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Abstract 

In the manufacturing sector, despite the vital role it plays, the consumption of energy is rarely 

considered as a manufacturing process variable during the scheduling of production jobs. Due 

to both physical and contractual limits, the local power infrastructure can only deliver a finite 

amount of electrical energy at any one time. As a consequence of not considering the energy 

usage during the scheduling process, this limited capacity can be inefficiently utilised or 

exceeded, potentially resulting in damage to the infrastructure. To address this, this thesis 

presents a novel schedule optimisation system. Here, a Genetic Algorithm is used to optimise 

the start times of manufacturing jobs such that the variance in production line energy 

consumption is minimised, while ensuring that typical hard and soft schedule constraints are 

maintained. 

Prediction accuracy is assured through the use of a novel library-based system which is able to 

provide historical energy data at a high temporal granularity, while accounting for the 

influence of machine conditions on the energy consumption. In cases where there is insufficient 

historical data for a particular manufacturing job, the library-based system is able to analyse 

the available energy data and utilise machine learning to generate temporary synthetic profiles 

compensated for probable machine conditions.  

The performance of the entire proposed system is optimised through significant experimentation 

and analysis, which allows for an optimised schedule to be produced within an acceptable 

amount of time. Testing in a lab-based production line demonstrates that the optimised schedule 

is able to significantly reduce the energy consumption variance produced by a production 

schedule, while providing a highly accurate prediction as to the energy consumption during the 

schedules execution.  

The proposed system is also demonstrated to be easily expandable, allowing it to consider local 

renewable energy generation and energy storage, along with objectives such as the 

minimisation of peak energy consumption, and energy drawn from the National Grid. 
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CHAPTER 1 

INTRODUCTION 

 

This thesis investigates the incorporation of two historically disjoined domains – energy 

consumption information, and manufacturing production line scheduling. Through the 

assimilation of these two, energy-related objectives can be considered during the scheduling 

process, allowing for significant optimisation within the energy domain while satisfying the 

constraints typical of production scheduling. This thesis documents background research, 

subsequent investigation, and a proof-of-concept implementation, for the purpose of 

ascertaining whether energy related information can be reliability and accurately used during the 

scheduling process. 

 

1.1 Project Background 

In modern manufacturing production lines, the scheduling of production jobs is one of the 

primary factors which bring about the ability to produce a large volume of high quality products 

at a high rate while minimising cost and overall wastage. This is achieved by scheduling 

systems accounting for numerous factors and constraints such as the jobs to be executed, their 

machine and material requirements, the resources of the production line, shipping and delivery 

dates, etc. All this is considered, and the resulting output is a production schedule which 

specifies precisely when jobs need to begin execution, along which what resources and material 

are required. Typically, this is organised such that total makespan – the time between the start 

and end of a sequence of jobs for a product is minimised with the projected completion date 

aligning as close as possible to products delivery date. During this process, energy, which can 

be considered as one of the staple inputs for operating a production line is seldom considered as 

a process variable despite its consumption typically being monitored and recorded. 
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The industrial sector is one of the largest consumers of energy, with manufacturing being the 

highest consuming sub-sector. Globally in 2007, manufacturing was responsible for 90% of 

industry energy consumption along with 84% of its energy related CO2 emissions (Duflou et al, 

2012). While the consideration of energy-related goals is by no means a new prospect, it has 

primarily been undertaken by energy intensive industries such as primary metal, oil, and paper 

processing. On the contrary, similar considerations for the discrete part and product 

manufacturing sectors have only majorly come to light at the turn of the century, despite 

potential. In a report on manufacturing competitiveness, Deloitte attributes the importance of 

‘Energy costs and policies’ to be almost equal to labour costs and materials (Roth et al, 2012, 

pp. 7). This shows that in the same way companies have historically moved their production to 

areas of reduced labour costs, similar savings can be achieved through the increased 

consideration of energy. Due to numerous international and governmental legislations, namely 

the Kyoto Protocol, Climate Change Levy and Climate Change Act (United Nations Framework 

Convention on Climate Change, No date; Environmental Taxes Reliefs and Schemes for 

Businesses, 2015; Committee on Climate Change, No date), the discrete and production 

manufacturing sector is being coerced into considering more energy-based objectives during 

normal operations.  

 

1.2 Motivation for Research 

Individually as manufacturing jobs, hereby referred to as jobs, are being executed, the machine 

performing the task demands and consumes a different amount of energy depending on the 

elemental manufacturing operation currently being conducted. Over time, this results in the 

job’s energy consumption profile being highly volatile with large peaks and troughs, the 

amplitude and timespan of which are dependent upon the machine and job. When this is not 

accounted for, and multiple jobs are executed concurrently in a manufacturing production line, 

this volatility is translated through and amplified as the sum result of concurrently running jobs. 

For electricity, the infrastructure which consists of both transmission cables and power control 
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equipment, and connects the production line to the National Grid has a finite capacity. Should 

the production lines instantaneous demand for electricity ever exceed this limit, damage at a 

significant financial cost can occur.  

To ensure against this, current power infrastructures are designed with extra capacity to 

accommodate unforeseen peaks in energy consumption. If the problem still persists, naive 

power cutters can be installed to shutdown specific processes should the power consumption 

ever exceed a specified level. While these techniques are proven, they do come with limitations 

of varying severity. Not all processes are able to withstand arbitrary shutdowns and this can 

negatively impact production rates. Also, while the power infrastructure can be suitably 

overdesigned, one key question is what to do when the production line is to be expanded – Does 

the power infrastructure need expanding with it, or can it be used more efficiently? 

Manufacturing is a highly competitive industry where costs need to be minimal and stringent 

deadlines must be met. Therefore, minimising infrastructure and/or expansion cost is 

considerably appealing. Optimising energy consumption at the process level is seen to be 

inefficient. Because not all processes and machines are alike, the effectiveness of generic 

strategies can be limited, and there can be a high time requirement for developing 

machine/process specific ones. Also manufacturing production lines are highly sensitive 

environments and manufacturers are hesitant to adjust proven process parameters. Approaching 

this problem at the schedule level is seen as a suitable alternative. It requires no changes to the 

individual jobs or machines, and although dependent upon the schedule constraints, can have a 

significant amount of flexibility. However historically, as seen in figure 1.1, energy 

consumption data has been disjoined from the scheduling process and has only been considered 

from a financial perspective. Research into predicting and modelling energy consumption 

within manufacturing production lines is also limited to single-value statistics such as average 

and maximum energy demand, as opposed to time-variant predictions. Furthermore with 

scheduling being an NP-hard problem, accounting for additional factors only acts to increase the 

problem’s complexity (Pach et al, 2014; Fang et al, 2011). Schedule-based approaches have 

historically been used for energy optimisation. At the National Grid level, load scheduling, also 
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known as load shifting or Demand Side Management (DSM), is used to govern the level of peak 

consumption. Here industry is encouraged to run energy intensive processes during off-peak 

times via financial incentives (Brown et al, 2012). Further research also expands this for use 

with variable-supply renewable energy sources (Emec et al, 2013), and there is interest in 

applying this in domestic environments (Sung and Ko, 2015; Dang and Ringland, 2012).  

These works show the potential for schedule-based energy optimisation, however currently used 

methods do not approach this from an energy perspective. Cases where this is, are so far mainly 

confined to research and in certain cases, scheduling constraints are breached in favour of a 

better result (Mouzon et al, 2007). Additionally, a common energy-based objective – the 

minimisation of peak energy consumption, does not take advantage of a power infrastructure’s 

ability to be overloaded for a short, defined period of time. This is thanks to the use of 

protection devices such as slow-blow fuses and time delay circuit breakers. Furthermore, while 

load scheduling is utilised, given the volatile nature of job energy profiles, it may be possible 

for certain jobs to run at a degree of concurrency while keeping overall energy consumption 

below a predefined level. However given the high level of abstraction used in current energy 

modelling methods, its potential is yet to be realised.  

One potential alternative would be the consideration of the energy’s consumption variance. In 

minimising the variance, the production lines energy consumption would be stabilised as 

sufficiently as allowed by the constraints, while still allowing for a small volume of large, short 

lived peaks where/if necessary. This would maintain flexibility during the scheduling process 

while reducing the overreliance on the over-design of the power infrastructure.  

 

Figure 1.1 - Top-level diagram showing the disconnected relationship between production scheduling and the energy 

monitoring infrastructure. 
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1.3 Aims of Research 

In light of the situation discussed in the previous section, this thesis aims to develop a 

methodology which is able to optimise a production schedule such that it produces a minimal 

variance in the production line’s energy consumption when executed. To achieve this, the 

overall work is segmented into three accompanying objectives, each addressing a field of 

research which needs to be considered. The overall aim and subsequent objectives are stated 

below. 

Aim of Research 

Develop an original methodology for optimising manufacturing production schedules so that 

when executed on a known production line, they produce a minimal variance in the production 

lines energy consumption. 

Research objectives 

1. Investigate and develop industry based energy monitoring methods. 

2. Investigate and develop state-of-the-art methods for modelling energy consumption in 

manufacturing production line environments. 

3. Investigate and develop current and state-of-the-art methods for optimising production 

schedules for energy-based objectives. 

 

1.4 Research Approach 

To address the research aim, this thesis presents an expansion to the original framework seen in 

figure 1.1, such that energy is a heavily influential factor during the scheduling process. Figure 

1.2 visualises this, where a schedule optimisation system is used to bridge the gap between 

production scheduling and energy monitoring. The end result is a schedule which is optimised 

to produce a minimal variance in the production line’s energy consumption when executed. To 

achieve this, a production schedule produced by a traditional production planning system is 

input into the optimisation system, which acts on the individual job start times. To overcome the 
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NP-hard nature of scheduling problems, the core of the schedule optimisation system comprises 

of a Genetic Algorithm. This is customised for solving production scheduling problems and 

references historical energy data to determine how to modify the schedule in order to attain the 

desired outcome.  

 

Job-specific time-variant energy consumption information is provided by an intelligent energy 

profile library which is connected to the production lines energy monitoring infrastructure. This 

library is able to store multiple historical energy profiles for each job, along with select 

information regarding the mechanical conditions of the machine at the time of recording. This, 

in collaboration with the schedule optimisation system, allows the energy consumption 

predictions to compensate for changes due to varying machine mechanical factors such as age 

and tool wear. In the case where historical data is lacking for a particular job, the library is able 

to analyse how these recorded mechanical factors influence the energy consumption profiles. 

Synthetic profiles are then generated to temporarily increase data density.  

As this particular application focuses on energy consumption variance, highly granular energy 

profiles are used, allowing the schedule optimisation system to produce an optimised schedule 

with a high accuracy but at a cost of optimisation runtime. Where this becomes an issue, three 

methods for producing a coarse accuracy prediction at a significantly reduced runtime are 

proposed and evaluated to determine which produces the best cost-to-benefit ratio. 

Once an implementation was complete, a comprehensive test scheme was used to evaluate the 

performance of the entire system. This involved the use of production schedules, containing a 

 

Figure 1.2 - Top-level diagram showing an overview of the novel aspect with its connection with the energy 

monitoring infrastructure and scheduling system. 
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different number of jobs and originally constructed using a traditional production planning 

system generating the schedules for minimal makespan. 

It is important to note that this methodology of reducing the variance in production line energy 

consumption does not reduce the sum energy consumed. It instead redistributes it evenly over 

the time allowed by the schedule constraints, namely the earliest start times and deadlines of 

each job’s parent process.  

As energy is used via a variety of mediums in the manufacturing sector, to give this work focus, 

all future references to energy within this report will refer to electrical energy. More specifically 

the variable of energy which will be the main focus for optimising the consumption variance 

will be electrical current.   

 

1.5 Contributions to Knowledge 

This work provides several original contributions to knowledge within the field of engineering. 

The following points breakdown this contribution. 

 A Genetic Algorithm is customised for modifying a schedule’s job start times while 

maintaining all schedule constraints, with the goal to minimise the variance in the 

associated production line’s energy consumption.  

 Highly granular energy consumption profiles are used for all predictions permitting 

high temporal accuracy.  

 To compensate for machine related changes to energy consumption, multiple profiles 

are stored for each job along with select machine information. In collaboration with the 

optimisation system predicting machine conditions when jobs are to be executed, 

predictions are made using the most probable historical energy profiles. 

 Where historical energy data is lacking, synthetic profiles can be generated for 

particular machine conditions based on the probability of those conditions being 

encountered. 
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 The implementation is found to be easily expandable, with investigations into its 

applications in existing energy based optimisation schemes, such as the minimisation of 

peak energy consumption and Demand Side Management. 

Selected work has been disseminated into the research community via a journal paper, a book 

chapter, pubic presentations and conference papers along with associated presentations 

(Duerden et al, 2014a; Duerden et al, 2014b; Duerden et al, 2015; Duerden et al, In print; 

Duerden et al, Accepted for publication). The importance of the work has also been 

acknowledged through the award of best paper (Duerden et al, 2014a) and second prize in the 

IET’s Present Around the World competition. 

 

1.6 Thesis Structure 

A brief overview of the chapters within this thesis follows, with a roadmap of how they 

interrelate shown in figure 1.3. 

Chapter One: Introduces the problem investigated by this work and gives an overview of the 

thesis. 

Chapter Two: This chapter provides the reader with an introduction to electrical theory, the 

components of electrical energy and the methods used in monitoring them. Details regarding the 

custom energy monitoring system developed for this work are also provided. 

Chapter Three: In this chapter, the current state-of-the-art strategies for energy consumption 

modelling in manufacturing environments are discussed. To address the shortcomings found, 

the Intelligent Historical Library for Manufacturing Energy Prediction is proposed to provide 

time-series energy profiles at a high temporal granularity, sourced directly or indirectly from 

historical recorded data.  

Chapter Four: This is the first chapter of three which discusses the developed schedule 

optimisation system. Here, the literature review outlies the current state-of-the-art 

methodologies for optimising manufacturing production lines for energy-related objectives. 
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Two umbrella strategies for achieving this are observed, necessitating a discussion into which 

strategy is best fitted for solving the problem of energy consumption variance. Following this, 

using the literature review findings as reference, the core algorithm for implementing the 

schedule optimisation system is selected.    

Chapter Five: Following the background research, this chapter provides a detailed description 

of the schedule optimisation system. This includes the integration of the main optimisation 

algorithm and the choices made with regards to the various sub-level algorithms, along with the 

additional considerations required for this algorithm to solve scheduling-based problems. 

Finally, the numerous features of the optimisation system are introduced which act to provide 

either additional information to the manufacturer, or to aid in the system locating a better result. 

The systems prediction engines used for determining the energy consumption variance produced 

were a particular schedule executed are also detailed, along with their connection to the 

intelligent energy profile library.  

Chapter Six: Concluding the chapter trilogy, this chapter discusses the experimentation 

conducted on the schedule optimisation system to optimise its various internal parameters, 

maximising result optimality while minimising runtime. For cases where the optimised runtime 

is unsuitable, this chapter introduces three separate methodologies for operating the schedule 

optimisation system at a coarse level of accuracy.  

Chapter Seven: This chapter discusses the testing scheme used to evaluate the performance and 

result quality of the developed system. Following testing of the core components, the individual 

features and abilities of the system are investigated along with a detailed look into the three 

proposed methods for producing a coarse accuracy prediction. 

Chapter Eight: This short chapter details two potential alternative applications of the 

developed system. One focuses on purely minimising peak energy consumption and results are 

compared against those produced for minimal energy consumption variance. The second 

application is designed to fit the production lines energy consumption to the predicted response 
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of renewable energy resources, such that a production line could potentially operate while 

drawing minimal energy from the National Grid.  

Chapter Nine: Concluding the work, this chapter summarises all the findings and evaluates 

them in the context of the original aim and objectives of research. Shortcomings and issues are 

addressed along with a discussion on the plausibility of the developed system being 

implemented within an actual manufacturing production line.  

 

Figure 1.3 – Roadmap of thesis chapters. 
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CHAPTER 2 

ELECTRICAL THEORY AND ENERGY MONITORING  

 

Electricity can be considered one of the most popular forms of energy used in manufacturing, 

with practically all production machines utilising it to some capacity. In this chapter, the 

attributes and monitoring principles for electricity are documented, followed by a description of 

the high granularity custom energy monitoring system used for this work. It is important to note 

that while power and energy are two different but related measures, these terms are used 

interchangeably in literature and by industry. Both energy and power monitoring devices can be 

purchased which solely measure power consumption. To align with this, this work will refer to 

energy monitoring and energy consumption with relation to power.  

 

2.1 Attributes of Electricity 

Alternating Current (AC) electricity is a multivariate form of energy with each parameter 

sharing some form of interrelationship. These are 

 Voltage (V) 

 Current (A) 

 Apparent power (VA) 

 Active power (W) 

 Reactive power (Var) 

 Voltage and current phase difference (φ) 

Voltage and current are the two elemental measures from which all other parameters are 

calculated. In the United Kingdom, government regulation states that the end use voltage levels 

must remain within the range 216.2V to 253V with a mean value of 230V (Standards & 

Technical Regulations Directorate, 2005), with a frequency range of 50Hz ±0.5Hz (National 
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Grid, No date). Similar regulations apply for three-phase electricity and compliance with all 

these regulations is the responsibility of the network operators.  

For the power measures, unlike apparent power, active and reactive power account for the phase 

difference between voltage and current, which is an important consideration for both energy 

suppliers and manufacturers. 

 
Figure 2.1 - Instantaneous voltage, current and power when the former two measures are in-phase. 

 

 
 

 
Figure 2.2 - Instantaneous voltage, current and power when the former two measures are out of phase. 
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Electrical loads can be classified as resistive, capacitive, inductive, or a combination of all three. 

From milling machines to lathe, drills and robotic arms, the most common components of 

manufacturing machines are AC motors. As a consequence, manufacturing lines can be 

electrically modelled as predominantly inductive loads with smaller resistive and capacitive 

elements. In all but resistive loads, a phase shift occurs between the instantaneous current and 

voltage with inductive loads causing the voltage to lag behind current and vice versa for 

capacitive loads.  A comparison of figures 2.1 and 2.2, demonstrates that when a phase shift is 

present, the instantaneous product power has a negative component. This is referred to as 

reactive power and is considered ‘useless power’ as it does not contribute to useful work 

(nPower, No date). As a consequence, the overall power level, referred to as apparent power is 

diminished. This forces machines to increase current consumption to increase the amplitude of 

the positive component, known as active power. The presence of reactive power is therefore 

highly undesirable as the end user is paying for power they are not using and for energy 

suppliers, not only must they output more apparent power but in addition, the return cabling of 

the National Grid is not designed to transmit significant amounts of power.  

 

 
Figure 2.3 - Example of three phase voltages. 

 

For most of its route from source to end use site, electricity is transmitted as three-phase with 

each of the three cables conducting its own voltage and current ±120° out of phase with the 

others (see figure 2.3). From an electrical perspective, operating goals aim to ensure that the 

load on each phase is balanced. When this occurs, each of the three currents negate each other 

removing the requirement for a return cable, however in practice as loads may never be 
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perfectly balanced a small capacity single return cable is present. As a result transmission 

networks are typically not configured for returning large power levels. The measure for the 

phase difference φ, is known as Power Factor and is calculated using (2.1) to ascertain a number 

between zero and one. To protect the National Grid, most transmission network operators will 

financially penalise end users with a power factor below either 0.95 or 0.9 (Ware, 2006). 

 Active Power (W)
Power Factor = cos

Apparent Power (VA)
  (2.1) 

 

To combat poor power factor, power factor correction techniques can be employed to realign 

the voltage and current sinusoids. As inductive and capacitive loads have complimentary effects 

on the phase as seen in figure 2.4, for inductive loads, banks of capacitors connected to the 

power systems can be employed to realign phase shifts. Figure 2.5 shows an example of all 

three load types where the inductive and capacitive effects negate each other. The correction of 

power factor is the responsibility of the end user.  

 
 

Figure 2.4 - Examples of resistive, inductive and capacitive loads and their phase influences on voltage and current. 
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Figure 2.5 - Example of power factor correction. 

 

2.2 Energy Monitoring Principles 

One of the key prerequisites for any energy-based optimisation in the manufacturing sector is to 

understand how energy is distributed and consumed in production lines. Numerous off-the-shelf 

devices are available for this with single and three phase applications.  

As explained in the previous section, voltage and current are the two elemental measures from 

which all power parameters can be calculated. Both AC voltage and current are sinusoidal 

waves, meaning that can be easily digitised by discrete electronics for measuring and analysis. 

Prior to this, conditioning circuitry is required to ratio-metrically reduce the amplitudes to levels 

acceptable for the electronics. For voltage, the most popular choice is to use a voltage 

transformer, while for current, more options are available. A shunt resistor can be placed in 

series with the electrical system and the voltage drop across it can be measured. Ohm’s law can 

then be used to calculate the current through the resistor. While a possible method, this is not 

significantly popular due to its intrusive nature. Non-intrusive alternatives include split-core 

current transformers which are simply clamped around the cable to be measured. The current 

flowing through the cable induces a radio-metrically reduced current into the transformer which 

can then be measured via a shunt resistor. Similarly, a Rogowski coil can also be used for non-

intrusive measuring. The main reason these two methods are popular is due to their non-

intrusive nature, which facilitates quick, easy and safe installation and removal.  

Standard UK electricity is transmitted at a frequency of 50Hz, necessitating a minimum 

sampling frequency of 100Hz according to Nyquist theorem (2.2). 
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where fs is the sampling frequency and ft is the transmission frequency. 

(2.2) 

 

The features and functionality of a wide range of industry grade energy monitoring systems 

were initially investigated during this work. In every case, the monitor sampled the voltage and 

current waveforms at a high rate, typically in the low kHz range. Values are recorded for a 

defined measurement interval, after which the data is computationally amplified to negate the 

original amplitude reductions, and the values for RMS voltage and current are calculated. Any 

phase difference φ, can be measured by determining the time difference between the zero-

crossings of the voltage and current waveforms. With these three measures, the power 

parameters introduced in the previous section can be calculated using (2.1), and (2.3) to (2.5) 

(Moulin, 2002). 

Apparent Power (VA) = RMS RMSV I  (2.3) 

 

 Active Power (W) = cosRMS RMSV I    (2.4) 

 

2 2Reactive Power (Var) = Apparent Power Active Power  (2.5) 

 

The principles described here are based around single phase electricity, however they are 

applicable to three-phase electricity. While single phase systems involve a live and neutral cable 

only, three-phase systems typically involve four cables – three live cables, one per phase, and a 

single neutral (Tekronix, No date). As a result, each phase will have its own voltage, current and 

power parameters. It should be noted that for three-phase systems, voltage can be measured 

between a phase and neutral, known as phase voltage, or between one phase and another, known 

as line voltage. Phase voltage is used in power calculations, although methods such as the two 

wattmeter method (Newtons4th Ltd., 2012) are available for measuring power on all phases 

without requiring three individual voltage and current measurements.  
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Once all the parameters have been calculated, they are either output or internally recorded at a 

fixed or user defined rate. This reporting rate governs how often the monitor measures the 

electrical consumption and calculates parameters, but is independent of the sampling rate and 

measurement interval. In all of the off-the-shelf monitors investigated during this work, it was 

found that they reported back data at a slow interval, with most devices having reporting rates in 

the minutes range. As this work focuses on energy consumption variance, it is necessary to 

understand the energy consumption at a much finer granularity. Through the use of a power 

quality analyser, it was deduced that the time period of certain waveform features such as inrush 

currents can potentially only be a few hundreds of milliseconds long as seen in figure 2.6. 

 
Figure 2.6 - Screen capture of the inrush current from an air compressor. Captured using a Fluke 43B Power 

Quality Analyser. 

 

Due to this, in comparison with available monitoring capabilities, it was determined that a 

custom high granularity monitoring system would be required for this work. In the following 

section, the development of this energy monitor is discussed along with the background 

research.  

 

2.3 Energy Monitoring System 

As the overall goal of this work was to minimise energy consumption variance, one of the key 

requirements for this project’s energy monitoring system was for a high, preferably sub-second 
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reporting rate. This would allow for rapid changes and short-lived features of the energy profile 

such as the inrush period seen in figure 2.6, to be recorded at a suitable temporal resolution. As 

the preliminary review of industry grade monitoring systems did not come close to that level, 

the initial requirement specification seen below, simply called for a meter with the fastest 

reporting rate. 

 Measurements –  

o RMS voltage and current 

o Active power 

o Apparent power 

o Reactive power 

o Power factor 

 Stream data using open protocols or save directly to an accessible file. 

 Fastest reporting rate within an acceptable price range.  

With industry grade solutions having poor reporting rates, two ‘off-the-shelf’ energy monitoring 

solutions were investigated. The first was a home appliance monitoring system with a six 

second reporting interval (Current Cost, No date). While fast in comparison to other products, 

its reporting capabilities were unreliable, with readings being randomly missed during the 

periodic recording. The second was an open-source energy monitoring development kit 

(Microchip, No date). The firmware was streamlined to minimise computational time, but 

hardware limitations resulted in a minimum achievable reporting interval of four seconds.  

 

2.3.1 Custom Energy Monitoring System 

Ultimately, it was deduced that the current level of energy monitoring equipment did not 

support an acceptable reporting interval required for generating highly granular historical data. 

This is further supported by the literature review in section 3.1, where researchers who use 

empirical data and specify their experiment setup, utilise expensive power quality analysers or 
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high speed data acquisition equipment. To this end, it was realised that a custom energy 

monitoring system would be required. 

A LabVIEW based system was initially developed with software based around the 

‘myPowerMonitor’ project to achieve a single voltage and current channel monitor with a 

200ms reporting rate (S, 2012). In order to attain this short reporting interval, the initial 

specification was pruned to the following: 

 Measure RMS voltage and current 

 Stream data using open protocols or save directly to an accessible file. 

This simplification was justified by the fact that the power factor of the electrical supply could 

not be regulated during experimentation. Therefore there would be little correlation between it 

and the machine being operated. Furthermore, the measured current is what is actually being 

demanded by the equipment and therefore is dependent on the power factor. With this new 

specification, apparent power could still be calculated offline according to (2.3), however power 

factor, active and reactive power were all removed. 

Eventually this implementation was heavily modified, adding six additional 30A current 

channels along with software rewritten in C# to achieve a 150ms reporting rate on all channels. 

Images and diagrams of these can be seen in figures 2.7 and 2.8, with hardware schematics in 

appendix A. In terms of the internal hardware, a connection with the mains electricity line was 

made using a 30Aac - 1Vac split-core current transformer, with voltage being measured via a 

230Vac to 6Vac transformer. Both these interfaces operate to reduce the amplitude of the mains 

voltage and current signals so they can be measured by discrete electronics. In the case of this 

custom system, these reduced amplitude signals are read into one of two USB-1208FS data 

acquisition devices (DAQ’s) via their on-board 12-bit analogue to digital converter. With a 

differential input range of ±10V, this would result in a quantisation error of ±2.44mV. All inputs 

are then multiplied by their respective channels re-scale value which corrects for the amplitude 

reduction. For every reported reading, 50 instantaneous values are read in at a sampling rate of 1 

kHz per channel. RMS value can then be generated for the voltage and current according to 
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(2.6) and (2.7) respectively. At a UK mains electricity frequency of 50Hz, this would allow for 

2.5 complete cycles to be read in prior to an RMS value being calculated. Post calculation, these 

values are written to a file for later analysis.  

 

 

Figure 2.7 - Images of the expanded energy monitoring system. 

 

 

 

Figure 2.8 - Diagram of energy monitoring software architecture. 
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n
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where a set of n values {VIns,1,…, VIns,n} represent the instantaneous voltage samples 

(2.6) 

 

 2 2 2
,1 ,2 ,

1
...RMS Ins Ins Ins nI I I I

n
     

where a set of n values {IIns,1,…, IIns,n} represent the instantaneous current samples 

(2.7) 

 

For both developed systems, a Fluke 113 true RMS multimeter and a UNI-T UT58C multimeter 

were used as calibration standards for the voltage and current measurements respectively. Due 

to its suitably constant current consumption, a 2kW fan heater was used for the calibration 

process. During this, both the custom energy monitor and the calibration standards were used to 

measure the voltage and current consumption of the fan heater. The re-scale values for each 

input channel within the custom energy monitoring program were then updated based on the 

difference in readings between the custom energy monitor and the calibration standards. This 

was repeated until the difference was minimal. The final calibration results for the custom 

energy monitor can be found in table 2.1.  

Table 2.1 - Accuracy of custom energy monitoring system compared against the calibration standard. 

Channel 
Calibration standard 

reading (RMS) 

Energy monitor 

reading (RMS) 
Error (%) 

Voltage 251.00V 248.9V -0.84 

Current #1 10.00A 10.12A 1.20 

Current #2 9.93A 9.82A -1.11 

Current #3 9.94A 9.97A 0.30 

Current #4 9.98A 10.12A 1.40 

Current #5 10.03A 9.97A -0.60 

Current #6 9.94A 10.12A 1.81 

Current #7 10.01A 10.27A 2.60 

 

Table 2.1 shows that overall, the system is highly accurate with a maximum error of 2.6% 

(current channel #7). In the case of the current channels, this is due to custom cradles which are 

not only used to hold the split-core current transformers in place, but also ensure the cable 

passes through the centre of the core at a perpendicular angle. This maximises the efficiency of 

the transformer. Equations 2.8 to 2.11 present the resolution calculations. In the case of the 

current channels, an average resolution between all seven current channels is presented. 
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1000Samples per 50Hz cycle = 20
50

Hz
Hz

  (2.8) 

 

# of ADC bits

12

Input voltage resolution = Input voltage range 2

20
2

4.88mV





 (2.9) 

 

Processed voltage resolution = Input resolution  Voltage rescale value

4.88 40.7

198.6

mV

mV



 



 (2.10) 

 

Average processed current resolution = Input resolution  Average current rescale value

4.88 30.9 /

0.151

mV V A

A



 



 (2.11) 

 

Once calibrated the custom energy monitor was used to measure the energy consumption of a 

metalworking lathe and pillar drill (see figure 6.3 and 2.9 respectfully), in an effort to review the 

waveform features and how they relate to the elemental machining operations currently being 

performed. The recorded profile from the bench-top pillar drill boring a single hole can be seen 

in figure 2.9.  

 
Figure 2.9 - Example of an energy profile for a bench top pillar drill boring a single hole. 
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The profile in figure 2.9 was seen as a typical energy consumption profile for a manufacturing 

machine due to the drills primary component – An electric motor. Other reductive 

manufacturing process machines such as lathes and mills which are heavily used in industry 

share the same primary component and are ultimately performing the same action as the pillar 

drill, just along a different axis. Therefore energy profiles from these machines will share 

similar characteristics and features. 

With the described system in operation, the core components of the work could now be 

developed.  

 

2.4 Summary 

This chapter serves as a vital prerequisite for the consideration of energy-related objectives in 

manufacturing production lines. Not only does it establish the principles of energy monitoring, 

but it also establishes the current level of monitoring equipment available to manufacturers, and 

sets the scene for potential optimisation. With monitoring systems recording consumption at a 

low temporal granularity, the subsequent data will have a low information content. This 

immediately impedes the usefulness and applicability of any predictions and predictive models 

generated from that data. As a result of that, the amount of potential energy-based optimisation 

will be limited. The custom monitoring system attempts to solve this by producing data at a 

significantly higher granularity. This catalyses a chain reaction which produces higher accuracy 

models and finally, increases the potential for energy related optimisation. However, the 

technique used for modelling will also play a vital role, and the modelling methodology may 

need to be altered in order to take advantage of this new data.  
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CHAPER 3 

MODELLING MANUFACTURING JOB ENERGY CONSUMPTION 

 

A precursor to any energy-based optimisation strategy is an understanding of how energy is 

used within the job and how its demand is influenced by the process configuration. Energy 

modelling in manufacturing is therefore the understanding of how a process and its parameters 

relate to the energy consumption. This step holds significant importance as the accuracy of the 

optimisation process is directly dependent upon it – an optimised solution is only as accurate as 

the models upon which it was based. Additionally, the overall nature and representation of the 

models must be selected with care as they can influence the model generation time and 

requirements, the runtime of the optimisation process, and the applicability of the models.  

 

3.1 Energy Modelling Literature Review 

A large volume of research concerning energy modelling within manufacturing environments 

has been carried out, with publications either entirely focusing on it, or developing models to 

support optimisation strategies. Despite the volume of publications available, the overall 

diversity of the research is limited. Works by Gutowski et al (2006), Dietmair et al (2009), and 

Kara and Li (2011) are treated as the progenitors. While they are not the originators of their 

individual energy modelling paradigms, their work has been heavily referenced and built upon. 

Gutowski et al (2006) work on modelling energy consumption via the thermodynamic concept 

of exergy – a measure of the amount of workable energy a component or material has. They 

propose two equations for calculating the total power of a manufacturing process and the 

specific electrical exergy per unit of material processed.  

0P P k   (3.1) 
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k
v

P
Belect  

0  (3.2) 

 

Where P is the total power in kW required for processing, P0 is the idle power of the machine in 

use, 𝑣̇ is the rate of material processing in cm
3
/sec, Belect is the specific electrical exergy per unit 

of material processed in kJ/cm
3
, and k is a constant with units of kJ/cm

3
. 

An analysis of (3.1) and (3.2) shows that Gutowski et al define the total power consumption of a 

process to be the product of the energy required for material removal k, and the material 

removal rate 𝑣̇, offset from the idling power consumption P0. They go on to validate the 

relationships established in (3.2) by demonstrating that the specific energy consumption - the 

energy required to process one unit of material, for a range of manufacturing processes is 

indirectly proportionate to the processing rate. As such, they conclude that process rate is a 

strong indicator of the specific exergy of the manufacturing process. 

Another dominant set of publications is the work by Dietmair and Verl (2009), who introduce 

an energy model requirement specification. It specifies that a model must: 

 Permit generic fitting to production machines and be scalable to appropriately represent 

the machine at the required level of detail, 

 Be accurate to a predefined degree while being easy to parameterise and compute, 

 Allow for the considerations of other objectives and be action focused, 

 Allow for the prediction of alternative strategies.  

They give this specification as they state “it is virtually impossible to design an optimal product, 

select the best process chain or ensure maximum utilisation efficiency without having detailed 

previous knowledge of process and machine related energy consumption” (Dietmair and Verl, 

2009, pp. 63). To address this, they present a state-based modelling strategy. Nine discrete states 

are defined for a simple milling operation, which can be parameterised from only a few simple 

empirical energy measurements, combined with the predicted or measured transition times for 

each state. The end result is an easily adaptable model with low computations requirements. 

During validation, the model was able to predict the total energy consumption to within 5%. 
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With this type of modelling strategy, it is easy to determine how the total energy consumption is 

distributed between the various states and therefore, identify potential areas for energy 

efficiency improvements. Despite the high accuracy however, energy profile features such as in-

rush peaks are not considered substantially important despite the fact that they classify as the 

peak power usage. This is due to the fact that they only contribute to a small percentage of the 

total energy consumption. For machines where in-rush currents dominate the energy profile, 

they state that kinematic, mechanical and motor models can be sufficient to calculate the 

instantaneous energy consumption. In later work, they expand their modelling criterion to 

include additional energy carriers such as compressed air, hydraulic fluid, coolant, etc. 

(Dietmair et al, 2009). While the resulting model can easily be adapted to suit the nature of the 

manufacturing process, Dietmair et al state that for suitable optimisation, work piece quality, 

along with machine and tool wear must be considered.  

The final progenitor publication is the work by Kara and Li (2011). They initially criticise the 

work by Gutowski et al (2006), stating that modelling for idle power and specific process 

energy are lacking definition and quantification. Additionally, the modelling process is 

infeasible without precise values for the equation variables and coefficients. With all things 

considered, they doubt the usefulness of theoretical models. To that end they define an empirical 

modelling approach to statistically model the relationship between specific energy consumption 

(SEC) and the process parameters for a milling operation. Data was gathered from eight 

different CNC turning and milling machines where the operations were carried out on different 

materials and with varying process parameters, such as different cutting speeds, feed rates, cut 

depths, cut widths, and cut environments. Statistical analysis of the data demonstrated an 

inverse model best describes the relationship between the material removal rate (MRR) and the 

specific energy consumption. They define the following equation, where C0 and C1 are machine 

specific coefficients. 

MRR
C

CSEC 1
0    (3.3) 

 



27 
 

It can be seen that (3.3) is very similar to the specific exergy equation, (3.2), specified by 

Gutowski et al (2006). However Kara and Li state that the coefficient C1 does not equal the 

individual machines idle power, as this is highly dependent upon process parameters which are 

not considered in (3.2).  It is shown that the statistical models produced by Kara and Li are 

highly accurate when applied to new data, with an accuracy of between 91.95% and 97.63%. It 

should be noted however that this model does not account for the machine’s start-up, stand-by 

and material preparation periods. Kara and Li defend this by stating that the energy 

consumption of these periods is less than 10% of the total energy consumption. A later 

expansion of their work focuses on applying their methodology to an injection forming machine 

(Qureshi et al, 2012). Their result validation shows that the original model for milling and 

turning processes (3.3) is not entirely suitable and requires slight modification to accurately 

model an injection moulding process.  

As is detailed above, it is seen that the three main energy modelling paradigms are theoretical-

based mathematical modelling, experiment-based mathematical modelling, and state-based 

modelling. The latter is typically used as a vessel for the implementation of the first two but on 

a more segregated level to increase model accuracy and succinctness. Because of this, treating 

each paradigm as independent is difficult and there is a lot of commonality between them.  

Amongst all the three main paradigms, state-base modelling is most commonly used in the 

literature. Modern manufacturing machinery can potentially contain a large amount of ancillary 

equipment which can be active when the machine is not operating. As a result, simply 

calculating the energy required for machining may not provide an accurate representation of the 

total process energy. This is verified by Peng et al (2014) who develop a modular modelling 

approach. Each manufacturing process is modelled as a series of blocks which take in the 

process parameters and calculates the energy consumption for that particular section of the 

process. They generate each modular block from empirical data which is segregated based on 

the manufacturing operations (i.e. milling, drilling, idling, travelling, etc.), and then further 

segregated into the energy consumptions for individual components such as spindle power, 
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pumps, etc. This approach allows for a very dynamic modelling environment which is easily 

scalable and reusable.  

The original equation by Gutowski et al (2006), (3.1), is expanded upon by Balogun and 

Mativenga (2013). They incorporate the energy consumed by the machine’s ancillary devices 

such as pumps, cooling and control units, what they refer to as ‘Basic’ state energy, with the 

energy consumed while the machine is idling and preparing to execute a job, the ‘Ready’ state 

energy. When incorporated with the ‘Cutting’ state energy described by Gutowski et al (2006), 

this can fully model the energy consumption for a manufacturing process. Additionally, they 

also model the energy consumed during automated tool change and incorporate tool life into the 

final energy equation. These models were subsequently validated with empirical data from two 

milling machines with a maximum prediction error of 3% for the total energy demand. 

Similarly, the work by Liu et al (2015) segregates a turning process into start-up, idle and 

cutting states, with each state consisting of their own mathematical models to predict the energy 

consumption of the main driving system. Thanks to the presence of empirical data, the 

prediction accuracy for the start-up and idle states is suitably high. However due to its increased 

complexity, the same cannot be said for the cutting state. While potentially accurate, this is 

reliant on two coefficients which are dependent upon the particular main driving system and 

transmission chain. This leads to a low cutting state accuracy. Despite this, the end prediction 

error for the total energy consumption is found to be 7.8% as the low accuracy ‘cutting’ state is 

only active for, on average 30% of the processing time. The accuracy of the other states is not 

specified.  

Similar to state-based modelling, the Discrete Event Simulation model developed by Herrmann 

et al (2011) allows for highly scalable energy-orientated manufacturing simulations which 

account for all relevant energy flows. This is done by integrating energy-based objectives with 

traditional manufacturing considerations, along with realistic energy-based costs. The results 

from these simulations can subsequently be evaluated to identify areas of potential efficiency 

improvement. While they produce accurate and promising results in two case examples, a 
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review of current manufacturing simulation tools indicates that they do not currently support 

energy considerations. 

The work reviewed above focuses primarily on the modelling of milling and turning processes. 

While these can be considered the most prominent manufacturing operations, other types of 

process are heavily carried out in different manufacturing industries. Shrivastava et al (2015) 

model the energy consumption of friction stir welding using the state-based approach. As this 

process is typically carried out on a milling machine, or a machine with similar kinematics, 

milling machine efficiency concepts can be used. Empirical data for the energy consumption of 

elementary operations and machine movements are used to calculate the energy consumption 

for each stage. For predicting the actual friction stir weld energy, the calculated standby and idle 

power can be subtracted from the measured power, or the spindle torque measurements can be 

related to power consumption. Shrivastava et al propose an equation for calculating the latter to 

determine the total process energy consumption. It should be noted that while they predict the 

consumption levels for the idle, standby and welding stages, they state that they are only 

concerned with the energy consumption of the welding stage.  

The energy consumption for single point incremental forming process is modelled by Ingarao et 

al (2014). The process itself is modelled on three different platforms – a CNC mill, a 6-axis 

robot arm, and a dedicated incremental forming machine tool. The energy consumption for each 

machine is segregated into different states to reflect the unique methods each machine uses to 

perform the operation. They conclude that a generalised process specific model is insufficient to 

accurately represent a process being performed on different machine platforms. An example of 

this is given by the fact that when performed on a 3-axis mill, the energy consumption is not 

dependent upon the material and is simply a time multiple of the process energy consumption. 

However, the model for the 6-axis robot is material sensitive, requiring a custom equation. This 

demonstrates that energy models need to be machine-specific in order to produce accurate 

predictions. Peng et al (2014) furthers this by saying that models need to be both machine and 

process specific. This is indirectly supported by the fact that while the other state-based 

modelling methods discussed are proven to be accurate to a suitable degree, they are validated 
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on processes of a very similar nature. Furthermore the applicability and accuracy of their 

modelling approaches on other manufacturing processes is not considered. 

While state-based modelling aims to model the entire energy consumption of the manufacturing 

job, additional work has also been conducted, which focuses specifically on modelling the 

energy consumption for the actual process. Based on a review of other modelling methods, 

Velchev et al (2014) derive an empirical approach to modelling the specific energy consumption 

of a CNC lathe. Models for tool changing and cutting are devised which consider cutting 

parameters along with the tool life through the extended Taylor’s equation. Model validation 

shows a 4.85% error in predicted specific energy consumption. Additionally, they review the 

different modelling approaches detailed by other researchers, including Kara and Li (2011), and 

Gutowski (2006). This literature review highlights the fact that many researchers have proposed 

many different equations for calculating the specific energy consumption. In a number of cases 

these include machine specific coefficients which further reinforce the fact that these models 

need to be machine-specific.  

It is evident that machine and process specific models may be required depending upon the 

process being executed. This presents a problem as the modelling time can be significant, 

especially for large-scale and/or diverse production lines. This issue can potentially be elevated 

with the work by Gilani et al (2013). They implement an automated energy model learning 

scheme for the identification of energy anomalies. While the focus of their results is the accurate 

detection of anomalies, they are successfully able to predict process energy consumption based 

around machine timing signals and empirical energy measurements. Using historical energy and 

process data, Shin et al (2014) is able to use a back propagation neural network to predict total 

power consumption. Input data is automatically extracted from G-Code and additional machine 

control files, and training data sets are constructed based on the theoretical total power, however 

this can easily be replaced by measured values. While their case study demonstrates the abilities 

of this form of modelling, generating a suitably large training set may be difficult for some 

manufacturers. However with the introduction of ‘Big Data’ concepts, there is a move to save 

all gathered data for future use and processing.  
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Additional methods, centring on case-based reasoning for energy consumption estimation have 

also been proposed. Gong and Ma (2011) specify an energy-based similarity measure which 

investigates similarities between product name, machining operations, processing times, etc. to 

determine a set of similar cases associated with an up-and-coming job. Following an analysis of 

the energy consumptions for these similar cases, they are able to determine a set of influential 

features and map these to the energy consumption. This mapping can subsequently be used to 

predict the energy consumption for the new job. When tested, this implementation was able to 

predict the energy consumption with a maximum error of 7.1%. Their use of historical data is 

supported by their statement that generating models mathematically is comparatively difficult. 

 

3.2 Energy Modelling Literature Review Conclusions 

Research into production line energy modelling has seen increasing interest in recent years; 

however the overall diversity in the approaches is limited. Theoretical modelling requires 

machine and/or process specific coefficients which can be difficult or impractical to determine 

in a modern production line. Despite the high accuracy of the prediction results, most research 

into energy consumption modelling aims to predict a singular value, such as total energy 

consumption. While beneficial for determining the energy consumed in producing a product, 

this does not give an accurate representation as to how the energy consumption varies over the 

processing time. This fact alone immediately makes these methods incompatible with this 

project. While state-based approaches aim to model the entire profile from start to finish, they 

too only refer to fixed levels of energy consumption throughout each state. As figure 2.9 shows, 

the energy profile for a manufacturing job is highly volatile. Representing each manufacturing 

state as a single value will result in significant information loss. Furthermore, many 

manufacturing production machines are fitted with energy management devices such as motor 

soft-starters, which may produce a dynamic relationship between the process parameters and the 

energy consumption. This is especially the case for industrial robot arms where the inverse 
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kinematics problem means the production line manager may not be able to predict how the 

robot arm will travel from point to point, and how the individual joint motors will be used.  

While empirical modelling can be seen as an appropriate alternative, it too may require 

additional energy monitoring equipment to be installed, and the accuracy and granularity of the 

final model will be directly related to the monitoring equipment used. Other issues raised by 

only a few of the researchers (Dietmair et al (2009), Balogun et al(2013) Velchev et al (2014)), 

is the fact that the energy consumption of a machine will change over time due a varying 

number of factors, these include: 

 Machine age, 

 Machine maintenance schedules, 

 The life of the machine tool, 

 Environmental attributes such as temperature, humidity, etc.  

Furthermore, even when regulated, power factor and fluctuations in the supply voltage as a 

result of multiple machines in operation can influence the energy consumption. Because of 

these, a fixed model may soon become inaccurate if it does not account for the above 

considerations. To that end, a new approach was designed.  

 

3.3 Intelligent Historical Library for Manufacturing Energy Prediction 

While mathematical based models are able to predict process energy consumption to a high 

degree of accuracy, the direct use of historical empirical time series energy data is seen to be a 

more attractive alternative. This is further supported by the following: 

i. Rather than singular values, predictions can be a multi-dimensional time series, making 

them suitable for determining energy consumption variance. 

ii. With the prevalence of low cost computing storage combined with increasing 

international and governmental pressures relating to energy efficiency, the recording 
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and storing of energy consumption data at a high granularity is becoming increasingly 

prudent for manufacturers.  

iii. Environmental machine-related factors such as machine temperature, machine age, tool 

wear, etc. along with supply voltage and power factor levels can be easily related to 

individual profiles permitting analysis into how these influence job energy 

consumption. 

To realise all this, the Intelligent Historical Library for Manufacturing Energy Prediction is 

proposed, to provide time variant energy predictions. In a production line, time series energy 

consumption information can be assembled into energy profiles for individual manufacturing 

jobs. Furthermore machine or production line related factors such as tool wear, machine 

degradation and supply voltage levels can be calculated / estimated and associated with each 

profile as metadata.  From this, when energy data is required for a prediction, the querying 

system can provide information regarding the machine conditions. Exact nearest neighbour can 

then be used to locate the most appropriate historical profile for that particular job, maintaining 

prediction accuracy over time.  

Applicability of the library is maximised by the fact that the historical energy profiles can be 

independent from one another, allowing for profiles of differing resolutions and granularities to 

be used in tandem. This is advantageous given the variety of energy monitoring devices 

employed throughout modern manufacturing lines. The only item which demands compatibility 

is the metadata.  

Figure 3.1 shows a top-level diagram of the proposed intelligent library-based system. Here, the 

historical energy profile library sources its data from two locations – a collection of actual 

energy profiles recorded from the production line, and a collection of synthetic energy profiles. 

The latter is designed to compensate for when actual historical profiles are lacking for a 

particular job. When this is the case, the sparse historical energy profiles are analysed to 

determine how the metadata influences the profiles over time. From this, models are created 

which allows the library to generate synthetic profiles for any metadata values. To ensure 

efficient generation and use of the synthetic profiles, they are only generated for certain 
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metadata values, based on the probability of the library being queried for them. The energy 

models and probable metadata values are then fed into the synthetic profile collection where 

they are generated prior to being stored. When a query is received, the historical energy profile 

library utilising exact nearest neighbour, will search the actual and synthetic energy profile 

libraries, treating them as one conjoined collection. The profile, synthetic or actual, whose 

metadata lies closest to that of the queries, will be output. These methods are elaborated on in 

the following sections. Following the discussions in chapter 2, only electrical current is 

considered as the electrical measure in this particular implementation of the work. However the 

library is theoretically able to support all electrical parameters discussed in chapter 2. 

 

Figure 3.1 - Top-level diagram of the intelligent library-based system. 

 

3.3.1 Profile Analysis 

For the library-based system, assuming that the historical profiles have been collected 

accurately, the accuracy of the predictions will be dependent upon two main elements: 

 The overall distribution of the profiles in the context of their metadata, relative to the 

acceptable range of machine and tool conditions, 

 The level of variability within the library’s individual profiles over the acceptable range 

of conditions.  
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The two aforementioned points can be considered dependent upon the individual jobs and the 

machines on which they are executed on. As a generalised rule, the more profiles per job are 

collected, the more accurate the prediction will be. Unfortunately this directly relates to the 

frequency of the jobs execution. For more frequently executed jobs, their libraries will be more 

highly populated, with a smaller average distance between metadata values. Thereby the 

prediction is likely to be more accurate than a job which is executed less often. To compensate 

for large gaps within the historical profiles metadata range, synthetic energy profiles could be 

generated to ‘fill the gaps’. These synthetic profiles could be used along with the empirical 

profiles temporarily, until being replaced with a newly recorded empirical profile whose 

metadata values are within a suitable predefined Euclidean range. 

Generating these synthetic profiles necessitates the analysis of how the metadata influences the 

energy profiles. To garner an accurate understanding of this for each machine in the production 

line ideally requires two elements: 

i. The rate of change for each metadata factor. 

ii. The influence periods of each factor – This is the temporal window for when the 

influence factor is acting upon the energy profile. An example of this could be the 

influence from an ageing spindle motor which is only active for set periods of the jobs 

execution.  

With these two elements, it is possible to generate synthetic profiles for any combination of 

metadata values. However, in reality knowing these beforehand is unlikely. As a result, these 

elements will have to be discovered retrospectively.  
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Figure 3.2 - Graph showing the metadata influence on empirical energy profiles. 

 

Figure 3.2 presents three empirical profiles recorded from a dust extraction system using the 

custom seven channel energy monitor. Each profile has been influenced by the machine 

conditions. It is presumed that prior to this the various profiles will have been aligned with 

respect to time via methods such as cross-correlation, least squares, etc. The initial step to 

analysing the metadata’s influence is to determine the influence periods. It is assumed in this 

work that for each individual influence period, the level of change in the energy consumption 

will be consistent. For example, a motor with poorly lubricated bearings may result in additional 

amperage being drawn while it is in use.  However this current offset will be consistent so long 

as the motors input parameters such as speed or torque are maintained. Any changes to these 

will be identified as a different influence period. 

Distinguishing the influence periods in a set of historical profiles is achieved by maximising the 

difference between the profiles. This, by consequence, maximises the difference between the 

influence periods allowing their boundary points to be identified, and the data to be segregated. 

The final stage is to statistically compare these segregated groups to determine if they are 

similar, and therefore are part of the same influence period. This methodology is described in 

further detail in the following steps, where Hist represents a set of historical profiles. 
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Step 1 

Calculate the time series difference between every combination of available recorded profiles in 

Hist, using (3.4). Exclude mirrored combinations. See figure 3.3. 

      ,   & xy x y x yprofile t profile t profile t where x y profile profile Hist      (3.4) 

 

Step 2 

Determine the cross-profile variance of all available Δprofile, by calculating the variance of 

every t data point in each Δprofile using (3.5), where Δprofiles is the collection of Δprofile. See 

figure 3.4. 

        2 1
1

1
xy

xy

Cross t profile t profiles t where N Hist Hist
N

      


 (3.5) 

 

Step 3 

Filter Crossσ
2
 using a median filter to reduce large fluctuations. See figure 3.4. 

 

Step 4 

Compute the moving difference of Crossσ
2
 to reveal magnitude changes using (3.6), and 

normalise the results between 0 and 1 to produce
Normalised
Cross 2 . See figure 3.5. 

ΔCrossσ
2
(t) = Crossσ

2
(t - 1) - Crossσ

2
(t) (3.6) 

 

Step 5 

Apply a thresholding operation to identify large step changes as the boundary points of the 

influence periods, (3.7). 

 2 0.6Influence
i

Normalised

t P where Cross t    (3.7) 

 

Step 6 

Locate the Δprofile with the largest numerical range Δprofile
largest

, and divide it into influence 

groups based on the boundary points specified in P
Influence

, using (3.8). 

influence_groupi(t) =  largest
1

Influence Influence
i iprofile t where P t P    (3.8) 
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Step 7 

Equally sub-divide each influence group into three sub-groups. Consider the middle sub-group 

as the most representative of the influence group as this is not affected by transitions from one 

influence group to another. See figure 3.6. 

 

Step 8 

With the most representative sub-group of each influence group, utilise the Mann-Whitney U 

test to identify statistically similar groups. Classify these respective influence groups as 

belonging to the same influence period. 

 

Step 9 

Utilising the Mann-Whitney U test again, compare the most representative sub-group of each 

influence group with a zero array to identify whether an influence period is affected by 

metadata. 

 

 
Figure 3.3 - Time series differences between all possible combinations of the three available energy profiles. 

 



39 
 

Figure 3.3 demonstrates the initial step of the above methodology, in which the three historical 

profiles are compared against each other in all possible combinations. The purpose of this is to 

maximise the variance in data points for all discrete time values, as this is used to distinguish 

the step changes. 

 

 
Figure 3.4 - Cross profile variance. 

 

In figure 3.4, a 10
th
 order median filter is applied to reduce the large fluctuations and increase 

the step distinction as seen in figure 3.5. 
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Figure 3.5 - Normalised cross-profile moving difference. 

 

The information provided by figure 3.5 and extracted in accordance with step 5 of the method, 

allows for the historical profiles to be divided into a precursor form of the influence periods, 

known as influence groups. See figure 3.6. Depending on the dataset under analysis, the 

threshold limit may need to be adjusted in order for step 5 to return the correct result. The final 

two tasks involve compiling the influence periods by identifying influence groups which are 

statistically similar, and disregarding influence periods which are not actually influenced by the 

metadata. This is all performed using a Δprofile which shows the profile changes as a result of 

the influence. To maximise the contrast between none similar influence groups, the Δprofile 

with the largest numerical range is used. One issue with comparing the influence groups is that 

from a process timing viewpoint, the time when a particular influence takes effect may differ 

slightly between profiles. This will be the case, especially when the process involves a human 

operator or some form of human intervention. An example of this can be seen in both figures 

3.2 and 3.3, where the changes in amplitude do no coincide at precisely the same time. As a 

result, the step detection will not be 100% accurate for all profiles, potentially being several data 

points out. To compensate and ensure an accurate comparison, only the middle third of each 

influence group is considered during this stage as figure 3.6 shows. 
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Comparison of the different groups is performed by the Mann-Whitney U test. As the statistical 

distribution of the data is unknown, this particular null hypothesis test was selected due to its 

nonparametric nature (Corder and Foreman, 2014, pp. 1 – 3, 69 – 80). The central sub-groups of 

each influence group are tested, and common groups are classified as belonging to the same 

influence period. The results of the Mann-Whitney test can be found in table 3.1. 

 
Figure 3.6 - A difference profile segregated into three groups based on the findings from figure 3.5. Each group is 

further subdivided and the outer sub-groups (grey) are discarded. 

 

Table 3.1 - Results of Mann-Whitney test to determine common groups. 

Group 

combination 

Mann-Whitney test 

result 

Group 1 & 2 0 (rejected) 

Group 1 & 3 0.3852 

Group 2 & 3 0 (rejected) 

 

The results shown in table 3.1 demonstrate that the Mann – Whitney test has successfully 

identified groups one and three as statistically similar, while distinguishing group two as 

different. This is evident by the fact that the null hypothesis is rejected whenever group two is 

considered. Therefore, the system will identify groups one and three as belonging to the same 



42 
 

influence period, while group 2 belongs to its own influence period. Figure 3.7 shows these 

influence periods. 

 
Figure 3.7 - Recorded energy profiles segregated into influence periods. 

 

The final step is to identify influence periods which are not actually affected by machine 

conditions. The Mann-Whitney U test is again utilised for this by evaluating the sub-grouped 

data (as seen in figure 3.6) against a zero array of equal length. If a group is not influenced by 

any metadata, then in the difference profile (Δprofile), the data within that group should centre 

on zero. Table 3.2 shows the results, where the test has rejected influence period two but not 

influence period one, indicating that this is not influenced by the metadata. As a result, 

influence period one is discarded from further evaluation.  

Table 3.2 - Results from the Mann-Whitney test to determine if either of the two influence periods is not actually 

influenced by a metadata variable. 

Influence period Mann-Whitney test 

result 

1 0.3 

2 0 (rejected) 

 

At this stage in the analysis, the methodology has identified the boundaries for the influence 

periods, and determined which are influenced by the profiles metadata and which can be 
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discarded. Using this information, any energy profile for the same job can easily be segregated 

into a set of influence periods. The above analysis requires a minimum of two profiles in order 

to complete, however it can be generalised that the accuracy of the method is related to the total 

number of profiles used. While all three profiles were used in this method, in a case where the 

number of profiles results in computational difficulties, a subset of profiles can be used.   

The next stage, as discussed in the following section, is to understand how the metadata affects 

the influence periods. To allow for a thorough evaluation, necessitated the need for a large set of 

profiles for the same job but recorded with different metadata. Within the scope of this project, 

these could not be sourced empirically. Therefore artificial profiles were generated based on the 

empirical profiles and process metadata influence characteristics like those seen in figure 3.2. A 

progenitor profile was originally generated (figure 3.8), representing the artificial profiles 

without any metadata influence. A series of 100 profiles were generated from this, being 

adjusted by two randomly generated metadata values – A and B. A low level of random noise 

was also applied to each profile. To maintain consistency with the profiles recorded using the 

custom energy monitoring system, all artificial profiles were generated at a granularity of 

150ms. These profiles were then input into the above methodology to identify the influence 

periods. Figure 3.9 shows three of the 100 profiles segregated into influence periods with (3.9) 

denoting the equations used to alter them from the progenitor.  
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Figure 3.8 - Original progenitor profile on which all artificial profiles are based. 

 

 
Figure 3.9 - Energy profiles segregated into influence periods. Period 1 is unaffected by any metadata. 
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



  eriod 4 effect

 (3.9) 

 

The artificial profiles contain four influence periods, with period one being discarded for not 

being influenced by the metadata values. The remaining three periods have either a linear or 

exponential influence on the progenitor. This provides a sufficient spectrum of different rates of 

change to evaluate the next stage of the synthetic profile generation – the model generation. 

The data from the 100 artificial profiles will be used throughout the remainder of this chapter. 

 

3.3.2 Model Generation 

As the rate of change for each metadata influence value is assumed to be consistent throughout 

an influence period, it is only necessary to consider a single data point for each influence period 

i, denoted by
iipk . These particular points can be selected at random; however they must remain 

consistent throughout all historical profiles. As there is the potential for an anomalous reading to 

be selected, an alternative would be to take a number of neighbouring samples from each 

influence period and take the average.  

As the nature of the rate of change is unknown, a regression-based approach was taken for the 

purpose of modelling the relationship between the metadata values and the value of the common 

data point for each influence period. As the aim of this methodology is to generate synthetic 

profiles when historical ones are sparse, the algorithm selected must be able to work well with 

limited training data. Using their implementation in Weka 3, twelve machine learning 

algorithms were evaluated with an emphasis on ensemble learners (Weka 3: Data Mining 

Software in Java, 2015). In these, multiple models are trained on subsets of the training data, 

with their individual results combined to produce a single output. In cases where the training 

data is small or difficult to learn, ensemble learners have shown to produce more accurate 

predictions compared to standalone classifiers, as the final result is derived from multiple 
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models, each an expert in a specific partition of the decision space (Dietterich, 2000; Polikar, 

2006).  

All algorithms were trained on a series of four data sets generated from the 100 artificial profiles 

discussed in the previous section. These contained influence information on five, ten, twenty 

and 100 profiles. To maximise prediction accuracy, a model was generated for each influence 

period, meaning that a training set would be required for each training set size and influence 

period. For each of these, each instance contained the amplitude of the randomly selected data

iipk , along with the profiles metadata. It would be the task of the model to determine a 

relationship between these data points and the metadata. 

The twelve algorithms evaluated are briefly introduced below: 

Multilayer Perceptron Neural Network (MLP) 

A neural network, trained using backpropagation which contains one or more hidden layers with 

weighted interconnections (Fausett, 1993). The implementation used in this work utilised a 

single hidden layer with linear activation functions for each neuron, resulting in the network 

performing linear regression. The number of hidden neurons is given by (3.10) (Boger and 

Guterman, 1997, pp. 3031). Experimentation demonstrated that when given the largest training 

set of 100 samples, the learner’s accuracy benefitted from a small learning rate. However the 

learning rate had little effect on the accuracy when given the remaining smaller training sets. To 

this end, a learning rate of 0.05 was selected. The remaining parameters were kept at the default 

values as provided by Weka 3. A full listing of these parameters along with their values can be 

found in appendix B. 

Number of hidden neurons = Number of attributes 0.7    (3.10) 

 

Support Vector Regression (SVR) 

Support Vector Regression is an extension of the Support Vector Machine classifier (SVM). In 

these, to categorise new instances, SVM generates a plane to intersect the data, such that the 

distance between the plane and the multiple classes is maximised. The key ability of SVM is 
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that in cases where the data is not linearly separable, it can be remapped into a higher 

dimensional feature space (Law, 2011). This is achieved through the use of a kernel function, 

and allows the SVM to linearly separate the data in feature space using a hyperplane.  The 

extension of Support Vector Regression (SVR) permits linear regression, and non-linear 

regression through the use of non-linear kernel mapping (Gunn, 1998). Two different kernel 

functions were trialled during this experiment – the polynomial kernel and the Pearson VII 

universal kernel, to determine which gave the best results. This implementation uses the 

improved Sequential Minimal Optimisation algorithm proposed by Shevade et al (2000), for 

training the SVM. In both cases, all parameters were left at their default values. These can be 

seen in appendix B. 

Linear Regression (LR) 

This performs linear regression analysis to generate a ‘line of best fit’ for a given data set. This 

algorithm was selected to establish a comparative baseline with the other algorithms. As before, 

parameters remained at their default values and can be found in appendix B. 

Ensemble Learner – Bagging 

In ensemble learning, multiple occurrences of a standalone classifier, known as a base learner, 

are trained on a subset of the original training data. This subset is constructed for each 

occurrence of the base learner through sampling the original training data with replacement. The 

base learners are then said to become experts in a particular field of the data space. Finally, the 

individual results from each base learner are combined to produce a single output. It is this 

combination method which defines the ensemble learner. In Bagging, also known as 

Bootstrapped Aggregating, the individual results, when a numeric output is required, are 

averaged (Brown, 2010).  

In this work, each of the standalone learning algorithms discussed were trialled as base leaners, 

with the number of base leaners remaining at the default value of ten. In the case of MLP, it was 

found that when used as a base learner, the overall accuracy did not benefit from a learning rate 

smaller or larger than that of the default – 0.3.  
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Ensemble Learner – Stacking 

Stacking, also known as Stacked Generalisation combines the individual base learner results 

using another learning algorithm, referred to as a meta-learner. The principle behind this is to 

have two stages of learning algorithms. The first consists of base learners which each learn a 

specific subset of the dataset. Their outputs are then fed into the meta-learner which learns the 

mapping between the base learners output and the expected output. The output of the meta-

learner is the final result of the ensemble (Polikar, 2006). 

In this implementation, the same algorithm was used for both the base-learners and the meta-

learner. As with bagging, ten iterations of the same base learner algorithm were used.  

Ten-fold cross-validation was used for a majority of the training processes. The only times 

when this was not used was when the size of the dataset disallowed it. This was the case with 

training sets containing five and ten profiles. Due to the size of the data set, three and five-fold 

cross-validation was used respectively. In the cases where the five profile training sets were 

applied to the bagging algorithm, where SVR with a polynomial kernel was used as the base 

learners, the algorithm failed to train due to the lack of diversity within the training subsets. As 

a consequence, the training set was used directly with no folding. Post training, all models were 

further tested on an independent data set of three new profiles which were not part of the 100 

originally generated. 

Each of the twelve algorithms was tested on the multiple data sets – the training sets and the 

independent test set, with the mean absolute and RMS errors from both being used to determine 

which algorithm performed best. For each type of error, each combination of data set and 

algorithm produced a collection of three errors – one for each influence period, denoted by εip. 

These were subsequently combined using (3.11) where |ipi| and |IP| represent the number of 

data points within influence period i, and the number of influence periods in a profile 

respectively. 
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Equation (3.11) produces an average error while accounting for the relative lengths of each 

influence period. Thereby a period which is difficult to model, but only lasts for a short time 

relative to the length of the profile will not have a significant adverse effect on the overall result. 

Both the raw RMS and mean absolute errors were processed via (3.11). These results can be 

seen in appendix C. 

Finally, the processed RMS and mean absolute errors for each training set size were averaged to 

produce a single result set for each algorithm. These can be seen in table 3.3 with the minimum 

values indicated in bold. 

Table 3.3 - Processed results from different algorithms trialled to model metadata influence on energy profiles. 

Algorithm 

Training set Test set 

Mean 

absolute error 

(A rms) 

RMS error 

(A rms) 

Mean 

absolute error 

(A rms) 

RMS error 

(A rms) 

Multilayer Perceptron 0.636 0.963 0.521 0.609 

SVR w/ Polynomial kernel 0.482 0.787 0.285 0.332 

SVR w/ Pearson kernel 0.832 1.187 0.972 1.335 

Linear Regression 0.934 0.894 0.388 0.461 

Bagging w/ Multilayer 

Perceptron 
0.568 0.861 0.545 0.649 

Bagging w/ SVR w/ 

Polynomial kernel 
0.522 0.884 0.406 0.465 

Bagging w/ SVR w/ Pearson 

kernel 
0.948 1.369 1.283 1.657 

Bagging w/ Linear Regression 0.950 1.136 0.372 0.442 

Stacking w/ Multilayer 

Perceptron 
1.186 1.374 1.371 1.627 

Stacking w/ SVR w/ 

Polynomial kernel 
0.925 1.205 1.109 0.507 

Stacking w/ SVR w/ Pearson 

kernel 
1.232 1.570 1.252 1.601 

Stacking w/ Linear Regression 1.112 1.598 1.160 1.493 

 

Overall, the results in table 3.3 show that Support Vector Regression (SVR) with the 

polynomial kernel is a clear winner, producing the least erroneous results in all cases, with the 

bagging variant coming a close second. While ensemble learners were anticipated to perform 

better, it is likely that as the training focused on only using small data sets, there was simply not 
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enough diversity between the training sub-sets which may have lead the models to suffer from 

overfitting to a degree. 

Generating a complete synthetic profile, profilesyn, from only a single data point for each 

influence period is achieved using (3.12), where for each influence period i, the difference 

between the models prediction ipmp  and the value of the known data point at the centre of the 

influence period in the historical profiles, 
iipk is calculated. This forms an offset which is 

applied to a single historical energy profile which acts as a reference template, profileref. The 

offset is applied consistently to the reference profile during the relevant influence period’s time 

interval. Areas of the synthetic profile which are not affected by the metadata are set equal to 

the reference profile. For influence periods which are distributed throughout the profile (such as 

period 2 in figure 3.9), they can share 
iipmp and 

iipk values. 

 
   

 

1:

 otherwise

i i

Influence Influence
ref ip ip i i

syn

ref

profile t mp k P t P
profile t

profile t


    

 


 (3.12) 

 

Using SVR with a polynomial kernel algorithm, figure 3.10 shows a comparison between a 

second independent test profile and prediction results from different sized training sets, with 

error values shown in table 3.4.  
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Figure 3.10 - Comparison between a known profile and predictions based on different sized training sets. 

 

Table 3.4 - Error values for predicted profiles shown in figure 3.10. 

Training set size 

(# of Profiles) 

Mean error 

(A RMS) 

Max error 

(A RMS) 

RMS error 

(A RMS) 

5 1.93 4.43 2.30 

10 0.53 4.31 0.79 

20 0.49 2.68 0.62 

100 0.70 2.02 0.85 

 

Table 3.4 demonstrates that SVR with the polynomial kernel can successfully be used to predict 

the rate of change for individual influence periods. As expected, the accuracy is proportionate to 

the training set size however this does decrease for the mean and RMS errors with the largest 

training set. This is likely due to the larger training set introducing more variance in the data. 

Overall the error is limited.  

It is important to note that the above methodology does have certain limitations in that it cannot 

account for a metadata influence which results in an influence period occurring at a different 

point in time. As explained in the previous section, the profile analysis is able to compensate for 

the period transitions not aligning perfectly, however this is limited. This could be rectified by 
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introducing an initial step which compensates for influence period changes, with an additional 

model used to determine the relationship between the metadata and the influence period 

occurrence in the profile.  

Finally, in the case of a newly introduced job where no historical data is available, depending on 

the nature of the job itself, it may be possible to utilise historical data from another job with 

similar operations. Furthermore, depending on the training error, it may be prudent to forgo 

generating synthetic profiles until a jobs training set increases past a predefined point. The error 

from poorly trained models may be in excess of the error from directly using the few empirical 

profiles.    

 

3.3.3 Probability based Selection of Metadata  

At this stage, for a particular job, models are now available to generate synthetic profiles at any 

value of metadata. Two issues remain however – how many synthetic profiles are needed and 

where should they be generated in metadata space? Generating too few or placing them in the 

wrong regions of the metadata space will limit their usefulness, while generating too many will 

hamper computational efficiency. To maintain high accuracy, every time a new empirical 

profile is received for a particular job, its models can be retrained and the synthetic profiles 

regenerated. This further enforces the need to generate the right amount. Synthetic profiles are 

therefore unevenly distributed throughout metadata space, based on the probability of that 

region of space being hit by a profile query request. To achieve this, metadata space is 

subdivided into equal sized plots according to (3.13). These plots can be considered hypercubes 

in metadata space. 

   Number of plots for dimension i = 0.5
Range

MetaData i MetaData i
 

 
 

 (3.13) 

 

Equation (3.13) accounts for the metadata’s standard deviation  iMetaData


, in each dimension 

i, to maintain a suitable resolution during the subdivision. By default,  
Range

iMetaData  specifies the 
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allowed operating range of the associated values machine condition (e.g. tool wear operates 

between 100% and 0%). If this is not known, the numerical range of the metadata can be used. 

A discrete frequency distribution is then calculated, with figure 3.11 showing an example with 

ten sets of randomly generated two dimensional metadata. A probability distribution can then be 

generated from that.  At this stage, the number of synthetic profiles assigned to each plot y, is 

based on the query hit probability PHit(y) and is determined according to table 3.5. As before, 

the number of synthetic profiles is relative to the metadata’s largest integer single dimension 

standard deviation, denoted by MaxSTD. To ensure plots are not overloaded with synthetic 

profiles, the number of empirical profiles in a plot, Emp(y) are accounted for.  

 
Figure 3.11 - Frequency distribution of empirical metadata. 

 

Table 3.5 - Rules for generating synthetic profiles for each metadata space plot. 

Probability per plot Synthetic profile assignment 

PHit(y) = 0 Number of synthetic profiles is equal to 1 

0 < PHit(y) > 0.2  

 

PHit(y) ≥ 0.5 

Number of synthetic profiles is equal to 

    max 0, 2MaxSTD Emp y    

0.2 ≤ PHit(y) < 0.5 
Number of synthetic profiles is equal to

  max 0, MaxSTD Emp y    

 

The rules in table 3.5 are designed to favour plots with a moderate probability of being queried, 

as it is here that the synthetic profiles can be most effective. Plots with a higher or lower 
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probability receive a reduced amount of synthetic profiles. As before, considering the 

metadata’s standard deviation ensures that the number of profiles, be they synthetic or 

empirical, are relative to the plot size. Figure 3.12 shows how the frequency distribution of 

profiles in metadata space is altered after the rules have been applied.  

 
Figure 3.12 - Frequency distribution of energy consumption profiles after synthetic profile generation rules have 

been applied. 

 

Once each plot has been assigned a number of synthetic profiles, these can be generated by 

randomly selecting metadata values within each plot.   

Should there be large groups of plots with zero hit probability that lie far from plots with a 

probability higher than zero, it may be beneficial to merge neighbouring plots prior to applying 

the rules in table 3.5.  Not only will this reduce profile generation time, but as these plots lie 

away from any empirical data, their synthetic profile prediction accuracy is likely to be reduced. 

In figure 3.13, a probability distribution is initially generated from the frequency distribution in 

figure 3.11. For the merging process, a perimeter is set around every plot with a hit probability 

above zero. The plots which are merged are those which do not lie within any of these 

perimeters. All this can be seen in figure 3.13 where plots are merged in groups of two, 

resulting in an 11% drop in the number of plots. For larger metadata spaces, this rule could 

operate iteratively; with incrementally larger numbers of plots merging the further away they 

are from a plot with a hit probability above zero. 
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Figure 3.13 - Example of metadata space with merged plots. 

 

Using a combination of the two systems described in both this and the previous sections, would 

allow for an efficient and accurate historical energy profile library to be used to compensate for 

machine-related changes in job energy profiles.  

 

3.3.4 Exact Nearest Neighbour Search Algorithm 

The final component of the intelligent library-based system is the algorithm which will actually 

locate which profile to return when the system is queried. Each query will consist of the job 

whose energy profile is to be predicted, and a set of machine conditions predicted for when the 

job is to run. The system can then search the library of actual and synthetic profiles for a profile 

which, a) belongs to the correct job, and b) has the smallest Euclidean distance in metadata 

space. As the former is solved by simply looking in the relevant jobs library, the problem can be 

simplified to a linear nearest neighbour search. Four separate exact nearest neighbour search 

algorithms were evaluated – Linear Search, Kd-Tree, Metric Trees and Cover Trees. With a 

supplied training set, a linear search simply calculates the distance between the test instance and 

every training instance, returning the one with the smallest distance. Contrariwise, Kd, Metric 

and Cover Tree methods all invest in partitioning the training set so the search space can be 

quickly reduced (Witten and Freank, 2005, Ch. 4.7). For Kd trees and Metric trees, also known 

as ball trees, the search space is partitioned into hyper-rectangles and hyperspheres respectively. 
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Individual partitions are continuously subdivided until the number of contained points reaches a 

certain threshold. Cover trees also use hyperspheres but utilise them in a multi-layered 

approach. In this, a single root hypersphere contains all the data points which are sub-

partitioned into further inner hyperspheres. Multiple further hyperspheres are generated inside 

the inner hyperspheres; concentrating around clusters of data points until the innermost 

hyperspheres each contain a single data point. When a query is received, it has its own 

hypersphere generated around it whose radius is decreased based on the closest hypersphere 

centroid in the current level. The advantage of this method is the system only needs to calculate 

the Euclidean distance between the query hypersphere centroid and each hyperspheres centroid 

at each level, rather than for every data point in the search space.  

Each algorithm was experimentally evaluated using their respective implementations available 

in the (Weka 3: Data Mining Software, 2015). Three and ten dimensional training sets of 15000 

instances, along with test sets with 500, 10000 and 15000 instances were used. All this data was 

randomly generated with fixed ranges applied to each dimension. The results can be seen in 

table 3.6.  

Table 3.6 - Average search times for Exact Nearest Neighbour Search Algorithms on test sets. (Results averaged over 

100 consecutive runs. Generated on an Intel i7 1.7 GHz computer with 4GB of memory running Windows 7). 

 Training set size Linear 

search (ns) 

Metric 

Trees (ns) 

Cover 

Trees (ns) 

Kd-Trees  

(ns) 

Three 

dimensional 

data 

500 instances 355561 98239 332632 39228 

10000 instances 1312109 111708 459705 61752 

15000 instances 1879338 108757 316407 45116 

Ten 

dimensional 

data 

500 instances 489545 1305668 532154 112433 

10000 instances 1656181 1897516 1897516 397989 

15000 instances 2441153 1952869 2855997 342352 

 

The results presented in table 3.6 show that in every case, Kd-Trees have a significantly reduced 

search time compared with the other methods. These results are supported by the findings of 

Kibriya and Frank (2007) who conduct a similar survey. It should be noted that in terms of 

dimensional scalability, it is the linear search that outperforms all the tree search based methods.  

From an applications viewpoint, table 3.6 shows that the algorithm of choice will be dependent 

upon the average dimensional size of the energy profile metadata. Domain expert knowledge 
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will be required in the feature selection process to ensure a sensible number of attributes are 

used. In the interest of scalability and overall universality with different sized metadata, a linear 

search algorithm was employed in this work, with a Euclidean distance function used to 

determine the exact nearest neighbour. 

 

3.4 Summary 

This chapter introduces the concepts and current techniques for energy modelling in 

manufacturing environments, and addresses their limitations. To compensate for these 

limitations, an intelligent library-based system is developed. This employs multiple historical 

profiles along with associated metadata to attribute the profiles to a particular state the machine 

was in at the time of recording, in terms of mechanical and environmental factors. As a 

consequence, the most appropriate profile can be selected for the prediction process should the 

machine and environmental factors be known or predicted beforehand. To further compensate 

when there is insufficient historical data, the intelligent library is able to generate synthetic 

profiles based on the analysis of the available empirical data and intelligently distribute them 

within the metadata space, based on the libraries’ query hit probability. 

Altogether, this presents a highly suitable prediction system for energy consumption within 

manufacturing environments. 
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CHAPTER 4 

SCHEDULE OPTIMISATION SYSTEM – BACKGROUND 

 

In the context of manufacturing, scheduling is the process of allocating limited resources to a set 

of manufacturing jobs over a specified time period, with the goal of optimising one or more 

objectives (Pinedo, 2012, pp. 1; Karger et al, 2009). Typically, these resources consist of the 

specialised machines and workforce within the production line, however the finite delivery rate 

of energy must also be considered for efficient usage. The schedulers typically used in 

manufacturing are normally designed to minimise the makespan of the process. This attempts to 

maximise job execution parallelisation, which will increase both the instantaneous energy 

consumption, and the overall variance in the energy consumption. With this in mind, several 

research focuses have been developed in the field to consider energy related objectives along 

with traditional time-based ones when generating schedules, with the goal to either reduce 

overall energy consumption, reduce peak energy consumption, or produce the products in a 

more energy efficient manner. These are introduced in section 4.1. Following this, an overview 

of the solution to the proposed schedule optimisation problem is introduced in sections 4.2 and 

4.3, with a detailed discussion into algorithm selection in section 4.4. 

 

4.1 Review of Energy Optimisation in Manufacturing 

For reducing overall energy consumption in a manufacturing line, various methods have been 

proposed, which can all be generalised into two distinct but relatable categories – machine-

centric approaches and production line centric approaches. The former concentrates on 

optimising the operation of individual machines, considering them in isolation to each other. 

The latter attempts the same but in the context of the entire production line. A review of both 

approaches can be found below. 
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4.1.1 Machine Focused Approaches 

The traditional approach for energy optimisation is to operate and maintain energy efficient 

equipment. This has been applied to practically all products from manufacturing equipment to 

household white goods. However purchasing new equipment for a manufacturing production 

line can be impractical for financial reasons. A suitable approach is the optimisation of idle time 

energy consumption. When a machine is between jobs, it is typically left idling instead of being 

shut down or placed in an energy-saving mode (Mouzon et al, 2007). Certain equipment can be 

costly in terms of energy and time to turn back on again. Therefore a major question is when is 

it efficient to turn off a machine or place it in an energy saving mode? Current methods for 

improving this include turning off a machine’s ancillary components or components which can 

be rapidly turned off and on, or placing them in an energy saving mode (Orio et al, 2013). This 

can be reinforced by the use of industrial energy management networks such as SERCOS 

Energy and Siemens PROFIenergy, which analyse energy consumption of machines and the 

time it takes for them to transition between operational states so that they can be shut down or 

placed into an energy saving mode during predictable downtime such as lunch times and 

holidays. However they are unable to take advantage of short-term non-executing periods in the 

production schedule.  

Methods for overcoming this have been proposed by Di Orio et al (2013). Using the state-based 

modelling approach developed by Kara and Li (2011), which naturally identifies periods of non-

execution, they develop an architecture for a Self-Learning Production System (SLPS). This 

assesses the current context of the production line and predicts when a machine will next be 

required to run based on the mining and machine learning of historical data. The output is a set 

of schedule alterations, suggesting when to shut down a machine or place it in an energy saving 

mode. Experiment results show that an implementation of the system results in an approximate 

7% reduction in overall energy consumption while maintaining the level of machine 

availability. However due to its reliance on historical data, two months of training were required 

before these levels of reliability were attained. Similar research is discussed by Eperspӓchera 

and Veral (2013). They represent a machine as a graph of discrete operational states which 
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includes shutdown and energy saving modes, with the transitions between states represented 

with an energy and time cost. With this representation, locating the shortest path through the 

graph from the start to the end node subsequently produces the machine schedule with the 

lowest energy consumption. Once this path is generated, it is checked to determine if it complies 

with the schedule time constraints. 

Mouzon et al (2007) contribute by proposing several dispatch rules aimed at minimising energy 

consumption through intelligent machine shutdown. Knowing when the next job is to arrive is 

of significant importance with this type of solution. When the release dates are unknown, the 

problem becomes NP-hard. Mouzon et al attempt to solve this problem by calculating an 

average idling time. A ten job schedule is tested on nine different dispatch rules, which are 

based on whether there is scheduled idle time and what prior information is known about the job 

release dates. While each of the dispatch rules was successfully able to reduce total energy 

consumption, they each resulted in a slight increase in production time. While they state that 

this may be suitable depending on the constraints, they investigate ways to enhance their results 

through the use of a multi-objective linear mixed integer program which additionally considers 

minimising production time. The production line manager is then able to determine which 

objective takes priority depending on the current production circumstances. A similar choice is 

available with implementation by Yildrim and Mouzon (2012). They use a Genetic Algorithm 

to determine candidate solutions, with a linear program used to determine the completion time 

and energy consumption. This produces solutions along a pareto front allowing the production 

line manager to select the most appropriate one. 

One of the issues with a generalised system for intelligent machine control is the fact that the 

available energy saving states may be machine or supplier dependent. One machine may have 

several different energy saving modes while another may not have any. Shrouf et al (2014) 

address this issue by devising three common states a machine can be in – processing, idle and 

shutdown. With this they develop a model for determining when a job should start, when a 

machine should idle and when it should be shut down. To solve this model, they perform a 

comparative study using a Genetic Algorithm and a traditional analytical solver. Of the 13 cases 
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tested, the Genetic Algorithm provided a stable computational time which is not significantly 

influenced by the number of jobs or the time frame of the schedule. With the analytical solver 

however, the runtime increased exponentially as more jobs were considered. These results help 

to demonstrate that heuristic and non-deterministic approaches are best suited for solving these 

of problems. 

In all the above cases, the strategies focus on a single machine. The work by Pach et al (2014) 

aims to consider multiple machines, deciding when to shutdown each one based on potential 

fields. With the goal to reduce both energy consumption and makespan, their system allows 

both jobs and production line equipment to “attract” one another via potential fields. Each 

machine is thus able to detect the jobs it needs to execute, and is able to decide how to execute 

the jobs while optimising its energy consumption. In a simulation and empirical experiments, 

results show that the total energy consumption was reduced by 19%, however they state that this 

will reduce as the number of jobs increases. While these are promising results, during the 

practical experiments, products had to be fitted with a Wi-Fi connection in order to implement 

the potential field. As such, depending on the production line, this may significantly hinder a 

practical implementation.  

In the case of an automotive assembly line, Chen et al (2012) models sequential production 

lines as Bernoulli serial lines. Using Markov Chains to analyse the production line’s 

performance, they are able to determine the effect of machine shutdowns and start-ups on the 

overall manufacturing performance and the energy consumption. Unlike those detailed above 

where the energy consumption minimisation is second to the minimisation of production time, 

their strategy presents a trade-off between energy consumption and production throughput. 

Through the use of a greedy algorithm, two solutions are returned - one aims to produce the 

lowest average energy consumption per production output, while the other aims to minimise 

energy consumption while remaining as close to the original schedule constraints as possible.  

Reducing the energy consumption of idling machines is advantageous within the concepts of 

reducing peak energy consumption and its overall variance. By reducing the energy 

consumption of non-executing machines, the average energy consumption for the entire 



62 
 

production line, along with the amplitude of energy peaks will be reduced. While these systems 

show promising results, they are only able to influence the energy consumption when the 

machine is not being used.  

 

4.1.2 Schedule Focused Approaches 

The idea of intelligently shutting down a machine is expanded on by Zononi et al (2014), whose 

system incorporates this into the scheduling of two serial machines. Their results demonstrate 

that the potential energy savings are heavily dependent on how the machines are governed in 

relation to the intelligent shutdown. When a machine is abruptly restarted to keep up with 

demand, the level of optimisation is reduced. However as different machines will have different 

start-up energy requirements, it is unsure how reliable these results are over the spectrum of 

manufacturing equipment. Weinert et al (2011) discuss a similar approach but do not confine it 

to a simple two machine problem. Utilising an energy modelling strategy similar to the one 

developed by Peng et al (2014), they develop a scheduling system which is able to account for 

energy consumption through the use of ‘Energy Blocks’. Each block represents a possible 

machine state and contains the energy consumption for that state. Using these, the scheduler is 

able to construct a predicted energy consumption profile for the schedule. During testing, 

energy consumption was significantly improved when the workload was balanced between the 

machines. This is presumably due to the fact that machine idle time is reduced. These 

improvements can be furthered by shifting the starting times of jobs, and adding an additional 

machine to prevent bottlenecks in the production line.  

Due to its obvious financial incentives, there has been keen interest in optimising schedules to 

reduce energy-based costs by scheduling jobs to run during times of low energy tariffs. Emec et 

al (2013) investigates this by defining three strategies for energy-aware scheduling, each with 

differing levels of job start time flexibility for the purpose of reducing energy costs. In testing, 

they show that maximising the flexibility of each job start time results in an optimal schedule 

for avoiding peak energy costs. Furthering their research, they also demonstrate that when 
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varying the speed and acceleration of robotic arms, its influence on energy consumption is non-

linear, with the minimum energy consumption not located at either of the jobs processing time 

boundaries.  

During energy-optimised scheduling, maximising the flexibility of the job constraints has a 

direct influence on the optimality of the result. Based on the fact that different machines can 

have different energy consumptions despite performing the same job, He et al (2012) develop an 

energy-oriented scheduling strategy to select the best job-resource assignment for minimising 

total energy consumption. Thanks to the limited number of assignment options in their 

investigated three job schedule, a deterministic dispatch rule is used based on a first-come-first-

serve basis. As has come to be expected, while the range of schedules have a variation of 27.6% 

in the total energy consumption, they also have a 29.5% variation in processing time.  

Depending on the nature of the production line and the manufacturing operations to be 

completed, the flexibility when devising a schedule can differ dramatically. In the cases 

discussed above, maximum flexibility is achieved by relaxing the job start times and job-

resource assignments. This thus allows an energy-orientated scheduler to produce more optimal 

results but simultaneously increases the difficulty of the problem. In certain manufacturing 

environments, the energy delivered to a job can be adjusted over time. In their investigation of a 

foundry, Artigues et al (2009, 2013) they propose a generalisation of the cumulative scheduling 

problem - the ‘Energy Scheduling Problem’. This aims to produce a schedule which specifies 

both the start time of jobs, and the input power to the related furnace such that energy costs and 

peak power are minimised by maintaining it under a specified limit. An iterative two-step 

approach is initially used with a constraint programming optimiser used to determine the job 

start times and resource assignments, followed by a mixed integer linear programming model to 

solve the power settings. While effective, this method does not guarantee to find the optimal 

solution. It is later extended to include ‘energetic reasoning’ – a tree search algorithm capable of 

early detection of infeasible solutions for cumulative scheduling problems Berthold et al (2011). 

During testing the implementation is quickly able to filter out job lists to which no solution is 



64 
 

available, however of the twenty job lists considered, only twelve were successfully solved 

while the others exceeded their allotted computational time. 

In parallel with aligning jobs with lower energy tariffs, there is also work in reducing peak 

energy consumption to avoid heavy fines from energy suppliers. Traditional methods for this 

include installing naive power cutters which cut power to equipment if the production lines 

energy consumption approaches the consumption limit (Artigues et al, 2013). This method can 

be very unfavourable due to its negative influence on the production rate and it can only be 

applied to selected equipment. More advanced methods include load shifting which is 

introduced in section 4.2. 

It is stated by Fang et al (2011) that generating schedules optimised for minimal makespan is 

computationally difficult. Therefore adding additional objectives serves to make the problem 

more challenging. Using a Mixed Integer Linear Program, they investigate generating a 

schedule optimised for makespan, peak energy consumption and carbon footprint, where both 

job start times and process parameters can be changed to a limited degree. When applied using a 

commercial solver, the optimal solution could not be found after 24 hours of processing. Their 

method for overcoming this is to relax the constraints to reduce the complexity of the model, 

however the results were heavily dependent upon the specifics of the production line such as 

inter-job storage. While effective results are eventually produced, the authors state that this 

particular method may not scale well, resulting in prohibitive computational times for industrial-

sized problems.  

In the proposition by Brozzone et al (2012), a schedule with minimal makespan is generated 

using an Advanced Planning and Scheduling system before being further optimised by an 

Energy-Aware Scheduler to minimise energy consumption peaks. Modelled as a Mixed Integer 

Programming model, the manufacturer specifies a maximum allowable peak power and the 

schedule is modified while increases to makespan and tardiness are discouraged. 

Experimentation demonstrates that as a maximum peak power ceiling is introduced, both the 

makespan and computational time increase until the point where a suitable schedule cannot be 

determined within the allotted time window. They conclude that commercial solvers cannot 
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always be relied upon to generate suitable results in sufficient time. When replaced with a 

Randomised Neighbourhood Search algorithm, a near-optimal solution was attained with an 

increase in makespan. An improvement to this methodology is offered by Xu et al (2014), who 

consider the energy-related objectives during the initial generation of the schedule instead of 

separately. Unlike Bruzzone’s implementation, this allows them to locate the optimal solution 

with a reduced makespan and tardiness, along with improved computational efficiency.  

In order for a schedule to be optimised for minimal peak energy consumption it is necessary to 

keep track of jobs executing in parallel (Fang et al, 2013). Fang et al consider this with two 

comparative scheduling approaches – a disjunctive and an Assignment and Positional 

formations, for a flow shop scheduling problem. Both approaches are tested using a commercial 

optimiser. Interestingly, in their implementation the computational time peaks as the user 

specified energy ceiling reaches the mid-range of the tested spectrum. Ultimately, results show 

that the Assignment and Positional formulation performs much faster and scales well with the 

number of jobs. Further improvements to this led to a reduction in computational time, most 

prominent in the mid-range of the energy ceiling spectrum. However, as is becoming true in a 

number of implementation strategies, computing a near-optimal result in a reasonable amount of 

time becomes difficult as the number of machines or jobs increases.  

Currently, the only known commercial scheduling software which considers energy related 

objectives is the Energy in Production Planning and Scheduling module by Transfact (E-PPS, 

No date). In parallel with the standard manufacturing considerations, the E-PPS software which 

is implemented as an add-on module to a traditional production planning system, is able to 

actively reduce energy consumption through intelligent scheduling and organisation of the 

production process (Pechmann et al, 2012). However, to achieve this, the software must have 

maximum visibility of the production line in addition to substantial prior knowledge of the 

production line and its energy consumption. Traditional backwards scheduling is used followed 

by adjustments to the individual job start times, resource assignments and job pre-emption. 

During a test implementation at a semiconductor manufacturing site, the E-PPS successfully 

resulted in a 5% reduction in both total and peak energy consumption. However its success is 
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dependent upon the flexibility of the production line and the scheduling constraints (Pechmann 

and Schöler, 2011). 

Thus far, the discussed techniques have primarily focused on the optimisation of electrical 

energy usage. While this can be considered the most popular energy medium used in 

manufacturing, depending on the sector, different energy mediums are heavily used. In cases 

where energy is locally converted into different forms, the optimal use of these energy 

converters can result in significant savings. This is the work by Rager et al (2015), who 

examines the prospect of optimising a schedule for steam demand from on-site boilers. A 

Genetic Algorithm and two memetic algorithms with differing local search mechanisms are 

trialed to produce the optimal result. While they state that no search heuristic algorithm presents 

a clear computational advantage, the Genetic Algorithm is seen to produce suitable results in a 

large or not-well-understood search space. Using a method similar to the one used by Artigues 

et al (2013), a dominance rule is used to assign jobs to machines. This is then optimised for 

steam demand by one of the three heuristic algorithms, with the final results compared to those 

from a commercial solver. Unfortunately as the solver was only able to produce results for 

simple test problems, comparative analysis was limited. Regardless, all three heuristics were 

able to significantly improve the original result produced by the solver with little variation 

between the three results.  

 

4.2 Machine or Schedule Centred Approach? 

As discussed in the research aims, this project’s aim is to minimise the energy consumption 

variance in a production line, resulting in a more distributed utilisation of the power 

infrastructure over time. Currently, despite an extensive literature review, no similar research 

has been discovered. As a result, deciding the generalised solution for the discussed problem 

cannot draw on exact previous findings. Ultimately, two generalised approaches were identified 

in the section 4.1 literature review - adjust the process parameters such that the individual job 

energy profiles have minimal variance, or modify the job start times so that the production lines 
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energy profile has a minimal variance. While a large amount of research has been dedicated to 

the former, it is believed that the overall contribution to energy consumption variance is limited 

in comparison with the latter strategy. This is due to the fact that regardless of the optimisation, 

the machine is still required to execute the individual manufacturing operations. This will result 

in a variance in the energy consumption as the machine transitions between operations and 

states. Further reductions in consumption variance can only be realised through modification of 

the actual manufacturing machine. This can include motor soft-starters and other machine-level 

energy management systems. Further limitations come from the fact that certain processes may 

only be able to operate within a limited parameter range or the parameters may need to be fixed. 

Additionally, this strategy does not immediately consider how the production lines energy 

consumption variance will be affected by concurrent manufacturing jobs. The concept of 

globally optimising all manufacturing jobs without considering process parameters can be 

considered much more appealing as it considers the variance produced by concurrent jobs, while 

allowing them to run with the parameters preferred by the manufacturer. This strategy is 

conceptually similar to load shifting, a traditional energy management method which in a 

manufacturing environment involves moving job start times to periods of lower energy tariffs, 

and ensure that their instantaneous energy consumption does not risk breaching the agreed 

supply limit (Brown et al, 2012).  

 

4.3 Proposed Approach 

The literature review in section 4.1 demonstrates that introducing energy considerations into 

production scheduling can produce promising results while minimising the negative effects to 

the traditional scheduling objectives. There is also significant support for this optimisation 

approach in section 4.1, where a number of researchers (Yildirim and Mouzon, 2012;      

Mouzon et al, 2007; Xu et al, 2014; Rager et al, 2015; Emec et al, 2013) detailed the advantages 

of solely modifying job start time to minimise energy consumption peaks. To that end, this 

research project presents a production schedule optimisation system which aims to minimise the 
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variance in production line energy consumption through the manipulation of job start times. To 

ensure conformity with traditional objectives such deadline compliance, a schedule is initially 

generated using a traditional production line planning software. From a production line 

managers viewpoint, this means the pre-optimised schedule will already have a suitably optimal 

job-machine assignment, along with confirmed job / process release dates and deadlines 

preassigned by a trusted piece of software. Analysis of production schedules optimised for 

minimal makespan shows that they are typically backwards scheduled, meaning they are 

devised retrospectively from the deadline. While this is used to minimise the holding time of 

completed products or sub-assemblies, it also allows for a degree of manoeuvrability in the job 

start times even in schedules optimised for minimal makespan. Once this original schedule has 

been generated, it can be optimised for minimal energy consumption variance. This chapter 

concludes with an explanation into the key algorithm employed to optimise the schedule. 

Following this, the next chapter introduces the individual components of the optimisation 

system and its overall implementation before its performance is analysed and improved upon in 

chapter 6. 

 

4.4 Selection of Heuristic Optimisation Algorithm 

The literature review reveals, as expected, that the selection of the main optimisation algorithm 

has a significant influence on the optimality of the final result, the computational performance 

and the solution scalability. One of the dominant issues found in performing schedule 

optimisation is the computational difficulty. Many researchers (Shrouf et al, 2014; Fang et al, 

2011; Rager et al, 2015; Brozzone et al, 2012) have investigated the use of commercial solvers 

to produce either the optimised result, or a comparative result. The details of these solvers are 

not revealed, nor is it specified if they are deterministic or not.  In the results, while these 

solvers perform particularly well for computationally simple problems, their scalability is poor. 

For the research project introduced here, the size of the search space, which contains all possible 

solutions allowed by the constraints, can be calculated as the sum of discrete time steps T, a set 
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of jobs J can possibly begin at, within their constraints (4.1). With du,i and ru,i respectively 

representing the deadline and release date of process u, of which job i is a member.  

Number of possible combinations =  1

0 , ,

J

u i u id r T
     

 (4.1) 

 

Equation 4.1 establishes that as the number of jobs in the schedule increases, the number of 

possible combinations increases exponentially. As such the problem can soon become 

impractically large for a polynomial time algorithm to solve in an acceptable amount of time 

(Fang et al, 2011; Shrouf et al, 2014; Brozzone et al, 2011). To this end, it was decided that a 

search heuristic would be used for the optimisation. Genetic Algorithms are a popular choice in 

the literature review in section 4.1, where they have stable computational times for a range of 

problem sizes (Yildrim and Mouzon, 2012; Shourf et al, 2014, Rager et al, 2015). They are also 

prominent in current traditional scheduling approaches (Pinedo, 2012, ch. 14.4). In a review of 

literature by Filho et al (2012), Genetic Algorithms have been applied to solve a large number 

of Flexible Manufacturing System scheduling problems, either on their own or through a hybrid 

algorithm technique. More specifically they have been successful in solving a range of specific 

scheduling problems (Qiu et al, 2009; Bierwirth and Mattfeld, 1999), which can include 

multiple project scheduling (Gonçalves et al, 2008). It is important to remember that Genetic 

Algorithms should not be considered as a “one size fits all” answer. As the search space 

increases, the error relative to the best known solution can increase as documented by Bierwirth 

and Mattfeld (1999), whose work investigates the use of Genetic Algorithms in job scheduling. 

However it should be noted that in their experiments, in a schedule containing 2000 

manufacturing operations, the error was only 7.59% from the best known solution. Depending 

on the manufacturer, this level of error may be acceptable when compared with the benefits of a 

reduced computational time.  

Like other heuristic search algorithms such as Simulated Annealing, Evolutionary Strategies, 

and Tabu Search etc., a Genetic Algorithm can be described as a general purpose search 

algorithm which can, and has been, applied to a number of different applications (Ailva and 

Falcão, 2008). As such, it can be concluded that there is no clear advantage over using any one 
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algorithm. That said, with its prevalent use in the previous literature review, Genetic Algorithms 

were chosen for the main optimisation algorithm.  

A Genetic Algorithm itself is a population based algorithm where a population of candidate 

solutions to the problem in question, known as ‘chromosomes’, are evolved over a number of 

iterations until a termination condition is reached (Mitchell, 1998, pp. 8). This condition can be 

when a suitable solution is found, or when a predefined amount of time or iterations have 

occurred. In each iteration, each candidate solution chromosome is evaluated to determine its 

“fitness” or optimality against one or more objectives. Natural selection is then emulated with 

fitter chromosomes having a higher probability of surviving and thieving as the population is 

evolved through the use of genetic operators. Like biological evolution, this all aims to produce 

a suitably optimal result without having to consider every entity in the search space. In the 

context of this particular problem, each candidate solution chromosome is a representation of a 

potential production schedule. Each chromosome contains a fixed length sequence of ‘genes’, 

which represent the job start times. Because the aim of the algorithm is to find the schedule 

which produces the minimum variance in the production line’s energy consumption, each 

candidate schedule chromosome’s fitness value will be its predicted energy consumption 

variance. The Genetic Algorithm is therefore tasked with locating a represented schedule with 

the lowest fitness value. 

 

4.5 Summary 

The literature review in section 4.1 demonstrates that while significant research has been 

devoted to energy-based optimisation strategies, no research has been uncovered with a focus on 

minimising energy consumption variance. This subsequently reinforces the originality of the 

research. However as a consequence, the generalised approach to solving this problem along 

with the main algorithm selection has been decided based on findings from other energy based 

optimisation research.   
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CHAPTER 5 

SCHEDULE OPTIMISATION SYSTEM – IMPLIMENTATION 

 

Following from the algorithm selection in section 4.4, this chapter discusses how the various 

components of the schedule optimisation system come together. Along with the fundamental 

operators native to the Genetic Algorithm which are modified to suit the application, additional 

functions are also introduced which aid in its integration into the overall optimisation system 

and to improve the optimality of the final result.  

 

5.1 Heuristic Algorithm Encoding Scheme 

In order for the Genetic Algorithm to solve the optimisation problem, a suitable encoding 

scheme must be selected to represent potential solutions in a form which is both independent of 

the specific problem and computationally efficient. The choice of scheme is critical due to its 

heavy influence on the overall accuracy and computational time (Karaboga, 2000, Ch. 1.1.2). In 

this implementation, the Genetic Algorithm will be required to optimise every job start time in 

the production line schedule. Therefore each candidate schedule considered by the Genetic 

Algorithm should represent the start times for every job. In the production schedule these will 

likely be presented as a form of date time stamp, however it can be seen as inefficient for the 

Genetic Algorithm to consider them in their natural form. Computationally a date time stamp 

will likely be processed and stored as a composite data type; consisting of several primitive 

types which each store a singular time component such as hours, minutes, etc.    

To reduce the size of the problem space, the Genetic Algorithm will only be able to reassign a 

job’s start time to a finite number of discrete time points separated by a constant time period T. 

Therefore each job’s start time could easily be represented by the number of time steps offset 

from a common constant reference point in time. Such constant reference points include the 
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release dates for each process in the schedule. To provide a single point of commonality, the 

earliest release date of any process se, is used as the lower bound. Similarly, the upper bound 

can be assigned as the latest process deadline DMax. This method also permits time based 

constraints to be encoded, allowing for computationally quick checking of constraint 

compliance. The encoding (5.1) and decoding (5.2) equations for converting a jobs start time 

timestamp si between the time and chromosome representation gi are as such: 

Encode from time to chromosome domain:  i i eg s s T   (5.1) 

 

Decode from chromosome to time domain:  i e is s g T     (5.2) 

 

These equations can also be used for encoding/decoding additional time based information. This 

encoding strategy, known as real-value encoding, allows for the encoding of a potential solution 

while minimising the differences between it and the actual production schedule it represents 

(Herrera et al, 1998). An example production schedule along with its encoded form can be 

found in figures 5.1a and 5.1b. 

 
Figure 5.1a - Example of a two process four job production schedule. 

 

 
 

Figure 5.1b - Encoded schedule (from figure 5.1a) with T = 00:01:00 and se = 07:00 (release date for process B). 

 

Start time: 13:00

Duration: 1:20

Machine: M1

Alternative 

machine: M3

Job ID: A1

Prerequisite: 

N/A

Start time: 14:20

Duration: 2:40

Machine: M9

Alternative 

machine: N/A

Job ID: A2

Prerequisite: A1

Release date: 

10:00

Deadline: 

18:00

Process: A

Start time: 09:00

Duration: 5:00

Machine: M3

Alternative 

machine: M1

Job ID: B1

Prerequisite: 

N/A

Start time: 14:00

Duration: 3:15

Machine: M7

Alternative 

machine: M9

Job ID: B2

Prerequisite: B1

Release date: 

07:00

Deadline: 

21:00

Process: B
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Figure 5.1b shows that additional none timestamp based information such as job ID can also be 

encoded. Taking the prerequisite constraint as an example, it is computationally quick to 

process, store and lookup jobs based on a singular number instead of an alphabetic or 

alphanumeric tag. While most of the constraints are originally time stamps, and as such can be 

easily encoding with the scheme discussed, one constraint which cannot easily be encoded is 

resource availability. As it is assumed that a machine can only process a single job at any one 

time, a primitive and efficient method for ensuring this is to pair each machine with a discrete 

semaphore-based time series Mk(t), to represent its usage ranging from the earliest start time to 

the latest deadline, in steps of T. For each discrete time step, a machine can either be, or not be, 

in use. Therefore a job can be reserved on a machine by setting the time series semaphores 

which fall within its processing interval.  

 

5.2 Genetic Operators 

To determine a suitably optimal solution, the Genetic Algorithm is tasked with intelligently 

exploring the potential search space. As Genetic Algorithms are based on the concepts of 

natural selection and evolution, the tools used by the Genetic Algorithm can be seen as numeric 

emulations of these natural processes.  

 

5.2.1 Population Generation 

When the Genetic Algorithm is first initiated, its knowledge of the search space is nil. Therefore 

the first population considered is pseudo-randomly generated, with the pseudo-randomness 

coming from the fact that each candidate schedule chromosome must comply with the schedule 

and production line constraints.  For each schedule chromosome, the generation constraints for 

each of its job start times are shown in (5.3). 

 
,

.
max

u i

i u i ih h
i i

r
g d p

s p


  

 

 (5.3) 
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Equation (5.3) ensures that for each randomly generated job start time, the job will begin on or 

after the jobs associated process release date, ru,i. Where there are prerequisite jobs h, with start  

and processing times denoted by 
h
is and h

ip respectively, (5.3) ensures the current job starts after 

the last prerequisite job has finished,  max h h
i is p . Acting as an upper bound, the job cannot 

begin any later than its process deadline minus its processing time, pi. Equation (5.3) considers 

all constraints except resource allocation. While originally included, it resulted in a significant 

increase in chromosome generation time as even when encoded, it is costly to consider due to its 

time series nature. As all constraints are checked in the fitness function (see section 5.3), not 

considering it here is seen as an appropriate balance between generating a population of valid 

schedules and generating them quickly.  

Equation (5.3) is applied to the start times of every job in N-1 schedule chromosomes, where N 

is the number of schedule chromosomes in the population considered by the Genetic Algorithm. 

The final schedule chromosome is a direct encoding of the original schedule generated by a 

production planning software which does not consider energy consumption. This is done to 

provide result insurance and to impose an upper bound on the optimisation. In reference to the 

former, as a Genetic Algorithm is able to clone its best chromosomes through elitism, by 

including the original schedule it ensures that if no other valid schedule can be found after a 

predetermined number of iterations, the original will be returned to the production line manager. 

This may also be the case if the original schedule is, by coincidence, the most optimal in terms 

of energy consumption variance. The latter factor is to ensure that the Genetic Algorithm never 

returns a schedule which has a worse energy consumption variance than the original. This also 

applies if the original schedule is already the most optimal one. 

To achieve a more optimal reduction in energy consumption variance, the optimisation system 

is permitted to extend the makespan of processes so long as the schedule constraints are 

maintained, specifically the processes release date and deadline. For processes where this is not 

suitable, process prioritisation can be used to limit the amount of allowed makespan expansion. 

Each process is assigned one of four priority levels which signal the optimisation system to 
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artificially shift the related processes constraints forwards or backwards in time. For schedules 

which are devised beginning from the process release date, the highest priority results in the 

related processes deadline being brought forward in time up to the completion of the last job in 

that process. This means that the schedule optimisation system can operate as normal, however 

that processes makespan cannot be extended past the last job completing. The lowest priority 

level has no influence on the constraints, while the intermediate two levels bring the deadline 

forward accordingly. For schedules which are devised retrospectively from the deadline, the 

exact same methodology can be applied to the process release date, with it being artificially 

moved closer to the first job in the process, producing the same effect. While a multi-objective 

optimisation system could simultaneously consider both energy consumption variance and 

makespan, this would produce solutions along a pareto front. As the original schedule is already 

optimised for minimal makespan, employing a multi-objective system which reconsiders it 

along with energy is believed to be unnecessary. It is assumed that should maximising overall 

production throughput be the primary objective to a manufacturer, optimising a schedule for 

energy consumption variance will not be considered.  

Once the initial population has been generated, the fitness of each schedule chromosome is 

calculated using the methodology discussed in section 5.3. Once the fitness values for each 

schedule chromosome are known, the population can be evolved. 

 

5.2.2 Selection 

The purpose of selection is to construct a reproducing population with which to evolve into the 

next generation of the population. Every chromosome has an opportunity to be included in the 

reproducing population however chromosomes with a better fitness value are favoured. This can 

be seen as an emulation of ‘survival-of-the-fittest’, and aims to maintain a diverse population 

where the average chromosome fitness betters with each iteration. As this Genetic Algorithm is 

tasked with finding a schedule which produces the lowest energy consumption variance, a better 

fitness value is a lower one.  
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Due to its responsibility with constructing the reproducing population, the selection procedure 

has significant influence on the overall effectiveness of the heuristic search and the optimality of 

the best solution found (Karaboga, 2000, ch. 1). Tournament selection was chosen to implement 

this functionality. This is primarily due to its suitable compatibility with the fitness value 

assignment scheme, where chromosomes representing schedules which do not comply with the 

constraints are assigned a very high number, which is ideally outside the practical boundaries 

for valid schedules (this is explained further in section 5.3). In a rank-based selection scheme, a 

highly undesirable chromosome would have significantly little probability of being selected 

despite the fact that including them in the reproducing population is considered important to 

maintain diversity in the next generation. To this end, tournament selection was seen to be 

suitably considerate of the wide range of fitness values. There are also additional performance 

related reasons in support of this decision as tournament selection does not require sorting of the 

population and the overall behaviour of the selection process is heavily influenced by the size of 

the tournament population (Blickle and Thiele, 1995, ch. 3). The tournament population is built 

by randomly selecting schedule chromosomes from the main population with replacement. 

Once built, the schedule chromosome with the lowest, and therefore more optimal, fitness is 

extracted and placed within the reproducing population. This is repeated until the reproducing 

population is of size N-2, leaving space for two chromosome elitism. Once a reproducing 

population has been collated, it can be manipulated and evolved using the genetic operators – 

crossover and mutation. 

 

5.2.3 Crossover and Mutation 

The purpose of the genetic operators is to emulate reproduction with an aim to producing a 

more optimal population. Initially, the schedule chromosomes in the reproducing population are 

randomly paired, with each having an equal probability of breeding and producing children. 

Should a pair be selected, the crossover operator, emulating chromosomal crossover, creates 

two child chromosomes using the job start times from two parent chromosomes. For each job in 
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the child schedule chromosome, its assigned start time can come from either parent. The 

supplying parent is selected at random. The two child schedule chromosomes are polar 

opposites of one another, in that if the start time for job i in child one comes from parent one, 

the start time for the same job in child two will source from parent two. Two crossover 

strategies were investigated for this implementation – single-point crossover and uniform 

crossover. These were chosen to represent the computational complexity range of different 

strategies available, with single-point crossover representing the simplest approach and uniform 

crossover, the more complex approach. An example of uniform crossover can be seen in figure 

5.2. 

 
Figure 5.2 - Diagram showing the act of uniform crossover. 

 

Each strategy was evaluated in a full implementation of the schedule optimisation system with a 

comparison of system runtimes along with the percentage of variance optimisation relative to 

each schedules original variance. The results are shown in table 5.1. 

Table 5.1 - Comparison results of uniform and single-point crossover strategies (Results are averaged over five 

consecutive runs. Ran on an Intel i5 Windows 7 PC). 

Number of jobs 

in schedule 

Optimisation (%) Runtime (mins) 

Uniform Single-Point Uniform Single-Point 

8 72.96 72.92 247.56 233.43 

12 28.67 28.67 291.53 299.88 

20 68.77 66.64 231.19 225.58 

30 60.06 60.01 80.60 84.01 

40 57.75 58.83 18.55 23.17 

50 48.18 54.28 8.11 10.10 

 

With table 5.1 showing minor or inconsistent difference between the two strategies, uniform 

crossover was selected. Depending upon the crossover probability, if a pair of schedule 

chromosomes is selected to crossover, for every job in child one, there is a 50/50 probability 

that the start time will be sourced from parent one or parent two.  
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Mutation of the individual job start times also occurs to introduce new areas of the search space 

for the Genetic Algorithm to consider. Each start time has a small probability of being mutated. 

If selected, the start time is altered to a new encoded start time using equation (5.3). 

 

5.2.4 Partial Validation of Schedule 

During both crossover and mutation, there is the possibility of schedule chromosomes breaching 

one or more of the constraints as a result of the random nature of the operators’ assignment 

strategies. To maximise schedule validity in the Genetic Algorithms population, following each 

operator, the schedule chromosome undergoes a series of checks to determine its compliance 

with certain constraints. This can be seen as an emulation of the error-correcting abilities of 

DNA polymerase enzymes which correct mistakes made during DNA replication. Again, 

compliance with all the constraints is not undertaken to minimise computational time. A full 

constraints compliance check is undertaken in the fitness function (section 5.3).  

Post crossover, each start time which immediately follows a crossover point is checked to see if 

it complies with the constraints as given in (5.3). If the start time is found to be breaching one or 

more constraints, it is adjusted according to (5.4), to start directly after the last prerequisite job 

to finish has completed. While it is possible that naively adjusting one start time while not 

considering the ones that come after will simply shift the problem to the next start time, this can 

be seen as an efficient balance between efficiency and schedule validity in the overall 

population. Should the schedule chromosome be selected for mutation, the problem may be 

rectified by either the mutation operator or the post mutation checks which examines all the start 

times.  

Post mutation, each start time is checked to determine if it complies with (5.3). If a start time 

does not comply, it is naively reassigned according to (5.4). While a random reassignment 

would be beneficial for the search, there is no guarantee that the compliance issue will not 

persist after the reassignment. By reassigning the job to begin as soon as possible, this ensures if 
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there is still a compliance issue, it is due to the rest of the schedule and not that particular star 

time.  

  max 1h h
i i ig s p    (5.4) 

 

 

5.3 Fitness Functions 

In the context of this optimisation system, the fitness function serves two purposes: a) 

thoroughly determine if a schedule chromosome is valid and can operate within the constraints 

of the schedule and production line; and b) if it is valid, reference a library of historical energy 

profiles and predict the energy consumption variance that would be produced were that schedule 

actually executed. This variance is assigned as the candidate schedule chromosomes fitness 

value. Thereby the lower the fitness value, the more optimal the schedule chromosome.  

Prior to any predictions, the candidate schedules are checked against the constraints in a 

procedure much more thorough than the checks which occur inside the genetic operators. In 

their encoded form, the following are grouped together based on their respective jobs: 

 job start times, extracted from the schedule chromosome, 

 job durations, 

 resource assignments,  

 prerequisite job relationships, 

 parent process deadline. 

As it is assumed that the job duration also includes any necessary setup, inspection and 

unloading of parts, the jobs duration does not need to be adjusted to consider this. 

This grouping permits the schedule to be considered from an individual process viewpoint. The 

schedule is checked to determine if there is any overlapping of related jobs which must be 

executed in series, and to ensure that the last job in the process to finish does so either before or 

on the deadline. Assuming a candidate schedule passes these checks, it is then checked to ensure 
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it does not over-utilise the production lines resources. As introduced in section 5.1, each 

machine is assigned a discrete usage profile which ranges the full time span of the schedule with 

time spacing T. For each job, the system queries the appropriate machines usage profile to 

determine if all the discrete time slots for the duration of the job can be reserved. If so, those 

slots are reserved. If a requested slot has already been reserved by another job, this check fails. 

In total, each schedule must successfully pass four checks with binary results – pass or fail. 

These consist of (5.3) and (5.5). 

max{Mk(t)} ≤ 1 (5.5) 

 

As before, (5.3) ensures that all prerequisite jobs are complete prior to the job itself starting, that 

no job begins prior to its parent process release date, and that the process deadline is not 

breached. Equation (5.5) ensures that each of the available resources Mk are never over utilised.  

Each check is undertaken sequentially, allowing for easy integration of further checks. Even 

with all the constraints, the above checks are necessary due to the fact that, a) the initial 

generation constraints do not consider resource utilisation, for time efficiency it is seen to be 

more efficient to incorporate this into the centralised checks here than including it in the 

population generation and post operator checks. And b), due to the random assignment of start 

times within the available time, there is the possibility that the generation algorithm will 

randomly assign the first job in a process to run at the very end of the processes available time. 

As such because of the constraints the generation algorithm will have no choice but to assign 

the trailing jobs to overlapping start times. While additional constraints could be added to 

prevent this, it is believe that this would influence the overall performance of the Genetic 

Algorithm by overly constricting its random nature. 

In the case of resource utilisation, if a resource is over utilised additional options are potentially 

available besides the standard pass or fail. The schedules for this particular application allow for 

manufacturers to specify a set of alternative machines on which the job could potentially run on. 

In the case where the default machine is not available, the fitness function will attempt Dynamic 

Machine Reassignment (DMR). Here the alternative machines are queried to determine if they 
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can execute the conflicting job. Should a machine be able to take on the conflicting job, the 

schedule will be adjusted to reflect the change. The alternative machine is assigned as the jobs 

default machine, while the original default machine is moved into the alternative machine list. 

The reassignment process occurs in a deterministic manner permitting repeatability. It should be 

noted that performing DMR does not guarantee that a resource conflict will be resolved. Should 

no alternative machines be available to execute the job, or if the manufacturer has not specified 

any alternatives, the schedule will fail the check.   

Throughout the checking procedure, should any check fail, the candidate schedule is classified 

as invalid. This implementation presents an issue with regards to the representation of invalid 

schedules and their schedule chromosomes. They must be represented by assigning them a 

fitness value in order for the Genetic Algorithm to learn, however the fitness value must be such 

that the Genetic Algorithm will never return an invalid schedule as the final result. Thanks to 

the inclusion of the original non-energy optimised schedule, this is solved in principle as the 

system will never return a solution worse than the original. Therefore any invalid schedule can 

be assigned a fitness value which is above the fitness value of the original schedule. In practice, 

the fitness function assigns invalid schedule chromosomes with a fitness value equal to the 

maximum value of a primitive double data type – 1.7 x 10
308

. 

Candidate schedules which successfully pass all of the checks are classed as valid and are 

permitted to continue and enter one of the two energy consumption variance prediction engines. 

Which prediction engine is selected is dependent upon the prediction mode the system is 

operating in. This is discussed in detail in sections 5.3.1 and 5.3.2. 

 

5.3.1 Probable Energy Consumption Variance Prediction Engine 

The purpose of the probable energy consumption variance prediction engine is to generate a 

highly accurate prediction of the energy consumption waveform based on the given candidate 

schedule. The predicted waveform is constructed by inserting empirical job energy profiles at 

the appropriate moment in time into a time series energy profile. The high accuracy is primarily 
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sourced from the use of the Intelligent Historical Library (chapter 3), which is used to select the 

most probable profiles to use during the prediction’s construction. To accomplish this, along 

with standard information, the production schedules for this application also hold additional 

data relating to how the job will influence the machines mechanical status (i.e. tool wear, 

machine lifespan, etc.). For identical jobs, this type of data will match the metadata of the 

profiles within the intelligent library. The job influence data itself is machine specific and is 

determined by historical maintenance data, documentation, domain expert knowledge, or a 

combination of the three. Prior to the optimisation system commencing, it is provided with 

information relating to each machine’s current mechanical status. From this point, it is possible 

to calculate how each machine’s status will change as the jobs are executed; this is 

demonstrated in figure 5.3. 

 
Figure 5.3 - Image showing how the fitness function simulates the job influence on a machine. In this example, tool 

wear is used as a singular influence parameter. 

 

For each job, once the machines future status has been predicted, it is formed into a query for 

the intelligent library, which returns the profile with the closest matching metadata.  

After this has been completed for each job in the schedule, the production lines energy profile 

can be compiled via the construction of the individual machine profiles 
Mk
Predictedprofile for all 

machines k. Each machine’s energy consumption profile consists of a periodic time series 

whose length is an integer multiple or divisor of T. This allows for the energy profiles to be far 

more granular than T. As this particular application of the optimisation system focuses on 

electrical current, initially the machine profiles consist purely of the machines idling current. 

This means that if a machine Mk is never used in the schedule, it will be treated as constantly 

idling. The jobs are then sorted in chronological order and the selected energy consumption 
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profile is overlaid onto the appropriate machine consumption profile beginning at the job’s start 

time. This act overwrites the value currently assigned to the time series at that particular 

location. This is repeated for all jobs in the schedule. Once complete, any individual post-job 

idling time is filled with an updated idling current of the particular job just executed. This is to 

reflect that the idling current may now have changed as executing the job may have left the 

machine in a different position and/or configuration. The optimisation algorithm assumes that 

when not in use, a machine is left idling.  

Once these individual machine profiles have been generated, a predicted production line energy 

consumption profile can be compiled by summing the individual machine profiles according to 

(5.6).  

   0

kProd Mk
kPredicted Predictedprofile t profile t   (5.6) 

  

Finally the variance of the predicted production line energy profile EVar, and the fitness of the 

schedule chromosome is calculated using (5.7). 

 
 

2

1
Max

e

D Prod Prod
Var Predicted Predictedt S

Max e

T
E profile t profile

D S


      
 (5.7) 

 

Throughout the remainder of this report, results produced by this prediction engine will be 

labelled as ‘most probable’. 

 

5.3.2 Best Case Energy Consumption Variance Prediction Engine 

Along with the most probable result, the use of a library of historical energy profiles allows for 

the lower bound on the production line’s energy consumption variance to be predicted. This 

allows the manufacturers to determine where the probable result lies in relation to the lower 

bound. To enable this, instead of selecting the historical energy profiles based on probability, 

they must instead be intelligently selected to minimise the total energy consumption variance. 

Because the energy-based focus in this research is on electrical current, a best case prediction 
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could be theoretically made by intelligently generating the job start times, as before, but for 

each job, simply use the historical profile with the lowest variance. However this 

implementation will not work if the energy focus were on power factor, where inductive and 

capacitive loads can interfere and negate one another. Therefore to maintain expandability, 

when the optimisation system is set to locate the best case result, the Genetic Algorithm itself is 

tasked with locating for each job, both a suitable start time and an historical profile to use in the 

prediction engine. 

In this implementation, the Genetic Algorithm operates on both the encoded job start times and 

profile selection simultaneously within singular chromosomes. Figure 5.4 shows a comparison 

of the chromosomes compositions when the optimisation system is set to both most probable 

and best case predictions. In figure 5.4 it can be seen that when the optimisation system is set to 

locate the best case result, the length of the chromosome doubles. The first half contains the 

encoded job start times while the latter half contains ID numbers which act as a form of 

encoding for which historical profile to assign for each job. Using a form of real-value 

encoding, all historical energy profiles are grouped based on the job they reference, and are then 

assigned zero-based unit incrementing integer identification numbers unique within the context 

of each job grouping. To maximise efficiency and minimise program size, both halves of the 

chromosome are processed using the methodologies discussed in the previous sections. Each 

profile ID gene is treated and processed as a manufacturing job start time, just with no 

prerequisite jobs, zero processing time, a release date of zero, and a deadline equal to the 

number of profiles available for the related job. 
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Figure 5.4- Diagram showing the chromosome compositions when the optimisation algorithm is set to find the most 

probable and best case predictions. In the case of the most probable result, the chromosome does in fact contain a 

section for the profile ID’s (greyed out). However these are ignored by the most probable fitness function as the 

profiles are selected via exact nearest neighbour. 

 

The best case prediction engine is mostly identical to the most probable prediction engine. The 

only difference is the method used to determine which historical profiles are to be used to 

construct the predicted machine profiles. In the most probable prediction engine, this is 

achieved through exact nearest neighbour. In the best case prediction engine, the latter half of 

the chromosome is extracted prior to the full validity checks. When constructing the predicted 

machine energy profiles, for each job, the exact nearest neighbour search within the Intelligent 

Historical Library is bypassed, and the associated profile ID is simply used to identify which of 

the jobs historical profiles to use. The machine and production line profiles are then constructed 

as discussed in section 5.3.1.  

To further program code reusability, the profile ID half of the chromosome is present even when 

the optimisation system is locating the most probable result. However it is never referenced in 

the most probable prediction engine. The entire optimisation system is configured to locate the 

most probable result first, before locating the best case result. This allows for the most probable 

result to be injected into the initial best case search population. While this is advantageous and 

helps to ‘jump start’ locating the best case result, there is a chromosome incompatibility issue as 

the latter half of the chromosome, which is now considered, has no correlation with the 

chromosomes fitness. If left unchecked, initial experimentation demonstrates that this issue can 

result in the best case result being worse than the most probable solution. This problem is 

alleviated in the transition between most probable and best case optimisations by associating the 
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exact nearest neighbour results with the appropriate profile ID and updating the schedule 

chromosome with the correct information.  

As before, results produced from this prediction engine will henceforth be referred to as ‘best 

case’. 

 

5.4 Overall Algorithm Design and Implementation 

The schedule optimisation system discussed in this chapter was realised and implemented using 

the C# programming language. An object oriented language was selected as it was believed that 

this fits with the problem to be modelled. As schedule chromosomes and jobs are multivariate 

data, representing them as objects with internal parameters and functionality was seen as a 

suitable representation. C# itself was chosen because of its native support for multithreading 

and .NET remoting, which allows for the potential integration of other programs such as 

traditional schedulers, and for agent-based distributed processing.  

Existing formats for production schedule data were investigated in an effort to allow for 

interoperability between existing production schedules and the developed optimisation system. 

However, due to the necessity to include energy-related information, a custom scheduling 

format was devised. An example of this format in its pseudo-raw form can be seen in figure 5.5.  
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Figure 5.5- Example of a single process, two job schedule in the format accepted by the optimisation system. 

 

Figure 5.5 shows that the schedule file contains all the information and constraints needed by 

the optimisation system to produce a valid schedule. Along with the constraints, each job 

contains a list of alternative machines it can be executed on, for use with Dynamic Machine 

Reassignment. There is also a pointer to the historical energy profiles for that job, which in this 

case for clarity is set to the job’s alphanumeric identification tag. Finally, there is the post-job 

idling current, along with the machine influence data required for constructing queries for the 

Intelligent Historical Library in the most probable prediction engine. All these files are stored in 

the JSON format which is human-readable, and can be efficiently interpreted by the program. 

Similar to the schedule, the information regarding the production line resources are held in a 

different custom format as seen in figure 5.6. Every machine present in the production line is 

listed in this file with a unique alphanumeric identification tag, along with the default idling 

current of that machine. Additionally it is in this file that the other half of the machine influence 

data, the machine status data, is held. Each status variable holds three numbers – the first 

indicates the machine status prior to the schedule commencing, while the next two indicate the 

lower and upper bounds of the status permitted by the production line manager. Using tool wear 
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as an example, the values [50, 0, 100] indicate that the tool is currently halfway through its 

acceptable wear cycle. Jobs which use this machine will contain a singular value representing 

the amount of tool wear inflected during the job, and this is added to the current value in order 

to predict the future machine status. The data itself is not supplied with a unit of measure; as 

such the production line manager is expected to maintain consistency. Throughout the 

schedule’s run, the predicted status value for each machine should not leave its specified 

boundary range. It is assumed that the production line manager will schedule any required 

maintenance operations to assure this. Because maintenance can be represented as ordinary jobs, 

the influence data can be used to reset the machines status value.   

 
Figure 5.6- Example of the production line information in the format accepted by the optimisation system. 

 

 
Figure 5.7- Example of a historical job energy profile in the format accepted by the optimisation system. 

 

Figure 5.7 shows an example of a file containing a historical energy profile used within the 

Intelligent Historical Library. Each historical energy profile is held in its own file and is 
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distinguished by a unique name consisting of the associated job’s ID tag, along with the profiles 

metadata. The example shown in figure 5.7 contains the unique name P1A-001-0-29-97. Here, 

P1A-001 is the associated job tag, while 0-29-97 are the three pieces of machine influence 

metadata. The profile files themselves do not directly contain the metadata. Instead, the 

metadata for all profiles is located within a singular file known as the Master-Log-File. This file 

contains the metadata along with pointers to the individual files grouped based on their 

associated jobs, and acts as a centralised directory. The pointer to the historical profiles located 

within the schedule files points to one of the groupings, to which the Intelligent Historical 

Library extracts the metadata records for use with the exact nearest neighbour search algorithm. 

From that result, the actual pointer to the energy profile file can be extracted and used.   

Ideally, the energy profiles along with the Master-Log-File should be implemented within a 

database structure. However since they are all loaded into memory at runtime to minimise 

resource access time, there is no foreseeable advantage to using a database over a flat file 

system. Additionally, using a flat file system permits maximum portability. 

Initial testing of the entire optimisation system demonstrated that the concept of schedule 

invalidity presented further issues. Because the search space likely contains a high concentration 

of invalid schedules, combined with the necessity to not overly constrain the population 

generation and to represent invalid schedules, the population is quickly saturated with invalid 

schedule chromosomes. As a result, little to no optimisation progress is made. To overcome this 

problem, the population would be periodically revitalised by regenerating it. Once the Genetic 

Algorithm has completed a predetermined amount of iterations, the algorithm is forced to restart 

and begin anew with a fresh population. To maintain overall progress, prior to the restart, the 

most optimal solution found is extracted and injected into the newly generated population. As 

explained previously, during the initial iteration, the schedule injected into the population is a 

direct encoding of the original production schedule.  

Figure 5.8 shows how the components of the entire optimisation system connect with one 

another and demonstrates how the Genetic Algorithm is integrated into the system. Operating in 

parallel with the crossover and mutation operators, elitism is used to locate the two fittest 
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schedule chromosomes and clone them. The clones are then reintroduced into the population 

after bypassing the reproducing operators. The size of the population is maintained by 

constructing the reproducing population with N-2 schedule chromosomes. Once the reproducing 

operators have concluded, the clones are reintroduced making the population size N. 

After completing the outer Genetic Algorithm restart iterations, the optimisation procedure is 

considered complete. The fittest schedule chromosome ever found is extracted from the 

population and its job start times are decoded back into the time domain using (5.2). Any 

changes to the resource assignment as a result of Dynamic Machine Reassignment are also 

extracted. The original schedule is then updated with all this new information and output to the 

production line manager. 
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Figure 5.8 - Overview of Optimisation System. 
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CHAPTER 6 

SCHEDULE OPTIMISATION SYSTEM – PERFORMANCE 

ENHANCEMENTS 

 

With a fully constructed schedule optimisation system, a logical continuation of the work is to 

optimise its performance such that it is able to return the upper bound of suitably optimal results 

while minimising runtime. This stage of development can be considered equally as important as 

the design and implementation stages as it directly affects the suitability of the optimisation 

system to the given problem. In this chapter, the internal parameters of the Genetic Algorithm 

along with the system’s termination conditions are optimised through experimentation. Finally 

section 6.3 details the development of a coarse preliminary prediction methodology which aims 

to give production line managers an insight into the level of potential optimisation available 

within a schedule prior to committing to the full optimisation procedure.  

 

6.1 Improvements to Genetic Algorithm Search Efficiency 

Within the literature review in section 4.1, while many researchers utilise Genetic Algorithms in 

their work, one matter which they seldom mentioned is the optimisation of the Genetic 

Algorithms internal parameters such as the probabilities of crossover and mutation. To 

maximise search efficiency and to aid in successfully locating a suitably optimal result, the 

optimal value of these probabilities must be discovered (Lin et al, 2003; Yang 2014, ch. 5). 

Additionally, in this implementation, an optimal size of the tournament selection population 

must be found. Were it overly large in comparison to the main population, diversity would 

rapidly reduce as local optimal solutions begin to dominate the reproducing population. Should 

the selection size be too small, fitter schedule chromosomes may not be selected.  
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Experiments were carried out to determine how the probabilities of crossover and mutation, and 

the tournament selection population size, PCrossover, PMutation and NTournament respectively, 

influenced the performance in terms of the most optimal found solution. In the context of this 

work, the most optimal found solution refers to the most optimal solution currently discovered 

by the optimisation system. The results of this experiment can be found in figures 6.1a and 6.1b. 

It can be seen that overall, the values of PCrossover and NTournament have little influence on the most 

optimal found solution when compared with PMutation. Beginning with a mutation probability of 

1, the algorithm makes no progress as every job start time in every schedule chromosome is 

guaranteed to be mutated. Therefore the original schedule is returned, shown in figures 6.1a and 

6.1b by the upper flat ceiling. In both cases, while the most optimal found solution eventually 

reaches its respective lower boundary before gradually inclining, this occurs at different 

mutation rates in each schedule. For an eight job schedule, this low period occurs at the 

mutation probability of approximately 0.7, while for the 50 job schedule it occurs at 

approximately 0.05. Therefore it is concluded that: 

a) When compared against the mutation probability, crossover probability and tournament 

selection size have an inconsequential influence on the most optimal found solution. 

b) There is no viable combination of Genetic Algorithm parameters which permits 

maximum performance in returning a suitably optimal solution while maintaining 

universal compatibility with all schedules and constraints.  
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Figure 6.1a - Graph showing the influence crossover and mutation rates along with tournament selection size have 

on the most optimal found solution with an eight job schedule. Results averaged over ten consecutive runs. 

 

 

Figure 6.1b - Graph showing the influence crossover and mutation rates along with tournament selection size have 

on the most optimal found solution with a ten job schedule. Results averaged over ten consecutive runs. 

 

To this end, the optimal universal parameter values were considered to lie in the most common 

optimal point in both test results. These values were chosen as PCrossover = 0.5, NTournament = N/4, 

and PMutation = 0.1, and were held for the remainder of this work.  

In many applications, the Genetic Algorithms parameters are dynamically adjusted in response 

to the progress made by the algorithm as it executes (Lin et al, 2003; Ailva and Falcão, 2008). 
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While this approach is seen to be the more suitable, it was decided that fixed values for the 

crossover and mutation probabilities, and tournament selection size would be used. This 

decision was made on the grounds that the results in figures 6.1a and 6.1b show that certain 

parameter values result in no progress being made. Additional computation overhead needed for 

the adaptation procedure would also be avoided.  

The final parameters to be optimised were the termination conditions. In initial testing, these 

were given the default values of 100 generations of the population followed by 1000 Genetic 

Algorithm restarts, with a population size of 100 schedule chromosomes. As the global optimal 

value for each schedule cannot be known beforehand, the optimisation system is forced to 

execute for these predetermined number of generations and algorithm restarts. As such the value 

of these termination conditions have a significant influence on both the best solution found, and 

the overall runtime of the system. Experiments were conducted using a 50 job schedule. As the 

largest and therefore most complex schedule considered in this work, it was seen as the upper 

boundary for the termination conditions under the assumption that a problem with more jobs 

and therefore constraints would require more iterations to solve. For this to be achievable, the 

optimisation system needs to evolve a population with sufficient generations in order to explore 

the search space sufficiently, and renew that population once the diversity of valid schedule 

chromosomes has dropped below acceptable levels. Numerous different combinations of the 

two conditions were tested in an effort to locate the pairing which returned the most optimal 

solution. All combinations of 100, 300, 500, 700 and 1000 restarts, and 10, 50, 100, 200 and 

500 generations were evaluated. These were selected to allow for a suitably wide spectrum to 

analyse, while maintaining an acceptable runtime. The results, shown in figure 6.2, reveal that 

100 generations surrounded by 700 algorithm restarts gives the optimisation system sufficient 

opportunity to find a suitably optimal solution. All results and experiment data subsequently 

produced use these termination conditions. 
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Figure 6.2- Graph showing how the termination conditions affect the most optimal solution found in a 50 job 

schedule. Optimal pairing shown by stem. Results averaged over ten consecutive runs. 

 

It should be noted that the population size of 100 schedule chromosomes was left at its default 

value and was not investigated like the other termination conditions. This was left as such as an 

analysis of the population revealed that despite the procedure of restarting the Genetic 

Algorithm periodically, the population was still becoming heavily overrun with invalid schedule 

chromosomes. Therefore it was determined that a population of 100 schedule chromosomes 

represented a sufficient balance between having a large enough population to ensure diversity 

while not majorly exacerbating the runtime of the optimisation system. The effects of the 

population size on the optimisation systems performance is later investigated in section 7.7. 

 

6.2 Improvements to Runtime 

In initial testing, the optimisation process demonstrated an acceptable runtime given the default 

termination conditions specified in section 6.1. However when tested with high granularity 

(150ms per data point) profiles as detailed in chapter 3, the optimisation system began to suffer 

from significant runtime performance degradation.  
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Analysis of the program’s execution revealed that due to the high granularity of the energy 

consumption profiles and therefore the length of their time series representations, a significant 

proportion of the runtime is spent in the fitness function, sorting and compiling the individual 

machine and final production line energy profiles, along with calculating the final variance. This 

is also hindered by the operations being of a sequential nature and by the fact that these must 

also be undertaken for every valid schedule chromosome in every generation of every 

population. To improve runtime performance, three distinct improvements were made to the 

optimisation systems implementation – program code optimisation, multithreading, and 

caching.  

Improvements to the program code were initially made to allow for a more consistent execution. 

This included loading all information required by the optimisation system, such as the historical 

energy profiles into memory. Alterations to the program code for the two prediction engines 

were also made to increase efficiency. Furthermore, efforts were made to introduce 

multithreading where possible. A Genetic Algorithm is a sequential algorithm, with each 

generation being acted on based on the previous generation. As such, it is not possible to 

parallelise the algorithms execution. This is not the case with the fitness functions, where the 

same operation is applied to each schedule chromosome in the current generation 

independently. The full schedule validity checking part of the fitness function was therefore 

adjusted to execute in parallel. The same could not be applied for the actual prediction engines, 

where changes due to program code optimisation did not allow for the parallelisation of this 

particular function. Unfortunately, as table 6.1 shows, multithreading provided a negative 

performance increase. This is likely due to the fact that the overhead necessary to execute the 

code in parallel outweighs the performance benefits. However, it can be seen that time 

difference between the two executions does rapidly decrease as the number of jobs increases. As 

only the job constraint checking is parallelisable, there is the possibility that as the number of 

jobs increases, multithreading may become beneficial. As such, for reasons of expandability, 

multithreading was kept in the program.  
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The final step to improving performance was to integrate caching functions to minimise 

repetitive calculations. Execution analysis demonstrated that while the efficiency of the fitness 

function was increased with the program code improvements, a large amount of the total 

runtime is still spent executing them. Because the genetic operators only take effect based on a 

predetermined probability, and thanks to factors like elitism, there is a probability that schedule 

chromosomes in the current generation were present, unchanged in the previous generation. 

This leaves the potential for unnecessary re-evaluation of unchanged schedule chromosomes. 

This is also the case were the Genetic Algorithm to accidently revisit parts of the search space. 

Therefore to maximise time efficiency a hash-based caching system was implemented. These 

have a history of improving performance in Genetic Algorithms. In the work by Povinelli and 

Feng (1999), the implementation of a hash-based cache resulted in a 50% decrease in 

computation effort. Prior to evaluating a schedule chromosome, the cache is queried to see if it 

contains a chromosome with identical job start times. If it does, the stored fitness value is 

copied and assigned as the current schedule chromosome’s fitness. If no matching chromosome 

can be found, the schedule chromosome is evaluated in the fitness function. Once the evaluation 

is complete, a copy of the chromosomes job start times along with its new fitness value is 

placed within the cache. As the string of job start times can potentially contain a large array of 

numbers, they are not directly placed in the cache with the fitness value as this leaves the 

potential for a costly query time. Instead a hash of the start times is inserted, generated via 

Fletchers checksum algorithm to allow for a single key-value pair entry. The Fletchers 

algorithm was selected for this as it is one of the many algorithms sensitive to number order 

(Maxino and Kooperman, 2009). Thereby reordering the job start times will produce a different 

hash value. To minimise lookup time, the cache is implemented as a hash-table. 

Due to increasing hash collisions and increased memory usage resulting from a large cache, it 

may not be possible to maintain a cache of all considered schedule chromosomes. Therefore it 

will need to be cleared and reinitialised either periodically or after it exceeds a certain size. 

Work by Cooper and Hinde (2003), along with Povinelli (2000) investigate the best ways to 

achieve an effective cache size. A range of methods are approached, with both investigating 



99 
 

“short-term memory” caches which solely hold the hash values for the previous generation. 

Ultimately, Cooper and Hinde conclude that using a combination of short term memory 

combined with an intelligent long term memory which is never cleared but only contains the 

fittest chromosomes found through the Genetic Algorithms run is best. Alternatively Povinelli 

concludes that using a modified cache outperforms all alternatives considered. His cache holds 

all considered chromosomes but reinitialises the cache once a predetermined amount of hash 

collisions occur. While all previous cache data is lost, he states that this is not 

counterproductive. As the Genetic Algorithm runs, the chromosome diversity will decrease and 

many of the earlier cached chromosomes will no longer be considered. The newest 

chromosomes will be quickly re-cached. This operation acts to minimise and revitalise the cache 

periodically. As both results demonstrate that a short-term cache performs best, the caching 

system implemented within the schedule optimisation system was cleared and reinitialised every 

ten generations. The runtime of the optimisation system with various optimisation features can 

be seen in table 6.1. An analysis of the runtime performance can be found in section 7.3. 

Table 6.1 - Optimisation system runtime throughout different stages of runtime improvements. Results averaged from 

ten consecutive runs. 

Optimisation system runtime… 

Number of jobs 

in schedule 

With optimised 

code (mins) 

With optimised 

code and caching 

(mins) 

With optimised 

code, caching and 

multi-threading 

(mins) 

8 200.60 187.76 233.43 

12 279.50 252.75 299.88 

20 236.61 208.59 225.58 

30 105.67 75.52 84.01 

40 38.72 17.79 23.17 

50 31.85 8.13 10.10 

 

 

6.3 Coarse Prediction 

Despite the improvements to the execution efficiency, the runtime of the optimisation system 

can be lengthy, with runtimes of five hours measured for some schedules. While this can be 

seen as acceptable, it is not always preferred. The reasoning behind this is that a manufacturer 
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may commit to a lengthy optimisation process on a schedule where, due to the constraints, the 

level of potential optimisation is very limited. Therefore providing the production line manager 

with an estimate on the level of potential optimisation would be beneficial. Unfortunately, while 

this cannot be known prior to the optimisation procedure, simplifying the prediction and 

sacrificing accuracy for execution speed would be a suitable method for providing an 

approximate level of potential optimisation in an acceptable amount of time. 

 

6.3.1 Reducing Historical Energy Profile Length 

As seen during the development phase, one of the primary factors attributed to the lengthy 

runtime is the use of high granularity historical energy profiles. While these are key to 

providing an accurate prediction, manipulating such a volume of data over thousands of 

iterations does result in a lengthy runtime. As such, one of the obvious methods to reduce the 

runtime is to reduce the granularity of the historical energy profiles.  

Compression, simplification and approximation are well-researched fields with a large focus in 

reducing the size of time series data for numerous applications. For this particular application, 

the selected time series compression algorithm must comply with the following specification: 

1. Maintain visual appearance of the time series at a level respective of the compression 

factor. 

2. Maintain significant step changes, respective of the compression factor. 

3. Reduce each profile by a consistent compression factor. 

4. Reduced time series must have a uniform time period between data points. 

5. Present reduced time series in a raw numerical time domain form.  

Regarding the above specification, remarks one and two are designed so a prediction made 

using the reduced length energy profiles will still remain within an acceptable error margin. 

Remarks three to five are in place to minimise the complexity of using the reduced length 

energy profiles. By keeping them in the same format as the original energy profiles – 
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represented as an array of values with a consistent temporal spacing, the prediction engines can 

utilise the reduced length profiles with only very minor changes to the overall program. 

Reduced length profiles which utilised inconsistent time spacing or symbolic representations 

would require further processing before they can be utilised.  

Some of the most popular time series compression algorithms are based around decomposition 

functions such as Fourier and wavelet transforms (Zaniolo, 2008).  Despite their reputable 

history, they are unsuitable for this particular application as they do not compress within the 

time domain. More refined research has also been conducted which focuses on the compression 

of energy data (Ringwelski et al, 2012; Unterweger and Engel, 2015). However, as before, the 

algorithms used are unsuitable due to the fact that they encode the information. This is in direct 

violation of remark five. 

Given the above specification, approximation functions hold potential for this particular 

application. In their research investigating compression for data streaming, Palpanas et al (2004) 

state that the selection process of a time series approximation algorithm should not purely 

consider the loyalty of the compressed waveform. Depending upon the application, other 

features such as visual appearance should be considered with a larger emphasis. Given that this 

application has a strong focus on the overall shape of the waveforms, visual appearance and the 

translation of major changes in the waveform between the original and compressed waveforms 

can the considered top priority.  

Given the enormity of data which is now stored, methodologies have been developed for 

reducing time series data for the purposes of transmitting and displaying it on a variety of screen 

sizes. The most favoured methodology for achieving this, is through the identification of 

‘informative data points’ (Fink and Pratt, 2004; Burtini et al, 2013; Fu et al, 2005). These are 

defined as data points where the amount of change between the neighbouring points is beyond a 

certain tolerance. As a result, these points are considered highly entropic (Fink and Gandhi, 

2011; Butters, 2014). Typically this information is used to determine a suitable compression 

ratio which minimises information loss. Line simplification algorithms operate in a similar 

fashion. By removing redundant data points which do not significantly contribute to the overall 
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‘shape’ of a time series, the number of points necessary for rendering a waveform is reduced. 

This technique is especially necessary for representing large datasets (Keevey and Smyth, 

2015). While all the above mentioned methods are able to compress a time series and represent 

it in a raw numeric form, their basis of the compression ratio around the highly informative 

points means that the compression ratio will not be consistent for every profile.  

To allow for a consistent compression ratio, methods such as down-sampling, resampling and 

aggregation approximation can be used. The latter operates by dividing the waveform into equal 

length blocks. A mathematical function then approximates the data points within that block into 

a single value. In many applications, this function is simply arithmetic mean, however 

polynomial and linear functions can also be used (Keogh and Pazzini, 2003; Fu et al, 2005; 

Burtini et al, 2013). The two former solutions are to down-sample or resample the original 

waveform. While these can be used to compress a time series, other methods are preferred due 

to the fact that with down-sampling, the compressed waveform is highly dependent upon the 

original sampled data points (Al-Naymat and Taheri, 2008; Fu et al, 2005). Resampling was 

initially considered but was not adopted due to the high error in the compressed waveforms, 

when compared against the originals. This can be seen in table 6.2. 

Aggregation based compression appears to be the most suited approach, in line with the 

specification barring remark two. While ensuring a consistent compression ratio, so long as the 

block size is maintained throughout all waveforms, important waveform features and step 

changes can be lost in the process. As seen in figure 2.9, machine energy profiles can be 

characterised by immediate and significant step changes. By applying aggregation, these steps 

will not only be smoothened with a reduced amplitude, but for peaks, their period will increase. 

An example of this can be seen in figure 6.3, where the initial inrush peak is significantly 

reduced in amplitude and the amplitude of the surrounding data points is erroneously increased, 

resulting in a poor fit. Given the very short time period of the inrush peak in comparison with 

the required compression ratio, it would be acceptable for the compression algorithm to simply 

not consider the peak. Similarly, were a significant step change to occur in the middle of a 
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block, it may be advantageous to only consider the data points on one side of the step, instead of 

all points within the block; thereby conserving the step change and its amplitude. 

 
Figure 6.3 - Overlay of original and mean aggregated energy profile for a turning process (10:1 

compression).Original profile is an empirical recording from a metalworking lathe. 

 

To realise this, a custom compression algorithm was developed which combines mean 

aggregation with informative point detection to determine which points to consider, in order to 

achieve a high accuracy compression. The methodology is discussed below, with an example 

4000 point waveform as seen in figures 6.4. 

Step 1 

Calculate the absolute moving difference of a profile using (6.1). See Figure 6.5. Normalise 

between 0 and 1 to produce .
Normalised

abs profile  

 absΔprofile = abs(profile(t-1) – profile(t)) (6.1) 
 

Step 2 

Sort data into bins based on amplitude using a histogram. Discard bins which contain the lower 

90% of data points. Data points in remaining bins are classified as the most informative data 

points P
Informative

 (Figure 6.6). 
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Step 3 

Divide the profile into sets of features denoted by F, based on the boundary points specified in 

P
Informative

. See (6.2). 

    1
Informative Informattive

i i iF t profile t where P t P    (6.2) 

 

Step 4 

Divide profile into a set of equal sized blocks denoted by B, each of size B
Size

 which denotes the 

compression factor. (Figure 6.7). 

       Size Size Size
iB t profile t where i B t i B B       (6.3) 

 

Step 5 

For each block Bi, determine which features Fi lie within its boundaries, and which of those 

contains the majority of data points within the boundaries of Bi. Remove the data points from 

this block that do not belong to the majority feature. In cases where there is no majority, select 

the first feature in the block. 

 

Step 6 

Average the remaining data points within Bi to produce a single point for each block (Figure 

6.8). 
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Figure 6.4 – Example original 4000 data point energy profile waveform.  

 

 
Figure 6.5 - Graph showing the absolute moving difference of data shown in figure 6.4. 
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Figure 6.6 - Original waveform overlaid with identification of upper 10% of informative points. 

 

 
Figure 6.7 - Sample of waveform divided into blocks (green dashed lines) and waveform features (red dot & dashed 

lines). 
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Figure 6.8 - Output waveform compressed from the original by a factor of 10. 

 

Using the above method, any profile can be compressed by a fixed ratio which is dependent 

upon the block size B
Size

. In this application, the block size was set to ten. Depending upon the 

shape of the waveform, this method will produce results identical to standard mean aggregation. 

However in cases where there are significant step changes, or where there are high amplitude 

peaks which only last for a short time, relative to the B
Size

, this algorithm will produce a more 

accurate fit. A comparison against mean aggregation can be seen in figure 6.9. 
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Figure 6.9 - Comparison of standard mean aggregation and the custom compression algorithm on empirical data. 

Compressed waveforms interpolated for comparison. 

 

As can be seen in figure 6.9, the compressed waveform produced by the custom algorithm is 

able to follow the original waveform more accurately in parts of the waveform where there is a 

large amount of change. In both cases, the compression method essentially removes the inrush 

peak. As its period is only a few data points in length, it can be said that there is no method 

which can translate this through and still produce a faithful compression. Including it would 

require its period to be artificially increased. However the custom algorithm produces a slightly 

more faithful representation of the original. Tables 6.2 and 6.3 shows a comparison of errors 

over two compression ratios, produced by four different compression methods which closely fit 

the requirement specification. These include the custom compression algorithm, standard mean 

aggregation, down sampling and resampling.  The results in tables 6.2 and 6.3 demonstrate that 

the custom compression algorithm and mean aggregation produce some of the most accurate 

compressions.  Ultimately however, the error differences between the two methods are minor 

and inconsistent. This is because the feature filtering aspect of the custom compression 
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algorithm may only act upon a very small number of blocks, relative to the total number used to 

compress the waveform. Furthermore, because the custom algorithm can completely remove 

short period waveform features such as inrush peaks, the overall errors, especially the maximum 

error, can be higher. The uncompressed waveforms used here can be found in appendix D.
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Table 6.2 - Table showing compression induced error from four compression techniques. Compressed waveforms are expanded using 'last known value' interpolation to compare against original. The 

compression ratio is 10:1. 

 
Custom algorithm error Mean aggregation error Down sampling error Resampling error 

Mean Max. RMS Mean Max. RMS Mean Max. RMS Mean Max. RMS 

Test 

waveform 1 
0.096 10.556 0.400 0.101 9.854 0.393 0.132 14.090 0.581 0.110 11.517 0.429 

Test 

waveform 2 
0.595 3.127 0.836 0.560 2.492 0.744 0.645 3.630 0.943 0.545 2.989 0.745 

Test 

waveform 3 
0.262 4.869 0.366 0.224 4.119 0.302 0.279 4.910 0.418 0.241 4.844 0.327 

Test 

waveform 4 
4.683 17.500 5.588 4.597 13.900 5.362 6.033 19.000 7.801 4.752 13.184 5.572 

Test 

waveform 5 
1.052 7.712 1.660 1.168 7.391 1.644 1.384 8.010 2.239 1.151 7.098 1.622 

Test 

waveform 6 
0.031 0.063 0.036 0.031 0.056 0.036 0.056 0.113 0.067 0.127 0.900 0.230 

Test 

waveform 7 
0.113 0.346 0.148 0.063 0.175 0.080 0.113 0.346 0.148 0.112 0.346 0.148 

Test 

waveform 8 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.165 0.900 0.295 

Test 

waveform 9 
0.078 19.841 0.488 0.090 17.857 0.464 0.128 19.704 0.500 0.302 21.225 0.958 

Test 

waveform 10 
7.304 176.150 11.567 7.482 158.535 11.267 15.938 187.826 28.719 20.227 229.493 34.350 

Average 1.421 24.016 2.109 1.432 21.438 2.029 2.471 25.763 4.142 2.773 29.249 4.468 
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Table 6.3 - Table showing compression induced error from four compression techniques. Compressed waveforms are expanded using 'last known value' interpolation to compare against original. The 

compression ratio is 20:1. 

 
Custom algorithm error Mean aggregation error Down sampling error Resampling error 

Mean Max. RMS Mean Max. RMS Mean Max. RMS Mean Max. RMS 

Test 

waveform 1 
0.096 10.515 0.399 0.102 10.168 0.396 0.176 14.090 0.689 0.156 11.930 0.489 

Test 

waveform 2 
0.766 3.395 1.031 0.676 2.746 0.842 0.855 3.620 1.169 0.719 2.931 0.882 

Test 

waveform 3 
0.271 4.879 0.371 0.264 4.504 0.345 0.341 4.800 0.474 0.279 4.919 0.362 

Test 

waveform 4 
4.785 12.818 5.629 4.726 13.150 5.495 6.135 19.000 7.853 4.846 13.281 5.720 

Test 

waveform 5 
1.081 7.315 1.669 1.182 7.365 1.656 1.506 8.010 2.348 1.176 6.702 1.648 

Test 

waveform 6 
0.063 0.125 0.072 0.063 0.119 0.072 0.119 0.238 0.139 0.226 0.954 0.332 

Test 

waveform 7 
0.237 0.679 0.304 0.127 0.355 0.158 0.237 0.679 0.304 0.237 0.680 0.303 

Test 

waveform 8 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.259 0.961 0.428 

Test 

waveform 9 
0.143 19.659 0.502 0.153 18.676 0.491 0.252 19.321 0.557 0.595 21.016 1.395 

Test 

waveform 10 
17.259 200.045 30.734 17.413 115.279 25.102 29.693 220.211 42.175 37.364 235.051 55.052 

Average 2.470 25.943 4.071 2.471 17.236 3.456 3.931 28.997 5.571 4.586 29.843 6.661 
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Conclusively, through the use of the custom compression algorithm, the length of all historical 

energy profiles can be reduced to decrease the optimisation systems runtime. However using 

this method will sacrifice information accuracy. The actual percentage of accuracy loss will be 

dependent upon the individual historical profiles themselves. A comparative analysis of the 

reduced accuracy prediction against the actual full prediction is discussed in section 7.7. 

 

6.3.2 Additional Methods for Producing a Coarse Prediction 

In section 6.1, work was carried out to determine the optimal termination conditions for the 

optimisation system, such that a suitably optimal solution can be found prior to the system 

terminating. While this is necessary for the actual optimisation process, the termination 

conditions could be adjusted in the hope that the system could locate a solution suitable to 

demonstrate the level of potential optimisation within a schedule. This would occur within a 

reduced time frame despite referencing the original full length historical energy profiles. Due to 

the genetic diversity issues, which necessitate the need to periodically regenerate the Genetic 

Algorithm population, it was deduced that the most appropriate parameter to adjust would be 

the population size. Utilising this method will sacrifice result optimality as the search 

performance of the Genetic Algorithm will be limited. Unlike using reduced length historical 

energy profiles however, this method will produce an accurate prediction as it references the 

original full length energy profiles. In terms of gains, the runtime of the optimisation system is 

non-deterministic due to invalid schedules not entering the relevant prediction engine in the 

fitness function and because of the fitness cache. However it can be approximated that reducing 

the population size will have a linear decrease on the systems runtime.  

As both methods discussed thus far influence the runtime in different, independent ways, it is 

possible to combine them to produce a further reduction in runtime. The disadvantage of this is 

that the disadvantages of both methods – reduced prediction accuracy and less than suitably 

optimal solution being returned, are combined. However, depending on the production line 

manager’s preference, the potential runtime reduction may be seen as a suitable gamble to 
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determine the level of potential optimisation within a schedule. A comparative analysis of all 

these methods is conducted in section 7.7.  
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CHAPTER 7 

EXPERIMENTATION RESULTS AND ANALYSIS 

 

Following its introduction and performance enhancements in chapters 5 and 6, the schedule 

optimisation system was thoroughly evaluated to determine its performance when presented 

with a range of manufacturing schedules. In this chapter the testing strategy is presented, along 

with the individual results and findings from the various features of the system, such as DMR.  

 

7.1 Experiment Setup 

The schedule optimisation system was tested on a set of six randomly generated schedules with 

a varying number of processes and jobs. Each of these schedules was initially generated for 

minimal makespan using an open-source production planning software which did not account 

for energy consumption (Frepple, 2015). Prior to the initial scheduling, process runtime 

constraints were set equal to the processes makespan plus, on average, 55% of extra time to 

allow for schedule flexibility. This aligns with current scheduling ideologies which allows for a 

degree of flexibility within the schedule should unanticipated issues arise. Each schedule was 

designed to operate on a single test production line which consists of ten machines which are 

left idling when not in use. Table 7.1 briefly details the original schedules. The full schedules 

themselves can be found in appendix E. 
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Table 7.1 - Details of original schedules and specified production line used to test the schedule optimisation system. 

Schedules optimised for minimal makespan only. 

Description of test schedules 

 Number of jobs Time allowed 

(hr:min) 

Required processing 

time (hr:min) 

Test Schedule #1 Eight job / three process schedule 

Process A 3 1:20 0:35 

Process B 2 1:10 0:53 

Process C 3 2:00 0:35 

Test Schedule #2 Twelve job / three process schedule 

Process A 6 2:00 1:12 

Process B 2 2:00 0:53 

Process C 4 2:20 1:15 

Test Schedule #3 Twenty job / four process schedule 

Process A 5 2:45 0:57 

Process B 4 3:50 1:38 

Process C 6 4:15 2:10 

Process D 5 4:53 2:49 

Test Schedule #4 Thirty job / three process schedule 

Process A 10 4:00 1:42 

Process B 10 5:00 2:48 

Process C 10 5:00 2:55 

Test Schedule #5 Forty job / four process schedule 

Process A 10 3:30 1:42 

Process B 10 5:00 2:48 

Process C 10 5:00 2:55 

Process D 10 5:00 3:51 

Test Schedule #6 Fifty job / five process schedule 

Process A 10 3:30 1:42 

Process B 10 5:00 2:48 

Process C 10 5:00 2:55 

Process D 10 5:00 3:51 

Process E 10 5:00 2:03 

 

While the custom energy monitoring system allowed for highly granular energy profiles to be 

recorded and stored in the Intelligent Library based system (section 3.3), recording them for a 

variety of manufacturing jobs was impractical within the scope of this project. To that end, for 

the experimentation phase, the library was entirely populated with artificially generated profiles. 

This further removed the need to generate synthetic profiles. Figure 7.1 shows the modified 

library used. The methodology used to generate the artificial profiles for the algorithm 

evaluation in section 3.3.2, was expanded to produce multiple profiles for the different jobs in 

the schedule. Profiles belonging to different jobs would be dissimilar, while the difference 

between profiles of identical jobs would be limited to that of the metadata’s influence. This was 

insured by a combination of randomly generated and user input data.  
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Figure 7.1 - Diagram showing experimental implementation of the intelligent library-based system. 

 

The methodology for generating these artificial profiles is shown in figure 7.2. For each job, a 

progenitor profile is initially generated. The user specifies the number of waveform features 

such as step changes and the program places them semi-randomly throughout the profile. 

Constraints are in place where needed to ensure the final profile is consistent in overall shape 

with the empirical profiles seen in figure 2.9. Copies of this profile are then made and metadata 

is randomly generated for each. The profiles are then modified based on the metadata with the 

user controlling which portions of the profile are influenced by each metadata value. Figure 7.3 

shows a profile generated via this method. In comparison with an actual profile, an example of 

which can be seen, such as figure 2.9, the elemental structure of the two profiles is similar. To 

maintain consistency with empirical profiles recorded using the custom energy monitoring 

system (section 2.3), all artificial profiles were generated at the same temporal granularity - 

150ms.  
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Figure 7.2 - Breakdown of the artificial energy profile generation software. 

 

 
Figure 7.3 - Example of an artificially generated energy profile. 

 

On average twenty profiles were generated per job. Each job was subsequently associated with 

these historical profiles through randomly generated machine influence data compatible with the 

profiles metadata, and the Master-Log-File. Similarly, the available production line resources 

were also given compatible random machine status data. Once complete, the original un-

optimised energy consumption variances for each schedule could be calculated, and the 

schedules could be optimised.  
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7.2 Production Schedule Optimisation – Overview of Results 

The schedule optimisation system was applied to each of the test schedules described in table 

7.1 with the minimal time shift value T, set to one minute. During initial testing, each job in the 

schedule was not supplied with a list of alternative machines. This effectively disabled Dynamic 

Machine Reassignment in an effort to purely analyse the search performance and capabilities of 

the Genetic Algorithm within the system. The optimisation results for both most probable and 

best case predictions for each of the test schedules can be seen in tables 7.2a and 7.2b. 

Table 7.2a – Most probable results of the schedule optimisation system (Results produced over ten runs. Percentage 

of optimisation is relative to the original variance). 

Test 

schedule 

Original 

variance 

Optimised variance 

Observed 

minimum 

Observed 

maximum 
Average 

Average % of 

optimisation 

#1 3938.64 1064.10 1083.44 1066.54 72.92% 

#2 2052.46 1464.10 1464.10 1464.10 28.67% 

#3 3678.66 1092.96 1408.44 1227.18 66.64% 

#4 3207.71 1134.54 1436.41 1282.83 60.01% 

#5 4511.61 1570.43 2377.28 1857.59 58.83% 

#6 5710.03 2339.29 3159.20 2610.59 54.28% 

 

Table 7.2b - Best case results of the schedule optimisation system (Results produced over ten runs. Percentage of 

optimisation is relative to the original variance). 

Test 

schedule 

Original 

variance 

Optimised variance 

Observed 

minimum 

Observed 

maximum 
Average 

Average % of 

optimisation 

#1 3938.64 1014.80 1019.88 1015.31 74.22% 

#2 2052.46 1296.78 1296.78 1296.78 36.82% 

#3 3678.66 973.58 1258.01 1089.14 70.39% 

#4 3207.71 992.90 1284.17 1131.83 64.72% 

#5 4511.61 1325.01 2085.69 1596.83 64.61% 

#6 5710.03 1939.72 2678.22 2165.25 62.08% 

 

Tables 7.2a and 7.2b demonstrate that the optimisation system is able to reduce the variance on 

all test schedules by a significant percentage in both the most probable and best case 

predictions. It should be noted however that the level of reduction is not simply a factor of the 

amount of jobs within the schedule. In fact, it is probable that the level of reduction is not a 

consequence of a singular factor, but the complex interactions between the individual process 

and overall schedule constraints. Figures 7.4, 7.6 and 7.8 to 7.11 show a graphical 

representation of the production line energy profiles for each test schedule. These show that the 
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optimisation system takes full advantage of the allowed time which was not originally utilised 

by the original scheduling algorithm. Additionally, figures 7.5 and 7.7 show that when time 

permits, the schedule will be altered to prevent multiple jobs running concurrently. This will 

produce the lowest attainable energy consumption variance for the schedule, not considering the 

variance reductions related to using different historical job energy profiles.  

The primary downside to this optimisation system is that the energy consumption variance is 

reduced at the cost of an increased total processing time. With the exception of schedule #2, 

each of the test schedules expands their total processing time to the full timespan allowed by the 

constraints (see table 7.3). Typically this is seen as highly disadvantageous given that traditional 

production planning algorithms strive to minimise it. With that said, it can be seen in figure 7.5 

and 7.7 that there are periods of inactivity during the total processing time. A naive algorithm 

could be employed as a post-processing methodology to temporally shift a set of jobs up the 

timeline to remove this inactivity period. An example of this could be applied to test schedule 

#1 (figure 7.5), having all jobs within process C shifted upwards by seven minutes with only 

minor changes to the profiles variance. Even with this, the overall total processing time is still 

significantly expanded. Manufacturers can control this potential expansion by adjusting the 

process priorities; however this will limit the level of variance minimisation. As such, it can be 

seen as the manufacturer’s decision regarding which objective is most important. The schedule 

constraints can be adjusted by the manufacturer to reflect their current needs. 

Table 7.3 – Difference in makespan between the original and most probable schedules. 

Test 

schedule 

Original makespan 

(hr:min) 

Most probable 

makespan (hr:min) 

Makespan increased 

by a factor of… 

#1 1:05 2:10 2 

#2 3:25 3:25 1 

#3 5:00 5:50 1.17 

#4 4:55 7:00 1.42 

#5 6:10 7:00 1.14 

#6 7:10 7:50 1.10 

 

In general, the energy consumption of all test schedules is redistributed throughout the allotted 

time for each process, and it is this which lowers the overall variance and in addition, the peak 

demand. In actuality, it can be observed that in every test schedule the peak demand is reduced 
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(see figures 7.4, 7.6, and 7.8 to 7.11). The most significant change occurs between the original 

profile and the most probable and best case profiles. Overall, changes between the latter two 

profiles are minor, reinforced by the results in tables 7.2a and 7.2b. This is likely due to the fact 

that a majority of the difference between the probable and best case profiles comes from the 

differences in the individual job energy profiles, and not from the schedule alteration itself. This 

is supported by the results in figure 7.5, where there is no change to the schedule between the 

most probable and best case results, despite an average difference in energy consumption 

variance of 51.23. 

 
Figure 7.4 - Graphs of individual and combined predicted production line profiles for an 8 job schedule (Test 

schedule #1). 
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Figure 7.5 - Gantt chart for 8 job schedule (Test schedule #1) showing the job layouts for the original, most probable and best case results. 
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In the case of test schedule #2, the result is consistently lower than the other test schedules, and 

this is true for both the probable and best case results. Viewing its energy consumption profile 

in figure 7.6, reveals that the optimisation system has not fully exploited the available time 

despite the fact that the schedule indicates that process C is able to execute from 08:00 to 10:20. 

The gantt chart for this schedule in figure 7.7a/b shows why. In the original schedule, only two 

jobs run concurrently (A2/A3 and B2). By adjusting the start time of jobs A1 and B2, the 

optimisation system is able to prevent this, the theoretical lower bound in energy consumption 

variance is found. This explains the smaller variance reduction, as the schedule can be 

considered near-optimal to begin with. It should be noted that even when there are no 

concurrently running jobs, these may still not be the optimal job start times due to the 

differences in post-job idling currents. It can be assumed however that this will only have a 

small effect overall, as the manufacturer is unlikely to leave machines idling in a configuration 

which results in a significantly higher than normal energy demand. 

Figures 7.8 to 7.11 show the predicted production line energy profiles for test schedules #3 to 

#6. The gantt charts for these schedules can be found in appendix F.  
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Figure 7.6 - Graphs of individual and combined predicted production line profiles for a 12 job schedule (Test 

schedule #2). 
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Figure 7.7a - Gantt chart for 12 job schedule (Test schedule #2) showing the job layouts for the original and most probable results. 
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Figure 7.7b - Gantt chart for 12 job schedule (Test schedule #2) showing the job layouts for the best case results. 
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Figure 7.8 - Graphs of individual and combined predicted production line profiles for a 20 job schedule (Test 

schedule #3). 
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Figure 7.9 - Graphs of individual and combined predicted production line profiles for a 30 job schedule (Test 

schedule #4). 
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Figure 7.10 - Graphs of individual and combined predicted production line profiles for a 40 job schedule (Test 

schedule #5). 

 



129 
 

 
Figure 7.11 - Graphs of individual and combined predicted production line profiles for a 50 job schedule (Test 

schedule #6). 

 

  



130 
 

7.3 Production Schedule Optimisation – Performance Analysis 

Overall the most probable and best case results, as seen in tables 7.2a and 7.2b, appear to follow 

a gradually descending trend as the size of the schedules increase. This is the case for all test 

schedules with the exception of schedule #2. While this trend could be related to the global 

optimal values for each of the schedules, this cannot be analysed as the global optimal values 

are not known. Of course, as the schedules increase in size, the problem’s complexity will 

increase exponentially. This fact combined with the problem of invalid schedules means the 

optimisation system may return local minima. While system features such as Genetic Algorithm 

mutation and the refreshing of the population work to prevent this from occurring, it is believed 

that the issues with invalid schedules could result in an extremely inhospitable search space. For 

small schedules (i.e. test schedules #1 and #2), these features are mostly sufficient in preventing 

the optimisation system from becoming trapped in local minima. As schedule complexity and 

the search space increases however, this ability cannot be fully maintained. This theory is 

reinforced by the results in table 7.4. As the schedules increase in size, the optimisation system 

returns slightly different results over consecutive runs indicating that results returned are local 

minima. Therefore, the level of potential variance reduction in test schedules #3 to #6 could be 

further improved. 

Table 7.4 - Table showing the range (max. – min.) of results returned by the optimisation system in 5 consecutive 

runs. 

Schedule name 

Most probable result Best case result 

Range 
Percentage of 

original variance 
Range 

Percentage of 

original variance 

Test Schedule #1 19.34 0.49% 5.08 0.13% 

Test Schedule #2 0.00 0.00% 0.00 0.00% 

Test Schedule #3 315.47 8.58% 284.43 7.73% 

Test Schedule #4 301.87 9.41% 291.27 9.08% 

Test Schedule #5 806.85 17.88% 760.69 16.86% 

Test Schedule #6 819.91 14.36% 738.51 12.93% 

 

The reason for the varied results can be explained through the findings presented in figure 7.12. 

As the schedule complexity increases, the ratio between valid and invalid schedule 

chromosomes in the Genetic Algorithm’s population shifts significantly in favour of the invalid 

schedules. This was to be expected to a certain degree. As schedules increase in size, the 
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probability of a candidate schedule representing a valid schedule will decrease as the validation 

standard becomes increasingly rigorous thanks to the additional constraints. Unfortunately, this 

means that in the case of test schedules #4 to #6, the average number of valid schedules in a 

population is less than 10%. As a result, the Genetic Algorithm will spend a large majority of its 

time investigating invalid regions of the search space. It is important to note that the actual ratio 

of valid and invalid schedules within the entire search space cannot be known and as a result, a 

10% valid schedule ratio within the population may be a suitably sized representation for these 

test schedules. 

Solving this problem could be as simple as adjusting the optimisation system’s termination 

conditions and allowing it to run for a longer period. However this would obviously increase the 

optimisation system’s runtime. In figure 7.13 it can be seen that the optimisation system has an 

inconsistent runtime when operating on different schedules. Additionally, the trend over the 

range of test schedules approximately follows that of the valid ratio percentage in figure 7.12. 

This can be explained by the design of the fitness function schedule validity checks (see section 

5.3). Inside this, if a candidate schedule is invalid, it is assigned a maximum fitness value and 

spends little time in the fitness function relative to a valid schedule, which triggers the 

prediction engine to generate a predicted production line energy profile. This means that when 

the Genetic Algorithm population has a high concentration of invalid candidate schedules, the 

overall runtime of the optimisation system will be substantially reduced. Table 7.5 helps to 

contextualise this by demonstrating the difference in fitness function runtime between a valid 

and invalid schedule. This, combined with the findings from figure 7.12 translates to a 

significant difference in the overall systems runtime. 
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Figure 7.12 - Graph showing the percentage ratio between valid and invalid schedules in the Genetic Algorithm’s 

population during the optimisation of different schedules (Results produced using most probable prediction engine 

over six consecutive runs). 

 

 
Figure 7.13 - Graph showing the runtime of the optimisation system (Results averaged over 5 consecutive runs). 
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Table 7.5 - Differences in fitness function evaluation runtime between valid and invalid candidate schedules for the 

range of test schedules (Results averaged over 100 iterations; Ran on an intel i7 8GB Windows 8.1 computer). 

Test schedule Valid schedule 

evaluation time (µs) 

Invalid schedule 

evaluation time (µs) 

#1 5500.29 1.60 

#2 11726.03 1.30 

#3 15466.02 1.57 

#4 19589.72 1.86 

#5 20909.70 3.19 

#6 26280.67 3.09 

 

 
Figure 7.14 - Graph showing the GA restart iteration where the best found value was located (Results averaged and 

maximum value located through ten consecutive runs). 

 

Figure 7.14 shows that for test schedules #1 to #3, the best found result for both the most 

probable and best case scenarios are located significantly early in the optimisation system’s 

execution. This can potentially be attributed to the number of jobs within the schedule, as a 

reduced number of jobs will result in a reduced search space, thereby increasing the probability 

of the best found result being located early. As such it may be viable to introduce variable 

termination conditions which are proportionate to the number of jobs. Overall, this would 

maximise runtime efficiency while minimising the sacrifice to search performance. With that 

said, figure 7.14 demonstrates that while the average number of iterations required by test 

schedules #1 to #3 is small in comparison with the current termination conditions, the variability 

can be significant. This is seen in the best case result for test schedule #1 where the maximum 
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observed result is approximately 625 restarts of the Genetic Algorithm. This demonstrates that 

there is the potential for a sacrifice in performance resulting from dynamic termination 

conditions. 

Overall, the average runtime of the optimisation system can be significant with a maximum 

recorded runtime of approximately 5 hours and 40 minutes for test schedule #2 running on an 

Intel i5 8GB Windows 7 machine. Table 7.5 shows that this is primarily due to the time required 

to construct the predicted machine energy profiles and compile them into a production line 

profile. The granularity of the historical energy profiles, while increasing prediction accuracy, 

also results in the need to manipulate large amounts of data potentially hundreds of thousands of 

times during the system’s operation. Additional performance issues arise from the use of highly 

granular data, such as the inefficient use of automatic memory management. As C# is a memory 

managed programming language, a garbage collection component is used to release allocated 

memory which is no longer referenced. All allocated memory is divided and placed into one of 

three ‘generations’, numbered zero to two, depending on the allocation size and lifespan 

(Windows Dev Center, No date). In the case of the optimisation system, the constructed 

machine and production line energy profiles for each candidate schedule can be considered 

short-lived objects as they only exist within the prediction engine functions. As a result they 

should be sorted within generation zero of the garbage collector, which is processed frequently 

and has a fixed size. However any object which is greater than 85,000 bytes is assigned to 

generation two. This has no size restrictions, is processed less frequently, and has a potentially 

lengthy processing time relative to the other generations, due to it mainly containing a number 

of large, long-lived objects.  

In the case of this optimisation system, with an historical energy profile granularity of 150ms, 

even the machine and production line energy profiles for the smallest test schedule, test 

schedule #1, will consist of 52,000 data points each. As these are represented by single-

precision data type arrays, each element of which consists of four bytes (32-bit), the total 

memory size for each profile will be 208,000 bytes. Hence the related objects will always be 
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assigned to generation two; the end result being that the overall runtime of the system will be 

inhibited by the lengthy garbage collection process. 

 

7.4 Comparison of Most Probable and Best Case Results 

As stated in section 5.3.2, the purpose of producing a best case result is to approximate the 

lower bound of the schedules production line energy consumption. This can then be compared 

against the most probable result to determine how close this is to the approximate lower bound. 

Table 7.6 shows the differences between a most probable and best case result, using test 

schedule #3 as an example. The results show that, in this case at least, minimal changes are 

made to the actual job start times, providing evidence that the most probable start times are 

already suitably close to their lower bound. On the contrary, significant changes are made to the 

energy profiles which are actually referenced for each job, with 14 of the 20 jobs having their 

referenced energy profile changed. As seen in tables 7.2a and 7.2b, for test schedule #3 the 

average difference between the most probable and best case variance is 3.75% of the original. 

While this may seem like a minor change, the maximum average change observed in table 7.2a 

and 7.2b is that for test schedule #2, with a difference of 8.15%.  
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Table 7.6 - Table comparing the job start times and energy profiles used in the most probable and best case results 

for test schedule #3. Changes are shown in bold. 

Jobs 
Most probable result Best case result 

Job start time Energy profile Job start time Energy profile 

Process A 

A1 09:35 P1A-001-2-11-43 09:52 P1A-001-2-11-43 

A2 11:13 P1A-002-13-18 11:13 P1A-002-13-18 

A3 11:31 P1A-003-102 11:31 P1A-003-158 

A4 11:51 P1A-004-15 11:51 P1A-004-57 

A5 12:12 P1A-005-22-31 12:12 P1A-005-22-31 

Process B 

B1 10:07 P1B-001-23-70 10:07 P1B-001-23-70 

B2 11:15 P1B-002-67-6 11:15 P1B-002-32-192 

B3 12:05 P1B-003-44-2 12:05 P1B-003-96-8 

B4 12:45 P1B-004-44 12:45 P1B-004-123 

Process C 

C1 07:29 P1C-001-24-23 07:29 P1C-001-18-166 

C2 07:53 P1C-002-35-15 07:53 P1C-002-96-43 

C3 08:42 P1C-003-146 08:42 P1C-003-175 

C4 08:52 P1C-004-36-10 08:52 P1C-004-34-461 

C5 10:20 P1C-005-2 10:20 P1C-005-2 

C6 10:55 P1C-006-70-11 10:55 P1C-006-1-160 

Process D 

D1 07:00 P1D-001-20-42 07:00 P1D-001-64-129 

D2 07:33 P1D-002-14-3 07:33 P1D-002-78-108 

D3 08:02 P1D-003-25 08:02 P1D-003-25 

D4 09:19 P1D-004-12 09:19 P1D-004-126 

D5 10:42 P1D-005-40-9 10:42 P1D-005-31-31 

 

In the case of an actual manufacturing production line, the differences between these two results 

could be further analysed to determine how the production line can potentially be operated, such 

that the most probable result can align more closely with the best case result.  

 

7.5 Analysis of Dynamic Machine Reassignment Influence 

As stated at the beginning of this chapter, Dynamic Machine Reassignment (DMR) was initially 

disabled to produce the baseline results discussed in the previous sections. To evaluate the 

influence DMR has on the level of potential optimisation within a schedule, each machine in the 

production line was cloned. This allowed for two of every machine, permitting each job a single 

alternative should a conflict arise on its default machine. Using this expanded production line, 

each of the test schedules was evaluated with both DMR disabled and enabled to garner a 

comparison which can be seen in figure 7.15. Due to the necessary expansion of the production 
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line, the results presented here will not match the other results discussed thus far in this chapter. 

As such it is necessary to consider these results in isolation. 

Figure 7.15 demonstrates that in the case of test schedules #1 to #5 DMR has little influence on 

both the most probable and best case results. For schedules #1 and #2, it can be deduced that, 

based on their Gantt charts (figures 7.5 and 7.7), the time constraints allow for one job to be 

executed at once, thereby ensuring no machine conflicts arise. In the case of test schedules #3 to 

#5, it is possible that there is no benefit in terms of variance reduction in reassigning conflicting 

jobs, as minimising energy consumption variance by its very nature resists running multiple 

machines concurrently. The only schedule where DMR is seen to have an effect is test schedule 

#6. As the largest schedule tested, this was the most likely to benefit from DMR. Table 7.7 

demonstrates the effect DMR can have on a schedules job-machine assignment. In the case of 

the original, most probable and best case schedules, processes A to C are unaffected. This is 

likely due to the fact that the schedule validity checking (see section 5.3) routine checks for 

machine conflicts in job order beginning with process A. As a result, jobs belonging to earlier 

processes will likely be able to reserve their default machine.  
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Figure 7.15 - Graph showing influence of DMR on the most probable and best case results (Results averaged over 

ten consecutive runs). 

 

Table 7.7 - Table showing the job - machine assignments for the original, most probable and best case schedules of 

test schedule #6. Changes to machine assignment are shown in bold.  

Job 
Machine assignment 

Original schedule Most probable schedule Best case schedule 

Process D 

D1 M1A-001 M1A-001 M1A-001 

D2 M1A-002 M1A-012 M1A-012 

D3 M1A-009 M1A-009 M1A-009 

D4 M1A-010 M1A-020 M1A-020 

D5 M1A-007 M1A-007 M1A-007 

D6 M1A-004 M1A-004 M1A-004 

D7 M1A-001 M1A-001 M1A-001 

D8 M1A-008 M1A-008 M1A-008 

D9 M1A-010 M1A-020 M1A-020 

D10 M1A-008 M1A-008 M1A-008 

Process E 

E1 M1A-005 M1A-015 M1A-005 

E2 M1A-006 M1A-006 M1A-006 

E3 M1A-003 M1A-013 M1A-013 

E4 M1A-004 M1A-004 M1A-004 

E5 M1A-005 M1A-005 M1A-005 

E6 M1A-003 M1A-003 M1A-003 

E7 M1A-002 M1A-012 M1A-012 

E8 M1A-008 M1A-008 M1A-008 

E9 M1A-009 M1A-009 M1A-009 

E10 M1A-006 M1A-006 M1A-006 



139 
 

In table 7.7, only six job-machine reassignments occur throughout the most probable and best 

case predictions. However on average, these result in a significant reduction in returned result. 

While its effectiveness is clear, the usefulness of DMR will be heavily dependent upon the 

particular schedules to be optimised and the flexibility and design of the production line.  

 

7.6 Experimental Implementation 

To fully test the optimisation system’s ability and accuracy, it was applied to a small-scale 

schedule in a lab based production line. 

 

7.6.1 Implementation Setup 

The implementation involved the use of an original ten job schedule along with four devices, 

listed below, to represent the energy consumption for each job.  

 A 550W 230V AC motor, 

 An industrial dust collector containing a 750W AC motor, 

 A 24 litre air compressor 

 A 400W floodlight 

While not manufacturing machines, they would generate suitable energy profiles which could 

be associated with each job in the schedule. These particular devices were selected because 

from an energy perspective, they closely resemble the components and load types of modern 

manufacturing machinery. Three of the four devices utilise an AC motor – the most common 

component of manufacturing machinery. The floodlight represents a resistive load, which is also 

comparable to a heat-based process.  

As with the simulation based experiments, the schedule was originally produced using 

production planning software before being associated with pre-recorded energy profiles and 

given to the optimisation system. Both the original and most probable optimised schedules were 
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then executed with the energy profiles of the machines being recorded via the custom 

monitoring system. A best case result could not be produced, as there was only one energy 

profile available for each job. Therefore in this case it can be construed that the optimised 

schedule was both the most probable, and the best case. The results are shown in the next 

section. The full schedules along with their Gantt charts can be found in appendix G. 

 

7.6.2 Implementation Results 

Figure 7.16 shows a visual comparison between the predicted and recorded energy profiles for 

the original and optimised schedules.  

 
Figure 7.16 - Comparison between predicted and recorded energy profiles for the original and optimised evaluation 

schedule. 

 

As can be seen in both the original and optimised schedules, the predicted and recorded profiles 

match each other to within an acceptable degree of tolerance. This is further confirmed by the 
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results in both table 7.8 and 7.9, where only small errors are seen. There are only two noticeable 

differences between the predicted and recorded values: 

1. The peak values recorded during the inrush peaks – this can be explained by the fact 

that the custom energy monitoring system, while possessing a fast reporting rate, still 

may miss the peak values of short lived inrush periods. This results in the large 

maximum error seen in table 7.9. 

Table 7.8 - Comparison between predicted and recorded variance values for the evaluated schedule. 

Schedule Predicted Variance Recorded Variance Error (%) 

Original 2.495 2.323 7.404 

Optimised 1.022 0.960 6.458 

 

Table 7.9 - Error values between the predicted and recorded energy profiles. 

Schedule 
Absolute mean 

error (Arms) 

Max Error 

(Arms) 

RMS error 

(Arms) 

Original 0.110 14.850 0.274 

Optimised 0.102 14.70 0.260 

 

2. There is a consistent error which occurs in both schedules, being seen at around 13:14 

in the original schedule profile and at around 12:56 in the optimal schedule profile. An 

analysis of the Gantt charts reveal that this error coincides with the running of the 

floodlight however it only occurs when the floodlight is operated consecutively with the 

AC motor. This error is never seen again in the profiles despite the floodlight and AC 

motor being used twice again, which indicates that the recorded profiles are accurate. 

However, the floodlight and AC motor are never used at the same time again, meaning 

the error maybe a result of the two running simultaneously. In figure 7.17, a Kyoritsu 

KEW 6315 power quality analyser was used to monitor the power factor while the 

floodlight and AC motor were ran independent and simultaneously. As can be seen, 

when ran individually, the motor and floodlight have two very different power factors. 

The motor, representing an inductive load, lowers the power factor to approximately 0.5 

while the light, a resistive load, has little influence. When ran together, the overall 

power factor is approximately 0.9. This is believed to be due to the fact that the light 

may represent a small capacitive load; hence the power factor not being one when it is 
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ran. As a result of all this, the power factor when both the motor and floodlight are 

running is better than when the motor is running solely. A better power factor results in 

a reduced current consumption which explains why the recorded current consumption is 

less than that of the predicted when the floodlight and motor are running. As the energy 

models used for the prediction do not account for power factor, the optimisation system 

is unable to account for this. 

  
Figure 7.17 - Comparison of power factor when using a floodlight and AC motor independently and 

simultaneously. (Note: When no devices are using power, the meter is unable to measure power factor and 

hence produce erroneous results around zero). 

 

Overall, this experimental implementation proves that the optimisation system works in a real 

world scenario and is able to predict the energy consumption of a production line to a high 

degree of accuracy. The main disadvantage to the accuracy is that within the scope of this 

project, the models do not account for power factor. However, this is a limitation of the energy 

monitoring setup and not of the optimisation system. 
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7.7 Coarse Prediction – Results and Analysis 

As discussed previously and seen in figure 7.13, the runtime of the overall optimisation system 

can be long. It is for this reason that a series of coarse accuracy methodologies, introduced in 

section 6.3, were developed for the purpose of producing an approximate result within a reduced 

time frame. The three methods are listed in table 7.10. 

Table 7.10 - Table discussing the influence on accuracy and runtime of the coarse prediction methodologies. 

Coarse prediction 

method 

Effect on runtime Effect on accuracy 

Reduce granularity of 

historical energy profile 

using custom reduction 

algorithm. 

Reduces the data size and as a 

result, the compilation time for 

machine and production line 

energy profiles.  

By using reduced profiles, the 

final result will not be as accurate 

compared to using full length 

profiles. 

Reduce Genetic 

Algorithm population 

size 

Reduces the number of 

candidate schedule 

chromosomes to consider. 

By considering a smaller 

population, the algorithm may 

return a shallow local optimum. 

Combination of above 

methodologies 

A combination of the above 

two effects. 

A combination of the above two 

effects. 

 

The implementation of these methodologies using the current optimisation system was simple 

and achieved with little overhead. Where necessary, the energy profile prediction engines were 

instructed to source their historical data from a new library, generated by applying the profile 

reduction algorithm introduced in section 6.3.1, to a copy of the existing profile library. As for 

reducing the population size, this was simply a matter of adjusting a single program constant. 

Initial experimentation focused on how using reduced length profiles would influence the 

runtime. For this, the library of original profiles was reduced by a factor of ten. Table 7.11 

shows the fitness function evaluation time for the series of test schedules using these reduced 

profiles.  

Table 7.11 - Differences in fitness function evaluation runtime between valid and invalid candidate schedules using 

reduced energy profiles. (Results averaged over 100 iterations; Ran on an Intel i7 8GB Windows 8.1 computer). 

Test schedule Valid schedule 

evaluation time 

(µs) 

Invalid schedule 

evaluation time 

(µs) 

Valid evaluation time 

reduction compared to 

table 7.5 (Factor of) 

#1 121.50 1.31 45.27 

#2 242.72 1.72 48.31 

#3 337.28 1.76 45.86 

#4 434.48 1.69 45.29 

#5 509.28 1.65 41.06 

#6 644.31 2.40 40.79 
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In comparison with table 7.5, the results in table 7.11 demonstrate the significant influence the 

lengths of the historical profiles have on the valid schedule evaluation time. As expected, the 

invalid schedule evaluation time is immune to this influence as the historical profiles are not 

considered for invalid schedules. Curiously, the reduction in valid schedule evaluation time is 

four times the reduction ratio of the historical profiles. This demonstrates that reducing the 

profile lengths has more than just a singular effect on the evaluation time. One potential 

explanation for this is that using the reduced length profiles also reduces the memory resources 

required to hold each of the machine and production line profiles. Taking test schedule #6, the 

schedule with the longest time span as an example, the optimisation system originally required 

768,000 bytes of system memory per profile. By using profiles reduced by a factor of ten, the 

memory requirements will also subsequently drop by a factor of ten, and fall under the 85,000 

byte limit of the generation zero garbage collector (Windows Dev Center, No date). As 

discussed in section 7.3, this can result in a decreased runtime. 

Table 7.12 - Table showing empirical reduction factors in optimisation system runtime measured for the three coarse 

prediction methods on all test schedules with most probable result (Results averaged over ten consecutive runs). 

 Test 

schedule 

Coarse prediction method 

Reduced waveform 

(Factor of) 

Reduced population 

(Factor of) 

Both methods 

(Factor of) 

#1 15.62 11.15 166.84 

#2 22.24 12.02 249.72 

#3 29.08 10.30 297.88 

#4 32.98 10.09 286.94 

#5 17.72 7.45 110.54 

#6 12.85 4.32 57.19 

Average: 20.31 9.31 183.61 

 

For a full evaluation, each of the three coarse methods was applied to the six test schedules. The 

results and runtimes can be seen in table 7.12 and figures 7.18 to 7.23, followed by discussions 

of the individual methodology results. 
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Figure 7.18 - Graph comparing most probable results from original and coarse prediction methods. 

 

 
Figure 7.19 - Graph comparing best case results from original and coarse prediction methods. 
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Figure 7.20 - Graph showing most probable coarse prediction methods error % compared to original results. 

 

 
Figure 7.21 - Graph showing best case coarse prediction methods error % compared to original results. 
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Figure 7.22 - Graph comparing most probable runtimes for original and coarse prediction methods. 

 

 
Figure 7.23 - Graph comparing best case runtimes for original and coarse prediction methods. 
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Reduced waveform methodology 

In general, this methodology is seen to produce the most accurate predictions with a maximum 

recorded error of approximately -10%. Due to the information loss during the waveform 

reduction process, small positive errors can occur in the prediction. The error percentage will be 

directly related to the shape of the historical energy profiles and their information densities. 

However by utilising waveforms reduced by a factor of ten, this methodology was successful in 

reducing the optimisation systems runtime by a factor of 20.31 averaged over all test schedules.  

These results indicate that using highly granular energy profiles is not beneficial, as they 

significantly increase the runtime while providing only marginal increases to result accuracy. 

However it is important to note that the reduced length profiles used here are a compressed form 

of the highly granular profiles and are produced via the custom compression algorithm (see 

section 6.3.1). As this attempts to minimise the loss of short lived waveform features (relative to 

the reporting rate), there is the potential that the reduced length profiles will be a more accuracy 

representation of the energy consumption than a profile directly recorded at a similarly reduced 

reporting rate. 

Reduced population methodology 

Contrary to the reduced waveform methodology, reducing the population size by a factor of ten 

produced the largest error range, with a maximum error of approximately -40%. Through test 

schedules #3 to #6, the negative error demonstrates that the optimisation system in its coarse 

prediction configuration returned a result less optimal than the original full accuracy version, as 

reducing the population restricts the Genetic Algorithms search time. The only case where this 

is not true is with test schedules #1 and #2, where the error is minimal. This is likely due to the 

fact that both of these schedules are the smallest out of all the test schedules, both in terms of 

the number of constraints and overall schedule timespan. Therefore it is plausible to conclude 

that the optimisation system even with a reduced population, is able to successfully locate a 

suitably optimal result within the allowed iterations. While the same cannot be said for the other 

test schedules, the accuracy loss is rewarded by a decrease in runtime. By reducing the 
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population size by a factor of ten, the runtime decreases by a factor of 9.31, averaged over all 

test schedules. Table 7.12 shows that for this method, the observed reduction is close to or less 

than the specified reduction factor, indicating that this method is already loosing effectiveness. 

As this is mainly observed in the larger schedules, it is believed that this is due to the fact that, 

as figure 7.12 shows, when optimising these schedules, the Genetic Algorithm’s population 

mainly consists of invalid candidates. Therefore reducing the population only reduces the 

number of invalid candidates which are already quickly evaluated and dismissed in the fitness 

function.  

These results also show that for schedules where the Genetic Algorithm’s population typically 

contains a large percentage of invalid candidates, reducing the population size does not benefit 

the returned solution. While in theory this should allow for valid candidates to have more 

influence on the search direction, in practice, the results in figures 7.20 and 7.21 demonstrate 

that the opposite effect occurs. This presents the case that while of no use to the final result, 

invalid candidate schedules do heavily influence the returned result.  

Combination of both methodologies 

As was to be expected, combining the two methodologies produces an amalgamation of the 

aforementioned advantages and disadvantages. In terms of the error, in all schedules but test 

schedule #3, the combined method is flanked on either side by the low erroneous reduced 

waveform methodology, and the high erroneous reduced population method. This indicates that 

the errors produced by both methods are negated to a certain degree. In terms of cost verses 

benefit, this method is highly appealing. As it utilises two independent methods, both of which 

are configured to theoretically reduce optimisation system runtime by a factor of ten, this 

method is theoretically capable of reducing the runtime by a factor of 100. However as seen in 

figures 7.22 and 7.23, and table 7.12, the overall reduction in runtime, averaged over the range 

of test schedules, is seen to a factor of 183.61.  

Overall the results show that using a combination of both methods produces the best cost to 

benefit ratio. The runtime can be significantly decreased, far in comparison to the other 
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methods, while distributing the resulting negative effects to ensure the accuracy of the system 

remains within an acceptable range. Furthermore, the error of the coarse prediction does not 

seem to directly relate to the schedule’s complexity, with predictions for test schedule #5 being 

far less erroneous than the smaller test schedule #4. However from a broad perspective it can be 

seen in that more complex schedules do have a higher potential error. As is shown in table 7.4, a 

schedule with more jobs is less likely to return a consistent value over consecutive runs. This is 

exacerbated by using a reduced population as it impedes the Genetic Algorithm’s search 

performance. Furthermore as a larger schedule will involve a larger number of energy profiles, 

there will be a higher error due to the information loss in profiles.  

 

7.8 Summary 

In this chapter, the extensive optimisation system introduced in the previous chapters is tested 

and evaluated to ascertain its effectiveness at solving the applied problem. For all test schedules, 

the system is successfully able to reduce the energy consumption variance by a high degree, and 

where prudent, utilise features such as DMR to further the level of optimisation. The systems 

performance is dependent upon the schedule under consideration and there are cases where the 

schedules cannot be optimised by a significant degree. Furthermore, the systems performance 

does degrade slightly as schedule complexity increase with the system returning inconsistent 

results over repetitive runs indicating that the result is a local minima. However this issue needs 

to be considered in light of the problem’s complexity where it can be deduced that the 

optimisation system performance scales acceptably. To address the lengthy runtime of the 

system, three coarse prediction methodologies are evaluated. While errors are present in the 

returned result, two of the three methods demonstrate better than expected reductions in 

runtime, therefore offering an appealing cost to benefit ratio.  
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CHAPER 8 

OPTIMISATION SYSTEM EXPANDABILITY 

 

The optimisation system introduced in chapter 5 can be generalised as a generic optimisation 

system for production schedule consumables. While in this particular case, the consumable is 

electrical energy and the optimisation objective is energy consumption variance, this can easily 

be modified. In both the most probable and best case fitness functions, the calculation of energy 

consumption variance can be considered a very small part which occurs at the very end of the 

procedure and can be considered completely independent from the rest of the function. As a 

result, while they are by no means novel goals, the optimisation system can be adjusted and 

used for alternate purposes with only minor changes.  

 

8.1 Optimisation of Minimum Peak Energy Consumption 

As an initial demonstration of the alternative uses, the optimisation was modified to solely 

reduce peak energy consumption. In this case, the fitness value for a candidate schedule was 

assigned as the associated energy profile’s peak energy consumption, instead of its variance. 

This was done by replacing equation (5.7) with (8.1) and assigning the result as the candidate 

schedules fitness. Table 8.1 shows the level of reduction possible and compares it with the peak 

consumption observed when a schedule is optimised for energy consumption variance.  

  max Prod
Predictedprofile t  (8.1) 
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Table 8.1 - Table demonstrating the level of peak energy consumption reduction compared to the peak consumption 

when a schedule is optimised for energy consumption variance. 

Test 

schedule 

Original 

peak energy 

consumption 

Reduced peak energy consumption results (A RMS) 

Schedule optimised for peak 

energy consumption 

Schedule optimised for energy 

consumption variance 

Most probable Best case Most probable Best case  

#1 297.17 186.93 171.83 186.93 171.83 

#2 312.13 191.33 181.43 192.43 194.53 

#3 374.33 215.51 214.18 233.43 233.43 

#4 376.36 240.03 229.85 260.83 243.33 

#5 439.56 301.19 298.78 346.56 321.36 

#6 456.76 325.75 310.89 346.56 321.58 

 

The results in table 8.1 demonstrate that the modified system is able to successfully reduce the 

peak consumption. It is also seen that while optimising for minimal energy consumption 

variance does reduce the peak consumption, some higher peaks can remain. In the case of test 

schedule #1, figure 7.5 shows that this schedule can be optimised such that no two jobs are in 

concurrent execution. Therefore the minimal variance and peak consumption is observed. For 

the most complex test schedules, large differences are observed between the two result sets.  

Depending on the manufacturer’s preferences, these results show that the optimisation system 

can be easily employed to either minimise energy consumption variance or peak consumption. 

 

8.2 Demand Response for Renewable Energy Generation 

Along with the minimisation of peak consumption, the optimisation system can also be used to 

adapt the energy demand in response to the supply from renewable energy resources, in a 

technique similar to Demand Side Management (DSM) (Samadi et al, 2011). Where production 

lines are partly or entirely powered from renewable resources, the optimisation system could 

modify a schedule in an attempt to fit the production lines energy consumption within the 

predicted supply response. In this case, the optimisation system is tasked with minimising (8.2), 

where profileforecast is the energy supply forecast from the renewable resource.  

   



Max

e

D

st

Forecast
Prod
Predicted tprofiletprofile  (8.2) 
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Examples of this modification are shown in figures 8.1 and 8.2, where test schedule #6 has been 

optimised for two different forecast profiles. Numerical results are shown in table 8.2. 

 
Figure 8.1 – Example of production line energy profile which is optimised for demand response with renewable 

energy sources. 

 

 
Figure 8.2 - Second example of production line energy profile which is optimised for demand response with 

renewable energy sources. 
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Table 8.2 - Results of reduction to forecast-demand breach experiment. 

 Original energy 

breaching forecast (% 

of energy profile) 

Optimised energy 

breaching forecast (% 

of energy profile) 

Reduction 

(%) 

First example (Figure 8.1) 0.65 0.0005 99.92 

Second example (Figure 8.2) 0.25 0.17 34.36 

 

Due to the need to maintain scheduling constraints, the modified optimisation system does not 

guarantee that the production line energy consumption will completely fit within the supply 

response. However, the system has been proven useful for this application. This application also 

offers dynamic termination conditions, as the optimisation system can stop once the value 

calculated in (8.2) becomes non-positive. While this may not produce the most optimal solution, 

this is not the goal in this particular application.  

Further, minor modifications allow the system to account for energy storage systems. In (8.2), 

for every value of t, if the supply profileForecast(t), outweighs the demand  tprofile
prod
predicted

, 

excess energy profileexcess(t) can be diverted into an energy storage system whose current storage 

level is represented by Blvl(t). When this is at capacity BCap, any remaining excess can be 

exported to the National Grid for profit. When demand outweighs supply, stored energy can be 

tapped, profileRequired(t), in an attempt to meet demand levels. In the case where stored energy is 

insufficient, or the energy store is depleted, energy can be sourced from the National Grid at 

cost, profileImport(t). See (8.3). The fitness function should therefore minimise the total energy 

sourced from the National Grid as seen in (8.4).  
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  min importprofile t  (8.4) 

 

As an example, figure 8.3 shows a fictitious predicted energy consumption profile for a 

production line powered by a photovoltaic (PV) array, complimented with a 20Ah battery
1
. 

Here, the production line requires power from the National Grid at around 12:00 and 13:00. In 

figure 8.4, the schedule is optimised allowing the production line to be powered entirely from 

the PV array and the battery system. 

                                                           
1
 The batteries in this example are assumed to have a discharge cut-off of 50% of the total 

battery capacity, along with an 80% charging efficiency. To simplify the representation, the 

100% full to 50% discharge cut-off is represented as 100% to 0%.  
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Figure 8.3 - Example prediction of production line powered from a PV array with battery storage. A backup connection to 

the National Grid is available for exporting excess power and demanding power when demand exceeds local availability. 

Note: Battery percentage shown is measured between the fully charged and the acceptable discharge cut-off level.   
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Figure 8.4 - Optimised version of data shown in figure 8.3. 

 

Again, between figures 8.3 and 8.4 the system is shown to be capable of both solving this 

category of problem, while accounting for additional information such as the level of electricity 

exported to the National Grid. This means that the system could also be used in smart grid 

applications or from a financial viewpoint, furthered if the varying cost of energy were 

considered also.  

 

8.3 Other Potential Expansions 

Outside the realms of optimisation, the system also has additional uses. A manufacturer can use 

the system to predict the energy consumption profile of their manufacturing line for any 

schedule prior to it being executed, so long as the historical energy profiles are available. While 

this will not account for the total facility’s energy consumption, it could be used for predictive 
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billing purposes. In the long term, being able to predict the future energy consumption to a high 

granularity could aid in contract negotiations with the energy supplier. This is similar to the 24 

hour forecasting by Pechman et al (2011; 2012). 

While electrical current is considered in this implementation, other forms of energy could also 

be used, either solely or in combination, through modifications to the fitness functions and 

prediction engines. 

Overall, the system developed can be seen as a highly adaptable piece of software that can be 

applied to both commonly used and novel optimisation situations both within and outside the 

energy domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

159 
 

CHAPTER 9 

 CONCLUSION 

 

This thesis presents a novel production schedule optimisation system for the minimisation of 

production line energy consumption variance. This work commenced with a substantial 

investigation into current and state-of-the-art methodologies for the consideration of process 

energy consumption in manufacturing environments. Research findings identified that there is a 

discontinuity between currently employed methods and those proposed by researchers. 

Furthermore, the consideration of energy consumption is seldom with many approaches viewing 

it purely from an energy price viewpoint with a highly abstract representation of the energy 

consumption itself thanks to the current state of energy monitoring devices. To that end, this 

work proposed and successfully implemented several novel strategies both specifically for 

considering energy consumption variance and for energy in manufacturing in general. These 

are: 

 The development of a Genetic Algorithm based production schedule optimisation 

system, which is proven to minimise the energy consumption variance generated 

through schedule execution. 

 The development of the Intelligent Historical Library for Manufacturing Energy 

Prediction which is able to produce predictions which are independent of influence from 

the machines mechanical conditions. 

 Predictions generated from time-series energy consumption profiles with a high (sub-

second) temporal granularly. 

 The ability to generate synthetic energy profiles for a particular job when existing data 

is insufficient.  

 A schedule optimisation system which is proven to be readily expandable into other 

energy-based optimisation applications. 
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In this chapter the top-level objectives and findings are condensed and evaluated in relation with 

the original research aim and objectives presented in chapter 1. Finally, recommendations based 

on retrospective analysis are given before concluding this work with a short discussion as to the 

applicability of the work in an actual manufacturing production line. 

 

9.1 Addressing the Research Aim and Objectives 

Achieving the aim of research as seen in chapter 1, required substantial background 

investigations which can be segregated into three distinct but related topics – industry energy 

monitoring, modelling, and energy optimisation; as dictated by the initial three accompanying 

research objectives. Progress in each topic is constructed atop of the previous topic. The 

conclusion from the findings of these three aims will follow a similar structure, beginning with 

the findings from investigations into industrial energy monitoring and ending with a foundation 

upon which the novel system is developed to address the research aim.  

“One of the key prerequisites for any energy-based optimisation in the manufacturing sector is 

to understand how energy is distributed and consumed in production lines” 

The above phrase introduces the chapter on energy monitoring principles (section 2.2) and 

denotes the critical link between this work and energy monitoring. Put simply, you cannot 

optimise what you cannot see. Current industry-grade energy monitoring equipment while apt at 

recording multivariate consumption levels to a high degree of accuracy, lack the reporting rates 

needed to provide data at a high temporal granularity. While providing this high level of 

granularity will call for an increase in computational processing power, this is not considered to 

be the limiting factor given the abundance of low cost high power embedded microcontrollers. 

This is further reinforced by the development of a custom energy monitoring system which is 

able to record seven current channels plus voltage at a reporting rate of 150ms. While the 

measurement specification of the custom energy monitoring system was much simpler than that 

of a commercially available system, this does not allow for the significantly higher reporting 

rate as the cost-to-benefit ratios are disproportionate. Necessitating the calculation of supply 
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frequency, power factor and the related power measures cannot delay the reporting of data by 

several minutes. This is especially given the level of modern electronics and the UK supply 

frequency of 50Hz. All this serves as the first, and perhaps the only needed indicator that energy 

related objectives are not highly considered in industry.  

Similar findings are seen throughout this work.  Chapter 3 shows that a significant amount of 

research has been conducted into predicting and modelling energy consumption with respect to 

manufacturing environments. However the overall diversity of methodologies is limited, 

although this could be a consequence of the problems approachability. Despite providing high 

levels of accuracy with some works attaining greater than 95%, the applicability of these 

methods is brought into question. Most methods are developed around a single type of machine, 

and in some cases, the values of required attributes are difficult or impractical to know in 

working production lines. Furthermore as manufacturing production lines are highly dynamic 

environments, while dependent upon the attributes required, there is the possibility that their 

values may change over time. This phenomenon is not addressed in all but a few works, further 

bringing into question the long term accuracy of the proposed methods. Manufacturing 

machines are by no means fixed, tools blunt, machines get older, are maintained, and parts are 

changed or upgraded. Simply put, it is believed that no fixed modelling methodology can 

accurately account for this dynamic environment over time. The granularity of the calculated 

models is also poor with highly abstract data values such as average and maximum consumption 

used. This may potentially be a consequence of the poor reporting rates of energy monitoring 

systems. Manufacturing jobs can consist of many elemental operations each with its own unique 

energy consumption profile. By restricting the representation to a single value, the overall loss 

of information is extreme.  

All this directly influences current efforts into energy optimisation. While there are numerous 

examples of works to optimise energy consumptions for both individual machine and entire 

production lines, these again only reference abstract values which as a consequence, limit 

approachability. The two umbrella methodology seen are machine-centric, which aim to reduce 

the overall energy consumption of individual machines, and schedule-centric which aims to 
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operate on the entire production line in accordance with a particular energy-based objective 

while considering traditional constraints. For this approach, a popular energy-based objective is 

the minimisation of peak energy consumption. Abstract values such as peak consumption for 

individual jobs may seem beneficial for approaches like this. Data requirements are reduced, 

requiring only a single value for each job which will result in decreased processing time 

compared to time-series models. However, results from using the custom high granularity 

energy monitor show that peak consumption values are a poor representation of the energy 

consumption for a typical manufacturing job. As these are seen to contain large peaks relative to 

the rest of the consumption levels, optimising an entire production line knowing only a single 

energy value will likely result in less-than optimal solutions. Despite all this, the amount of 

research into energy optimisation in manufacturing lines demonstrates there is an avid interest 

in the subject. 

Concluding the research aim required all of the foreseen shortcomings to be addressed and 

improved upon in a manner representative of the topics relationship with each other. Beginning 

at the data level, a custom energy monitoring system with a temporal granularity of 150ms is 

developed to provide data at the necessary level of information. While the measured values are 

limited to RMS voltage and current, this is due to the inability to regulate the power factor of 

the supply and not related to the temporal granularity.  

The availability of high granularity energy consumption data subsequently permits high 

accuracy consumption modelling. However there does not seem to be any single methodology 

which can a) produce high granularity models, b) be universally applicable to all manufacturing 

machines, and c) be easily and quickly applied to modern, working production lines. In this 

work, the novel Intelligent Historical Library is proposed to overcome these limitations by 

directly utilising recorded historical data. By recording and storing multiple profiles for 

identical jobs along with associated machine-related metadata, predictions can compensate for 

machine-related changes to the jobs energy consumption. Furthering the originality, when 

historical data is lacking for a particular job, the library is able to generate temporary synthetic 
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profiles by analysing how the metadata influences the energy consumption. These synthetic 

profiles are then generated based on the probability of them being requested for a prediction. 

All this sets the foundations for the main original contribution – the production schedule 

optimisation system, which directly addresses the research aim. Literature in the area shows that 

minimising energy consumption variance has not seen a significant research focus. Methods 

such as demand side management attempt to reduce peak demand but focus solely on the 

electrical distribution network and are unable to finely control the enormity of end users. The 

approach documented here looks at a more manageable problem of controlling the variance of a 

production facility. A Genetic Algorithm is used to search for and select a suitable solution to 

the problem while maintaining hard and soft constraints, along with additional components 

which interface between the Genetic Algorithm, the production schedule and the real-world. 

Energy consumption variance predictions are made using highly granular time-series energy 

profiles provided by the Intelligent Historical Library. With multiple profiles available for each 

job, two results can be searched for and returned – one based on the most likely energy 

consumption to be encountered, and another representing the results estimate lower bound, 

known as the best case result.  

Many features are integrated into the schedule optimisation system to ensure a valid and highly 

optimal result is returned. These can include active features such as Dynamic Machine 

Reassignment (DMR), or passive features like the Genetic Algorithms periodic refresh of the 

population, and the optimisation of internal parameters. Validity of candidate schedules is 

confirmed through checking each job for compliance with process deadlines and start times, 

resource conflicts, and job overlap, and each check is sequential allowing for easy integration of 

additional checks.  

The operation and performance of the schedule optimisation system is proven through extensive 

testing with six different production schedules. Each schedule was originally produced via a 

traditional production planning tool and the subsequent data was inserted into custom schedule 

templates which allow for the accountability of energy consumption. For all but one of the test 

schedules, the original energy consumption variance was decreased by a minimum of 50%, 
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however this does come as a cost of extending the total processing time, typically to the 

maximum allowed time. This can be controlled however by artificially adjusting the constraints 

via assigning process priorities. Where the constraints limit the amount of flexibility within the 

schedule, or the schedule is considered already mostly optimised by default, the optimisation 

system effectiveness is limited, as is shown in one of the test schedules where only a 29% 

decrease in variance is observed. Simulated results are further reinforced with an actual 

implementation. These help to demonstrate the accuracy and applicability of the optimisation 

system when applied to a real-world scenario, with an error in parts of the time-series prediction 

being sourced to factors outside the consideration of the system.  

The entire system is evaluated both as a whole and separately where necessary, to determine the 

level of influence each feature has on the overall result. It is seen that the performance is 

dependent upon the schedule under consideration, with features such as DMR only providing a 

useful influence for the largest schedule. Furthermore it is seen in experimentation that the 

optimal value of internal parameters also changes depending on the schedule. As a result, 

parameter values were chosen based on universal schedule application over individual 

optimality.   

Finally, when the runtime of the system becomes an issue, three methodologies are presented to 

minimise runtime and produce a coarse prediction. Results show that loss in accuracy is 

maintained within acceptable levels while producing a more than specified reduction in runtime.  

 

9.2 Future Work Recommendations  

The system developed, while proven working to a high standard does have a small number of 

limitations. First and foremost, experimentation has shown that the optimal values of some of 

the Genetic Algorithm’s internal parameters are schedule dependent. In the current 

configuration, these values are fixed. However if the relationship between the parameter values 

and the schedules could be mapped, the schedule optimisation system could optimise its search 

performance based on the schedule it is tasked with optimising. The main disadvantage of this is 
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that it would require significant and time consuming experimentation to investigate the possible 

range of parameter values at a suitable resolution.  

Similarly, the termination conditions could be altered based on the schedule. Experiment results 

show that for simpler schedules, the optimal result is found in earlier iterations of the Genetic 

Algorithms restart. Again, understanding this relationship should allow for dynamic termination 

conditions which would directly affect the runtime of the system. However this does run the risk 

of the system terminating prematurely.   

All these can be considered as non-significant limitations and were not implemented in this 

work due to the large time commitment required for the experimentation.  

One further limitation is that the prediction does not account for energy consumption which 

cannot be scheduled. This includes machinery such as air compressors, which activate 

automatically based on air pressure. While compressed air consumption can be measured for a 

known job, in reality, compressed air systems will likely contain leaks resulting in the 

compressors activation time being unknown. Similarly, the energy consumed for none 

manufacturing tasks such as lighting, HVAC and general office equipment cannot be scheduled. 

With that said, it is believed that in typical production lines, the consumption rate of machines 

will far outweigh the energy consumed by none manufacturing equipment. While not 

considered at current, it may be possible for the optimisation system to account for it in the 

future via a fixed assumed consumption level or a more complex model. 

One feature which could be implemented into the schedule optimisation system would be the 

intelligent machine shutdown ability, as seen in section 4.1.1. This would prevent machines 

from idling unnecessarily and contributing to the production lines energy consumption.  

 

9.3 Applications in Real World Manufacturing Production Lines 

The applicability of the entire developed system in a real world production line will likely be 

directly dependent upon the nature of individual manufacturing lines. An actual implementation 
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of the schedule optimisation system proves that the prediction is accurate, although purely 

considering current consumption can lead to errors due to power factor. However this is a 

limitation of the modelling data and not of the optimisation system. While these results along 

with the ones from simulations show that the system possesses a large potential it does make a 

number of assumptions about the control features of the production line: 

1. Machines remain idling when not in use. 

2. All jobs are executed on CNC machinery ensuring identical executions for repeated 

jobs.  

3. All jobs are to commence at the time specified by the schedule.  

4. All jobs to be executed are scheduled by the optimisation system. 

5. All machines contain some form of networked energy monitoring device.  

Most of the assumptions are based around exact compliance with the schedule. In the case 

where human intervention is a necessary part of the jobs execution, some degree of error should 

be anticipated in the prediction accuracy. As manufacturing lines can unfortunately encounter 

unexpected delays and other issues, the schedule will have to be modified and re-optimised 

accordingly.  

After this point, individual applicability primarily comes down to the manufacturers particular 

requirements. Do additional constraints need to be accounted for? Can the manufacturer afford 

to allow the total makespan to be expanded? The entire system has been designed to be 

application generic, meaning it can be applied to any type of production environment. As stated 

in the previous section, and in chapter 8, the developed system can be easily expanded to 

include additional constraints, and can also be applied to a number of applications, not solely 

within the energy domain.  
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9.4 Final Word 

All of the discussed features and associated results demonstrate the proficiency of the developed 

system for solving the research aim. Ultimately, this work presents a novel contribution and an 

alternative schedule strategy to manufacturers who wish to increase the efficiency of their 

utilisation of the local power distribution network. Original contributions are made both in 

energy modelling and manufacturing energy optimisation, with focus on the latter. Extensive 

experimentation demonstrates that this approach can offer significant benefits to manufacturers. 
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APPENDIX 

 

Appendix A: Custom Energy Monitor Schematic 

 
Figure A.1 - Diagram of custom energy monitoring system 
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Appendix B: Parameters for Evaluated Machine Learning Algorithms 

Standalone Multilayer Perceptron (Standalone & as base learner) 

 Learning rate: 0.05 (standalone), 0.3 (base learner) 

 Momentum: 0.2 

 Training time: 500 epochs 

 Validation threshold: 20 

 

Standalone Support Vector Regression (Standalone & as base learner) 

 Complexity: 1 

 Kernel parameters 

o Polynomial kernel 

 Cache size: 250007 

 Exponent value: 1 

o Pearson VII Universal kernel 

 Cache size: 250007 

 Omega: 1 

 Sigma: 1 

 Training algorithm 

o Epsilon value: 1
-12

 

o Parameter of the epsilon intensive loss function: 0.001 

o Tolerance value for the checking stopping criterion: 0.001 

 

Linear Regression (Standalone & as base learner) 

 Attribute selection method: M5 method 

 Ridge: 1
-8

 

 

Bagging (Bootstrap aggregating) 

 Size of bag: 100% of training set 

 Number of iterations: 10 

 Random number seed: 1 

 

Stacking (Stacked generalization) 

 Number of folds for cross-validation: 10 

 Random number seed: 1 
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Appendix C: Full Results from Evaluating Machine Learning Algorithms to Generate Synthetic Energy Profiles 

Name of algorithm Abbreviation used 

Support Vector Regression with a Polynomial kernel SVR w/ Poly 

Support Vector Regression with a Pearson VII kernel SVR w/ PUK 

Bagging ensemble with Multilayer Perceptron base learners Bagging w/ MLP 

Bagging ensemble with Support Vector Regression with a Polynomial kernel as base learners Bagging w/ SVR w/ Poly 

Bagging ensemble with Support Vector Regression with a Pearson VII kernel as base learners Bagging w/ SVR w/ PUK 

Bagging ensemble with Linear Regression base learners Bagging w/ Linear reg. 

Stacking ensemble with Multilayer Perceptron base learners Stacking w/ MLP 

Stacking ensemble with Support Vector Regression with a Polynomial kernel as base learners Stacking w/ SVR w/ Poly 

Stacking ensemble with Support Vector Regression with a Pearson VII kernel as base learners Stacking w/ SVR w/ PUK 

Stacking ensemble with Linear Regression base learners Stacking w/ Linear reg. 

 

Training 

set size 
Algorithm 

Training Testing 

Correlation 

coefficient 

Mean 

error 

(RMS A) 

RMS 

error 

(RMS A) 

Relative 

absolute 

error (%) 

Root relative 

squared 

error (%) 

Correlation 

coefficient 

Mean absolute 

error (RMS 

A) 

RMS 

error 

(RMS A) 

5 

Multilayer 

Perceptron 

0.161 1.723 2.692 18.470 24.327 0.293 0.871 1.040 

10 0.343 0.360 0.494 5.988 6.734 0.310 0.693 0.816 

20 0.345 0.273 0.385 4.463 5.134 0.347 0.236 0.274 

100 0.348 0.188 0.279 2.939 3.648 0.349 0.283 0.307 

5 

SVR w/ Poly 

0.212 1.377 2.200 18.453 23.133 0.320 0.550 0.664 

10 0.327 0.254 0.430 4.249 5.476 0.332 0.158 0.186 

20 0.331 0.151 0.274 2.665 3.768 0.332 0.120 0.153 

100 0.332 0.148 0.243 2.366 3.241 0.333 0.312 0.323 

5 

SVR w/ PUK 

-0.235 2.300 3.206 25.203 29.978 0.223 1.443 1.717 

10 0.319 0.497 0.731 8.242 9.799 0.241 1.215 1.599 

20 0.324 0.350 0.535 6.234 7.951 0.272 0.561 0.985 

100 0.331 0.181 0.278 2.965 3.781 0.291 0.671 1.040 

5 Linear -0.214 3.122 2.652 33.333 33.333 0.275 0.722 0.875 
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10 Regression 0.328 0.281 0.405 3.950 4.469 0.319 0.374 0.459 

20 0.330 0.179 0.282 3.007 3.781 0.331 0.175 0.216 

100 0.332 0.153 0.237 2.452 3.140 0.333 0.282 0.296 

5 

Bagging w/ 

MLP 

0.226 1.372 2.256 19.354 24.534 0.264 0.930 1.110 

10 0.327 0.453 0.549 6.599 6.705 0.287 0.712 0.867 

20 0.329 0.267 0.375 4.442 5.090 0.328 0.241 0.299 

100 0.331 0.180 0.265 2.945 3.574 0.332 0.298 0.318 

5 

Bagging w/ 

SVR w/ Poly 

0.144 1.489 2.580 19.764 25.961 0.312 0.971 1.131 

10 0.329 0.310 0.447 4.805 5.446 0.332 0.222 0.267 

20 0.331 0.139 0.267 2.394 3.578 0.333 0.119 0.137 

100 0.332 0.148 0.243 2.362 3.238 0.333 0.313 0.325 

5 

Bagging w/ 

SVR w/ PUK 

-0.235 2.300 3.206 25.203 26.377 0.163 2.463 2.727 

10 0.299 0.855 1.269 13.538 16.660 0.217 1.276 1.689 

20 0.319 0.457 0.727 8.074 10.737 0.252 0.725 1.163 

100 0.331 0.182 0.275 2.986 3.725 0.287 0.670 1.050 

5 

Bagging w/ 

Linear Reg. 

-0.214 3.197 3.664 33.786 33.616 0.314 0.715 0.862 

10 0.330 0.269 0.360 3.866 4.114 0.324 0.310 0.378 

20 0.330 0.179 0.281 2.971 3.736 0.331 0.178 0.225 

100 0.332 0.155 0.238 2.480 3.156 0.333 0.286 0.302 

5 

Stacking w/ 

MLP 

0.039 3.480 3.851 43.588 38.197 0.188 3.856 4.606 

10 0.315 0.618 0.787 10.748 11.369 0.289 0.731 0.874 

20 0.326 0.363 0.485 6.299 6.937 0.328 0.472 0.550 

100 0.330 0.281 0.374 4.444 5.008 0.332 0.427 0.478 

5 

Stacking w/ 

SVR w/ Poly 

-0.020 3.089 3.854 36.970 37.081 0.320 3.792 1.290 

10 0.328 0.310 0.447 5.279 5.966 0.333 0.199 0.233 

20 0.331 0.154 0.273 2.757 3.886 0.332 0.129 0.175 

100 0.332 0.148 0.244 2.367 3.247 0.333 0.317 0.328 

5 

Stacking w/ 

SVR w/ PUK 

-0.028 2.925 3.346 37.479 34.078 -0.054 2.484 2.889 

10 0.163 1.356 2.033 23.672 28.720 0.235 1.302 1.539 

20 0.322 0.456 0.613 7.940 8.710 0.273 0.569 0.958 

100 0.331 0.192 0.289 3.119 3.919 0.292 0.652 1.017 
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5 

Stacking w/ 

Linear Reg. 

-0.217 3.808 5.427 48.123 52.303 0.076 3.770 4.949 

10 0.328 0.312 0.446 4.551 5.140 0.319 0.408 0.502 

20 0.330 0.176 0.282 2.962 3.786 0.331 0.179 0.224 

100 0.332 0.153 0.237 2.449 3.331 0.333 0.283 0.296 
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Appendix D: Waveforms used during Evaluation of Time-Series 

Compression Algorithms 

 
Figure D.1 - Compression algorithms test waveform 1 

 

 
Figure D.2 - Compression algorithms test waveform 2 
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Figure D.3 - Compression algorithms test waveform 3 

 

 
Figure D.4 - Compression algorithms test waveform 4 
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Figure D.5 - Compression algorithms test waveform 5 

 

 
Figure D.6 - Compression algorithms test waveform 6 
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Figure D.7 - Compression algorithms test waveform 7 

 

 
Figure D.8 - Compression algorithms test waveform 8 
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Figure D.9 - Compression algorithms test waveform 9 

 

 
Figure D.10 - Compression algorithms test waveform 10 
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Appendix E: Details of Test Schedules 

Test Schedule #1 

Process ID A Process release date 11:30 

Process priority 1 Process Deadline 12:50 

  

Job ID P1A-001 Job start time 12:15 

Job Duration 00:10 Prerequisite jobs - 

Default machine M1A-003 Alternative machines - 

 

Job ID P1A-002 Job start time 12:25 

Job Duration 00:05 Prerequisite jobs P1A-001 

Default machine M1A-001 Alternative machines - 

 

Job ID P1A-003 Job start time 12:30 

Job Duration 00:20 Prerequisite jobs P1A-002 

Default machine M1A-010 Alternative machines - 

 

Process ID B Process release date 12:00 

Process priority 1 Process Deadline 13:10 

  

Job ID P1B-001 Job start time 12:17 

Job Duration 00:35 Prerequisite jobs - 

Default machine M1A-004 Alternative machines - 

 

Job ID P1B-002 Job start time 12:52 

Job Duration 00:18 Prerequisite jobs P1B-001 

Default machine M1A-005 Alternative machines - 

 

Process ID C Process release date 11:00 

Process priority 1 Process Deadline 13:00 

     

Job ID P1C-001 Job start time 12:05 

Job Duration 00:05 Prerequisite jobs - 

Default machine M1A-008 Alternative machines - 

    

Job ID P1C-002 Job start time 12:10 

Job Duration 00:20 Prerequisite jobs P1C-001 

Default machine M1A-002 Alternative machines - 

    

Job ID P1C-003 Job start time 12:42 

Job Duration 00:10 Prerequisite jobs P1C-002 

Default machine M1A-009 Alternative machines - 

 

Test Schedule #2 

Process ID A Process release date 10:30 

Process priority 1 Process Deadline 12:30 

  

Job ID P1A-001 Job start time 11:05 

Job Duration 00:10 Prerequisite jobs - 

Default machine M1A-003 Alternative machines - 

 

Job ID P1A-002 Job start time 11:28 
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Job Duration 00:05 Prerequisite jobs P1A-001 

Default machine M1A-001 Alternative machines - 

 

Job ID P1A-003 Job start time 11:33 

Job Duration 00:20 Prerequisite jobs P1A-002 

Default machine M1A-010 Alternative machines - 

 

Job ID P1A-004 Job start time 11:53 

Job Duration 00:20 Prerequisite jobs P1A-003 

Default machine M1A-006 Alternative machines - 

 

Job ID P1A-005 Job start time 12:13 

Job Duration 00:02 Prerequisite jobs P1A-004 

Default machine M1A-001 Alternative machines - 

 

Job ID P1A-006 Job start time 12:15 

Job Duration 00:15 Prerequisite jobs P1A-005 

Default machine M1A-003 Alternative machines - 

 

Process ID B Process release date 09:50 

Process priority 1 Process Deadline 11:50 

     

Job ID P1B-001 Job start time 10:20 

Job Duration 00:35 Prerequisite jobs - 

Default machine M1A-004 Alternative machines - 

    

Job ID P1B-002 Job start time 11:32 

Job Duration 00:18 Prerequisite jobs P1B-001 

Default machine M1A-005 Alternative machines - 

 

Process ID C Process release date 08:00 

Process priority 1 Process Deadline 10:20 

  

Job ID P1C-001 Job start time 09:05 

Job Duration 00:05 Prerequisite jobs - 

Default machine M1A-008 Alternative machines - 

 

Job ID P1C-002 Job start time 09:10 

Job Duration 00:20 Prerequisite jobs P1C-001 

Default machine M1A-002 Alternative machines - 

 

Job ID P1C-003 Job start time 09:30 

Job Duration 00:10 Prerequisite jobs P1C-002 

Default machine M1A-009 Alternative machines - 

 

Job ID P1C-004 Job start time 09:40 

Job Duration 00:40 Prerequisite jobs P1C-003 

Default machine M1A-007 Alternative machines - 
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Test Schedule #3 

Process ID A Process release date 09:30 

Process priority 1 Process Deadline 12:15 

  

Job ID P1A-001 Job start time 11:05 

Job Duration 00:10 Prerequisite jobs - 

Default machine M1A-003 Alternative machines - 

 

Job ID P1A-002 Job start time 11:28 

Job Duration 00:05 Prerequisite jobs P1A-001 

Default machine M1A-001 Alternative machines - 

 

Job ID P1A-003 Job start time 11:33 

Job Duration 00:20 Prerequisite jobs P1A-002 

Default machine M1A-010 Alternative machines - 

 

Job ID P1A-004 Job start time 11:53 

Job Duration 00:20 Prerequisite jobs P1A-003 

Default machine M1A-006 Alternative machines - 

 

Job ID P1A-005 Job start time 12:13 

Job Duration 00:02 Prerequisite jobs P1A-004 

Default machine M1A-001 Alternative machines - 

 

Process ID B Process release date 09:00 

Process priority 1 Process Deadline 12:50 

     

Job ID P1B-001 Job start time 10:20 

Job Duration 00:35 Prerequisite jobs - 

Default machine M1A-004 Alternative machines - 

    

Job ID P1B-002 Job start time 11:32 

Job Duration 00:18 Prerequisite jobs P1B-001 

Default machine M1A-005 Alternative machines - 

    

Job ID P1B-003 Job start time 12:05 

Job Duration 00:40 Prerequisite jobs P1B-002 

Default machine M1A-002 Alternative machines - 

    

Job ID P1B-004 Job start time 12:45 

Job Duration 00:05 Prerequisite jobs P1B-003 

Default machine M1A-010 Alternative machines - 

 

Process ID C Process release date 07:00 

Process priority 1 Process Deadline 11:15 

  

Job ID P1C-001 Job start time 09:05 

Job Duration 00:05 Prerequisite jobs - 

Default machine M1A-008 Alternative machines - 

    

Job ID P1C-002 Job start time 09:10 

Job Duration 00:20 Prerequisite jobs P1C-001 

Default machine M1A-002 Alternative machines - 
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Job ID P1C-003 Job start time 09:30 

Job Duration 00:10 Prerequisite jobs P1C-002 

Default machine M1A-009 Alternative machines - 

    

Job ID P1C-004 Job start time 09:40 

Job Duration 00:40 Prerequisite jobs P1C-003 

Default machine M1A-007 Alternative machines - 

 

Job ID P1C-005 Job start time 10:20 

Job Duration 00:35 Prerequisite jobs P1C-004 

Default machine M1A-010 Alternative machines - 

 

Job ID P1C-006 Job start time 10:55 

Job Duration 00:20 Prerequisite jobs P1C-005 

Default machine M1A-004 Alternative machines - 

 

Process ID D Process release date 07:00 

Process priority 1 Process Deadline 11:53 

  

Job ID P1D-001 Job start time 07:50 

Job Duration 00:30 Prerequisite jobs - 

Default machine M1A-001 Alternative machines - 

 

Job ID P1D-002 Job start time 08:20 

Job Duration 00:20 Prerequisite jobs P1D-002 

Default machine M1A-002 Alternative machines - 

 

Job ID P1D-003 Job start time 08:40 

Job Duration 00:40 Prerequisite jobs P1D-003 

Default machine M1A-009 Alternative machines - 

 

Job ID P1D-004 Job start time 09:20 

Job Duration 01:00 Prerequisite jobs P1D-004 

Default machine M1A-010 Alternative machines - 

 

Job ID P1D-005 Job start time 11:34 

Job Duration 00:19 Prerequisite jobs P1D-005 

Default machine M1A-007 Alternative machines - 

 

Test Schedule #4 

Process ID A Process release date 09:00 

Process priority 1 Process Deadline 13:00 

     

Job ID P1A-001 Job start time 11:05 

Job Duration 00:10 Prerequisite jobs - 

Default machine M1A-003 Alternative machines - 

    

Job ID P1A-002 Job start time 11:28 

Job Duration 00:05 Prerequisite jobs P1A-001 

Default machine M1A-001 Alternative machines - 

    

Job ID P1A-003 Job start time 11:33 

Job Duration 00:20 Prerequisite jobs P1A-002 
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Default machine M1A-010 Alternative machines - 

    

Job ID P1A-004 Job start time 11:53 

Job Duration 00:20 Prerequisite jobs P1A-003 

Default machine M1A-006 Alternative machines - 

    

Job ID P1A-005 Job start time 12:13 

Job Duration 00:02 Prerequisite jobs P1A-004 

Default machine M1A-001 Alternative machines - 

    

Job ID P1A-006 Job start time 12:15 

Job Duration 00:15 Prerequisite jobs P1A-005 

Default machine M1A-003 Alternative machines - 

    

Job ID P1A-007 Job start time 12:30 

Job Duration 00:05 Prerequisite jobs P1A-006 

Default machine M1A-007 Alternative machines - 

    

Job ID P1A-008 Job start time 12:35 

Job Duration 00:05 Prerequisite jobs P1A-007 

Default machine M1A-008 Alternative machines - 

    

Job ID P1A-009 Job start time 12:40 

Job Duration 00:10 Prerequisite jobs P1A-008 

Default machine M1A-009 Alternative machines - 

    

Job ID P1A-010 Job start time 12:50 

Job Duration 00:10 Prerequisite jobs P1A-009 

Default machine M1A-001 Alternative machines - 

 

Process ID B Process release date 09:00 

Process priority 1 Process Deadline 14:00 

  

Job ID P1B-001 Job start time 10:20 

Job Duration 00:35 Prerequisite jobs - 

Default machine M1A-004 Alternative machines - 

 

Job ID P1B-002 Job start time 11:32 

Job Duration 00:18 Prerequisite jobs P1B-001 

Default machine M1A-005 Alternative machines - 

 

Job ID P1B-003 Job start time 12:05 

Job Duration 00:40 Prerequisite jobs P1B-002 

Default machine M1A-002 Alternative machines - 

 

Job ID P1B-004 Job start time 12:45 

Job Duration 00:05 Prerequisite jobs P1B-003 

Default machine M1A-010 Alternative machines - 

 

Job ID P1B-005 Job start time 12:50 

Job Duration 00:15 Prerequisite jobs P1B-004 

Default machine M1A-007 Alternative machines - 

 

Job ID P1B-006 Job start time 13:05 
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Job Duration 00:10 Prerequisite jobs P1B-005 

Default machine M1A-009 Alternative machines - 

 

Job ID P1B-007 Job start time 13:15 

Job Duration 00:10 Prerequisite jobs P1B-006 

Default machine M1A-006 Alternative machines - 

 

Job ID P1B-008 Job start time 13:25 

Job Duration 00:10 Prerequisite jobs P1B-007 

Default machine M1A-004 Alternative machines - 

 

Job ID P1B-009 Job start time 13:35 

Job Duration 00:20 Prerequisite jobs P1B-008 

Default machine M1A-005 Alternative machines - 

 

Job ID P1B-010 Job start time 13:55 

Job Duration 00:05 Prerequisite jobs P1B-009 

Default machine M1A-002 Alternative machines - 

 

Process ID C Process release date 07:00 

Process priority 1 Process Deadline 12:00 

  

Job ID P1C-001 Job start time 09:05 

Job Duration 00:05 Prerequisite jobs - 

Default machine M1A-008 Alternative machines - 

 

Job ID P1C-002 Job start time 09:10 

Job Duration 00:20 Prerequisite jobs P1C-001 

Default machine M1A-002 Alternative machines - 

 

Job ID P1C-003 Job start time 09:30 

Job Duration 00:10 Prerequisite jobs P1C-002 

Default machine M1A-009 Alternative machines - 

 

Job ID P1C-004 Job start time 09:40 

Job Duration 00:40 Prerequisite jobs P1C-003 

Default machine M1A-007 Alternative machines - 

 

Job ID P1C-005 Job start time 10:20 

Job Duration 00:35 Prerequisite jobs P1C-004 

Default machine M1A-010 Alternative machines - 

 

Job ID P1C-006 Job start time 10:55 

Job Duration 00:20 Prerequisite jobs P1C-005 

Default machine M1A-004 Alternative machines - 

 

Job ID P1C-007 Job start time 11:15 

Job Duration 00:05 Prerequisite jobs P1C-006 

Default machine M1A-003 Alternative machines - 

 

Job ID P1C-008 Job start time 11:20 

Job Duration 00:15 Prerequisite jobs P1C-007 

Default machine M1A-006 Alternative machines - 
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Job ID P1C-009 Job start time 11:35 

Job Duration 00:15 Prerequisite jobs P1C-008 

Default machine M1A-001 Alternative machines - 

 

Job ID P1C-010 Job start time 11:50 

Job Duration 00:10 Prerequisite jobs P1C-009 

Default machine M1A-005 Alternative machines - 

 

 

Test Schedule #5 

Process ID A Process release date 09:00 

Process priority 1 Process Deadline 13:00 

     

Job ID P1A-001 Job start time 11:05 

Job Duration 00:10 Prerequisite jobs - 

Default machine M1A-003 Alternative machines - 

    

Job ID P1A-002 Job start time 11:28 

Job Duration 00:05 Prerequisite jobs P1A-001 

Default machine M1A-001 Alternative machines - 

    

Job ID P1A-003 Job start time 11:33 

Job Duration 00:20 Prerequisite jobs P1A-002 

Default machine M1A-010 Alternative machines - 

    

Job ID P1A-004 Job start time 11:53 

Job Duration 00:20 Prerequisite jobs P1A-003 

Default machine M1A-006 Alternative machines - 

    

Job ID P1A-005 Job start time 12:13 

Job Duration 00:02 Prerequisite jobs P1A-004 

Default machine M1A-001 Alternative machines - 

    

Job ID P1A-006 Job start time 12:15 

Job Duration 00:15 Prerequisite jobs P1A-005 

Default machine M1A-003 Alternative machines - 

    

Job ID P1A-007 Job start time 12:30 

Job Duration 00:05 Prerequisite jobs P1A-006 

Default machine M1A-007 Alternative machines - 

    

Job ID P1A-008 Job start time 12:35 

Job Duration 00:05 Prerequisite jobs P1A-007 

Default machine M1A-008 Alternative machines - 

    

Job ID P1A-009 Job start time 12:40 

Job Duration 00:10 Prerequisite jobs P1A-008 

Default machine M1A-009 Alternative machines - 

    

Job ID P1A-010 Job start time 12:50 

Job Duration 00:10 Prerequisite jobs P1A-009 

Default machine M1A-001 Alternative machines - 
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Process ID B Process release date 09:00 

Process priority 1 Process Deadline 14:00 

  

Job ID P1B-001 Job start time 10:20 

Job Duration 00:35 Prerequisite jobs - 

Default machine M1A-004 Alternative machines - 

 

Job ID P1B-002 Job start time 11:32 

Job Duration 00:18 Prerequisite jobs P1B-001 

Default machine M1A-005 Alternative machines - 

 

Job ID P1B-003 Job start time 12:05 

Job Duration 00:40 Prerequisite jobs P1B-002 

Default machine M1A-002 Alternative machines - 

 

Job ID P1B-004 Job start time 12:45 

Job Duration 00:05 Prerequisite jobs P1B-003 

Default machine M1A-010 Alternative machines - 

 

Job ID P1B-005 Job start time 12:50 

Job Duration 00:15 Prerequisite jobs P1B-004 

Default machine M1A-007 Alternative machines - 

 

Job ID P1B-006 Job start time 13:05 

Job Duration 00:10 Prerequisite jobs P1B-005 

Default machine M1A-009 Alternative machines - 

 

Job ID P1B-007 Job start time 13:15 

Job Duration 00:10 Prerequisite jobs P1B-006 

Default machine M1A-006 Alternative machines - 

 

Job ID P1B-008 Job start time 13:25 

Job Duration 00:10 Prerequisite jobs P1B-007 

Default machine M1A-004 Alternative machines - 

 

Job ID P1B-009 Job start time 13:35 

Job Duration 00:20 Prerequisite jobs P1B-008 

Default machine M1A-005 Alternative machines - 

 

Job ID P1B-010 Job start time 13:55 

Job Duration 00:05 Prerequisite jobs P1B-009 

Default machine M1A-002 Alternative machines - 

 

Process ID C Process release date 07:00 

Process priority 1 Process Deadline 12:00 

  

Job ID P1C-001 Job start time 09:05 

Job Duration 00:05 Prerequisite jobs - 

Default machine M1A-008 Alternative machines - 

 

Job ID P1C-002 Job start time 09:10 

Job Duration 00:20 Prerequisite jobs P1C-001 

Default machine M1A-002 Alternative machines - 
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Job ID P1C-003 Job start time 09:30 

Job Duration 00:10 Prerequisite jobs P1C-002 

Default machine M1A-009 Alternative machines - 

 

Job ID P1C-004 Job start time 09:40 

Job Duration 00:40 Prerequisite jobs P1C-003 

Default machine M1A-007 Alternative machines - 

 

Job ID P1C-005 Job start time 10:20 

Job Duration 00:35 Prerequisite jobs P1C-004 

Default machine M1A-010 Alternative machines - 

 

Job ID P1C-006 Job start time 10:55 

Job Duration 00:20 Prerequisite jobs P1C-005 

Default machine M1A-004 Alternative machines - 

 

Job ID P1C-007 Job start time 11:15 

Job Duration 00:05 Prerequisite jobs P1C-006 

Default machine M1A-003 Alternative machines - 

 

Job ID P1C-008 Job start time 11:20 

Job Duration 00:15 Prerequisite jobs P1C-007 

Default machine M1A-006 Alternative machines - 

 

Job ID P1C-009 Job start time 11:35 

Job Duration 00:15 Prerequisite jobs P1C-008 

Default machine M1A-001 Alternative machines - 

 

Job ID P1C-010 Job start time 11:50 

Job Duration 00:10 Prerequisite jobs P1C-009 

Default machine M1A-005 Alternative machines - 

 

Process ID D Process release date 07:00 

Process priority 1 Process Deadline 13:00 

  

Job ID P1D-001 Job start time 07:50 

Job Duration 00:30 Prerequisite jobs - 

Default machine M1A-001 Alternative machines - 

 

Job ID P1D-002 Job start time 08:20 

Job Duration 00:20 Prerequisite jobs P1D -001 

Default machine M1A-002 Alternative machines - 

 

Job ID P1D-003 Job start time 08:40 

Job Duration 00:40 Prerequisite jobs P1D-002 

Default machine M1A-009 Alternative machines - 

 

Job ID P1D-004 Job start time 09:20 

Job Duration 01:00 Prerequisite jobs P1D-003 

Default machine M1A-010 Alternative machines - 

 

Job ID P1D-005 Job start time 11:34 

Job Duration 00:19 Prerequisite jobs P1D-004 

Default machine M1A-007 Alternative machines - 
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Job ID P1D-006 Job start time 10:53 

Job Duration 00:15 Prerequisite jobs P1D-005 

Default machine M1A-004 Alternative machines - 

 

Job ID P1D-007 Job start time 12:08 

Job Duration 00:05 Prerequisite jobs P1D-006 

Default machine M1A-001 Alternative machines - 

 

Job ID P1D-008 Job start time 12:18 

Job Duration 00:02 Prerequisite jobs P1D-007 

Default machine M1A-008 Alternative machines - 

 

Job ID P1D-009 Job start time 12:20 

Job Duration 00:25 Prerequisite jobs P1D-008 

Default machine M1A-010 Alternative machines - 

 

Job ID P1D-010 Job start time 11:45 

Job Duration 00:15 Prerequisite jobs P1D-009 

Default machine M1A-008 Alternative machines - 

 

Test Schedule #6 

Process ID A Process release date 09:00 

Process priority 1 Process Deadline 13:00 

     

Job ID P1A-001 Job start time 11:05 

Job Duration 00:10 Prerequisite jobs - 

Default machine M1A-003 Alternative machines - 

    

Job ID P1A-002 Job start time 11:28 

Job Duration 00:05 Prerequisite jobs P1A-001 

Default machine M1A-001 Alternative machines - 

    

Job ID P1A-003 Job start time 11:33 

Job Duration 00:20 Prerequisite jobs P1A-002 

Default machine M1A-010 Alternative machines - 

    

Job ID P1A-004 Job start time 11:53 

Job Duration 00:20 Prerequisite jobs P1A-003 

Default machine M1A-006 Alternative machines - 

    

Job ID P1A-005 Job start time 12:13 

Job Duration 00:02 Prerequisite jobs P1A-004 

Default machine M1A-001 Alternative machines - 

    

Job ID P1A-006 Job start time 12:15 

Job Duration 00:15 Prerequisite jobs P1A-005 

Default machine M1A-003 Alternative machines - 

    

Job ID P1A-007 Job start time 12:30 

Job Duration 00:05 Prerequisite jobs P1A-006 

Default machine M1A-007 Alternative machines - 
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Job ID P1A-008 Job start time 12:35 

Job Duration 00:05 Prerequisite jobs P1A-007 

Default machine M1A-008 Alternative machines - 

    

Job ID P1A-009 Job start time 12:40 

Job Duration 00:10 Prerequisite jobs P1A-008 

Default machine M1A-009 Alternative machines - 

    

Job ID P1A-010 Job start time 12:50 

Job Duration 00:10 Prerequisite jobs P1A-009 

Default machine M1A-001 Alternative machines - 

 

Process ID B Process release date 09:00 

Process priority 1 Process Deadline 14:00 

  

Job ID P1B-001 Job start time 10:20 

Job Duration 00:35 Prerequisite jobs - 

Default machine M1A-004 Alternative machines - 

 

Job ID P1B-002 Job start time 11:32 

Job Duration 00:18 Prerequisite jobs P1B-001 

Default machine M1A-005 Alternative machines - 

 

Job ID P1B-003 Job start time 12:05 

Job Duration 00:40 Prerequisite jobs P1B-002 

Default machine M1A-002 Alternative machines - 

 

Job ID P1B-004 Job start time 12:45 

Job Duration 00:05 Prerequisite jobs P1B-003 

Default machine M1A-010 Alternative machines - 

 

Job ID P1B-005 Job start time 12:50 

Job Duration 00:15 Prerequisite jobs P1B-004 

Default machine M1A-007 Alternative machines - 

 

Job ID P1B-006 Job start time 13:05 

Job Duration 00:10 Prerequisite jobs P1B-005 

Default machine M1A-009 Alternative machines - 

 

Job ID P1B-007 Job start time 13:15 

Job Duration 00:10 Prerequisite jobs P1B-006 

Default machine M1A-006 Alternative machines - 

 

Job ID P1B-008 Job start time 13:25 

Job Duration 00:10 Prerequisite jobs P1B-007 

Default machine M1A-004 Alternative machines - 

 

Job ID P1B-009 Job start time 13:35 

Job Duration 00:20 Prerequisite jobs P1B-008 

Default machine M1A-005 Alternative machines - 

 

Job ID P1B-010 Job start time 13:55 

Job Duration 00:05 Prerequisite jobs P1B-009 

Default machine M1A-002 Alternative machines - 



 

201 
 

 

Process ID C Process release date 07:00 

Process priority 1 Process Deadline 12:00 

  

Job ID P1C-001 Job start time 09:05 

Job Duration 00:05 Prerequisite jobs - 

Default machine M1A-008 Alternative machines - 

 

Job ID P1C-002 Job start time 09:10 

Job Duration 00:20 Prerequisite jobs P1C-001 

Default machine M1A-002 Alternative machines - 

 

Job ID P1C-003 Job start time 09:30 

Job Duration 00:10 Prerequisite jobs P1C-002 

Default machine M1A-009 Alternative machines - 

 

Job ID P1C-004 Job start time 09:40 

Job Duration 00:40 Prerequisite jobs P1C-003 

Default machine M1A-007 Alternative machines - 

 

Job ID P1C-005 Job start time 10:20 

Job Duration 00:35 Prerequisite jobs P1C-004 

Default machine M1A-010 Alternative machines - 

 

Job ID P1C-006 Job start time 10:55 

Job Duration 00:20 Prerequisite jobs P1C-005 

Default machine M1A-004 Alternative machines - 

 

Job ID P1C-007 Job start time 11:15 

Job Duration 00:05 Prerequisite jobs P1C-006 

Default machine M1A-003 Alternative machines - 

 

Job ID P1C-008 Job start time 11:20 

Job Duration 00:15 Prerequisite jobs P1C-007 

Default machine M1A-006 Alternative machines - 

 

Job ID P1C-009 Job start time 11:35 

Job Duration 00:15 Prerequisite jobs P1C-008 

Default machine M1A-001 Alternative machines - 

 

Job ID P1C-010 Job start time 11:50 

Job Duration 00:10 Prerequisite jobs P1C-009 

Default machine M1A-005 Alternative machines - 

 

Process ID D Process release date 07:00 

Process priority 1 Process Deadline 13:00 

  

Job ID P1D-001 Job start time 07:50 

Job Duration 00:30 Prerequisite jobs - 

Default machine M1A-001 Alternative machines - 

 

Job ID P1D-002 Job start time 08:20 

Job Duration 00:20 Prerequisite jobs P1D -001 

Default machine M1A-002 Alternative machines - 
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Job ID P1D-003 Job start time 08:40 

Job Duration 00:40 Prerequisite jobs P1D-002 

Default machine M1A-009 Alternative machines - 

 

Job ID P1D-004 Job start time 09:20 

Job Duration 01:00 Prerequisite jobs P1D-003 

Default machine M1A-010 Alternative machines - 

 

Job ID P1D-005 Job start time 11:34 

Job Duration 00:19 Prerequisite jobs P1D-004 

Default machine M1A-007 Alternative machines - 

 

Job ID P1D-006 Job start time 10:53 

Job Duration 00:15 Prerequisite jobs P1D-005 

Default machine M1A-004 Alternative machines - 

 

Job ID P1D-007 Job start time 12:08 

Job Duration 00:05 Prerequisite jobs P1D-006 

Default machine M1A-001 Alternative machines - 

 

Job ID P1D-008 Job start time 12:18 

Job Duration 00:02 Prerequisite jobs P1D-007 

Default machine M1A-008 Alternative machines - 

 

Job ID P1D-009 Job start time 12:20 

Job Duration 00:25 Prerequisite jobs P1D-008 

Default machine M1A-010 Alternative machines - 

 

Job ID P1D-010 Job start time 11:45 

Job Duration 00:15 Prerequisite jobs P1D-009 

Default machine M1A-008 Alternative machines - 

Process ID E Process release date 10:00 

Process priority 1 Process Deadline 15:00 

  

Job ID P1E-001 Job start time 11:14 

Job Duration 00:18 Prerequisite jobs - 

Default machine M1A-005 Alternative machines - 

 

Job ID P1E-002 Job start time 11:40 

Job Duration 00:05 Prerequisite jobs P1E -001 

Default machine M1A-006 Alternative machines - 

 

Job ID P1E-003 Job start time 11:45 

Job Duration 00:30 Prerequisite jobs P1E-002 

Default machine M1A-003 Alternative machines - 

 

Job ID P1E-004 Job start time 12:40 

Job Duration 00:30 Prerequisite jobs P1E-003 

Default machine M1A-004 Alternative machines - 

 

Job ID P1E-005 Job start time 13:10 

Job Duration 00:05 Prerequisite jobs P1E-004 

Default machine M1A-005 Alternative machines - 
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Job ID P1E-006 Job start time 13:15 

Job Duration 00:20 Prerequisite jobs P1E-005 

Default machine M1A-003 Alternative machines - 

 

Job ID P1E-007 Job start time 13:35 

Job Duration 00:20 Prerequisite jobs P1E-006 

Default machine M1A-002 Alternative machines - 

 

Job ID P1E-008 Job start time 14:05 

Job Duration 00:20 Prerequisite jobs P1E-007 

Default machine M1A-008 Alternative machines - 

 

Job ID P1E-009 Job start time 14:25 

Job Duration 00:05 Prerequisite jobs P1E-008 

Default machine M1A-009 Alternative machines - 

 

Job ID P1E-010 Job start time 14:30 

Job Duration 00:30 Prerequisite jobs P1E-009 

Default machine M1A-006 Alternative machines - 
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Appendix F: Schedule Gantt Charts 

Test schedule #3 (20 job schedule) 
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Test schedule #4 (30 job schedule) 
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Test schedule #5 (40 job schedule) 
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Test schedule #6 (50 job schedule) 
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Appendix G: Test Implementation Schedule 

Process ID A Process release date 13:04 

Process priority 1 Process Deadline 13:23 

  

Job ID P1A-001 Job start time 13:12 

Job Duration 00:03 Prerequisite jobs - 

Default machine Fan heater Alternative machines - 

 

Job ID P1A-002 Job start time 13:15 

Job Duration 00:05 Prerequisite jobs P1A-001 

Default machine Compressor Alternative machines - 

 

Job ID P1A-003 Job start time 13:20 

Job Duration 00:03 Prerequisite jobs P1A-002 

Default machine Vacuum Alternative machines - 

 

Process ID B Process release date 12:54 

Process priority 1 Process Deadline 13:43 

  

Job ID P1B-001 Job start time 13:15 

Job Duration 00:10 Prerequisite jobs - 

Default machine AC motor Alternative machines - 

 

Job ID P1B-002 Job start time 13:25 

Job Duration 00:10 Prerequisite jobs P1B-001 

Default machine AC motor Alternative machines - 

 

Job ID P1B-003 Job start time 13:35 

Job Duration 00:50 Prerequisite jobs P1B-002 

Default machine Compressor Alternative machines - 

 

Job ID P1B-004 Job start time 13:40 

Job Duration 00:03 Prerequisite jobs P1B-003 

Default machine Fan heater Alternative machines - 

 

Process ID C Process release date 11:00 

Process priority 1 Process Deadline 13:00 

  

Job ID P1C-001 Job start time 13:02 

Job Duration 00:03 Prerequisite jobs - 

Default machine Fan heater Alternative machines - 

 

Job ID P1C-002 Job start time 13:05 

Job Duration 00:10 Prerequisite jobs P1C-001 

Default machine AC motor Alternative machines - 

 

Job ID P1C-003 Job start time 13:28 

Job Duration 00:05 Prerequisite jobs P1C-002 

Default machine Compressor Alternative machines - 
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