
EtOH (40 min), washed twice with 70% EtOH, and kept at −4 °C
until microscopy visualization.
2.6.2. Cell Staining. Cells fixed in the coverslips were air-dried for

24 h, transferred to new 30 mm Petri dishes containing 3 mL of a
solution of 5% Giemsa (Sigma-Aldrich, UK), and left for 20 min.
Then, the coverslips were washed twice with distilled water and
allowed to air-dry. The coverslips were mounted directly onto the
microscope.
2.6.3. Microscopy Instrumentation. A Nikon Coolpix 950 camera,

mounted via a Nikon Coolpix MDC lens 0.82−0.29× adapter to a
Nikon Eclipse TE300 inverted microscope, fitted with a Nikon Plan
Apo 60×/1.20 water immersion objective was used to obtain images of
Giemsa-stained cells (Figure 1C,D). Also, a confocal microscope, Leica
DMIRE2 inverted microscope connected to a Leica TCS SP2 scan
head and phase contrast settings, was used to obtain images of Figure
1E,F.
2.7. Determination of Cell Number. A6 cells were seeded at a

ratio of 500,000 in T25 flasks in 5 mL of complete medium containing
individual chemicals (PFBS, PFOS, PFOA, or PFNA) at concen-
trations of 10−9, 10−5, or 0 M (control). This point was taken as time
zero (T0), and duplicate cell counts in triplicate flasks were acquired.
These T0 cell counts (n = 6 per category) were averaged and
normalized to 100%. Cells were washed, trypsinized, resuspended, and
the cell number determined at indicated time points employing a
hemocytometer. The acquired values for each experimental condition

were averaged, and these contributed to the mean ± SD of the three
separate experiments. Results were expressed as relative cell number
[%; i.e., ratio of the cell number at the indicated time point relative to
that determined at T0 (normalized to 100%) × 100].

3. RESULTS
In the present study, IR data sets were first evaluated with 12
PCA-LDA models and further examined with 3 ASCA models.
Initial PCA-LDA was performed to explore individual dose−
response effects of each PFASs in the three experiments,
whereas ASCA allowed data analysis considering the underlying
experimental design. Results of both analyses are presented
below.

3.1. Dose−Response Effects of Individual PFASs by
PCA-LDA. Results of the 12 PCA-LDA (Figure 2) evidenced a
distinct dose−response pattern in experiment 1 compared to
experiments 2 and 3. In the first experiment, the highest
distinction between treated and control cell populations was
observed at the lowest concentration tested (10−9 M) in all
PFAS-treatments. Conversely, higher PFAS concentrations
were responsible for marked effects in experiments 2 and 3,
especially in the latter conditions. A similar tendency was
observed in the two last experiments: PFOS and PFNA caused
in both conditions the highest alterations at 10−5 M, and PFOA
produced the highest impact at low doses of 10−9 and 10−8 M
in experiments 2 and 3, respectively. Only PFBS behaved
inversely in these two experiments, producing major effects at
the lowest dose tested (10−9 M) in experiment 2 and at the
highest (10−5 M) in experiment 3. Primary wavenumbers
important for discrimination of PFAS-treatments at the
concentration producing more effects in the three experiments
together with the molecular entities associated with them42 are
shown in Table S1 and can be visualized in the cluster vectors
plots of Figure S2.

3.2. Assessment of the Effects of Experimental
Factors by ASCA. 3.2.1. Split-Up of Variation. A first
impression of the amount of variation related to the design
factors can be obtained by separating this variation into
contributions from the different factors. In this study, the
statistical significances of the two categorical factors (i.e.,
chemical and dose) and of their interaction were evaluated
separately in the three experiments (Table 1). Results of this
evaluation were attributed to the dominant part of variation to

Table 1. ASCA Modeling: Significance and Partitioning of
the Total Variance into the Individual Terms Corresponding
to Factors and Interactiona

experiment factor percentage of variationb significance (p-value)

1 C 2 1 × 10−3

D 3 1 × 10−3

C x D 7 1 × 10−3

residuals 89
2 C 2 4 × 10−3

D 3 1 × 10−3

C x D 3 3 × 10−1

residuals 93
3 C 8 3 × 10−1

D 8 8 × 10−2

C x D 12 8 × 10−2

residuals 85

aC = chemical; D = dose. bPercentage of variation expressed as sums
of squared deviations from the overall mean and not variances.
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natural variability (residuals ≥85%) and the minor part to
factors and interaction (≤12%), observing higher effects in
experiment 3. Results of the permutation test showed larger
significances (p-values ≤0.05) of factors in experiments 1 and 2.
Despite the observed small PFAS-induced effects on A6 cells,
the good reproducibility of the ATR-FTIR technique allows the
extraction of reliable conclusions about their impact on A6 cells
in the present study.
3.2.2. Factor “Chemical”. Scores of the first component of

factor “chemical” [Tc values of equation S2] shown in Figure 3
indicate that chemicals producing more effects were PFOS,
PFOA, and PFBS in experiments 1, 2, and 3, respectively. For
data sets 1, 2, and 3, the first component explains 56%, 82%,
and 90% of variation, respectively. Factor “chemical” was
significant in experiments 1 and 2 (p-values of 1 × 10−3 and 4 ×

10−3, respectively) but not significant in experiment 3 (p-value
= 3 × 10−1), according to the permutation test (Table 1).

3.2.3. Factor “Dose”. Scores of the first component of factor
“dose” are shown in Figure 3 for data sets acquired in
experiments 1, 2, and 3, respectively [Td values of equation S2].
For data sets 1, 2, and 3, the first component explains 78%,
93%, and 94% of variation, respectively. Scores of these figures
indicate that concentrations of exposure producing more effects
were 10−9, 10−9, and 10−5 M in experiments 1, 2, and 3,
respectively. The results of the permutation test evidenced that
the PFAS-dose was significant in experiments 1 and 2 with p-
values of 1 × 10−3 and 1 × 10−3, respectively, but not significant
in experiment 3, with a p-value of 8 × 10−2 (Table 1).

3.2.4. Interaction “Chemical × Dose”. Scores of the first
component of the interaction showed no pattern related to the

Figure 3. ASCA score plots of the first component for the factors “chemical” and “dose” of the three experiments. *Most discriminant factor levels.

Figure 4. Effects of PFBS, PFNA, PFOS, and PFOA on dose- and time-related cell number increases in culture.
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interaction of factors: there was no increasing or decreasing
trend of scores of the different doses of exposure respect to the
chemical treatment. For this reason, the plot of these scores is
not provided in this study.
3.3. Cell Number with Time in Culture with Exposure

to PFASs. The effects of the four PFASs on the increases in A6
cell number are shown in Figure 4. The behavior observed was
similar between pairs of chemicals PFBS and PFNA vs PFOS
and PFOA. For the first two chemicals, following 24-h or 48-h
treatment, no marked differences in cell population were
observed with respect to the control. However, 24-h and 48-h
treatments with PFOS and PFOA caused a significant decrease
in cell number, which became higher with time and gave rise to
maximum cell depletion after 48 h of exposure.

4. DISCUSSION
Our study evidenced a primary effect of low-dose (10−9 M)
PFAS-treatment on A6 cells forming monolayers (experiment
1) (Figure 2). Predominant effects of environmental stressors
at low-doses of exposure have often been reported in the
literature,43−46 especially for EDCs, such as PFASs. A review by
Vandenberg et al.47 reported two concepts associated with
EDCs: first, “big effects at low doses”, a theory primarily
defined by the National Toxicology Program (http://ntp.niehs.
nih.gov/), and second, the “nonmonotonicity” (i.e., nonlinear
relationship between dose and effect) thus declaring the dogma
“the dose makes the poison” open to question. It is important
to stress that our findings in experiment 1 (cells forming a
monolayer) followed this low-dose theory, while results of
experiments 2 and 3 (cells differentiated into dome structures)
showed an opposing tendency (major alterations at high
doses). Such differences can be explained by the specific
physiological status of cells forming monolayers or domes, the
latter having enhanced cell excretion function and requiring
higher PFAS-doses to produce an effect. Also, the differential
dose−response effects of PFAS substances depending on cell
differentiation status were to some extent related to the
cytotoxicity of most influential chemicals (according to ASCA
results) in each experiment. Considering the median effective
doses (EC50) of PFASs reported in a previous study on JEG-3
cells30 [i.e., PFOS (107−125 μM) < PFNA (213−220 μM) <
PFOA (594−647 μM) ≪ PFBS (n.d.)], it was observed that
major effects in experiment 1 (primarily influenced by high-
cytotoxic PFOS) occurred at low doses, whereas larger effects
in experiments 2 and 3 (primarily influenced by less-cytotoxic
PFOA and PFBS, respectively) were observed at higher doses.
Considering overall effects, a greater impact of PFAS
substances was evident in experiment 3, presenting the treated
samples to maximum cluster segregation compared to that of
the control in 1-D PCA-LDA score plots (Figure 2). The
higher effects of PFAS substances in experiment 3 vs
experiment 2 might be attributed to a cellular recuperation
after the chemical stress possible in the second conditions since
cells were allowed to grow for 7 days in fresh medium after
PFAS-exposure, a time that cells might use to eliminate those
PFAS substances previously incorporated.48

Interestingly, distinct spectral alterations were induced by
PFAS substances in the three experiments, suggesting three
mechanisms of action of the chemicals depending on cell
differentiation (i.e., monolayer or dome), moment of exposure
(i.e., pre- or postdome formation), and cell population. In
experiment 1, all PFAS substances produced alterations
associated with DNA/RNA (e.g., νsPO2

−) (see Figure S2 and

Table S1). The observed alterations in DNA/RNA are
suggestive of a genotoxic insult. In fact, PFOA and PFNA are
suspected genotoxic carcinogens through induction of reactive
oxygen species that are responsible for oxidative DNA damage.
Recently, Yahia et al.49 demonstrated that PFOA and PFNA
induced DNA damage in TK6 cells, observing that PFNA
produced high levels of 8-hydroxy-2′-deoxyguanosine (8-
OhdG), a biomarker of oxidative DNA damage. In contrast,
in experiment 2, all PFAS substances caused alterations
associated with secondary structures of proteins (Amide I,
Amide II, and Amide III) (see Figure S2 and Table S1). The
alteration of proteins observed under conditions 2 (9-day
experiment) might be attributed to a direct consequence of the
effects produced on DNA in the first conditions (2-day
experiment) since effects on DNA are ultimately expressed in
the proteins that it encodes. In experiment 3, all PFAS
substances produced alterations associated with fatty acids (see
Figure S2 and Table S1). In this experiment, one could expect
similar effects as in experiment 1 since in both cases cells are
analyzed right after PFAS exposure. However, the observed
differences might be attributed to the different numbers of cells
between both experiments and their dissimilar physiological
properties (i.e., monolayer vs domes). Continuing with the
study of distinguishing features induced by PFAS treatments,
special attention was focused on lipids, due to the reported
capacity of PFAS substances to alter lipid species of cellular
membranes. A previous study performed on human placental
chroriocarcinoma JEG-3 cells exposed to a mixture of eight
PFAS substances by LC-MS32 revealed that increased levels of
the major components of cell membranes [i.e., phosphatidyl-
choline (PC), lyso plasmalogen PC, and plasmalogen PC] and
a relatively low increase in triacylglicerols (TAG) were induced
by PFAS substances. Similarly, our findings showed some
effects of PFAS on lipids of A6 cells. As observed in Table S1,
in experiment 1 PFOS and PFOA produced effects at 1,736
cm−1 (CO stretching lipids) and at 1,444 cm−1 (lipids),
respectively, and in experiment 2 PFBS induced alterations at
1,750 cm−1, associated with a CC stretching in lipids, as
occurred with cells exposed to PFNA in experiment 3. The
findings of this study demonstrate that PFAS substances pose a
significant effect on the metabolome and lipidome of Xenopus
laevis A6 cells. However, more information is needed in order
to detect and identify potential biomarkers of lipid and
metabolite disruption and to find most altered biochemical
pathways, and future studies should focus on this point. Liquid
chromatography coupled to high resolution mass spectrometry
(LC-HRMS) techniques, which enable the analysis of
compounds at low doses with high accuracy mass determi-
nation, are highly suitable for such purposes. Moreover, the
fusion of IR data with LC-MS data is also worthy since it can
provide a more comprehensive knowledge of the effects of
PFAS substances in this amphibian cell model.
Finally, results of the growth-curve experiment showed

different responses of A6 cells exposed to PFBS/PFNA
compared to PFOS/PFOA (Figure 4). PFBS and PFNA did
not induce distinguishable A6 cell proliferation or depletion
compared to those of the control. In contrast, PFOS and PFOA
induced a decrease in A6 cell number compared to that of the
control, in a time- and dose-specific manner: after 48 h of
treatment, a time when the two PFAS substances presented
maximum effects, high-dose PFOS produced the most
profound cell decreases, whereas low-dose PFOA caused the
maximum decline in cell population. The capacity of PFOS and
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PFOA to inhibit cell proliferation has been reported in other
studies. Recently, Cui et al.50 found that 80% inhibitory
concentration (IC80) of PFOA (150.97 μg/mL) and 50%
inhibitory concentration (IC50) of PFOS (27.92 μg/mL)
blocked cell cycle and proliferation of Zebrafish (Danio rerio)
liver cells (ZFL). Also, other studies showed PFOA capacity to
induce apoptosis in hepatoma HepG2 cells.51,52

Overall, this work contributes to the better knowledge of
PFAS substance effects on Xenopus laevis A6 kidney epithelial
cells indicating an overall interference with DNA/RNA,
secondary structures of proteins, lipids, and fatty acids at
concentrations well below those associated with other adverse
effects, such as cytotoxicity or endocrine disruption. This work
also highlights (a) the differential effects of PFAS substances
depending on cell-differentiation, presenting a nonmonotonic-
behavior on A6 cells forming monolayers and (b) the ability of
PFOS and PFOA to induce cell death.
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