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Abstract

With the advent of high precision photometry from satellites such as the Kepler

satellite, a whole new collection of interesting astronomical features and objects

has been revealed: heartbeat stars are prime example of this. Heartbeat stars are

eccentric ellipsoidal variables that undergo strong tidal interactions at periastron,

when the stars are close to each other. These interactions induce the deformation

of the stars, which causes a change in the cross-sectional area and temperature

variations over the stellar surface. In the precise Kepler data, these changes cause a

notable variation in the light curve in the form of a tidal pulse. In this work I present

novel modelling tools produced specifically to model heartbeat stars. These include

the bayes-todcor software, which generates radial velocities and fundamental

stellar parameters from spectra using a combination of emcee and todcor; and

software created for modelling heartbeat stars, which is a combination of phoebe,

emcee and my own codes. One of the features added to the phoebe modelling

software is the ability to model tidally induced pulsations simultaneously with the

binary star features, enabling a complete and accurate heartbeat star model to

be determined. Tidally induced pulsations are stellar oscillations driven by the

tidal force of the companion star. Approximately 20% of our sample of 173 Kepler

heartbeat stars show prominent tidally induced pulsations, which present in the

light curve as oscillations at precise multiples of the orbital frequency. In this work I

present a selection of heartbeat stars, modelled with the aforementioned codes. The

majority of these show tidally induced pulsations. Additional features include rapid

apsidal motion, tidally resonant modes, solar-like oscillations and tidally influenced

pressure modes. I also applied my codes to a binary star presenting a strong case

of frequency modulation, the Doppler shift of the stellar pulsation frequencies as

the pulsating star moves towards and away from the observer. Combined, these

objects form the majority of heartbeat stars that have been studied in detail in the

literature today.
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dispersion of 0.04Å was applied for the instrumental broadening, mim-

icking the broadening of the spectrograph on the Kitt Peak 4-m Mayall

telescope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



LIST OF FIGURES xix

2.7 The light and radial velocity curve of the example1 model binary, built to

test the bayes-todcor software. The top panel depicts the light curve

generated by phoebe (red line) and the bottom panel depicts the synthetic

radial velocity curves for the primary (blue line) and secondary (pink line)

components. The equally spaced radial velocity points depict the phases

that synthetic observations were made. Note, synthetic observations were

not built during times of eclipse. . . . . . . . . . . . . . . . . . . . . . . 62

2.8 The synthetic “observed” and computed radial velocities for the ccr (left

panel) and χ2 (right panel) versions of the todcor software for example1.

Top panels: the todcor computed radial velocity points of the primary

(red) and secondary (blue) components. The synthetic “observed” data

are denoted by black points and are joined by black lines (the black lines

do not represent a model). Lower panels: The residuals of the computed

data and their associated one sigma uncertainties. . . . . . . . . . . . . 62

2.9 A small region of the example1 synthetic spectral data created for testing

(blue). The χ2 version of the bayes-todcor best-fit model and one sigma

uncertainty (red envelope) are over plotted. The black line depicts the

synthetic data without noise. It can be seen that the red envelope almost

completely encompasses the black line, showing that this region essentially

lies within the one sigma range. . . . . . . . . . . . . . . . . . . . . . . 63



xx LIST OF FIGURES

2.10 The spectral parameter posterior distributions created using the ccr ver-

sion of the bayes-todcor software for example1. Lower left sub-plots:

two dimensional cross-sections of the posterior probability distribution

functions for the effective temperatures Teff1 and Teff2; log g1 and log g2;

the metallicity of both components, metal; the stellar rotational velocities

vrot1 and vrot2; and the light ratio, alpha. The crosses show the 1σ (red)

and 2σ (green) uncertainties, and are centred on the minima. Diagonal

sub-plots from top left to bottom right: histograms displaying the prob-

ability distribution of each individual parameter. Upper right sub-plots:

the correlations for the two-dimensional cross-sections mirrored in the di-

agonal line where 1 is direct correlation and -1 is a direct anti-correlation.

The values above the plot give the mean value and one sigma uncertainty

for each parameter, based on the fitted Gaussians. . . . . . . . . . . . . 64

2.11 The light and radial velocity curve of the example2 model binary, built to

test the bayes-todcor software. The top panel depicts the light curve

generated by phoebe (red line) and the bottom panel depicts the synthetic

radial velocity curves for the primary (blue line) and secondary (pink line)

components. The equally spaced radial velocity points depict the phases

at which synthetic observations were made. . . . . . . . . . . . . . . . . 67

2.12 The synthetic “observed” and computed radial velocities for the ccr (left

panel) and χ2 (right panel) versions of the todcor software for example2.

Top panels: the todcor computed radial velocity points of the primary

(red) and secondary (blue) components. The synthetic “observed” data

are denoted by black points and are joined by black lines. Lower panels:

The residuals of the computed data and their associated one sigma un-

certainties. As expected due to its low light contribution, the secondary

component’s radial velocities have not been accurately reproduced. . . . 67



LIST OF FIGURES xxi

2.13 A small region of the example2 synthetic spectrum created for testing

(blue). The bayes-todcor best-fit model (red line) and one sigma un-

certainty (red envelope, not visible due to small uncertainties) are over

plotted. The synthetic data without noise (black line) can barely be seen

as black line is completely encompassed by the red envelope, showing that

this region completely lies within the one sigma errors. The results from

the χ2 version of the software were used to create this plot. . . . . . . . . 68

2.14 The spectral parameter posterior distributions created using the ccr ver-

sion of the bayes-todcor software for example2. Lower left sub-plots:

two dimensional cross-sections of the posterior probability distribution

functions for the effective temperatures Teff1 and Teff 2; log g1 and log g2;

the metallicity of both components, metal; the stellar rotational velocities

vrot1 and vrot2; and the light ratio, alpha. The crosses show the 1σ (red)

and 2σ (green) uncertainties, and are centred on the minima. Diagonal

sub-plots from top left to bottom right: histograms displaying the proba-

bility distribution of each individual parameter. Upper right sub-plots: the

correlations for the two-dimensional cross-sections mirrored in the diago-

nal line where 1 is direct correlation and -1 is a direct anti-correlation. The

values above the plot give the mean value and one sigma uncertainty for

each parameter, based on the fitted Gaussian distributions. As expected,

due to the low light contribution of the secondary component, the Gaus-

sian distributions do not fit the histograms for the secondary component

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.15 An iraf image of the apertures for KIC8164262 on night 12. The x-

axis is in pixels and the y-axis is in photon counts. The cross hairs and

boxes above each aperture are adjusted to select the appropriate centre

and width of each aperture. . . . . . . . . . . . . . . . . . . . . . . . . 74

2.16 Depicted is an iraf image of the binned photons along one aperture and

the polynomial fit (trace) to those photons for a comparison lamp. The

points at the ends are excluded to improve the fit. . . . . . . . . . . . . . 75



xxii LIST OF FIGURES

2.17 Depicted are the observed spectral data of KIC8164262 (blue), and the fit

to the data using bayes-todcor (red). The thickness of the line denotes

the one sigma uncertainty. It can be seen that there is a large discrepancy

in the depths of the lines, which has been attributed to the use of todcor’s

cross correlation function as the fitting parameter. . . . . . . . . . . . . 77

2.18 Depicted are the posteriors generated using the bayes-todcor program

with the two observed spectra of KIC8164262. I elected to fix the metal-

licity to [Fe/H] = 0.5 through consideration of the spectra by eye. Lower

left sub-plots: two dimensional cross-sections of the posterior probability

distribution functions for the primary effective temperature, Teff1; the pri-

mary surface gravity, log g1; the primary stellar rotational velocity vrot1;

and alpha, the light ratio. The crosses show the 1σ (red) and 2σ (green)

uncertainties, and are centred on the minima. Diagonal sub plots from top

left to bottom right: histograms displaying the probability distribution of

each individual parameter. Upper right sub-plots: the correlations for the

two-dimensional cross-sections mirrored in the diagonal line where 1 is di-

rect correlation and -1 is a direct anti-correlation. The values above the

plot give the mean value and one sigma uncertainty for each parameter,

based on the fitted Gaussians. . . . . . . . . . . . . . . . . . . . . . . . 78

2.19 Depicted are the distributions of radial velocities of the primary compo-

nent for the first observed spectrum (left) and second observed spectrum

(right) of KIC8164262. The distributions contain the spread due to the

uncertainty in the radial velocity shift and uncertainty in the template

spectrum for 100 iterations of bayes-todcor. The dashed red line de-

notes the mean radial velocity in each case. . . . . . . . . . . . . . . . . 79

3.1 An image of a tidally distorted star in a binary system. Due to the grav-

itational force of the companion, the morphology of the star has become

distorted and prolate with the point facing the companion. Although

exaggerated in this image, this is one of the two primary effects that

give heartbeat star light curves their characteristic shape. Adapted from

http://astro.matf.bg.ac.rs/ (the University of Belgrade) . . . . . . . . . . 82



LIST OF FIGURES xxiii

3.2 A schematic diagram of a heartbeat star orbit depicting the stars at two

phases: periastron and a random phase away from periastron. At peri-

astron, due to the gravitational forces of their companions, star 1 and

star 2 become tidally distorted into a tear drop shape. As heartbeat stars

are highly eccentric (e=∼0.3–0.9), the tidal distortions are significantly

stronger during a small part of the orbit and for the remaining orbit the

stars are essentially spherical. . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 A selection of heartbeat stars from the Kepler sample. Depicted are the

time series (left panel) and phase folded data (right panel). The phase

folded data clearly show the pulsations that are integer multiples of the

orbital frequency: tidally induced pulsations. KIC 8112039 is KOI-54. . . . 84

3.4 A histogram of heartbeat stars as a function of temperature. The red bars

mark the red giants with log g ≤ 3.3 and the blue bars mark the main

sequence stars. The log g values were taken from the Kepler Input Catalog. 85

3.5 The times series (left panel) and phased light curve (right panel) of the

Quarter 5 Kepler data of KIC 3965556. The non-coherent nature of the

light curve is due to the presence of spots on one of the stellar components. 86

3.6 Upper panel: A phased light curve (black points) of KIC 8164262, a heart-

beat star with a single high amplitude pulsation. The model is overlayed

in red and comprises of the binary features and highest amplitude pulsa-

tion. The periastron variation, centred on zero, has a similar amplitude to

the highest amplitude pulsation. Lower panel: the residuals of the binary

model fit to the phased data (black points). Only a fraction of the orbit

is shown for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.7 Fourier transform of the Kepler light curve of KIC8164262. The data are

from Q1–Q 16. The prominent frequency is the 229th harmonic of the

orbital frequency. Upon prewhitening of this frequency, the features due

to the binary orbit are visible. . . . . . . . . . . . . . . . . . . . . . . . 87



xxiv LIST OF FIGURES

3.8 A Fourier transform of KIC 3749404 (purple); with the binary model re-

moved (green); and with the binary model and the oscillations below

0.5 d−1 removed to an amplitude of 1 ppm (blue). The blue Fourier trans-

form depicts the tidally induced pulsations. The sub-plot depicts the win-

dow function of each oscillation peak. . . . . . . . . . . . . . . . . . . . 89

3.9 Depicted are the identified modes (black stars) of KOI-54 and the model

predictions for the average expected amplitude (lower solid line) for forced

modes as a function of frequency, the upper bound for tidally excited modes

(upper dashed line). The modes present outside the solid line are believed

to be travelling waves. The red regions show the model predictions for

prograde resonantly locked modes. It can be seen that the 90th and 91st

harmonics are just touching the red region. Figure provided by J. Fuller;

private communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.10 Depicted are the identified modes (black stars) of KIC 8164262 and the

model predictions for the average expected amplitude (lower solid line)

for tidally excited modes as a function of frequency, the upper bound for

tidally excited modes (upper dashed line). The two lowest frequency points

(black stars) depicted are not orbital harmonics, but are the signature of

rotation from spots. The red and blue regions show the model predictions

for prograde and retrograde resonantly locked modes, respectively. It can

be seen that the highest amplitude harmonic is overlaying the red region.

Figure provided by J. Fuller; private communication. . . . . . . . . . . . 93

3.11 The probability as a function of iteration for the model of KIC 8164262,

where each colour represents a different chain. This plot is used as a first

gauge to determine if the model has converged. From consideration of this

plot alone, we can see that the model has not converged as the likelihood

value is still rapidly decreasing, as shown in the insert. Furthermore, as we

have used the χ2 test, we would expect the probability to equal −0.5N at

the time of convergence, which is ∼1000. This plot consequently indicates

that the number of iterations required to obtain convergence for this model

is large, or alternatively, that the uncertainties are underestimated. . . . . 97



LIST OF FIGURES xxv

3.12 Depicted are the posteriors generated using the phoebe code combined

with mcmc for KIC 8164262. Lower left sub-plots: two dimensional cross-

sections of the posterior probability distribution functions for the incli-

nation, incl (◦); argument of periastron, ω (rad); eccentricity, ecc; mass

ratio; semi-major axis, sma; systemic velocity, vga (km s−1); primary and

secondary radii (R⊙); and the amplitude (µmag) and phase (rad) of the

primary pulsation. The crosses show the 1σ (red) and 2σ (green) uncer-

tainties, and are centred on the minima. Diagonal sub-plots from top left

to bottom right: histograms displaying the probability distribution of each

individual parameter. Upper right subp-lots: the correlations for the two-

dimensional cross-sections mirrored in the diagonal line where 1 is direct

correlation and -1 is a direct anti-correlation. The values above the plot

give the mean value and one sigma uncertainty for each parameter, based

on the fitted Gaussians. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.13 Upper panel: a model for KIC8164262 (black line) with one sigma uncer-

tainty envelope (red) and phased Kepler data with per-point uncertainties

(blue points). I selected an initial model before full convergence was ob-

tained, as the one sigma envelope is larger during this stage and thus more

easily visible. Lower panel: the residuals of the fit to the data. . . . . . . 100

3.14 Top panel: examples of one (blue) five (red) and three higher frequency

(green) sine curves with frequencies that are multiples of the orbital fre-

quency. Bottom panel: the curves from the top panel multiplied with an

example heartbeat star model. The colours correspond to the curves in

the top panel and the black curve represents the light curve model with

no pulsations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



xxvi LIST OF FIGURES

3.15 Top panel: heartbeat star light curve with (red) and without (black)

Doppler boosting. Middle panel: the Doppler boosting signal (red) that

has been applied to the light curve in the top panel. Lower panel: the

primary star’s radial velocity curve. Only the primary component’s radial

velocity curve is displayed as the light from the secondary is less than 2%,

thus the contribution of the secondary component to the Doppler boosting

is insignificant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.16 Top panel: heartbeat star light curve of two identical components with

(red) and without (black) Doppler boosting. Middle panel: the Doppler

boosting signal (red) that has been applied to the light curve in the top

panel. Lower panel: The radial velocities of the primary and secondary

components (blue and green dashed lines), and summed radial velocities of

the primary and secondary component (black line) . The identical nature

of the primary and secondary components causes the total motion of the

two components to be zero and consequently I expect Doppler boosting to

have zero contribution to the light curve, as found. . . . . . . . . . . . . 106

3.17 A graphical representation of the true anomaly υ, eccentric anomaly E

and the mean anomaly M . The star is at point P on the orbit, travelling

in a counter-clockwise direction around the focal point S. Point Q is the

vertical projection of the star’s position on the auxiliary circle. The angle

ROS is proportional to the time elapsed since the star’s passage through

periastron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.18 Left panel: the computed values of the mean anomaly at superior conjunc-

tion as a function of eccentricity and argument of periastron. Right panel:

the computed values of the phase of superior conjunction as a function of

eccentricity and argument of periastron. . . . . . . . . . . . . . . . . . . 109



LIST OF FIGURES xxvii

3.19 Depicted are 9 binary star models with eccentricities between ecc = 0.82−

0.88 and phase of periastron between ω = 1.0 − 2.0. The phase of each

model has been calculated by considering the shift of the phase of superior

conjunction. If the phase shift of the dip in the periastron variation moved

precisely as the phase of superior conjunction, all models would be precisely

aligned at zero phase. However, this is not the case and so we are not able

to utilize this method for determining the phase shift of heartbeat stars. . 110

3.20 The stellar potential as a function of radius for the primary (upper panels)

and secondary (lower panels) components. From left to right, the panels

depict how varying the eccentricity, mass ratio and spin-to-orbital period

affect the relationship between the potential and the stellar radius. In

these diagrams the eccentricity, mass ratio and spin-to-orbital period are

fixed to 0.5, 0.5 and 1.0 respectively, when they are not a plotted variable.

The semi-major axis was set to sma = 100R⊙ for all plots. . . . . . . . . 115

3.21 A schematic diagram of a circular binary star with the two stars, M1 and

M2, the center of mass and the five Lagrangian points clearly marked.
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Chapter 1

Introduction

Stars form the building blocks of our visible Universe. Fig. 1.1 depicts a Hertzsprung-

Russell diagram displaying a wide variety of stars, from those beginning their lives

on the main sequence to white dwarfs at the end of their lives. Not only are the

evolutionary states of these objects different, but also their temperatures (2 500K <

Teff ! 30 000K), sizes (0.1R⊙ ! R < 1500R⊙), masses (0.08 M⊙ ≤ M ! 120 M⊙),

luminosities (up to ∼ 8× 106 L⊙) and metallicities (−4.9 ! [Fe/H ] ! 0.44) leading

to a wide assortment of stars with vastly different structures. These structural

differences lead to an exceedingly diverse population of stars, including those with

spots and flares, stars with magnetic fields (up to ∼ 106Gauss) and a wide variety

of stellar pulsations. Further adding to the stellar diversity, not depicted on the

Hertzsprung-Russell diagram, is the multiplicity of stars. The majority of stars are

multiples and often interact with their companions, further adding to the complexity

of stellar objects.

Alongside its primary mission, the study of planets, the original Keplermission (2009

May–2013 May), with its impressive photometry and unparalleled detail, observed

a wide range of stellar objects. Attributes such as a stable platform that enabled

extended observations, and a precision as good as a few parts per million made

the Kepler observations quintessential for the advancement of stellar astrophysics.
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Chapter 1. Introduction

Figure 1.1: A theoretical Hertzsprung-Russell diagram depicting the main sequence, blue and
red giants, super giants, and white dwarfs. Adopted from LCOGT.net (Las Cumbres Observatory
Global Telescope Network).

Throughout its mission, Kepler has not only discovered 1033 planets, a significant

portion of the 1890 confirmed planets (http://exoplanetarchive.ipac.caltech.edu);

but also enabled the study of interesting binary stars, such as KIC4150611, a quin-

tuple system (Shibahashi & Kurtz 2012; Prša et al. in prep.); detected circumbinary

planets (Welsh et al., 2012; Haghighipour, Orosz & Welsh, 2014); and determined,

through eclipse timing variations, that between 15 and 20 per cent of binary stars

are in fact triple systems (Conroy et al., 2014; Orosz, 2015).

Kepler is in a heliocentric, Earth-trailing orbit of 372.5 d. Four times an orbit, during

the original mission, Kepler would perform a spacecraft roll (to keep the solar panels

pointed at the Sun) and send the data to Earth. Each downloaded, ∼90 d segment

of Kepler data is referred to as a Quarter of data. As the data were downloaded

regularly, this provided enough bandwidth to keep a small percentage (∼0.3%) of

the total number of targets as short cadence (SC) data (58.89 s), which comprises 9

co-added nominal 6.02-s exposures. The majority of data; however, were co-added

270 times to produce the standard, long cadence data of ∼30min. The ∼1min short

cadence data allow for detailed photometric analysis of high frequency pulsations,

such as white dwarf pulsations (∼1 min) and the solar-like oscillations of main

2



Figure 1.2: Depicted are the observed Kepler time series (top panel) and phased (bottom
panel) light curves of KOI-54, the iconic heartbeat star. The large variation is caused by the tidal
deformation and heating at periastron and the smaller variations are tidally induced pulsations
that occur at precise multiples of the orbital period (see §1.1). Adopted from Welsh et al. (2011).

sequence stars (∼5min) providing a broad complement of stellar pulsators for the

study of stellar structure and the determination of fundamental stellar parameters

using asteroseismology. The recent advances in this field are detailed in §1.2.

Since the advent of the Kepler satellite, a plethora of new physical phenomena has

been unveiled by the new level of detail that was obtained with this revolutionary

instrument. One interesting phenomenon, which had only been theorised prior to

Kepler, is the heartbeat phenomenon. A heartbeat star is an eccentric (e " 0.3) el-

lipsoidal variable that displays a prominent variation in the light curve at periastron

due to tidal effects and heating.

When the light curve of the first, iconic heartbeat star, KOI-54 (Fig. 1.2), was dis-

covered, the initial reaction was that the light curve had been inverted – magnitudes

and fluxes had been confused. Once that hypothesis was dismissed, the next thought

was that it was a star interacting with a black hole. This was also wrong. Finally,
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detailed analysis determined that KOI-54 is a system of two A stars orbiting each

other in a highly eccentric (e= 0.834) orbit in an object we now classify as a heart-

beat star.

One of the prominent physical attributes of KOI-54, and many heartbeat stars,

is its tidally induced pulsations – pulsations induced by the varying gravitational

interaction between the stellar components (see §1.1). As the focus of this thesis

is to extend the work on heartbeat stars and tidally induced pulsations, I begin

by introducing heartbeat stars, which are discussed in more detail in Chapter 3.

Next I discuss asteroseismology with particular reference to the types of pulsators

commonly found in heartbeat stars (§1.2). I end by discussing binary stars, the

facilitators of tides, with a focus on binary star modelling (§1.3), which forms the

basis of many of the projects included in this work.

1.1 Heartbeat Stars

Heartbeat stars, the basis of this work, are eccentric (e " 0.3) ellipsoidal variables,

identifiable by a characteristic periastron variation in their light curves (e.g. see

Fig. 1.3). The name heartbeat star was given to these objects as their light curves

resemble the output of a electrocardiogram. As with ellipsoidal variations, the peri-

astron variation is a consequence of heating and gravitational interactions between

the stellar components, which cause deformation and temperature variations across

the star. However, due to the eccentric nature of the orbits of these objects, the

gravitational interactions occur over a small fraction of the total period, resulting

in a variation in the light curve that is preceded and followed by quiescence, dur-

ing which time the stars are barely interacting and the light curve is flat (with the

exeption of spots and stellar pulsations).

At present (2016 March), the number of known heartbeat star systems is 183.
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1.1. Heartbeat Stars

Of these, eight were observed using OGLE 1 (Nicholls & Wood, 2012); one by

CoRoT2 (Hareter et al., 2014); one by most3, which was followed up using the

chara4 array (Richardson et al., 2016); and 173 by Kepler (Thompson et al., 2012;

Beck et al., 2014; Schmid et al., 2015; Smullen & Kobulnicky, 2015; Kirk et al.,

2016). The list of Kepler heartbeat stars, which I have vetted personally, is held

at http://keplerebs.villanova.edu. The list is comprised of heartbeat stars identified

by the Kepler Eclipsing Binary Working Group, Planet Hunters, the Heartbeat Star

team (of which I am a member), the Kepler science office and several by individuals.

The Kepler mission has clearly observed a significant fraction of the currently known

heartbeat stars, which is why the data from the Kepler mission forms the majority

of the data analysed in this work.
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Figure 1.3: The time series (left panel) and phased light curve (right panel) of the Quarter 9
Kepler data of KIC5034333. The large variation at phase 0.0 is the periastron variation caused by
tidal deformation and heating, and the smaller variations are a combination of naturally occuring
and tidally induced pulsations (where only the tidally induced pulsations are visible in the phased
data). Note that this system is not eclipsing; the strong dip in the light curve is geometrical in
origin. See Fig. 1.4 below.

A subset of the heartbeat stars in our Kepler sample, ∼20% of the total sample,

1http://ogle.astrouw.edu.pl/
2http://sci.esa.int/corot
3http://astro-canada.ca/ en/a2118.php
4http://www.chara.gsu.edu/array.php
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show tidally induced pulsations. Tidally induced pulsations were first discussed by

Cowling (1941) as pulsations created by the varying gravitational force of the stellar

companion as it moves around the binary star orbit. Tidally induced pulsations

occur when the eigenfrequency of a star is close to a multiple of the orbital frequency.

Consequently, the signature of a tidally induced pulsation is a pulsation at a precise

multiple of the orbital frequency.

In 1995, Kumar, Ao & Quataert (1995) theorised that two terms would describe

compact objects in highly-eccentric ellipsoidal-variable configurations: the static

term, relating to the periastron or ellipsoidal variation; and the oscillatory term,

which describes tidally induced pulsations. If the ratio of the periastron passage

time to the mode period is high (Kumar, Ao & Quataert (1995) suggest greater

than 5), then the oscillatory term can be ignored and the resulting light curve

depicts the static term only. Light curves generated by the static term only can be

seen in Fig. 1.4. While Kumar’s work was focused on the theory of binary neutron

stars, I have found it applicable to main sequence and red giant stars in heartbeat

star systems.

Tidal Interactions

Our current sample of 173 heartbeat stars identified in the Kepler data primarily

contains stars of spectral type A–G, suggesting that there is a dearth of these ob-

jects with temperatures less than 5200K. Due to the observational bias of Kepler

towards G-type stars (Borucki et al., 2010), there is also a more subtle deficiency

of G stars in our sample, with temperatures less than 6000K. As the transition

between convective and radiative outer envelopes occurs at approximately this tem-

perature (Aerts, Christensen-Dalsgaard & Kurtz, 2010) and the time required for

circularisation is shorter for stars with convective outer envelopes (Torres, Andersen

& Giménez, 2010), it is possible that the lack of low mass stars in our sample is a

direct consequence of the relationship between stellar structure and tidal evolution.
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1.1. Heartbeat Stars

Figure 1.4: A grid of light curves generated using the static term of the analytical tide theory of
Kumar, Ao & Quataert (1995). The light curves show the variation in the shape of the periastron
brightening as a function of argument of periastron, inclination and eccentricity where red denotes
e=0.6 and blue denotes e=0.4. It can be clearly seen that for higher inclination angles the dip
in the light curve is small compared to lower inclinations, whilst the duration of the periastron
brightening (with respect to the orbital period) decreases as the eccentricity increases. Finally, the
argument of periastron has a large impact on the asymmetry and morphology of the light curve.
Adopted from Thompson et al. (2012).
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In late-type stars, turbulent viscosity in the convective envelope provides the re-

quired torque to enable synchronization. Zahn (1975) predicted that tidally induced

pulsations would provide the required torque, through radiative damping, to enable

the synchronisation of early-type stars in close binaries. This was recently confirmed

by Khaliullin & Khaliullina (2010). As early stars have radiative envelopes, Zahn

(1975) suggested that a dissipative process, such as the radiative damping of tidally

induced pulsations, may alter the symmetry of the mass configuration, relative to

the potential, enough to synchronize close binary stars.

Based on the work of Darwin (1879), who considered the effects of lunar tides on the

Earth, Alexander (1973) conducted further research into the effect of tides on binary

orbital evolution, including circularisation times, although unlike Darwin, Alexander

considered the effects of tides on both objects. Hut (1980, 1981) extended this work

to include pseudo-synchronous rotational angular velocity, Ωps, the synchronization

of the rotational period of the stellar components with the instantanious rotational

period at periastron. He also considered the equilibrium rotation for eccentric orbits:

Ωps

n
=

√
1 + e

(1− e)3
(1.1)

expressed in terms of the mean motion, n. Pseudo-synchronous rotation tends to

Ωps = 0.825np (where np is the angular velocity at periastron) as e → 1. Fig. 1.5

depicts the observed rotation period against the calculated pseudo-synchronous ro-

tation period for a selection of heartbeat stars where rotation is determined from

spot rotation. As anticipated, the majority of points lie on or above the one-to-one

line, which suggests that angular momentum is being transferred from the rotation

of the stars to the binary star orbit, as predicted by theory. Those that lie under

the one-to-one line are rotating slower than their pseudo-synchronous rotation which

may be suggestive of a third component in the system.
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1.1. Heartbeat Stars

Figure 1.5: Depicted are the stellar rotational periods from heartbeat stars with spots, against the
calculated values of the pseudo-synchronous rotational periods. The observed rotational periods
were extracted from Fourier transforms where harmonics indicative of spots were present. KOI-54
is represented by the cyan point, KIC 8164262 (see Chapter 4) by the yellow point and KIC 3547874
by the magenta point. Adopted from (Zimmerman et al., 2016)

Asteroseismology of Heartbeat Stars

A subset of heartbeat stars, ∼40%, lie within the δ Sct and γ Dor temperature ranges,

and thus should also pulsate intrinsically. A further 15% of heartbeat stars contain

a red giant component and consequently should pulsate with easily detectable solar-

like oscillations (with frequencies visible in the more common 30-min-cadence Kepler

data). In §1.2 I discuss a selection of asteroseismic effects. These fall under two

categories: those that can provide additional information to that determined through

binary modelling, for example the internal rotation rate can be determined through

the examination of p-mode multiplets (Kurtz et al., 2014); and those that provide

fundamental parameters that can aid the modelling process, i.e. the mass and radius

of a solar-like oscillator can be determined through asteroseismology (Beck et al.,

9
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2014). Interestingly, in some cases, the tidal interactions of the binary have been

found to inhibit solar-like oscillations completely, i.e.(Derekas et al., 2011). However,

in all cases, asteroseismology provides insights into physics that otherwise would

remain a mystery.

1.2 Asteroseismology

Asteroseismology is the study of stellar pulsations analogous to seismology, the

study of earthquakes. The majority of stars pulsate in pressure modes (p modes),

gravity modes (g modes) or a combination of both, depending on their structure.

Through the study of these modes, we are able to determine information about the

interiors of stars across the Hertzsprung-Russell diagram. For the specific case of

heartbeat stars, asteroseismology can often provide additional information to light

curve modelling and in some cases provide key information that enables a unique

heartbeat star model to be determined (see Chapter 6).

The study of asteroseismology is the study of waves - their amplitudes, phases

and frequencies, and their relations to one-another. As a wave propagates through

the stellar interior, its frequency and amplitude depend on the stellar structure,

differential rotation rate, age, density distribution and the transition regions within

the star. By applying a Fourier transform to the light curve of a pulsating star,

we can measure its frequencies, phases and amplitudes and commonly extract the

aforementioned information, enabling the analysis of the stellar interior. Fig. 1.6

depicts the propagation of pressure modes and gravity modes within the Sun, and

demonstrates how different modes probe different regions of the stellar interior for

this specific case.

10



1.2. Asteroseismology

Figure 1.6: Left panel (a): A ray diagram to demonstrate the propagation of p mode sound
waves through the solar interior. The line passing through the centre is indicative of a radial mode
and lines of decreasing depth demonstrate the behaviour of modes with increasing l values where
l is the degree of the mode. Right panel (b): A ray diagram to demonstrate the propagation of g
mode sound waves through the solar interior. Due to the convective outer layer of the Sun, the
g modes do not emerge to the surface; this is not true of δ Sct stars where the outer envelope is
radiative. Adopted from Cunha et al. (2007).

1.2.1 Pressure Modes

Pressure modes, also known as acoustic or sound waves, are longitudinal waves

with the primary restoring force of pressure. The presence of pressure modes in

heartbeat stars enable detailed pulsational modelling to be performed, which can

aid in decifering from which star the pulsations are propagating (e.g. see Chapter 7).

Pressure modes act primarily on particles in the vertical sense with respect to the

direction of the wave motion and are able to penetrate both convective and radiative

stellar interiors. As a sound wave (with velocity cs) propagates from the surface of

the star inwards, it passes across a positive temperature gradient and, consequently,

into a higher temperature environment. The temperature gradient within the star

causes the refraction of the wave and eventually the wave returns to the stellar

surface. As each pressure mode of a given degree penetrates to a different depth, if

a star is pulsating in multiple modes, we can probe different radial layers of the star

(also known as acoustic cavities). Through assumptions of the chemical composition

of the stellar interior, we can then map the density gradient of a star:

ρ =
Γ1p

c2s
, (1.2)
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where Γ1 is the adiabatic exponent, p is pressure and ρ is density. Assuming the star

is an ideal gas, the temperature variations of the star can also be mapped through

the use of asteroseismology:

T =
c2sµmu

Γ1kB
, (1.3)

here kB is Boltzmann’s constant, T is the temperature, µ is the mean molecular

weight and mu is the atomic mass unit.

Within a star, the wavelength of a p mode must be greater than 4πHρ, where Hρ

is the density scale height (the height at which the density decreases by a factor

of e); if not, the general density profile of the star will dominate and the p-mode

perturbations will not be visible. This also determines the boundary of the acoustic

cavity where p modes are refracted back towards the surface at various turning points

dependent on the direction of propagation and the density distribution within the

star. Consequently, the higher degree modes are concentrated closer to the surface.

As these modes have a higher number of surface reflections (which can be seen in

the left panel of Fig. 1.6) they have a larger horizontal component:

k2
h = l(l + 1)/r2, (1.4)

where r is the radial position in the star and kh is the horizontal component of the

wave vector, also known as the wave number.

1.2.2 Gravity Modes

All confirmed tidally induced pulsations are g modes, but unlike p modes, g modes

only propagate in radiative regions as they are dynamically unstable towards con-

vection. Consequently, the Brunt-Väisälä frequency (N), which is the frequency at

12
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which a fluid element will oscillate in a statically stable environment, creates an

upper limit for the frequency of gravity waves. Moreover, the Brunt-Väisälä fre-

quency also creates a boundary beyond which no g modes can propagate and where

g modes are reflected. Any frequencies greater than the Brunt-Väisälä frequency are

predominantly restored by pressure and those less than the Brunt-Väisälä frequency

are restored by buoyancy. Fig. 1.7 shows the propagation region of g modes in KOI-

54, the iconic heartbeat star. As a result of this, g modes are ideal for probing

the conditions near the core in higher-mass main-sequence stars, where the core is

convective (thus the modes reflected) and the envelope is predominantly radiative

(where the modes are able to travel).

Figure 1.7: Propagation diagram for the M = 2.35 M⊙, R = 2.34R⊙ stellar model, showing the
value of N , the Brunt-Väisälä frequency (solid black line), and the Lamb frequency, Sl (dashed
black line), in units of (GM/R3)1/2. These theoretical values were obtained by modelling the
dominant frequencies present in the KOI-54 (the horizontal red lines). These are (from top) the
dynamical frequency of the star, (GM/R3)1/2; the highest frequency mode observed (σα = 91Ω);
the lowest frequency mode observed (σα = 22.42Ω); and the orbital angular frequency, Ω. The
y−axis on the right-hand side displays the corresponding periods, in units of hours. From Fuller
& Lai (2012).

Buoyancy is the restoring force of gravity modes, which have primarily horizontal
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motions. Consequently, higher frequency g modes have larger transverse compo-

nents:

ω2 = N2 cos2 θ (1.5)

where ω is the frequency of the mode and θ is the angle of propagation with respect

to the horizontal plane. Moreover, unlike p modes, there are no radial g modes as

the frequency of the mode is related to the propagation angle of the wave. This

can be seen in Eqn 1.5, which shows that if the angle of propagation is 90◦(a purely

radial mode) the frequency of the mode becomes zero.

Figure 1.8: Buoyancy frequency, N (straight line), and Lamb frequency, Sl (dashed line with
labels for incremental values of l), shown as a function of fractional radius for a model of the Sun.
The solid horizontal lines indicate regions where a g mode of ν=100µHz and a p mode of degree
20 and ν=2000µHz would be trapped.

A property of g modes is that the degree of the mode is inversely related to the

frequency, which can be derived from the following equation (Aerts, Christensen-
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Dalsgaard & Kurtz, 2010):

Ks(r) =
ω2

c2

(
N2

ω2
− 1

)(
S2
l

ω2
− 1

)
; (1.6)

here, r is the radial position in the star, the subscript, l, denotes the degree of

the mode and Ks is a constant related to the change of the radial component of

displacement ξr as a function of radius:

d2ξ2r
dr2

= −Ks(r)ξr, (1.7)

Sl is the Lamb frequency (Lamb, 1909) or the characteristic acoustic frequency,

which is the inverse of the time needed to travel one horizontal wavelength through

the stellar medium:

S2
l =

l(l + 1)c2s
r2

, (1.8)

which tends to infinity at the centre of the star and towards zero at the surface (see

Fig. 1.8 for an example of how the Lamb frequency behaves as a function of stellar

depth). Above the Lamb frequency, modes are restored by pressure and below it

they are restored by buoyancy. For high order g modes we can assume that ω≪Sl,

giving:

Ks(r) ≃
1

ω2
(N2 − ω2)

l(l + 1)

r2
. (1.9)

From the above equation it can be seen that, as ω decreases (for given values of Ks

and Brunt-Väisälä frequency, N) the degree of the mode l increases.
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Figure 1.9: A pulsational H-R diagram. Delta Sct stars can be found on the intersection
between the main sequence (dashed line from the top left region tending towards the
bottom right) and the instability strip (encompassed by two, almost vertical long-dashed
lines), and the γDor stars slightly below them in a region outside the instability strip.
From Aerts, Christensen-Dalsgaard & Kurtz (2010).
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1.2.3 Delta Scuti Stars

Approximately 40% of the known Kepler heartbeat stars have temperatures within

the δ Sct range. Delta Scuti stars are a class of variable stars that lie on the classical

instability strip of the Hertzsprung-Russell diagram (see Fig. 1.9). Their tempera-

tures range from 6300K<Teff < 8900K (Buzasi et al., 2005), with a luminosity range

of 0.6<L/L⊙< 2.0. Importantly, they have masses from 1.5<M/M⊙ < 2.5, mean-

ing that δ Sct stars include the mass range where, as you travel up the main sequence

to hotter stars, the central radiative core becomes convective and the outer convec-

tive envelope becomes radiative (Aerts, Christensen-Dalsgaard & Kurtz, 2010).

Delta Scuti stars pulsate in p modes, with their dominant frequencies between 5 d−1

and 50 d−1 (Grigahcène et al., 2010b). Hotter δ Sct stars, that are towards the blue

edge of the instability strip, tend to pulsate in higher frequency modes, whereas

the cooler δ Sct stars tend to pulsate in lower overtone, lower frequency modes.

Their primary pulsation mechanism is the κ-mechanism, although they also pulsate

through the Γ-mechanism and one δ Sct star, which was originally thought to pulsate

with stochastically driven modes (Antoci et al., 2011), is now theorised to pulsate

with coherent modes attributed to perturbations of the turbulent pressure in the

hydrogen ionization zone (Antoci et al., 2014).

The κ-mechanism describes the trapping of heat in the partial ionisation zones of

the star and works in a similar way to a heat engine. The opacity of the ionisation

layers trap the heat which increases the temperature of the ionisation zone. This

causes the star to swell until the ionisation layer becomes fully ionised and the heat

is released. As the star cools, it also contracts and the ions return to their original

state of ionisation. The process then repeats causing stable pulsations. The Γ-

mechanism enhances the effect of the κ-mechanism because the large temperature

gradient between the partially ionised zone and the surrounding volume causes heat

to flow into the cooler ionisation zone, causing further ionisation.
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Due to the structure of δ Sct stars, they pulsate in low-order (radial overtone) modes,

which means they do not pulsate in the asymptotic regime. However, frequency

spacings akin to the large frequency separation (see § 1.2.6) were first identified by

Handler, Kanaan & Montgomery (1997); Breger et al. (1999). In 2008, Breger,

Lenz & Pamyatnykh (2008) presented all the frequency differences of FG Vir in a

histogram, and were able to identify preferred differences, which they attributed to

the spacing between radial modes. Following this work, Garćıa Hernández et al.

(2009) identified the large separation in HD174936 to be 52µHz, consistent with

their models. In 2013, Garćıa Hernández et al. (2013) identified a second δ Sct

pulsator, HD 174966, with equally split modes. Furthermore, this time they were

able to rule out the possibility that the spacing was due to rotation, as with a v sin i

of 126.1 km s−1, the maximum rotational splittings would be ∼ 27µHz. Using the

method of Reese, Lignières & Rieutord (2008), who showed that for rapid rotators,

the large separation is proportional to the square-root of the mean density of the

star, they were also able to transform their large separation value, ∆ν = 64µHz,

into a stellar density, ρ = 0.54± 0.3 kg cm−3, which again agreed with their models.

To further test the possibility of extracting fundamental parameters from δ Sct stars

using asteroseismology, Garćıa Hernández et al. (2015) selected 7 binary δ Sct stars

from the literature to search for frequency separations. Using echelle diagrams, the

large frequency separation was identified in each case. Fig. 1.10 depicts log ρ/ρ⊙

vs. ∆ν/∆ν⊙ where the densities are derived from the binary-determined radii and

masses (relative to the Sun for comparison with solar like oscillations). The very

strong linear trend shows that the large separation is related to density and further-

more, is essentially independent of metallicity and rotation. This is a very compelling

argument for the relation between the frequency spacings and density of δ Sct stars.

However, one object, KIC4544587 (discussed in detail in Chapter 7), was shown to

have frequency spacings relating to the orbital frequency (0.456810± 1× 10−6 d−1),

which (to the provided precision) is 14 times the suggested frequency for the large

separation (74 ± 1µHz or 6.39 d−1) making the result for this object questionable.
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Figure 1.10: Large separation-mean density relation for 7 binary systems. A linear fit to the
points is depicted, solid line, as well as the solar-like scaling relation (Tassoul, 1980), dashed line,
and the theoretical scaling relation for non-rotating models of δ Sct stars (Suárez et al., 2014),
dashed-dotted line. The different coloured symbols denote the stellar rotation rates where ΩK is
the Keplerian break-up rotation rate. Figure adopted from Garćıa Hernández et al. (2015).

It is likely that the similarity between the large separation and the orbital frequency

spacings is due to chance. In the remaining objects, the orbital frequency does not

have any connection with the large separation.

A further piece of evidence suggesting that the frequencies are separated by the large

separation is that they agree with the theoretical models of Suárez et al. (2014) for

non-rotating models, as shown in Fig. 1.10. The derived formula for the relation

between stellar density and large separation in δ Sct stars is:

ρ/ρ⊙ = 1.55+1.07
−0.68(∆ν/∆ν⊙)

2.035±0.095. (1.10)
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1.2.4 Gamma Doradus Stars

Gamma Dor stars have a temperature range of 6700K<T/T⊙ < 7600K, which over-

laps the δ Sct temperature range, although they occupy their own area of the H-R

diagram (which is partially outside the classical instability strip, as they are less

luminous, as shown in Fig. 1.9). Approximately 12% of the known heartbeat stars

are within the γ Dor temperature range. Of these, approximately half pulsate with

γ Dor pulsations. Gamma Dor pulsations are low-degree high-order g modes with

frequencies on the order of 1 d−1 (Grigahcène et al., 2010a). These modes penetrate

deep into the core of the star and contain information about the central cavity per-

taining to the chemical composition and the energy transport mechanism (Guzik

et al., 2000).

The driving mechanism for γ Dor stars is called convective blocking (Guzik et al.,

2000). Convective blocking occurs at the base of the convection zone where there is

an abrupt change from radiative to convective energy transport. At this boundary

the radiative luminosity waves are trapped by the steep opacity gradient. As the

convective region is unable to adapt to transport the increased number of photons,

the outgoing energy is periodically blocked, which drives pulsation. A requirement of

this theory is that the convective time scales are longer than, or on the same order as

the pulsation periods, which enables the assumption that fluctuations in convection

can be approximated to zero during the pulsation cycle. For this mechanism to

be effective the star must have a significant convection zone (convection zone base

must be ∼ 0.975R/R⋆); however, for convection zones deeper than 5% the pulsations

significantly weaken and the frequency range becomes increasingly narrow (Guzik

et al., 2000).

1.2.5 Hybrid γDor–δ Sct

Hybrid γDor-δ Sct stars, e.g. KIC8569819 (see Chapter 8), were originally identified

through the comparison of observations with theoretical models (Bouabid et al.,
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2009). However, the Kepler data extended our understanding to show that the

majority of γDor and δ Sct stars are hybrids (Grigahcène et al., 2010a). These

objects pulsate in both γ Dor modes (ν ≈ 1 d−1) and δ Sct modes (ν between 5 −

50 d−1), and make up several hundred of all the observed Kepler stars. Recently,

Kurtz et al. (2014) identified a γDor-δ Sct hybrid (KIC11145123) with an extremely

rich pulsation spectrum with equally split multiplets in both the p-mode and g-mode

regions. Detailed analysis of this object showed that, to first approximation, the

object rotates as a solid body. This was determined by considering the splittings of

the multiplets: the p-mode multiplets have splittings of ∼0.004 d−1and the g-mode

multiplets have splittings of ∼0.008 d−1. This factor of two difference between the

p and g modes is theoretically predicted for a solid body rotator as:

δωn,l,m = m(1− Cn,l)Ωn,l. (1.11)

where δωn,l,m is the frequency perturbation, Ωn,l is the average stellar rotation rate,

m is the azimuthal order and Cnl is the Ledux constant, which is Cnl ≈ 0 for p

modes and asymptotically approaches Cnl = 0.5 for g modes. Thus from Eqn 1.11

we can conclude that, for KIC11145123, the surface, which is probed by the p

modes, is rotating at the same rate as the core, which is probed by the g modes.

Further analysis of this object showed that the slight deviation from a ratio of two

provides strong evidence that the surface is rotating slightly faster than the core.

This unexpected result could be suggestive that the star has previously undergone

mass transfer in a binary system, which caused the envelope to spin-up relative to

the core. An alternative hypothesis is that there is an additional unknown angular

transport mechanism at work.

Since this interesting discovery, Bedding et al. (2014) have identified 12 stars with

rotationally split γDor modes. Fig. 1.11 depicts a period-echelle diagram of one of

their discoveries, KIC9244992 (Saio et al., 2015), which clearly shows three ridges

for the m = −1, 0,+1 modes. The use of period instead of frequency in the echelle
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Figure 1.11: Period echelle diagram, plotted twice for clarity for KIC9244992. Symbol sizes indi-
cate mode amplitudes and symbol shapes indicate different values of azimuthal order m. Adopted
from Bedding et al. (2014).

diagram arises from high order g modes asymptotically tending towards equal period

spacing, unlike p modes which asymptotically tend to equal frequency spacing. One

of the objects identified by Bedding et al. (2014) was found to have two humps of

power in the Fourier transform. Upon creating the period-echelle diagram for each

hump, it was found that the regular period spacings, ∆P , of the two humps differed

by a factor of
√
3. This is consistent with the humps containing l = 1 and l = 2

modes as:

∆P ∝ 1/
√
l(l + 1). (1.12)

A further diagnostic tool, proposed by Bouabid et al. (2013), is to plot the period
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spacing against the period. Bouabid et al. (2013) predicted that the slope of such a

plot depends on the fraction of stellar to critical rotation and m. Fig. 1.12 depicts

the proposed plot for the 12 γ Dor stars identified by Bedding et al. (2014). Some

of these objects also show departures from equal spacings in the form of “wiggles”.

These wiggles were also predicted by Bouabid et al. (2013) and relate to the chemical

gradient outside the convective core.

Figure 1.12: Period spacings of l = 1 modes for twelve Kepler γ Dor stars. For each star, symbol
shapes indicate different values of azimuthal degree m. Adopted from Bedding et al. (2014).

1.2.6 Solar-Like Oscillators

In the Kepler sample of heartbeat stars, we have identified 25 stars that pulsate

with solar-like oscillations. The study of solar-like oscillations began with the iden-

tification (Leighton, 1960) and interpretation (Ulrich, 1970) of p-mode oscillations

in the Sun. Unlike pulsating stars along the instability strip, solar-like oscillations
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are stochastic pulsations, excited by turbulence in the stellar convective zone. These

pulsations have led to several advances in our understanding of the Sun, including

its internal rotation profile (Thompson et al., 2003), which provided evidence that

the differential rotation of the Sun drives the Sun’s stellar dynamo (Ossendrijver,

2003); and have yielded a test bed for evolutionary models (Bahcall, Basu & Kumar,

1997).

Unlike the Sun, we cannot resolve the disks of other stars and so are only able to

study the low degree modes (l = 0–3). While this limits the level of detail we can

achieve in the models, further theoretical advances, including the echelle diagram,

have enabled the translation of these four (or commonly three, l = 0–2) available

degrees into physical parameters (Grec, Fossat & Pomerantz, 1983). Primarily, the

echelle diagram presents the data in such a way that the large and small separations

can be identified (see Fig. 1.13).

The large separation, ∆l, is the frequency separation between consecutive orders:

Figure 1.13: Echelle diagrams of three Kepler stars (Kepler input catalogue number indicated
above). The l = 0 modes are indicated by the filled red circles; l = 1 by the open blue circles and
l = 2 by the small black points. l = 3 modes are rarely seen from space as the light integrated
over the surface does not significantly change, except in the presence of a strong filter such as limb
darkening. Figure adopted from Chaplin et al. (2010).
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∆ν ≡ νn,l − νn−1,l, (1.13)

where ν is the mode frequency and the subscripts n and l denote the radial order

and degree, respectively. Physically ∆nu represents the inverse of the sound travel

time from the surface to the core of the star and back again:

∆ν =

[
2

∫ R

0

dr

cs

]−1

, (1.14)

where cs is the speed of sound andR denotes the stellar radius. The small separation,

δνn,l, is the separation between mode frequencies that have degrees that differ by 2:

δνn,l ≡ νn,l − νn−1,l+2. (1.15)

Ot́ı Floranes, Christensen-Dalsgaard & Thompson (2005) identified the large and

small separations as important parameters based on the separation of p modes in

the asymptotic regime:

νnl ≈
n+ (1/2)l + ϵ

T
+

1

6
Al(l + 1), (1.16)

where T is the sound travel time across the diameter of the star, and A and ϵ are

constants. As the second term is small compared to the first, it can be seen that

modes of consecutive n are separated in frequency by 1/T (i.e. ∆ν) and thus are

a global measure of the sound travel time and density of the star. Furthermore,

modes that are separated by degree l+2 and order n−1 differ by the small quantity

(2l+3)A/3, which is a sensitive to the conditions in the stellar core. By plotting these

two quantities we create a C-D (Christensen-Dalsgaard) diagram, e.g . Fig. 1.14, that

is reminiscent of a Hertzsprung-Russell diagram (Christensen-Dalsgaard, 1984). In

this C-D diagram, stars evolve by moving down and left, as expected from the
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decreasing large separation (which denotes an increasing sound travel time from

surface to centre and back) along the x axis and given that δν02 is an indicator of

central condensation and thus age. The solid lines show the evolution of δν02 and ∆ν

as a function of stellar mass and the dotted lines are stellar isochrones. Interestingly,

on a modified C-D diagram, where δν02/∆ν is plotted on the y axis, the isochrones

are horizontal, demonstrating that this ratio is a good measure of age.

Figure 1.14: Depicted is a C-D diagram, which shows the relationship between the evolutionary
state of stars, and their corresponding large and small separations. In this diagram, the ZAMS
(zero age main sequence) is the top dashed line, where dashed lines denote stellar isochrones. The
lower most dashed line represents an isochrone for stars of 12Gyr. The most evolved stars are at the
bottom left of the diagram. The evolutionary tracks for different mass objects (with approximately
solar metallicity) are over plotted with solid lines, ranging from 0.7–2.0 M⊙ (blue) and greater than
2.0 M⊙ (grey). Observations are from CoRoT (orange circles), Kepler (red triangles) and ground
based observations (purple diamonds). The grey circles at the bottom left depict the red giants
from the Huber et al. (2010) study of Kepler red giants. The Sun is depicted with its usual symbol.
Caption and figure adopted from White et al. (2011).

A turning point of asteroseismology for solar-like oscillators was the identification

of the scaling relations (Kjeldsen & Bedding, 1995). The scaling relations provide

a direct link between the observables ∆ν and νmax (the peak of maximum power

in the Fourier transform), and the fundamental parameters, mass, M , and radius,
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R; enabling for the first time the determination of stellar masses and radii through

asteroseismology:

δν0 =

(
M

M⊙

)1/2( R

R⊙

)−3/2

134.9µHz, (1.17)

νmax ≈
M/M⊙

(R/R⊙)2
√

Teff/5777K
3.05mHz. (1.18)

By obtaining the temperature of a solar-like oscillator, the mass and radius can be

determined through analysis of the pulsations, to first order. Metallicity and rotation

are second order effects that have a less significant impact on the determination of

the fundamental stellar parameters.

1.2.7 Red Giants

As a star ends its hydrogen core burning phase and evolves off the main sequence, it

becomes a red giant. When this happens the stellar core contracts and heats, causing

the outer envelope to become distended, cool and convective. This convective outer

envelope gives rise to solar-like oscillations (Mosser et al., 2011), similar to those

of main-sequence solar-like oscillators, although with longer periods due to the red

giants’ significantly larger envelopes. Of the 25 heartbeat stars found to pulsate

with solar-like oscillations, the majority are red giants. This selection bias arises

from the fact that the long period oscillations of red giants are visible in the more

common 30-min long-cadence data. Chapter 6 details the asteroseismic analysis of

17 red-giant heartbeat stars, one of which is studied in detail. As with main-sequence

solar-like oscillators, the mass and radius of a red giant can be determined through

astroseismic scaling relations, e.g. Kallinger et al. (2010).

The envelopes of red giants are significantly extended relative to main sequence

stars. A consequence of this is that the p modes have lower frequencies, making
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Figure 1.15: The large separation in period space of mixed modes vs. the large frequency
separation from p modes for ∼400 red giants. Two distinct groups can clearly be seen: The helium-
core-burning stars (red diamonds and orange squares) and the hydrogen-shell-burning stars (blue
circles). The solid lines show average observable period spacings for models of hydrogen-shell-
burning giants on the red giant branch as they evolve from right to left. The black stars show
theoretical period spacings calculated in the same way, for four models of helium core-burning stars
that are midway through that phase (core helium fraction 50%). Caption and figure adopted from
Bedding et al. (2011).

them visible in the Kepler long cadence (∼30min) data. Furthermore, red giants

are described by a polytrope of order 4 rather than a polytrope of order 3, as main

sequence stars. For larger polytropic indices the separation between the p mode

cavity and g mode cavity (which can be seen in Fig. 1.8 for the Sun) diminishes.

This leads to the creation of mixed modes which have properties of both pressure

and gravity waves in their respective cavities. Through the study of mixed modes

in red giants we can obtain information about the radiative core and convective

envelope. This was predicted by Dziembowski et al. (2001) and first observed in

KIC6928997 by (Beck et al., 2012).

As mixed modes are in the asymptotic period regime (Unno et al., 1989), the pe-

riod spacing of the mixed dipole modes is related to the size of the convective core

(Montalbán & Noels, 2013) and can be used to distinguish between Hydrogen shell

burning (red giant branch) and Helium core burning (horizontal branch) stars (Bed-

ding et al., 2011). Fig. 1.15 depicts a plot of the mixed-mode period spacings against
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p-mode frequency spacings for rotationally split modes in ∼400 stars. Two distinct

groups can clearly be distinguished: the helium-core-burning stars (red diamonds

and orange squares) and the hydrogen-shell-burning stars (blue circles).

Mixed modes can also be used to determine the internal and external rotation rates of

red giant stars. For an example of this see KIC5006817, the object under detailed

study in Chapter 6. To determine the internal rotation, the level of mixed-mode

character is needed, as the size of the mode splitting caused by rotation is dependent

on the Ledoux constant, which asymptotically approaches Cn,l ≈ 0.5 for g modes

and Cn,l ≈ 0 for p modes. This can be estimated by modelling the stellar pulsations

using a stellar model and rotational kernels to assess the g- and p-mode contribution

for each mode. Fig. 1.16 depicts the contributions to the rotational splitting (as a

function of the mass-fraction) to the total rotational splitting, for modes from a

representative model of KIC8366239. The ability to determine the internal rotation

rate has led to the understanding that the angular momentum transport between

the core and envelope of red giants is very efficient and causes significant slowing

down of the core (Marques et al., 2013). Further analysis by Belkacem et al. (2015)

showed that the mixed modes indeed contribute to the observed angular momentum

transport.

Another interesting outcome arising from rotationally split modes is that the in-

clination of the star can be determined through consideration of the relative peak

amplitudes in a multiplet. First identified by Gizon & Solanki (2003) from observa-

tions of the Sun, the visibility of a mode, Hl,m(i) can be described by:

Hl,m(i) =
(l − |m|)!
(l + |m|)!

.[P |m|
l .(cos i)]2, (1.19)

where l and m are the degree and azimuthal order and P |m|
l are Legendre poly-

nomials (assuming that the energy is equally distributed amongst the multiplet).

Subsequently, for dipole modes, which are most common in red giants, edge-on stars
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have a significant contribution from m = +1,−1 components and pole-on stars from

m = 0 component of a multiplet.

Figure 1.16: Contributions to the total rotational splitting. Partial integrals of normalized
rotation kernels, illustrating the contribution from different regions to the rotational splitting for
pressure-dominated modes (ν4, ν5; solid lines) and gravity-dominated modes (ν1, ν2, ν3; dashed
lines), as a function of the mass-fraction for KIC 8366239. The left-most vertical line represents
the boundary of the helium burning core and the vertical line at m/M ∼ 0.2 represents the end
of the hydrogen burning shell and beginning of the convective envelope. Adopted from Beck et al.
(2012).

1.3 Binary Stars

Fig. 1.17 depicts a sample of binary star light curves taken from the Kepler data.

Binary stars are key to our understanding of fundamental stellar parameters and

orbital dynamics; are important distance indicators; enable the study of stars that

are of equal age; and form a test bed for stellar evolution theory. Elegantly, the

binary star orbit can be described by the latter two of Kepler’s three laws of plan-

etary motion; where Kepler’s 2nd Law states that the line joining the two orbiting
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components must sweep out equal areas in equal time intervals and Kepler’s 3rd Law

states that the masses of the two components, M1 and M2, the semi-major axes of

the two components, a1 and a2 and the orbital period, P are related by the following

equation:

(a1 + a2)3

P 2
=

G(M1 +M2)

4π2
. (1.20)

The 2nd law implies that the connecting line must always pass through the system’s

center of mass and thus that the orbital periods of the two components must be

identical. The 3rd law states that through knowledge of the semi-major axes, which

can be determined through the radial velocity shifts in the spectra; the inclination,

which can be determined through modelling the light curve; and the orbital period,

the combined stellar masses can be calculated without any prior assumptions (other

than Kepler’s 3rd Law). Furthermore, by comparing the semi-amplitudes of the two

radial velocities, the mass ratio can be determined; when combined with the total

mass of the binary system, this gives the individual masses of the stars.

Additional information about the stars and binary orbit can be obtained if the stars

are eclipsing. If the components are undergoing partial eclipses, the study of orbital

dynamics also enables the identification of tertiary components through eclipse tim-

ing variations caused by the gravitational interactions between the three (or more)

components. Furthermore, the shape of the eclipses provides information on the

inclination of the binary orbit. The configuration from which the most information

can be extracted, however, is when the plane of the binary orbit is along the line

of sight and the eclipses are total. For this configuration, the components’ radii

can be calculated using geometric considerations alone and the temperature ratio of

the two stars can be determined from the ratio of the eclipse depths (alongside the

aforementioned information for partial eclipses). While commonly not eclipsing, the

light curves of heartbeat stars contain both orbital and fundamental stellar infor-

mation as described in Chapter 3. The plethora of infomation that can be extracted
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Figure 1.17: Examples of the ultra-high photometric precision and uninterrupted observing
mode of Kepler. The left panels depict 5-d segments of characteristic Kepler light curves in time
domain and the right panels show the corresponding phased light curves using all of the Quarter 1
data. Red dots correspond to mid-exposure times of Kepler’s 30-min cadence. Top to bottom: a de-
tached eclipsing binary KIC5513861 (P=1.51012d); a semi-detached eclipsing binary KIC8074045
(P=0.53638d); and an over-contact eclipsing binary KIC3127873 (P=0.67146d).

from binary stars is indicative of the importance of these objects, not just for our

understanding of stars, but for our understanding of the building blocks that form

the Universe.

1.3.1 Binary Star Modelling

To determine the properties of the stars in a binary star system, binary star mod-

elling software is used. The primary data inputs are the binary star light and radial

velocity curves, although many binary star modelling software packages incorporate

additional features that enable the input of multicolour photometry, spectra and

polarimetry data, to name but a few. Through the consideration of these inputs

and auxiliary information (e.g. from spectra), initial estimates of the binary star pa-

rameters (e.g. inclination and eccentricity) are made. From these initial estimates,

two Roche lobes (Avni & Schiller, 1982), which describe the equipotential surfaces of

the massless envelopes that encompass the stellar point masses, are created. Within

the model, each equipotential surface is covered with a mesh (made of rectangles in

32



1.3. Binary Stars

phoebe 1.0) and each mesh point contributes to the total flux of the binary system

through consideration of many attributes including: the effective temperature of

the star, the surface gravity at that point, limb darkening effects and albedo effects.

Kepler’s laws are then employed to recreate the model at different time points, as

the stars orbit each other. At each time point the model flux is summed over the

two discrete stellar surfaces (one for a contact binary), taking into consideration

the direction of the surface normal vectors and the visibility of each mesh point,

relative to the observer. From this information a model light curve is created. At

each time point, the radial velocity of each model star, relative to the observer, is

also determined using Kepler’s laws; these values can be directly compared to the

observed radial velocities.

Once an initial model has been created, minimisation techniques, such as Nelder-

Mead downhill simplex (Nelder & Mead, 1965), differential corrections (Wilson &

Devinney, 1971), or more recently mcmc (Metropolis & Ulam, 1949) are applied to

arrive at a best-fit model to the data, where all data are fitted simultaneously. The

solution comprises all the fundamental properties of the individual stellar compo-

nents and the binary star orbit, although the accuracy of these vary, dependent on

the nature of the binary star (e.g. if both components are visible) and the method

of minimization.

phoebe (Prša & Zwitter, 2005) is a binary modelling package based on the Wilson-

Devinney (hereafter WD) code (Wilson & Devinney, 1971; Wilson & Sofia, 1976;

Wilson, 1979; Wilson & Van Hamme, 2004). The first version of the WD code sur-

passed previous binary modelling codes, such as the Russell model (Russell & Merrill,

1952), by introducing differential corrections for solving the inverse problem. The

code was further improved in 1979 to include binary eccentricity, non-synchronous

rotation and the ability to fit light and radial velocity curves simultaneously (Wil-

son, 1979). The recent version of the WD code includes a rigorous treatment of

the reflection effect, model atmospheres and an improved approach to third body

modelling and spots.
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The approach of the WD code and consequently phoebe is to combine the flux from

discrete surface elements over the distorted stellar surface and compare this value

to the observed flux. Limb darkening and gravity darkening are combined with

reflection to obtain an accurate representation of the observed flux. In addition,

horizon effects, which describe the treatment of the stellar boundary as seen by

the observer, and eclipse effects, which describe how this boundary changes during

eclipse, are included to obtain the final parameter values for the stellar components

(see Chapter 3 for a detailed discussion of modelling aspects relating to heartbeat

stars).

phoebe incorporates all the functionality of the WD code, but also provides an

intuitive graphical user interface alongside many other improvements that make

phoebe highly applicable to state-of-the-art, precise data. These include: accurate

accounting for finite integrations through convolution in Fourier space; the facility

to phase-bin the data; updated photometric filters for the various recent space mis-

sions, including Kepler; an improved treatment of reddening; the ability to work

with a up to 100 000 data points (far exceeding 8000 accepted by the WD code);

and the ability to interface with python, which enables user defined functions,

e.g. the implementation of emcee (Foreman-Mackey et al., 2013), a Markov chain

Monte Carlo algorithm, which allows uncertainty determination through heuristical

scanning.

Currently, the phoebe code is undergoing reconstruction to accommodate the pre-

cise and high quality data from the Kepler (Borucki et al., 2010; Gilliland et al.,

2010; Batalha et al., 2010), MOST (Walker et al., 2003) and CoRoT (Baglin et al.,

2006) satellites. These impressive data have challenged the current binary mod-

elling codes and made it necessary to rethink the current assumptions that go into

the models. The most fundamental of these are the rasterization of the surface

mesh in the numerical models; the use of limb darkening laws; and the treatment of

reflection and stellar albedos. Currently, the Wilson-Devinney code uses rectangles

to rasterize the stellar surfaces of the numerical models. This produces gaps, which
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1.3. Binary Stars

Figure 1.18: Depicted is a phoebe 2.0 model of a “Ferrari” orbiting a UFO generated through
analytical descriptions of a car and a UFO. The surface is rasterized using a series of triangles. The
green triangles are visible, the blue are partially visible and the red are not visible to the observer.

differ in size dependent on the size of the rectangles selected (where smaller rectan-

gles means longer computation times). phoebe 2.0 improves on this aspect of the

code by introducing triangles instead of rectangles, which are better able to describe

an approximately spherical shape. Regarding limb darkening and reflection laws, in

phoebe 2.0 they are implemented as a function of the surface properties (e.g. Teff

and log g) of each individual surface element, instead of simply applying them as a

function of position on the stellar surface. These main improvements will signifi-

cantly reduce the systematic errors that currently encumber the modelling process.

Alongside these important improvements, phoebe 2.0 will also be capable of mod-

elling triple and multiple systems; systems with pulsating components; be able to

map the surface temperatures of stars and planets; and will be able to simultane-

ously model magnetic, interferometric, light curve and radial velocity observations.

The motto of the phoebe team is: “to model anything including a Ferrari eclips-

ing a UFO”. The result is Fig. 1.18, which is a model generated in phoebe using

analytical descriptions of a UFO and a car.

1.3.2 Doppler Boosting

One addition that I have made to the phoebe code using the python interface,

is the addition of Doppler boosting. Doppler boosting (also known as Doppler
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beaming) is caused by the radial velocities of the two stars and is the combined

effect of shifting the stars’ spectral energy distributions with respect to the observed

bandpass, aberration and an altered photon arrival rate. The net result of Doppler

boosting is an increase in the observed flux from a star when it moves towards the

observer, and a decrease when it moves away from the observer. It was predicted

to be seen in Kepler data by Loeb & Gaudi (2003) and Zucker, Mazeh & Alexander

(2007a), and has recently been observed in several systems from ground-based data

as well as in Kepler and CoRoT light curves (see e.g. Mazeh & Faigler, 2010; van

Kerkwijk et al., 2010; Shporer et al., 2010; Bloemen et al., 2011).

Doppler boosting manifests itself in the light curve as an asymmetrical feature that

mimics the inverted radial velocity curve of the star from which the signal comes.

Due to the high velocities reached by stars in heartbeat systems, it is necessary to

account for Doppler boosting when modelling them, especially with high precision

photometry such as the Kepler data. A full description of Doppler boosting, includ-

ing an outline of the implementation into the heartbeat star modelling code, can be

found in Chapter 3.

1.3.3 Apsidal Motion

Apsidal motion is the rotation of the line of apsides about the centre of mass, an

attribute commonly found in heartbeat stars. It is primarily caused by the effect of

a star’s tidal bulge, caused by its companion, on the potential energy distribution

within the system, alongside general relativistic effects and rotational perturbations.

The observed effect of apsidal motion on a doubly eclipsing binary is that the phases

of the eclipses change such that the eclipses appear to move towards and away

from each other in a cyclic motion as the orientation of the orbit changes. For

heartbeat stars, the shape of the periastron variation changes as a function of the

argument of periastron, which cycles with the motion of orbit (see Fig. 1.19). For

both types of object, this causes the observer to measure the anomalous period
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instead of the real sidereal period. This happens because, as the orbit precesses, we

see the eclipses (or periastron brightenings) occur at a slightly different phase in the

orbit and consequently the orbital period appears slightly shorter or slightly longer

than the siderial period (depending on the direction of motion with respect to the

orbital motion of the stars). As classical apsidal motion occurs at an approximately

constant rate, the anomalous period is also almost constant. The equation relating

the anomalous period, P a, and sidereal period, P s, is:

Ps = Pa(1− ω1/2π), (1.21)

where ω1 is the variation of the argument of periastron during one orbital cycle

(Zasche, 2012).

The rate of apsidal advance is a consequence of the interaction between the stellar

components in a binary or multiple system, which is a function of the periastron

separation of the stellar components, mass ratio, eccentricity, period, semi-major

axis and central density.

Observations of the rate of apsidal advance, whilst taking into account general-

relativistic effects where applicable, enable the calculation of the central density

parameter k2. To obtain the central density parameter of the primary star in a

binary system, the non-relativistic formula (Mazeh, 2008) is applied:

Ps

Ptidal,1
≈ k2

(
R1

a

)5
[
15f2(e)q +

(
Ω1,rot

ωorbit

)2

(1 + q)

]
, (1.22)

where P tidal,1 is the apsidal precession period due to the primary star; Ps is the

orbital period; q is the mass ratio M2/M1 where M1 is the mass of the primary star

and M2 is the mass of the secondary star; ωorbit = 2π/Ps, a is the semi-major axis,

R1 is the radius of the primary star; Ω1,rot is the rotational frequency of the primary
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Figure 1.19: The effect of the periastron value, ω, on the shape of the periastron brightening
for one full cycle of the orbit around the centre of mass. The peaks change both their position
in phase and their shape drastically as a function of ω. The model used in this demonstration is
of KIC3749404, a Kepler heartbeat star that exhibits one of the largest periastron advance rates
(∼ 1◦/yr; Hambleton et al. 2016, in prep.). Depicted in the inset is the light curve variation over
4.5-yrs (slightly longer than the the length of the extended Kepler mission).

star and f 2(e)≈ (1+3
2e

2) where e is the eccentricity. For a point mass k2=0 and

for a homogeneous sphere k2=0.75. Typical stellar values of k2 range from ∼0.001

for the most centrally condensed stars such as red giants to ∼0.01 for the younger

population of stars.

General relativistic apsidal motion (Mazeh, 2008) must also be accounted for in cases

where the binary period is long and/or the masses of the components are large:

PGR = 1800(1− e2)

(
P

day

)5/3(M1 +M2

M⊙

)−2/3

, (1.23)

where PGR is the apsidal precession period due to general relativity and is measured

in years. To determine the overall rate of apsidal advance, Ptot, we combine these

results using the following equation:

1

Ptot
=

1

PGR
+

1

Ptidal,1
. (1.24)
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Until recently, there have been discrepancies between the central density derived

from apsidal motion observations and those obtained through the theory of stellar

evolution (Claret, 1997). In Eqn (1.22) if the rate of apsidal advance is fixed, i.e.

it is an observed quantity, it can be seen that the central density parameter, k2, is

highly dependent on the observed value for R (to the power of 5). The difficulty

in determining the radii of stars accurately, alongside difficulties in correctly iden-

tifying the stellar temperatures and masses when fitting evolutionary tracks on the

Hertzsprung-Russell diagram, has been deemed by Claret & Giménez (2010) to be

the main cause of this discrepancy. While this has predominantly been resolved,

there are still some objects that demonstrate apsidal motion rates far removed from

those theoretically predicted, such as DI Her, AS Cam and V451 Cyg (Claret, 1997).

Gies et al. (2012) suggested that discrepancies may hint at the presence of a tertiary

component, although Claret & Willems (2003) proposed that deviations from the

classical rate may be caused by resonant tides. Furthermore, models created by

Claret & Willems (2003) support this prediction and show both positive and nega-

tive deviations from the classical apsidal motion rate due to the presence of resonant

modes.

KIC3749404 is a heartbeat star with tidally induced pulsations and rapid apsidal

motion (see Chapter 5). The interesting aspect of this object is that the observed

apsidal motion is two orders of magnitude larger than the thoretically predicted

value. As theorised by Claret & Willems (2003) for binary stars with tidally induced

pulsations, we anticipate that this unexpected rate of apsidal advance is due to the

presence of tides.

1.3.4 Frequency Modulation

The most far-reaching aspect of binary star physics is the ability to determine fun-

damental stellar parameters through binary star kinematics. Commonly, this is

achieved through spectroscopic observations, which are then converted into radial
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velocity points by identifying the Doppler shift of each spectrum. An alternative

method to this, for stars in binary systems with coherent, stable pulsations, is the

frequency modulation (FM) method (Shibahashi & Kurtz, 2012; Shibahashi, Kurtz

& Murphy, 2015a).

As stars in binary systems orbit their centre of mass, if one (or both) of the stars is

pulsating, the change in radial velocity of a star can be measured by considering the

modulation of the pulsation frequency due to the Doppler effect. The FM method is

a technique that converts the frequency modulation into orbital parameters through

use of the Fourier transform. An alternative method is known as the PM (phase

modulation) method (Murphy et al., 2014), which utilizes the phases of pulsations,

which also vary due to the light travel time, to determine orbital parameters.

The signature of the FM effect is a multiplet in the Fourier transform, where the

peaks are separated by the orbital frequency. The relative amplitudes of the side-

lobes to the main peak, α, is:

α =
A+1 + A−1

A0
, (1.25)

where A is the amplitude and the subscript denotes the sidelobe (0 is the main

peak). For the case of α << 1, α contains information about the mass function that

can be easily extracted:

f(m1, m2, sin i) = α3P
3
osc

P 2
orb

c3

2πG
, (1.26)

where Posc is the period of oscillation of the main peak and Porb is the orbital period

of the binary star. The semi-major axis of the pulsating component, a1, as a function

of the inclination, i, can also be determined, using the following equation:

a1 sin i =
Posc

2π
αc. (1.27)
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It can be seen from Eqn 1.26 that α depends on the frequency of oscillation and

orbital period. Systems with longer orbital periods and larger amplitude pulsations

at higher frequencies are thus favourable for FM analysis.

For eccentric systems, while the separation between peaks is still the orbital fre-

quency, the sidelobes now hold information about the argument of periastron:

ω =
φ+1 − φ−1

2
, (1.28)

where φ is the phase of the sidelobe (again, denoted by the subscript), and eccen-

tricity of the system:

e ≈ 2(A+2 + A−2)

A+1 + A−1
, (1.29)

just as with radial velocities. This method is further described in Chapter 8, which

includes the application to the binary system, KIC8569819.

1.4 Conclusion

Heartbeat stars and tidally induced pulsations form the main focus of this work.

The following chapters contain details of the analyses of a select group of stars

demonstrating various effects and discussion of the tools created to analyse them.

Primarily, I have endeavoured to model a collection of interesting heartbeat stars

using my own codes and augmenting already existing codes (see Chapters 4, 5, 6

and 7). I have used the study of binarity to determine the fundamental stellar

parameters and in one case compare the results with those determined through

studying the star’s solar-like oscillations (see Chapter 6). For another object, the

frequency modulation (FM) of the stellar pulsations has also been used to determine

the radial velocities of the pulsating component (see Chapter 8). This work marks
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the beginning of significant advances in the observational field of heartbeat stars

and tidally induced pulsations in binary systems.
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Chapter 2

The Bayesian Approach to Radial

Velocity Determination

Radial velocity determination has long involved a deterministic approach where

cross correlation techniques have been used to identify the optimal radial veloci-

ties of observed spectra based on template spectra (Tonry & Davis, 1979; Zucker &

Mazeh, 1994). While these techniques have proved to be invaluable for the deter-

mination of radial velocities in binary stars (for example Mazeh et al. 1995; Torres

et al. 1995; Hambleton et al. 2013), the current era of astronomy requires advances

in the statistical approach of such methods to enable the determination of radial

velocity distributions that include the uncertainty from the input models, and the

mean radial velocity and standard deviation based on the peak and spread of the

cross correlation peak. By applying Bayesian statistics to the task of radial velocity

determination, I was able to produce such distributions while simultaneously gen-

erating posteriors for the spectral parameters. This improves our understanding of

our data, uncertainties and provides further constraints for the binary system in

hand.

In this Chapter the bayes-todcor software is outlined, which combines modern

statistics and spectral cross correlation, for the optimal determination of radial
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velocities and binary star parameters. In §2.1 Markov Chain Monte Carlo (MCMC)

techniques are discussed with special attention to emcee (pronounced “M C”),

an affine invariant version of MCMC that is used in bayes-todcor; in §2.2 the

todcor software is described, including a mathematical description of the various

steps involved; the bayes-todcor software itself is discussed in §2.3, which includes

the results of two versions: the version using ccr (cross correlation), todcor’s

cross-correlation function, as the log likelihood, and the version using χ2; and the

application to synthetic and observed data is described in detail in §2.4. The code

for both versions of bayes-todcor is available in AppendixA.

2.1 Markov Chain Monte Carlo Techniques

Monte Carlo simulations are the random sampling of variables to obtain a range

of possible results in the form of a distribution. The statistical method was first

invented by Stanislaw Ulam in the 1940s (Metropolis & Nicholas, 2011), who de-

veloped it for use on nuclear weapons projects (Metropolis & Ulam, 1949). As the

method is most useful for solving difficult multi-dimensional problems, it is highly

applicable to many problems in mathematics and physics, such as the determination

of binary star parameters. The method itself involves: selecting a range of inputs

for each variable; drawing from each input range using a predefined distribution,

e.g. flat or Gaussian; performing a computation on the selected values, such as com-

puting a binary model; combining the results and subsequently making deductions

about the input parameters.

The main drawback of the Monte Carlo method is the extensive computation time

and large number of processors required to obtain results. This is increasingly true

for high dimensional problems. For a single parameter draw, the motion in phase

space consists of a vector from the current point in parameter space to the newly

drawn point, and as such has two operations. For an N-dimensional parameter
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space, the vector is N-dimensional with each parameter requiring two operations.

Thus the computation time scales as 2N , where N is the number of parameters.

Consequently, the optimization of Monte Carlo simulations was required to make

the method more applicable to real-life problems.

A Markov chain is a stochastic chain of events that changes state in discrete steps.

A special characteristic of a Markov chain is that the change in state, the transition,

only depends on the current state and not on previous states. Markov chains possess

the Markov property:

p(θ(t+1)|θ(1), θ(2)...θ(t)) = p(θ(t+1)|θ(t)), (2.1)

where θ is the state space and t is the iteration. While the steps are random, they are

dependent on their transition probability, and consequently, while each individual

transition is not predictable, the state of a chain after a large number of transitions

can be statistically predicted.

The combination of the Markov chains and Monte Carlo simulations was originally

performed by Metropolis et al. (1953) who proposed a “random walk” algorithm. In

this algorithm, each particle was moved individually by comparing the result of the

next step to the result of the previous step and only accepting results that improve

the probability, or, as in his given example, lower the energy state of the system

tending to thermodynamic equilibrium.

The present versions of Markov chain Monte Carlo (mcmc) methods are based

on one of two algorithms: the Metropolis-Hastings algorithm (Hastings, 1970) and

the Gibbs sampler (Turchin, 1971). The main difference between the two is that

the conditional distributions, Y where the posteriors take the form p(θ|Y ), of the

parameters must be known for the Gibbs sampler; however, this is not necessary for

the Metropolis-Hastings algorithm. As we commonly do not know the conditional

distributions of the parameters in binary star physics, I elected to use the Metropolis-
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Figure 2.1: The contours of an example of a non-isotropic distribution in phase space,
described by Eqn. 2.3.

Hastings algorithm.

For the Metropolis-Hastings algorithm, the process begins with the selection of a

arbitrary (random) position in parameter space, X. The sampler then proposes

the next step, Y , with probability q(Y |X). The function that governs the next

step, g(X → Y ), is sampler dependent, but is commonly selected to be a Gaussian

distribution centred on X so that Y is typically close to X . The ratio between the

current probability and the previous probability is then calculated:

r =
p(Y )q(X|Y )

p(X)q(Y |X)
, (2.2)

which is reduced to r = p(Y )/p(X) if the proposed move is symmetric, a requirement

for the Metropolis-Hastings algorithm. If r ≥ 1 then the probability of Y is greater

than the probability of X and thus the new step is accepted. If r < 1 then the

transition is accepted with probability r. Consequently, the chain tends to the

parameter space with a high probability density and explores the lower probability

space less frequently.

emcee is an affine invariant implementation of the Metropolis-Hastings mcmc sam-
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pler, proposed by Goodman & Weare (2010) and implemented by Foreman-Mackey

et al. (2013). While similar to standard implementations of mcmc, emcee addresses

the problem that arises when sampling a non-isotropic distribution, see Fig. 2.1. In

this example, the probability density of x is:

p(x) ∝ exp

(
−(x1 − x2)2

2ϵ
− (x1 + x2)2

2

)
. (2.3)

For distributions like this, standard mcmc samplers are confined to making steps

of size
√
ϵ, which is less than optimal in the direction of (1,1), as shown in Fig. 2.1.

The method proposed by Goodman & Weare (2010) involves an affine invariant

transformation of the form y = Ax + b such that p(y) ∝ p(x). For example, by

applying the following transformations:

y1 =
x1 − x2√

ϵ
, y2 = x1 + x2, (2.4)

Eqn. 2.3 becomes the far more tractable:

p(y) ∝ e−0.5(y21+y22), (2.5)

which is Gaussian and enables extensive sampling of the phase space in a significantly

smaller number of iterations.

Another feature of the method theorised by Goodman &Weare (2010) is the “stretch

move”. The stretch move is the proposed affine invariant transition by one walker

(Markov chain), Xk(t) along the line between itself and a second walker, Xj , in the

N-dimensional, parameter space:

Xk(t)Y = Xj + Z(Xk(t)−Xj), (2.6)
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where Z is a random variable drawn from:

g(z) ∝
{

1√
z if z ∈

[
1
a , a
]

0 otherwise
, (2.7)

where a is an adjustable scale parameter that must be greater than one. Goodman

& Weare (2010) suggests a value of a = 2; however, this value can be adjusted if too

few/too many chains are being accepted. This method of selecting the transition

proposal is highly effective and has been found to significantly reduce the autocorre-

lation time. Thus emcee is highly applicable and cost efficient for high dimensional

problems, such as generating binary star models.

2.2 TODCOR

The two dimensional cross-correlation software, todcor (Zucker & Mazeh, 1994),

takes two template spectra and an observed spectrum, and uses cross correlation

techniques to determine the radial velocities of both components in the observed

spectrum (assuming the secondary component contributes greater than 3% light).

The first astronomical application of the cross correlation technique employed one-

dimensional cross correlation to determine the radial velocities and thus redshifts

of galaxies (Tonry & Davis, 1979). While this method can also be directly applied

to binary star systems, where the cross correlation peaks are well separated in one

dimension, when the cross correlation peaks of the primary and secondary compo-

nents overlap, this renders the secondary peak undetermined and can often skew the

results of the primary component.

todcor overcomes this shortcoming by assuming that both spectral templates con-

tribute to the observed spectrum and thus determines the cross correlation of both

templates simultaneously across an extensive (user defined) range of wavelength

shifts. The result is a two-dimensional correlation peak that provides accurate ra-
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Figure 2.2: A contour plot of the two dimensional correlation function. The dashed lines
pass through the maximum and indicates the velocity shift of the primary and secondary
components. Figure adapted from Zucker & Mazeh (1994).

dial velocities based on the correlation of both components (see Fig. 2.2). If done

directly, two-dimensional cross correlation is computationally expensive. However,

Zucker & Mazeh (1994) employed Fast Fourier Transform (FFT) techniques to in-

crease the computation speed from an N2 computation to an NlogN computation,

thus significantly reducing the computation cost.

Two dimensional cross correlation requires two template spectra, g1(n) and g2(n),

and an observed spectrum, f(n). To utilize FFT techniques, the observed spec-

trum and template spectra must be in log scale. Consequently, to determine the

correlation, the templates are shifted linearly by s1 and s2:

g1(n− s1) + αg2(n− s2), (2.8)

where α is the intensity ratio of the spectra. The correlation function of the two

shifts is thus:
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Rf,g1,g2 =

∑
f(n)g1(n− s1) + α

∑
f(n)g2(n− s2)

Nσfσg(s1, s2)
(2.9)

where N is the number of overlapping bins between the observations and template

spectra, σf is the rms noise of the data:

σ2
f =

1

N

∑
f(n)2, (2.10)

and σg is the uncertainty of the shifted template spectra:

σ2
g(s1, s2) =

1

N

∑
[g1(n− s1) + αg2(n− s2)]

2, (2.11)

Inserting the full equation for σ2
g into Eqn. 2.9 we obtain:

Rf,g1,g2 =

∑
f(n)g1(n− s1) + α

∑
f(n)g2(n− s2)

Nσf

√
σ2
g1 + 2α/N

∑
g1(n)g2[n− (s2 − s1)] + α2σ2

g2

, (2.12)

which contains two correlation computations in the numerator and one in the de-

nominator:

C1(s1) =
1

Nσfσg1

∑
f(n)g1(n− s1), (2.13)

C2(s2) =
1

Nσfσg2

∑
f(n)g2(n− s2), (2.14)

C12(s2 − s1) =
1

Nσg1σg2

∑
g1(n)g2[n− (s2 − s1)]. (2.15)
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The calculation is thus reduced to:

Rf,g1,g2(s1, s2,α) =
C1(s1) + (σg2/σg1)αC2(s2)√

1 + 2(σg2/σg1)αC12(s2 − s1) + (σg2/σg1)α2
. (2.16)

The final result contains three cross correlations, one between each template and the

observed spectrum, and one between the two templates. All three computations can

be performed using FFTs, which leads to a computationally inexpensive and reliable

method for obtaining radial velocity information from double lined spectroscopic

binary stars.

2.3 Bayes’ Todcor

When using todcor, it is important that the templates selected are representative

of the observations. This is often done using a grid of spectra and identifying the

best set of templates through trial and error and selecting the best fit based on

the highest correlation score. While this technique has been previously adequate, it

does not allow for the refinement of the stellar parameters through interpolation of

the template spectra, provide posterior probability distributions on the spectral pa-

rameters or provide radial velocity distributions based on the variations of possible

stellar parameters. For this reason, I have combined todcor with emcee to de-

termine the radial velocity distributions dependent on the possible range of spectral

models. Not only this, but the posteriors on the spectral parameters: the effective

temperature, log g and v sin i of both components, and the combined metallicity of

the system are also generated, enabling a more robust uncertainty determination for

all parameters involved. This novel technique that I have developed is described in

the following section.
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2.3.1 Parameters

The prominent features of spectra are governed by the following parameters:

• effective temperature, Teff

• log g

• metallicity

• v sin i

Consequently, these parameters are the constraints on the synthetic spectra and are

the parameters from which the MCMC sampler determines the posterior probability

distribution functions.

As the metallicity of the majority of stars in binary systems is based on the metallic-

ity of the cloud from which the stars were formed, I elected to make the metallicity a

global parameter, i.e. the same for both stars. Within this framework, the optimal

solution will contain the metallicity which best fits both components (with more

weight to the brighter object). For Am and Ap stars, this assumption does not hold

as their metallicity is a result of diffusion. However, the software is easily adaptable

to account for this, if necessary.

All other aforementioned parameters are individually allocated to each star. I also

made the intensity ratio, α, a parameter in the model fit. todcor offers the option

to fit α; however, by adding it to our list of parameters, I determine a posterior

distribution function for α and the uncertainty in α is propagated to the radial

velocities and spectral parameters.

2.3.2 The Software in a Nutshell

I start off by specifying prior ranges for the Teff , log g, metallicity and v sin i. The

current implementation of the software has the option to specify uniform or Gaussian

priors. As further inputs, the program requires the number of chains; a list of the files
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with observed spectra; the directory that contains the grid of synthetic spectra (with

wavelength for all input files in the same, linear units); the per-point uncertainty

of the observed data; the dispersion of the observed spectra; and the name of the

output file.

The file names of the synthetic spectra must be in the correct format, e.g.:

T07000G40M05.spectra or T07000G40P05.spectra where the temperature of the spec-

trum must follow “T” (with a leading zero if necessary), the log g of the spectrum

(in cgs units), multiplied by 10, must be given after the “g”, and the final two

digits state the metallicity, [Fe/H] , multiplied by 10, where p indicates positive

metallicity and m indicates negative metallicity. This is the standard output when

synthesizing spectra using the software spectrum (Gray, 1999). To complement

the bayes-todcor software, I have built a parallelized program that creates a grid

of spectra from Kurucz model atmospheres (Castelli & Kurucz, 2004) (see §2.4).

Once these variables have been specified, the first part of the software takes the syn-

thetic spectra (from the grid of spectra), which are used as templates, and prepares

them for interpolation. Following this, the initial parameter values for each walker

are selected at random (from a flat or Gaussian distribution) from the prior ranges

and the first iteration begins. For each chain, two synthetic spectra are generated

(one for each stellar component) by interpolating the stellar spectra. Following this,

checks are in place to ensure that the spectra are within the bounds of the grid. The

two spectra are then rotationally broadened, using the values selected by the mcmc

sampler, and then instrumentally broadened using functions from phoebe 2.0. The

spectra are then binned to a dispersion similar to that of the observations (which

significantly improves the speed of todcor) and written to two files, one for each

component, ready for use in todcor.

todcor is then run from within bayes-todcor to determine the optimal radial

velocity shifts of the newly created template spectra against each observed spectrum

individually. For each observation, the names of the template files, the observed
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spectrum and the intensity ratio (determined by the mcmc sampler), are given

as inputs to todcor. todcor returns the optimal values of the radial velocities

and their uncertainties. The templates are then shifted by the todcor specified

radial velocity, using a phoebe 2.0 function, and combined according to the intensity

ratio selected by the mcmc sampler. The combined templates are interpolated so

that they contain the same wavelength range and number of data points as the

observed spectrum. The goodness of fit is then determined using the ccr or χ2

test (dependent on the version of bayes-todcor). For each observed spectrum,

for each iteration that is accepted by the mcmc sampler, the radial velocities and

their uncertainties are stored.

For the ccr version, the log likelihood, ln p is determined using:

ln p = −0.5

(
1− CCR2

σ2

)
, (2.17)

where ccr is todcor’s cross correlation function. For the χ2 version, I determined

ln p using:

ln p = −0.5χ2. (2.18)

I multiply by -0.5 to generate a log likelihood value or log Gaussian distribution.

For the χ2 version, I chose to keep todcor as the method of determining the radial

velocity shifts (as opposed to making the velocities priors) as todcor is not sensitive

to the normalisation of the spectra and thus provides more accurate results. For

each chain the sampler receives a log likelihood value and if the log likelihood value

is larger (closer to zero) than the previous value, then it will be accepted. If the

value is smaller than the previous value, then it may be accepted (to thoroughly

explore the parameter space). If a set of parameters is rejected, new parameters are

assessed for the same chain until the log likelihood is accepted. Once each chain has
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accepted a new log likelihood value, the sampler provides a new set of parameters

for each chain, based on a covariance matrix between two chains, and the process is

repeated.

The software has the additional feature that it can begin from the posteriors of a

previous run. This is convenient if the maximum number of iterations is reached

and the program hasn’t converged, or if a sub-set of walkers is stuck in a local

minimum. This way, the initial distribution for the new run can be sampled from

a selection of the posteriors. This can result in multiple walkers having the same

parameter values; however, it is preferable, as walkers stuck in a local minimum do

not contribute to the improvement of the solution.

2.3.3 Posteriors, Distributions and Results

After a period called the burn-in time, during which the various chains are converg-

ing to a global minimum, the chains oscillate about the global minimum in a normal

distribution (see Fig. 2.3). By sampling the distribution of chains after the burn-in

period, the posterior distributions of the spectral parameters can be determined, for

example, see Fig. 2.4. From the posteriors it is possible to determine the mean and

standard deviation of the parameters, assuming the parameter space is Gaussian,

but more importantly, the parameter distributions can be seen, which includes cor-

relations between different parameters, if a parameter value is unique or degenerate,

and if there is any information in the data about a given parameter.

For every accepted log likelihood value, the radial velocities and their uncertainties

(for both components for each observation) are stored. As I do not provide prior

information for the radial velocities, they are not being sampled in the same way

as the spectral parameters, but rather being calculated by todcor for each model

spectrum. To combine the spread of radial velocity values due to the range of

possible models with the todcor uncertainties, I have built a plotting program that

creates normal distributions from the todcor values (means and uncertainties). For
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Figure 2.3: The ln p as a function of iteration for the χ2 version of the bayes-todcor
software (when applied to synthetic data), where each colour represents a different chain.
As the χ2 statistic is not normalised, the value should tend to 0.5n, where n is the number
of data points. This plot is used as a first gauge to determine if the model has converged.
From consideration of this plot alone, it appears the burn-in time was approximately ∼100
iterations, as the probability does not change after this point.

each observation the normal distributions are co-added for each component over all

chains and for several iterations (see Fig. 2.5). The end product is that for each

radial velocity, the mean and standard deviation values are obtained, based the

direct uncertainty from todcor and the uncertainty propagated from the range of

models.

2.4 The Application

As I built the bayes-todcor software, I continually tested it on a test suite of

simulated observed data see § 2.4.1. By doing this I ensured that all individual

aspects of the software functioned as expected. Upon the satisfactory completion

of the software and tests on simulated data, I applied the software to the observed

spectral data of KIC8164262, a single-lined spectroscopic heartbeat star binary
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Figure 2.4: Depicted are the posteriors generated using the bayes-todcor program
with synthetic data. Lower left sub-plots: two dimensional cross-sections of the posterior
probability distribution functions for the effective temperatures Teff1 and Teff2; log g1 and
log g2; the metallicity of both components, metal; the stellar rotational velocities vrot1
and vrot2; and the light ratio, alpha. The crosses show the 1σ (red) and 2σ (green)
uncertainties, and are centred on the minima. Diagonal sub-plots from top left to bottom
right: histograms displaying the probability distribution of each individual parameter.
Upper right sub-plots: the correlations for the two-dimensional cross-sections mirrored
in the diagonal line where 1 is direct correlation and -1 is a direct anti-correlation. The
values above the plot give the mean value and one sigma uncertainty for each parameter,
based on the fitted Gaussians.
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Figure 2.5: Depicted are the normal distributions for the todcor mean and average
uncertainty (black dashed line) and the combined means and uncertainties determined
using the bayes-todcor software (blue line) for KIC8164262 (see Chapter 4). The red
line depicts the weighted mean determined using the bayes-todcor software.

system. Due to the results of the tests, I elected to use the χ2 version of the

software. The results of this can be found in § 2.4.4.

Building the Model Spectra

To create the spectral templates and to create synthetic data for testing, it was

required that spectra were built from models. I elected to use Castelli-Kurucz AT-

LAS9 model atmospheres (Castelli & Kurucz, 2004) as they are best in the range

4500 Å and redder (Richard Gray, private communication), which is appropriate

for the spectral region of the observed spectra obtained at Kitt Peak Observatory

(4600–9050 Å).

spectrum is a spectral synthesis program (Gray, 1999) that takes model atmo-

spheres (that contain information for up to 100 atmospheric layers including layer

temperature, electron density, abundances and gas pressure) and converts them into

synthetic spectra. To generate a grid of synthetic spectra from models, I have built

a program that parallelizes spectrum using mpi (message passing interface). This

enables the creation of large numbers of synthetic spectra (∼3800) in a short amount
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of time (dependent on the number of processors and length of the spectra).

The required inputs to the software are the spectral range; the desired dispersion/bin

width of the synthetic spectra; the directory of the models; the directory for the

newly created synthetic spectra; and the directory of spectrum. As spectrum

requires an input file to create each synthetic spectrum, the software reads in the

name of each model from the directory of spectral models and generates an input

file. The files contain the spectral range, line list, directories of the models and

outputs, bin width and the microturbulent velocity. As the object that I was fitting

has an approximate spectral type of late A/early F, I specified the microturbulent

velocity to be ξt = 2.0 km s−1 (Gray, Graham & Hoyt, 2001). Following the creation

of each input file, the software runs spectrum, which creates a synthetic spectrum.

2.4.1 Creation and Application of Synthetic Data

To test the program at its various stages, I created synthetic data where the input

quantities were known. The following procedure describes the creation of synthetic

data, beginning with synthetic spectra from models and ending with synthetic data

that was used as input data for the bayes-todcor software.

First, a model binary star was created using phoebe for each synthetic data set

(for details of individual models see §2.4.1). Each model was created so that the

components were realistic main-sequence stars. Using phoebe, radial velocity points

were generated for each component.

Synthetic spectra were created for the stars in the models by interpolating the grid

of spectra. The spectra were rotationally broadened using a phoebe 2.0 function

and copies were made so that there was a spectrum for each radial velocity (for each

star). Following this, the spectra were shifted (again, using a phoebe 2.0 function)

according to the radial velocity values from the binary star model. I then combined

the shifted spectra for each radial velocity time point. To do this each spectrum
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Figure 2.6: A segment of the synthetic observations of example1 before noise has been
added (black line), with Gaussian noise where σ = 0.04Å and with noise added (blue line)
and subsequent instrumental broadening (red line). A dispersion of 0.04Å was applied for
the instrumental broadening, mimicking the broadening of the spectrograph on the Kitt
Peak 4-m Mayall telescope.

was multiplied by its light fraction and the spectra co-added.

As the phoebe 2.0 function for shifting the spectra involves rebinning the data, I

found that it was necessary to use a high sampling frequency prior to shifting the

spectra, following which I binned the spectra to mimic the dispersion of the observed

spectra. Starting with a low sampling frequency led to the spectral profiles changing

shape during the rebinning process (as the number of bins is maintained, but the

zero point is shifted). After the data had been binned, Gaussian noise was added

and the data were instrumentally broadened with a dispersion of 0.04 Å, equal to the

Kitt Peak spectrograph on the 4-m Mayall telescope. Fig. 2.6 depicts a segment of a

spectrum with noise added and with subsequent instrumental broadening. Finally,

for the purpose of using todcor on the data, a line was added to the beginning

of each spectrum file denoting the name of the spectrum, date of observation and

heliocentric correction.
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Example 1

The first example, example1, is an eclipsing binary in a circular orbit that con-

sists of a primary with Teff = 7000K and secondary component with Teff = 6000K

in a 10 d orbit. The Gaussian noise added to the spectra has a standard devia-

tion of σ = 0.04 Å. The light and radial velocity curves can be seen in Fig. 2.7. I

provide the computed results for both versions of bayes-todcor. Table 2.1 con-

tains the parameters of the model and those determined using bayes-todcor, and

Fig. 2.10 depicts the posteriors on the spectral parameters for the ccr version of

bayes-todcor. The predefined and computed radial velocities are provided in

Table 2.2 and Fig. 2.8 gives the radial velocities and residuals for both versions of

bayes-todcor. The radial velocity uncertainties displayed are a combination of

the uncertainties provided by todcor and the uncertainties from the range of pos-

sible spectral models. A section of the fitted spectrum can be seen in Fig. 2.9 for

the χ2 bayes-todcor software. The red envelope depicts the one sigma range of

the model. It can be seen that the black line, the synthetic data without noise, is

almost completely encompassed in the red envelope, showing that the model rarely

deviates from the “true” values. The posterior distributions of the ccr version of

the bayes-todcor software can be seen in Fig. 2.10. All distributions form well

defined Gaussians, showing that the results are fully determined.

When comparing the results of the two versions of bayes-todcor for the example1

binary, which contains two stars that both contribute a significant amount of light,

the ccr version produced more accurate and precise radial velocities; however, the

χ2 version produced more precise and accurate spectral parameters (although the

number of parameters is too small to properly discern the overall accuracy). For the

ccr version, the distribution of radial velocities with values within 1σ, between 1σ

and 2σ, and greater than 2σ is as expected for a normal distribution. The χ2 version

has an excess of radial velocity values that are not in agreement within 2σ. This

outcome is expected, as the ccr function represents the goodness of fit of the radial
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Figure 2.7: The light and radial velocity curve of the example1 model binary, built to
test the bayes-todcor software. The top panel depicts the light curve generated by
phoebe (red line) and the bottom panel depicts the synthetic radial velocity curves for
the primary (blue line) and secondary (pink line) components. The equally spaced radial
velocity points depict the phases that synthetic observations were made. Note, synthetic
observations were not built during times of eclipse.

Figure 2.8: The synthetic “observed” and computed radial velocities for the ccr (left
panel) and χ2 (right panel) versions of the todcor software for example1. Top panels:
the todcor computed radial velocity points of the primary (red) and secondary (blue)
components. The synthetic “observed” data are denoted by black points and are joined
by black lines (the black lines do not represent a model). Lower panels: The residuals of
the computed data and their associated one sigma uncertainties.
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Figure 2.9: A small region of the example1 synthetic spectral data created for testing
(blue). The χ2 version of the bayes-todcor best-fit model and one sigma uncertainty
(red envelope) are over plotted. The black line depicts the synthetic data without noise. It
can be seen that the red envelope almost completely encompasses the black line, showing
that this region essentially lies within the one sigma range.

Table 2.1: Parameters of the example1 synthetic data and corresponding results for
the bayes-todcor program using the ccr function and χ2. Alpha denotes the flux
ratio. The one sigma uncertainties are given in parentheses. The value highlighted
in blue does not agree with the predefined parameter to 1σ, but agrees within 2σ.

Input ccr χ2

Teff1 7000 7073(89) 7027(30)
Teff2 6000 6062(116) 5981(32)
log g1 4.30 4.37(9) 4.32(3)
log g2 4.43 4.6(1) 4.5(1)
metal -0.12 -0.10(6) -0.10(2)
v sin i1 30 30.0(5) 29.9(1)
v sin i2 25 25(1) 24.9(3)
alpha 0.28 0.28(2) 0.29(1)
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Figure 2.10: The spectral parameter posterior distributions created using the ccr version
of the bayes-todcor software for example1. Lower left sub-plots: two dimensional cross-
sections of the posterior probability distribution functions for the effective temperatures
Teff1 and Teff2; log g1 and log g2; the metallicity of both components, metal; the stellar
rotational velocities vrot1 and vrot2; and the light ratio, alpha. The crosses show the 1σ
(red) and 2σ (green) uncertainties, and are centred on the minima. Diagonal sub-plots
from top left to bottom right: histograms displaying the probability distribution of each
individual parameter. Upper right sub-plots: the correlations for the two-dimensional
cross-sections mirrored in the diagonal line where 1 is direct correlation and -1 is a direct
anti-correlation. The values above the plot give the mean value and one sigma uncertainty
for each parameter, based on the fitted Gaussians.
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Table 2.2: The radial velocities for the example1 synthetic data and corresponding
results for the bayes-todcor program using the ccr function and χ2. RV1 and
RV2 denote the primary and secondary components, respectively. The one sigma
uncertainties are given in parentheses. The values highlighted in blue agree with the
predefined parameters to 2σ, and those highlighted in red do not agree within 2σ.

RV1 RV2
BJD Synth ccr χ2 Synth ccr χ2

2455600.500050 -27.8 -27.9(2) -28.0(1) 13.2 12.4(4) 12.0(2)
2455601.000100 -43.9 -43.9(1) -43.9(1) 34.1 33.7(3) 33.6(2)
2455601.500150 -56.7 -56.8(1) -56.8(1) 50.6 50.3(2) 50.3(2)
2455602.000200 -64.9 -65.1(1) -65.1(1) 61.3 61.2(2) 61.1(2)
2455602.500250 -67.7 -67.9(1) -65.9(1) 64.9 65.0(2) 65.0(2)
2455603.000300 -64.8 -65.1(1) -65.0(1) 61.2 61.1(2) 61.1(2)
2455603.500350 -56.7 -56.8(1) -56.8(1) 50.6 50.3(2) 50.3(2)
2455604.000400 -43.9 -43.9(1) -43.9(1) 34.0 33.6(3) 33.6(2)
2455604.500450 -27.8 -27.9(2) -28.0(1) 13.1 12.4(4) 12.0(2)
2455605.500550 7.8 7.9(2) 8.1(1) -33.3 -32.7(5) -32.4(3)
2455606.000600 23.9 23.7(1) 23.8(1) -54.1 -54.0(2) -54.0(2)
2455606.500650 36.7 36.7(1) 36.7(1) -70.6 -70.6(2) -70.5(2)
2455607.000700 44.9 44.8(1) 44.8(1) -81.3 -81.3(2) -81.3(2)
2455607.500750 47.7 47.7(1) 47.6(1) -84.9 -85.1(2) -85.1(2)
2455608.000800 44.8 44.8(1) 44.8(1) -81.2 -81.3(2) -81.3(2)
2455608.500850 36.6 36.7(1) 36.7(1) -70.6 -70.6(2) -70.5(2)
2455609.000900 23.9 23.7(1) 23.7(1) -54.0 -54.0(2) -54.0(2)
2455609.500950 7.8 7.9(2) 8.0(1) -33.1 -32.6(4) -32.3(3)
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velocities, and is not sensitive to the depths of the lines. Furthermore, the current

implementation of the χ2 version of bayes-todcor does not take into account

the uncertainty of the radial velocities attributed by todcor and consequently the

results are not expected to be as precise.

Example 2

The second example, example2, is a heartbeat with two components of Teff1 =

8000K and Teff2 = 3500K, respectively, in a 30-d orbit. The Gaussian noise added

to the spectra has σ = 0.04 Å. Table 2.3 contains the parameters of the synthetic data

and the corresponding model values determined by both versions of bayes-todcor.

The light and radial velocity curves can be seen in Fig. 2.11. The input and computed

radial velocities are provided in Table 2.4. A section of the fitted spectrum can be

seen in Fig. 2.13 for the χ2 bayes-todcor software. The red envelope depicts the

one sigma range of the model. It can be seen that the black line, the synthetic

data without noise, is completely encompassed in the red envelope, showing that

the model fits within the specified errors. The posterior distributions of the ccr

version of the bayes-todcor software can be seen in Fig. 2.14. All distributions

form well defined Gaussians, showing that the results are fully determined, with the

exception of α, which is very close to zero, as expected.

The comparison of the two versions of software for example2 produced some slightly

unexpected results. While I did not expect that either version would identify the

spectral parameters or radial velocities for the secondary component due to its 1%

light contribution, for the ccr version, the low light contribution of the secondary

component significantly affected the identification of spectral parameters for the

primary component. The results suggest that the spectral parameters for both

components are unreliable for the ccr version, and conversely, the results for both

components are reliable for the χ2 version. Interestingly, the determination of v sin i

is accurate for both methods. Moreover, the radial velocities determined by the ccr
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Figure 2.11: The light and radial velocity curve of the example2 model binary, built
to test the bayes-todcor software. The top panel depicts the light curve generated by
phoebe (red line) and the bottom panel depicts the synthetic radial velocity curves for
the primary (blue line) and secondary (pink line) components. The equally spaced radial
velocity points depict the phases at which synthetic observations were made.

Figure 2.12: The synthetic “observed” and computed radial velocities for the ccr (left
panel) and χ2 (right panel) versions of the todcor software for example2. Top panels:
the todcor computed radial velocity points of the primary (red) and secondary (blue)
components. The synthetic “observed” data are denoted by black points and are joined
by black lines. Lower panels: The residuals of the computed data and their associated
one sigma uncertainties. As expected due to its low light contribution, the secondary
component’s radial velocities have not been accurately reproduced.
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Figure 2.13: A small region of the example2 synthetic spectrum created for testing (blue).
The bayes-todcor best-fit model (red line) and one sigma uncertainty (red envelope,
not visible due to small uncertainties) are over plotted. The synthetic data without noise
(black line) can barely be seen as black line is completely encompassed by the red envelope,
showing that this region completely lies within the one sigma errors. The results from the
χ2 version of the software were used to create this plot.

Table 2.3: Parameters of the example2 synthetic data and corresponding results
for the bayes-todcor program using the ccr function and χ2. The one sigma
uncertainties are given in parentheses. The values highlighted in blue agree with
the predefined parameters to 2σ precision, and those highlighted in red do not agree
within 2σ.

Input ccr χ2

Teff1 8000 7869(61) 7966(31)
Teff2 3500 3892(285) 4014(300)
log g1 4.29 4.14(7) 4.25(4)
log g2 4.90 4.3(6) 3.9(6)
metal +0.3 0.22(4) 0.28(2)
v sin i1 50 49.8(6) 49.6(4)
v sin i2 10 8(7) 7(5)
light 0.001 0.003(1) 0.001(1)
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Figure 2.14: The spectral parameter posterior distributions created using the ccr version
of the bayes-todcor software for example2. Lower left sub-plots: two dimensional cross-
sections of the posterior probability distribution functions for the effective temperatures
Teff1 and Teff2; log g1 and log g2; the metallicity of both components, metal; the stellar
rotational velocities vrot1 and vrot2; and the light ratio, alpha. The crosses show the 1σ
(red) and 2σ (green) uncertainties, and are centred on the minima. Diagonal sub-plots
from top left to bottom right: histograms displaying the probability distribution of each
individual parameter. Upper right sub-plots: the correlations for the two-dimensional
cross-sections mirrored in the diagonal line where 1 is direct correlation and -1 is a direct
anti-correlation. The values above the plot give the mean value and one sigma uncertainty
for each parameter, based on the fitted Gaussian distributions. As expected, due to the
low light contribution of the secondary component, the Gaussian distributions do not fit
the histograms for the secondary component parameters.
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Table 2.4: The radial velocities for the example2 synthetic data and corresponding
results for the bayes-todcor program using the ccr function and χ2. RV1 and
RV2 denote the primary and secondary components, respectively. The one sigma
uncertainties are given in parentheses. The values highlighted in blue agree with
the predefined parameters to 2σ precision, and those highlighted in red do not agree
within 2σ.

RV1 RV2
BJD Synth ccr χ2 Synth ccr χ2

2455600.000000 -11.11 10.7(3) -10.9(2) -2.58 -10(9) -86(31)
2455602.030075 -20.99 -20.6(3) -20.9(2) 63.29 -2(10) -58(8)
2455604.060150 -18.03 -18.3(3) -18.2(2) 43.54 53(20) 65(24)
2455606.015038 -15.42 -15.8(3) -15.5(2) 26.12 25(9) 29(6)
2455608.045113 -13.40 -12.8(2) -13.2(2) 12.66 -54(7) -56(7)
2455610.000000 -11.86 -11.3(2) -11.6(2) 2.40 -55(6) -58(8)
2455612.030075 -10.52 -10.2(2) -10.4(2) -6.56 27(10) 12(9)
2455614.060150 -9.33 -9.3(2) -9.2(2) -14.45 77(13) 77(12)
2455616.015038 -8.28 -8.4(3) -8.3(2) -21.43 60(11) 76(17)
2455618.045113 -7.25 -7.5(3) -7.3(2) -28.31 36(12) 36(8)
2455620.000000 -6.29 -6.5(3) -6.3(2) -34.75 33(11) 36(8)
2455622.030075 -5.29 -5.4(3) -5.2(2) -41.37 27(16) 37(8)
2455624.060150 -4.32 -3.6(2) -4.0(2) -47.84 -47(6) -49(6)
2455626.015038 -3.54 -2.9(2) -3.2(2) -53.08 -48(6) -50(6)
2455628.045113 -3.74 -3.1(2) -3.4(2) -51.74 -48(6) -50(6)
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version of the program were less accurate and less precise than the χ2 version, unlike

the results for example1. I expect that this is a consequence of the cross correlation

of the two model spectra in todcor and believe that one dimensional cross corre-

lation would provide better results for these systems. However, this would require

removing todcor from bayes-todcor and replacing it with a one-dimensional

cross correlation program, and consequently is beyond the scope of this work. As

the agreement of the radial velocity results follows a normal distribution for the χ2

version of the software, the χ2 version is deemed more applicable to systems with

a dim secondary component. More investigation is required to identify the precise

light level where the ccr version of the software is better for radial velocity determi-

nation. However, I suspect that the crossover will occur at ∼3% light contribution

from the secondary, as this is the specified lower limit for detection of the secondary

using todcor.

2.4.2 Comparison of Uncertainties

To combine the uncertainties from todcor with those arising from having a range of

possible models, I elected to create a Gaussian for each mcmc chain that comprised

the radial velocity measurement (for the primary or secondary component) as the

mean and the corresponding todcor uncertainty as the standard deviation. Each

Gaussian was normalised to 1 and the Gaussian distributions were co-added for

each spectrum and each component. On occasion I found that the combination of

model and todcor uncertainties was smaller than the todcor uncertainties alone

(see Table 2.5). This is an effect of adding normal distributions. It is expected,

however, that bayes-todcor will provide improved uncertainty estimates where

the likelihood function is not directly derived from the observed data.
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Table 2.5: A comparison of the radial velocity uncertainties between todcor and
the χ2 bayes-todcor software for example2. RV1 and RV2 denote the primary and
secondary components, respectively. The uncertainty for the primary component
is only marginally increased. However, it is anticipated that the difference will
be more significant for real objects, where the likelihood function and observed
data are less similar. In some cases, the todcor uncertainty is greater than the
bayes-todcor uncertainty (highlighted in red). This is a consequence of combining
Gaussian distributions with similar parameters. The secondary component displays
larger differences, which can be attributed to the low contribution of light from the
secondary component.

bayes-todcor todcor bayes-todcor todcor
RV1 RV1 RV2 RV2
0.169 0.161 30.97 5.97
0.170 0.162 8.04 6.69
0.167 0.162 23.96 6.67
0.170 0.162 5.67 6.47
0.173 0.163 6.99 6.60
0.170 0.161 7.83 6.94
0.163 0.160 8.86 4.48
0.163 0.160 11.76 4.54
0.172 0.163 17.18 6.79
0.169 0.171 8.19 7.25
0.170 0.163 8.46 9.15
0.173 0.165 8.64 9.43
0.170 0.160 5.78 5.47
0.168 0.159 5.88 5.79
0.168 0.159 5.78 5.58
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2.4.3 Spectral Reduction

KIC8164262 is a single lined spectroscopic binary that is discussed at length in

Chapter 4. I obtained two follow-up spectroscopic measurements for this object at

Kitt Peak Observatory using the Echelle spectrograph on the 4-m Mayall telescope

(for more details on the instrument set-up see Chapter 4). These spectra provided

an opportunity to apply the bayes-todcor program to real observations and also

provided spectral parameters and radial velocities that were key to generating the

binary star model for KIC8164262. Before I could apply bayes-todcor to these

data, I first needed to convert them into a usable format. This was done using iraf

(Tody, 1986).

The first step in reducing the spectra is to debias the images. To debias is to remove

the electronic background counts that are inherent to the CCD (and thus not the

observations). At the beginning and end of each observing night, bias frames were

made, each lasting zero seconds such that only the electron count of the CCD was

read out. To remove the average bias from the images, a master bias must be made

that contains the median from all the bias frames for each pixel on the CCD. The

median is used so that cosmic rays do not affect the master bias. This master

bias is then removed from all the science frames and master comparison lamps by

subtraction.

We elected to observe two back-to-back science frames of the same object instead of

a single science frame of equal exposure time to aid with cosmic ray removal. While

this takes longer per object due to read out time, it significantly reduces the time

required to manually remove the cosmic rays. When combining the two back-to-

back science images, I took the mean, but combined this with one of iraf’s cosmic

ray detection algorithms that eliminates the high pixels above a relative threshold.

While a few still remain, this significantly reduces the number of cosmic rays in the

data.
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Figure 2.15: An iraf image of the apertures for KIC 8164262 on night 12. The x-axis is
in pixels and the y-axis is in photon counts. The cross hairs and boxes above each aperture
are adjusted to select the appropriate centre and width of each aperture.

The next step is to remove the flat field image. A flat field is a representation of

the dead pixels and sensitivity variation over the CCD. In our case we elected to

make ten 10-s images of the illuminated screen on the dome at the beginning and

end of each night (also known as dome flats) and average these to create a master

flat-field image. Again, the master flat must also be the median of all the flats taken

in one night to avoid cosmic rays. The profile of the blaze function and spectrum

shape are then modelled, “flattened”, and removed from the master flat so that only

the flat field variations remain. In doing this the spectral image is transformed into

one dimension. This is done so that the sharp aperture profiles, low counts between

apertures and possible shifts (between the master flat and the science frames) do not

affect the flattening of the science frames. The science frame must then be extracted

into one dimension and divided by the “flattened” flat.

To generate a one dimensional spectrum, the apertures must be defined, traced and

removed from the two dimensional images. The first step is to select the apertures

and indicate their centres and widths, as shown in Fig. 2.15. Following this the
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Figure 2.16: Depicted is an iraf image of the binned photons along one aperture and
the polynomial fit (trace) to those photons for a comparison lamp. The points at the ends
are excluded to improve the fit.

apertures must be traced by fitting a high order polynomial along each aperture to

the points representing binned photons (see Fig. 2.16). This is used to adjust the

centres of the apertures at each dispersion point, and must be done to all science

images and calibration lamps.

Once the data are in one dimension, the remaining cosmic rays must be extracted.

This must be done by hand, although there should not be a significant number

remaining due to the merging of back-to-back spectra. The removal only needs

to be done for the science frames as the comparison lamps have significantly more

counts and consequently cosmic rays rarely interfere with the inherent information.

The exposures for comparison lamps are also shorter and so fewer cosmic rays are

incident on the CCD during that time.

The spectra are now clean, but still in pixel space. To convert them to wavelength

space they must be calibrated using the master lamp - the long exposure lamp

taken at the beginning or end of the night, in our case using a ThAr lamp. To
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do this several lines on each aperture of the one-dimensional master lamp must be

identified by comparing the master lamp to a previously calibrated lamp, preferably

from the same instrument. Once a significant number of lines has been identified,

iraf performs a fit to the remaining spectral lines so that the spectrum of the lamp

can be displayed in wavelength space. The next step is to use the master lamp to

identify the lines in the comparison lamp taken with the instrument pointing at the

science object you wish to reduce. This step ensures that the lines, and thus the

wavelength scale, do not suffer from shifts due to the motion of the instrument. The

comparison lamp is calibrated, as this has known and strong emission lines that are

more easily identified than those of an observed spectrum. Once the comparison

lamp with the same pointing as the science frame has been calibrated, it can be

used to calibrate the science frame.

Finally, to produced a normalised spectrum, a function, usually a Chebyshev poly-

nomial, cubic spline or Legendre polynomial, is fitted to the continuum of each

aperture and divided out. The apertures are then in a format that can be merged

within iraf. This provides the final product to which bayes-todcor can be ap-

plied.

2.4.4 Application to Observed Data

In §2.4.1 I determined that both versions of bayes-todcor generated acceptable

results when tested against synthetic data (where the synthetic spectra and observed

spectra were derived from the same models), providing posteriors for the stellar

properties with values all within, or close to one sigma of the predefined values.

When applying this method to real spectra, however, if the observed spectrum

contained lines that weren’t in the line list, I found that both the ccr and χ2 versions

had a bias towards metal poor synthetic spectra. In the ccr version, the reason

for this is that cross correlation is far more sensitive to the presence of extra lines

than it is to their depths, thus by reducing the metallicity the number of lines was
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Figure 2.17: Depicted are the observed spectral data of KIC8164262 (blue), and the fit
to the data using bayes-todcor (red). The thickness of the line denotes the one sigma
uncertainty. It can be seen that there is a large discrepancy in the depths of the lines,
which has been attributed to the use of todcor’s cross correlation function as the fitting
parameter.

also reduced, allowing for higher correlation scores (see Fig. 2.17). The χ2 version

was not impacted as badly; however, it still tended towards lower metallicities to

find a balance between finding the best fit and accounting for the inadequacy of the

likelihood function.

I consequently applied the χ2 version of bayes-todcor to the two reduced spectra

of KIC8164262. I elected to fit the spectra by fixing the metallicity to [Fe/H ] = 0.5.

Table 2.6: Parameters and radial velocities of for KIC8164262 generated using the
bayes-todcor χ2 software for the fix metallicity of [Fe/H ] = 0.5. When using the
log g value from the run with free metallicity, the model would not fit the data as the
amplitude of the periastron brightening was too large. The one sigma uncertainties
are given in parentheses.

Teff1 (K) 6999(83)
log g 1 (dex) 3.9(1)
v sin i ( km s−1) 22.9(9)
alpha 0.002
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Figure 2.18: Depicted are the posteriors generated using the bayes-todcor program
with the two observed spectra of KIC 8164262. I elected to fix the metallicity to
[Fe/H] = 0.5 through consideration of the spectra by eye. Lower left sub-plots: two
dimensional cross-sections of the posterior probability distribution functions for the pri-
mary effective temperature, Teff1; the primary surface gravity, log g1; the primary stellar
rotational velocity vrot1; and alpha, the light ratio. The crosses show the 1σ (red) and
2σ (green) uncertainties, and are centred on the minima. Diagonal sub plots from top
left to bottom right: histograms displaying the probability distribution of each individual
parameter. Upper right sub-plots: the correlations for the two-dimensional cross-sections
mirrored in the diagonal line where 1 is direct correlation and -1 is a direct anti-correlation.
The values above the plot give the mean value and one sigma uncertainty for each param-
eter, based on the fitted Gaussians.
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Figure 2.19: Depicted are the distributions of radial velocities of the primary component
for the first observed spectrum (left) and second observed spectrum (right) of KIC 8164262.
The distributions contain the spread due to the uncertainty in the radial velocity shift and
uncertainty in the template spectrum for 100 iterations of bayes-todcor. The dashed
red line denotes the mean radial velocity in each case.

I selected [Fe/H ] = 0.5, as when fitted by eye, a high metallicity was required to

fit the hydrogen and metal lines simultaneously (spectral fitting by eye was carried

out by S. Murphy). When fixing the metallicity to [Fe/H ] = 0.5, the generated

parameters allowed for a realistic model that fit the data, unlike the models produced

when allowing the metallicity to be a free parameter. The parameters and radial

velocities obtained are provided in Table 2.6 and depicted in Figs. 2.18 and 2.19,

respectively. When allowing the metallicity to be free (for both versions), the log g

became too low to appropriately fit the data: the periastron brightening became

excessively large in the model. Furthermore, as the primary component is a slowly

rotating A star (v sin i = 22.9(9) km s−1), the low turbulence enables the diffusion

of heavier elements to occur and consequently I expect the metallicity to be greater

than solar metallicity.

2.5 Conclusion

The bayes-todcor program has been discussed in its current state, including an

outline of the testing and application to real data. As it stands, there are two ver-

sions, one that uses ccr as the likelihood function and one that uses χ2: both have
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pros and cons. The ccr version has been found to be more applicable to deter-

mining radial velocities in systems where the secondary component has a significant

light contribution, whereas the χ2 version is significantly better at determining ra-

dial velocities for systems where the secondary component has a low light level. The

point at which these two programs cross over has not yet been determined, although

I speculate that it occurs when the light contribution of the secondary is ∼3%, when

todcor is no longer able to detect the secondary component.

I further found that the χ2 version is better at determining the spectral parameters

for both situations, because χ2 is sensitive to all the information in the spectrum,

whereas the ccr function is not sensitive to the depth of the lines (but rather the

placement of the lines). In both cases the sensitivity is problematic with real spectra.

I found that the ccr version tends to lower metallicities to reduce the number of

lines in the synthetic spectra, as fewer well-placed lines provide a better correlation

score than lines that don’t match perfectly (which are expected in real spectra). For

the χ2 version, the sensitivity of the χ2 statistical test to the complete spectrum

makes the results very sensitive to the normalisation, and again the number of lines.

The ideal statistical test would consider the equivalent width of the lines, as well as

the horizontal offset; however, this is beyond the scope of the current work.

The uncertainties provided by bayes-todcor could also be improved by changing

the method for combining uncertainties. For example, combining the uncertainties

from the range of possible models with the uncertainties from todcor using the

sum of squares. It has also been suggested by Mazeh (private communication) that

when using todcor for a single Echelle order it is likely that the uncertainties are

generally underestimated, and only by running todcor on several apertures sepa-

rately and combining their uncertainties, can the true uncertainties be ascertained.

While this is not implemented in the current version of bayes-todcor to obtain

more accurate uncertainty estimates, this would certainly be the next step.

Alongside improvements to the method of combining uncertainties, further tests
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on known, well-studied, standard stars should also be undertaken to determine the

accuracy that can be expected for real observations and to further discriminate

between the uses of the different versions. As todcor is not able to fit single-lined

spectra adequately, the implementation of one-dimensional cross correlation would

likely be a valuable addition. To then finalize the software, all methods should be

combined into a single piece of software and a user adjustable input file made, where

the user can specify if the object is double or single lined, and the method is then

selected on that basis. Other user inputs would include spectral parameter ranges

and file names so that the user can fully command the adjustable parameters, and

accurately determine the radial velocities and spectral parameters of their binary

stars.
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Chapter 3

The Heartbeat Phenomenon

In close binary systems, tidal interactions between the stellar components cause

the stars to become distorted and prolate, with the point of the star extending

towards the companion (see Fig. 3.1). Consequently, as the stars progress around

the orbit, the stellar profile changes, which creates variations in the observed flux

over the orbital period. When combined with the effect of stellar rotation, this

phenomenon is known as ellipsoidal variation. In circular systems the light varies

periodically, twice per orbit. In eccentric systems, such as heartbeat stars, the

same physical principles apply, although due to the varying distance between the

stars over the orbit, the stellar shapes are also constantly changing (see Fig. 3.2).

Figure 3.1: An image of a tidally distorted star in a binary system. Due to the grav-
itational force of the companion, the morphology of the star has become distorted and
prolate with the point facing the companion. Although exaggerated in this image, this
is one of the two primary effects that give heartbeat star light curves their characteristic
shape. Adapted from http://astro.matf.bg.ac.rs/ (the University of Belgrade)
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Star 1 Star 2

Figure 3.2: A schematic diagram of a heartbeat star orbit depicting the stars at two
phases: periastron and a random phase away from periastron. At periastron, due to
the gravitational forces of their companions, star 1 and star 2 become tidally distorted
into a tear drop shape. As heartbeat stars are highly eccentric (e=∼0.3–0.9), the tidal
distortions are significantly stronger during a small part of the orbit and for the remaining
orbit the stars are essentially spherical.

Thus the dominant variation in the light curve, known as the periastron variation

or “heartbeat”, occurs once per orbital cycle, at periastron (the time of closest

approach).

The first heartbeat star, KOI-54 (depicted in the top panel of Fig. 3.3), was dis-

covered using the Kepler satellite (Welsh et al., 2011). Shortly after, many more

discoveries were made, including those by: Thompson et al. (2012), who published a

catalogue of 17 heartbeat stars from the Kepler field; Nicholls & Wood (2012), who

identified seven heartbeat stars in the Large Magellanic Cloud using the OGLE sur-

vey; one by CoRoT Hareter et al. (2014) using the CoRoT satellite; one by Schmid

et al. (2015) using the Kepler satellite; and more recently in the Kepler Binary Star

Catalog 3 paper (Kirk et al., 2016), an extensive catalogue of 173 heartbeat stars,

observed using the Kepler satellite; followed by one analysed by Richardson et al.

(2016) using the most telescope, which was followed up using the chara array.

Fig. 3.3 shows a selection of heartbeat stars from the Kepler sample. These heart-

beat stars were identified through a combined effort from the Heartbeat Star Team

(including myself), the Planet Hunters, the Eclipsing Binary Working Group and

other independent sources, and is the sample upon which this work is based. To

ensure each object in this list is a legitimate heartbeat star, I have personally de-
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Figure 3.3: A selection of heartbeat stars from the Kepler sample. Depicted are the
time series (left panel) and phase folded data (right panel). The phase folded data clearly
show the pulsations that are integer multiples of the orbital frequency: tidally induced
pulsations. KIC8112039 is KOI-54.

trended the data, determined the period and phase plotted each one using kephem

(Prša et al., 2011). I then assessed each phased light curve thoroughly, considering

its morphology, amplitude and period, to determine the nature of the variations. If

necessary, I then requested a second opinion from other members of the Heartbeat

Star Team. While radial velocities would provide a definitive answer, this method

has so far been successful for our purposes.

Our current sample of 173 heartbeat stars identified in the Kepler data1 primarily

contains stars of main sequence spectral type G–A, suggesting that there is a dearth

of main sequence heartbeat stars with temperatures less than 5200K. As demon-

strated by Fig. 3.4, all the cool stars in our sample are red giants with log g ≤ 3.3.

Due to the observational bias of Kepler towards G-type stars (Borucki et al., 2010),

it was expected that our sample would primarily consist of G-type stars. However,

1the full list of Kepler heartbeat stars is hosted at http://keplerebs.villanova.edu
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Figure 3.4: A histogram of heartbeat stars as a function of temperature. The red bars
mark the red giants with log g ≤ 3.3 and the blue bars mark the main sequence stars. The
log g values were taken from the Kepler Input Catalog.

this is not the case, meaning that there is also a more subtle (real) deficiency of

G-type stars, with temperatures less than 6000K, in our sample. As the transi-

tion between convective and radiative outer envelopes occurs at approximately this

temperature (Aerts, Christensen-Dalsgaard & Kurtz, 2010) and the time required

for circularisation (Zahn, 1977) is shorter for stars with convective outer envelopes

(Torres, Andersen & Giménez, 2010), it is possible that the lack of low mass main

sequence stars in our sample is a direct consequence of the relationship between

stellar structure and tidal evolution.

3.1 Tidally Induced Pulsations

When it was first identified in the Kepler data, KOI-54 was speculated to be many

things, including an star orbiting a black hole. After the units were checked and

it was conclusive that the light curve wasn’t upside down, i.e. magnitudes had not

been confused for flux units, the search began for theories of what this object could

85



Chapter 3. The Heartbeat Phenomenon

0.9995

1.0000

1.0005

1.0010

 280  290  300  310  320  330  340  350  360

Re
la

tiv
e 

Fl
ux

Time (BJD - 2455000)
-0.4 -0.2  0  0.2  0.4

Phase

Figure 3.5: The times series (left panel) and phased light curve (right panel) of the
Quarter 5 Kepler data of KIC3965556. The non-coherent nature of the light curve is due
to the presence of spots on one of the stellar components.

be. When efforts were made to model KOI-54 with the elc (eclipsing light curve)

binary modelling code (Orosz & Hauschildt, 2000), it was found that this interesting

light curve was the product of two A stars orbiting each other in a nearly face-on,

highly eccentric, non-eclipsing binary system. However, this did not describe all

the features - the small scale oscillations (∼300µmag) were found to be a prime

example of tidally induced pulsations - pulsations driven at multiples of the binary

orbital frequency.

Tidally excited modes are stellar oscillations that are driven by the tidal force of

the companion star. In a binary system with an eccentric orbit, when a stellar

eigenfrequency is close to a multiple of the orbital frequency, the star can act like

a forced oscillator, which causes an increase in the oscillation amplitude of the

eigenfrequency (relative to non-resonant modes). The signature of tidally excited

modes is thus an oscillation frequency at an integer multiple of the orbital frequency.

Tidally induced pulsations have long been theorised (Zahn, 1975; Goldreich & Nichol-

son, 1989; Witte & Savonije, 2002) as a mechanism for the circularisation of binary

star orbits and the spin up of stars. However, until KOI-54, their presence has only
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Figure 3.6: Upper panel: A phased light curve (black points) of KIC 8164262, a heartbeat
star with a single high amplitude pulsation. The model is overlayed in red and comprises
of the binary features and highest amplitude pulsation. The periastron variation, centred
on zero, has a similar amplitude to the highest amplitude pulsation. Lower panel: the
residuals of the binary model fit to the phased data (black points). Only a fraction of the
orbit is shown for clarity.
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Figure 3.7: Fourier transform of the Kepler light curve of KIC8164262. The data are
from Q1–Q 16. The prominent frequency is the 229th harmonic of the orbital frequency.
Upon prewhitening of this frequency, the features due to the binary orbit are visible.
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been speculated (Maceroni et al., 2009). The unquestionable nature of the tidally in-

duced pulsations in KOI-54 sparked the interest of many theorists and consequently

three publications (Fuller & Lai, 2012; Burkart et al., 2012; O’Leary & Burkart,

2014) appeared discussing the physical nature of tidally induced pulsations and the

relevance of the 90th and 91st orbital harmonics - the two prominent pulsation fre-

quencies in KOI-54. Fuller & Lai (2012) proposed that the two highest amplitude

tidally induced pulsations were excited through a mechanism called resonant lock-

ing (see §3.1.1). Burkart et al. (2012) disputed this on the grounds that the torque

produced by the proposed modes was not enough to provide resonant locks and that

it is unlikely that two resonant locks would occur simultaneously. Later, O’Leary &

Burkart (2014) showed that the 90th and 91st harmonics were likely m = 0 modes

and thus not resonantly locked as suggested by the theory at the time. More recent

theory, however, suggests that resonant locks can occur in m = 0 modes (Fuller, in

prep.). Another interesting observation by O’Leary & Burkart (2014) was that all

of the pulsation modes of KOI-54 are either tidally excited pulsations or their com-

binations, which was later found to be the case for all the g modes in KIC4544587

(Hambleton et al., 2013). More commonly, however, I find self-excited g modes,

spots and p modes (solar-like oscillations and κ-mechanism pulsations) in heartbeat

stars. Fig. 3.5 depicts the times series and phased light curve of a typical heartbeat

star with spots.

In our sample approximately 20% of the heartbeat stars demonstrate tidally excited

modes, ranging from a single mode to a plethora of oscillations excited by tides. This

is commonly the second most dominant feature in the light curve, although there are

cases where the resonance is such that the mode amplitude exceeds the amplitude of

the ellipsoidal variation caused by the tides. Fig. 3.6 and Fig. 3.7 depict the phased

light curve and Fourier transform of KIC8164262. In both figures a single, dominant

frequency (which is the 229th orbital harmonic) is visible.

When considering the Fourier transforms of the light curves in our sample I com-

monly found a double humped distributions of peaks. I determined that this is a
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Figure 3.8: A Fourier transform of KIC3749404 (purple); with the binary model removed
(green); and with the binary model and the oscillations below 0.5 d−1 removed to an am-
plitude of 1 ppm (blue). The blue Fourier transform depicts the tidally induced pulsations.
The sub-plot depicts the window function of each oscillation peak.

consequence of the tidally induced pulsation peaks overlaying the binary star fea-

tures (as both reside at multiples of the orbital frequency). Fig. 3.8 depicts a Fourier

transform with a double humped distribution. The second hump occurs at frequen-

cies where the tidally induced pulsations begin to dominate over the orbital features

(in this case starting with ν/νorb = 17). In our sample we identified the heartbeat

stars that have tidally induced pulsations using an automated pipeline that detects

significant changes in the amplitude trends of the orbital harmonic peaks in the

Fourier transform. Significant changes were detected by smoothing the points in an

frequency-amplitude plot and looking for 3σ deviations from the smoothed curve.

We found that this method worked successfully the majority of the time (∼90%);

however, on occasion the program detection was a false positive (if the periastron

variation mimicked the signal we were looking for). Systems with eclipses were also

problematic for this algorithm as the eclipse feature dominates the Fourier trans-

form and consequently the tidally induced pulsations cannot be detected. I manually

studied each phased light curve to improve our detection rate.

When tidally induced mode frequencies overlap the binary harmonic features the
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phases of the unresolved peaks are a combination of these two effects, which so far

we have been unable to disentangle. For mode frequencies that are well-separated in

Fourier space from the binary harmonic frequencies, however, Burkart et al. (2012)

showed that, in the majority of cases where the forcing of the orbit is not well tuned

to the stellar eigenfrequency, the phase of tidally excited pulsations, δ (in fractional

period), relative to the phase of periastron, ωp, is directly linked to the azimuthal

order of the mode, m:

δ =

(
1

4
+mφ0

)
mod

1

2
, (3.1)

where:

φ0 =
1

4
− ωp

2π
mod 1. (3.2)

When δ = 1/4, a mode will be observed at maximum amplitude and δ = −1/4,

the mode will be observed at minimum amplitude at periastron. Therefore, Eqn 3.1

suggests that for m = 0 tidally excited modes, the maximum or minimum should

occur at periastron. This not only provides the azimuthal order of the tidally excited

modes, but can prove or disprove the tidal nature of an otherwise disputed mode.

While some progress has been made in the field of tidally induced pulsations, there

are still many open questions. Observations of heartbeat stars have proved the

existence of tidally excited modes, but the direct effect of these modes on the binary

star orbital evolution and stellar spin (Zahn, 1975), and rate of apsidal advance

(Claret & Willems, 2002) is still unknown, although observational advances are

being made (see Chapter 5).

Furthermore, it is still unclear if tidally induced pulsations contain information that

can be extracted about internal stellar structure. The reason for the lack of clarity

is that the frequency of a tidally excited mode is always a multiple of the orbital
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frequency. While it has been suggested that deviations from a precise multiple of

the orbital frequency may provide asteroseismic information, the resolution of the

Kepler data after the four year mission, while excellent, is not good enough to yield

such details. Burkart et al. (2012) recently showed that the phases of tidally excited

modes are related to the azimuthal order of the pulsation (with a slight dependence

on the tuning of the mode), as shown in Eqns 3.1 and 3.2, and that the mode

amplitude is believed to be caused by two factors: the closeness to resonance and

the ratio of the mode frequency to the orbital frequency. Whether we can utilize

our knowledge of the mode amplitudes or the presence of some excited modes and

the lack of others to yield fundamental stellar parameters is still unknown.

3.1.1 Resonance Locking

The theory of resonantly excited modes – eigenmodes in resonance with the orbit

– was studied long before the discovery of heartbeat stars (Witte & Savonije, 1999,

2001; Kumar, Ao & Quataert, 1995). Due to the predicted transient nature of

resonant modes, it was not anticipated that they would be observed. However,

KOI-54 and KIC8164262 both have high amplitude modes that are highly stable

and cannot be not easily explained by the forcing of the eigenfrequencies alone.

Resonance locking has been proposed as a mechanism that can “lock” a stellar eigen-

frequency and the orbit in resonance, thus extending the lifetime of the resonance

and making observations of tidal resonance possible.

As two stars in an eccentric configuration orbit each other, the stellar orbit evolves

through the transfer of angular momentum, causing the orbit to get smaller and the

stars to spin faster. A consequence of the decreasing orbit size is that the orbital

period decreases. In parallel, the increase in the stellar rotational velocity causes

the stellar eigenfrequencies to change. Resonance locking predicts that, when in

resonance, these two effects happen on an equal time scale such that changes in

the stellar eigenfrequencies occur simultaneously with changes in the orbital period.
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Figure 3.9: Depicted are the identified modes (black stars) of KOI-54 and the model
predictions for the average expected amplitude (lower solid line) for forced modes as a
function of frequency, the upper bound for tidally excited modes (upper dashed line). The
modes present outside the solid line are believed to be travelling waves. The red regions
show the model predictions for prograde resonantly locked modes. It can be seen that the
90th and 91st harmonics are just touching the red region. Figure provided by J. Fuller;
private communication.

Thus rather than passing through resonance, the tidally induced pulsations are

locked in resonance with the orbit.

Using forced pulsation models we are able to predict the amplitude and frequency

of resonantly locked modes for a star with a specific Teff , Radius and Mass, com-

bined with the orbital geometry of the binary. For the two stars that we believe to

have resonantly locked modes, KOI-54 and KIC8164262, our current predictions are

consistent with the believed resonant modes that we find. Figs 3.9 and 3.10 depict

the identified modes (black stars) for KOI-54 and KIC8164262, respectively. The

lower solid line shows the average expected amplitude for forced modes as a function

of frequency, and the upper dashed line shows the upper bound for tidally excited

modes (that are standing waves). The red regions show the model predictions for

prograde resonantly locked modes, and the blue regions show the predictions for

retrograde resonantly locked modes. It can be seen that in both cases the high-
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Figure 3.10: Depicted are the identified modes (black stars) of KIC 8164262 and the
model predictions for the average expected amplitude (lower solid line) for tidally excited
modes as a function of frequency, the upper bound for tidally excited modes (upper dashed
line). The two lowest frequency points (black stars) depicted are not orbital harmonics,
but are the signature of rotation from spots. The red and blue regions show the model
predictions for prograde and retrograde resonantly locked modes, respectively. It can be
seen that the highest amplitude harmonic is overlaying the red region. Figure provided
by J. Fuller; private communication.
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est amplitude modes overlay the red regions suggesting they are resonantly locked

prograde modes.

3.2 The Bayesian Approach

As the parameter space of binary star systems is highly irregular with many de-

generacies and correlations, I elected to use Markov chain Monte Carlo simulations

to determine the posterior probability distributions of the parameters that describe

the system (see later in this section for a list of parameters). This enables the visu-

alisation of the correlations between different parameters and the uniqueness of the

results to be easily assessed, whilst offering robust uncertainty measurements. To

accomplish this I combined phoebe with the emcee, a python implementation of

the affine invariant ensemble sampler for Markov chain Monte Carlo (mcmc) pro-

posed by Goodman & Weare (2010) and written by Foreman-Mackey et al. (2013).

mcmc explores the binary parameter space using a set of Markov chains. In all

cases I found 128 chains to be optimal - the minimum requirement is twice the

number of parameters, however more chains enable the parameter space to be more

thoroughly explored. When running the software, these chains begin with random

distributions based only on their prior probability distribution functions and the

initial model. They move through the parameter space by assessing their posterior

probability distribution function at each point and then selecting a new position

based on the position of another chain. The step size is based on the covariance of

the two chains. If the move increases the posterior probability distribution function

then it is accepted, if the move decreases it, then the move may be accepted (to fully

explore the phase space). The acceptance is dependent on the ratio of the old to new

probability and the acceptance criteria specified by the user (see Chapter 2 for an

extended discussion on Markov chain Monte Carlo techniques). During the initial

burn-in time the Markov chains merge towards their equilibrium position. After this
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period the chains sample the phase space in terms of their posterior probability dis-

tribution functions. The statistics of a large number of iterations provide probability

distributions for the model parameters. The number of iterations required depends

on the degeneracy of the solution, the number of parameters and the number of data

points. When running todcor I found that ∼1000 iterations were necessary, which

take approximately 6-24 hr (dependent on the number of spectra and the bin size

of the spectra) on 2 processors. When generating a binary model for KIC3749404

with 7 pulsations I found that ∼100 000 iterations were necessary with each iteration

taking ∼6min on 48 processors. The causes of the long computation times involved

in binary star modelling are the incorporation of phoebe, and the large number of

checks and computations involved alongside the large number of data points and

parameters (∼28 parameters for KIC3749404 with 7 pulsations).

Before starting the mcmc computation, an initial binary star model in phoebe is

required. Once a binary star model that is relatively close to the optimal model

has been generated, the important parameters that influence the binary fit must be

determined. This can be done by adjusting the parameters and seeing their effect

on the light and radial velocity curves. For heartbeat stars the main parameters

that are involved in the fitting process for light curves are:

• orbital phase shift: the shift required to keep the zero point in time at zero

phase when using phased data;

• eccentricity;

• argument of periastron;

• orbital inclination;

• stellar luminosity ratio;

• effective temperatures;

• stellar potentials or radii;

• gravity darkening exponent, β, for the law F ∝ gβ, where F is the stellar

flux and g is the local gravity (required for both stars if the light from the

secondary is significant),
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• stellar albedos, which describe the amount of reflected light (both if the light

from the secondary is visible);

• the ratio of the stellar rotational to orbital period (both if the light from the

secondary is significant);

If eclipses are present, the light curve contains information about the temperature

ratio, in which case it is usual to fix the temperature of the primary to that de-

termined through spectral fitting and fit the secondary temperature. If there are

no eclipses, unless Doppler boosting (explained in §3.3.2) plays a significant role, it

is preferable to fix both temperatures to those determined through spectral fitting.

For the latter five parameters listed above, the contribution from the secondary can

be ignored if the light of the secondary is not visible (i.e. L2 < ∼3% of the total

light and the secondary component is not visible in the spectra or eclipses). For

radial velocity curves the following parameters are important:

• orbital phase shift (when the radial velocities are phased);

• eccentricity;

• argument of periastron;

• inclination;

• semi-major axis;

• mass ratio;

• gamma velocity.

Once the parameters that require adjusting have been identified, the ranges of the

priors for each of these parameters must be determined. These are the ranges from

which the initial guesses of the parameters can be drawn and should be determined

by adjusting the parameters until the model becomes obviously wrong (taking into

account possible degeneracies). If there is any prior knowledge pertaining to a

parameter, i.e. temperatures from spectra, then, if fitting temperatures, a Gaussian

prior can be selected where the peak of the Gaussian is the previously obtained

value, and the previously determined uncertainty equals one sigma for the Gaussian.
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Figure 3.11: The probability as a function of iteration for the model of KIC 8164262,
where each colour represents a different chain. This plot is used as a first gauge to
determine if the model has converged. From consideration of this plot alone, we can
see that the model has not converged as the likelihood value is still rapidly decreasing,
as shown in the insert. Furthermore, as we have used the χ2 test, we would expect
the probability to equal −0.5N at the time of convergence, which is ∼1000. This plot
consequently indicates that the number of iterations required to obtain convergence for
this model is large, or alternatively, that the uncertainties are underestimated.

Otherwise, a flat uniform prior can be used.

Once the model is running, it is necessary to check if the model has or is still in the

process of converging. Fig. 3.11 shows a plot of the likelihood value as a function

of iteration, which is very instructive when determining convergence. Initially the

distribution of chains is very sporadic as the models have randomly selected param-

eters based on the prior distributions. As the number of iterations progresses, the

chains begin to converge. The first test for model convergence is to see if the like-

lihood is still increasing with iteration. If the model has converged, the likelihood

of the chains will no longer be increasing and will oscillate around a central point

with a Gaussian distribution. Once it appears that the likelihood has plateaued, the

next test is to look at the variation of parameters as a function of iteration. It is
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possible that the parameters are still oscillating between two values or have not yet

converged, and that the change in the likelihood is small enough to go undetected

in the likelihood plot alone. In this case the model still requires further iterations.

When using the χ2 test, the final value of the log likelihood should approximately

equal −0.5N where N is the number of data points. If not, it is possible that the

uncertainty ascribed to the data points is incorrect or the likelihood function is not

optimal.

Once the chains have converged and remained that way for >150 iterations, the con-

verged chains can be used to determine the posteriors. The posterior distributions

of the parameters can be viewed in two ways: as histograms showing the probability

distribution or as two-dimensional cross sections of two parameters. Fig. 3.12 shows

the posterior distributions of the binary star KIC8164262. The posteriors generated

through mcmc are well determined, shown by their apparent Gaussian distributions,

thus the model is well constrained.

To fully visualise the model, I plot the mean model as a line (overlaying the data

points), with the one sigma spread from the posteriors plotted as an envelope around

the model (see Fig. 3.13). This tool allows the visual inspection of the model and

the uncertainties. It is expected that the 1σ envelope will overlay the data in places

where the mean model does not. If this is not the case it highlights problems with

the solution, often suggesting inadequate likelihood function.

3.3 Additional Functions for Generating Heart-

beat Star Models

For the creation of heartbeat star models, it was necessary to add new function-

ality to the phoebe modelling suite for three reasons: 1) to add new physics not

previously available; 2) to add constraints; and 3) to reduce the number of fitted
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Figure 3.12: Depicted are the posteriors generated using the phoebe code combined
with mcmc for KIC8164262. Lower left sub-plots: two dimensional cross-sections of the
posterior probability distribution functions for the inclination, incl (◦); argument of peri-
astron, ω (rad); eccentricity, ecc; mass ratio; semi-major axis, sma; systemic velocity, vga
(km s−1); primary and secondary radii (R⊙); and the amplitude (µmag) and phase (rad)
of the primary pulsation. The crosses show the 1σ (red) and 2σ (green) uncertainties, and
are centred on the minima. Diagonal sub-plots from top left to bottom right: histograms
displaying the probability distribution of each individual parameter. Upper right subp-
lots: the correlations for the two-dimensional cross-sections mirrored in the diagonal line
where 1 is direct correlation and -1 is a direct anti-correlation. The values above the plot
give the mean value and one sigma uncertainty for each parameter, based on the fitted
Gaussians.
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Figure 3.13: Upper panel: a model for KIC 8164262 (black line) with one sigma uncer-
tainty envelope (red) and phased Kepler data with per-point uncertainties (blue points).
I selected an initial model before full convergence was obtained, as the one sigma envelope
is larger during this stage and thus more easily visible. Lower panel: the residuals of the
fit to the data.
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parameters by calculating parameters. An example of the software that interfaces

with the phoebe code and includes the additions discussed in this Chapter can be

found in AppendixB. Primarily, to fit heartbeat stars accurately, it was necessary

to include pulsations in the model. Furthermore, due to the high radial velocities

commonly achieved by heartbeat stars, and the high precision of the Kepler data,

Doppler boosting was also required in the modelling software. When combining

mcmc and phoebe, the number of parameters that require fitting for each com-

putation is extensive. As the computation time scales linearly with the number of

fitted parameters, it is preferable to compute parameters as opposed to fitting them,

where possible. Furthremore, when computing parameters a more precise value is

obtained and so a function to calculate the luminosity has been added. Finally,

as heartbeat stars are generally without eclipses, extra constraints are required to

generate a robust fit that combines the information from the Fourier transform and

spectroscopy, with the light and radial velocity curve fits. For the purpose of mod-

elling KIC8164262, I placed constraints on the rotation from the rotational signature

in the Fourier transform. For the purpose of modelling all heartbeat stars, I imposed

restrictions on the stellar potentials so that they do not overflow their Roche lobes,

and added the log g value determined through spectroscopy as a known constraint.

The details of all the additional functions are listed in this section.

3.3.1 The Implementation of Tidally Induced Pulsations

As mentioned earlier in §3.1, tidally induced pulsations are multiples of the orbital

frequency. This makes modelling them easier than traditional pulsations for two

reasons: it enables the frequency to be defined as a multiple of the orbital frequency,

removing the need to fit it; and as the pulsations repeat precisely every orbit, it

allows for the model to be generated in phase space which commonly involves less

data and consequently shorter computing times. The addition of pulsations into

the model has been done by multiplying sine waves, that have defined frequencies of
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Figure 3.14: Top panel: examples of one (blue) five (red) and three higher frequency
(green) sine curves with frequencies that are multiples of the orbital frequency. Bottom
panel: the curves from the top panel multiplied with an example heartbeat star model.
The colours correspond to the curves in the top panel and the black curve represents the
light curve model with no pulsations.

N×νorb, with the light curve model, and fitting the phase and amplitude. Pulsations

are a multiplicative feature as they are an intrinsic part of the light curve.

Fig. 3.14 depicts examples of the sine waves generated by the function (top panel)

and the same examples multiplied by a model of a heartbeat star (bottom panel).

While the addition of sine waves enables the light curve to be modelled successfully

and allows the phases and amplitudes of those pulsations to be correctly determined,

this is a simple approach to an advanced problem. Since pulsating stars deform and

change temperature as they pulsate, the complete treatment of pulsations would

include the adjustment of the log g and effective temperature of the individual el-

ements on the stellar surface. This, however, is a significantly harder problem for

heartbeat stars than for low eccentricity binary stars and single stars, as the tidal

deformation of the stellar components at periastron renders spherical harmonics no

longer applicable to the problem. As a developer of phoebe 2.0 a long term goal is
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to add the thorough treatment of pulsations to single and binary star models, and

eventually heartbeat stars.

3.3.2 Doppler Boosting

Doppler boosting is a phenomenon that comprises three effects:

• The increased arrival rate of the stellar photons as the star moves towards the

observer and the decreased arrival rate as the star moves away;

• The Doppler shift of the spectrum as the stars move towards and away from

the observer;

• The relativistic beaming or aberration of the photons as the star moves towards

the observer.

It was originally suggested by Shakura & Postnov (1987) that Doppler boosting

could be visible in binary stars, and that “Different modulation amplitudes of emit-

ted flux should be seen dependent on the geometry of the emitting object”. Loeb

& Gaudi (2003) and Zucker, Mazeh & Alexander (2007b) predicted that Doppler

boosting would be seen in Kepler light curves and as heartbeat stars have high ve-

locities at periastron, it is no surprise that Doppler boosting has been detected in

heartbeat stars. Doppler boosting manifests itself in the light curve as an asymmet-

rical feature that mimics the inverted radial velocity curve of the stellar component

from which it comes. If both stars are of similar mass and luminosity, the radial

velocity curves are approximately equal, thus the contributions of the two compo-

nents cancel out. However, if the mass ratio is far from one, the more massive, more

luminous star will dominate the effect. To study this effect it is preferable to have

a mass ratio small enough that one star dominates the light curve, although large

enough that both stars contribute to the light curve, i.e. ∼0.5. Also, the more the

direction of motion is aimed towards the observer, the larger the radial velocity and
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thus the larger the amplitude of the effect. Therefore, orbital configurations with in-

clinations close to 90◦ produce the largest effects and thus provide more constraints

on the model.

For the purpose of modelling, there are two methods that are possible:

• To constrain the mass function or masses of the stellar components using

Doppler boosting. This requires knowledge of the sizes and temperatures of

the stars.

• To determine the temperatures given the radial velocities and radii of the stars.

In our models, during each mcmc iteration I add the effect of Doppler boosting

given the newly determined stellar parameters. Therefore, if the temperatures are

fixed, this will help constrain the masses and sizes of the stars, and if the masses are

determined by radial velocities, Doppler boosting will help constrain the tempera-

tures. I adjust the model flux based on the following equation adapted from Eqn 2

in Bloemen et al. (2011) to account for Doppler boosting in both components:

Fλ = F0,λ

(
R
(
1−B1

vr,1
c

)
− (1−R)

(
B2

vr,2
c

))
, (3.3)

where Fλ is the observed flux, F0,λ is the emitted flux, R is the light ratio, vr,1

and vr,2 are the radial velocities of the primary and secondary components. B1

and B2 are the passband-weighted boosting factors, where B = 5 + d lnλ (Loeb &

Gaudi, 2003). The boosting factors are determined using look-up tables, which are

specific to the Kepler passband and are a function of Teff and log g. Fig. 3.15 depicts

a heartbeat star light curve before (black line) and after (red line) the addition

of Doppler boosting (top panel), the boosting signal and the primary star’s radial

velocity curve are shown in the middle panel and lower panel, respectively. As the

light from the secondary component is less than 2%, the Doppler boosting follows

the inverse profile of the radial velocity curve of the primary component, as expected.
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Figure 3.15: Top panel: heartbeat star light curve with (red) and without (black) Doppler
boosting. Middle panel: the Doppler boosting signal (red) that has been applied to the
light curve in the top panel. Lower panel: the primary star’s radial velocity curve. Only
the primary component’s radial velocity curve is displayed as the light from the secondary
is less than 2%, thus the contribution of the secondary component to the Doppler boosting
is insignificant.
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Figure 3.16: Top panel: heartbeat star light curve of two identical components with
(red) and without (black) Doppler boosting. Middle panel: the Doppler boosting signal
(red) that has been applied to the light curve in the top panel. Lower panel: The radial
velocities of the primary and secondary components (blue and green dashed lines), and
summed radial velocities of the primary and secondary component (black line) . The
identical nature of the primary and secondary components causes the total motion of
the two components to be zero and consequently I expect Doppler boosting to have zero
contribution to the light curve, as found.

To further test our program I generated a model with two identical stellar com-

ponents. Fig. 3.16 depicts the light curve of the identical components with (red)

and without (black) beaming (top panel), the beaming function is depicted in the

middle panel and the added radial velocity curves of the primary and secondary

components in the bottom panel. By adding the radial velocity curves I show that

the total motion of the primary and secondary components cancel. I consequently

expect that the contribution of Doppler boosting to be zero, which is shown in the

middle and upper panels.
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Figure 3.17: A graphical representation of the true anomaly υ, eccentric anomaly E and
the mean anomaly M . The star is at point P on the orbit, travelling in a counter-clockwise
direction around the focal point S. Point Q is the vertical projection of the star’s position
on the auxiliary circle. The angle ROS is proportional to the time elapsed since the star’s
passage through periastron.

3.3.3 Phase Shift

In a binary system whose ephemeris is not changing in time due to mass loss or

apsidal motion, the two important parameters that define the ephemeris are the

zero point in time and binary star period: the sidereal period of the two stellar

components. If the data are transformed from the time to the phase domain, an

extra parameter needs to be introduced: the phase shift. This convenience parameter

is used to horizontally shift the position of a prominent feature, in our case the peak

or dip of the ellipsoidal variation, to the location of zero phase. More specifically,

when we adjust the argument of periastron and/or eccentricity, the model shifts

horizontally such that the peak/dip of the periastron variation is no longer at zero

phase. By applying a phase shift to the model, we are then able to align the model

with zero phase, and consequently with the data.
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With eclipsing binaries, the phase of superior conjunction coincides with the phase of

the primary eclipse. Consequently, if the zero point is defined as the time of primary

eclipse, the phase shift can be determined using the phase of superior conjunction.

To determine the phase of superior conjunction, the first step is to calculate the

true anomaly at superior conjunction, υSC. The true anomaly is the angle between

periastron and the location of the star on the orbit, with respect to the focus (closest

to the argument of periastron) of the orbital ellipse (see Fig. 3.17). When the star

is at superior conjunction this angle is υSC :

υSC =
π

2
− ω, (3.4)

where ω is the phase of periastron. If the sign of ω is changed, the result is the true

anomaly at inferior conjunction.

Using the true anomaly at superior conjunction, we can then determine the eccentric

anomaly at superior conjunction, ESC . The eccentric anomaly is the angle between

periastron and point Q on the auxiliary circle, relative to the center of the ellipse

in Fig. 3.17. By incorporating the true anomaly at superior conjunction into our

equation, we find the eccentric anomaly at superior conjunction:

ESC = 2 arctan

(√
1− e

1 + e
tan
(υSC

2

))
. (3.5)

Once the eccentric anomaly at superior conjunction has been calculated, we can

determine the mean anomaly at superior conjunction, MSC . The mean anomaly is

the representation of the passage of time as the stars progress around the orbit. It

can be visualised by considering a point that is steadily moving around the auxiliary

circle, and the angle made between this point, the center of the circle and the point

of periastron:
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Figure 3.18: Left panel: the computed values of the mean anomaly at superior conjunction
as a function of eccentricity and argument of periastron. Right panel: the computed
values of the phase of superior conjunction as a function of eccentricity and argument of
periastron.

MSC = ESC − e sin(ESC). (3.6)

As Kepler’s second law predicts, the area swept out by an object moving in an

elliptical orbit increases uniformly with time. Thus, using the mean and eccentric

anomalies, we can then determine the phase of superior conjunction:

φSC =
MSC + ω

2π
− 1

4
(3.7)

Fig. 3.18 depicts the variations of the mean anomaly at superior conjunction and

the phase of superior conjunction as a function a eccentricity and argument of peri-

astron. Both the mean anomaly at superior conjunction and the phase of superior

conjunction occur at phase zero for low eccentricities and are symmetrical about

π rad on the y-axis. However, the mean anomaly at superior conjunction and the

phase of superior conjunction are mirrored about π rad on the y-axis.

Initially, I presumed that, as the phase of either inferior or superior conjunction

(depending on the object) is closely aligned with the dip of the periastron variation,

I would be able to calculate the change in phase of superior/inferior conjunction and
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Figure 3.19: Depicted are 9 binary star models with eccentricities between ecc = 0.82 −
0.88 and phase of periastron between ω = 1.0 − 2.0. The phase of each model has been
calculated by considering the shift of the phase of superior conjunction. If the phase shift
of the dip in the periastron variation moved precisely as the phase of superior conjunction,
all models would be precisely aligned at zero phase. However, this is not the case and so
we are not able to utilize this method for determining the phase shift of heartbeat stars.

apply this change to our model to keep the periastron variation at zero phase. After

applying this method to our code, however, and performing extensive tests, I found

that, although this is a good approximation, there is a slight deviation between the

shift of conjunction and shift of the periastron feature. Consequently, I was unable

to utilize this relationship. Fig. 3.19 represents 9 models with eccentricities between

ecc = 0.82 − 0.88 and the argument of periastron defined between ω = 1.0 − 2.0

that have been shifted using the aforementioned method. While the dip of the

periastron event is approximately zero for each model, the deviation is too large for

the accuracies I require in the modelling process. Consequently, the phase shift is

specified as a prior in our models.

3.3.4 Passband luminosity

The passband luminosity of the two stellar components determines the the vertical

offset of the model from the data. Although phoebe accurately calculates the

passband luminosity, as I apply additional effects to our models such as Doppler

boosting, it is necessary that I calculate the passband luminosity with my own code
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after the effects have been added.

At each iteration, the adjustment of parameters changes the luminosity of the stellar

components, shifting the model vertically with respect to the data. To re-normalise

the model, I use the method of least squares to determine the vertical offset, α:

α =

∑
data×model∑

data2
, (3.8)

The value of alpha (the y-offset) is then combined with the unnormalised primary,

L0,1, and secondary, L0,2, component luminosities to determine the values of the

normalised primary and secondary luminosities:

L2 =
α(L0,1 + L0,2)

L0,1

L0,2
+ 1

, (3.9)

L1 = L2
L0,1

L0,2
. (3.10)

From these values the luminosity ratio, R, is then computed, which is required for

the computation of Doppler boosting (cf. 3.3.2) and is an informative parameter

regarding the system:

R =
L1

L1 + L2
. (3.11)

3.3.5 The Stellar Equipotential

In 1849 Edouard Albert Roche (1820-1883) provided a formalism that describes

equipotential surfaces. This formalism is used to describe stellar geometry, based on

the gravitational potentials of the two stellar components and the centrifugal force.

The Principle of Equipotential Surfaces states that the morphology and character-
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istics of both stellar components are defined by the equipotential on the surface. As

the Roche geometry is based on this principle, it inherently assumes:

• The stars are point masses surrounded by a massless equipotential envelope;

• The stars act as rigid bodies and any rotation is uniform across the star (i.e.

no differential rotation);

• Any perturbations, such as stellar pulsations, have negligible periods with

respect to the orbital period, i.e. the stellar shape is fully defined by the

instantaneous force-field.

All of these assumptions are violated by most binary systems, but particularly by

heartbeat stars and especially those with strong, long-period pulsations. However,

the current state of computing does not allow for the hydrodynamical simulations (or

similar) of the individual stars in a binary system. And so, for now, it is necessary

to use the assumption of equipotential surfaces.

Kopal (1959) provided the first description of the stellar potential, Ω, based on the

Roche geometry, also known as the modified Kopal potential:

Ω =
1

ρ
+ q

(
1√

ρ2 − 2ρλ+ 1
− ρλ

)
+

1

2
(1 + q)(1− ν2)ρ2, (3.12)

where ρ is the stellar radius in units of the semi-major axis, q is the mass ratio and

λ and ν are the direction trigonometric functions that are from the use of spherical

coordinates: x= r sin θ cosφ=λ r and z= r cos θ= ν r. In this framework the centre

of the co-ordinate system is at the centre of the primary component with the x-

axis passing through the centre of the secondary component and the y-axis in the

direction of the primary component’s pole. This version of the stellar equipotential

applies to non-rotating stars in circular orbits. Wilson (1979) later extended Kopal’s

work to systems with rotating components in eccentric orbits:
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Ω =
1

ρ
+ q

(
1√

δ2 + ρ2 − 2λδρ
− λρ

δ2

)
+

1

2
F 2(q + 1)ρ2(1− ν2), (3.13)

where δ is the instantaneous separation between the stellar components in units

of the semi-major axis and F is the spin-to-orbital frequency (also known as the

syncronicity parameter). For the equipotential of the secondary component I must

change the co-ordinate system so that it is centred on the secondary star. The

secondary potential, Ω′, is related to the primary star’s potential, Ω by:

Ω′ =
Ω

q′
+

q′ − 1

2q′
, (3.14)

where q′ = 1/q. In the case of KIC5006817 (cf. Chapter 6), the primary stellar

radius was known through asteroseismology, thus I used it as a constraint for the

binary star model. As phoebe uses the stellar potential value at periastron as an

input, it was necessary to create a function that could read in the stellar potential,

eccentricity, synchronicity parameter and mass ratio, and determine the primary star

radius in units of the semi-major axis. To do this I selected the Newton-Raphson

method, as it is not possible to solve Eqn 3.13 for the radius directly. As the Newton-

Raphson method identifies the roots of an equation, I rearranged Eqn 3.13 so that I

could determine the value of ρ for our given potential when f(ρ) = 0, ρ:

f(ρ) = −Ω+
1

ρ
+ q

(
1√

δ2 + ρ2 − 2λδρ
− λρ

δ2

)
+

1

2
F 2(q + 1)ρ2(1− ν2). (3.15)

The Newton-Raphson method works by selecting an initial guess, ρ0, that is rela-

tively close to the actual value of the primary radius; the tangent of the function

f(ρ0) is then calculated for the estimated value of ρ; and a new value for ρ is found

by subtracting the tangent from the initial guess:
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ρnew = ρ0 −
f(ρ0)

f ′(ρ0)
. (3.16)

This process is then repeated and each time ρ0 is replaced with the newly obtained

value of ρ. For our purposes I continued the repetitions until a tolerance of 10−6

was reached by finding the difference between the current and previous values of ρ.

To determine the tangent, I require the derivative of the function I am trying to

solve:

∂f(ρ)

∂ρ
= − 1

ρ2
+q

(
(λδ − ρ)(δ2 + ρ2 − 2ρλδ)−3/2 − λ

δ2

)
+F 2ρ(1+q)(1−ν2). (3.17)

When testing our methods I inserted the newly determined value of ρ into Eqn 3.13

to ensure the original potential was returned with the correct level of precision.

For more recent modelling efforts, i.e. KIC3749404 and KIC8164262 (Chapters 5

and 4, respectively), I elected to create a function that takes the radii as inputs

and converts them into stellar potentials, which phoebe requires as input, so that

our priors are more intuitive. Included in this upgrade is the determination of the

critical potential (cf. §3.3.6). Now, the full range of plausible radii, eccentricities,

mass ratios and spin-to-orbital period values can be specified without the concern

that it will cause the Roche lobe to overflow due a non-ideal combination. The

consequence of this is that I can explore more extreme areas of the parameter space

that are necessary for heartbeat stars, without causing the phoebe software to

crash. Fig. 3.20 depicts the values of the stellar potential as a function of radius for

given values of e, q and F , for both the primary and secondary components.
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Figure 3.20: The stellar potential as a function of radius for the primary (upper panels)
and secondary (lower panels) components. From left to right, the panels depict how vary-
ing the eccentricity, mass ratio and spin-to-orbital period affect the relationship between
the potential and the stellar radius. In these diagrams the eccentricity, mass ratio and
spin-to-orbital period are fixed to 0.5, 0.5 and 1.0 respectively, when they are not a plotted
variable. The semi-major axis was set to sma = 100R⊙ for all plots.
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Figure 3.21: A schematic diagram of a circular binary star with the two stars, M1 and
M2, the center of mass and the five Lagrangian points clearly marked. Adapted from Prša
(2005).

3.3.6 The Critical Potential

In any orbital configuration of two bodies there are five points, known as Lagrangian

points, at which the net gravitational and centrifugal forces on a test particle is zero

(in an accelerated reference frame). In a co-ordinate system that is centred on the

primary star, where the x-axis points to the secondary star and the y-axis points

from the center to the pole of the primary star, there are three Lagrangian points

along the x-axis (L1, between the two stars; L2, behind the secondary star; and L3,

behind the primary star) and two points that form equilateral triangles with the two

stars (L4 and L5). Fig. 3.21 depicts a schematic diagram of a circular binary with

the five Lagrangian points clearly marked.

If the equipotential of a star equals the potential at L1, the consequence is that the

star fills its Roche lobe. By the same logic, if the equipotential of a star is smaller

than the potential at L1, material will flow from the star onto its companion. If the

stellar equipotential is smaller than the potential at L2 (an unphysical case), the

secondary star will form a dimple in the back, directed away from its companion. In
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all cases the stellar equipotential must be larger than the potential at L2, as being

smaller creates an unphysical system. Furthermore, if there is no suggestion of mass

transfer between the stellar components, for example flickering in the light curve or

Hα emission lines in the spectra, and if the object is not overcontact binary, then

there is an additional constraint that the equipotential of the star must be larger

than the potential at L1 (which is always larger than L2).

Heartbeat stars are extreme systems. Consequently, at periastron, it can happen

that one or both of the stars’ equipotentials are close to the potential at L1. If it is

known that an object is not undergoing mass transfer (by studying the spectra), we

can apply the constraint that the star’s equipotential must be larger than the stellar

potential at L1. Consequently, this will also mean the stars’ potentials is larger than

the potential at L2, which will prevent the phoebe software from crashing.

To compute each of the three Lagrangian points along the x-axis the same method-

ology is applied; however, three different initial guesses must be used to determine

the different roots. First, the force at a given distance, x (our initial guess), from the

central star is calculated. This is equal to the derivative of the potential (Eqn 3.13):

∂Ω

∂x
= − x

(x2)1.5
− q(x− d)

((x− d)2)1.5
− q

d2
+ F 2x(1 + q), (3.18)

where q is the mass ratio (with the mass of the star at the center of the co-ordinate

system in the denominator), F is the ratio of the stellar rotational to orbital period

and d is the instantaneous separation of the two stellar components normalised to

the semi-major axis. As I am considering the entire orbit, I selected the point where

the stellar equipotential is smallest - periastron. Thus d = 1 − e where e is the

eccentricity and d is in units of the semi-major axis.

As we cannot solve for x analytically, again it is necessary to employ a method of

minimisation. Furthermore, since we are looking for the value of x when ∂Ω/∂x = 0,

I again selected the Newton-Raphson method, which is applied to functions where
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Figure 3.22: The critical potentials of the primary (blue line) and secondary (red line)
components at L1 as a function of eccentricity, mass ratio and spin-to-orbital period for
sma = 100R⊙. When not acting as the independent variable, the parameters e, q and F
are set to 0.5, 0.5 and 1.0 respectively.

the solution to the equation we are solving is a root: f(x) = 0. I selected a tolerance

of 10−6 and computed the tangent to the gravitational force using Eqn 3.16. To do

this it is required that the root of the partial differential of the gravitational force

be calculated:

∂2Ω

∂x2
= 2x−4 + 2q(d− x)−4 + F 2(1 + q). (3.19)

Once the value of x is determined it is inserted into Eqn 3.13, the potential equation,

and the critical potential is determined at the Lagrangian point corresponding to x.

To distinguish between the three Lagrangian points the initial guess is altered. To

determine x at L1, an initial guess of x0 = d/2 (half the distance between the two
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stars) is appropriate. Good initial guesses for L2 and L3 are dependent on the force

function, ∂Ω/∂x, which depends on parameters e, q (the mass ratio) and F . If the

initial guess is far separated from the real value, the solution tends to that for L1.

If it is necessary to calculate L2, for example with contact systems or systems with

mass transfer, I determined that starting with a value of x close to that of L1 (i.e.

xL1 − 0.05); compared the potential with that at L1; and incrementally decreased

the initial value of x until the minimization outcomes of L1 and L2 were no longer

identical (to a precision equal to the predefined tolerance); is the best approach.

I tested my approach by comparing our values of L1, L2 and L3 with those generated

by phoebe for a circular orbit with a synchronicity parameter, F , of 1.0 (more

advanced configurations are not calculated by phoebe). I found our method to

generate the same values as phoebe: Ω = 3.75 for L1 and Ω = 3.20679 for L2 =

L3. phoebe also calculates L1 for non-circular orbits thus verified our method for

multiple combinations including extreme values of e, q, and F . Fig. 3.22 shows

the variation of the critical potentials of the primary and secondary components

at L1 as a function of eccentricity, mass ratio and spin-to-orbital period (where

sma = 100R⊙). It can be seen that the critical potentials of both components

increase as e → 1.0, as q → 1.0 and as F increases. Furthermore, the difference

between the critical potential of the primary and secondary components increases

as e → 1.0, as q → 0 and as F increases (when q is not equal to 1.0), as expected.

3.3.7 The log g Constraint

Usually, in eclipsing binary stars, the radii and log g of the stellar components can be

determined through modelling the eclipses. For the majority of heartbeat stars, this

is not possible due to a lack of eclipses, and consequently constraints on log g must

be applied to aid the determination of the fundamental parameters. Furthermore,

there exists a degeneracy in the heartbeat star light curve between the mass ratio,

stellar potential and gravity darkening. As the values for gravity darkening are
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theoretically known, the added constraint of the log g value from spectra enables

the degeneracy to be broken for single lined spectroscopic heartbeat stars. While

this method of determination is significantly less accurate than modelling eclipses,

it enables the determination of otherwise unobtainable stellar parameters.

If the log g is known, within our software it is specified as a prior (with the range

±1σ) instead of the radius or stellar potential. Within the function the stellar radius

is calculated, given the values of the mass ratio, q, semi-major axis, sma, and period,

P of the model for a given iteration. To do this, the mass of the stellar component

must be determined using a combination of Kepler’s Third Law and the mass ratio:

m1/M⊙ =

(P/yr)2

(sma/Au)3

1 + q
, (3.20)

where m1 is the mass of the primary component and q is replaced with q′ where

q′ = 1/q, to determine the mass of the secondary component, m2. The radius, r, is

then computed by combining the prescribed log g value with the determined mass,

m (in S.I. units):

r =

√
m

log g
. (3.21)

Once the radius has been determined, it is transformed into the stellar potential

(see §3.3.5) and added into the phoebe code.

3.3.8 The Spin-to-Orbital Rotation Frequency

The spin-to-orbital rotation frequency, F , is a unitless parameter that describes

how fast a star is spinning. For heartbeat stars, this parameter is important as the

amount of stellar spin contributes to the oblateness of the star, which contributes

to the amplitude of the periastron variation in the light curve.
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If the v sin i value is known from spectra, at each iteration F can be calculated,

given the values of the stellar radius, r, in kilometres, period, P , in days, and

the inclination, i, in degrees. First v sin i must be converted into v, the rotational

velocity of the star in kilometres per day, using the value of the inclination provided

by the mcmc sampler:

v =
86400v sin(i)

sin(2πi/360)
. (3.22)

To then calculate the spin-to-orbital rotational frequency, the radius must be con-

verted from R⊙ to km. The spin-to-orbital rotation frequency, F , may then be

calculated:

F =
Pv

2πr
. (3.23)

If v sin i is not known then a second resort is to assume pseudo-synchronous velocity

(Hut, 1981). Pseudo-synchronous velocity occurs when the orbital angular velocity

is equal to the rotational angular velocity at periastron (Hut, 1981):

F =

√
1 + e

(1− e)3
(3.24)

From our detailed studies I have found that some systems, e.g. KIC8164262, are

rotating with pseudo-synchronous velocity. Others, however, are far from it, e.g.

KIC5006817. Some factors that dictate a system’s rotational velocity include third

body interactions and recent evolutionary changes – KIC5006817 is a recently

evolved red giant star with an envelope that rotates 13 times slower than the core:

neither segment is rotating pseudo-synchronously (see Chapter 6.

121



Chapter 3. The Heartbeat Phenomenon

3.4 Conclusion

The study of heartbeat stars is a new and exciting field, recently propelled by ob-

servations from high resolution spacecraft such as Kepler and CoRoT. Interesting

features of heartbeat stars include tidally induced pulsations, rapid apsidal motion

and resonant pulsations and as they are in extreme orbital configurations, they also

provide a test bed for binary orbital evolution.

Tidally induced pulsations are pulsations driven by the forcing of the binary star

orbit. The signature of tidally induced pulsations are pulsation frequencies at mul-

tiples of the orbital frequency. Originally theorised by Zahn (1975), Goldreich &

Nicholson (1989) and Witte & Savonije (2002) as a mechanism for the circularisa-

tion of the binary star orbit and the spin-up of stars, tidally induced pulsations were

conclusively observed for the first time in KOI-54, the iconic heartbeat star, and have

been identified in ∼20% of the Kepler sample of 173 heartbeat stars. In this work

I describe the detailed analysis of KIC3749404, KIC8164262 and KIC4544587 (see

Chapters 5, 4 and 7), all of which display tidally induced pulsations.

In this Chapter, I discussed the addition of functionality to the phoebe code, nec-

essary for modelling heartbeat stars. This included the addition of sine waves that

describe tidally induced pulsations in the light curve. I also incorporated Doppler

boosting into my models, alongside functions that calculate the passband luminosity;

calculate the stellar potential given the radius; calculate the critical potential to pre-

vent the stars from overflowing their Roche lobes; adding log g as a constraint; and

calculating the spin-to-orbital rotation frequency, given v sin i. I further augmented

the phoebe code by adding the ability to minimize the residuals using Markov chain

Monte Carlo techniques, enabling the creation of parameter posteriors and robust

uncertainty estimates.

The addition of the aforementioned functionality to phoebe has made it increas-

ingly applicable to modelling heartbeat stars. These additions, while extensive, are
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not complete, as a more advanced treatment of tidally induced pulsations, which

incorporates adjustments to the binary star model on the level of the stellar mesh

as a function of temperature and log g, would provide a more thorough treatment

of this feature. Furthermore, the application of the Roche potential to heartbeat

stars clearly violates the assumptions of the Principle of Equipotential Surfaces. It

is not clear to what extent this assumption has an affect on the results of binary

star modelling; however, to improve this aspect, a complete rewrite of binary mod-

elling codes is required. While these additions would further improve the current

modelling approach, the approach outlined here forms the state-of-the-art for the

modelling of heartbeat stars, as it currently stands.
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Chapter 4

KIC8164262

This chapter features a draft publication of the detailed study of KIC8164262, a

heartbeat star with a single high amplitude (∼1mmag) tidally resonant pulsation

and a plethora of tidally induced pulsations. This case study is additionally contex-

tualized by the discussion of heartbeat stars in Chapter 3, which includes a descrip-

tion of tidally induced pulsations and an outline of the program created to model

this unusual object.

I led and coordinated the project, which included selection of the star and creating

a full, self-consistent binary star model. The Keck spectroscopic observations were

co-ordinated by J. Fuller and A. Shporer, and the observations and analysis were

undertaken by H. Isaacson and A. Howard. The McDonald observations and anal-

ysis were undertaken by M. Endl and W. Cochran. The KPNO observations were

undertaken by myself and A. Prša, and I undertook the analysis. I wrote the ma-

jority of the publication with the exception of the two paragraphs in Subsection 2.3

describing the Keck and McDonald observations, which were written by H. Isaacson

and M. Endl, respectively. J. Fuller also contributed towards the ”Discussion and

Conclusions” section, Section 5. D. Kurtz and A. Prsa assisted with editing the

paper. Finally, D. Kurtz, A. Prsa S. Thompson and J. Fuller contributed extensive

and detailed discussion of its content.
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ABSTRACT
We present KIC8164262, a heartbeat star with a prominent (∼1mmag), high-
amplitude tidally resonant pulsation and a plethora of tidally induced g-mode pul-
sations. We obtained follow-up spectroscopic data from three telescopes: Keck, the
4-m Mayall telescope on KPNO and the 2.7-m telescope at McDonald observatory.
To determine the spectroscopic parameters, we apply our own software that combines
todcor with mcmc to the KPNO data. We apply phoebe to the Kepler light curve
and radial velocity data to determine a detailed binary star model, which includes
the prominent pulsation and Doppler boosting. The results suggest a slightly evolved
F-type primary component with a M-type secondary in a highly eccentric (e = 0.886)
orbit. In a companion paper (Fuller et al., 2016), we show that the prominent pulsation
is held in resonance by a mechanism known as resonant locking.

1 INTRODUCTION

Heartbeat stars are eccentric (e> 0.3) ellipsoidal variables
that undergo strong tidal interactions at the time of perias-
tron. A consequence of these tidal interactions is that (for
both components) the stellar cross-section changes shape,
and the temperature across the stellar surface varies due
to reflection and gravity darkening. These variations appear
in the light curve in the form of a tidal pulse, the shape
of which is dependant on the eccentricity, argument of pe-
riastron and inclination of the object. The first heartbeat
star, KOI-54 (Welsh et al. 2011), was discovered using the
Kepler satellite (Borucki et al. 2010; Gilliland et al. 2010;
Batalha et al. 2010). Following this exciting discovery, many
new heartbeat stars have been discovered: 17 heartbeat stars
identified in the Kepler data by Thompson et al. (2012); 7
with the ogle, the Optical Gravitational Lensing Experi-
ment (Nicholls & Wood 2012); 17 red giant heartbeat stars
by Beck et al. (2014); HD 51844 by Hareter et al. (2014)
using the CoRoT satellite; KIC 10080943 by Schmid et al.
(2015) using the Kepler satellite; and more recently a heart-
beat star discovered using most and followed up with the
chara array (Richardson et al. 2016). The most up-to-date
and extensive list of Kepler heartbeat stars, containing 173

objects, has recently been published by Kirk et al. (2016)
and can be found at the Kepler eclipsing binary website1.

Heartbeat stars are a diverse collection of objects, which
display interesting characteristics such as solar-like oscilla-
tions (Beck et al. 2014), rapid apsidal motion (Hambleton
et al. 2013, Hambleton et al. 2016, in prep.) and tidally in-
duced pulsations (Welsh et al. 2011). Tidally induced pulsa-
tions, initially theorised by Zahn (1975); Goldreich & Nichol-
son (1989); Witte & Savonije (2002), are pulsations driven
by the the varying tidal forces that occur as the stars orbit
each other. They were hypothesised to cause the circular-
isation of binary star orbits and the spin-up of the stel-
lar components, although, until Kepler, their presence had
only been identified in HD 174884 (Maceroni et al. 2009).
Thanks to Kepler, we now have a plethora of objects (173)
with tidally induced pulsations. Approximately 20% of the
current Kepler heartbeat star sample show tidally induced
pulsations, providing us with a vast range of frequencies
(! 10 d−1) and amplitudes (! 1mmag) to investigate. Of
these objects, thirteen pulsate with a single dominant, high-
amplitude, tidally-excited pulsation, which is in resonance

1 http://keplerEBs.villanova.edu
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Figure 1. Left panel: The observed Kepler light curve of KIC 8164262 for a single orbit of 87.45 d during Quarter 9. The time is given
in BJD - 2455000. Right panel: a magnified region of the phase-binned Kepler light curve from Quarters 0–17, containing the ellipsoidal
variation at phase zero.

with the binary star orbit, attested to by the pulsation’s sig-
nificantly higher amplitude than other modes. KIC8164262,
the focus of this work, is an extreme case with a single, high-
amplitude (∼1mmag) tidally induced mode.

Resonant modes were initially theorised by Zahn (1975,
1977). However, due to the evolution of the binary star orbit,
it was predicted that resonant pulsations would pass through
resonance on a relatively short time scale, making observa-
tions extremely rare. This is clearly not the case, shown by
the significant number of objects in the Kepler data that
appear to have resonantly excited pulsations, so a mecha-
nism must be present that maintains resonance. The pro-
posed mechanism of resonance locking, theorised by Witte
& Savonije (1999, 2001); Fuller & Lai (2012); Burkart et al.
(2012), achieves this by locking the evolution of the binary
star orbital period with the evolution of the eigenmodes as
the stars spin faster. The theory of resonance locking states
that as two stars orbit each other on an eccentric orbit, the
orbit evolves via the transfer of angular momentum between
the orbit and the stars. This causes the orbit to get smaller,
thus the orbital period to get shorter, and the stars to spin
faster. In parallel, due to the increase in stellar rotational
velocities, the stellar eigenfrequencies change. When in res-
onance, these two effects happen on equal time scales so
that the stellar eigenfrequencies are changing along with the
changing orbital period. Consequently, rather than passing
through resonance, the tidally induced pulsations are locked
in resonance with the orbit.

A more extensive theoretical discussion of resonance
locking, both generally and for the case of KIC8164262,
is described in the companion paper Fuller et al. (2016, in
prep.; hereafter F16). F16 provides theoretical models show-
ing that the prominant pulsation in KIC8164262 aligns pre-

Table 1. Identifiers and basic data for KIC 8164262. Kp is the
magnitude in the Kepler broadband filter.

Identifiers

KIC 8164262
KOI 1810

Position and Brightness

RA 19:24:59.239
Dec +44:00:01.51
Kp 13.36

cisley with the predictions of the resonant locking mecha-
nism, given the fundamental stellar parameters determined
in this work. In this work we present the observations of
KIC8164262, a strong candidate for resonant locking. In §2
we describe the ground- and space-based observations; in
§3 we outline the detailed binary model of KIC8164262; in
§4 we discuss the pulsations of KIC8164262; and in §5 we
discuss and summarise our findings.

2 OBSERVATIONS

KIC8164262 was initially identified as a heartbeat star by
the Kepler Eclipsing Binary Working Group and subse-
quently added to the Kepler Eclipsing Binary Catalog (Kirk
et al. 2016). This object was selected for detailed study pri-
marily due to its high amplitude resonantly excited mode,
which makes it a strong candidate for resonant locking. For
a list of observable information see Table 1.
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2.1 Kepler Data

The Kepler telescope observed KIC8164262 nearly continu-
ously for 1470.5 d or 17 Quarters, where a Quarter is defined
as a quarter of a complete, 372.5-d, Kepler orbit around the
Sun (Kjeldsen et al. 2010). The observations of KIC8164262
were obtained using the long cadence (hear after LC) data
mode at a sampling rate of 29.4244min. For each data point,
270 exposures of 6.02-s were co-added on board (Caldwell
et al. 2010), with the remaining time attributed to read-
out time. All observations were obtained from the Mikulski
Archive for Space Telescopes and were a part of Data Re-
leases 21–23 (Thompson et al. 2013a,b,c).

To create a time series of the relative flux variations of
KIC8164262, we used barycentric times as reported in the
time column and the fluxes reported in the pdcsap flux
data column of the Kepler data files. These data have been
processed through the Kepler pipeline (Fanelli et al. 2015),
including the PDC (Presearch Data Conditioning) module
of the pipeline, which uses a Bayesian, multi-scale principal
component analysis to remove common features from the
time series (Smith et al. 2012; Stumpe et al. 2012, 2014).
We then fitted a low order (<4) polynomial to the times
series of each Quarter. Our final light curve is created by
dividing by this fit to yield the fractional variation in the
flux.

As each Kepler pixel is 4× 4 arcsec, it is possible that
some contamination may occur within the photometric mask
in the form of light from an additional object. The con-
tamination value for KIC8164262, is 0.028 for all observed
quarters as given in the headers of the downloaded light
curve files (Fraquelli & Thompson 2014). Contamination
runs from 0 to 1, where 0 implies no contamination and 1
implies complete contamination of the CCD pixels by other
stars in the aperture. This contamination value suggests that
KIC8164262 suffers minimally from third light, if at all. To
assess the flux incident on each individual pixel we used
pyKE (Still & Barclay 2012) to generate the per-pixel light
curve plots and examinedthe flux distribution over the newly
defined masks. From this we visually confirmed that no other
source is contaminating our observations.

2.2 Period Determination

Period analysis was performed to identify the orbital
period of the binary system. The analysis was done on all
data, Quarters (0–17), using kephem (Prša et al. 2011),
an interactive package with a graphical user interface that
incorporates 3 period finding methods: Lomb-Scargle (LS;
Lomb 1976; Scargle 1982), Analysis of Variance (AoV;
Schwarzenberg-Czerny 1989), and Box-fitting Least Squares
(BLS; Kovács et al. 2002), as implemented in the vartools
package (Hartman et al. 1998). Using kephem, the period
and time of the minimum (selected to be the zero point in
time) of the ellipsoidal variation were found interactively.
The ephemeris was found to be:

MinI = BJD 2455668.829(3)+87.4549(6) × E

where the values in the parentheses give the one sigma
uncertainties in the last digit. The period uncertainty was
obtained by applying an adaptation of the Period Error

Figure 2.A section of the KPNO spectral data from 5190–5245 Å
(blue line) with the best fit model (red line) using todcor com-
bined with mcmc. The entire fitted region extends from 4800 Å
to 6750 Å.

Calculator algorithm of Mighell & Plavchan (2013), as
specified in Kirk et al. (2016).

2.3 Ground Based Spectroscopy

We obtained three sets of spectra, ten spectra from the
HIRES spectrograph on the Keck telescope, Mauna Kea;
three spectra using the Tull spectrograph on the 2.7-m tele-
scope at McDonald Observatory; and two spectra using the
Echelle Spectrograph on the 4-mMayall telescope, Kitt Peak
National Observatory (KPNO). The object was determined
to be an SB1 system. The radial velocities derived from the
three sets of observations are reported in Table 2.

Keck observations were taken with the standard setup
of the California Planet Search (Howard et al. 2010) over the
course of three months, beginning in May of 2015. Exposure
times were between 120 and 180 seconds and each spectrum
has a SNR of 25 per pixel at 5500 Angstroms with a res-
olution of 60,000. In order to calculate the systemic radial
velocity, we utilize the telluric A and B absorption features
that fall on 7594–7621 Å and 6867–6884 Å, respectively. Us-
ing the method from Chubak et al. (2012), the positions of
the primary star’s spectral lines were measured relative to
the telluric features. The positions of the spectral lines were
converted into radial velocities and an offset was applied to
place the relative radial velocities on the standard scale used
by Nidever et al. (2002) and Latham et al. (2002). The er-
rors per measurement are ±6 kms−1, owing predominantly
to the rapid rotation of the primary star.

We further observed KIC 8164262 with the Tull Coude
Spectrograph mounted on the Harlan J. Smith 2.7 m Tele-
scope (Tull et al. 1995) at McDonald Observatory. The Tull
spectrograph covers the entire optical spectrum at a resolv-
ing power of R = 60, 000. We collected 3 spectra in August
2015. We used exposure times of 600 s (once) and 800 s
(twice). The resulting spectra have a SNR ratio from 23 to
26 per resolution element at 5650Å. For each target visit we
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Figure 3. Posterior probability distribution functions produced
by applying todcor combined with mcmc to the spectra obtained
using the Mayall telescope at KPNO. Lower left subplots: two di-
mensional cross-sections of the posterior probability distribution
functions. The crosses show the 1σ (red) and 2σ (green) uncer-
tainties, and are centred on the minima. Diagonal subplots from
top left to bottom right: histograms displaying the probability
distributions of the effective temperature, Teff (K); the surface
gravity, log g (dex); and the rotational velocity, v sin i or vrot
( km s−1); for the primary component, and α, the fractional light
contribution, f2/(f1 + f2), where f1 and f2 are the light contri-
butions of the primary and secondary, respectively. Upper right
subplots: the correlations for the two-dimensional cross-sections
mirrored in the diagonal line where 1 is a direct correlation and
-1 is a direct anti-correlation. The values above the plot give the
mean value and one sigma uncertainty for each parameter, based
on the fitted Gaussians.

also obtained a spectrum of HD 182488, the RV standard
star, which we used to measure absolute radial velocities by
cross-correlating the target star’s spectra with this standard
star spectrum.

The KPNO observations were taken in sets of back-to-
back exposures on 2013 May 29–30 (900 s each) and 2013
June 17–18 (750 s each). Calibration exposures were taken
using a ThAr lamp prior to each exposure. Using the echelle
spectrograph, a wavelength coverage of 4600 − 9050 Å was
obtained with a resolving power of R∼20 000. The signal-
to-noise ratio obtained was ∼30 per resolution element. The
data were reduced using the iraf (Image Reduction and
Analysis Facility) software package Tody (1986, 1993).

2.3.1 Deriving Fundamental Parameters and Radial
Velocities from the KPNO Spectra

The radial velocity data from the KPNO observations were
generated using the 2-D cross-correlation technique as im-
plemented in todcor (Zucker & Mazeh 1994) combined

with the python implementation of emcee, an affine invari-
ant version of Markov chain Monte Carlo (mcmc) method,
proposed by Goodman & Weare (2010) and implemented
by Foreman-Mackey et al. (2013). By combining these soft-
ware packages, we were able to simultaneously obtain the
posteriors of the fundamental parameters: Teff , v sin i and
log g; and obtain radial velocity distributions (distributions
of possible radial velocities based on the range of possible
spectral models and todcor uncertainties; Hambleton et al.
2016, in prep.).

mcmc explores the binary parameter space using a set
of Markov chains, in this case 128. These chains begin with
random distributions based only on their prior probability
distribution functions. For both components, we provided
uniform priors for Teff , v sin i and log g: 5000–8500 K, 0–
100 kms−1 and 2–5 dex, for the primary component; and
3000–5000 K, 0–100 km s−1 and 4–5 dex for the secondary
component. We also fitted the fractional light contribution,
α (L2/(L1 + L2)), and provided a prior of 0–0.1. While the
results of the secondary component are inconclusive due to
the low light contribution (< 0.5 per cent), we marginalized
over the secondary star’s atmospheric parameters to avoid
biasing our results by selecting a specific spectrum.

At each step two spectra are generated (one for each
component), from a grid of templates that are synthesized
with spectrum (Gray & Corbally 1994) using Castelli &
Kurucz (2004) model atmospheres. The radial velocities of
the primary component are then determined by applying
todcor to the observations using the templates (adjusted
to account for their light contributions). The χ2 value is
determined between the shifted, synthetic spectra and the
observed spectra. We specify a global per-point uncertainty
for the two spectra of σ=0.03, which we determined by
considering the noise level of the spectra. Each χ2 value
is then multiplied by -0.5 to obtain the log likelihood for
each observed spectrum and the results are summed over all
spectra

At each iteration the radial velocities and associated
errors produced by todcor are also stored. The radial ve-
locity distributions are then determined by combining the
todcor radial velocity values and errors with the spread
caused by the uncertainty in the model spectra. The out-
come is a distribution of radial velocities that is marginal-
ized over the model spectra and it includes the uncertainties
from todcor. During the initial burn-in time, the Markov
chains converge towards their maximum likelihood value.
The statistics of a large number of iterations (∼10 000 ex-
cluding the burn-in time), provide posterior probability dis-
tributions for the model parameters. We applied this scheme
to the two high resolution KPNO spectra of KIC8164262
using the spectral range of 4800–6750 Å.

Due to its slow rotation (relative to stars above the
Kraft break), we anticipated that KIC8164262 would be a
metal rich star. Consequently, we repeated the aforemen-
tioned spectral fitting for a range of metallicities: [Fe/H]
= -0.2–0.5 in steps of 0.1. By comparing the log likeli-
hoods in each case, we determined that a metallicity of
[Fe/H]= 0.50± 0.05 provided the best fit (where the Castelli
& Kurucz (2004) model libraries have a maximum metallic-
ity of [Fe/H]= 0.5). Using this method we determined the
KPNO radial velocities provided in Table 2 and determined
that KIC8164262 is a single-lined spectroscopic binary with
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Table 2. Radial velocities and their uncertainties for the pri-
mary component of KIC 8164262. The spectral observations were
taken using the echelle spectrograph on the 4-m Mayall telescope,
NOAO, Kitt Peak, the HIRES spectrograph on Keck and Cross-
Dispersed Echelle Spectrograph on the 2.7-m telescope at the
McDonald Observatory, Fort Davis.

Time (BJD) RV1 (km s−1)

Keck ±6 km s−1

2457151.059 26
2457202.893 15
2457228.979 18
2457237.074 28
2457239.988 33
2457241.068 37
2457243.031 15
2457244.791 -10
2457247.027 0
2457255.883 3.

KPNO

2456442.7814 16.4± 2.1
2456461.7050 −2.3± 2.0

McDonald

2457242.6297 29.3± 1.3
2457245.6356 14.6± 1.3
2457250.8001 1.81± 0.94

Table 3. Fundamental parameters determined using todcor
combined with emcee. The software was applied to the spectral
range 4800–6750 Å.

Parameters Values

Teff (K) 6888 ± 83
log g (dex) 3.9± 0.1
v sin i (km s−1) 23± 1

the fundamental parameters listed in Table 3. The best-fit
model to a portion of the spectrum is depicted in Fig. 2.
The posterior distributions of the spectral parameters are
depicted in Fig. 3 and are all Gaussian with the exception
of the light ratio, which is consistent with 0, suggesting that
the light from the secondary component is negligible. This
demonstrates that our model is well constrained.

3 BINARY STAR MODEL

3.1 Stellar Rotation

In the Fourier transform of the prewhitened light curve we
identified two peaks (ν=0.3345 d−1 and ν =0.6690 d−1)
that are not orbital harmonics. The second peak is the
harmonic of the first, which suggests that the peaks are
formed by cyclic variations in the light curve due to spots.
As the amplitudes of these variations are 0.041(1) mmag and
0.012(1) mmag, respectively, the secondary star, which con-
tributes less than 0.5 per cent of the total light, can be ruled
out as the source of these variations. We thus obtain a ro-
tational period for the primary component of 2.98942(6) d.

This is very close to the rotation period obtained by assum-
ing pseudo-synchronous rotation, 3.1(2) d (Hut 1981). In our
model we fixed the rotational period of the primary to the
value of 2.98942(6) d, which implies F = 29.2547(2), where
F is the stellar to orbital rotation rate.

3.2 Binary Model

We applied the binary modelling code phoebe (Prša & Zwit-
ter 2005), which is an extension of the Wilson-Devinney
code (Wilson & Devinney 1971; Wilson 1979; Wilson & Van
Hamme 2004), to the light curve of KIC8164262. phoebe
combines the complete treatment of the Roche potential
with the detailed treatment of surface and horizon effects
such as limb darkening, reflection and gravity brightening
to derive an accurate model of the binary star. The cur-
rent implementation uses the Wilson-Devinney method of
summing over the discrete rectangular surface elements that
cover the distorted stellar surfaces. An accurate representa-
tion of the total observed flux and consequently a complete
set of stellar and orbital parameters is then obtained by in-
tergrating over the visible elements. phoebe incorporates
all the functionality of the Wilson-Devinney code, but also
provides an intuitive graphical user interface alongside many
other improvements, including updated filters and bindings
that enable interfacing phoebe and python.

As modelling a large number of data points is compu-
tationally expensive, we elected to phase bin the data for
the purpose of binary modelling. We argue this is appro-
priate for KIC8164262, as the binary features and a tidally
induced pulsation both repeat precisely every orbital cycle.
Furthermore, KIC8164262 has no significant temporal vari-
ations that would affect the binned light curve, i.e. apsidal
motion, which would cause a change in the shape of the
ellipsoidal variation as a function of time. The absence of
apsidal motion is likely due to the long orbital period of
KIC8164262 (87.45 d).

As the information content of the light curve peaks at
the time of periastron passage, we did not bin the data be-
tween the phases -0.01 and 0.01 and we kept all the data
points. At all other phases we binned the data into bins of
100 points, thus significantly reducing the number of data
points in these regions. Rather than having discrete seg-
ments in the light curve that contain vastly different num-
bers of data points per unit time, we used a sigmoid function
to bridge the number of data points between regions. By us-
ing this method, we avoided jumps in the number of data
points. Finally, we removed all remaining outliers from the
data by eye.

The final binary star model was converged using a com-
bination of phoebe and emcee. However, to understand our
model parameters, we initially created a binary star model
using phoebe’s GUI. For this initial stage we prewhitened
the primary pulsation from the light curve. When using the
phoebe GUI, we identified the parameters that significantly
impact the light curve shape of KIC8164262. As this object
is a single-lined non-eclipsing spectroscopic binary, this ex-
cludes the majority of parameters that pertain solely to the
secondary component, with the exception of the upper limit
on the secondary star’s relative luminosity.

The parameters that were found to affect the binary
star light and radial velocity curves are the eccentricity, in-
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Table 4. Fixed parameters and coefficients for the phoebe model
to the light and radial velocity curves for all available quarters. As
the secondary component contributes an insignificant amount of
light, the secondary parameters are largely insignificant; however,
the parameter values that we selected (based on estimates) are
presented here for completeness.

Parameter Value

Orbital Period (d) 87.4549(3)
Time of primary minimum (BJD) 2455668.829(3)
Primary Teff (K), T1 6900(100)
Primary synchronicity parameter, F 29.2547(2)
Primary Bolometric albedo 0.6
Primary gravity brightening 0.32
Secondary Teff (K), T2 3500
Secondary radius (R⊙), R2 0.5
Secondary synchronicity parameter, F 29
Secondary Bolometric albedo 0.6
Secondary gravity brightening 0.32
Third light 0.0

Table 5. Adjusted parameters and coefficients of the best-fit
model to the light and radial velocity curves for the phased light
curve data and all radial velocity measurements. The RV shifts
are the vertical shifts applied to radial velocities to account for
using different telescopes. The fit was performed using Markov
chain Monte Carlo methods and the values in the brackets de-
note the 1σ uncertainties.

Parameter Value

Mass ratio, q 0.2(4)
Primary mass ( M⊙), M1 1.70(9)
Secondary mass ( M⊙), M2 0.36(2)
Primary radius (R⊙), R1 2.4(1)
Phase shift, φ 0.014(1)
Orbital eccentricity, e 0.886(3)
Argument of periastron (rad), ω 1.48(1)
Orbital inclination (degrees), i 65(1)
Primary luminosity (%), L1 98.9(2)
Secondary luminosity (%), L2 1.1(1)
Semi-major axis (R⊙), sma 106(2)
Primary log g (cgs), log g1 3.90(3)
KPNO RV shift ( km s−1), shift1 2.7(1)
McDonald RV shift ( km s−1), shift2 -2.5(7)

clination, argument of periastron, phase shift, primary ra-
dius, primary gravity brightening exponent, luminosity ra-
tio, mass ratio, semi-major axis and systemic velocity, where
the phase shift is a convenience parameter that shifts the
model horizontally to keep the minimum of the ellipsoidal
variation at phase 0.0. As the gravity darkening exponent
is completely degenerate with the primary star’s radius, we
elected to fix the gravity darkening exponent to 0.32, which
is the theoretical value for stars with convective outer en-
velopes (Lucy 1967), even when the envelope is very thin. A
list of all the fixed parameters in our binary model can be
found in Table 4.

3.3 Parameter Space Sampling

To create the final model we combined phoebe with mcmc
to integrate the power of phoebe as a binary modelling code
with Bayesian statistics. This was possible due to the recent
update of phoebe to include python interfacing. We again
elected to use emcee, an affine invariant version of mcmc,
which is discussed in detail in §2.3.1. In addition to the stan-
dard functionality of phoebe, our models include the ability
to fit tidally induced pulsations and Doppler boosting, as
prescribed by Bloemen et al. (2011).

For KIC8164262 we elected to fit the high-amplitude
prominant pulsation simultaniously with the binary star
features. The signature of a tidally induced pulsaiton is a
pulsation whose frequency is a precise multiple of the or-
bital frequency. The prominant pulsation in KIC8164262 is
228.999(2) νorb which is consistent with 229 νorb, given the
uncertainty on the orbital period and pulsation frequency.
In our model we fixed the frequency of the pulsation to the
multiple of the orbital frequency and fitted the phase and
amplitude to create an all-encompassing binary star model.

Doppler boosting is proportional to the radial velocity
of the two stars and is the combined effect of shifting the
stars’ spectral energy distributions with respect to the Ke-
pler passband, aberration and an altered photon arrival rate.
The net result of Doppler boosting is an increase in the ob-
served flux from a star when it moves towards the observer,
and a decrease when it moves away from the observer. It was
predicted to be seen in the Kepler data by Loeb & Gaudi
(2003) and Zucker, Mazeh & Alexander (2007), and has been
observed in several systems from ground-based data as well
as Kepler and CoRoT light curves (see e.g. Mazeh & Faigler
2010; van Kerkwijk et al. 2010; Shporer et al. 2010; Bloemen
et al. 2011). To determine the Doppler boosting coefficients,
we used look-up tables, based on each component’s effective
temperature and log g. These look-up tables take into ac-
count the spectrum of the star and the wavelength of the
observations, and were computed from Kurucz 2004 model
spectra (Castelli & Kurucz 2004) using Eq. (3) of Bloemen
et al. (2011). The Doppler boosting contribution was esti-
mated to be∼300 ppm. The calculation for Doppler boosting
was performed at each iteration.

In our model we restricted the log g of the pri-
mary component to that determined from spectral fitting,
logg1=3.9± 0.1. Consequently, at each iteration we calcu-
lated the primary star’s potential (an input for phoebe that
is a proxy for the stellar radius), which is a function of the
mass ratio, instantaneous separation, spin-to-orbital rota-
tion and log g. We also calculated the stellar luminosity,
thus reducing the number of fitted parameters to twelve.
Of these fitted parameters, eight are binary star parame-
ters: the inclination, eccentricity, argument of periastron,
phase shift, mass ratio, semi-major axis, systemic velocity
and log g of the primary component. Two pulsation param-
eters are the amplitude and phase of the high-amplitude,
tidally-induced pulsation, and two are vertical radial veloc-
ity shifts to account for having radial velocity data from
three different telescopes. We fixed the pulsation frequency
to 229 νorb, as by definition, tidally induced pulsations are
precise multiples of the orbital frequency. Deviations from
precise multiples have not been detected, even with the pre-
cise, high-resolution Kepler data. These parameters were se-
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Figure 4. Upper panel: The best-fit light curve model (red line)
to the Kepler data of KIC 8164262 (black). The 1σ uncertainties
are denoted on the plot. The residuals of the best-fit model are
provided below the model. Lower panel: A magnified section of
the periastron variation displaying the best-fit model.

lected based on their significant contribution to the light
curve. All other parameters do not present a significant con-
tributions and so were excluded from our models, with the
exception of the primary effective temperature, which we
fixed based on the spectral information; the period and zero
point in time, which were fixed based on our period de-
termination; the stellar rotation rate, which we fixed based
on the stellar rotation signature in the light curve due to
spots; and the aforementioned primary gravity darkening
exponent, which we fixed to the observationally determined
value of 0.32.

For each parameter we used a flat, uniform prior. The
prior ranges were selected to be as large as possible with-
out creating unphysical models, with the exception of log g,
which we constrained to be within one sigma of the value
obtained through spectral fitting and the inclination that
was restricted to be below 90◦. The likelihood was gener-
ated by multiplying the χ2 value from the light curve data
by -0.5 and summing this with the χ2 value from the radial

Table 6. Frequencies extracted from the masked light curve of
KIC 8164262. The majority of the frequencies extracted are mul-
tiples of the orbital frequency, with the exception of the two ro-
tation peaks and three frequencies under 1 c d−1. The asterisks
denotes that the frequency extracted is very close to the large
amplitude 229th orbital harmonic (such that it 229 νorb). Phase 1
is relative to the zero point in time specified in subsection 2.2 and
Phase 2 is relative to the time of periastron (2455652.4222(2)).
The values in parentheses denote the uncertainty in the last digits
of the previous value.

Freq Notes Amp Phase 1 Phase 2
(c d−1) (ppt) (rad) (rad)

2.6184922(3) 229 νorb 1.01(2) 5.19(6) 5.30(6)
0.334512(7) rotation 0.041(1) 4.06(2) 0.99(2)
2.755699(9) 241 νorb 0.035(1) 0.51(2) 5.46(2)
1.40645(1) 123 νorb 0.023(1) 5.69(4) 5.22(4)
2.61912(2) 229 νorb* 0.016(2) 1.82(10) 2.01(10)
1.41786(2) 124 νorb 0.015(1) 1.00(6) 5.62(6)
1.80665(2) 158 νorb 0.015(1) 4.10(6) 0.06(6)
1.50933(2) 132 νorb 0.013(1) 0.94(6) 2.43(6)
2.21831(2) 194 νorb 0.012(1) 3.35(7) 0.86(7)
0.66907(2) rotation 0.012(1) 5.32(7) 5.46(7)
1.46360(3) 128 νorb 0.012(1) 4.56(7) 4.48(7)
2.61832(3) 229 νorb* 0.011(1) 5.0(1) 5.2(1)
3.62472(3) 317 νorb 0.010(1) 4.88(9) 1.92(9)
1.47501(4) 129 νorb 0.008(1) 1.2(1) 6.2(1)
0.28383(4) – 0.008(1) 2.3(1) 4.5(1)
0.28033(4) – 0.008(1) 6.0(1) 2.2(1)
1.42931(4) 125 νorb 0.007(1) 1.4(1) 4.8(1)
0.28504(5) – 0.007(1) 0.7(1) 2.8(1)
1.56644(4) 137 νorb 0.007(1) 4.2(1) 6.1(1)
2.61901(5) 229 νorb* 0.006(1) 5.1(2) 5.2(2)
3.01870(6) 264 νorb 0.006(1) 5.5(1) 2.2(1)
0.25121(5) 22 νorb 0.006(1) 6.2(1) 5.4(1)
1.30355(5) 114 νorb 0.006(1) 0.3(1) 4.2(1)

velocity data, again, multiplied by -0.5. Fig. 4 depicts the
model fit to the light curve. The light curve fit obtained is
well constrained, as shown by the residuals presented in the
lower panel. Fig. 5 depicts the radial velocity curve (red line)
and data. The blue points are Keck data, the red points are
McDonald data and the green points are KPNO data. The
lines on the McDonald and KPNO data in the upper pan-
els denote the vertical shift applied due to the difference in
the instrumentation (where the horizontal line denotes the
original position of the data).

For all parameters, the posteriors shown in Fig. 6, are
well approximated by Gaussians. The list of adjustable pa-
rameters and their final values from our mcmc model fit
are presented in Table 5. The parameters are suggestive of
a slightly evolved F star primary component. The light ra-
tio provides an upper estimat of the secondary component’s
light contribution, which is suggestive of an M-type star.
From the parameters obtained, the stars are 12.1(2) R⊙
apart at periastron and 200(4) R⊙ apart at apastron. This
significant variation in separation is the driving force of the
tidally induced pulsations observed in KIC8164262.
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Figure 5. Upper panel: The best-fit radial velocity curve (red) to the KPNO radial velocity points (green) Keck radial velocity points
(blue) and McDonald radial velocity points (red). The lines on the red and green points denote the vertical shift applied to align the data
points, where the horizontal lines denote the original placement of the points. The vertical shifts are attributed to the use of different
telescopes and were fitted simultaneously with the binary star model. Bottom panel: the residuals of the best-fit model. The error bars
denote the one sigma uncertainty on the radial velocities.

4 PULSATION CHARACTERISTICS

The light curve of KIC8164262 contains one high-amplitude,
tidally-excited mode (ν = 229 νorb, cf. Fig. 4), which we fit-
ted simultaneously with the binary star model. The ampli-
tude and phase of the 229th orbital harmonic were found to
be A = 1.01(2)mmag and φ = 5.19(6) rad (relative to the
zero point specified in Subsection 2.2), respectively. Fourier
transforms with no peaks removed (top panel), with the bi-
nary model and 229th orbital harmonic subtracted (middle
panel) and with all the peaks to an amplitude of 4µmag
removed can be seen in Fig. 7. The prominence of the 229th

orbital harmonic can clearly be seen in the top panel (note
the change of scale for the different panels).

The binary star model, including the high amplitude
mode, was then subtracted from the time-series light-curve
data and the residuals were analysed. To remove any residual
information from the binary star features, the data points
were removed from the region between phases -0.05 to 0.05,
the phases of the ellipsoidal variation in the original time
series. In the Fourier transform, these gaps appear as a win-
dow pattern, separated from the main peak by the orbital
frequency. However, as the binary orbital period is long com-
pared to the duration of the ellipsoidal variation, the removal
of these points did not create a window pattern with a sig-
nificant amplitude. We applied a Fourier transform to these
data and found that the highest amplitude pulsation peak
that remained (after the significant high amplitude peak had
been removed) had an amplitude of 35 ppm, which is 3.5 per
cent of the large amplitude mode fitted simultaneously with
the binary features.

We individually extracted each mode from the Fourier
transform until we reached an amplitude of 6µmag. Be-
yond this point we were unable to distinguish between
pulsation frequencies and noise. Table 6 provides a list of
the extracted frequencies, amplitudes and phases relative
to periastron. We also provide the orbital harmonic num-
ber for each pulsation – all peaks are orbital harmonics
with the exception of three peaks at ν = 0.28033(4) d−1,
ν = 0.28383(4) d−1and ν = 0.28504(5) d−1, and the two
rotational peaks at ν =0.3345 d−1 and ν =0.6690 d−1, dis-
cussed in Subsection 3.1. We speculate that the former three
pulsations are naturally occurring g mode pulsations as the
primary star temperature is consistent with that of a γDor
pulsator, which pulsates on the order of 1 d−1(Grigahcène
et al. 2010).

We extended our frequency search beyond the Nyquist
frequency to ensure that we had identified all the peaks and
that the selected peaks were not reflections of the real peaks
about the Nyquist frequency. All peaks beyond the Nyquist
frequency showed evidence of super Nyquist aliasing (SNA),
aliasing caused by the irregular time sampling of Kepler
data due to satellite motion (Murphy, Shibahashi & Kurtz
2013). Thus we conclude that the identified peaks are the
real peaks.

5 DISCUSSION AND CONCLUSIONS

KIC8164262 is an extreme heartbeat star, in that its orbital
period and eccentricity are larger than most of the heartbeat
stars discovered to date. Its most striking feature is the large
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Figure 6. Posterior distributions of the binary star parameters for KIC 8164262, where incl is the inclination of the binary star orbit
in degrees; ω is the argument of periastron in radians; e is the eccentricity; φ is the orbital phase shift; q is the mass ratio (m2/m1);
sma is the semi-major axis in R⊙; vga is the gamma velocity in km s−1; log g1 is the surface gravity in dex; amp1 and phase1 are the
amplitude (in mmag) and phase of the high-amplitude pulsation; and shift1 and shift2 are the radial velocity shifts (in km s−1) applied
to the kpno and McDonald radial velocity data sets, respectively. The layout is analogous to that in Fig. 3.

amplitude tidally excited pulsation at 229 νorb, which the
largest amplitude tidally excited pulsation observed to date.
The frequency of this pulsation is not unusual (frequencies
of 0.5 d−1 " νorb " 3 d−1 are common in heartbeat stars),
it simply occurs at a large orbital harmonic because of the
small orbital frequency. However, the amplitude of the pul-
sation is exceptional, as it is over twenty times larger than

any other pulsation in KIC8164262, and roughly four times
larger than any pulsations in KOI-54.

We have presented the light and radial velocity data of
KIC8164262, a heartbeat star with tidally induced pulsa-
tions, one of which is extremely prominent. The LC Kepler
data of Quarters 0–17 and radial velocities from three dif-
ferent telescopes (Keck, the 4-m Mayall telescope at KPNO
and the 2.7m telescope on the McDonald Observatory) were
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Figure 7. Fourier transforms showing the frequency spectrum at different stages. Starting from the top, depicted are the Fourier
transforms with: no peaks removed (note the single prominant peak at 2.6 d−1, the 229th orbital harmonic); the binary model and
primary pulsation subtracted (note the change of scale), where the two rotation peaks at 0.3345 d−1 and 0.6690 d−1 are highlighted in
blue; all peaks removed to an amplitude of 4µmag.

modelled using phoebe combined with emcee, an affine in-
variant version of mcmc. We further augmented the soft-
ware to include the ability to model tidally induced pul-
sations, which we used to model the prominent tidally in-
duced pulsation at 229 νorb, and to model Doppler boosting.
The results of the spectral analysis on the KPNO spectra,
specifically the effective temperature and log g of the pri-
mary component, were also incorporated into the modelling
effort to fully constrain the fundamental parameters. Us-
ing these combined software packages, we determined that
KIC8164262 contains a slightly evolved F-type star, which
is producing the tidally induced pulsations, and a M-type
star.

Such a large amplitude mode requires explanation and
may yield clues to tidal dissipation processes in binary star
systems. In a companion paper, F16, we calculate the ex-
pected frequencies and amplitudes of tidally excited pulsa-
tions from theoretical considerations. We find that an ex-
tremely finely tuned resonance is required to tidally excite
a mode to the observed amplitude, and such a resonance is
unlikely to occur by chance. Instead, we find that the pul-
sation is well explained (in both frequency and amplitude)
as a resonantly locked mode. In this scenario, the combined
effects of stellar evolution and spin-down are balanced by
ongoing tidal circularization and synchronization in a self-
regulating process such that the frequency of a single pulsa-
tion mode is held at resonance with the tidal forcing. The
result is an increased rate of tidal dissipation compared to
conventional expectations (see Zahn (2008) for a review).

For A–F stars, tidal interactions are expected to be weak
due to the absence of a thick convective envelope and the
presence of only a small convective core, entailing an effec-
tive tidal quality factor (which measures the efficiency of
tidal dissipation) of Q > 105. However, for KIC8164262 we
calculate the effective tidal quality factor to be Q ∼ 104

while the resonance lock is active, corresponding to an or-
bital circularization timescale of ∼ 1Gyr. This is suggestive
of the importance of resonance locking for the acceleration
of orbital circularization. Further details are presented in
F16.

We performed pulsational analysis on the Kepler light
curve of Quarters 0–17 with the binary star model removed.
We found that all the identified peaks, with the exception
of five, were multiples of the orbital frequency, thus we con-
clude that these are all tidally induced pulsations. Of the re-
maining 5 we identified three peaks at ν = 0.28033(4) d−1,
ν = 0.28383(4) d−1and ν = 0.28504(5) d−1, which are likely
g-mode pulsations originating from the primary component.
The remaining two peaks have frequencies at ν =0.3345 d−1

and ν =0.6690 d−1, where the latter is the harmonic of the
former. This is suggestive of cyclical variation due to spots.
Using the frequencies of these peaks we calculated the rota-
tional period of the primary component to be 2.98942(6) d.
Interestingly, this agrees with the theoretically predicted pe-
riod for pseudo-synchronous rotation, 3.1(2) d. Considering
this rotation period combined with the primary star radius
determined in § 3.2 (R1 =2.4(1) R⊙) and v sin i determined
through spectra (v sin i=23(1) km s−1) we infer that the
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inclination of the star is istar = 35(3)◦, suggesting that
the primary star is miss-aligned with the binary star or-
bit by 30(3)◦. Similar misalignment has been observed in
objects such as DI Her, which is also a detached, eccentric
(e = 0.489) binary system (Albrecht et al. 2009). If the star
is miss-aligned, it is likely that the misalignment occurred
during early binary formation (Albrecht et al. 2011).
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Chapter 5

KIC3749404

This chapter features a draft publication of the detailed study of KIC3749404, a

heartbeat star with tidally induced pulsations and rapid apsidal motion. This case

study is additionally contextualized by the discussion of heartbeat stars in Chapter 3,

which includes a description of tidally induced pulsations and an outline of the

program created to model this interesting object.

I led and coordinated the project, which included selection of the star and creating

a full, self-consistent binary star model. I further determined of the rate of apsidal

motion and compared it with theoretical values. I wrote the majority of the publi-

cation with the exception of subsection 2.2, entitled “Ground-based spectroscopy”,

which was co-written by S. Quinn and S. Murphy. The spectroscopic analysis was

led by S. Quinn and D. Latham. S. Murphy provided additional spectroscopic anal-

ysis. D. Kurtz assisted with editing the paper, and he, A. Prša, S. Thompson and

J. Fuller contributed extensive, detailed discussion of its content.
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ABSTRACT
Heartbeat stars are eccentric (e > 0.2) ellipsoidal variables whose light curves resemble
a cardiogram. We present the observations and corresponding model of KIC 3749404,
a highly eccentric (e=0.66), short period (P =20.3d) heartbeat star with tidally
induced pulsations. A binary star model was created using phoebe, which we modified
to include tidally induced pulsations and Doppler boosting. The morphology of the
photometric periastron variation (heartbeat) depends strongly on the eccentricity,
inclination and argument of periastron. We show that the inclusion of tidally induced
pulsations in the model significantly changes the parameter values, specifically the
inclination and those parameters dependent on it. Furthermore, we determine the rate
of apsidal advance by modelling the periastron variation at the beginning and end of
the 4-yr Kepler data set and dividing by the elapsed time. We compare the model
with the theoretical expectations for classical and general relativistic apsidal motion
and find the observed rate to be two orders of magnitude greater than the theoretical
rate. We find that the observed rate cannot be explained by tidally induced pulsations
alone and consequently hypothesise the presence of a third body in the system.

Key words: stars: binaries: eclipsing – stars: binaries: tidal – stars: oscillations –
stars: individual: KIC 3749404 – variable: γDor

1 INTRODUCTION

Heartbeat stars are an interesting class of eccentric ellip-
soidal variables introduced by Thompson et al. (2012). The
study of heartbeat stars was initiated with the discovery
of KIC8112039 (also known as KOI-54, where KOI stands
for Kepler Object of Interest; Welsh et al. 2011) and subse-
quent theoretical papers on this iconic object (Fuller & Lai
2012; Burkart et al. 2012; O’Leary & Burkart 2014). The
most prominent feature in the light curve of KOI-54, and all
heartbeat stars, is the variation in brightness at periastron,
which is a consequence of stellar deformation caused by tides

⋆ Email: kmhambleton@uclan.ac.uk
† Sagan Fellow

and mutual irradiation. The morphology of this feature pri-
marily depends on the argument of periastron, eccentricity
and inclination of the object, as described by Kumar, Ao &
Quataert (1995). For most heartbeat stars, irradiation is a
second-order effect in the light curve; however, for KOI-54
and other objects with components of similar size and with a
small periastron distance, irradiation can also be dominant
in the light curve (e.g., it is about 50 per cent of the heart-
beat amplitude of KOI-54). The amplitude of the periastron
variation also depends on the periastron distance, mutual
irradiation and effects such as gravity darkening, making
detailed models necessary.

With the advent of highly precise observations from
satellites such as Kepler (Borucki et al. 2010; Gilliland et al.
2010; Batalha et al. 2010), MOST (Walker et al. 2003) and
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CoRoT (Baglin et al. 2006), it is obvious that these objects
are not as rare as previously thought. To date, with the
help of Planet Hunters, the Kepler Eclipsing Binary Work-
ing Group and the Kepler Science Office, we (the Heartbeat
stars team) have identified 173 heartbeat stars in the Ke-
pler data. An up-to-date list of Kepler heartbeat stars can be
found at the Kepler Eclipsing Binary web page1(Kirk et al.
2016). Heartbeat stars have also been observed using other
projects, including two by the CoRoT mission (Maceroni
et al. 2009; Hareter et al. 2014), and eight by the ground-
based Optical Gravitational Lensing Experiment, OGLE
(Nicholls & Wood 2012). For details of heartbeat stars ob-
served using the Kepler satellite, see Welsh et al. (2011);
Thompson et al. (2012); Hambleton et al. (2013); Beck et al.
(2014); Schmid et al. (2015); Smullen & Kobulnicky (2015).

Due to the strong and variable gravitational interac-
tions between stellar components, a subset of these objects
exhibit tidally excited modes. These occur when the forc-
ing frequency of the tide is close to a stellar eigenfrequency,
significantly increasing the amplitude of the mode. Caused
by resonances with dynamical tides, these modes were hy-
pothesised by Cowling (1941) and Zahn (1975) to be the
mechanism for orbital circularisation. Prior to the launch of
Kepler, tidally excited modes had only been identified in a
handful of objects (e.g., HD177863; Willems & Aerts 2002).
However, in the Kepler data alone, we have identified 24 ob-
jects showing obvious, high amplitude tidally induced pul-
sations, and following closer inspection estimate that ∼20
per cent of our sample pulsate with tidally excited modes.

KIC3749404 is a binary star system containing an
A and an F star in a close (P =20.3 d), highly eccen-
tric (e∼ 0.66) orbit. The work of Smullen & Kobulnicky
(2015) contains a catalog of heartbeat star radial veloci-
ties and their corresponding models for 7 objects including
KIC3749404. We expand on this work by providing a com-
plete model of the Kepler light curve and radial velocity
data. A list of identifiers and basic data for KIC3749404
can be found in Table 1. KIC3749404 was selected for de-
tailed study due to its interesting light curve morphology
and prominent tidally excited pulsations, which can be seen
in Fig. 1. The signature of tidally excited modes are fre-
quencies that are precise integer multiples of the orbital
frequency. This feature is obvious in KIC3749404, as the
phased data clearly show the pulsations – this only occurs
when the number of pulsations per orbit is very close to an
integer.

Apsidal motion is the rotation of the line of apsides
about the binary centre of mass, which, in heartbeat stars,
is seen as a change in the shape of the ellipsoidal variation
(heartbeat) over time. Classical apsidal motion occurs when
gravitational interactions generate a tidal bulge on the sur-
face of a star or stellar rotation causes a star to become
oblate. This deviation from stellar point masses causes the
orbit to precesses about the center of mass. Apsidal motion
is additionally caused by General Relativity. KIC3749404
demonstrates rapid apsidal motion. This is an interesting
feature, as a discrepancy has been found in several ob-
jects between the central density parameter (k2) determined
through apsidal advance and that predicted by models, e.g.

1 http://keplerebs.villanova.edu

Table 1. Identifiers and basic data for KIC 3749404. The Kepler
magnitude specified is derived from the Kepler broadband filter.

Identifiers

KIC 3749404
TYC 3134-165-1
GSC 03134-00165
2MASS J19281908+3850135

Position and magnitudes

RA (J2000) 19:28:19.0894
Dec (J2000) +38:50:13.603
V 10.6
B 10.9
Kp 10.6

see Gimenez & Garcia-Pelayo (1982). While many of these
cases can be attributed to the inadequate treatment of stel-
lar rotation, or imprecise stellar radii (as the theoretical
rate of classical apsidal advance scales with R−5), as shown
by Claret & Gimenez (1993), there are some cases where
theory and observation do not agree, e.g. Guinan & Mal-
oney (1985). One reason for this discrepancy could be the
presence of tidally induced pulsations. Papaloizou & Pringle
(1980) theorised that tidally induced pulsations could alter
the rate of apsidal advance, and Claret & Willems (2003)
further showed that the degree of the discrepancy is likely
associated with the phase of the resonance relative to the or-
bit. For KIC3749404, we find that the level of discrepancy
is, however, unlikely to be a consequence of tidally induced
pulsations alone. We thus hypothesise that the rapid apsi-
dal motion is a consequence of a tertiray component in the
system.

2 OBSERVATIONS

2.1 Kepler photometry

The observations of KIC3749404 consist of both long ca-
dence (LC) data, during Quarters 0–17, and short cadence
(SC) data, during Quarters 3.3 and 11–17. Kepler Quarters
are variable in time span, but typically are about 93 d, or one
quarter of a complete 372.5-d orbit around the Sun (Kjeld-
sen et al. 2010). LC data correspond to a sampling rate of
29.4244min and SC data to a sampling rate of 58.8488 s.
The Kepler photometric observations that have been anal-
ysed for KIC3749404 span from 2009 May – 2013 May.
All observations were obtained from the Mikulski Archive
for Space Telescopes and were a part of Data Releases 21–
23 (Thompson et al. 2013a,b,c). We used the long cadence
data to obtain a model of the binary features and the g-
mode frequencies, and to determine the rate of apsidal ad-
vance. We used the SC data of Quarters 11–17 to look for
the presence of pressure modes (p modes). We identified
possible signatures of low-amplitude unresolved p modes at
∼31 d−1. However, as these are in the region of 4 known
artifacts, 31.00 d−1, 31.10 d−1, 31.35 d−1, 31.61 d−1 (Chris-
tiansen et al. 2013) and because we do not see them reflected
about the Nyquist frequency in the long-cadence data, we
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Figure 1. Kepler long-cadence (Quarters 9–10) time series (left) and the phase folded light curve (right) of KIC 3749404. The dominant
feature of the light curve, repeating once per orbital cycle (20.3 d), is the variability due to tidal deformation. Tidally excited modes, the
smaller variations, are also clearly visible in the phase folded light curve due to their commensurability with the orbital period.

conclude that there are no p modes in the short cadence
light curve of KIC3749404.

The photometric observations were made using the Ke-
pler broadband filter, which is essentially a white light fil-
ter. When selecting the type of Kepler product to use we
noted that the msMAP version of the PDC (pre-search data
conditioning) Kepler pipeline does not preserve periodicities
greater than ∼20 d (Christiansen et al. 2013). As the orbital
period of KIC3749404 is ∼20 d, we elected to use the simple
aperture photometry data (instead of PDC) to ensure that
no information had been removed by the Kepler pipeline,
which is fine-tuned for transiting planet detection.

As each Kepler pixel is 4× 4 arcsec, it is possible that
some contamination will occur within the photometric field.
The contamination value for KIC3749404, specified by the
Kepler Asteroseismic Science Operations Centre (KASOC),
is estimated to be 0.011, where 0 implies no contamination
and 1 implies complete contamination of the CCD pixels.
This contamination value suggests that KIC3749404 suffers
minimally from third light, if at all. We applied the pyKE
tools (Still & Barclay 2012) to the target pixel files to as-
sess the flux incident on each individual pixel. From this we
determined that the contamination level for KIC3749404 is
negligible.

The data were detrended using third order polynomi-
als that were applied between breaks in the data, using the
kephem software. Kephem (Prša et al. 2011), an interac-
tive graphical user interface package that enables the de-
terending of data using Legendre polynomials and further
incorporates 3 methods of period analysis: Lomb-Scargle

(LS; Lomb 1976; Scargle 1982), Analysis of Variance (AoV;
Schwarzenberg-Czerny 1989), and Box-fitting Least Squares
(BLS; Kovács et al. 2002), as implemented in the vartools
package (Hartman et al. 2008).

We further cleaned the data by removing obvious out-
liers. For the determination of the binary and pulsation pa-
rameters we used Quarters 8–10. We did not use the total
data set as the periastron variation is changing in time due
to apsidal motion, which causes smearing of the periastron
variation. We chose to use Quarters 8–10 as these data were
observed simultaneously with the spectral observations and
three Quarters provide an acceptable balance between the
number of orbits and the smearing of the periastron varia-
tion in the phase folded light curve due to apsidal motion.

Due to computational costs, the total number of data
points was then reduced from 12 361 to 1 436. To effect the
reduction, we assigned each data point with a random num-
ber from 0 to 1, and removed all points above a specified
threshold: 0.25 for the periastron variation and 0.12 for all
other points. To avoid having discrete jumps in the number
of data points at the transition regions, we applied sigmoid
functions so that the number of data points was gradually in-
creased/decreased. We elected to use random selection over
binning the data to avoid weighting the data towards spuri-
ous trends. We determined the per-point uncertainty to be
σ = 8.2 ppm by finding the standard deviation of segments
of the data (away from the periastron variation) with the ini-
tial model and harmonics of the orbital frequency removed.
This was repeated for 10 segments and the results averaged.
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Table 2. Radial velocities of the two components of KIC 3749404,
determined using todcor. The spectra were observed using the
Tillinghast Reflector Echelle Spectrograph on the 1.5-m telescope
at the Fred L. Whipple Observatory between UT 2011 May 10
and 2011 Jun 23. The uncertainties on the primary and secondary
radial velocities are σ = 1.0 km s−1 for all measurements.

BJD Primary Secondary
2450000.0 + km s−1 kms−1

5691.9395 -41.0 19.8
5692.9411 -89.3 84.8
5693.9409 -71.0 60.3
5694.8716 -55.2 38.0
5695.9629 -42.6 21.0
5696.8644 -34.1 10.6
5697.8724 -26.6 1.2
5698.9011 -19.9 -10.1
5699.7996 -15.7 -15.0
5701.8281 -6.6 -26.0
5704.8259 4.9 -42.6
5705.8248 8.6 -47.9
5727.8552 14.2 -55.0
5728.9439 17.6 -58.6
5729.8041 18.8 -62.1
5731.9046 0.3 -36.6
5732.8222 -64.9 50.5
5733.7524 -86.9 80.2
5734.9330 -63.9 49.8
5735.7603 -52.0 33.1

2.2 Binary Orbital Period Determination

Using kephem (as described in §2.1), period analysis was
performed on all the LC data (Quarters 0–17) to determine
the period of the binary orbit and BJD0, the zero point in
time (the maximum of the periastron variation). Due to the
apsidal motion in the system, it is important to note that
the period is the anomalous period and not the sidereal
period. The ephemeris was found to be:

MinI = BJD 2455611.342(3)+20.30635(8) × E

where MinI is the orbital ephemeris and the values in
the parentheses give the one sigma uncertainties in the last
digit. The period uncertainty was obtained by applying
an adaptation of the Period Error Calculator algorithm
of Mighell & Plavchan (2013), as specified in Kirk et al.
(2016).

2.3 Ground-based spectroscopy

We followed-up KIC3749404 spectroscopically to measure
the radial velocities of the two components and to charac-
terize the stellar atmospheres. A total of 20 observations
were collected with the Tillinghast Reflector Echelle Spec-
trograph (TRES; Fűrész 2008) on the 1.5-m telescope at the
Fred L. Whipple Observatory between UT 2011 May 10 and
2011 June 23. The spectra cover the wavelength between
∼ 3900 and 9000 Å at a resolving power of R ≈ 44 000. We
extracted the spectra following the procedures outlined by
Buchhave et al. (2010).

We derived the radial velocities for both stars from the

TRES spectra using the two-dimensional cross-correlation
technique todcor (Zucker & Mazeh 1994), with synthetic
spectral templates generated from Kurucz model atmo-
spheres. todcor uses two dimensional cross-correlation to
identify the optimal radial velocities of the two input model
spectra with respect to the observed data. We used one
echelle order of about 100 Å centered on 5190 Å, which in-
cludes the gravity-sensitive Mg I b triplet. The radial veloc-
ities are reported in Table 2. For discussion on the determi-
nation of the spectroscopic parameters and the case for the
Am nature of the primary star, see §3.4.

3 BINARY MODELLING

3.1 Tidally Excited Modes

Stellar pulsation modes may be tidally excited when a mul-
tiple of the binary orbital frequency is close to a stellar
eigenfrequency. The signature of a tidally excited mode is
a pulsation frequency that is a precise multiple of the or-
bital frequency. In the initial analysis of KIC3749404 we
identified 7 pulsations that are multiples of the orbital fre-
quency with amplitudes greater than 20µmag. The nature
of tidally excited pulsations makes them intrinsically diffi-
cult to extract: their frequencies are multiples of the orbital
frequency and hence they overlap with orbital harmonics
created by the Fourier decomposition of the near-periastron
heartbeat signal. This is especially problematic for relatively
low-frequency tidally excited modes, which are common. For
this reason we added the capability to phoebe to model the
binary features and pulsations simultaneously by combining
the binary star model with sine waves at frequencies that are
multiples of the orbital frequency. To our knowledge, this is
the first time that pulsations have been modelled simultane-
ously with light curve and radial velocity data. We further
incorporated Markov chain Monte Carlo methods to fit our
model to the data.

Prior to fitting the binary star features and pulsation
parameters simultaneously, we identified the prominent pul-
sations in the light curve. To do this, we generated the resid-
uals to the initial binary fit; masked the region of the peri-
astron variation (between phases -0.19–0.12) to reduce the
impact of an imperfect model/over-fitting the pulsations;
and applied a Fourier transform to the residual data.

The Fourier transform of the original, detrended data
contains a double peaked distribution of frequencies where
all the frequencies are multiples of the orbital frequency (cf.
Fig. 2). The first peaked distribution of frequencies describe
the binary star features in the light curve, including the peri-
astron variation, and the second is caused by tidally induced
pulsations. To further analyse the pulsations, we removed
an initial binary model from the data and prewhitened any
remaining frequencies below 0.5 d−1, most of which are in-
strumental in nature, to an amplitude of 4µmag. From the
Fourier transform of the residual data, with the low fre-
quency peaks removed, we identified all remaining signifi-
cant harmonics from the data (down to 20µmag) and fitted
them simultaneously using linear least-squares. In order of
amplitude, the identified frequencies are: (21, 24, 20, 23, 22,
25, 18) × νorb. For a more detailed discussion of the tidally
induced pulsations, including the final pulsation parameters
from the binary star model, see §3.1.
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Table 3. Fixed parameters and coefficients for the phoebe best-
fit model to the Kepler light curve for Quarters 8–10. The values
in the parentheses specify the one sigma uncertainties in the pre-
vious digit. The effective temperatures were determined using the
spectral analysis performed in §3.4. The binning undertaken with
this analysis did not preserve v sin i. We therefore used the v sin i
measurements obtained from our todcor analysis in §2.3.

Parameter Values

Primary Teff (K) 8000(300)
Secondary Teff (K) 6900(300)
Primary v sin i ( km s−1) 29(2)
Secondary v sin i ( km s−1) 9(2)
Orbital Period (d) 20.30635(15)
Time of primary minimum (BJD) 2455611.342(3)
Primary Bolometric albedo 1.0
Secondary Bolometric albedo 0.6
Third light 0.000(6)

The majority of heartbeat stars, including KIC3749404,
do not have eclipses. We see a dip in the light curve of
KIC3749404 because at that phase the stars are tidally dis-
torted due to gravitational affects and we are viewing both
stars with a smaller and ciiker surface area relative to their
surface area during the rest of the orbit. As there are no
eclipses present in the light curve of KIC3749404, we are
unable to determine from which component the tidally in-
duced pulsations originate. However, as they form a single
peaked distribution in the Fourier transform, we conclude
that they originate in one star, although which star is cur-
rently not known.

3.2 Simultaneous Binary and Pulsation Modelling

We applied the binary modelling code phoebe (Prša & Zwit-
ter 2005), which is an extension of the Wilson-Devinney
code (Wilson & Devinney 1971; Wilson 1979; Wilson & Van
Hamme 2004), to the light curve of KIC3749404. phoebe
combines the complete treatment of the Roche potential
with the detailed treatment of surface and horizon effects
such as limb darkening, reflection and gravity brightening
to derive an accurate model of the binary parameters. The
current implementation uses the Wilson-Devinney method
of summing over the discrete rectangular surface elements,
which cover the distorted stellar surfaces, to determine an
accurate representation of the total observed flux and con-
sequently a complete set of stellar and orbital parameters.
phoebe incorporates all the functionality of the Wilson-
Devinney code, but also provides an intuitive graphical user
interface alongside many other improvements, including up-
dated filters and bindings that enable interfacing between
phoebe and python (see § 3.3).

We calculated the value of F for each component, where
F is the ratio of the rotational to orbital period. This was
done for each component at each iteration by combining
the spectroscopically determined v sin i values (v1 sin i =
29 ± 2 km s−1 and v2 sin i = 9± 2 km s−1) with the model-
determined values of the inclination and radii. We further
fixed the stellar albedos to A1 =1.0 and A2 =0.6, which
are theoretically predicted for stars with radiative and con-
vective outer envelopes, respectively (Ruciński 1969a,b). We

Table 4. Mean values of the fitted and calculated parameters
determined using phoebe with emcee for 0 and 7 pulsations. The
values are derived from Gaussian fits to the posterior distribu-
tions. The rotation rate refers to the number of rotations per
orbit and the primary fractional luminosity is L1/(L1 +L2). The
values in parentheses give the uncertainty in the previous digit.

Parameter Number of pulsations
0 7

Fitted

Orbital inclination (degrees) 60.2(1) 62(1)
Argument of periastron (rad) 2.14(2) 2.15(3)
Eccentricity 0.633(3) 0.658(5)
Primary gravity brightening 0.95(3) 0.96(2)
Secondary gravity brightening 0.29(2) 0.52(5)
Primary polar radius (R⊙) 1.9(1) 1.98(4)
Secondary polar radius (R⊙) 1.1(1) 1.20(3)
Mass ratio 0.73(1) 0.738(8)
Phase shift -0.110(3) -0.109(4)
Gamma velocity (km s−1) -14(2) -15(7)
Semi-major axis (R⊙) 43(1) 45.7(5)

Calculated

Primary mass ( M⊙) 1.5(1) 1.78(6)
Secondary mass ( M⊙) 1.1(1) 1.32(4)
Primary fractional luminosity 0.85(4) 0.82(2)
Primary rotation rate 7.1(3) 7.1(2)
Secondary rotation rate 4.0(1) 4.0(1)

elected to fix the period and zero point in time (time of pho-
tometric maximum) to the values determined using kephem
(see Table 3), as the Lomb-Scargle method is more accurate
than phoebe for ephemeris determination.

Following the work of Diaz-Cordoves & Gimenez (1992)
and van Hamme (1993), who showed that the square-root
and logarithmic limb darkening laws are preferable for ob-
jects that radiate towards the IR and UV, respectively, we
elected to use the logarithmic limb darkening law, as within
phoebe this is a system-wide parameter, and the primary
star contributes the larger fraction of light to the system.

3.3 Posterior Determination of the Binary Star
Parameters

To determine the posteriors of the binary and pulsational
parameters, we combined phoebe with emcee, a python
implementation of the affine invariant ensemble sampler for
Markov chain Monte Carlo (mcmc) proposed by Goodman
& Weare (2010) and implemented by Foreman-Mackey et al.
(2013).

mcmc explores the binary parameter space using a set
of Markov chains, in this case 128. These chains begin with
random distributions of each parameter based only on the
prior probability distributions. They move through param-
eter space by assessing their posteriors at each point and
then selecting a new position based on the position of an-
other chain. The step size is based on the covariance of the
two chains. If the move increases the a posterior likelihood
then it is accepted; if the move decreases it then it may be
accepted with a certain probability. During the initial burn-
in time the Markov chains are merging towards their max-
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Figure 2. A Fourier transform of the original detrended data (purple); data with the initial binary star model removed (green); and
with the initial binary star model and frequencies less than than 0.5 d−1(down to an amplitude of 4µmag) removed (blue). The latter,
blue Fourier transform contains tidally induced pulsations only. The insert depicts the window pattern of the highest amplitude peak
(21 νorb). All the peaks are at precise multiples of the orbital frequency.

imum likelihood position. The statistics of a large number
of iterations provide posterior distributions for the model
parameters.

We generated two models for KIC3749404, one contain-
ing the most significant pulsations, and one without pul-
sations (to see the effect of pulsations on the binary star
parameters). The model without pulsations comprises 10
binary star parameters. From the residuals of this model,
we identified seven pulsations with amplitudes greater than
20µmag, thus the second model contains 7 pulsations and
comprises 24 parameters: 10 binary star parameters and an
amplitude and phase parameter for each pulsation. As the
fitted pulsations are tidally induced, we fixed each pulsation
frequency to a multiple of the orbital frequency (as deter-
mined from our frequency analysis). The pulsations were
modelled by simultaneously fitting sine waves with the bi-
nary star model.

The binary parameters were selected based on their con-
tribution to the observed flux variation to KIC3749404. For
the results of the best-fit models, see Table 4 for a list of
fundamental parameters and Table 5 for a list of the pulsa-
tion parameters from the model with 7 pulsations. For the
binary star model, the inclination, eccentricity, argument of
periastron, phase shift, primary and secondary radii, and
primary and secondary gravity darkening exponents were
sampled using mcmc. The phase shift is the horizontal off-
set required to keep the model’s periastron variation centred
at phase 0.0 when changing the argument of periastron and
eccentricity in the phase folded data.

For each model iteration the limb darkening expo-
nents were calculated; the luminosity was fitted using least-
squares; and the effect of Doppler boosting was added to the
light curve for each component. Doppler boosting is caused
by the radial motion of the two stars and is the combined
effect of the Doppler shifting of the stars’ spectral energy
distributions, aberration and an altered photon arrival rate.
The net result of Doppler boosting is an increase in the
observed flux from a star when it moves towards the ob-
server, and a decrease when it moves away. It was predicted
by Loeb & Gaudi (2003) and Zucker, Mazeh & Alexander
(2007), and has recently been observed in several systems
from ground-based data as well as Kepler and CoRoT light
curves (see e.g. Mazeh & Faigler 2010; van Kerkwijk et al.
2010; Shporer et al. 2010; Bloemen et al. 2011). To model
the Doppler boosting signal, Eqn 2 in Bloemen et al. (2011)
provides a function that can easily be applied to the binary
star model:

Fλ = F0,λ

[
R
(
1−B1

vr,1
c

)
− (1−R)

(
B2

vr,2
c

)]
, (1)

where Fλ is the observed flux, F0,λ is the emitted flux,
R is the light ratio, vr,1 and vr,2 are the radial veloci-
ties of the primary and secondary components, B1 and B2

are the passband-weighted boosting factors, where B =
5 + d ln Fλ/dlnλ (Loeb & Gaudi 2003).

For each parameter we used a flat, uniform prior. The
prior ranges were selected to encompass all physical mod-
els given the spectroscopic information. We restricted the
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Figure 3. The posterior distributions of the binary star parameters for the model with seven pulsations, where incl is the inclination
of the binary star orbit in degrees; ω is the argument of periastron in radians; e is the eccentricity; φ is the phase shift; q is the mass
ratio (m2/m1); sma is the semi-major axis in R⊙; vga is the gamma velocity in km s−1; grb1 and grb2 are the gravity brightening
exponents of the primary and secondary components, respectively; and radius1 and radius2 are the primary and secondary polar radii
in R⊙, respectively. We elected to calculate the polar radii since they are more constant throughout the orbit (as opposed to the point
radii). Lower left sub-plots: two dimensional cross sections of the posteriors. The crosses show the one sigma (red) and two sigma (green)
uncertainties, and are centred on the minima. Diagonal sub-plots from top left to bottom right: histograms displaying the posterior
distribution of each individual parameter. Upper right values: the correlations for the two-dimensional cross sections mirrored along the
diagonal, where 1 is complete correlation, -1 is a complete anti-correlation and 0 is no correlation. The values above the plot give the
mean value and one sigma uncertainty for each parameter, based on the fitted Gaussians.
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Figure 4. Upper panel: Best-fit phoebe model without pulsations (green line) and including 7 pulsations (black line). The observed light
curve (blue points) was prepared as specified in §3.2. The red envelope depicts the 1σ spread of the final 128 models determined using
mcmc for the model with 7 pulsations. Lower panel: the residuals (blue points) of the best-fit model. The uncertainties are depicted on
the residual points, although they are not visible on the scale provided.

prior on the inclination to be below 90◦to avoid obtaining
a double peaked distribution reflected about 90◦. We also
restricted the gravity darkening exponents to the ranges
0.8 − 1.0 for the primary and 0.2 − 0.6 for the secondary
component, where the gravity darkening exponents are pre-
dicted to be 1.0 and 0.32 for stars with radiative (von Zeipel
1924) and convective (Lucy 1968) envelopes, respectively.

In our model we assumed that the noise is Gaussian,
which does not take into account correlated noise contribu-
tions (see, e.g., Barclay et al. 2015). Consequently, it is likely
our uncertainties are underestimated. Fig. 3 shows the pos-
terior distributions of the best-fit model. It can be seen that
all the parameter histograms (top left to bottom right diag-
onal plots) are normal distributions, with the exception of
the secondary gravity brightening exponent, which shows a
slightly skewed distribution. The upper panel of Fig. 4 shows
the best-fit phoebe model with 7 pulsations (black with red,
1σ envelope) and the best-fit phoebe model with no pulsa-
tions included (green). The lower panel shows the residuals
from the model including pulsations. Both models are the
average of 128 models, one from each Markov chain. The
envelope denotes the 1-σ spread of results determined by
finding the standard deviation of the models. Fig. 5 depicts
the best-fit model to the radial velocity data for the phoebe
model with 7 pulsations, which was fitted simultaneously
with the light curve.

In the light curve, it can be seen that there is a sig-
nificant deviation of the model from the data in the phases

following the periastron variation and in the regions that
are flatter, relative to the periastron variation. The cause of
this may lie in detrending, as heartbeat star light curves of-
ten do not have an obvious baseline. All remaining features
in the observed data are fit adequately by the model. The
more pronounced red regions near the peak and trough of
the periastron variation show that the models are sampling
a wider distribution in these areas, which are encapsulated
in the uncertainties.

When comparing the two models, the most striking dif-
ferences stem from different inclinations of the two models:
i = 60.2±1.0◦and i = 63±1.0◦ for the models with zero and
seven pulsations, respectively. These differences (although
only at the 2σ level) translate to a significantly larger semi-
major axis in the model with pulsations (2.7 R⊙ larger), and
larger masses (0.28 M⊙ for the primary and 0.12 M⊙ for the
secondary; see Table 4), with the pulsation model favouring
the more massive stars. Finally, the radii of both components
are larger for the model with pulsations. These differences
convey the importance of modelling pulsations simultane-
ously with the light curve. It is also important to note that
the argument of periastron is identical for both models, con-
veying the robustness of our determined value.
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Figure 5. Upper panel: the observed radial velocities of KIC 3749404 for the primary (purple circles) and secondary component (red
triangles). The uncertainties are plotted but barely visible in comparison with the point sizes. The best-fit model (where the light curve
model includes 7 pulsations) is shown for the primary component (solid line) and secondary component (dashed line). Lower panel: the
residuals to the best fit model. A dotted horizontal line is placed at zero for clarity. See §3 for details of the binary star model. The
spectra from which these radial velocities were derived were observed between UT 2011 May 10 and 2011 Jun 23, using the Tillinghast
Reflector Echelle Spectrograph (TRES) mounted on the 1.5-m Tillinghast Reflector at the Fred L. Whipple Observatory on Mt. Hopkins,
AZ.

Table 5. The pulsation amplitude and phase values for the bi-
nary model combined with tidally induced pulsations. The fre-
quencies were fixed to precise multiples (harmonics) of the orbital
frequency. The phase is relative to the binary model zero point
in time.

Multiple of Frequency Amplitude phase
νorb d−1 ppm rad

18 0.8864(6) 18(2) 5.0(1)
20 0.9849(7) 39(4) 3.05(9)
21 1.0341(7) 52(8) 2.50(7)
22 1.0834(7) 22(5) 2.4(1)
23 1.1326(7) 36(7) 1.06(8)
24 1.1818(7) 60(5) 0.90(8)
25 1.2311(8) 15(6) 0.90(8)

3.4 Spectroscopic analysis and the case for the
Am nature of the primary component

To determine the spectroscopic stellar parameters, we per-
formed an analysis similar to those used to characterize
the stars of the circumbinary planet-hosting binary sys-
tems Kepler-34, Kepler-35, and KOI-2939 (Welsh et al. 2012;
Kostov et al. 2015), though the properties of KIC3749404
necessitated a few changes. Blended lines can prevent ac-
curate classifications, so we included in this analysis only

the 14 TRES spectra that have a velocity separation
greater than 40 kms−1 between the two stars. We be-
gan by cross-correlating the TRES spectra against a five-
dimensional grid of synthetic composite spectra. The grid
we used for KIC3749404 contains every combination of
stellar parameters in the ranges T1 = [5500, 8500], T2 =
[5500, 8500], log g1 = [2.5, 5.0], log g2 = [3.0, 5.0], and
[M/H] = [−1.0,+0.5], with grid spacings of 250K in T , and
0.5 dex in log g and in [M/H] (20,280 total grid points).2 At
each step in the grid, TODCOR was run in order to deter-
mine the radial velocities of the two stars and the light ratio
that produces the best-fit set of 14 synthetic composite spec-
tra, and we saved the resulting mean correlation peak height
from these 14 correlations. Finally, we interpolated along the
grid surface defined by these peak heights to arrive at the
best-fit combination of stellar parameters.

The spectroscopic analysis was limited by the degener-
acy among the parameters (i.e., a nearly equally good fit was
obtained by slightly increasing or decreasing T , log g, and

2 We ran a separate TODCOR grid solely to determine the v sin i
values, which we left fixed in the larger grid. This is justified be-
cause the magnitude of the covariance between v sin i and the
other parameters is small. This simplification reduces computa-
tion time by almost two orders of magnitude. The final v sin i
values are v1 sin i = 29(2) km s−1 and v2 sin i = 9(2) km s−1.
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[M/H] in tandem), but the light curve model provided inde-
pendently determined surface gravities (see §3.2) that were
partially able to lift the degeneracy. We thus included these
gravities in our analysis, and found that the best fit occurred
for a very high metallicity ([M/H] > +0.5); however the re-
sulting parameters and light ratio of the spectral templates
were inconsistent with the binary model. The expected flux
ratio can be approximated by assuming black body radiation
and integrating Planck’s law across the TODCOR bandpass:

F2

F1
=

(
R2

R1

)2 ∫ λf

λi

ehc/(λkBT1) − 1

ehc/(λkBT2) − 1
dλ. (2)

Recognizing that the combination of surface gravities with
the mass ratio from the radial velocities can yield the area
ratio, the above equation can be rewritten solely in terms of
the spectroscopic observables:

F2

F1
= q

(
10log g1−log g2

)∫ λf

λi

ehc/(λkBT1) − 1
ehc/(λkBT2) − 1

dλ, (3)

where q is the mass ratio,M2/M1. For our best-fit templates,
the measured and expected light ratios differed by more than
a factor of 2, at high significance.

These inconsistencies in the light ratio and the temper-
atures indicated that the spectroscopic model was not yet
sufficient. Given that the primary is an A star and the best
fit occurred for high metallicities, we next explored the pos-
sibility that the two stars have different apparent metallic-
ities. If the primary is an Am star, displaying photospheric
enrichment in metallic lines, we would expect the spectra
for the primary and secondary to be fit by templates of dif-
ferent metallicity even though they presumably formed with
identical compositions.

We first tested this by running new grids of TODCOR
correlations that include a sixth dimension, along which lies
the metallicity of the secondary. This improved the agree-
ment between the spectral templates and binary star model,
including the light ratios, which were then within 25% of
each other. The newly determined metallicities of the pri-
mary and secondary components were [m1/H] > +0.50 and
[m2/H] = 0.00, respectively. While we are only able to report
lower limits for the primary because our library of synthetic
spectra only includes metallicities up to [m/H] = +0.5, these
results suggest that the primary may be an Am star (and
that the secondary is not).

Consequently, we examined spectra taken at quadrature
for the chemical abundance anomalies seen in Am stars. The
observed spectrum was compared with the synthesized bi-
nary spectra using the algorithm developed and described
by Murphy et al. (2015). Suitable atmospheric parameters
for the components of the binary system were chosen such
that the synthetic hydrogen line profiles matched the ob-
served profiles. A satisfactory match was obtained with T1 =
8000(300) K, T2 = 6900(300) K, log g1 = 3.8(3), log g2 =
4.0(3), v1 sin i = 30(5) kms−1 and v2 sin i = 10(5) kms−1,
using [Fe/H] = 0.0 for both components. This configuration
leads to a mass ratio of M2/M1 = 0.74 and a light ratio
of L1/(L1 + L2) = 0.80. The synthetic and observed spec-
tra were smoothed to classification resolution (2.5 Å per 2
pixel) to reduce the effects of noise and additional sources
of spectral line broadening that are hard to quantify (Mur-
phy et al. 2016). It is worth noting that, due to the applied
smoothing, the v sin i values of the initial analysis are more

reliable (v1 sin i = 29(2) km s−1 and v2 sin i = 9(2) kms−1).
With these parameters, the observed metal line profiles were
much stronger than the synthetic ones. By increasing the
global metallicity of the primary component, the fit to the
metal lines improved at the expense of the fit to the hy-
drogen lines; increasing by +0.5 dex, the fit to the hydrogen
line profiles worsened considerably, with substantial further
improvement to the metal lines required.

For the primary component, agreement with the hydro-
gen line profiles could have been restored with small changes
to T1 and log g1, but the morphology of the metal lines
could not be improved with further changes to the global
metallicity, alone. Already at +0.2 dex, the synthetic Ca II
K line was stronger than the observed spectrum, while the
Fe, Sr and Ti lines remained poorly matched. Increasing the
metallicity to +0.5 dex resulted in discrepant Ca II K and
hydrogen lines, and substantial further enhancement of the
synthetic Sr and Fe lines was still required. Thus the obser-
vations show selective metal enrichment of the photosphere,
which match the abundance patterns of Am stars (see, e.g.
Murphy et al. 2012).

A-type stars in close binary systems commonly show
Am peculiarities (Abt 1967; see Murphy 2014 for a review).
The fact that the primary is an Am star is therefore ex-
pected. The secondary star is an early F star for which Am-
type peculiarity is less common (Wolff 1983), presumably
due to the increase in convective mixing. The derivation
of abundances for a chemically peculiar star in a double-
lined spectroscopic binary system is a state-of-the-art chal-
lenge beyond the scope of this paper. For the purpose of this
work, our current analysis suggests that the appearance of
the spectra is consistent with the light curve model, which
we described in detail in §3.2.

4 APSIDAL MOTION

Apsidal motion is the rotation of the elliptical orbit about
the centre of mass. The rate of classical apsidal advance is
determined by the non-spherical mass distribution within
the stars due to tidal distortions and rotation. General rel-
ativity produces additional apsidal motion. The net apsidal
motion depends on the component’s masses, radii, rotation
rates, and density profiles, in addition the orbital semi-major
axis and eccentricity.

When initially phasing the 4-yr light curve of
KIC3749404, it was clear, due to the significant smearing
of the periastron variation, that KIC3749404 is undergoing
rapid apsidal motion. Fig. 6 depicts several models showing
the change of the periastron variation of KIC3749404 as a
function of the argument of periastron for a complete cycle
about the centre of mass. The insert shows a model depicting
the apsidal advance over the 4 yr data set.

To determine the rate of periastron advance, we fitted
ω at the beginning (Quarters 1 and 2, LC data) and end
(Quarters 15 and 16, LC data) of our data set (Quarters 0
and 17 are short Quarters that did not contain any perias-
tron variations and thus were not used). As our aim was to
determine the change in the argument of periastron, we fixed
all parameters except the argument of periastron and phase
shift, to those determined for the best-fit model of Quarters
8–10 (including pulsations). We also included a global pulsa-
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Figure 6. Models of KIC 3749404 with different values of ω, the argument of periastron. The figure highlights the effect of the periastron
value on the shape of the periastron variation for one full orbital cycle about the centre of mass. The periastron variation drastically
changes both its position in phase space and its shape (width and amplitude) with the changing values of ω. The inset shows the measured
effect on the light curve shape over the 4-yr length of the Kepler data set used.

tion phase-shift (which shifts all the pulsations by the same
amount), as the phases of the pulsations were observed to
shift by a different amount than the longitude of periastron.
Since the pulsation phases depends on the azimuthal num-
bers of the tidally excited modes, measuring this phase shift
can help identify them.

We selected the initial and final data sets so that they
contained five orbits. Using this method we determined the
initial and final values for the argument of periastron to be
2.122(2) and 2.195(1), respectively (see Figs 7 and 8 for the
model fits and posteriors, respectively). For the two data sets
we selected the peak of the periastron variation in the mid-
dle of the data set as the zero point in time for that section
of data. To obtain the rate of periastron advance we divided
the change in the argument of periastron by the difference
in time between the two data sets (1309.773(4) d). We de-
termined the rate of apsidal advance to be 1.166(1)◦/year.

To compare our observed value for the rate of apsidal
advance with the predicted rate, we then used the tables of
Claret (1997) to obtain the apsidal motion constants (Love
numbers) of the primary and secondary components to be
k2,1 = 0.0036(5) and k2,2 = 0.0042(4), for models similar
to the stars in KIC3749404 (where k2 =0 for a point mass

and k2 =0.75 for a homogeneous sphere). We assumed that
both components of KIC3749404 are main-sequence stars
and used the fundamental parameters from the model with
pulsations. Using these values we calculated the classical
theoretical rate of apsidal advance (Cowling 1938; Sterne
1939; Kopal 1959) using:

ω̇theor
CL (deg/yr) = 365.25

(
360
P

){
k2,1r

5
1

[
15f2(e)(M2/M1)

+

(
ω̃r,1

ω̃k

)2 (
1 +M2/M1

(1− e2)2

)]

+ k2,2r
5
2

[
15f2(e)(M1/M2)

+

(
ω̃r,2

ω̃k

)2 (1 +M1/M2

(1− e2)2

)]}
,

(4)

where P is the orbital period, k2,1 and k2,2 are the apsi-
dal motion constants for the primary and secondary com-
ponents, respectively, f2(e) = (1+ 3/2e2 +1/8e4)(1− e2)−5

where e is the eccentricity, M1 and M2 are the masses of the
primary and secondary components in solar mass units, r1
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and r2 are the radii of the primary and secondary compo-
nent in terms of the semi-major axis, ω̃r,1 and ω̃r,2 are the
angular axial rotational speeds of the primary and secondary
stars, and ω̃k = 2π/P . For the classical rate of apsidal ad-
vance we obtained ω̇theor

CL = 0.002(7)◦/yr. As KIC3749404
has a large eccentricity and relatively short orbital period,
the general relativistic contribution is significant. Thus we
calculated the general relativistic apsidal motion term (Levi-
Civita 1937; Kopal 1959):

ω̇theor
GR (deg/yr) = 9.2872 × 10−3 (M1 +M2)

2/3

(P/2π)5/3(1− e2)
(deg/yr).

(5)
We obtained the general relativistic contribution to be
ω̇theor
GR = 0.005(1)◦/yr giving a combined value of ω̇theor

CL+GR =
0.007(6)◦/yr.

The observed rate of apsidal advance of 1.166(1)◦/yr
determined through light curve modelling is two orders of
magnitude larger than the theoretically predicted rate of
0.007(6)◦/yr. We are aware that the classical, theoretical
rate of apsidal advance is strongly dependent on the stel-
lar radii (to the 5th power) and that, as the light curve of
KIC3749404 does not contain eclipses, our radii determina-
tion is based on the Roche lobe geometry (which is not as ac-
curate as direct detection through eclipse modelling). How-
ever, the difference between the theoretical and predicted
rates is highly significant and, consequently, there is no way
that the apsidal motion rate of KIC3749404 could be re-
duced to the theoretical rate through tweaking assumptions
or inflating uncertainties. We hypothesise that the rapid rate
of apsidal advance of KIC3749404 is due to a tertiary com-
ponent in the system.

4.1 Precession from Tidally Induced Pulsations

In addition to apsidal motion produced by the rotational
and equilibrium tidal distortion of the stars, the dynamical
tidal distortion (i.e., tidally induced pulsations) can produce
significant orbital precession. Tidally induced pulsations are
typically produced by gravity modes within the stellar com-
ponents, which create oscillations in the gravitational fields
of the stars, in addition to the luminosity variations seen
in Fig. 4. The aspherically distorted gravitational field (av-
eraged over an orbital cycle) can produce significant orbital
precession, depending on the amplitude to which the gravity
modes are excited.

The effect of dynamical tides on apsidal motion has
previously been investigated in Smeyers & Willems (2001);
Willems & Aerts (2002); Claret & Willems (2002) for bina-
ries of various stellar masses, orbital periods, and eccentric-
ities. These authors found that the contribution of dynam-
ical tides to orbital precession is generally small (especially
at orbital periods exceeding 5 days), except when very near
resonance with stellar oscillation modes. Even in this case,
the precession rate is typically only altered at a level of order
unity, and it cannot be enhanced by a factor of∼ 100 as is re-
quired to explain the apsidal motion in KIC3749404. More-
over, non of the tidally excited gravity modes in the compo-
nents of KIC3749404 are particularly close to resonance. We
infer this from comparison with other heartbeat stars that
have pulsations near resonance (e.g., KOI-54, Welsh et al.
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Figure 7. Top panel: the best-fit models (black lines) for the ini-
tial segment of data (left panel) of Quarters 1 and 2 (blue dots),
and the final segment of data (right panel) for Quarters 15 and
16 (blue dots). To perform the fit, the parameters from the model
with pulsations were fixed, with the exception of the argument of
periastron, phase shift and a global pulsation phase shift param-
eter, which were fitted. Bottom panel: The phase folded Kepler
data of Quarters 1 and 2 (red); Quarters 8, 9 and 10 (blue); and
Quarters 15 and 16 (black). The data clearly demonstrate the
changing shape of the light curve due to the advance of perias-
tron.

(2011); KIC 8164262, Hambleton et al., in prep) where the
pulsations close to resonance have significantly larger am-
plitudes than other pulsations in the system. Therefore, we
find it unlikely that tidally induced pulsations can produce
the rapid apsidal motion of KIC3749404.

4.2 Precession from a Third Body

One possibility is that the rapid apsidal motion in
KIC3749404 is caused by the gravitational influence of an
external perturber. To order of magnitude, the precession
rate due to an external third body is (Eggleton & Kiseleva-
Eggleton 2001):

ω̇3B ≈ M3

M1 +M2 +M3

1
(1− e2in)

1/2(1− e2out)3/2
Ωout

Ωin
Ωout .

(6)
Here, M3 is the mass of the third body, while ein and eout
refer to the eccentricities of the inner and outer orbits, and
Ωin and Ωout refer to their orbital angular frequencies. The
precise precession rate depends on the relative inclination of
the systems which is not constrained.

We expect the third body to have M3 < M1,M2 be-
cause it is not visible in the spectra, and orbital stability
requires Ωout ≪ Ωin. Making the simplifying assumption of
eout = 0, and using the measured values of ein and Ωin yields

ω̇3B ∼ M3

M1 +M2 +M3

(
Pin

Pout

)2

104 deg/yr . (7)

Equating this with the observed rate of precession of ω̇obs ≃
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Figure 8. Posterior distributions of the apsidal motion parame-
ters for the model of the first section (top panel) and last section
(bottom panel) of Kepler data. Here ω is the argument of pe-
riastron; φ is the light curve phase shift, which is required to
keep the periastron variation centred when changing the argu-
ment of periastron; and shift represents the amount by which all
the pulsation phases are shifted with respect to their values for
the original model with 7 pulsations. The layout is analogous to
that of Fig. 3.

1 deg/yr yields the requirement

M3

M1 +M2 +M3

(
Pin

Pout

)2

∼ 10−4 . (8)

A typical low-mass companion of M3 ∼ 0.5M⊙ would
then require Pout ∼ 2 yr. Of course, different companion
masses, eccentricities, and inclinations would change the re-
quired orbital period of the third body, but we expect this
period to be on the order of years to produce the observed
apsidal motion. A third body at this orbital separation, in-

clination and eccentricity would have a semi-amplitude of
∼5 kms−1 and could likely be detected through long term
RV variations of the primary binary, or possibly via an in-
frared excess in the spectrum. We encourage follow-up obser-
vations of KIC3749404 to constrain the nature of a putative
third body and determine whether the observed precession
is driven by three-body processes or tidal interactions.

Dependent on the inclination of the tertiary compo-
nent’s orbit, it is also possible that nodal precession could
occur. Given a long enough time base, this could also be
detected in the orbit as a change in the radial velocity am-
plitude due to the motion of the inner binaries center of mass
(see e.g. Mayor & Mazeh (1987)). Furthermore, in heartbeat
stars, this could be observed as a change in the morphology
of the periastron variation due to a change in the inner bina-
ries inclination. During the analysis of KIC3749404 we did
not detect a clear signature of nodal precession in the light
curve given our uncertainties.

4.3 Stellar Components

As predicted by theory, the gravity brightening exponent for
the radiative, primary component, determined through our
models, is ∼1 (von Zeipel 1924). For the secondary compo-
nent the posterior distribution is a slightly skewed normal
distribution. By considering the peak of the skewed distribu-
tion (not the Gaussian fit to the posterior distribution) we
find the gravity brightening exponent to be β=0.59 ± 0.08.
While this is not in agreement with the value of β=0.32,
suggested by Lucy (1967), we find our value in close agree-
ment (∼2σ) with that of Claret & Bloemen (2011), who
computed β=0.48 for comparable models. This value was
computed using ATLAS models (Castelli & Kurucz 2004)
and the Kepler bandpass, and taking into account local grav-
ity and convection. It is also likely that the tidal distortion
affects the gravity darkening exponent, as discussed by Es-
pinosa Lara & Rieutord (2012).

In our binary models we fixed the primary and sec-
ondary rotation rates to those obtained through spectral
fitting, v sin i1 =29(2) kms−1 and v sin i2 =9(2) kms−1.
Combining these values with our model-determined incli-
nation and radii, for the model with pulsations, we obtained
F1 =7.1(2) and F2 =4.0(1), where F is the ratio of the stel-
lar rotational to orbital period and the subscript denotes the
primary and secondary components, respectively. For both
models, the one with, and the one without pulsations, we ob-
tained the same values with slightly different uncertainties
(see Table 4). Interestingly, the primary component is rotat-
ing slightly faster than the predicted pseudo-synchronous
rotation rate (Hut 1981), the stellar rotation synchronous
with the orbital velocity at periastron, which was calculated
to be F =5.34 for both components; while the secondary
component is rotating slightly slower.

5 SUMMARY AND CONCLUSIONS

We have modelled the heartbeat star binary system
KIC3749404 by combining a comprehensive assortment of
tools including the binary modelling software, phoebe; em-
cee, a python implementation of the affine invariant Markov
chain Montie Carlo techniques; and our own software to
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fit pulsations and Doppler boosting. With these tools we
were able to obtain two successful fits to the heartbeat star
light and radial velocity curves simultaneously: one without
pulsations and one with all the tidally induced pulsations
greater than 20µmag (7 pulsations). From these fits we ob-
tained the fundamental parameters of the binary system (see
Table 3). The difference between the results of these two
models hinges on the different inclination values: 60.2(1)◦

without pulsations and 62(1)◦ with pulsations. This 2 sigma
difference subsequently produced a larger semi-major axis
and masses in the model with pulsations (3(1)R⊙ larger for
the semi-major axis, and 0.3(1) M⊙ and 0.1(1) M⊙ larger
for the primary and secondary component, respectively).

Analysis of the stellar spectra highlighted a mismatch
between the spectral templates and observations for the pri-
mary component. Increasing the metallicity improved the
general fit to the metal lines; however, worsened the fit to
the Ca II K lines and the hydrogen lines, which are impor-
tant temperature indicators in A stars. This selective enrich-
ment of the photosphere matches the abundance patterns of
Am stars. The presence of Am stars in binaries is common,
due to the slow rotation (compared to single A stars) and
increased convective mixing. Thus we conclude that the pri-
mary component of KIC3749404 is an Am star.

As there is significant smearing of the periastron varia-
tion in the phased Kepler light curve, which is indicative of
apsidal motion, we elected to model the rate of apsidal ad-
vance. This was done by fitting two new models, one to the
beginning (Quarters 1 and 2) and one to the end (Quarters
15 and 16) of our data set. For the new models, all the values
were fixed to those previously determined for the model with
pulsations, except for the argument of periastron and phase
shift, which were fitted, along with an additional parame-
ter to shift all the pulsation phases by a fixed amount. The
difference between the argument of periastron at the begin-
ning and end of our data set, divided by the duration of the
data set gave us an estimate of the rate of apsidal advance
(ω̇obs =1.166(1)◦/yr). Comparing this value to the theoreti-
cal rate of apsidal advance, accounting for both classical and
general relativistic effects (ω̇theo =0.007(6)◦/yr), we found
that the orbit of KIC3749404 is precessing faster than pre-
dicted by two orders of magnitude. While we accept that the
lack of eclipses in our light curve limits the determination
of the stellar radii and rate of apsidal advance, the extreme
disagreement between theory and observation is unlikely a
consequence of our chosen methods, even when considering
that the rate of classical apsidal advance scales as R−5. Af-
ter eliminating tidally induced pulsations as the sole cause
of rapid apsidal motion, we hypothesise that it is due to the
presence of a tertiary component in the system.
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Chapter 6

KIC5006817

This chapter features the published asteroseismic case study of 18 red-giant heart-

beat stars, including the detailed study of KIC5006817. This work is contextualized

by Chapter 1 which includes detailed discussion on solar-like oscillations and red gi-

ants, and Chapter 3, which provides an introduction to heartbeat stars.

I am the second author of this publication and personally led the binary star mod-

elling effort. This included creating a full, self-consistent binary star model and

writing Sections 6 and 7, entitled “Binary parameters of KIC 5006817” and “Com-

bined asteroseismic and binary interpretation”, respectively. This publication was

led by P. Beck, who undertook most of the writing, and the asteroseismic analysis

and interpretation. The majority of the spectral observations were obtained by S.

Bloemen. J. Vos created the evolutionary model of KIC5006817, which he wrote

about in Section 8, entitled “Impact of stellar evolution on eccentric binary sys-

tems”. The remaining authors listed on the publication contributed discussion and

comments.
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ABSTRACT

Context. The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red
giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric
non-eclipsing binaries that exhibit ellipsoidal modulations have been detected with Kepler.
Aims. We aim to study the properties of eccentric binary systems containing a red giant star and to derive the parameters of the
primary giant component.
Methods. We applied asteroseismic techniques to determine the masses and radii of the primary component of each system. For
a selected target, light and radial velocity curve modelling techniques were applied to extract the parameters of the system and its
primary component. Stellar evolution and its effects on the evolution of the binary system were studied from theoretical models.
Results. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and
radii were constrained. The orbital periods of these systems range from 20 to 440 days. The results of our ongoing radial velocity
monitoring programme with the Hermes spectrograph reveal an eccentricity range of e= 0.2 to 0.76. As a case study we present a
detailed analysis of KIC 5006817, whose rich oscillation spectrum allows for detailed seismic analysis. From seismology we constrain
the rotational period of the envelope to be at least 165 d, which is roughly twice the orbital period. The stellar core rotates 13 times
faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum
amplitude of 300 ppm in the light curve. Fixing the mass and radius to the asteroseismically determined values, we find from our
binary modelling a value of the gravity darkening exponent that is significantly larger than expected. Through binary modelling, we
determine the mass of the secondary component to be 0.29± 0.03 M⊙.
Conclusions. For KIC 5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results
from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2σ level. Red
giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.

Key words. stars: solar-type – binaries: general – stars: rotation – Sun: oscillations – stars: individual: KIC5006817 –
asteroseismology

1. Introduction

The NASA Kepler space telescope (Borucki et al. 2010) has
been delivering unprecedented photometric data for more than
150 000 stars. These nearly continuous observations that now
cover more than 1000 d have allowed major advances in our

understanding of stellar structure of single stars and of multiple-
star systems. The asteroseismic investigation of red giant stars
has become one of Kepler’s success stories.

Red giants are evolved stars that have ceased hydrogen burn-
ing in the core and left the main sequence. This late phase of stel-
lar evolution splits into several episodes, which are associated
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Fig. 1. Five examples of Kepler light curves of red giant heartbeat stars from our sample. Black dots and red line show the corrected and rebinned
(30 min) light curves, respectively. KIC 8144355 is the star with the highest eccentricity, KIC 5039392 is the most luminous star, and KIC 9151763
is the star with the longest orbital period. The low-luminosity RGB star KIC 8912308 has the shortest orbital period in our sample. The right panel
shows a zoom on the partial eclipse during the heartbeat event of KIC 10614012.

with subsequent modifications of the stellar structure. As the he-
lium core contracts, the energy generation rate in the hydrogen-
burning shell that surrounds the core increases the luminosity
causing an increase in the stellar radius. The core’s mass and
density keep growing until the core is hot enough to ignite he-
lium, as the helium settles from the burning hydrogen shell. For
stars with birth masses below approximately 2.3 M⊙, the helium
core fusion starts with a helium flash in a series of off-centre
thermal subflashes (e.g. Bildsten et al. 2012) that result in a ther-
mal runaway. At this point the core expands by two orders of
magnitude, reducing the temperature of the overlying hydrogen-
burning shell. The luminosity of the star drops, the radius con-
tracts and the red giant settles onto the horizontal branch, where
metal-rich stars are concentrated in the red clump.

A large portion (in radius) of the red giant’s envelope is con-
vective, and oscillations are excited stochastically in a part of
that envelope. These solar-like oscillations correspond to pres-
sure modes (p modes), and their frequencies follow a charac-
teristic comb-like pattern (Tassoul 1980). The mode amplitudes
range from a few tens to a few hundred parts per million (ppm)
in observed flux, or of the order of 10 m s−1 or less in radial ve-
locity (Frandsen et al. 2002; De Ridder et al. 2006), which is
barely detectable from ground-based observations. In the era be-
fore high-precision photometric space missions, solar-like oscil-
lations of red giants were only confirmed in a handful of bright
stars from extensive single- and multisite campaigns of high-
precision spectroscopy. Examples are ξHya (Frandsen et al.
2002), εOph (De Ridder et al. 2006), and η Ser (Hekker et al.
2006). Photometric measurements from space have substantially
increased the number of red giants with detected oscillation sig-
nals. The detection of nonradial modes in a multitude of red gi-
ants observed with the CoRoT satellite was a major milestone to-
wards an improved understanding of red giants, since it allowed
for more sophisticated asteroseismic analyses (De Ridder et al.
2009).

Pressure modes have their largest amplitude in the con-
vective envelope, while gravity modes (g modes) have their
largest amplitude in the deep interior. At some stages of stel-
lar evolution, p modes and g modes can couple and become
a mixed mode. The firm identification of such mixed modes
in Kepler and CoRoT data by Beck et al. (2011), Bedding
et al. (2011), and Mosser et al. (2011a) extended the sensitiv-
ity of the seismic analysis towards the core regions of red gi-
ant stars (Dupret et al. 2009, and references therein). The anal-
ysis of mixed modes allows us to determine the evolutionary

state (Bedding et al. 2011; Mosser et al. 2011a) and constrain
the core rotation of red giants (Beck et al. 2012; Deheuvels et al.
2012).

The seismology of red giants is largely built on scaling re-
lations for pressure modes that have already been described by
Kjeldsen & Bedding (1995). These relations have been applied
in numerous papers since then (e.g. Kallinger et al. 2010b; Huber
et al. 2011; Corsaro et al. 2013). Results from scaling relations
have recently been compared with results of independent meth-
ods. Huber et al. (2012) found a good agreement within the
observational uncertainties for evolved stars. From comparing
results for the eclipsing binary KIC 8410637 from binary mod-
elling and seismology, Frandsen et al. (2013) found an excellent
agreement for the surface gravity. But, the masses determined
by the two methods deviated slightly. Additionally, a large set of
red giants in eclipsing binaries was recently reported by Gaulme
et al. (2013) which will allow for new sample studies.

The Kepler mission has also recently discovered the exis-
tence of a new class of eccentric ellipsoidal binary stars for
which the binary characteristics can be determined over the com-
plete range of inclinations and as such are not limited to the
narrow range of eclipsing systems. These so-called Heartbeat
stars (Welsh et al. 2011; Thompson et al. 2012) are defined as
eccentric, detached binary systems that undergo strong gravita-
tional distortions and heating during periastron passage, which
are clearly depicted in their light curves (e.g. Fig. 1). Kumar et al.
(1995) developed a theory of such objects and demonstrated
how the morphology of the light curve is defined by the eccen-
tricity, argument of periastron and inclination. Furthermore, the
amplitude of the periastron variation is determined by the pe-
riastron separation, masses and structure of the stellar compo-
nents. Consequently, these parameters can in principle be gauged
through consideration of the light and radial velocity curves. The
first such object discovered to confirm the theory was KOI 54
(HD 187091, Welsh et al. 2011). Subsequently, more tidally in-
teracting eccentric binary systems have been discovered in the
Kepler field as well as in the Magellanic clouds from OGLE ob-
servations by Thompson et al. (2012), Hambleton et al. (2013)
and Nicholls & Wood (2012), respectively. Only observations
from Kepler provide the temporal resolution to allow for a dedi-
cated seismic analysis for these stars. Table 1 lists several newly-
found heartbeat stars in the Kepler field of view with a compo-
nent exhibiting solar-like oscillations.

The seismic study of a sample of 18 eccentric systems
(Fig. 2) is presented in Sect. 3. For a detailed seismic study,
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Fig. 2. Position of the 18 red giant heartbeat stars from Tables 1 and 2 in
the HR diagram, where the colour shows the mass of the red giant, de-
rived from seismology. The size of the dots represents the orbital period,
ranging between 20 and 438 d. The contour surfaces reflect the density
distribution of 1000 pulsating red giants. The darkest areas mark the
position of the densely populated red clump. Numbers in red indicate
the star count per bin, for which the contour surfaces have been drawn.
Lines of equal radii in the HR diagram have been drawn for selected
stellar radii between 5 and 30 R⊙.

a large number of oscillation modes is needed to allow for an
optimal comparison with theoretical models. The star with the
richest power density spectrum is KIC 5006817. Sections 4–6
describe the seismic, spectroscopic and binary analyses of this
system. The results of these different analyses are compared in
Sect. 7. In Sect. 8 we reflect upon the possibility that heartbeat
stars are potential subdwarf B (sdB) and cataclysmic variables
(CV) progenitors.

2. Observations

The Kepler datasets used in this study cover a time base up to
1300 d (Quarters Q0–Q14) in the long cadence observing mode
of Kepler. In this mode, integrations of 6.04 s are taken every
6.54 s and 270 such integrations are co-added for transmission to
Earth to give an integration time of 29.43 min, leading a Nyquist
frequency of 283.4µHz. For one target a month of short cadence
data was available. In this observing mode, the individual in-
tegrations are stacked to exposures of 58.8 s, which leads to a
Nyquist frequency of 8495µHz (Fig. 3). To produce light curves
which are robust against long period instrumental drifts, we ex-
tracted the photometric flux from the pixel data following the
methods described by Bloemen (2013). The light curves were
corrected following García et al. (2011). The target pixel data
were also used to inspect whether the light curve was contami-
nated by neighbouring field stars. In all cases a significant con-
tamination is unlikely.

Red giant heartbeat candidates were selected by inspecting
the light curves. Also the subsequent versions of the Kepler
eclipsing binary catalogue (Prša et al. 2011; Slawson et al. 2011;
Matijevič et al. 2012) were searched for candidates among the
stars classified as red giants.

The light curves of red giant stars are dominated by the
low frequency signals of the granulation background and of the
solar-like oscillations (Fig. 4), which hamper a determination
of the precise value of the orbital period from the reoccurring

Fig. 3. Power density spectra of KIC 8803882 from 1250 d of long and
30 d of short cadence data are shown in blue and red, respectively. The
formal Nyquist frequency (dashed line) separates the reflected oscilla-
tion power (top panel, sub-Nyquist frequency range) and the original
power excess (bottom panel, super-Nyquist frequency range).

Fig. 4. Power density spectrum (PDS) of the light curve of
KIC 5006817. The black PDS was calculated from the original light
curve. The red PDS originates from a high-passband filtered light curve,
corrected for the mean flux variation during the periastron passage. A
zoom into the power excess is shown in Fig. 5.

flux modulation at periastron (hereafter referred to as heart-
beat event). Therefore, the light curves were smoothed with
a boxcar with a width of a few days and analyzed using the
phase dispersion minimisation technique (Stellingwerf 1978).
By testing for strictly periodic recurrences, confusion with other
variability sources, such as stellar activity or instrumental arte-
facts is excluded.

For an independent confirmation of the binary nature of the
discovered heartbeat systems, we searched for radial velocity
variations from spectra obtained with the Hermes spectrograph
(Raskin et al. 2011), mounted on the 1.2 m Mercator Telescope
at La Palma, Canary Islands, Spain. This highly efficient échelle
spectrograph has a resolving power of R = 86 000. The raw spec-
tra were reduced with the instrument-specific pipeline. The ra-
dial velocities were derived through weighted cross-correlation
of the wavelength range between 478 and 653 nm of each spec-
trum with an Arcturus template (Raskin et al. 2011). For our
prime target, KIC 5006817, two orbital cycles were monitored
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Fig. 2. Position of the 18 red giant heartbeat stars from Tables 1 and 2 in
the HR diagram, where the colour shows the mass of the red giant, de-
rived from seismology. The size of the dots represents the orbital period,
ranging between 20 and 438 d. The contour surfaces reflect the density
distribution of 1000 pulsating red giants. The darkest areas mark the
position of the densely populated red clump. Numbers in red indicate
the star count per bin, for which the contour surfaces have been drawn.
Lines of equal radii in the HR diagram have been drawn for selected
stellar radii between 5 and 30 R⊙.

a large number of oscillation modes is needed to allow for an
optimal comparison with theoretical models. The star with the
richest power density spectrum is KIC 5006817. Sections 4–6
describe the seismic, spectroscopic and binary analyses of this
system. The results of these different analyses are compared in
Sect. 7. In Sect. 8 we reflect upon the possibility that heartbeat
stars are potential subdwarf B (sdB) and cataclysmic variables
(CV) progenitors.

2. Observations

The Kepler datasets used in this study cover a time base up to
1300 d (Quarters Q0–Q14) in the long cadence observing mode
of Kepler. In this mode, integrations of 6.04 s are taken every
6.54 s and 270 such integrations are co-added for transmission to
Earth to give an integration time of 29.43 min, leading a Nyquist
frequency of 283.4µHz. For one target a month of short cadence
data was available. In this observing mode, the individual in-
tegrations are stacked to exposures of 58.8 s, which leads to a
Nyquist frequency of 8495µHz (Fig. 3). To produce light curves
which are robust against long period instrumental drifts, we ex-
tracted the photometric flux from the pixel data following the
methods described by Bloemen (2013). The light curves were
corrected following García et al. (2011). The target pixel data
were also used to inspect whether the light curve was contami-
nated by neighbouring field stars. In all cases a significant con-
tamination is unlikely.

Red giant heartbeat candidates were selected by inspecting
the light curves. Also the subsequent versions of the Kepler
eclipsing binary catalogue (Prša et al. 2011; Slawson et al. 2011;
Matijevič et al. 2012) were searched for candidates among the
stars classified as red giants.

The light curves of red giant stars are dominated by the
low frequency signals of the granulation background and of the
solar-like oscillations (Fig. 4), which hamper a determination
of the precise value of the orbital period from the reoccurring

Fig. 3. Power density spectra of KIC 8803882 from 1250 d of long and
30 d of short cadence data are shown in blue and red, respectively. The
formal Nyquist frequency (dashed line) separates the reflected oscilla-
tion power (top panel, sub-Nyquist frequency range) and the original
power excess (bottom panel, super-Nyquist frequency range).

Fig. 4. Power density spectrum (PDS) of the light curve of
KIC 5006817. The black PDS was calculated from the original light
curve. The red PDS originates from a high-passband filtered light curve,
corrected for the mean flux variation during the periastron passage. A
zoom into the power excess is shown in Fig. 5.

flux modulation at periastron (hereafter referred to as heart-
beat event). Therefore, the light curves were smoothed with
a boxcar with a width of a few days and analyzed using the
phase dispersion minimisation technique (Stellingwerf 1978).
By testing for strictly periodic recurrences, confusion with other
variability sources, such as stellar activity or instrumental arte-
facts is excluded.

For an independent confirmation of the binary nature of the
discovered heartbeat systems, we searched for radial velocity
variations from spectra obtained with the Hermes spectrograph
(Raskin et al. 2011), mounted on the 1.2 m Mercator Telescope
at La Palma, Canary Islands, Spain. This highly efficient échelle
spectrograph has a resolving power of R = 86 000. The raw spec-
tra were reduced with the instrument-specific pipeline. The ra-
dial velocities were derived through weighted cross-correlation
of the wavelength range between 478 and 653 nm of each spec-
trum with an Arcturus template (Raskin et al. 2011). For our
prime target, KIC 5006817, two orbital cycles were monitored
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Table 1. Seismic and fundamental parameters for 14 oscillating red giant heartbeat stars, ordered by descending orbital period.

Star νmax ∆ν ∆Π1 δ fmax Evol. R M log g L Teff Porbit A |∆RV |
KIC [µHz] [µHz] [sec] [nHz] phase [R⊙] [M⊙] [dex] [L⊙] [K] [d] [ppt] [km s−1]

9151763 13.8± 0.2 1.98± 0.01 − − RGB? 17.6± 0.4 1.19± 0.08 2.01 96± 16 4290 437.5 +7.1 32.2
7431665 54.0± 0.7 5.46± 0.02 ∼67 − RGB 9.4± 0.1 1.39± 0.05 2.62 35± 2 4580 281.4 –3.0 [37.8]
5039392 6.2± 0.1 1.13± 0.01 − − RGB 24.0± 0.7 0.98± 0.07 1.67 157± 24 4110 236.7 –6.0 42.3
9540226⋆ 27.4± 0.4 3.18± 0.01 − − RGB 14.1± 0.3 1.6± 0.1 2.37 81± 13 4600 175.4 –7 45.3
8210370 44.1± 0.8 4.69± 0.02 − − RGB? 10.5± 0.2 1.40± 0.08 2.54 44± 4 4585 153.5 –5.3 22.1
11044668 50.2± 0.2 5.65± 0.01 ∼60 83(?) RGB 8.18± 0.09 0.99± 0.03 2.59 26± 3 4565 139.5 –3.8 [43.0]
10614012⋆ 70.2± 0.9 6.54± 0.02 − − RGB 8.6± 0.2 1.49± 0.08 2.74 33± 4 4715 132.1 –4.7 49.3
9163796 153.2± 0.7 13.53± 0.04 − − RGB 4.46± 0.03 0.89± 0.01 3.09 12± 1 4820 121.3 ± 0.5 70.1
2444348 30.5± 0.3 3.26± 0.01 − − RGB 14.9± 0.3 1.94± 0.11 2.38 86± 14 4565 103.5 –1.7 7.7
5006817 145.9± 0.5 11.64± 0.01 78 450 RGB 5.84± 0.09 1.49± 0.06 3.08 19± 3 5000 94.8 –1.7 23.5
8803882 347± 3 22.6± 0.4 − 500(?) RGB 3.68± 0.1 1.4± 0.1 3.45 8± 1 5043 89.7 +0.5 [1.9]
8144355 179± 2 13.95± 0.04 ∼78 210(?) RGB 4.90± 0.09 1.26± 0.08 3.16 12± 2 4875 80.6 +2.1 18.9
9408183 164.8± 0.2 13.29± 0.02 ∼93 450 RGB 5.02± 0.07 1.23± 0.05 3.12 13± 1 4900 49.7 +1.5 64.4
2720096 110.1± 0.7 9.17± 0.01 − − RGB 6.98± 0.08 1.54± 0.06 2.95 23± 2 4812 26.7 +1.0 4.0
8095275 69.3± 0.3 6.81± 0.01 − − RGB 7.78± 0.08 1.21± 0.05 2.74 25± 3 4622 23.0 –6.0 20.6

Notes. The star’s identifier in the Kepler Input Catalogue (KIC) is given. Eclipsing systems are marked with an asterisk. The columns νmax and ∆ν
report the frequency of the oscillation power excess and the large frequency separation between radial modes for a given star. ∆Π1 quantifies the
true period spacing of dipole modes. The maximum value of the detected rotational splitting δ f is listed. The evolutionary phase RGB describes
H-shell burning red giant. Ambiguous values are marked with “?”. The columns R, M, L, and log g report the stellar radius, mass, luminosity,
effective temperature and surface gravity from scaling relations, respectively. Teff was adopted from the KIC. The uncertainties of log g are on
the order of 0.01 dex and for the temperature typically smaller than 150 K. Porbit gives the orbital period from photometry. The column A lists the
maximum amplitude of the heartbeat in a rebinned phase diagram. The error estimate for Porbit and A from the PDM is not reliable due to the
remaining contamination of the solar-like oscillations and therefore not given. |∆RV | reports the maximum difference in radial velocity. Square
brackets mark systems for which the orbital parameters could not yet be determined from radial velocities.

Table 2. Low-luminosity red giants with νmax higher than 283 µHz from long cadence data.

Star fmax (νmax) ∆ν R M log g L Teff Porbit A |∆RV |
KIC [µHz] [µHz] [µHz] [R⊙] [M⊙] [dex] [L⊙] [K] [d] [ppt] [km s−1]

7799540 220± 5 (347.2) 24.0 3.64 1.52 3.50 17.5 5177 71.8 +0.5 [31.8]
2697935⋆ 161± 3 (405.6) ∼28 3.26 1.45 3.574 15.7 4883 21.5 ±1.3 52.1
8912308 217± 9 (350.2) 22.7 4.20 2.02 3.50 23.5 4872 20.2 +1.2 61.4

Notes. The definition of columns KIC, ∆ν, M, R, log g, L, Porbit, A and ∆|RV | is the same as in Table 1. fmax and (νmax) indicate the frequency of
the maximum oscillation power, reflected at the Nyquist frequency and reconstructed power excess, respectively. Teff was adopted from the KIC
parameters. The uncertainties of M, R, log g and L are better than 2, 5, 1, and 15 per cent, respectively.

Table 3. Orbital parameters for systems for which the periastron has been monitored with the Hermes spectrograph.

Star nRV Porbit e Ω K γ T0 Eclipse
KIC [d] [rad] [km s−1] [km s−1] [HJD] duration

9151763 24 437.51± 0.03 0.73± 0.01 3.03± 0.01 16.20± 0.04 –92.89± 0.03 2 455 949.64± 0.06
5039392 13 236.70± 0.02 0.44± 0.01 4.96± 0.01 22.6± 0.2 –14.96± 0.05 2 454 874.2± 0.27
9540226⋆ 31 175.43± 0.01 0.39± 0.01 0.07± 0.01 23.32± 0.04 –12.37± 0.02 2 456 425.89± 0.09 P: 4 d; S: 3 d
8210370 16 153.50± 0.01 0.70± 0.01 1.17± 0.01 12.96± 0.36 –0.76± 0.08 2 454 937.35± 0.01
10614012⋆ 22 132.13± 0.01 0.71± 0.01 1.23± 0.01 24.68± 0.03 –0.92± 0.02 2 454 990.48± 0.01 1 d
9163796 17 121.30± 0.01 0.69± 0.01 0.00± 0.01 35.64± 0.01 –11.05± 0.01 2 456 409.60± 0.01
2444348 17 103.50± 0.01 0.48± 0.01 4.30± 0.01 4.76± 0.02 14.47± 0.01 2 454 947.74± 0.09
5006817 70 94.812± 0.002 0.7069± 0.0002 4.0220± 0.0005 11.709± 0.005 –14.021± 0.002 2 456 155.924± 0.002
8144355 19 80.55± 0.01 0.76± 0.01 2.79± 0.01 9.44± 0.04 0.02± 0.03 2 455 914.43± 0.02
9408183 7 49.70± 0.01 0.42± 0.01 0.17± 0.01 37.17± 0.04 –14.37± 0.01 2 454 989.80± 0.01
2720096 13 26.70± 0.01 0.49± 0.01 6.11± 0.01 2.28± 0.03 9.92± 0.01 2 454 990.67± 0.05
8095275 25 23.00± 0.01 0.32± 0.01 2.19± 0.01 10.50± 0.06 –8.58± 0.03 2 454 971.02± 0.03
2697935⋆ 27 21.50± 0.01 0.41± 0.02 2.33± 0.06 26.5± 0.6 –74.4± 0.4 2 454 990.9± 0.1 0.1 d
8912308 28 20.17± 0.01 0.23± 0.01 3.34± 0.01 30.78± 0.02 –52.69± 0.01 2 454 994.06± 0.01

Notes. Number of radial velocity measurements, nRV; orbital period Porbit; eccentricity e; argument of periastron Ω; radial velocity amplitude K;
velocity of the system γ; and zero point T0. The duration of the eclipse is given. P and S indicate the primary and secondary eclipses, respectively.
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Table 4. Inclination values for individual pressure-dominated modes.

m = 0 Inclination
137.02 70.2 ± 5
137.93 76.3 ± 5
148.29 82.9 ± 4
149.19 80.2 ± 4
mean 77 ± 9

Notes. Individual inclinations for the pressure-dominated dipole modes,
centred on the m = 0 component, in the range between 130 and 155 µHz
(Fig. 7).

Table 5. Fundamental parameters of the red giant KIC 5006817.

Teff [K] log g[dex] [Fe/H] [dex] vmicro [km s−1] LB [km s−1]
5000 ± 250 3.0 ± 0.5 −0.06 ± 0.12 3.0 ± 0.5 8 ± 1

Notes. Results for the effective temperature Teff , surface gravity log g,
and microturbulence νmicro of the red giant component. The last column
gives the total line broadening as defined in Sect. 5.1.

in 2012 as well as in 2013. Radial velocity monitoring for the
other stars listed in Table 1 is ongoing. Tables 1 to 3 report the
first orbital results for stars in our sample.

3. Eccentric red giant systems in the Kepler data

In total, we found 18 red giant stars in eccentric binary systems
that show the characteristic gravitational distortion of heartbeat
stars. These stars were found in a sample of Kepler red giants
that encompass about 16 000 stars. All stars show the clear sig-
nature of solar-like oscillations (Tables 1 and 2). Figure 1 shows
phase diagrams of five selected stars.

The global seismic analysis of red giant stars enables us
to accurately constrain the fundamental parameters of the main
component of the binary system. The characteristic comb-like
structure of solar-like oscillations originates from p modes and
therefore depends on the sound speed in the acoustic cavity. The
main characteristics of the power excess (central frequency of
the oscillation power excess, νmax, and the large frequency sepa-
ration between consecutive radial modes, ∆ν) scale well with the
mass and radius, and to a lesser extent with effective temperature
(e.g. Kjeldsen & Bedding 1995; Mosser et al. 2013). Following
the approach of Kallinger et al. (2010b) we estimated the radius,
mass, luminosity, log g and effective temperature of our sam-
ple stars (Tables 1 and 2) and place the red giant components of
the binaries in the Hertzsprung-Russell (HR) diagram shown in
Fig. 2. All stars except two have masses between 1 and 1.5 M⊙.
The majority of the Kepler red giants are located in this mass
range.

3.1. Evolutionary status of red giant heartbeat stars

Seismic information can reveal the evolutionary status of the
star. Stars with a large frequency separation ∆ν >∼ 9 µHz (i.e.
RRG <∼ 7 R⊙) are located well below the red clump (Fig. 2) and
therefore can only be in the hydrogen shell burning phase. A
value of ∆ν <∼ 3 µHz (i.e. RRG >∼ 13 R⊙) occurs for stars located
above the red clump. Such stars are likely to be H-shell burning
stars, high up on the RGB, although in principle they also could
be stars on the low asymptotic giant branch (AGB). Stars with
frequency separation 3 <∼ ∆ν <∼ 9 µHz can also be in the helium
core burning phase (Bedding et al. 2011; Mosser et al. 2012b).

Therefore, a further criterion to determine the evolutionary state
of stars with radii larger than 7 R⊙ is needed.

The period separation of mixed dipole modes is a power-
ful diagnostic to distinguish between hydrogen shell and helium
core burning stars (cf. Bedding et al. 2011; Mosser et al. 2011b).
The true period spacing ∆Π1 describes the constant period spac-
ing of pure dipole g modes, which cannot be observed directly.
However, one can determine the value of ∆Π1 by fitting a the-
oretical mixed mode pattern to the actually observed modes in
the power spectrum (Mosser et al. 2012a). Stars which exhibit a
value of ∆Π1 <∼ 100 s are burning hydrogen in a shell around the
inert helium core, while stars with a larger ∆Π1 value belong to
stars on the AGB or RC. The estimated values of the true period
spacing ∆Π1 for the pulsators are given in Table 1.

Several stars do not or barely show dipole mixed modes and
it is impossible to recover their mixed mode pattern. For these
stars we did not determine the evolutionary state from the period
spacing but used the phase shift (ϵc) of the central radial mode as
an indicator. Kallinger et al. (2012) have shown that in a diagram
of ϵc versus the large separation ∆ν, the stars fall into groups
which can be identified as H-shell burning, He-core burning and
AGB stars. For most stars, the identification of the evolutionary
stage from ϵc and the observed period spacing are in agreement.
Therefore we are also able to estimate the evolutionary state of
stars which did not show a clear forest of dipole modes.

For nearly all heartbeat red giants we could constrain them to
be in the state of H-shell burning. The remaining stars are also
likely to be in the same evolutionary state but we cannot rule
out more evolved phases. Among our sample there are 5 stars
in a ∆ν range where the stars can either be an RGB or RC star.
Statistically there is a chance of about 70 per cent that a given red
giant in this range burns He in its core (Kallinger et al. 2012).
Even though the number statistics are still poor we find clear
preference for RGB primaries in heartbeat stars. In Sect. 8, we
discuss that this could be a result of binary evolution.

3.2. Giants with power excess above the formal Nyquist
frequency

In the power density spectrum of KIC 8803882, we find a reverse
combination of l = 2 and 0 modes with respect to the known
comb-like structure between 200µHz and the LC-Nyquist fre-
quency of 283µHz with an apparent large separation of ∆ν =
22.7 µHz (Fig. 3). Stars which show similar structures in their
power spectra are KIC 8912308, KIC 2697935 and KIC 7799540
(cf. Table 2).

As the dataset of KIC 8803882 contained a month of short
cadence observations (Q14.1), we could compare the analysis
of the super Nyquist frequency range from long cadence data
with the same, well resolved frequency range from short ca-
dence data. This comparison, depicted in Fig. 3, allows us to ex-
plore the frequency range above the formal Nyquist frequency,
νNyquist = 283 µHz for long cadence data (Murphy et al. 2013).
We determined the large separation∆ν through manual peakbag-
ging of the long cadence data to be 22.7µHz, which is in perfect
agreement with the large separation of 22.65µHz from short ca-
dence data. The standard approach to determine the frequency
of the power excess (e.g. Kallinger et al. 2010b) uses a simulta-
neous fit of the Gaussian envelope, multiple power laws for the
background and a white noise component. In the super Nyquist
frequency domain, we find an artificial background with increas-
ing power density towards higher frequencies as the signal of the
low frequency domain is mirrored. Therefore, we determined the
position of νmax by fitting a broad Gaussian to the reflected signal
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and calculated the true frequency of the power excess,

νtrue
max = 2 · νNyquist − νreflected

max . (1)

From the values obtained for KIC 8803882, KIC 8912308,
KIC 2697935, and KIC 7799540 (cf. Tables 1 and 2) we con-
clude that they are low-luminosity red giants.

4. Case study of KIC 5006817

While ensemble asteroseismology allows the easy characterisa-
tion of large samples of red giant stars (e.g. Huber et al. 2011;
Hekker et al. 2011; Kallinger et al. 2010b; Mosser et al. 2012a),
studies of individual stars in a close binary grant us additional
insight into the structure of the primary as well as the inter-
action between the binary system components. As a proof-of-
concept of what such objects have to offer compared to single
pulsators, we organised a spectroscopic campaign on the heart-
beat star with the richest oscillation pattern, KIC 5006817.

The power density spectrum of the Kepler observations of
KIC 5006817 is shown in Fig. 4. It contains power excess cen-
tred around 146µHz. Apart from the typical granulation signal
and a series of low frequency peaks (<10µHz) originating from
the heartbeat event, no other significant frequencies are present
(Fig. 4). The oscillation power excess itself is typical for a red
giant primary. The frequency range of the excited oscillation
modes is shown in Fig. 5. For a detailed asteroseismic analy-
sis, only modes with a signal of at least 8 times the background
level were extracted. The frequencies of the individual modes
were extracted as the centroid of the power density in narrow
predefined windows, which we checked for consistency by fit-
ting Lorentzian profiles to a number of modes.

KIC 5006817’s seismic mass and radius estimates are 1.49±
0.06 M⊙ and 5.84 ± 0.09 R⊙, respectively (Table 1). The true pe-
riod spacing of 78 s indicates that the star is in the phase of
H-shell burning (Bedding et al. 2011; Mosser et al. 2012b). In
the HR Diagram shown in Fig. 2, this star is located well below
the red clump.

4.1. Seismic information on the stellar rotation

The power density spectra of many red giants contain clear sig-
natures of the rotational splitting of nonradial modes, which en-
ables us to learn more about the internal rotation of those stars.
This effect arises as rotation breaks the degeneracy of nonradial
modes by shifting the mode frequencies of the components with
azimuthal order m ! 0 away from the central multiplet frequency
(m = 0):

fn,ℓ,m = fn,ℓ,0 + δ fn,ℓ,m, (2)

with the rotational splitting δ fn,ℓ,m given by

δ fn,ℓ,m = m · Ω
2π
· (1 −Cnl), (3)

where Ω is the average rotation frequency in the cavity in which
a given mode propagates and Cnℓ is the Ledoux constant (Ledoux
1951). The values of the rotational splittings reported in this
work are taken to be equal to the frequency separation between
two consecutive multiplet components (i.e. |∆m| = 1). If no cen-
tral peak (m = 0) is detected, we take half the value of the
frequency difference between outer dipole components. We re-
fer to such values as the normalised rotational splitting. In the
power density spectrum of KIC 5006817, we find rotationally

Fig. 6. Splitting-échelle diagram of rotationally affected dipole modes
in KIC 5006817. Measured rotational splittings are shown as dots. Solid
lines connect two splittings originating from the same dipole mode
triplet. The x-axis gives the position of a rotationally split dipole mode
νl= 1,mixed with respect to the pure pressure dipole mode νl= 1,pressure and
as fraction of the large frequency separation ∆ν. The dashed line de-
scribes the modulation of the rotational splitting through a Lorentz-
profile (Mosser et al. 2012a).

split modes of the spherical degree ℓ = 1. The multiplet struc-
ture in l = 2 can originate from splitting or mixed modes. In
principle, also ℓ = 3 modes should be split. However, we have
no clear identification of them as in this star l = 3 modes have
amplitudes close to the significance limit.

As g-dominated and p-dominated modes are sensitive to the
rotation in the central and outer regions of the star, respectively,
they can be used to probe the internal rotation gradient. Beck
et al. (2012) showed that larger splitting of g-dominated than of
p-dominated dipole modes, as found in KIC 5006817 (Figs. 6
and 7) reveals that its interior, rotates multiple times faster than
its envelope.

For some dipole multiplets the presence of a significant cen-
tral peak (m = 0) allowed us to measure the individual splittings
for the m=−1 and +1 components, revealing asymmetries. Such
pairs of splittings are connected with a solid line in Fig. 6. As ro-
tation shifts the frequency of modes, each mode within a triplet
has a slightly different oscillation cavity, which also modifies
its mixed character in terms of p- and g-mode components. The
asymmetries are mirrored around the pure p mode and follow the
Lorentzian description (Fig. 6).

The smallest measured rotational splitting of dipole modes
is about 0.21 µHz and was measured in two asymmetric p-mode
dominated mixed modes. This is about 2.25 times smaller than
the largest splitting δ fmax of 0.45µHz found for g-mode dom-
inated dipole modes. The largest splitting values (δ fmax) origi-
nating from the g-mode dominated dipole modes are consistent
with those measured for large samples of single pulsating red
giants (e.g. Beck et al. 2012; Mosser et al. 2012a)

The extracted rotational splitting of dipole modes (Fig. 6),
shows the expected modulation as a function of the degree of
mixed character (Mosser et al. 2012b,a). The mode identifica-
tion from the universal red giant oscillation pattern for pressure
modes (Mosser et al. 2012a), and from asymptotic expansion for
mixed modes and the rotational splittings (Mosser et al. 2012a,b)
is indicated with vertical bars in Fig. 5. We note that a perfect fit
is not needed to identify the modes.

4.2. Testing of the rotational profile from forward modelling

Because of the conservation of angular momentum, one ex-
pects the core of a red giant to rotate significantly faster than
its surface. Previous analyses (Beck et al. 2012; Deheuvels
et al. 2012; Mosser et al. 2012a) only revealed the ratio of the

A36, page 6 of 18

159



Chapter 6. KIC5006817

P. G. Beck et al.: Pulsating red giant stars in eccentric binaries

Fig. 5. Power density spectrum (PDS) of KIC 5006817 (Q0–Q13). Each panel contains one radial order. Mode identifications of the pure p modes
come from the universal frequency pattern (Mosser et al. 2011b) for ℓ = 0, 1, 2 and 3 and are indicated with blue, red, green and yellow vertical
bars, respectively. The effects of rotation are visible as the splitting of dipole modes, located in the centre of each panel. The observed PDS
is overlaid with the theoretical frequencies of mixed dipole modes (m = 0, solid thin lines) and the theoretical frequencies of the rotationally
split components (m = ±1, dashed thin lines) which have been calculated using methods described by Mosser et al. (2012a,b). The components
belonging to one rotationally split multiplet are indicated through V-markers at the top of each panel.

core-to-surface rotation rate, rather than the shape of the rota-
tional gradient in the transition region between the faster rotating
core and the slower rotating envelope. Goupil et al. (2013) pro-
pose a way to infer directly the ratio of the average envelope to
core rotation rates from the observations. In this paper, we take
a different approach by using forward modelling.

In principle, the number of rotationally split modes in
KIC 5006817 and their different degree of mixed character (and
therefore different “sensitivity” to internal layers of the star)
should enable us to probe the rotation rate at different depths
of the star, i.e. to resolve the rotational gradient to more than a
ratio between the core and surface value. The radial structure of
a red giant is dominated by a helium core and an extended con-
vective envelope. To mimic this structure we considered models
consisting of consecutive shells, which are each assumed to ro-
tate rigidly, but with different angular velocities.

We computed such a representative 1.5 M⊙ model using the
Yale Stellar Evolution Code (YREC; Demarque et al. 2008;
Guenther et al. 1992). The model was selected to approxi-
mately reproduce the observed radial modes and true dipole pe-
riod spacing of KIC 5006817, where we note that no “exact”
match is necessary as the mode eigenfunctions (and therefore
the rotational kernels) of similar models are almost identical (see
also Deheuvels et al. 2012). Our representative model was com-
puted for near solar composition (Z = 0.02, Y = 0.28) assuming
the solar mixture by Grevesse et al. (1996) and a mixing length
parameter (αMLT = 1.8). The model has a radius, effective tem-
perature, age, and inert He core mass fraction of about 5.8 R⊙,
4855 K, 2.8 Gyr, and 0.14, respectively. More details about the
input physics of the model are given in Kallinger et al. (2010a).

We focussed on the two radial orders (i.e. the frequency
range of ∼130 to ∼155µHz), in which 9 rotationally split dipole

modes with good signal-to-noise were extracted. Additionally,
we tested if rotational splittings from two ℓ = 2 modes can be
measured. In Fig. 7 we show the power density spectrum of the
two radial orders of KIC 5006817 along with the mode inertia of
the ℓ = 0 to 3 modes computed for our representative model, in
the adiabatic approximation.

In order to determine which layers dominate the rotational
splitting of a given mode, we computed the adiabatic eigenfunc-
tions for the 9 dipole and 2 quadrupole modes (using the non-
radial nonadiabatic stellar pulsation code by Guenther 1994) as
well as their rotational kernels. The integrated and normalised
kernels are shown as a function of the fractional radius in Fig. 8,
illustrating that all dipole modes contain a significant contribu-
tion from the fast rotating core region, even the most p-mode
dominated ones (indicated as d3 and d7). The kernels are al-
most flat in the radiative region of the envelope (between the two
dashed vertical lines). This is in agreement with the analysis of
the kernels for KIC 8366239 (Beck et al. 2012). The dipole split-
tings provide an upper limit for the surface rotation rate. More
promising are the ℓ = 2 kernels, but even those contain signif-
icant contributions from the core and from the inner part of the
convective envelope.

For a better quantitative result, we deduce the rotation profile
Ω(r) such that

δ fn,ℓ =
1

2πIn,ℓ

∫ R

r = 0
Kn,ℓ(r)Ω(r)dr, (4)

is satisfied for the measured splittings. Here In,ℓ and Kn,ℓ are the
mode inertia and the rotational kernel of a given mode, respec-
tively, and R is the radius of the model. To solve this equation,
several inversion techniques have been developed in the past
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Fig. 7. Frequencies for the two central radial orders of KIC 5006817. Top panel: the coloured dots connected with line segments indicate the inertia
(right axis with arbitrary scale) of the m = 0 adiabatic modes computed for a representative model for KIC 5006817 (red circles, blue filled dots,
green triangles, and yellow squares correspond to ℓ = 0, 1, 2 and 3 modes, respectively). The middle panel provides a zoom on the frequencies in
the range of the two central radial orders. Bottom panel: measured rotational splittings for ℓ = 1 (blue dots) and 2 (green triangles) modes. Open
black circles indicate the splittings that result from our best-fit 2-zone model. Dipole modes are labelled with d, quadrupole modes with q.

with the aim to determine the internal rotation profile of the Sun.
A summary how to apply them to an evolved star is available in
Deheuvels et al. (2012).

The inversion of the integral in Eq. (4) is a highly ill-
conditioned problem and either requires numerical regularisa-
tion or localised averages of the true rotation profile in differ-
ent regions of the star. We used both, adopting the regularised
least squares method (RLS; e.g. Christensen-Dalsgaard et al.
1990) and the subtractive optimally localised averages technique
(SOLA; e.g. Schou et al. 1998). In doing so, we can determine
the core to surface rotation rate. However, as soon as we in-
creased the number of shells, aiming to locate where the transi-
tion between fast rotating core and the slowly rotating envelope
is taking place, both methods failed. Either the results became
numerically unstable or it was impossible to evaluate the relia-
bility of the result.

We therefore chose to apply a Bayesian forward modelling
approach. We computed synthetic rotational splittings for a
model (using Eq. (4)), which was first divided into several
solidly rotating shells, where the rotation rate of each shell was
treated as a free parameter. To fit the synthetic splittings to the
measured ones, we used a Bayesian nested sampling algorithm
called MULTINEST (Feroz et al. 2009) that provides a probabil-
ity density distribution (PDD) for each fitted parameter, from
which we assessed the best-fit values and their uncertainties. The
PDDs allowed us to test the reliability of a specific model, e.g. a
flat PDD for a specific shell implies that the measured rotational

splittings do not contain information about the rotation rate in
this specific region of the star. Additionally, MULTINEST pro-
vides the model evidence, which allows us to compare differ-
ent assumptions for the rotation rates in the shells and evaluate
which one reproduces the observations best. We tested differ-
ent numbers and combinations of shells and found that a 2-zone
model (core and envelope) is better by several orders of magni-
tude. Even introducing regularisation priors (e.g. a smooth gradi-
ent between consecutive shells) did not improve the description
of Ω(r).

4.3. Core and surface rotation

The final model we adopted is a 2-zone one with a core (inner
1 per cent in radius or 14 per cent in mass) and an envelope zone,
where we found that the placement of the exact position of the
border between the two zones only marginally influences the re-
sult. Our best fit constrained the rotation frequency (or period)
for the core and the envelope to be 0.93 ± 0.02 µHz (∼12.5 d)
and 0.07 ± 0.02 µHz (∼165 d), respectively. This corresponds to
a core-to-surface rotation rate of about 13. The envelope rota-
tion rate is an average value for 99 per cent of the radius of the
star and very likely overestimates the true surface rotation. This
asteroseismic result points towards a surface rotation velocity of
1.9 km s−1.

Including the two ℓ = 2 modes only marginally affects the
rotation rate but increases the uncertainty, which is why they
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Fig. 8. Normalised integrated rotation kernels of the dipole ℓ = 1 (blue
and red) and quadrupole ℓ = 2 modes (green) for the two central ra-
dial orders as a function of fractional radius. The kernel labels refer to
modes in Fig. 7. The vertical lines indicate from left to right the border
of the He core (solid line), the H-burning shell (short-dashed line), and
the base of the convective envelope (long-dashed line). Bottom panel:
the model’s fractional mass as a function of the fractional radius. The
labels (not the colours) of dipole and quadrupole modes are consistent
with Fig. 7.

were not taken into account for the final result. We conclude that
the currently available observations do not allow us to assess
the detailed rotational gradient in the envelope of KIC 5006817,
as it was possible for the Sun. We are limited to describing the
rotational profile of red giants with a step function.

4.4. Inclination of the axis of rotation and pulsation

The inclination angle of the rotation axis towards the observer
can be deduced from the rotational splittings. For solar-like os-
cillators, the excitation of all 2·ℓ+1 components and the equipar-
tition of energy is assumed if the time base of the observations
resolves the lifetime effects of a mode.

For dipole modes, the inclination is determined by the height
of the m = 0 and m = ±1 modes, provided that all components
with the same |m| are excited such that they have the same height
in power density (Gizon & Solanki 2003; Ballot et al. 2006). We
have also shown that each component of a split multiplet has a
slightly different cavity which should result in slightly different
heights and lifetimes, an effect absent in the Sun as it has no
mixed modes. To compensate for these differences, we do not fit
the heights of the m = ±1 in a given mode individually, but force
the heights of the fit to be equal.

Simultaneously fitting all dipole modes in at least one radial
order compensates in principle the effects of a changing level
of mixed character between p and g modes. This transition is
symmetrically mirrored around the pure dipole pressure mode.
We tested this approach for the radial orders around 135 and
150µHz, resulting in inclination values of irot = 73◦ ± 3◦ and
irot = 80◦ ± 3◦ respectively. A global fit of both radial orders
lead to iglobal

rot = 76◦ ± 4◦, assuming alignment of the rotation and
pulsation axis. We compare these values to the mean inclination
of imean

rot = 77 ± 9, obtained from the individual rotational split

multiplets of the pressure-dominated modes in this frequency
range (Table 4). These modes have the highest signal and the
shortest lifetimes, and therefore are closest to the assumption of
equipartition of mode energy. The uncertainty is an underesti-
mate as it was computed adopting the assumptions mentioned
above.

5. Spectroscopy of KIC 5006817

To obtain an independent estimate of the eccentricity of the sys-
tem, KIC 5006817 has been monitored spectroscopically with
the Hermes spectrograph (cf. Sect. 2) in 2012 and 2013. The
60 observations span about 160 d, during which the periastron
passages were monitored with several observations a night. The
radial velocities derived from these spectra are shown in the top
panel of Fig. 9.

5.1. Fundamental parameters

The first 44 individual spectra were shifted by the derived radial
velocity value and averaged to produce a high signal-to-noise ra-
tio (S/N) spectrum to determine the stellar atmospheric parame-
ters like effective temperature, Teff, surface gravity log g, micro-
turbulence νmicro and the total line broadening from rotation and
macroturbulence (v sin i + vmacro).

Given the seismic estimate of rotation and inclination, the
total line broadening is dominated by macroturbulence. We used
the combination of local thermal equilibrium (LTE) Kurucz-
Castelli atmosphere models (Castelli & Kurucz 2004) with the
LTE abundance calculation routine MOOG by Sneden (1973). A
detailed description of all steps needed to derive the atmospheric
parameters can be found in, e.g., De Smedt et al. (2012).

The determination of the atmospheric parameters was based
upon Fe I and Fe II lines which are abundantly present in red gi-
ants spectra. The Fe lines used were taken from VALD linelists
(Kupka et al. 2000). We first calculated in MOOG the theoretical
equivalent width (EW) of all available Fe I and Fe II in a wave-
length range between 400 and 700 nm for a grid, centred on the
seismic parameters found (Table 1). The equivalent widths (EW)
of lines were measured via direct integration, the abundance of
the line was then computed by an iterative process where theo-
retically calculated EWs were matched to the observed EW. If
the calculated EW deviated from the theoretical EW by a factor
of 10, the line was rejected due to possible blends. The stellar pa-
rameters are listed in Table 5 and are based on the results from
52 Fe I and 32 Fe II lines.

5.2. Spectral disentangling

In order to look for signatures of a companion in our spectra, we
used the spectral disentangling (SPD) method as implemented in
the FDBINARY code (Ilijic et al. 2004). Being applied in Fourier
space, the method provides a self-consistent and fast solution
for the individual spectra of stellar components of a multiple
system and a set of orbital parameters simultaneously (Hadrava
1995). The SPD method usually requires a time-series of spec-
tra with good, homogeneous orbital phase coverage and delivers
high S/N mean spectra of individual components.

We used the highest S/N spectra to perform the spectral dis-
entangling in a wide wavelength range from 480 to 580 nm.
The spectra were split into smaller chunks, typically 5 nm
wide, to avoid strong undulations in the continuum of the re-
sulting decomposed spectra from which the Fourier-based SPD
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Fig. 9. Radial velocity observations (gray points) with the best-fit model without beaming (solid red line) and with beaming (solid blue line – not
visible) phased over 94.82 d. The uncertainty in the radial velocity is smaller than the size of the points. The model with beaming cannot be seen
on this scale due to the overlap of the model without beaming. The model of the secondary component is presented for both the beaming (dashed
blue line) and non-beaming (dashed red line) best-fit models. Middle panel: best-fit residuals of the binary model without beaming (red points).
Lower panel: residuals of the best-fit binary model with beaming (blue points).

method is known to suffer (see, e.g. Hadrava 1995; Ilijic et al.
2004). Besides the above mentioned metal lines region that also
contains the Hβ spectral line, we also focussed on a few other re-
gions centred at some helium lines (He I 447, 492, and 502 nm,
and He II 469, 541, and 656 nm,) as well as the Hα line. This was
done to verify whether the companion could be a white dwarf
showing only helium and/or hydrogen lines. In neither of these
regions could we detect the lines of the secondary. We estimate
the detection limit of the order of 3 per cent of the continuum,
which means that any contribution below this level would not be
detectable in our rather low S/N spectra (≃20−30 in Johnson V).

We also attempted to go beyond our actual detection limit of
3 per cent, by applying the least-squares deconvolution (LSD)
method (Donati et al. 1997) to the 44 individual spectra. This
method is based on the two fundamental assumptions of self-
similarity of all spectral lines and linear addition of blends, and
enables the computation of a high-quality average line profile,
which is formally characterised by a very high S/N. The first
assumption requires hydrogen and helium lines as well as the
metal lines with pronounced damping wings to be excluded from
the calculations. Moreover, for slowly rotating stars (the case of
KIC 5006817), where the rotation is not the dominant source of
the line broadening, the selfsimilarity is only applicable to the
lines of (nearly) the same strengths. To account for this, we in-
troduced a multiprofile technique as described by Kochukhov
et al. (2010), which enables the computation of several average
profiles simultaneously for several sets of spectral lines grouped,
e.g. according to their relative strengths. The model is then rep-
resented as a convolution of the computed mean profiles with
the line mask which contains information about the position of
individual lines as well as their relative strengths.

Furthermore, part of the lines in the spectrum (e.g. those with
overlapping absorption coefficients) add up non-linearly which

requires a revision of the second fundamental assumption of the
technique. In order to account for the model imperfections due to
non-linear blending of the lines, we additionally fitted strengths
of the individual lines from the mask to match the observations.
This improved procedure (for more details, see Tkachenko et al.
2013) provided us with high S/N (of the order of 450−500) LSD
model spectra which we then used for the SPD in three metal
lines regions. Similar to our previous experience with the origi-
nal spectra, we got a null result, in the sense that no signature of
the secondary has been detected, this time, in the high S/N com-
posite spectra. In this case, our detection limit is estimated to be
of the order of 1 per cent of the continuum, which is mainly due
to the imperfect continuum normalisation rather than the obser-
vational noise. We thus conclude that KIC 5006817 is a single-
lined spectroscopic binary.

6. Binary parameters of KIC 5006817

The morphology of the photometric light curve is a consequence
of ellipsoidal modulation in an eccentric system. The shape of
the “heartbeat” feature in the light curve is a function of the in-
clination, which dictates the peak to dip ratio; the eccentricity,
which affects the relative width of the feature; and the argument
of periastron which affects the symmetry of the feature. The
magnitude of the heartbeat feature is dependent on the radii of
the components, their masses and gravity darkening exponents,
and the orbital inclination.

To study the binary properties of KIC 5006817, we simul-
taneously modelled the photometric and radial velocity data of
KIC 5006817 using the modelling code, PHOEBE (Prša & Zwitter
2005). This code is an extension of the Wilson-Devinney code
(Wilson & Devinney 1971; Wilson 1979; Wilson & Van Hamme
2004) and combines the complete treatment of the Roche
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potential with a detailed treatment of surface and horizon effects
such as limb darkening, gravity darkening, ellipsoidal modula-
tion and reflection effects to arrive at a comprehensive set of
stellar and orbital parameters.

The orbital period of the binary is close to the length of one
Kepler quarter (∼3 months), which is the typical time scale of
long term instrumental trends in Kepler data. Consequently, in
the case of KIC 5006817, accurate detrending of the light curve
is a challenge. We have therefore manually extracted each light
curve, on a quarter-by-quarter basis, from pixel level data to cre-
ate the best behaved light curve possible. We then fitted and di-
vided out a linear trend from each Quarter to detrend and nor-
malise the data. We selected a linear trend to avoid removing the
beaming information from the light curve.

6.1. Orbital ephemeris

From the long cadence Kepler photometry of KIC 5006817
(Quarters 0–12) we determined the zero point in the data (the
time of the periastron minimum) to be 2 455 019.221± 0.008
using the KEPHEM software package (Prša et al. 2011).
Combining this with the spectroscopically determined period
(94.812± 0.002 d) we obtained the following ephemeris in the
Barycentric Julian date:

Min I = 2 455 019.221 ± 0.008 + 94.812 ± 0.002 d × E,

where E is the number of orbits.

6.2. Input parameters

In our fits, we have fixed the effective temperature of the primary
component to the spectroscopic value: Teff,1 = 5000 K (Table 5).

Assuming the secondary component is a main sequence star
(from its lack of visibility in the spectra), we can place an up-
per limit of ∼5400 K on its effective temperature by assuming
that it contributes 1 per cent of the total flux (the lower limit
for spectral disentangling). This temperature is an upper limit
and is likely an overestimate, given the mass determined from
the binary model (∼0.3 M⊙, see Sect. 6.5 and Table 6). Due to
the evolutionary state of the primary and low mass of the sec-
ondary, we assumed that both components have substantial con-
vective outer envelopes and consequently adopted the standard
albedo value of 0.6 (Ruciński 1969a,b). As both objects radiate
towards the infrared end of the optical spectrum, as suggested
by Diaz-Cordoves & Gimenez (1992) and van Hamme (1993),
we have selected the square-root limb darkening law (Eq. (6) in
Diaz-Cordoves & Gimenez 1992).

6.3. Fitting procedure

After manually tweaking the initial parameters until an approx-
imate fit to the photometric data and the spectroscopic radial
velocities was accomplished, we applied differential corrections
(Wilson & Sofia 1976) to optimise the parameters.

The binary model created has the mass and radius of the pri-
mary component fixed to the asteroseismic value. Using differ-
ential corrections we simultaneously fitted the eccentricity and
argument of periastron to the radil velocity and light curves; fit-
ted the semi-major axis and gamma velocity to the radial veloc-
ity curve and fitted only the remaining parameters to the light
curve. The fitted and fixed parameters of the best-fit model are
listed in Table 6, Figs. 9 and 10 show the phase binned light
curve and radial velocity data with the best-fit model (red line)
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Fig. 10. Theoretical PHOEBE model without beaming (red line) and ob-
served light curve (black points) of the phased (94.82 d), binned Kepler
long-cadence data of Quarters 0–12. Lower panel: residuals of the best-
fit model. The dashed and solid lines are centred on the times of superior
and inferior conjunction respectively.

Table 6. Parameters and coefficients for the PHOEBE best-fit model to
the Kepler light curve for Quarters 0−12 long cadence data for the non-
beaming and beaming cases.

Parameter Non-beaming Beaming
Mass ratio, q 0.199± 0.001 0.20± 0.03
Secondary mass (M⊙), M2 0.30± 0.01 0.29± 0.03
Semi-major axis (R⊙), a 106.1± 0.5 105.6± 0.9
Orbital eccentricity, e 0.71± 0.01 0.71± 0.02
Argument of periastron (rad), ω 4.0± 0.1 4.01± 0.06
Orbital inclination (◦), i 62± 4 61± 6
Primary potential, Ω1 16.7± 0.2 16.2± 0.2
Gamma velocity (km s−1), γ –14.01± 0.01 –14.43± 0.08
Primary log g (cgs), log g1 3.078 ± 0.007 3.022± 0.007
Gravity darkening exponent, GRD 1.00± 0.03 1.07± 0.03
Primary fractional point radius 0.0644 0.0679
Primary fractional pole radius 0.0637 0.0676
Phase of periastron 0.0121 0.0094
Primary x1 coeff. 0.718 0.717
Primary y1 coeff. 0.716 0.714
Fixed Parameters Values: both Cases
Primary Teff (K) 5000± 250
Third light 0.0
Orbital period (d) 94.812± 0.002
Time of primary minimum (BJD) 245 019.221± 0.008
Primary bolometric albedo 0.6

Notes. The secondary component’s potential, radius and log g are not
noted as these parameters have no signature in the light curve and ra-
dial velocity data. The fractional radii quoted are the radii relative to the
semi-major axis. For the mass and radius of the primary component, see
Table 1. The limb darkening coefficients (x1 and y1) are for the square
root limb darkening law and were taken from the PHOEBE limb darken-
ing tables (Prša et al. 2011). For the beaming case we assumed 100% of
the flux comes from the primary component.

in the upper panel and the corresponding residuals in the lower
panel.

6.4. The puzzling absence of a Doppler beaming signal

So far, we have not taken into account the effect of Doppler
beaming on the light curve. Doppler beaming is caused by the
radial velocity of the two stars and is the combined effect of
shifting the stars’ spectral energy distributions with respect to
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Fig. 11. Theoretical PHOEBE model similar to Fig. 10, but including
beaming (blue line). The dotted and dashed lines are centred on the
times of superior and inferior conjunction, respectively. Middle panel:
residuals of the best-fit beaming model. Lower panel: Doppler beaming
function that has been added to the model to incorporate beaming. The
axis is inverted for comparison with the residuals.

the Kepler bandpass, aberration and an altered photon arrival
rate. The net result of Doppler beaming is an increase in the
observed flux from a star when it moves towards the observer,
and a decrease when it moves away from the observer. It was
predicted to be seen in Kepler data by Loeb & Gaudi (2003) and
Zucker et al. (2007), and has recently been observed in several
systems from ground-based data as well as Kepler and CoRoT
light curves (see e.g. Mazeh & Faigler 2010; van Kerkwijk et al.
2010; Shporer et al. 2010; Bloemen et al. 2011).

Based on the radial velocity measurements of the primary
star (semi-amplitude, K = 11.78 kms−1 – see Table 3), we es-
timate that Doppler beaming should have a significant con-
tribution in the light from the red giant in KIC 5006817, of
the order of ∼300 ppm. Since spectroscopy indicates that the
secondary component in the binary has an insignificant lumi-
nosity compared to the primary, we looked into the effect of
Doppler beaming assuming that all the observed flux is emit-
ted by the red giant primary component. The Doppler beaming
signal was modelled following Eq. (2) in Bloemen et al. (2011).
The Doppler beaming coefficient of the red giant primary, which
takes into account the spectrum of the star and the wavelength of
the observations, was computed using Eq. (3) of Bloemen et al.
(2011) to be ⟨B1⟩ = 4.59±0.21 from Kurucz 2004 model spectra
(Castelli & Kurucz 2004).

Figure 11 depicts the phase-folded light curve and best-fit
model including beaming for KIC 5006817. The residuals of this
model, however, contain a significant sinusoidal wave, similar in
nature to that of the beaming function. The beaming signal thus
seems to be invisible in the observed light curve. At phase zero
the beaming signal has been fitted by adjusting the inclination
of the model, however, the fit is still less adequate in this region
than for the non-beaming case.

Possible reasons for the absence of a beaming signal in the
data are a very high third light contamination which reduces the
observed amplitude of the effect; a significant beaming signal
from the secondary that partly or fully cancels out the beaming
signal of the primary; or that the inherent long period instrumen-
tal trends in the Kepler data are concealing the beaming signal.
The first possibility can be ruled out, since no bright source of
third light is seen close to the target and no contaminating light
was found in the spectra. To evaluate the second possibility – that
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Fig. 13. Best-fit model to the phased light curve data (red), the same
model with beaming and 100 per cent light contribution from the pri-
mary component (blue), and with beaming and 91.5 per cent light con-
tribution from the primary component (green) – the best fit model when
allowing the flux ratio to be fitted.

the beaming signal from the secondary is cancelling out the pri-
mary beaming signal, we scanned the parameter space to find the
light ratio (with beaming from both components) that best fitted
the data. We only fitted the continuum section of the light curve,
since the beaming effect can be compensated for at the phase of
the periastron variation by adjusting the inclination. When in-
cluding Doppler beaming for the secondary component, we as-
sumed that it is a main sequence object with a mass of 0.3 M⊙,
giving a Doppler beaming coefficient of ⟨B2⟩ ≃ 6.5.

Figure 12 shows the χ2 value as a function of primary light
contribution. We find a clear preference for a contribution of
91.5 per cent from the primary component and 8.5 per cent from
the secondary component. As shown in Fig. 13, the modelled
light curve for the preferred light ratio (green line) is approx-
imately equal to the light curve excluding beaming, suggesting
that the preferred configuration leads to the secondary essentially
cancelling out the beaming from the primary component. If the
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secondary is a 0.3 M⊙ main sequence star, it can not, however,
contribute on the order of 8 per cent of the light in the system,
and furthermore, a main sequence star this bright would have
been easily detected in our spectroscopic data. We also consid-
ered the option that the secondary is a continuum white dwarf as
this would not necessarily show up in the spectra. However, we
can rule out this possibility as the temperature would need to be
greater than 40 000 K for it to contribute 8.5 per cent of the flux
and as such the light curve would show an extreme reflection ef-
fect (the white dwarf reflecting off the red giant), which we do
not observe. We would also see evidence for such a white dwarf
in the spectroscopic data, as continuum white dwarfs (which do
not have a signal in spectroscopic data) have effective temper-
atures <∼12 000 K. Furthermore, a hot star would have a lower
beaming factor and thus require a greater flux contribution from
the secondary component.

Other than missing or incomplete physics in the binary mod-
els, the final possibility that we have postulated is that the Kepler
satellite is not stable enough on longer timescales to preserve the
beaming signal in the data. While this seems like a more con-
vincing option, given that the trends in the Kepler light curves
have a larger amplitude than the beaming signal, and that the
timescales of the orbital period and a Kepler quarter are similar,
we find it surprising that we are unable to detect any signature
of the beaming signal given that we used a minimally evasive
detrending method. We also note that the beaming signal was
still missing when using a higher order Legendre polynomial in
place of the linear trend.

The slope of the beaming signal is largest at the phase of the
periastron brightening, and therefore significantly influences the
optimal set of parameters found when fitting the heartbeat. Since
we do not understand the absence of the beaming signal, we
present the results of the fits to the data both including beaming,
assuming 100 per cent light contribution from the primary, and
without beaming. The optimal parameter values for both cases
are listed in Table 6.

6.5. Mass ratio, primary potential and gravity darkening
degeneracies

When fitting the binary characteristics, we found that the mass
ratio, primary potential (which is essentially the inverse of the
primary radius) and gravity darkening exponent are degener-
ate with each other. To assess the level of degeneracy between
the potential and the gravity darkening exponent, a scan of the
parameter space was undertaken whereby the primary gravity
darkening exponent was randomly adjusted following which
the primary potential and light factor were fitted to the light
curve using differential corrections. Figure 14 shows the grav-
ity darkening value and corresponding potentials for multiple
models. The points are coloured with respect to their χ2 value
to show the goodness of fit for each individual model. The re-
sults show a complete degeneracy between the primary potential
and primary gravity darkening exponent. Repeating this exper-
iment for the primary potential and mass ratio, we again found
a complete degeneracy. For this reason we elected to fix the pri-
mary mass and radius to the asteroseismically determined val-
ues, 1.49± 0.06 M⊙ and 5.84± 0.08 R⊙, respectively.

Keeping the gravity darkening exponent as a free parameter,
we found a best binary model fit to the gravity darkening co-
efficient to be 1.00± 0.03 and 1.07 ± 0.03 for the beaming and
non-beaming cases, respectively. These values are not in agree-
ment with the accepted value of GRD= 0.32 for a star with a
convective envelope (Lucy 1967), although this is an empirically
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Fig. 14. Gravity darkening value as a function of the primary potential,
where each point represents an individual binary model. For each model
the gravity darkening exponent was determined randomly (between 0.0
and 1.0) and a model generated by fitting the light factor and potential,
whilst keeping all other parameters fixed. The points are coloured by
the χ2goodness of fit to demonstrate that the outliers are a consequence
of an inadequate fit (the lower χ2values denote the better models, here
depicted in black).

determined value for main sequence objects. More recent litera-
ture suggests an increased value of ∼0.5 based on computations
of atmosphere models (Claret & Bloemen 2011). In this case
the value is specific for stars with an effective temperature and
surface gravity close to that of the red giant in KIC 5006817.
While this value is closer to that determined, there is still a large
discrepancy between the observed and theoretical values. A pos-
sibility is that the uncertainties of the asteroseismic mass and
radius are underestimated. However, a closer look suggests that
the radius would have to increase by three sigma and the mass
decrease by three sigma to reach the gravity darkening exponent
suggested by Claret & Bloemen (2011). While a three sigma
limit may be plausible, the change in values would require the
density – the most constrained asteroseismic value – to deviate
significantly from that determined, which is unlikely. The most
likely explanation is that the accepted gravity darkening expo-
nent needs to be revised or completely mitigated from the mod-
els (Espinosa Lara & Rieutord 2012).

6.6. Uncertainty determination

The uncertainties of the parameters were determined using two
methods: through standard errors and their propagation, and
through Monte Carlo heuristic scanning. A scan of the param-
eter space was undertaken for the most correlated (but not com-
pletely degenerate) parameters, which were determined by ap-
plying the correlation matrix function in PHOEBE. With a fixed
mass ratio and gravity darkening, the most correlated parameters
were determined to be the inclination, eccentricity and argument
of periastron. The magnitude of the periastron brightening was
not found to be significantly correlated with these parameters,
which determine the shape of the periastron brightening.

We applied Monte Carlo simulations to perturb the solu-
tions of the eccentricity, argument of periastron and inclination.
The applied method required the computation of the potential
and phase shift, and the iterative randomisation of the eccen-
tricity and argument of periastron by 10 per cent, and the incli-
nation by 20 per cent. At each iteration a comparison between
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Fig. 15. Density maps of the Monte Carlo simulations of the inclination
vs. eccentricity (upper panel) and the inclination vs. argument of peri-
astron (lower panel) for the non-beaming case. The grey scale depicts
the χ2values mapped across the grid. The colour bar depicts the grey
scale pertaining to the different values of χ2. The contours (from inner
to outer) denote the 1σ (dotted white line), 2σ (dashed blue line) and 3σ
(solid green line) confidence intervals. The uncertainties for the incli-
nation, argument of periastron and eccentricity were determined using
the 1σ confidence contours displayed.

the model and phased data was made using the χ2 statistical
test. The χ2 values for each solution were then mapped out
across a parameter grid with confidence intervals, which serve
as uncertainty estimates (cf. Fig. 15). The optimum combination
of the displayed parameters can be identified from the density
maps, where the 1σ, 2σ and 3σ uncertainty values are presented
as contours.

7. Combined asteroseismic and binary
interpretation

Assuming the equilibrium tide model (Zahn 1966, 1989; Remus
et al. 2012), which applies to stars with convective outer en-
velopes, we calculated approximate timescales for the synchro-
nisation and circularisation of KIC 5006817, using the work of
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Fig. 16. Comparison between the data (grey points), the best-fit light
curve model without beaming (dotted red line), the best-fit model with
beaming (dashed blue line), and the best-fit model for an imposed or-
bital inclination of 76◦, as determined through asteroseismology (solid
green line). A change in the inclination changes the ratio between the
maximum and minimum of the periastron variation (also known as the
heartbeat event).

Zahn (1977). The synchronisation timescale denotes the amount
of time needed for the star’s rotational angular velocity to equal
its orbital angular velocity at periastron (pseudo-synchronous
rotation) and for the stars’ axes to become perpendicular to the
orbit. The circularisation time scale is the maximum time the or-
bit will take to circularise. Applying Eq. (6.1) of Zahn (1977) we
determined the synchronisation timescale due to gravitational in-
teractions to be 2× 1012 yr, which is prohibitively large.

To determine whether KIC 5006817 is synchronised we
compared the inclination of the orbit and the rotational axis,
and considered the rotation rate of the red giant. The inclination
measured from rotational splitting is sensitive to the orientation
of the rotational axis of the primary pulsator, while the inclina-
tion determined from the shape of the heartbeat event describes
the orientation of the orbital plane. In the case of KIC 5006817,
these two inclination angles were found to agree within 2σ:
irot = 77◦ ± 9◦ versus iorbit = 62◦ ± 4◦ (61◦ ± 6◦ for the beaming
case).

To assess this difference graphically, Fig. 16 compares the
best-fit binary model without beaming (red) and with beaming
(blue) and with the orbital model with an imposed orbital incli-
nations of 76◦ (green) taken from asteroseismology. It is clear
that the maximum in the light curve is not well approximated
with such a high orbital inclination. On the other hand, the very
low visibility of the zonal modes (|m| = 0) in the centre of the
rotationally split triplets, under the assumption of equal intrinsic
amplitudes, definitely excludes inclinations below 70◦.

If the system were rotating pseudo-synchronously, follow-
ing Eq. (44) of Hut (1981), using the observationally derived
eccentricity and orbital period, one would expect a rotation pe-
riod of about 11 d for KIC 5006817. Such rapid surface rotation
is immediately ruled out from the width of the absorption lines
in the spectrum of the primary. Moreover, the splitting of the
l = 1 modes points towards a rotation period of at least 165 d,
which is more than 1.7 times the orbital period. Thus we con-
clude that, as expected, KIC 5006817 is not in a synchronised
orbit.
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Fig. 17. Modelling the orbital period (top panel), Roche lobe filling fac-
tor (middle panel) and radius of the red giant main component (lower
panel) of binary system with MESA with the approximated values of
KIC 5006817. The models start at the zero age main sequence (ZAMS)
and stop with the onset of the RLOF. The dashed line marks the end of
the hydrogen core burning (TAMS). The solid line marks the bottom of
the RGB. The position of a model with the radius of 6 R⊙, which equals
the current state of KIC 5006817 is shown as a red dot.

8. Impact of stellar evolution on eccentric binary
systems

Most hot subdwarf B (sdB) stars and cataclysmic variables (CV)
are supposed to be produced from binaries that have undergone
mass transfer and drastic mass loss during either a common en-
velope (CE) phase or a phase of stable Roche lobe overflow
while on the RGB (Han et al. 2002, 2003; Nelemans & Tout
2005). Several unsolved questions remain regarding the exact
sdB-progenitors and the details of the mass loss mechanism (Hu
et al. 2008; Østensen 2009; Heber 2009).

8.1. Modelling the binary evolution of KIC 5006817

Currently, the binary system KIC 5006817 is dynamically stable
on timescales shorter than the evolutionary timescales of the red
giant component. The system parameters, determined in the pre-
vious sections show that in its current configuration the orbit is
wide compared to the Roche radii of the components. The low
mass of the secondary component suggests that this star is most
likely an M dwarf, which will stay on the main sequence for the
remaining lifetime of the red giant companion. The evolution of
the system will therefore mainly depend on the evolution of the
red giant component (Fig. 17).

MESA1 (Paxton et al. 2010, 2011, 2013) is a one dimen-
sional stellar evolution code originally designed for single star
evolution. The code is adapted to handle binary systems by let-
ting them evolve one step at a time, after which the orbital evo-
lution is updated as well. The standard binary evolution that is
included in MESA (version: November 2012) only handles the
evolution of circular binaries. To check the evolution of an ec-
centric binary in which one of the components is a red giant,
we implemented the equations derived by Verbunt & Phinney
(1995) to account for tidal interactions. The evolution of the ec-
centricity is governed by,

dln e
dt
= −1.7 f

( Teff

4500 K

) 4
3
(

Menv

M⊙

) 2
3 M⊙

M
M2

M
M + M2

M

(R
a

)8 1
yr

(5)

where Menv is the mass of the convective envelope of the RG
star. M2 is the mass of the companion and a refers the semi-
major axis of the orbit. The factor f is calculated based on the
mixing length parameter α,

f = 1.01
(α

2

)(4/3)
· (6)

At every time step of MESA, Menv and Teff are obtained from
the stellar structure model. The start of the Roche lobe overflow
(RLOF) is calculated based on the Roche-Lobe calculated at pe-
riastron passage.

To study the changes of eccentricity, period and the radius
of the Roche lobe on such an eccentric binary system caused by
the red giant evolution, we created an approximate model of the
system KIC 5006817, using the starting masses MRG = 1.5 M⊙
and MMS = 0.3 M⊙, an initial orbital period Porbit,0 = 94.0 d and
eccentricity to e = 0.70. On the red giant branch a Reimers wind
(Kudritzki & Reimers 1978) was assumed, with η = 0.5.

When we let this binary model evolve, we find that the or-
bital period slowly increases during the main sequence evolution
(Fig. 17, top panel); the rate of increase will accelerate as the star
starts to ascend the red giant branch, mainly caused by mass loss
due to the stellar wind on the RGB (Hurley et al. 2002). The
eccentricity remains stable. Only when the red giant is close to
filling its Roche lobe, the system will circularise on the order of
a few 10 000 years.

The middle panel of Fig. 17 depicts how the expanding ra-
dius of the red giant component gradually grows to fill its Roche
lobe (Rstar/RRoche Lobe < 1). From the bottom panel of Fig. 17, it
becomes obvious that the onset of RLOF at periastron passages
will happen well below the tip of the RGB. From MESA sin-
gle models, we find that a giant of 1.5 M⊙ will have a maximum
radius of about 140 R⊙ before igniting helium. Exactly how the
orbital period will change during this process depends on how
much of the transferred mass is accreted by the companion, and
how much escapes the system.

The periastron distance is 32 ± 1 R⊙, which corresponds
to ∼4 times the current radius of the red giant. When ex-
ceeding a radius, larger than the current semi-major axis of
106 R⊙ (Table 6), the red giant will completely engulf its com-
panion in all phases of the orbit, leading to a CE phase while it
is ascending the RGB. The interaction between two components
during the CE phase for a rather similar system has been stud-
ied by Han et al. (2002), showing that the secondary component

1 Modules for Experiments in Stellar Astrophysics, see http://
mesa.sourceforge.net
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Fig. 18. Stellar radius of the main component versus the orbital pe-
riod of the binary system. Colour indicates the eccentricity of the sys-
tems (Table 3). Stars from our sample (Tables 1 and 2) are plotted as
filled dots. KIC 5006817 is marked with a cross. The eclipsing red gi-
ant KIC 8410637 (Hekker et al. 2010; Frandsen et al. 2013) is shown
as a triangle. The stars found in the LMC (Nicholls & Wood 2012) are
shown as squares. Solid lines show the period of a system with a total
mass of 1.8 M⊙ and a semi-major axis, which is a multiple of the stellar
radius.

will spiral down inside the red giant primary. This phase happens
rapidly compared to the evolutionary time scale of the red giant.
A critical point is reached when the companion arrives at the
bottom of the convective envelope and penetrates the initially
radiative zone below it. The dynamical instability that follows
will eject the envelope unless the companion is disrupted first
(Han et al. 2002).

Once the red giant ejects its envelope, we are left with the
“naked” stellar core. If the red giant enters a CE-phase near the
tip of the RGB, we would find a helium core which will be-
come sdB stars. Otherwise, the system is likely to become a CV.
Currently a majority of the observed long period sdB binaries
have an eccentric orbit (Vos et al. 2013), indicating that their
progenitor must have had a high eccentricity as well, as is the
case with hearthbeat stars. We therefore expect to find nearly
exclusively stars in the H-shell burning phase in these eccentric
systems and hardly any stars which have experienced He-core
ignition and now settled on the red clump. The latter is only ex-
pected if the system’s separation is large enough.

8.2. Comparison to other known red giant stars in eccentric
binary systems

As a consequence of the expanding radius of the red giant, a
relation between the radius of the primary and the orbital pe-
riod for such interacting systems is expected, since only binaries
with large enough periastron distances can stably exist. From
seismology, we obtained the radii of a sample of red giant stars,
located in such eccentric systems that are undergoing gravita-
tional distortion, to a range between 2 and 24 R⊙, as given in
Table 1. Nicholls & Wood (2012) reported seven similar systems
from OGLE observations of the Large Magellanic Cloud (LMC).
Although the OGLE light curves are not suitable for seismic in-
vestigations, they can constrain the fundamental parameters of
the stars from modelling the phase diagram and photometric cal-
ibrations. The red giant systems found in the LMC are higher up
in the HR Diagram than the stars in our sample and also have in
general longer orbital periods (260−660 d). Figure 18, in which
the stellar radii and orbital periods of the stars in the LMC and
Kepler sample are compared, shows that systems hosting bigger

Fig. 19. Comparing the eccentricities of known eccentric systems with
ellipsoidal modulation. Colour indicates the log g of the red giant
component. Dots represent the stars from our sample for which we
could derive the eccentricities from radial velocities. KIC 5006817 and
KIC 8410637 are shown as a cross and triangle, respectively. Squares
show the derived eccentricities of the stars in the LMC.

stars tend to have longer periods and ellipsoidal variation occurs
for a specific combination of stellar radius and orbital period. We
note that our sample is biased due to the selection of stars which
show the heartbeat effect. However, as shorter periods lead to
smaller systems, which cannot stay stable for a long time. These
stars show a minimum orbital periods. In systems with shorter
period mass transfer should eventually occur.

In our ongoing spectroscopic campaign we have currently
obtained enough radial velocity measurements for 14 systems in
our sample to derive their orbital parameters. The full orbital pa-
rameters of these systems are given in Table 3. Fig. 19 depicts the
eccentricities of the red giant heartbeat stars on the lower RGB
found with Kepler from our sample with the eccentricities of
those close to the tip of the RGB (Nicholls & Wood 2012). The
majority of the systems in Table 1 for which we have RV data
have eccentricities between 0.23 < e < 0.5, which is compati-
ble with the range of eccentricities reported by Thompson et al.
(2012) for their objects. Also, the 4 stars with periods shorter
than 30 d belong to the least eccentric in our sample. Among the
long periodic systems, 5 exhibit eccentricities larger than 0.7.
Our most eccentric system is KIC 8144355 (POrbit = 80.6 d,
e = 0.76 ± 0.01).

The systems found in the LMC so far have eccentricities that
range between 0.15 < e < 0.45, which suggests that the stars
might have experienced some circularisation. It is not yet clear
if mass transfer has already started in these systems or if the
circularisation is forced by tidal interaction. Yet the two samples
are too small to draw a firm conclusion. In subsequent work,
we will further investigate the distribution of eccentricities in
the Kepler red giant heartbeat stars from photometric and radial
velocity data on larger datasets.

Finally, we note that KIC 8410637, an eclipsing binary with
a 408 d period (Hekker et al. 2010; Frandsen et al. 2013) has a
period and a high eccentricity (e ∼ 0.7), compatible with the
other red giant heartbeat stars (Figs. 18 & 19) but no heartbeat
events are visible.

9. Conclusions

In this work we have studied a sample of 18 red giant stars in
eccentric binary systems, detected with the Kepler satellite, that
exhibit flux modulation as a result of binary interaction during
their periastron passage. All giants in the systems in our sample
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exhibit solar-like oscillations, so we applied asteroseismic tech-
niques to determine their global properties, as well as their evo-
lutionary states. As shown in the analysis of one selected system,
the approach of combining asteroseismic and binary modelling
analyses is very powerful.

For KIC 5006817, this new approach revealed a low mass
companion with a mass of M2 = 0.29 ± 0.03 M⊙ (where the
uncertainty encompasses both the beaming and non-beaming
cases). Estimates based on the radial velocity curve and the
optical spectrum revealed that Doppler beaming should be con-
tributing 300 ppm to the light curve although the light curve
modelling did not support this. This is possibly a consequence
the long term trends in the Kepler data, given that the period
of KIC 5006817 is ∼95 d, which is very close to the length of a
Kepler quarter (90 d).

Through modelling the binary characteristics, while fixing
the primary mass and radius to the asteroseismically deter-
mined values, the gravity darkening value was determined to be
GRD= 1.0± 0.03 for the non-beaming case and GRD= 1.07 ±
0.03 for the beaming case. These values are inconsistent with the
empirical value determined by Lucy (1967), GRD= 0.32, and
the more recent model dependent value determined by Claret
& Bloemen (2011), GRD= 0.5. To obtain a binary model with
values closer to those predicted by theory, the density of the pri-
mary component would need to deviate significantly from the
well constrained asteroseismic value. For this reason we specu-
late that the gravity darkening values require further revision.

From modelling the binary evolution of an approximate bi-
nary system, we conclude that the system is in fact too young
to be synchronised. When comparing the properties of the full
sample (Table 1), we found a correlation between the radius
of the primary red giant component and the orbital period.
Furthermore, all stars show seismic characteristics of stars in the
state of H-shell burning. For a few, we cannot rule out a mem-
bership of the red clump or AGB. We argue that this is an effect
of stellar evolution as the red giant’s radius along the red giant
branch will increase until the helium core ignites. If a system
gets too close, it can undergo a common envelope phase which
could lead to the ejection of the convective envelope of the red
giant. This scenario is a potential evolutionary channel for the
formation of cataclysmic variables and sdB stars.

Our sample is an interesting class of ellipsoidal variables
which offers unique conditions to study interactions in and the
evolution of eccentric binary systems. Optimal cases are sys-
tems which show the heartbeat effect and exhibit primary and
secondary eclipses or are double lined spectroscopic binaries, as
for such systems also for the secondary component independent
fundamental parameters can be derived. The ensemble of stars
presented here allows us to study the binary interaction and the
future fate of such eccentric systems in a new way, to help un-
ravel common-envelope physics.
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Chapter 7

KIC4544587

This chapter features the published case study of KIC4544587, a heartbeat star with

tidally induced gravity modes, tidally influenced pressure modes and rapid apsidal

motion. This work is contextualized by Chapter 3, which provides an introduction

to heartbeat stars and tidally induced pulsations.

This work was completed in part for my MSc work; however, further work was

undertaken during the course of my PhD studies. Prior to the commencement of

my PhD studies, a binary model of KIC4544587 had been created; however, only

formal uncertainties had been ascertained. The spectra had been acquired (by J.

Southworth), converted into radial velocities (by S. Bloemen) and included in the

binary star model. During my PhD studies I determined full statistical uncertain-

ties on the most correlated binary star parameters; further spectra were obtained

and converted to radial velocities by A. Prša and subsection 2.2, entitled “Ground-

based spectroscopy” was co-written by S. Bloemen and A. Prša; K. Pavlovski and

I worked on spectral disentangling, which is described in Sections 3 and 4, enti-

tled “Spectral Disentangling: Orbit” and “Atmospheric Parameters”, respectively

(written by K. Pavlovski). Further pulsational analysis was performed by myself

and D. Kurtz, which led to Subsection 7.1, entitled “Tidal interactions and com-

bination frequencies”, which contains a footnote about the gravity modes written
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by J. Fuller. D. Kurtz applied the frequency modulation technique to KIC4544587

and wrote subsection 7.2, entitled “Pulsation frequency modulation: the FM effect”.

And J. Guzik performed pulsational modelling, which she wrote about in subsection

7.3, entitled “Stellar evolution and pulsation models”. I wrote the majority of the

publication with the exception of the parts explicitly stated above. D. Kurtz and A.

Prša contributed detailed discussion and guidance in the completion of this work.
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ABSTRACT
We present Kepler photometry and ground-based spectroscopy of KIC 4544587, a short-period
eccentric eclipsing binary system with self-excited pressure and gravity modes, tidally excited
modes, tidally influenced p modes and rapid apsidal motion of 182 yr per cycle. The primary
and secondary components of KIC 4544587 reside within the δ Scuti and γ Dor instability
region of the Hertzsprung–Russell diagram, respectively. By applying the binary modelling
software PHOEBE to prewhitened Kepler photometric data and radial velocity data obtained using
the William Herschel Telescope and 4-m Mayall telescope at Kitt Peak Northern Observatory
(KPNO), the fundamental parameters of this important system have been determined, including
the stellar masses, 1.98 ±0.07 and 1.60 ± 0.06 M⊙, and radii, 1.76 ± 0.03 and 1.42 ± 0.02 R⊙,
for the primary and secondary components, respectively. Frequency analysis of the residual
data revealed 31 modes, 14 in the gravity mode region and 17 in the pressure mode region.
Of the 14 gravity modes, 8 are orbital harmonics: a signature of tidal resonance. While the
measured amplitude of these modes may be partially attributed to residual signal from binary
model subtraction, we demonstrate through consideration of the folded light curve that these
frequencies do in fact correspond to tidally excited pulsations. Furthermore, we present an
echelle diagram of the pressure mode frequency region (modulo the orbital frequency) and
demonstrate that the tides are also influencing the p modes. A first look at asteroseismology
hints that the secondary component is responsible for the p modes, which is contrary to our
expectation that the hotter star should pulsate in higher radial overtone, higher frequency p
modes.

Key words: binaries: eclipsing – stars: individual: KIC 4544587 – stars: oscillations – stars:
variables: δ Scuti.

1 IN T RO D U C T I O N

The δ Scuti stars form an integral part of the instability strip, span-
ning a 2-mag range of evolutionary stages, from pre-main sequence
to the terminal-age main sequence (Rodrı́guez & Breger 2001).
Their luminosities are in the range 0.6 ≤ log (L/L⊙) ≤ 2.0 and their
effective temperatures in the range 6300 ≤ Teff ≤ 9000 K (Buzasi
et al. 2005). They oscillate in radial and non-radial pressure modes
(p modes) and low-order gravity modes (g modes) with observed

⋆ E-mail: kmhambleton@uclan.ac.uk

periods ranging from approximately 18 min to 8 h (Pamyatnykh
2000; Amado et al. 2004; Grigahcène et al. 2010a).

The κ-mechanism is the primary driving mechanism of δ Scuti
pulsations, although Antoci et al. (2011) suggested that one δ Scuti
star may pulsate with stochastically excited modes similar to those
seen in the Sun and solar-like pulsators. δ Scuti stars have a mass
range between 1.5 and 2.5 M⊙ (Lefèvre et al. 2009). At approx-
imately 2 M⊙ there is a transitional phase where the size of the
convective outer envelope becomes negligible for higher mass stars
and their outer envelopes become dominated by radiative energy
transport; at approximately 1.5 M⊙, stars of higher mass develop

C⃝ 2013 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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a convective core (Aerts, Christensen-Dalsgaard & Kurtz 2010).
As this critical transition in the convective envelope occurs within
the range of masses encompassed by δ Scuti stars, the asteroseismic
investigation of δ Scuti stars may eventually unveil fundamental
information pertaining to the physical processes that govern this
transition.

γ Dor stars are main-sequence stars in the temperature range
6800 ≤ Teff ≤ 7600 K that pulsate in high-order gravity modes
driven by convective blocking (Guzik et al. 2000) with pulsation
periods typically of the order of 1 d (Grigahcène et al. 2010b). As
γ Dor stars are a relatively new class of stars (Balona, Krisciunas
& Cousins 1994), until recently their recorded numbers were low
and consequently δ Scuti stars were believed to dominate the classi-
cal pulsators on the main sequence (Breger 2000). However, with the
implementation of advanced instruments such as Kepler (Borucki
et al. 2010; Batalha et al. 2010; Gilliland et al. 2010), MOST (Walker
et al. 2003) and CoRoT (Baglin et al. 2006), many stars demonstrat-
ing both δ Scuti and γ Dor characteristics have been observed; thus,
new classification criteria, containing γ Dor–δ Scuti and δ Sct–γ

Dor hybrid stars, have been introduced (Grigahcène et al. 2010a).
Following this revision, through the characterization of 750 A–F
type main-sequence stars, the percentage of δ Scuti stars on the main
sequence is now estimated to be 27 per cent, γ Dor stars accounting
for 13 per cent, hybrids accounting for 23 per cent and the remain-
ing stars being classified as other types of variables, e.g. spotted
stars showing rotational variations (Uytterhoeven et al. 2011).

In a study of 119 A0–A9 stars, 35 ± 5 per cent were found to be
in multiple systems (Abt 2009). However, only 22 per cent of the
δ Scuti stars catalogued are known to be multiple stars (Rodrı́guez
& Breger 2001). In binary systems the rotational velocity of each
stellar component tends towards a velocity that is synchronous with
the orbital period as the orbit evolves. As synchronous velocity
depends linearly on radius and scales with orbital period (to the
power of 2/3), it generally implies an equatorial velocity less than
of 120 km s−1 (Abt 2009), while most δ Scuti stars are found to
have velocities greater than 120 km s−1. Below this value the turbu-
lence in the outer stellar envelope only enables a negligible amount
of meridional mixing to occur. This allows for diffusion to take
place, which prevents pulsation through the settling of helium out
of the He II ionization zone (Breger 1970). Thus, it has previously
been assumed that multiplicity indirectly inhibits pulsation. How-
ever, there are many cases, including HD 174884 (Maceroni et al.
2009), HD 177863 (Willems & Aerts 2002) and the newly identi-
fied class of eccentric ellipsoidal variables known as heartbeat stars
(Thompson et al. 2012) – including the iconic KOI-54 (Welsh et al.
2011; Burkart et al. 2012; Fuller & Lai 2012) – that demonstrate
how, in some circumstances, multiplicity can not only alter but also
increase pulsation amplitudes through the tidal excitation of eigen-
modes. It is worthy of note, however, that the existence of tidally
driven modes in binary star systems does not invalidate the theory
that binarity also indirectly suppresses self-excited modes.

Through the use of binary modelling techniques, direct measure-
ments of stellar masses, radii and distances are possible. Astero-
seismic modelling of the identified modes can provide informa-
tion pertaining to the internal stellar structure and rotation of the
pulsating component, making multiple systems with δ Scuti com-
ponents extremely valuable. Currently, the thorough asteroseismic
analysis of δ Scuti stars is rarely achieved due to our current inabil-
ity to model a large number of oscillatory modes excited via the
κ-mechanism. However, with the advent of cutting-edge observa-
tions from instruments such as Kepler and CoRoT and new method-
ologies such as those used by Garcı́a Hernández et al. (2009) on

Table 1. Other identifiers and basic data for
KIC 4544587. The Kp passband specified is de-
rived from the Kepler broad-band filter.

Identifiers

TYC 3124-1348-1
GSC 03124-01348
2MASS J19033272+3941003

Position and brightness

RA (J2000) 19:03:32.7274
Dec. (J2000) +39:41:00.314
V 10.8
B 10.9
Kp 10.8

HD 174936, it is expected that an increasing number of these in-
triguing objects will be solved in the foreseeable future.

The Kepler satellite, with its highly precise photometry, is gen-
erating observations unparallelled in precision and subsequently
giving greater insight into the study of stellar structure through
the use of asteroseismology. The primary objective of the Kepler
mission is the identification and classification of planets through
the transit method. However, the instrumentation required for such
observations is highly applicable to the field of asteroseismology
(Gilliland et al. 2010). Attributes, such as a stable platform, that en-
able extended observations, and a precision as good as a few parts
per million, make the Kepler observations quintessential for the ad-
vancement of asteroseismology. A dynamic range of over 10 mag, in
addition to a 105 deg2 field of view, gives Kepler an unprecedented
advantage for obtaining high-quality asteroseismic data. Moreover,
the ability to generate short-cadence data of ∼1 min time resolution
allows for detailed photometric analyses of pulsating stars across
the Hertzsprung–Russell (H-R) diagram.

KIC 4544587 (where KIC is an acronym for ‘Kepler Input Cata-
logue’) is an eccentric (e = 0.28), short-period (P = 2.1891 d) binary
system that contains at least one pulsating component (cf. Table 1 for
a list of observable information and identifiers). It was initially iden-
tified as a binary by Prša et al. (2011) as part of the first release of the
Kepler Eclipsing Binary Catalog (http://keplerebs.villanova.edu).
The temperature of the primary component is equivalent to a late
A-type star that is within the δ Scuti instability strip and the sec-
ondary component’s temperature is indicative of an early F star,
which is likely to be a γ Dor variable.

Primarily this object was selected as a likely candidate for tidally
induced pulsations due to the close proximity of the components at
periastron, ∼ 4 R⊙ surface to surface. KIC 4544587 also has inter-
esting orbital characteristics including a brightening at periastron in
the Kepler photometric light curve due to the combination of tidal
distortion and substellar heating. Such a feature is indicative of an
eccentric binary with its components in close proximity (Maceroni
et al. 2009; Thompson et al. 2012).

In this paper, information obtained from modelling the binary
features of the photometric and radial velocity (RV) curves of
KIC 4544587, and the results of the pulsational frequency analysis
are presented. In Section 2, the observations are discussed, includ-
ing adjustments to the original data set. Sections 3 and 4 describe the
spectral disentangling and the atmospheric parameters determined
from the disentangled spectra. In Section 5, the determination of
the orbital period is detailed. In Section 6, the binary light-curve
modelling method is discussed, which focuses on the use of the bi-
nary modelling software, PHOEBE (Prša & Zwitter 2005). Section 7
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Table 2. The number of data points and duty cycle acquired for each
individual Kepler quarter. The LC data correspond to a sampling rate of
29.4244 min and SC data to a sampling rate of 58.8488 s.

Quarter Cadence Number of data points Duty cycle (per cent)

0 LC 476 99.5
1 LC 1639 98.1
3.2 SC 44 000 98.5
6 LC 4397 97.2
7 SC 128 830 98.1
8 SC 98 190 94.3

contains the frequency analysis and includes discussion of the ev-
idence for resonance effects. A summary of this paper, with con-
cluding remarks, is given in Section 8.

2 O BSERVATIONS

2.1 Kepler photometry

The Kepler photometric observations of KIC 4544587 consist of
both long-cadence (hereafter LC) data, during Quarters 0–11, and
short-cadence (hereafter SC) data during Quarters 3.2, 7, 8, 9 and 10.
For our purposes we used a subset of these data up to and including
Quarter 8 (see Table 2 and Fig. 1), which were available at the
time of analysis. A quarter is defined as a quarter of a complete,
372.5-d, Kepler orbit around the Sun (Kjeldsen et al. 2010). LC
data correspond to a sampling rate of 29.4244 min and SC data to
a sampling rate of 58.8488 s. For both formats 6.02-s exposures
are co-added on board; this occurs 270 times to form an LC and
9 times to form an SC data point (Caldwell et al. 2010), with
any remaining time attributed to readout time. The data are time-
stamped with truncated Barycentric Julian Date (Gilliland et al.
2010), which is Barycentric Julian Date minus 2400000. The total

Kepler photometric observations that have been analysed span from
2009 May to 2011 March and comprise 277 514 data points.

The photometric observations were made using the Kepler broad-
band filter, which is similar to Cousins Rc. It is advised in the data
release notes that accompany the Kepler data that the corrections
made in the pipeline can have adverse effects on the binary signal in
the data. For this reason the simple aperture photometry light curves
were used instead of those created by the photometer performance
assessment portion of the pipeline (Li et al. 2010).

From the total data set, 9471 points were removed as outliers, of
which 661 data points were removed from Quarter 3.2, 2448 from
Quarter 7 and 5597 from Quarter 8. These outliers were selected
by eye as the intrinsic variations in the data significantly reduce the
effectiveness of automated sigma clipping. Cosmic rays and other
noise sources are the dominant causes of outliers, and small gaps in
the data are also present due to safe-mode events, spacecraft rolls
and brightening events known as Argabrightening, named after the
discoverer, V. Argabright (Van Cleve 2009). These gaps, however,
are minimal, which can be seen by the high duty cycle that was
obtained for each quarter independently, with the exception of the
safe-mode event at the beginning of Quarter 8.

The SC data have the advantage of increased time resolution,
which enables the identification of the p-mode pulsations present in
this object (see Fig. 2). Consequently, Quarters 7 and 8 were used
for the binary modelling and mode identification of KIC 4544587
(with the exception of modelling the rate of apsidal advance where
all LC data were used). A customized target mask was constructed
for Quarters 7 and 8 so that the average flux level was consistent
over the two quarters. This is important for asteroseismic analysis as
quarter-to-quarter flux variations can cause instrumental amplitude
modulation in the data. PYKE software (provided by the Kepler Guest
Observer office: http://keplergo.arc.nasa.gov/) was used to define
the mask, generate the new data files and convert the data from
FITS to ASCII format. We detrended and normalized each month
of data individually by fitting a first- or second-order Legendre

Figure 1. The observed Kepler SC light curve of KIC 4544587 for Quarters 7 (upper panel) and 8 (lower panel). Data are missing from the beginning of
Quarter 8 due to a safe-mode event. The time is in BJD.
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Figure 2. An amplified image of the out-of-eclipse phase of the Kepler Quarter 7 SC light curve. Here the both the p-mode (periods in the range 30 min–1 h)
and the g-mode pulsations (∼1 d) are clearly visible. The pronounced periastron brightening can also be seen at approximately BJD 245 5466.

polynomial to segments of data separated by gaps (i.e. caused by
spacecraft rolls and safe-mode events). As the eclipses affect the
detrending process, we elected to fit the polynomials to the out-of-
eclipse envelope only. The out-of-eclipse envelope was identified
by sigma clipping the data. Using this method we (temporarily)
removed all data points 5σ above and 0.05σ below the light curve.
The long-term trends in the out-of-eclipse envelope were then fitted
and the trends removed from the original data. Finally, we applied a
Fourier transform to the polynomials and found that all significant
peaks were ν < 0.03 d−1, showing that we did not remove any
information intrinsic to the system through this method.

As each Kepler pixel is 4 × 4 arcsec, it is expected that some con-
tamination may occur within the photometric mask. The contamina-
tion value for KIC 4544587, specified by the Kepler Asteroseismic
Science Operations Center, is estimated to be 0.019, where 0 im-
plies no contamination and 1 implies complete contamination of the
CCD pixels. This contamination value suggests that KIC 4544587
suffers minimally from third light, if at all. We applied the PYKE

software to the target pixel files to assess the flux incident on each
individual pixel. Light curves for each pixel were generated and the
flux distribution over the newly defined masks was examined. From
this we determined that the contamination level for KIC 4544587
is negligible.

2.2 Ground-based spectroscopy

38 spectra were obtained using the Intermediate dispersion Spec-
trograph and Imaging System (ISIS) on the William Herschel Tele-
scope (WHT). The spectra were taken on 2011 June 18–21 and
2012 June 7–14 with resolving powers of R ∼17 000 and ∼22 000,
respectively. Calibration exposures using CuAr and CuNe lamps
were taken prior to each 300-s exposure of KIC 4544587. Blue and
red spectra were obtained using wavelength coverages of 4200–
4550 and 6100–6730 Å, respectively. The gratings H2400B (blue
arm) and R1200R (red arm) were used. A 0.5-arcsec slit was used
to give Nyquist sampling on the CCD and to limit RV errors due to
the positioning of the star within the slit. The signal-to-noise (S/N)
obtained was ∼100 per resolution element. The data were reduced
using optimal extraction techniques as implemented in the PAMELA

package (Marsh 1989).

The initial RV curves were determined using the 2D
cross-correlation technique as implemented in TODCOR (Two-
dimensional Correlation Technique, Zucker & Mazeh 1994) on the
red and blue spectra together. The templates for the primary and the
secondary components were taken from Castelli & Kurucz (2004)
model atmospheres, using T1 = 8250 K, log g1 = 4.0, [M/H]1 = 0.0
and T2 = 8000 K, log g2 = 4.0, [M/H]2 = 0.0, respectively. Of the 38
spectra taken, cross-correlation failed to produce a good RV fit for
one spectrum. Subsequent improvement to the RV curves was done
by revising the templates according to the best-fitting photometric
model and applying them to both blue and red ends: T1 = 8600 K,
log g 1 = 4.24 and T2 = 7750 K, log g 2 = 4.33, respectively.
A systematic offset slightly larger than 1σ was found between the
RVs of the red arm and the blue arm. As there is no obvious cause
for this discrepancy, each simultaneous exposure was averaged over
the two arms and the discrepancy included in the uncertainty of the
RV measurements. The final RV data have a typical 1σ uncertainty
of ∼7.3 km s−1 and are listed in Table 3 and depicted in Fig. 3
with the best-fitting RV model folded on the period and zero-point
obtained from the light curve.

Subsequently, five high-resolution spectra were taken using the
echelle spectrograph on the 4-m Mayall telescope at KPNO with
R ∼ 20 000 and a wavelength range of 4500–9000 Å. The data were
wavelength-calibrated and flux-normalized as depicted in Fig. 4,
where Doppler splitting is clearly visible. As the per-wavelength
S/N ratio of the KPNO spectra is notably lower than the WHT
spectra, the 2D cross-correlation technique, TODCOR, gave sig-
nificantly larger uncertainties. We consequently used the broaden-
ing function technique (Rucinski 1992) to determine the RVs for
KPNO spectra. The broadening functions are rotational broadening
kernels, where the centroid of the peak yields the Doppler shift and
where the width of the peak is a measure of the rotational broad-
ening. For the template we used the RV standard HD 182488, with
vrot = −21.508 km s−1.

3 SP E C T R A L D I S E N TA N G L I N G : O R B I T

We applied the technique of spectral disentangling (hereafter SPD)
to isolate spectra for the two binary components individually (Simon
& Sturm 1994). Through this technique we determined the effective

177



Chapter 7. KIC4544587

The eccentric δ Sct binary: KIC 4544587 929

Table 3. RV data of the primary (RV1) and secondary
(RV2) components and their respective uncertainties
(standard deviation) for 38 spectra obtained with the
WHT and 5 spectra from the 4-m Mayall telescope. The
ISIS was used in conjunction with the WHT to obtain
simulations red-band (6100–6730 Å) and the blue-band
(4200–4550 Å) spectra. The average RV for each given
time is specified. The echelle spectrograph was used on
the 4-m Mayall telescope.

Time RV1 RV2
(BJD) (km s−1) (km s−1)

WHT

245 5730.621 52 71.9 ± 5.2 − 133.8 ± 6.5
245 5730.657 50 91.2 ± 4.7 − 154.5 ± 5.8
245 5730.699 32 102.2 ± 4.1 − 177.3 ± 5.3
245 5731.556 25 − 52.2 ± 5.3 30.9 ± 5.7
245 5731.601 21 − 62.3 ± 5.3 37.8 ± 5.7
245 5731.646 68 − 69.4 ± 5.0 43.8 ± 5.5
245 5731.701 16 − 77.3 ± 4.8 50.4 ± 5.9
245 5732.439 58 − 79.5 ± 4.9 54.9 ± 5.8
245 5732.485 00 − 67.9 ± 4.7 46.0 ± 5.3
245 5732.525 38 − 54.9 ± 4.7 36.8 ± 5.9
245 5732.577 57 − 38.0 ± 5.0 16.1 ± 8.7
245 5732.622 38 − 25.4 ± 3.8 5.3 ± 9.3
245 5732.657 37 − 12.2 ± 4.3 19 ± 12
245 5732.692 00 13.9 ± 9.6 − 52 ± 39
245 5732.726 88 29.2 ± 3.5 − 103.1 ± 9.2
245 5733.411 85 46.1 ± 7.3 − 74.6 ± 5.0
245 5733.459 56 − 2 ± 22 − 55.3 ± 5.5
245 5733.504 35 − 23.6 ± 9.7 − 42.6 ± 5.2
245 5733.540 24 − 31.4 ± 5.3 − 22.6 ± 5.9
245 5733.576 12 − 32.5 ± 9.7 − 4.6 ± 9.5
245 5733.667 81 − 41 ± 17 14 ± 14
245 5734.031 82 − 73 ± 14 51 ± 20
245 5734.434 76 − 108.0 ± 7.2 79.0 ± 7.4
245 5734.515 79 − 100.0 ± 6.8 72.8 ± 8.0
245 5734.559 67 − 99.2 ± 9.0 66.5 ± 8.7
245 5734.602 65 − 94.6 ± 9.0 53.4 ± 8.9
245 6086.653 88 − 108.1 ± 4.2 82.3 ± 5.1
245 6087.475 73 82.3 ± 4.5 − 146.8 ± 5.5
245 6087.579 88 119.9 ± 4.2 − 193.3 ± 5.3
245 6087.671 36 123.6 ± 4.2 − 198.0 ± 5.1
245 6087.734 10 113.4 ± 4.0 − 184.5 ± 5.0
245 6088.612 05 − 91.0 ± 4.2 59.7 ± 4.9
245 6089.573 01 37.8 ± 3.8 − 105.8 ± 6.5
245 6089.678 23 88.0 ± 4.1 − 155.9 ± 4.9
245 6089.732 87 109.0 ± 4.7 − 181.1 ± 5.6
245 6090.717 62 − 79.3 ± 4.4 49.7 ± 5.1
245 6091.496 76 − 71.9 ± 5.4 39.4 ± 6.3
245 6092.449 32 37 ± 15 − 64.9 ± 7.1

KPNO

245 6085.684 47 79.6 ± 2.9 − 138.4 ± 0.8
245 6087.662 30 127.4 ± 2.9 − 198.0 ± 0.7
245 6087.959 06 45.6 ± 2.3 − 100.9 ± 1.8
245 6088.704 13 − 95.7 ± 3.5 75.1 ± 1.9
245 6091.959 50 126.3 ± 5.0 − 191.4 ± 1.2

temperatures of the two components using the Balmer lines. The
medium-resolution ISIS/WHT spectra, described in Section 2.2,
contain Hγ and Hα lines, and the medium-resolution echelle KPNO
spectra contain Hβ and Hα lines. The FDBINARY1 code (Ilijic et al.

1 http://sail.zpf.fer.hr/fdbinary

2004), which is based on a Fourier variant of SPD (Hadrava 1995),
was first applied to the time series of ISIS/WHT spectra since they
are more numerous than the KPNO spectra. Since some of the
eclipse spectra are affected by the Rossiter–McLaughlin effect, and
the line profiles are disturbed, only out-of-eclipse spectra were used.
This substantially reduced the number of spectra available for SPD,
but the phase coverage was still adequate to suppress the undulations
in the disentangled spectra of the components (Hensberge, Ilijić
& Torres 2008). The absence of in-eclipse spectra resulted in an
ambiguity in the placement of the continuum of the disentangled
spectra. Therefore, we performed SPD in separation mode, and
then corrected the separated spectra for line blocking and light
dilution using the procedure described in Pavlovski & Hensberge
(2005).

In SPD individual component spectra are calculated simultane-
ously and are self-consistently optimized with the orbital parame-
ters, whereby the determination of RVs is bypassed (Simon & Sturm
1994; Hadrava 1995). In this sense, each individual RV exposure is
not optimized and as such no comparison can be made with mea-
sured RVs (Pavlovski & Hensberge 2010). The orbital parameters
calculated by SPD are given in Table 4 and represent the mean
values calculated through disentangling five short spectral regions
from the ISIS/WHT blue spectra, which cover the spectral inter-
val from 4200 to 4600 Å. Telluric lines affect the ISIS/WHT red
spectra, which are centred on the Hα line; thus, we removed them
manually before the application of SPD. Since only five spectra
were available in the region of the Hβ line, when using SPD, we
fixed all the orbital parameters with the exception of the time of
periastron.

An important outcome of SPD is an enhancement of the S/N
ratio in the disentangled spectra, as the spectra are co-added during
the SPD process. Due to the significant number of WHT/ISIS blue
and red spectra, the S/N has vastly improved. However, for the
KPNO spectra the gain is small due to the limited number of spectra
available for analysis. The effect of disentangling on the S/N ratio,
for different numbers of input spectra (as well as their original S/N),
is clearly depicted in Fig. 5.

4 AT M O S P H E R I C PA R A M E T E R S

Once separated, the spectra remain in the common continuum of
the binary system, diluted by their companion’s contribution to the
total light of the system. The light ratio between the components
is derived from the light-curve solution and makes renormalization
of the individual component spectra straightforward. We further
computed the light ratio for the Johnson U (0.685), B (0.697) and
V (0.667) passbands, whilst keeping all other parameters fixed, to
determine the deviation of the light ratio as a function of wave-
length. We note that the value derived from the light curve using the
Kepler passband (0.670) is approximately equal to that of the John-
son V band, so we expected that the Hγ line is most affected by
our selection as its wavelength is furthest from the Johnson V band.
Consequently, with the surface gravities of the components known
from the complementary light and RV curve solutions, the degen-
eracy between the effective temperature and the surface gravity can
be broken. We determined the components’ effective temperatures
by fitting the renormalized individual spectra with the synthetic
theoretical spectra (Tamajo, Pavlovski & Southworth 2011).

The genetic algorithm, as implemented in PIKAIA (Charbonneau
1990), was used in the global optimization of the code STARFIT

(Pavlovski et al., in preparation). A grid of local thermodynamic

178



930 K. M. Hambleton et al.

Figure 3. Top panel: RV curve generated from 38 spectra obtained using ISIS on the WHT and 5 spectra obtained using the echelle spectrograph on the
4-m Mayall telescope at KPNO, folded over the orbital period. The blue solid circles and light blue open circles represent the primary component from the
WHT and KPNO data, respectively, the green solid triangles and the pink open triangles represent the secondary component from the WHT and KPNO data,
respectively, and the solid and dashed lines represent the primary and secondary components. The errors bars show the uncertainties in the RV measurements.
Bottom panel: the residuals from the best fit to the RV data.

Figure 4. The Hα region of the five echelle spectra acquired by the 4-m
Mayall telescope at Kitt Peak with R ∼ 20 000 and the wavelength span
4500–9000 Å. The components are clearly resolved in the five spectra.

Table 4. The orbital elements of the binary system
KIC 4544587 derived by SPD of time series ISIS/WHT
blue spectra.

Parameter SPD

Orbital period P (d) 2.189 094 (fixed)
Time of periastron passage, T0 (BJD) 245 5461.450(1)
Eccentricity, e 0.288(26)
Longitude of periastron, ω 328.5(22)
Velocity semi-amplitude KA (km s−1) 117.8(9)
Velocity semi-amplitude KB (km s−1) 145.8(10)
Mass ratio q 0.808(8)

Figure 5. Comparison between disentangled spectra in the common con-
tinuum of the binary system (red lines, differentiable also by the noise)
and best-fitting theoretical spectra (blue lines) for the secondary component
(upper three spectra) and primary component (lower three spectra). The Hα,
Hβ and Hγ lines are depicted in ascending order and have been offset by
0.1 for clarity.
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Table 5. Atmospheric parameters for the components of KIC
4544587, derived from a constrained optimal fit of the disen-
tangled spectra with the light factor as a fixed (upper section)
and free (middle section) parameter. For both the fixed and
free case, the projected rotational velocities (lower section)
are fixed to the values derived by the optimal fitting of the
metallic lines in the disentangled ISIS/WHT blue spectra.

Parameter Primary Secondary

Teff (K) 8090(90) 7620(135)
log g (cgs) 4.22 (fixed) 4.23 (fixed)
Light factor 0.670 (fixed) 0.330 (fixed)

Teff (K) 8600(100) 7750(180)
log g (cgs) 4.12(2) 4.31(2)
Light factor 0.634/0.646/0.670 0.366/0.354/0.330

v sin i (km s−1) 86.5(13) 75.8(15)

equilibrium synthetic spectra was calculated using the UCLSYN2 code
(Smalley, Smith & Dowretsky 2001) and ATLAS9 model atmospheres
for solar metallicity [M/H] = 0 (Castelli, Gratton & Kurucz 1997).
The grid covers Teff from 6000 to 10 000 K in steps of 250 K, and
log g from 3.50 to 4.50 in steps of 0.5 dex.

The projected rotational velocities of the components were also
optimized. However, as convolution with the rotational kernel has
little influence on the broad Balmer lines, we avoided simultaneous
determination of the Teff and v sin i. Instead, we determined the
v sin i of the components by fitting the least blended metal lines.
The results are given in Table 5. As v sin i = 86 ± 13 km s−1,
KIC 4544587 has an equatorial velocity of veq < 120 km s−1, be-
low which diffusion can occur. Thus, it is likely that the primary
component is a metallic-lined Am star (Abt 2009).

Alongside the optimal fitting of the renormalized disentangled
spectra of Hγ , Hβ and Hα lines separately (with the surface grav-
ities and projected rotational velocities held fixed), we have also
derived optimal atmospheric parameters in the constrained mode
(Tamajo et al. 2011). In constrained mode, the light ratio between
the components is a free parameter when fitting for the effective
temperatures. Also, the surface gravities were left to be free pa-
rameters. In the search for the optimal set of parameters, we also
adjusted for the velocity shift between disentangled and theoretical
spectra, to enable a slight adjustment of the continua of the disen-
tangled spectra. Disentangling the Balmer lines is a difficult task
due to their broadening, which is much larger than their Doppler
shift. Moreover, when determining the effective temperature, the
correct continuum placement is difficult because the Balmer lines
of the primary extend over a considerable number of echelle orders,
making the correction of the blaze and order merging somewhat
uncertain. The optimal set of the parameters obtained when per-
forming constrained fitting, with the light factor as both a free and
fixed parameter, is given in Table 5.

5 PE R I O D D E T E R M I NAT I O N

Period analysis was performed to identify the orbital period of the bi-
nary system. An initial estimate was obtained by applying PERIOD04
(Lenz & Breger 2004) to the SC data from Quarter 3.2 only. PERIOD04
applies a Fourier transform to the data and uses a least-squares fit
to optimize the amplitudes and phases. Further analysis was then
performed on all the SC data (Quarters 3.2, 7 and 8) using KEPHEM

2 http://www.astro.keele.ac.uk/∼bs/publs/uclsyn.pdf

(Prša et al. 2011), an interactive package with a graphical user inter-
face (GUI) that incorporates three methods: Lomb–Scargle (Lomb
1976; Scargle 1982), analysis of variance (Schwarzenberg-Czerny
1989) and box-fitting least squares (Kovács, Zucker & Mazeh 2002),
as implemented in the VARTOOLS package (Hartmann 1998). Using
KEPHEM, the period and time of primary minimum were found inter-
actively. The period was determined by dragging the mouse over a
periodogram in the lower panel of the GUI to see how it affected
the alignment of the phased data presented in the upper panel of the
GUI. To determine an accurate period, the zoom tool was utilized
on both the periodogram and phased data. The zero-point was then
selected by dragging the primary eclipse in the top panel containing
the phased data and align it with zero phase. The ephemeris was
found to be Min I = BJD 245 5462.006 137(9)+2.189 094(5) × E,

where the values in the parentheses give the uncertainty in the
previous digits. The uncertainties were obtained by identifying the
range of values that would yield a visibly indistinguishable result;
beyond this uncertainty range the discrepancy is notably increased.
Due to apsidal motion, the relative separation of the eclipses changes
as a function of the rotation of the orbit. Consequently, the period
specified is the anomalous period, which is the period measured by
phasing the data on one eclipse (primary eclipse), leaving the other
eclipse (secondary eclipse) smeared. Although this is a small effect,
the smearing could be seen over the duration of the data used in
this analysis. See Section 6.2 for further discussion on the apsidal
motion of KIC 4544587.

6 BI NA RY MO D E L L I N G

6.1 PHOEBE

PHOEBE (Prša & Zwitter 2005) is a binary modelling package based
on the Wilson–Devinney (hereafter WD) code (Wilson & Devinney
1971; Wilson 1979; Wilson & Van Hamme 2004). PHOEBE incor-
porates all the functionality of the WD code but also provides an
intuitive GUI alongside many other improvements that make PHOEBE

highly applicable to the precise Kepler data. These include: uncer-
tainty calculations through heuristical scanning algorithms (which
scan parameter space by generating results from multiple starting
points to determine the mean and standard deviation); the facility
to phase bin the data; updated filters for the various recent space
missions including Kepler; the correct treatment of reddening and
the ability to work with a large number of data points.

When modelling the data, the initial inputs were a combination of
the effective temperatures and log g values identified through fitting
the disentangled spectra with the light factors as a free parameter,
8600 ± 100 K, 7750 ± 180 K, 4.12 and 4.31, for the primary
and secondary, respectively. We elected to use the results from this
mode as a single light factor does not account for the change in
each component’s relative light contribution for the different spec-
tral ranges. For the initial investigation, a model light curve was
generated from the observationally constrained and estimated input
parameters. First, the passband luminosity of the model was com-
puted so that the out-of-eclipse flux levels were correctly positioned
with respect to the observed light-curve data. Following this the ec-
centricity (e) and argument of periastron (ω) were adjusted until
the separation between the primary and secondary eclipses, which
is proportional to e cos ω, was equal to that of the observed data.
This also involved adjusting the phase shift to retain the position of
the model’s eclipses. Once the separation was tightly constrained,
the phase shift, e and ω were further adjusted, whilst maintaining
the value for e cos ω, to obtain the relative widths of the primary
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Table 6. Adjusted parameters and coefficients of the best-fitting model to
the Kepler light curve for Quarters 7 and 8. The limb darkening coefficients
correspond to the logarithmic limb darkening law. The uncertainties were
determined through modelling and Monte Carlo methods, and concur with
those obtained through fitting the disentangled spectra. The limb darkening
coefficients were taken from the PHOEBE limb darkening tables (Prša et al.
2011).

Parameter Values

Mass ratio 0.810(12)
Primary mass ( M⊙), M1 1.98(7)
Secondary mass ( M⊙), M2 1.61(6)
Primary radius (R⊙), R1 1.82(3)
Secondary radius (R⊙), R2 1.58(3)
Phase shift 0.0831(3)
Semimajor axis (R⊙), a 10.855(46)
Orbital eccentricity, e 0.275(4)
Argument of periastron (rad), ω 5.74(3)
Orbital inclination (degrees), i 87.9(3)
Primary Teff (K), T1 8600(100)
Secondary Teff (K), T2 7750(180)
Primary potential, *1 7.09(10)
Secondary potential, *2 7.12(10)
Gamma velocity (km s−1) −20.13(7)
Apsidal advance (yr per cycle) 182(5)
Sidereal period (d) 2.189 0951(7)
Primary relative luminosity 0.668(2)
Secondary relative luminosity 0.332(1)
Primary log g (cgs), log g1 4.241(9)
Secondary log g (cgs), log g2 4.33(1)
Primary linear limb darkening coeff. 0.634
Secondary linear limb darkening coeff. 0.664
Primary logarithmic limb darkening coeff. 0.282
Secondary logarithmic limb darkening coeff. 0.268

and secondary eclipses, which are proportional to e sin ω. The
combined depths and widths of the eclipses were then adjusted by
altering the inclination and stellar potentials, respectively.

Once an initial model had been generated, the differential cor-
rections algorithm was applied in an iterative process to obtain an
accurate fit to the light-curve data. Once the model was tightly
constrained, the RV curves were incorporated to fit the mass ratio,
gamma velocity and the projected semimajor axis. As the photo-
metric light curve contains essentially no information about these
parameters for a detached system, the fit was performed on the RV
curves independently. This avoids improper weighting due to the
vastly different number of data points between the different types
of curves. Once the best-fitting solution had been achieved for these
parameters, the differential corrections algorithm was applied to the
light curve for all other parameters specified in Table 6.

When generating the model we assumed pseudo-synchronous
stellar rotation after Hut (1981), which was determined to be
1.87 times the orbital period. Pseudo-synchronous rotation is indica-
tive of the rotational velocity of the stellar components at periastron.
We also fixed the orbital period since KEPHEM is more appropriate
for period determination than the differential corrections algorithm.
Due to the low contamination and following the analysis of the pixel
level data, we assumed no third light in the system.

When modelling a binary system with one or more pulsating
components (where the pulsations occur on the time-scale of the or-
bit), multiple iterations are required so that the data are thoroughly
prewhitened, leaving only the binary signature. This enables the
orbital characteristics to be modelled correctly without interference

Table 7. Fixed parameters and coefficients for the PHOEBE best-fitting model
to the Kepler light curve for Quarter 7. The rotation is specified as a ratio
of stellar to orbital rotation, and the fine grid raster is the number of surface
elements per quarter of the star at the equator and coarse grid raster is used
to determine whether the stars are eclipsing at a given phase.

Parameter Values

Third light 0.0
Orbital period (d) 2.189 094(5)
Time of primary minimum (BJD) 245 5462.006 137(9)
Primary rotation 1.83
Secondary rotation 1.83
Primary bolometric albedo 1.0
Secondary bolometric albedo 1.0
Primary gravity brightening 1.0
Secondary gravity brightening 1.0
Primary fine grid raster 90
Secondary fine grid raster 90
Primary coarse grid raster 60
Secondary coarse grid raster 60

from the stellar pulsations. The method used involved subtracting
the computed orbital model from the original observed data, sub-
sequent frequency analysis on the residual data, and finally, the
removal of the identified pulsations from the original data. This
method is only viable when the pulsations can be considered as
perturbations, which is the case for KIC 4544587. What remains
is a light curve predominantly free of pulsations for subsequent
binary modelling. Three iterations were required when modelling
KIC 4544587, with subsequent iterations having negligible effect.
The fitted and fixed parameters, and their corresponding values for
our best-fitting model, can be found in Tables 6 and 7, respectively.

The model obtained for KIC 4544587, as seen in Fig. 6, still shows
some systematic discrepancies in the residuals during primary and
secondary eclipses. These discrepancies arise from a combination
of (1) the existence of pulsations that are commensurate with the
orbital period and (2) the precise nature of the Kepler data. As
some of the pulsations are commensurate with the orbital period,
they occur at precisely the same time each orbit. During eclipse
phase, however, the relative flux from the pulsating component
either increases or decreases, dependent on which star is being
eclipsed. This introduces a change in the amplitude of the pulsation
during eclipse phase that manifests itself in the residuals of the
model. Additionally, the highly precise Kepler data have highlighted
the inadequate treatment of parameters such as limb darkening,
stellar albedo and the incomplete treatment of surface discretization
(Prša & Zwitter 2005), which have previously been considered
satisfactory. Currently efforts are being made towards improving the
models to account for the physics that has previously been omitted
(Prša et al., in preparation). However, until this major task, which
is outside the scope of this paper, is completed, these systematics
are unavoidable when generating a binary model of the Kepler data
and thus are accounted for in the uncertainties attributed to the fitted
parameters.

Uncertainty estimates were obtained using a combination of for-
mal errors, generated by fitting all the parameters simultaneously
using PHOEBE, and those determined through Monte Carlo heuris-
tic scanning. A scan of the parameter space was undertaken for the
most correlated parameters using Monte Carlo methods. The results
of the Monte Carlo simulations can be found in Figs 7 and 8. The
Monte Carlo simulations perturbed the solutions of the best-fitting
model by a predefined amount (5 per cent) in order to identify the
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Figure 6. Middle panel: theoretical PHOEBE model (red line) and observed light curve, prewhitened with the pulsation frequencies displayed in Section 7
(black points) for the SC data of Quarters 7 and 8. Lower panel: the residuals (black points) of the best-fitting model. Upper panel: a magnified image of the
out-of-eclipse data and PHOEBE model fit.

Figure 7. Density maps showing the distribution of results from the Monte Carlo simulations for the most correlated parameters: potential of the primary
versus inclination (top left), primary versus secondary potential (top right), argument of periastron versus eccentricity (bottom left) and the luminosity of the
primary versus the luminosity of the secondary (bottom right). The contours represent the uncertainty in terms of standard deviation, with the innermost contour
representing the 1σ uncertainty and subsequent contours representing increments of 1σ .

spread of possible results and their corresponding χ2 values. The
χ2 values for each solution were then mapped out into confidence
intervals which serve as the uncertainty estimates. From the density
maps, the optimum values of the correlated parameters displayed on
the axes can be seen by identifying the combination with the lowest
χ2 value. The 1σ uncertainty values are determined by considering
the spread of the innermost contour.

6.2 Orbital evolution

Apsidal motion is the rotation of the elliptical orbit about the centre
of mass (Claret & Gimenez 1993), which can be caused by the
presence of a tertiary component or through the gravitational in-
teractions occurring between the binary components. Using PHOEBE

we determined the rate of apsidal advance for KIC 4544587 to
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Figure 8. A scatter plot showing the spread of results obtained from the
Monte Carlo simulation for the luminosity ratio as a function of χ2. A clear
boundary with a definite minimum can be seen, which signifies that the
luminosity ratio is unambiguous.

Figure 9. Depicted are the eclipse timing variations, which demonstrate
the deviation of the observed primary (blue circles) and secondary (green
triangles) eclipses from the model as a function of time. The average pe-
riod was selected for the standard model and thus it can be seen that both
eclipses deviate from each other. The opposing direction of the primary and
secondary eclipses is suggestive of classical apsidal motion. With a longer
time base it is expected that the trend would appear more sinusoidal. The
standard model was generated using four polynomials of order 10, which
was found to be the optimal order to reduce the scatter.

be 0.04306 (2) rad yr−1. This equates to a full rotation of the
orbit in 182(5) yr. Fig. 9 shows the eclipse timing variations of
KIC 4544587, and depicts the primary and secondary eclipses mov-
ing linearly in opposite directions, which is suggestive of classical
apsidal advance caused by tidal distortions. Gies et al. (2012) mod-
elled the eclipse timing variations of 41 eclipsing binaries, including
KIC 4544587, and concluded that these variations are a combination
of apsidal motion and tidal interactions.

The parameters determined by PHOEBE are indicative of an eccen-
tric short-period system with two components in close proximity
(∼4.4 R⊙ surface to surface, at periastron). Although the perias-
tron distance is small, we still do not expect any mass transfer as
the potentials of the two components far exceed the potential at L1
(∼4.8), as specified by PHOEBE.

Eccentric short-period binary systems are uncommon due to the
rapid rate of circularization (107 yr) compared with the time-scale of
stellar evolution. Zahn (1975) theorized that orbital circularization

occurs due to the radiative damping of tidally excited oscillations in
the stellar outer envelope. For this reason, the eccentric short-period
nature of KIC 4544587 is either the result of tidal capture, recent
formation of the system, the presence of a tertiary component or a
consequence of its resonant pulsations. As the Kepler field does not
contain any prominent star-forming regions, it is not expected that
KIC 4544587 is a newly formed binary system. Furthermore, as
the system is formed from two intermediate-mass main-sequence
stars, it is also unlikely that the system has undergone tidal capture.
Thus, the eccentric nature of KIC 4544587 is likely a consequence
of either a third body or the system’s extreme tidal interactions (see
Section 7.1 for a discussion of tidal resonance).

7 PU L S AT I O N C H A R AC T E R I S T I C S

The light curve of KIC 4544587 demonstrates clear pulsations in
two regions of the frequency spectrum: with periods of the order of
days and periods of the order of 30 min, both of which can be seen
in the light curve. We used PERIOD04 and our own codes to generate
a frequency spectrum of the residual data (the detrended data with
the orbital fit subtracted), which can be seen in Fig. 10. We also
performed eclipse masking by removing the data points occurring
during eclipse phases to remove any residual binary information
from the light curve. In the Fourier transform, the gaps created in
the data manifest themselves in the window pattern, with peaks
separated from the real peak by the orbital frequency. Although this
is not ideal, masking is highly important for the identification of
resonantly excited modes, which is a crucial aspect of the analysis
of KIC 4544587. Without removing the aforementioned points,
the systematics would have presented themselves as frequencies
at multiples of the orbital frequency, identical to the signature of
tidally excited modes; thus, masking was required to differentiate
between these two possibilities.

PERIOD04 incorporates a least-squares fitting technique to simul-
taneously generate amplitudes and phases for all the identified fre-
quencies. For an assumed background level of 40 µmag, we report
the frequencies with amplitudes of 3σ or more. The prominent fre-
quency peaks were identified in two regions, 0−5 and 30−50 d−1,
which correspond to g modes and p modes, respectively, although
the lowest frequency peak [f24 = 0.040 89(6) d−1] is possibly due
to remaining instrumental effects.

The high-frequency, high-overtone p-mode frequencies are typ-
ical for a δ Scuti star of temperature similar to that of the primary
star, which is towards the hotter, blue edge of the instability strip.
An estimate of the radial overtones of the modes can be made from
the pulsation constant, Q, defined by the period–density relation:

P

√
ρ

ρ⊙
= Q, (1)

which can be rewritten in the form

log Q = −6.454 + log P + 0.5 log g + 0.1Mbol + log Teff . (2)

From the latter relation and the fundamental parameters given in
Table 6, we find for the frequency range 30–50 d−1 for the primary
star 0.017 > Q > 0.012, and for the secondary star 0.021 > Q >

0.015. These are indicative of radial overtones in the range 3 ≤ n ≤
5 (Stellingwerf 1979). Pulsation in higher radial overtone p modes
such as these (as opposed to pulsation in the fundamental and first
overtone modes) is more typical of hotter δ Sct stars, and hence
suggests that the p modes arise in the primary star.

We applied a Fourier transform up to the SC Nyquist frequency
but did not find any peaks beyond 48.044 49(19) d−1. Once the
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Figure 10. An amplitude spectrum of the residual, eclipse-masked data for the SC data of Quarters 7 and 8. Here the high-frequency p-mode regime is clearly
separated from the lower frequency g-mode regime.

frequencies specified in Table 8 had been prewhitened, an ampli-
tude excess still remained in both the p-mode and g-mode regions.
However, as we could not be certain that further detections were
real, we did not continue to extract modes beyond this point.

We identified 31 frequencies, 14 in the lower frequency g-mode
region and 17 p-mode region, in the frequency spectrum between
0.1 and 49 d−1 (see Table 8). Of the 14 g-mode frequencies,
we identified 8 that are multiples of the orbital frequency (see
Section 7.1).

The remaining g modes are either γ Dor pulsations, most likely
from the secondary component, which is in the γ Dor instabil-
ity strip, or non-resonant tidally driven modes, as predicted by
Weinberg et al. (2012). Currently we are unable to differentiate as
both outcomes have identical signatures, although as the secondary
is in the γ Dor instability strip we would expect it to pulsate with
intrinsically excited g modes.

7.1 Tidal interactions and combination frequencies

Tidally excited modes are stellar pulsations that have been excited
by the tidal forces of the companion star. A prime example of
this is KOI-54 (Welsh et al. 2011). In a binary system with an
eccentric orbit, when a stellar eigenfrequency is close to a multiple
of the orbital frequency, a near-resonance occurs that causes an
increase in oscillation amplitude (relative to non-resonant modes).
The signature of a tidally excited mode is an oscillation frequency at
a multiple of the orbital frequency. We identified eight frequencies
in the g-mode region that are multiples of the orbital frequency. We
expect that these are tidally excited l = 2 modes; however, as the
eclipses are only partial, we are unable to use the in-eclipse data to
determine mode angular degrees or which modes belong to which
star.

Previously believed to be short-lived, Witte & Savonije (1999)
demonstrated that the duration of tidal resonance can be prolonged
through resonant locking. Resonant locking is a result of the change
in stellar spin, due to the exchange of angular momentum in the sys-
tem as the orbit evolves, causing variations in the eigenfrequencies
of the stellar components. This, combined with the change in the
orbital period of the system, causes a coupling between the newly

Table 8. The identified pulsation frequencies and their cor-
responding amplitudes and phases. The values in parentheses
give the 1σ uncertainty in the previous digit. The uncertainty
in the amplitude is 0.004 × 10−3 relative flux units.

Designation Frequency Amplitude Phase
(d−1) (flux ×10−3) (rad)

f1 = νorb 0.456 81(1) 1.001 0.746(3)
f2 = 4νorb 1.827 10(1) 0.593 0.3822(4)
f3 2.011 24(1) 0.561 0.0758(5)
f4 = 3νorb 1.370 41(1) 0.520 0.3514(5)
f5 3.468 22(1) 0.373 0.9864(7)
f6 48.022 31(4) 0.329 0.547(2)
f7 = 7νorb 3.197 60(2) 0.244 0.301(1)
f8 41.370 20(5) 0.236 0.892(3)
f9 44.846 95(6) 0.181 0.780(3)
f10 0.125 46(3) 0.164 0.996(2)
f11 46.196 62(8) 0.152 0.990(4)
f12 0.127 21(4) 0.140 0.396(2)
f13 = 97νorb 44.309 82(9) 0.134 0.776(4)
f14 = 2νorb 0.913 88(4) 0.133 0.026(2)
f15 48.044 49(19) 0.122 0.331(9)
f16 = 10νorb 4.567 92(4) 0.116 0.532(2)
f17 = 8νorb 3.6545(5) 0.106 0.055(2)
f18 39.542 80(11) 0.106 0.984(6)
f19 1.611 86(5) 0.103 0.897(3)
f20 43.447 56(12) 0.101 0.733(6)
f21 44.817 96(12) 0.099 0.088(6)
f22 = 9νorb 4.111 22(6) 0.093 0.813(3)
f23 46.583 40(13) 0.092 0.056(7)
f24 0.040 89(6) 0.091 0.829(3)
f25 1.585 41(7) 0.078 0.545(3)
f26 38.226 68(16) 0.076 0.109(8)
f27 44.299 02(21) 0.054 0.80(1)
f28 44.361 18(29) 0.052 0.70(1)
f29 40.053 72(23) 0.051 0.30(1)
f30 46.674 01(23) 0.051 0.10(1)
f31 44.756 38(24) 0.049 0.68(1)
f32 47.953 73(26) 0.045 0.69(1)
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Figure 11. A magnified image of the phase-binned Kepler photometric SC
light curve of Quarters 7 and 8 with no frequencies prewhitened (pink, bot-
tom curve), all the frequencies except those that are harmonics prewhitened
(blue, middle curve) and all the frequencies prewhitened (green, top curve).
The blue and pink light curves only demonstrate a minimal difference as
all non-commensurate pulsations are cancelled out when the data are phase
binned. The only explanation for the remaining variation in the blue and
pink light curves is that they are tidally excited pulsations. The light curves
have been offset by 0.03 relative flux units for clarity.

resonant eigenfrequency and the orbital frequency, which increases
the probability of observing this intriguing phenomenon signifi-
cantly.

During the identification of the frequencies the data were masked
so that the Fourier transform was only applied to the out-of-eclipse
data. Consequently, it is unlikely that the presence of these fre-
quencies in the Fourier transform can be completely attributed to
an inadequate orbital solution. More convincingly, Fig. 11 shows a
magnified image of the out-of-eclipse phase-binned data of Quarters
7 and 8 with no frequencies removed (pink, bottom curve), all the
identified frequencies except the orbital harmonics removed (blue,
middle curve) and all the identified frequencies removed (green,
top curve). The pink light curve is visibly thicker than the blue light
curve because the non-commensurate pulsations are still present,
although have essentially cancelled out. We have no explanation for
the prominent variations in the out-of-eclipse section of the light
curve other than that they are tidally excited modes. We have also
ruled out spots as the cause of the light-curve variations as spots are
commensurate with the rotational frequency of the star and not the
orbital frequency – our rotational velocity measurements are con-
sistent with a pseudo-synchronous velocity; thus, we would expect
peaks in the Fourier transform at multiples of 1.87 times the orbital
frequency if the variations were caused by spots.

The p modes were analysed using the unmasked residual data
from Quarters 7 and 8. To look for regular spacings we generated
a diagram similar to an echelle diagram (Grec, Fossat & Pomer-
antz 1983), but modulo the orbital frequency (cf. Fig. 12). We
prewhitened all g modes prior to the identification of the p modes
to avoid any crosstalk from the window pattern. In Fig. 12 the filled
circles represent the frequencies in Table 8 and the open circles
represent frequencies with amplitudes in the region 0.02–0.04 ×
10−3 relative flux units. The latter are not reported in our table as
they are below our predefined confidence limit, although here they
highlight the vertical groupings which indicate that many of the
p-mode frequencies are multiplets split by the orbital frequency.
Our working hypothesis is that the highest amplitude peak in a ver-

tical group is the self-excited p mode and the remaining p modes
in that group are the product of non-linear coupling between the
self-excited p modes and tidally induced g modes. To our knowl-
edge this effect has not previously been observed and is considered
an important tool for identifying g modes in the Sun (Chapellier
et al. 2012). In our case, this deduction suggests that one of the
stars is pulsating in both p modes and g modes, information that
we could not have determined otherwise. An alternative hypothesis,
suggested by Weinberg, Arras & Burkart (2013), states that through
non-resonant three wave interactions the dynamical tide can ex-
cite daughter p-mode and g-mode waves; however, we refrain from
discussing the physical nature of these modes at this time.3

Combination modes created from the same type of mode, how-
ever, have been observed in numerous stars including the δ Scuti
stars FG Virginis (Breger et al. 2005) and KIC 11754974 (Murphy,
2012 submitted), and the white dwarf star GD 358 (Winget et al.
1994). Brickhill (1983) determined that the likely cause of combi-
nation frequencies is non-linear interactions related to convective
turn-over time-scales. Changes in the convective zone during the
pulsation cycle cause a change in the amount of flux attenuation.
This distorts the stellar shape and causes the pulsations to devi-
ate from pure sinusoids generating combination frequencies in the
Fourier transform.

Wu & Goldreich (2001) demonstrated that non-linear interactions
could help with mode identification because non-linear mode cou-
pling will only occur between specific modes and different modes
generate different amplitude combinations, e.g. l = 2 modes gen-
erate larger amplitude combination frequencies than l = 1 modes.
One of the most challenging requirements of modelling δ Sct stars
is mode identification; thus, combination frequencies could be key
identifiers to obtaining a true asteroseismic model of the multitude
of modes presented by this fascinating object.

7.2 Pulsation frequency modulation: the FM effect

Recently Shibahashi & Kurtz (2012) have shown that pulsating
stars in binary orbits have frequency multiplets split by the orbital
frequency in their amplitude spectra. This is a simple consequence
of the light travel time effect causing the pulsation phases to be

3 After this paper was submitted, we realized that the g modes whose fre-
quencies are not multiples of the orbital harmonics (i.e. f3, f5, f19 and f25
from Table 8) are also indicative of non-linear tidal processes. Specifically,
rather than having frequencies at orbital harmonics, these g modes have
frequencies that sum to orbital harmonics. Note that f3 + f5 = 12νorb and
f19 + f25 = 7νorb. These combination frequencies suggest that these modes
are excited by parametric three-mode resonance, as detailed in Weinberg
et al. (2012) and by Papaloizou & Pringle (1981). However, the non-linear
driving mechanisms may be different for the two pairs of modes listed
above. In the language of Weinberg et al. (2012), the excitation of f19 and
f25 may be due to non-linear driving by the dynamical tide. Essentially, this
is the standard three-mode coupling in which a parent mode non-linearly
drives a pair of daughter modes whose frequencies sum to that of the parent
mode, as observed in the KOI-54 system (Burkart et al. 2012; Fuller & Lai
2012). In this case, the parent mode is the dynamical tide at f7 = 7νorb,
which is dominated by a nearly resonant g mode. The origin of f3 and f5
likely cannot be explained by this mechanism because there is no visible
parent mode at f3 + f5 = 12νorb. Instead, these modes are likely excited via
non-linear driving by the equilibrium tide. In this case, the ‘parent’ mode is
the component of the equilibrium tide that oscillates at 12 times the orbital
frequency (which is dominated by the f mode rather than a g mode). These
findings further substantiate our pulsational models which show that we do
not expect to see γ Dor modes in either component.
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Figure 12. An echelle diagram of the p-mode frequencies modulo the orbital frequency using the SC Kepler data of Quarters 7 and 8. The points are coloured
in terms of their amplitude in units of relative flux × 10−3 (see the key at the right of the figure). The filled circles denote p-mode values taken from Table 8
and the open circles represent frequencies with amplitudes in the region 0.02–0.04 × 10−3 relative flux units, which are below our predefined confidence
limit of 3σ . The uncertainty in the frequencies is smaller than the points, thus not depicted. A high-pass filter was applied to the g-mode region prior to the
identification of the p modes to remove any possible window pattern. The data was not masked.

periodically modulated by the orbital motion as seen by the ob-
server. When the effect is large enough to be measured, RVs can
be measured directly from the light curve without the need for
spectroscopic RVs. Shibahashi & Kurtz (2012) demonstrate this by
deriving the mass function from photometric data alone for the K-K
binary and A star in the complex multiple system KIC 4150611 to
better precision than has been possible with spectroscopic RVs.

In the case of KIC 4544587 this effect is not measurable, even
at the extremely high precision of the Kepler data. Consequently,
we are not able to complement our spectrally defined RV points
with a photometrically defined RV curve. However, we are able
to conclude that the frequency modulation (FM) signature is not
present in our frequency spectrum and thus does not interfere with
our frequency analysis. Shibahashi & Kurtz (2012) characterize the
phase modulation with a parameter, α, given by

α =
(
2πGM⊙

)1/3

c

(
m1

M⊙

)1/3

q(1 + q)−2/3 P
2/3
orb

Posc
sin i, (3)

where Posc is the pulsation period, Porb is the orbital period, m1

is the mass of the primary star and q = m1/m2 is the mass ratio.
For KIC 4544587 the exact value of α depends on which star is
considered to be pulsating, which is not yet known, but α ∼ 0.04,
in either case, since q ∼ 1. For a value of α this low, Shibahashi &
Kurtz (2012) show that, to first order, a frequency triplet split by the
orbital frequency is expected for each pulsation frequency, where
the amplitude ratio of the side peaks to the central peak is given by

A+1 + A−1

An

≈ α, (4)

where A+1, A−1 and An represent the amplitudes of the peaks at fn +
νorb, fn − νorb and fn, respectively, where νorb = 1/Porb is the orbital
frequency. In addition, for this low value of α, the side peaks have
essentially the same amplitude.

Table 8 shows that the highest amplitude p mode in KIC 4544587,
f6 = 48.0240 d−1, has an amplitude of 329 µmag. Therefore, we
expect the orbital sidelobes generated by the light travel time effect
to have amplitudes for this best case of about 7 µmag, which is
below the limit of detection in our data, but may ultimately be
detectable with a more extensive Kepler data set.

7.3 Stellar evolution and pulsation models

To estimate the frequency content expected for stars similar to
KIC 4544587, we calculated stellar evolution and pulsation models
for single spherically symmetric non-rotating stars using the mass,
radius and effective temperature constraints obtained from binary
modelling and spectroscopic analysis. The models use the stellar
evolution and pulsation codes described in Guzik et al. (2000), in-
cluding an updated version of the Iben (1963, 1965) stellar evolution
code with OPAL (Iglesias & Rogers 1996) opacities, Alexander &
Ferguson (1994) low-temperature opacities, the Grevesse & Noels
(1993) solar mixture and the Pesnell (1990) linear non-adiabatic
stellar pulsation codes. We did not include diffusive helium, ele-
ment settling or convective overshooting.

We do not know the interior abundances or ages of these stars.
However, we attempted to find evolved models of the same initial
composition and age that matched the constraints of the two stars in
KIC 4544587. The models that were the closest to satisfying these
criteria have helium abundance Y = 0.27, metallicity Z = 0.017 and
mixing length/pressure scaleheight 1.90, very near to the values
calibrated for the Sun for these evolution and pulsation codes, and
the Grevesee–Noels solar abundance mixture (see, e.g., Guzik &
Mussack 2010). The age of the models is approximately 235 Myr.
The observational constraints, plus the model parameters for two
sets of models, are given in Table 9.
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Table 9. Stellar properties derived from observations and stel-
lar evolution models. Y and Z are initial helium and element
mass fractions, respectively. The first set of models (column
3) has the same age and composition, while column 4 shows
parameters for the best-fitting models that do not have the same
age and abundances.

Parameters Observations Coeval Single best-fitting
models models

Primary

Mass (M⊙) 1.98(7) 1.95 1.98
Radius (R⊙) 1.76(3) 1.73 1.76
Teff (K) 8600(100) 8774 8604
Y 0.27 0.28
Z 0.017 0.023
Age (Myr) 235 171

Secondary

Mass (M⊙) 1.60(6) 1.57 1.60
Radius (R⊙) 1.43(2) 1.48 1.43
Teff (K) 7750(180) 7543 7813
Y 0.27 0.27
Z 0.017 0.016
Age (Myr) 235 0 (ZAMS)

Figure 13. An H-R diagram for the models of Table 9. The boxes outline
the parameter space for the observationally derived primary and secondary
components. The short-dashed line is zero-age main-sequence position for
stellar models with Z = 0.017, Y = 0.27. Also shown are evolutionary tracks
for a 1.95-M⊙ (blue) and 1.57-M⊙ (green) model. The two models with the
same age and composition (column 3 of Table 9) closest to the observational
constraints are connected by the long-dashed line. The red diamonds mark
the best-fitting models for each star (column 4 of Table 9) that do not have
exactly the same age and composition.

Fig. 13 shows the evolution tracks for stars of these masses and
the observational constraints. The two coeval models miss the ob-
servational constraints by a small amount: it is difficult to find a
secondary with a small enough radius, and a primary that is cool
enough, for the same age. To gauge the magnitude of the prob-
lem, we also searched for single-star best-fitting models. We found

that we could fit the primary parameters exactly using a model
with a higher metallicity (0.023), with age 171 Myr; the higher
metallicity allowed a slightly higher mass and produced the desired
lower effective temperature. For the secondary, we needed to reduce
the metallicity to 0.016 to reduce the radius; the desired radius of
1.43 R⊙ is reached at the zero-age main sequence (ZAMS).

We calculated the l = 0, 1 and 2 non-adiabatic pulsation frequen-
cies for the models in Table 9. For the models with age 235 Myr,
we find that the 1.95-M⊙ model is predicted to have only one
unstable δ Sct-type frequency for l = 0 (7th overtone, 59.4 d−1),
l = 1 (56.3 d−1) and l = 2 (58.9 d−1). The 1.57-M⊙ model for the
secondary is predicted to have unstable δ Sct-type frequencies in
a very wide range, 21–90 d−1 for the l = 0 (radial) modes (fun-
damental through 10th overtones), 21–93 d−1 for the l = 1 and
22–96 d−1 for the l = 2 modes. Overall, the p-mode frequency
content of KIC 4544587 seems to correspond better to that of the
secondary, contrary to the findings of the Q-value equation, but
these calculations do not rule out tidal excitation of modes in the
primary.

The predicted unstable frequency content for the best-fitting non-
coeval models in column 4 of Table 9 is similar, with the primary
showing just a few p modes for each degree l = 0, 1 and 2 between
46 and 61 d−1, a little higher but overlapping the p-mode frequency
range observed in KIC 4544587. For the 1.60-M⊙ secondary, the
range of unstable p modes is a little smaller than for the 1.57-M⊙
higher metallicity model in column 3 of Table 9, and shows eight
unstable modes between 22 and 75 d−1 for each degree l = 0, 1
and 2.

We also examined the possibility of unstable g-mode frequencies
for these models in the observed range of 1.5–3.5 d−1. While we can
find many g modes for either l = 1 or l = 2 in this frequency range,
all of the modes are stable. The models have envelope convection
zones that are quite shallow, with a temperature at the base of
50 000–60 000 K, near or a little hotter than the region of second
helium ionization. At this location, the convective time-scale at
the convection zone base is shorter than the pulsation period, so
γ Dor g modes are not expected to be pulsationally unstable via
the convective blocking mechanism. Verification of this conclusion
using a pulsation code with a time-dependent convection treatment
would be worthwhile. On the other hand, in either star, g modes
consistent with those observed could be tidally or stochastically
excited.

While they are useful to guide expectations for intrinsic pulsation
frequencies, these single-star non-rotating pulsation and evolution
models are not adequate for an asteroseismic analysis. Tidal effects
and rotation will distort the stars, and so the pulsation modes ob-
served will not correspond to those calculated assuming spherical
symmetry. Mode coupling will alter the observed frequencies. The
surfaces of these stars are separated by only 4.3 R⊙ at periastron.
It is unlikely, but possible, that mass transfer occurred during an
earlier evolution stage. In addition, tidal forces can cause mixing of
hydrogen into the stellar core that would slow the evolution com-
pared to that of single stars and alter the internal structure (Liakos
et al. 2012).

8 SU M M A RY A N D C O N C L U S I O N S

We have presented the Kepler photometric and ground-based spec-
troscopic model of KIC 4544587, a detached eclipsing binary sys-
tem with p-mode and g-mode pulsations, apsidal motion, tidally
excited modes and combination frequencies. The SC data of Quar-
ters 7 and 8 were used in the binary modelling and pulsation analysis
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of KIC 4544587 with the exception of modelling the apsidal mo-
tion and eclipse timing variations where all available quarters were
used. RV curves have been incorporated into the binary model,
which were generated from 38 spectra obtained using ISIS on the
WHT and five spectra using the echelle spectrograph on the 4-m
Mayall telescope at KPNO.

The binary model was created using PHOEBE in an iterative process
where the pulsations were identified in the residuals of the orbital fit
and subsequently prewhitened to leave only the binary signature for
modelling purposes. We were able to obtain a reasonable, but not
completely ideal, binary model fit. Primarily this is due to the reso-
nant pulsations in KIC 4544587, which have periods commensurate
with the orbital period and do not diminish when phasing the data.
However, it is also because of the inadequate treatment of certain
physical parameters (most prominently gravity brightening, limb
darkening and albedo) in the binary modelling process, highlighted
by the precise nature of the Kepler data. Addressing this deficiency
is a work in progress (Degroote et al., in preparation; Prša et al., in
preparation).

A best-fitting model was obtained and uncertainty estimates were
determined using a combination of formal errors and Monte Carlo
simulations, which were used to determine uncertainties for pa-
rameters that are highly correlated. The distributions obtained in
these simulations demonstrated minimal degeneracy, attesting to
the uniqueness of the obtained binary solution. From the binary
model fit, we determined the fundamental parameters of the stel-
lar components. These include the mass and radius of the primary
δ Scuti component, 1.98 ± 0.07 M⊙ and 1.82 ± 0.03 R⊙ and the
mass and radius of the secondary component, 1.61 ± 0.06 M⊙ and
1.58 ± 0.03 R⊙. We also determined that the system has rapid apsi-
dal motion, 182 ± 5 yr per cycle, which may be partially attributable
to the resonant pulsations.

The binary characteristics were subsequently separated from the
inherent pulsations and 31 modes were identified, 14 in the g-mode
region and 17 in the p-mode region. Of the 14 g-mode pulsations,
8 were found to have frequencies that are multiples of the orbital
frequency; therefore, we conclude that the majority of these are
tidally excited pulsations. 17 p-mode frequencies were identified in
the residuals, many of which demonstrate separations that are mul-
tiples of the orbital frequency. Our current hypothesis is that these
are combination modes, formed through the non-linear interactions
between p modes and g modes. The stellar pulsation models predict
many more unstable p modes for the secondary component than the
primary, so it is possible that these p modes originate in the sec-
ondary component; however, the secondary could also have a few
unstable p modes. The pulsation models show that neither star has a
convection zone deep enough to produce unstable g modes, at least
via the convective blocking mechanism. The g modes, however,
could also be tidally driven and originate with either the primary
or secondary. Further investigation into the non-linear mode in-
teractions and tidal excitation of the pulsation modes will require
modelling of pulsations in tidally distorted rotating stars, and is
beyond the scope of this paper.
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Chapter 8

KIC8569819

This chapter features a published case study of the detailed study of KIC8569819,

a binary star with high-amplitude pulsations that enabled the clear application of

the FM (frequency modulation) method. This case study, while not of a heartbeat

star, utilizes the program created to model heartbeat stars, discussed in Chapter 3.

I am the second author of this publication and personally led the binary star mod-

elling effort. This included creating a full, self-consistent binary star model and

writing § 4 entitled “Binary Modelling”. D. Kurtz led the project and wrote the

majority of the publication. H. Shibahashi and S. Murphy contributed to the theo-

retical aspect including discussion and editing of the publication. A. Prša analysed

the eclipse timing variations, discussed in subsection 3.2 entitled “Further FM of ν1:

a cautionary tale”.
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ABSTRACT
KIC 8569819 is an eclipsing binary star with an early F primary and G secondary in a 20.85-d
eccentric orbit. The primary is a δ Sct–γ Dor star pulsating in both p modes and g modes.
Using four years of Kepler Mission photometric data, we independently model the light curve
using the traditional technique with the modelling code PHOEBE, and we study the orbital
characteristics using the new frequency modulation technique. We show that both methods
provide the equivalent orbital period, eccentricity and argument of periastron, thus illustrating
and validating the FM technique. In the amplitude spectrum of the p-mode pulsations, we also
discovered an FM signal compatible with a third body in the system, a low-mass M dwarf
in an 861-d orbit around the primary pair. However, the eclipses show no timing variations,
indicating that the FM signal is a consequence of the intrinsic change in pulsation frequency,
thus providing a cautionary tale. Our analysis shows the potential of the FM technique using
Kepler data, and we discuss the prospects to detect planets and brown dwarfs in Kepler data
for A and F stars even in the absence of transits and with no spectroscopic radial velocity
curves. This opens the possibility of finding planets orbiting hotter stars that cannot be found
by traditional techniques.

Key words: techniques: radial velocities – stars: individual: KIC 8569819 – stars: oscilla-
tions – stars: variables: δ Scuti.

1 IN T RO D U C T I O N

Binary stars are a primary source of fundamental information about
stars, particularly their masses and radii. For asteroseismology,
modelling of stellar pulsations depends on external determinations
of effective temperature and surface gravity, usually from spec-
troscopy. For heat-driven pulsators where masses and radii cannot
be derived from the pulsation frequency spectrum, independent
information from eclipsing binary modelling provides important
constraints that narrow the range of possible asteroseismic models.
Where pulsating stars are found in binaries, the synergy of the inde-
pendent techniques from asteroseismology and from the physics of
the binary orbit greatly improves our astrophysical inferences about
the stars and our confidence in the models that describe them.

The Kepler Space Mission collected time series light curves of
over 190 000 stars over its four-year main mission lifetime from
2009 to 2013. Kepler has an orbital period about the Sun of

⋆ E-mail: dwkurtz@uclan.ac.uk

372.4536 d; during the main mission, the satellite performed four
quarterly rolls (quarters are just over 93 d) per orbit of the Sun. It
acquired data of the same field with a ∼92 per cent duty cycle. Its
mission is to find extrasolar planets, with emphasis on Earth-like
planets and planets in the habitable zone. Its planet candidate list
has 4234 entries1 as of 2014 August, nearly 1000 of which have
been confirmed; in time, 95 per cent are expected to be confirmed. It
also has a list of 2645 EB stars.2 More than 500 main-sequence and
subgiant solar-like pulsators have been studied asteroseismically
with fundamental parameters derived (Chaplin et al. 2014). These
are critical for the characterization of extrasolar planets orbiting
those stars, so that the asteroseismology and planet studies are syn-
ergistic. About 13 000 red giant stars have been studied asteroseis-
mically (Mosser, Belkacem & Vrard 2013; Stello et al. 2013), lead-
ing to a better understanding of the stellar structure of giants, and
even allowing the determination of core and surface rotation rates

1 http://kepler.nasa.gov/Mission/discoveries/candidates/
2 http://keplerebs.villanova.edu

C⃝ 2014 The Authors
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(Beck et al. 2012), initiating observational studies of angular mo-
mentum transport in stars with stellar evolution. With Kepler data,
there has now even been an asteroseismic determination of core-to-
surface rotation in a main-sequence star (Kurtz et al. 2014).

The emphasis of the Kepler search for habitable planets has been
on cool stars, where transits are easier to detect because of the larger
planet-to-star size ratio and the proximity of the habitable zones to
the host star, hence the shorter orbital periods. The pulsations in
cooler stars are stochastically excited by energy in the atmospheric
convection zone. The stars show high radial overtone pulsations
that are asymptotically nearly equally spaced in frequency, allowing
mode identification, and ultimately the extraction of stellar mass,
radius and age (Aerts, Christensen-Dalsgaard & Kurtz 2010). The
best-calibrated cases, such as α Cen (see chapter 7.2.3 of Aerts et al.
2010), allow mass and radius to be determined independently from
astrometry and from interferometry. Comparison of the fundamental
techniques with the asteroseismic results suggests that asteroseismic
masses and radii are as accurate as 2 per cent in the best cases.

Hotter stars in Kepler data are studied less. This is particularly
true for the δ Sct and γ Dor stars, where matching models to the
observed frequency spectra remains a challenge. Compared with
cooler stars, hot stars are not well suited for planetary searches
either, for two principal reasons: (i) the transits across the much
brighter discs are smaller and more difficult to detect, and can be
hidden in the much larger amplitude pulsational variations of most
A stars; and (ii) ground-based radial velocity studies to determine
the masses of companion exoplanets are more difficult because
of the higher masses of the hotter main-sequence stars and because
of the rotationally broadened spectral lines compared to cooler stars
below the Kraft (rotational) break near mid-F spectral type. The
first example of a transiting exoplanet orbiting a pulsating δ Sct
star is WASP-33b (HD 15082), where δ Sct pulsations of ampli-
tude about 1 mmag were found subsequent to the transit discovery
(Herrero et al. 2011). This star has generated considerable inter-
est with further infrared (Deming et al. 2012) and optical studies
and models (Kovács et al. 2013; von Essen et al. 2014). The inter-
est is primarily in the use of pulsation characteristics as probes of
interactions between the planet and the star. The extrasolar plan-
ets encyclopedia3 lists only a handful of planets around A stars, the
most notable being Fomalhaut b (Kalas et al. 2013), the four planets
orbiting the γ Dor star HR 8799 (Marley et al. 2012), and V342 Peg
(Esposito et al. 2013), which have been directly imaged. In conse-
quence, the prevalence of exoplanets orbiting upper main-sequence
stars is essentially unknown.

Shibahashi & Kurtz (2012) developed a new technique for de-
termining orbital parameters of binaries that is based on frequency
modulation. This dramatically extends our ability to study binary
stars in the Kepler data set by providing a method that yields tra-
ditional ‘spectroscopic’ orbital parameters from photometry alone.
Many of the thousands of δ Sct stars in the Kepler data set have sta-
ble pulsation frequencies. For those stars that are in binary systems,
the pulsation frequency is modulated by the orbital motion, pro-
ducing equally split frequency multiplets in the amplitude spectrum
that can be unambiguously identified. Shibahashi & Kurtz (2012)
show how these multiplets can be used to determine the orbital
frequency, the mass function (as in a spectroscopic single-lined bi-
nary star), a sin i for the pulsating primary star and the eccentricity.
More recently, Shibahashi, Kurtz & Murphy (in preparation) have
extended the technique to include the determination of the argument

3 http://exoplanet.eu

of periastron. These are all parameters that in the past required a
large spectroscopic data set to determine radial velocities. Recently,
Murphy et al. (2014) developed an analogous technique based on
phase modulation (PM). This technique is equivalent to FM, and is
more easily automated.

In this paper, we focus on KIC 8569819, an EB in an eccentric
orbit with a primary star that is a pulsating δ Sct–γ Dor star. We
derive orbital parameters independently from both the EB light
curve fitting, and from the FM technique.

2 K I C 8 5 6 9 8 1 9 : A N E C L I P S I N G B I NA RY F M
STAR

KIC 8569819 is a Kp = 13.0 eclipsing binary with Teff = 7100 K
and log g = 4.0 (cgs units) in the Kepler Input Catalogue (KIC;
see Huber et al. 2014 for a discussion of errors in the KIC; at
this temperature and surface gravity, they are about ±250 K in Teff

and ±0.2 in log g). The contamination parameter is 0.237, but a
visual check of the pixel-level data shows that the mask used in the
reductions does not include the nearest possible contaminating star.

The data used for the analysis in this paper are Kepler quarters 0
to 17 (Q0–Q17) long cadence (LC) data with 29.4-min integration
times. We used the multiscale, maximum a posteriori (msMAP)
pipeline data; information on the reduction pipeline can be found
in the Kepler data release notes4 21. Fig. 1 depicts a light curve for
KIC 8569819 for a section of the LC msMAP data where we can see
both primary and secondary eclipses. The separation between the
eclipses is close to 0.5, but closer examination shows that primary
eclipse lasts for about 13 h, and secondary for 6.5 h, requiring a
high eccentricity of e ≈ 0.4, detailed in Section 4. The eclipses are
flat-bottomed (total), therefore i ≈ 90◦. The primary eclipse takes
longer: it occurs near apastron, with the cooler companion being in
front.

The FM analysis of KIC 8569819 is presented in Section 3 and
the EB light curve analysis in Section 4. These two analyses were
performed independently for objective comparison of the results.

3 FM A NA LY S I S O F K I C 8 5 6 9 8 1 9

3.1 FM of ν1: the 20.85-d binary

For the analysis of the pulsation frequencies, we have masked out the
eclipses from the light curve. This is necessary because of the high-
amplitude peaks they generate at low frequency in the amplitude
spectrum; these have spectral window patterns that extend out to the
δ Sct range of the pulsation frequencies. The pulsation amplitudes
also change during eclipses because of the changing background
light level, and because of the partial obscuration of the pulsating
star during ingress and egress of the primary eclipse. That generates
amplitude modulation sidelobes to the pulsation peaks separated by
exactly the orbital frequency, hence overlapping with the FM signal
that we are studying. Unless the binary star model encompasses a
full description of the pulsations, masking the data set is preferred
to subtracting a binary model fit alone.

Fig. 2 shows the amplitude spectrum out to nearly the Nyquist
frequency (∼24.5 d−1) for KIC 8569819 for the masked Q0–17 LC
data. There are pulsations in both the g-mode and p-mode frequency
regions. Since the relative amplitude of the FM sidelobes to the
amplitude of the central peak, i.e. the detectability of the FM signal,

4 https://archive.stsci.edu/kepler/data release.html
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Figure 1. A phased light curve of KIC 8569819 for the Q0–17 msMAP LC data with no further processing. The left-hand panel shows three cycles of the
20.84-d binary orbit with primary and secondary eclipses. The right-hand panel shows the full Q0–17 LC data set phased on the orbital period.

Figure 2. Amplitude spectrum for the masked Q0–Q17 light curve. In the
low-frequency range between 0–5 d−1, there are g-mode pulsation frequen-
cies. In the high-frequency range between 12–24 d−1, there are p-mode
peaks.

is proportional to ν, we concentrate our analysis only on the p-mode
frequency range. The low, equally spaced combs of peaks around
the highest pulsation peaks in Fig. 2 are part of the window function
resulting from the masking of the light curve. Those are spectral
window sidelobes at the orbital frequency, but they are removed by
pre-whitening of the main peak and leave no trace in the amplitude
spectrum of the residuals, hence they do not perturb our analysis.

The highest amplitude δ Sct p mode is at a frequency ν1 =
15.857 4687(5) d−1 and is shown in the top panel of Fig. 3. For an
estimate of the p-mode radial overtone, it is useful to calculate the
Q value for ν1. This is defined to be

Q = Posc

√
ρ

ρ⊙
, (1)

Figure 3. Top: an amplitude spectrum for the masked Q0–Q17 light curve
in the δ Sct frequency range of the highest amplitude p mode. Bottom:
after pre-whitening ν1. There are important peaks on either side of ν1
that are discussed in the text. Here, note the equally spaced sidelobes near
ν = 15.81 d−1 and 15.91 d−1 that are separated from ν1 by νorb. These are
the FM first sidelobes. There is some visual indication of the presence of
the second sidelobes.
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Table 1. A non-linear least-squares fit of the highest amplitude frequency seen in Fig. 3 and its first
orbital FM sidelobes to the Q0–Q17 LC masked Kepler data for KIC 8569819. The frequencies
are separated by νorb = 0.047 964 ± 0.000 014 d−1. The zero-point in time for the phase is BJD
245 5672.2.

Frequency Amplitude Phase
(d−1) (mmag) (rad)

ν1 − νorb 15.809 5167 ± 0.000 0211 0.089 ± 0.005 2.9067 ± 0.0561
ν1 15.857 4721 ± 0.000 0005 4.150 ± 0.005 2.4425 ± 0.0012
ν1 + νorb 15.905 4555 ± 0.000 0197 0.096 ± 0.005 − 1.2593 ± 0.0524

νorb1 = ν1 − (ν1 − νorb) 0.0479 55 ± 0.000 021
νorb2 = (ν1 + νorb) − ν1 0.0479 73 ± 0.000 020
νorb1 − νorb2 0.000 018 ± 0.000 029
νorb ≡ ⟨νorb1 , νorb2 ⟩ 0.0479 64 ± 0.000 014
Porb (d) 20.849 ± 0.006

where Posc is the pulsation period and ρ is the mean density. Q is
known as the ‘pulsation constant’. Using the definition of mean den-
sity as ρ = M

4
3 πR3 , surface gravity as g = GM

R2 , absolute luminosity as

L = 4πR2σT 4
eff and absolute magnitude as Mbol =−2.5log L + con-

stant, equation (1) can be rewritten as

log Q = −6.454 + log Posc + 1
2

log g + 1
10

Mbol + log Teff, (2)

where Posc is given in d, log g is in cgs units and Teff is in K. Using
the KIC values of Teff = 7100 K and log g = 4.0, and estimating the
bolometric magnitude to be 2.8, we obtain Q = 0.030, typical of
fundamental to first overtone pulsation in δ Sct stars (Stellingwerf
1979). We thus conclude that the p-mode frequencies are likely to
be due to low overtone modes. Pre-whitening the data by ν1 gives
the amplitude spectrum of the residuals depicted in the bottom panel
of Fig. 3, where the first FM orbital sidelobes are annotated.

Table 1 shows the non-linear least-squares fit of ν1 and its first
FM orbital sidelobes. The formal errors from the least-squares fit in-
clude all of the variance in the data, which (as can be seen in Fig. 2)
includes astrophysical variance due to all pulsation frequencies in
both the g-mode and p-mode regions. To estimate the intrinsic scat-
ter, we focused on a featureless section of the amplitude spectrum
in the range 9–10 d−1. The highest peaks in that region have ampli-
tudes of ∼20 µmag. For an amplitude spectrum with this density of
frequencies, even for normally distributed data we expect numer-
ous peaks with amplitudes greater than 3σ , and in practice we find
that the highest amplitude peaks have amplitudes about four times
the formal amplitude error for the least-squares fit. We therefore
estimate the amplitude error to be 0.005 mmag (20 µmag/4). Since
phase and frequency errors scale with amplitude error (Montgomery
& O’Donoghue 1999), we scale the formal errors for frequency and
phase in Table 1 by the same factor as the revised error in amplitude.

The frequency triplet in Table 1 is equally split; the two split-
tings agree to 0.6σ , suggesting that our reduced errors are conser-
vative. The average of the two splittings is the orbital frequency,
νorb = 0.047 964 ± 0.000 014 d−1. This differs by 0.14σ from
νorb = 0.047 962 d−1 obtained by phase-folding the eclipses (cf.
Fig. 1). Phase-folding provides a more precise orbital frequency
than the FM signal because of the much higher signal-to-noise ratio
for the eclipses compared to the orbital pulsational frequency shifts.
The agreement between the two methods is excellent.

Next, we re-fit the frequency multiplet by forcing the splitting
to be exactly equal. There is no significant difference to the result
whether the orbital period is chosen from the frequency splitting
or from phase-folding, so to keep the FM analysis independent, we

Table 2. A least-squares fit of the frequency quintuplet for the highest
amplitude mode to the Q0–Q17 LC Kepler data for KIC 8569819. The
frequencies of the multiplet are separated by the orbital frequency,
νorb = 0.0479 64 ± 0.000 014 d−1 (Porb = 20.849 ± 0.006 d). The
zero-point for the phases has been chosen to be a time when the
phases of the first sidelobes to the highest amplitude frequency are
equal, t0 = BJD 245 5679.120 90. It can be seen that the phases of
the first sidelobes differ from that of the phase of ν1 by −1.62 ± 0.06
rad, which is equal to π/2 as required by the theory (Shibahashi &
Kurtz 2012). The mass function and orbital eccentricity are derived
from the sidelobes’ amplitudes.

Frequency Amplitude Phase
(d−1) (mmag) (rad)

ν1 − 2νorb 15.761 5434 0.014 ± 0.005 − 3.0812 ± 0.2775
ν1 − νorb 15.809 5077 0.089 ± 0.005 − 0.7630 ± 0.0561
ν1 15.857 4721 4.148 ± 0.005 0.8593 ± 0.0012
ν1 + νorb 15.905 4365 0.096 ± 0.005 − 0.7630 ± 0.0541
ν1 + 2νorb 15.953 4009 0.022 ± 0.005 2.9350 ± 0.2029

use the value from Table 1. For the study of orbital characteristics
using the FM technique (Shibahashi & Kurtz 2012), it is important
that the splittings are exactly equal; we are then able to use the phase
information, since frequency and phase are coupled in the Fourier
sinusoidal description.

This coupling between frequency and phase is easy to see.
The function we fit to our data has the form cos (ωt + φ),
where ω = 2πν is the angular frequency. If we imagine a
change to the angular frequency such that ω′ = ω + δω,
then we can write the argument of the cosine function to be
ω′t +φ = (ω + δω)t +φ =ωt + (φ + δωt) =ωt + (φ + δφ) =ωt +φ′

where φ′ = φ + δωt. It is not possible to distinguish between a
change δω to the frequency or a change δφ to the phase without an
external constraint.

Table 2 lists the results of fitting the equally spaced quintuplet
for the highest amplitude δ Sct mode to the data. The zero-point
in time, BJD 245 5679.120 90 ± 0.26, has been chosen to set the
phases of the first FM sidelobes equal; the error in the zero-point is
derived from 1σ in the difference between the sidelobe phases. This
zero-point corresponds to the time when the motion of the stars is
perpendicular to the line of sight. Thus, by measuring the difference
between the zero-point time and the time of superior conjunction,
we can derive the argument of periastron. The time difference can be
converted to a phase difference, and the phase difference, via mean
and eccentric anomaly, converted to true anomaly. The true anomaly
is a measure of the angle between the point of the orbit where
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vr = 0 and superior conjunction; a simple Keplerian integrator can
be employed to solve this for the argument of periastron, which
yields ω = 4.59 ± 0.16 rad.

The difference between the first sidelobe phases and the central
peak phase is −1.62 ± 0.06 rad, which is equal to −π/2 within the
errors, as expected from the FM theory. The minus sign indicates
that the line-of-sight crossing of the pulsating star occurs on the
far side of the orbit for the chosen time zero-point, t0. This phase
relationship demonstrates that the frequency triplet describes pure
frequency modulation, as expected for FM.

Shibahashi & Kurtz (2012) define a parameter α that measures
the amplitude of the phase modulation when the pulsation frequency
is treated as fixed (equation 4 therein). When α ≪ 1, it is given by

α = A+1 + A−1

A0
, (3)

where A+1 and A−1 are the observed amplitudes of the first FM
sidelobes, and A0 is the observed amplitude of the central peak of
the FM multiplet. From Table 2, we then find for KIC 8569819
that α = 0.0444 ± 0.0017. From this amplitude ratio, the pulsation
period and the orbital period, the mass function can be derived:

f (m1,m2, sin i) ≡ (m2 sin i)3

(m1 + m2)2
= α3 P 3

osc

P 2
orb

c3

2πG
. (4)

Using the data in Table 2, we find f(m1, m2, sin i) = 0.141 ±
0.016 M⊙. Adopting a typical mass of m1 = 1.7 M⊙ for the primary
and i ≈ 90◦, a secondary mass is m2 = 1 M⊙, hence the companion
to the δ Sct star is probably a solar-like main-sequence star.

We can also derive the semimajor axis of the primary star about
the barycentre. That is given by

a1 sin i = Posc

2π
αc, (5)

from which we find a1 sin i = 0.0772 ± 0.0030 au.
To derive the eccentricity of the system, we have fitted a frequency

quintuplet split by the orbital frequency about ν1 to the Q0–17 LC
data as shown in Table 2. While the second FM sidelobes in Fig. 3
are only marginally visible, the least-squares fit shows them to be
significant to 2.8σ and 4.4σ . The false alarm probability of finding
peaks of this significance at particular frequencies (i.e. the second
FM sidelobes) is F = exp ( − z) (Horne & Baliunas 1986), where z is
the power signal-to-noise ratio. Taking an average amplitude signal-
to-noise ratio of 3.6 for our second FM sidelobes gives z = 12.96
and F = 2.4 × 10−6. Hence, we can use the FM sidelobes to derive
the eccentricity:

e = 2(A+2 + A−2)
(A+1 + A−1)

= 0.39 ± 0.08, (6)

where A+2 and A−2 are the observed amplitudes of the second
FM sidelobes. While the phases of the second sidelobes contain
information about the argument of periastron, the errors are too
large to use them in this case.

3.2 Further FM of ν1: a cautionary tale

We now return to the peaks in the immediate vicinity of ν1 (cf.
bottom panel of Fig. 3, and the zoomed pre-whitened region in
Fig. 4). A multiplet of peaks and a doublet can be seen in the
amplitude spectrum after ν1 has been pre-whitened. The multiplet
on the right consists of several unresolved peaks that are likely
caused by a low amplitude (∼10 µmag) independent pulsation mode
that is amplitude-modulated on a time-scale longer than the 4-yr data

Figure 4. A zoomed-in region around ν1 after pre-whitening. The multiplet
of peaks to the right is most likely the result of a low, amplitude-independent
pulsation mode that is modulated on a time-scale longer than the data span,
since the sidelobes are not fully resolved. The other two central peaks are
equally spaced about ν1 and are caused by pure frequency modulation with
a period of 861 d.

set. This kind of amplitude modulation is commonly seen for δ Sct
stars in the Kepler data (see e.g. Bowman & Kurtz 2014), hence we
discuss these frequencies no further here.

On the other hand, the doublet seen in Fig. 4 is fully resolved
from ν1 and equally spaced on either side. By repeating the phase
relationship exercise done on the outer set of sidelobes, we find
that the peaks are caused by pure frequency modulation with a
modulation period of 861 d. It is tempting to conclude that these
peaks are the FM sidelobes caused by a third companion orbiting
the binary. Tables 3 and 4 show the fit of the inner sidelobes to ν1.
The modulation period is derived to be 861 ± 11 d. If we assumed
that this frequency modulation is caused by a third body, then from
the amplitudes of the orbital sidelobes given in Table 4 it would
follow that α = 0.0441 ± 0.0017, from equation (5) a sin i = 38
light-seconds, and from equation (4) the mass function is f(m1 + m2,
m3, sin i) = 0.000 119 ± 0.000 012 M⊙. Using the derived mass of
the binary, m1 + m2 = 2.7 M⊙ and i ∼ 90◦, we would obtain a
tertiary mass of m3 = 0.098 ± 0.003 M⊙, i.e. a low-mass main-
sequence M dwarf star. We examine this proposition now, and show
it to be incorrect.

Many δ Sct stars show pulsation modes that are amplitude-
modulated, but modes can also be intrinsically frequency-modulated
(e.g. Breger 2000; Bowman & Kurtz 2014). Thus, another interpre-
tation of the close frequency sidelobes to ν1 is that they represent
intrinsic (i.e. non-dynamical) frequency modulation of that pulsa-
tion mode on a time-scale of 861 d. A test to discriminate between
intrinsic and dynamical frequency modulation is to look for the
sidelobes in several pulsation frequencies. In the case of dynamical
frequency modulation (third body), all pulsation frequencies must
show the same FM signature, akin to that in Fig. 3. In the case
of intrinsic frequency modulation, different frequencies will have
different sidelobes, corresponding to different pulsation cavities in
the star.

Unfortunately, all other p-mode amplitudes are at least a factor
of 4 or more smaller than the amplitude of ν1 (cf. Fig. 2), hence
we do not have sufficient signal in other frequencies to test for the
very low amplitudes of closely spaced FM sidelobes expected for an
861-d orbital period. While asteroseismology might not provide a
definitive answer, we do have another test: eclipse timing variations
(ETVs; Conroy et al. 2014). When a binary star is in a gravitationally
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Table 3. A non-linear least-squares fit of the highest amplitude frequency seen in Fig. 3 and
its first closely spaced FM sidelobes seen in Fig. 4 to the Q0–Q17 LC masked Kepler data for
KIC 8569819. The frequencies are separated by νmod = 0.001 161 ± 0.000 015 d−1, giving a
modulation period of 861 ± 11 d. The zero-point in time for the phase is BJD 245 5679.129 20.

Frequency Amplitude Phase
(d−1) (mmag) (rad)

ν1 − νmod 15.856 2606 ± 0.000 0216 0.089 ± 0.005 − 1.5634 ± 0.0570
ν1 15.857 4741 ± 0.000 0005 4.152 ± 0.005 0.0284 ± 0.0016
ν1 + νmod 15.858 5831 ± 0.000 0204 0.096 ± 0.005 − 1.2470 ± 0.0529

νmod1 0.001 214 ± 0.000 022
νmod2 0.001 109 ± 0.000 020
νmod1 − νmod2 0.000 06 ± 0.000 03
νmod ≡ ⟨νmod1 , νmod2 ⟩ 0.001 161 ± 0.000 015
Pmod (d) 861 ± 11

Table 4. A linear least-squares fit of the close frequency triplet
for the highest amplitude mode to the Q0–Q17 LC Kepler data
for KIC 8569819 with exactly equal splitting. The frequencies
of the triplet are separated by the modulation frequency, νmod =
0.001 157 ± 0.000 014 d−1 (Pmod = 861 ± 11 d). The zero-point
for the phases has been chosen to be a time when the phases of
the first sidelobes to the highest amplitude frequency are equal,
t0 = BJD 245 5347.567 63. It can be seen that the phases of the
first sidelobes differ from that of the phase of ν1 by −1.56 ± 0.03
rad, which is equal to −π/2, proving pure FM.

Frequency Amplitude Phase
(d−1) (mmag) (rad)

ν1 − νmod 15.856 313 0.088 ± 0.005 1.8345 ± 0.0560
ν1 15.857 474 4.149 ± 0.005 − 2.8897 ± 0.0012
ν1 + νmod 15.858 635 0.095 ± 0.005 1.8344 ± 0.0522

bound system with another body, its centre of mass will move around
the system’s barycenter. Because of the light time travel effect, the
time of eclipses depends on the binary star’s position on the outer
orbit. If a third body were present in the system, then the eclipsing
binary would be separated by a sin i = 38 light-seconds from the
barycenter, hence we would see a clear signal of that amplitude
in eclipse timings. We measure eclipse times by first finding a
polynomial chain that fits the entire phased light curve, and then
we fit the same chain to each successive eclipse, allowing for the
temporal shift. The best-attained precision of ETVs in Kepler data
is ∼6 s (Conroy et al. 2014), but this is heavily degraded in the
case of KIC 8569819 by intrinsic variability that causes variations
in eclipse shapes. Nevertheless, variations of a ∼76 s peak-to-peak
amplitude would be easily detected. Fig. 5 depicts the ETV curve
and no signal at or around 861 d is detected.

Another technique can independently verify the orbital period of
the binary, and evaluate the possibility of a third body in a wider
orbit: phase modulation (Murphy et al. 2014). The method involves
precise determination of the pulsation frequencies of the highest
amplitude peaks in the Fourier transform of the stellar light curve,
using a non-linear least-squares fit to the Q0–Q17 data with the
eclipses masked, and subsequent subdivision of the light curve into
smaller segments for analysis. The phase of each peak in each
segment is determined, and converted into a light arrival time delay
(‘time delay’, hereafter). The binary motion of the pulsating star
should cause an identical signature on each pulsation frequency,
with a period equal to the binary orbital period, and an amplitude
equal to the light travel time across the projected semimajor axis.
Details can be found in Murphy et al. (2014).

Figure 5. ETVs for KIC 8569819. Eclipse times are measured by fitting a
polynomial chain to the entire phased light curve, and using that function to
fit the time offset of each successive eclipse (Conroy et al. 2014). Primary
ETVs are depicted with open circles and secondary ETVs are depicted with
filled circles.

We chose a segment size of 5 d so that the A star–G star orbit
is well sampled, and we investigated the four highest peaks from
Fig. 2. The Fourier transform of the time delays of each peak is
shown in the upper panel of Fig. 6, where the agreement on the
known 20.85-d period of the A star–G star pair is good. The lower
panel of Fig. 6 is the Fourier transform of the weighted average time
delay – the mean time delay of the four individual peaks, weighted
by the phase uncertainties. This shows the orbital frequency of
0.048 d−1 (giving Porb = 20.85 ± 0.01 d), but also shows some
variability near 0.001 d−1. It can be seen in the upper panel that this
arises from non-equal contributions from the individual time delays.
This illustrates that the long-period variability is not of a binary
origin, else each pulsation frequency would respond identically, as
in the case for the 20.85-d orbit.

These lines of evidence lead us to conclude that the closely spaced
sidelobes to ν1 represent an intrinsic frequency modulation that is
not dynamical. The nature of frequency and amplitude modulation
in δ Sct stars is not well understood; this is a topic of current research
with the 4-yr Kepler data sets for thousands of δ Sct stars (Bowman
& Kurtz 2014). Importantly, any finding of frequency modulation of
pulsation frequencies in pulsating stars must be studied in multiple
frequencies for the same star to distinguish between intrinsic and
dynamical frequency modulation.
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Figure 6. Top: the Fourier transform of the light arrival time delays for the four highest amplitude peaks from Fig. 2. Bottom: the average time delay, weighted
by the observed phase uncertainties. The time delays for each of these four peaks agree well on an orbital period of 20.85 ± 0.01 d, as indicated by the peak at
0.048 d−1 in the lower panel. However, the lower panel also shows some power at 0.001 d−1, originating from the four individual peaks in differing amounts,
implicating FM as the cause. Further discussion is provided in the text.

We should stress, however, that if the close sidelobes given in
Table 4 and shown in Fig. 4 had had amplitudes of only 0.020
mmag, which would be a 4σ signal, and if they had been dynamical,
then the mass function would have given a mass for the third body
of about 17 MJupiter. This shows that the FM technique is capable
of finding brown dwarfs and gas giant planets in long-period orbits
around δ Sct A stars. Other standard techniques cannot find such
objects. A-type stars are too bright for transit detections of small
companions; the pulsations mask shallow transits; and such stars
are too massive for ground-based radial velocity techniques. The
FM technique (Shibahashi & Kurtz 2012) and the PM technique
(Murphy et al. 2014) with δ Sct stars observed by Kepler have the
potential to explore this parameter space for exoplanets.

4 BI NA RY MO D E L L I N G

In this section, we present our modelling of the eclipsing binary light
curve. This was done independently of the FM analysis presented
in the last section, except for the use of the mass function. We do
not have a spectroscopic radial velocity curve for this star, hence
we use the photometric equivalent of a radial velocity curve, i.e. the
FM mass function.

4.1 Period analysis

We performed a period analysis on all the available Q0–17 LC
data using the computer package KEPHEM (Prša et al. 2011). KEPHEM

is an interactive graphical user interface package that incorporates

three methods of period analysis: Lomb-Scargle (Lomb 1976; Scar-
gle 1982), Analysis of Variance (Schwarzenberg-Czerny 1989) and
Box-fitting Least-Squares (Kovács, Zucker & Mazeh 2002), as im-
plemented in the VARTOOLS package (Hartman 1998). Using KEPHEM,
the period and BJD0 (the time of primary minimum) were found,
giving an ephemeris:

MinI = BJD 245 4970.56(1) + 20.849 93(3)d × E. (7)

As can be seen by comparing with the FM analysis in the last
section, the light curve fitting of the eclipses gives a more accurate
determination of the orbital period.

4.2 Determination of the eccentricity and argument of
periastron through binary star analysis

To demonstrate the validity of the FM method, we generated a bi-
nary model to determine the eccentricity and argument of periastron
of this system. In our model, we assumed the mass of the primary
star to be m1 = 1.7 M⊙, estimated from the primary star’s effec-
tive temperature. Consequently, from the mass function determined
through FM, we arrived at a mass for the secondary component of
m2 ∼ 1.0 M⊙ (as the system is equator-on). While these assump-
tions disable the full determination of the binary star parameters,
they are adequate to solve robustly for the eccentricity and argument
of periastron to validate the FM method.

We applied the binary modelling code PHOEBE (Prša &
Zwitter 2005), which is an extension of the Wilson–Devinney code
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(Wilson & Devinney 1971; Wilson 1979),5 to the light curve of
KIC 8569819. PHOEBE combines the complete treatment of the Roche
potential with the detailed treatment of surface and horizon effects
such as limb darkening, reflection and gravity brightening to derive
an accurate model of the binary parameters. The current imple-
mentation uses the Wilson–Devinney method of summing over the
discrete rectangular surface elements, which cover the distorted
stellar surfaces, to determine an accurate representation of the total
observed flux and consequently a complete set of stellar and orbital
parameters. PHOEBE incorporates all the functionality of the Wilson–
Devinney code, but also provides an intuitive graphical user inter-
face alongside many other improvements, including updated filters
and bindings that enable interfacing between PHOEBE and PYTHON

(see Section 4.2.1 below).
The data were detrended using second-order polynomials that

were applied between breaks in the Kepler data, using the KEPHEM

software. We further cleaned the data by removing all spurious
points by eye. To reduce the number of data points, for the purpose
of modelling, we assigned each data point with a random number
from 0 to 1, and removed all points with random numbers above a
specified threshold – 0.5 during the eclipse phases and 0.01 away
from eclipse. This way we retained 50 per cent of the data points
during eclipse and 1 per cent of the points away from eclipse. We
used a sigmoid function to bridge the number of data points between
regions so that discrete changes in the number of data points were
avoided. The number of data points was reduced from 60 554 to
4390. The per-point uncertainty was determined using the standard
deviation of the residuals (data minus model) in the out-of-eclipse
regions.

Our initial binary model inputs consisted of the effective temper-
ature from the KIC, which we prescribed for the temperature of the
primary component (Teff = 7100 K); an estimate of the secondary
component’s temperature (Teff ∼ 6100 K) from consideration of the
depths of the eclipses; and the surface gravity value from the KIC
log g = 4.0 (cgs units). As the eclipses are separated by ∼0.5 in
phase, we initially assumed an eccentricity of e = 0.0. However,
analysis of the relative widths of the eclipses showed that the ec-
centricity is closer to e = 0.4, with an argument of periastron of
ω ≈ 3π/2 implying that we are looking down the line of apsides.

We assumed pseudo-synchronous rotation, which is stellar rota-
tion synchronous with the orbital velocity at periastron (Hut 1981),
and determined the rotation of the components to be F = 2.715
rotations per orbit. We assessed the impact of the stellar rotation on
the light curve and found an adjustment from F = 1.0 to F = 5.0
generates a model difference of 0.05 per cent, which is insignifi-
cant. As the Lomb-Scargle method is more accurate than PHOEBE for
ephemeris determination, the period and zero-point in time were
fixed to the values determined using KEPHEM.

When considering the stellar surfaces, we assumed that the pri-
mary component has a radiative surface, thus an albedo of A = 1.0,
and a gravity-darkening exponent, β, of β = 1.0 (von Zeipel 1924).
For the secondary component, we assigned the value of A = 0.6 for
the albedo and β = 0.32 for the gravity-darkening exponent (Lucy
1967). Recent updates in the theory of gravity darkening suggest
that this value is dependent on temperature (Claret & Bloemen
2011) and/or level of stellar distortion (Espinosa Lara & Rieutord
2012). However, for this system, the gravity-darkening value has a
negligible effect (0.03 per cent model difference from β = 0 to 1,
hence the value prescribed by Lucy 1967 was deemed acceptable).

5 A manual for the Wilson-Devinney code is available on-line ftp://ftp.
astro.ufl.edu/pub/wilson/

Table 5. Adjusted parameters and coefficients of the best-fitting
model to the Kepler light curve for Q0–17. The uncertainties were
determined through MCMC methods. The linear and logarithmic
limb darkening coefficients are the terms that describe the limb dark-
ening of each component. The limb-darkening coefficients were
taken from the PHOEBE limb-darkening tables (Prša et al. 2011).

Parameter Values

Phase shift, φ 0.001 515(9)
Orbital eccentricity, e 0.366(1)
Argument of periastron (rad), ω 4.722 31(8)
Orbital inclination (degrees), i 89.91(6)
Teff ratio (K), T2/T1 0.8517(5)
Primary relative luminosity, L1 0.873(4)
Secondary relative luminosity, L2 0.1275(6)
Primary linear limb-darkening coefficient 0.6169
Secondary linear limb-darkening coefficient 0.6382
Primary logarithmic limb-darkening coefficient 0.2495
Secondary logarithmic limb-darkening coefficient 0.2002

Table 5 provides a complete list of the fixed parameters and their
assumed values.

4.2.1 Posterior determination of the orbital parameters

To determine the posterior probability distribution functions of the
binary parameters (cf. Fig. 7), we combined PHOEBE with the EMCEE,
a PYTHON implementation of the affine invariant ensemble sampler
for Markov chain Monte Carlo (MCMC) proposed by Goodman &
Weare (2010) and written by Foreman-Mackey et al. (2013).

MCMC explores the binary parameter space using a set of
Markov chains, in this case 128. These chains begin with random
distributions based only on the prior probability distribution func-
tions and the initial model. They move through parameter space
by assessing their posterior probability distribution function at each
point and then selecting a new position based on the position of
another chain. The step size is based on the covariance of the two
chains. If the move increases the posterior probability distribution
function then it is accepted, if the move decreases the probabil-
ity then it may be accepted (to fully explore the phase space).
During the initial burn-in time, the Markov chains merge towards
their equilibrium position. After this period, the chains sample the
phase space in terms of their posterior probability distribution func-
tions. The statistics of a large number of iterations (∼150 000 ex-
cluding the burn-in time), provide probability distributions for the
model parameters.

We sampled seven parameters in our multidimensional parame-
ter space, based on their contribution to the observed flux variation
of this system. As only the ratio of the temperatures can be deter-
mined from light-curve analysis, the effective temperature of the
secondary was sampled, whilst keeping the primary temperature
fixed. We selected the secondary temperature, since the KIC tem-
perature provides a constraint for the primary effective temperature.
The inclination, eccentricity, argument of periastron, primary and
secondary potentials (potentials of the Roche lobe – a proxy for
the inverse radius) and luminosity were also sampled using MCMC
methods. At each iteration, we calculated the phase shift using the
new values of eccentricity and argument of periastron. All other
parameters in our models were either well determined (period and
zero-point in time), theoretically determined (albedo and gravity
darkening) or insignificant for this system (stellar rotational veloc-
ity and gravity darkening).
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Figure 7. Lower-left subplots: two-dimensional cross-sections of the posterior probability distribution functions. The crosses show the 1σ (red) and 2σ

(green) uncertainties, and are centred on the minima. Diagonal subplots from top left to bottom right: histograms displaying the probability distribution of each
individual parameter. Upper-right subplots: the correlations for the two-dimensional cross-sections mirrored in the diagonal line where 1 is direct correlation
and −1 is a direct anticorrelation. The values above the plot give the mean value and 1σ uncertainty for each parameter, based on the fitted Gaussians.

For each parameter, we used a flat, uniform prior. The prior ranges
were selected to be as large as possible without creating unphysical
models. We restricted the prior on the inclination to be contained
below 90◦ to avoid obtaining a double-peaked distribution reflected
about 90◦. The likelihood function was generated by computing the
χ2 difference between the initial model and data. Fig. 8 shows the
average of the last 1024 models generated using MCMC (eight from
each Markov chain). The thickness of the line denotes the spread
of the last 1024 models. The lower panel shows the residuals to the
best-fitting model. Error bars on the residuals show the per-point
standard deviation for the last 1024 models.

The posteriors generated through MCMC are well determined,
thus the model is well constrained. For all parameters except the
inclination, the Gaussian fit to each posterior, shown in Fig. 7,
is excellent and provides a robust error estimate. The inclination,
however, presents an apparent multimodal distribution, which is a
consequence of a small star passing over a large disc. Here, the
information regarding the points of ingress and egress is limited,
yet constrained to a very small range of inclinations. To account for
the inexact fit of the Gaussian, we have increased the uncertainty of
the inclination from that determined through Gaussian fitting, 0.◦04
to 0.◦06.
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1232 D. W. Kurtz et al.

Figure 8. Upper panel: theoretical PHOEBE model (red line) and observed light curve (black points), prepared as specified in Section 4.2. The width of the
line depicts the spread of the final 1048 models determined using MCMC. Lower panel: the residuals (black points) of the best-fitting model. The per-point
uncertainty in the model is displayed as error bars.

Table 6. Fixed parameters and coefficients for the
PHOEBE best-fitting model to the Kepler light curve for
Q0–17. The rotation is specified as a ratio of the stel-
lar rotational to orbital velocity. The mass ratio and
semimajor axis were fixed to generate a model with a
primary mass of m1 = 1.7 M⊙ and a secondary mass
of m2 = 1.0 M⊙, in line with the mass function de-
termined through the FM method. The fine grid raster
is the number of surface elements per quarter of the
star at the equator and coarse grid raster is used to
determine whether the stars are eclipsing at a given
phase.

Parameter Values

Orbital Period (d) 20.849 93(3)
Time of primary minimum BJD0 2454 970.56(1)
Primary Teff (K), T1 7100(250)
Mass ratio, q 0.588
Semimajor axis (R⊙), a 44.6
Third light, l3 0.0
Primary rotation, f1 2.715
Secondary rotation, f2 2.715
Primary bolometric albedo, A1 1.0
Secondary bolometric albedo, A2 0.6
Primary gravity brightening, β1 1.0
Secondary gravity brightening, β2 0.32
Primary fine grid raster 90
Secondary fine grid raster 90
Primary coarse grid raster 60
Secondary coarse grid raster 60

The stellar potentials and radii are highly dependent on the mass
ratio, and thus by assuming the masses we were unable to obtain
accurate values. To determine the extent of our assumptions, we
perturbed the mass ratio by 10 per cent and assessed the impact this
had on the model. When both increasing and decreasing the mass
ratio by 10 per cent (whilst calculating the potentials to keep the

Table 7. Comparison of results from traditional eclipsing binary star light-
curve modelling and the FM technique. The agreement validates the FM
method for those who are more accustomed to traditional eclipsing binary
light-curve modelling.

PHOEBE FM

Orbital period (d) 20.849 93 ± 0.000 03 20.849 ± 0.006
Eccentricity 0.366 ± 0.001 0.39 ± 0.08
Argument of periastron (rad) 4.722 31 ± 0.000 08 4.59 ± 0.16

radii fixed), we found a model difference of 0.6 per cent. As the
noise in our data is ∼2 per cent, this difference is not significant.
Thus, we find that the values reported in Table 6 are independent of
assumption that the mass ratio is q = 0.588.

5 C O N C L U S I O N S

We have demonstrated the validity of the FM technique (Shiba-
hashi & Kurtz 2012) by showing the consistent results obtained
from it when compared to a traditional eclipsing binary light-curve
analysis. We derived the mass function from the FM technique of
Shibahashi & Kurtz (2012). That additional constraint was then used
in the light-curve modelling by traditional methods. The orbital pe-
riod, eccentricity and argument of periastron derived independently
from both the FM method and light-curve modelling are in good
agreement, as is shown in Table 7. This was the primary goal of
this paper for readers who are familiar with traditional binary star
light-curve modelling, but not yet with the FM technique.

While light-curve modelling produces higher accuracy for orbital
period and eccentricity in the case of KIC 8569819, that is only
true for EB stars. For non-eclipsing systems, the FM technique is
still applicable, whereas traditional techniques work less well for
ellipsoidal variables, and not at all for non-distorted, longer orbital
period systems. We also have presented a cautionary note in the use
of FM in the discovery of additional pure FM in KIC 8569819 that is

MNRAS 446, 1223–1233 (2015)
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not the result of orbital motion, but is intrinsic to the pulsation cavity
of the highest amplitude mode in the star. Thus, our message is that
FM is a powerful technique, but at least two pulsation frequencies
in a star must give consistent results to conclude a dynamical origin
of the FM.
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Chapter 9

Conclusions and Future Work

9.1 Conclusion

With more precision comes more questions: this is certainly true of the Kepler

mission. Before the Kepler mission, objects such as heartbeat stars had only been

theorised. Kumar, Ao & Quataert (1995) suggested that we would see light curves

with strange configurations if we observe binary stars with compact components,

such as neutron stars. Little did we know, that with enough precision in our data,

all combinations of objects could produce the interesting shapes we now know to be

heartbeat star light curves.

Currently we have a database of 173 heartbeat stars that have been identified in the

Kepler data1. However, heartbeat stars have also been observed by other missions: 7

with the Optical Gravitational lensing experiment, ogle (Nicholls & Wood, 2012); 1

by Hareter et al. (2014) using the CoRoT satellite and more recently a heartbeat star

was discovered using most and followed up with the chara array (Richardson et al.,

2016). The large number of heartbeat stars now known is a testament to the sci-

entific advances that can be made through space-based technologies. Furthermore,

the interesting features of many of the heartbeat stars have made them exceedingly

1the full list of Kepler heartbeat stars is hosted at http://keplerebs.villanova.edu

202



9.1. Conclusion

interesting to study. These include heartbeat stars with tidally induced pulsations,

which have provided irrefutable evidence that pulsations provide a mechanism for

energy dissipation, as theorised by Zahn (1975); heartbeat stars with components

displaying solar-like oscillations, which have allowed complementary techniques to

provide an extensive overview of interesting systems; heartbeat stars with rapid ap-

sidal motion, which have provided evidence that tidally induced pulsations affect

the rate of apsidal advance (see Chapter 5); and those with large-amplitude pulsa-

tions that have enabled the study of tidal resonance (see Chapter 4) and furthermore

allow the application of the frequency modulation and/or phase modulation tech-

nique, thus allowing for the independent generation of radial velocity curves for the

pulsating components (see Chapter 8).

When observing new phenomena, the first step is to look to the literature to see

if the concept had previously been thought of. In the case of heartbeat stars, the

theories of both the static tide or ellipsoidal variation and the dynamical tide or

tidally induced pulsations had both been published, with special attention to the

theory of tidally induced pulsations. The concept of tidally induced pulsations was

originally theorised by Zahn (1975), Goldreich & Nicholson (1989) and Witte &

Savonije (2002). It is only in the past few years, however, with the advent of high-

precision space-based missions, that we have finally achieved the detail required in

the observations to verify that tidally induced pulsations exist.

The basis of this work was the initial investigation of heartbeat stars with a focus

on tidally induced pulsations. This included building tools to better enable the

analysis of these intricate objects. The bayes-todcor software was created to im-

prove our radial velocity determination, which is critical for the precise modelling of

heartbeat stars (see Chapter 2). The software is a combination of Bayesian statis-

tics (through the python implementation of an afine-invariant version of MCMC

(Foreman-Mackey et al., 2013)) with the widely used todcor (Zucker & Mazeh,

1994) radial velocity software. An advantage of the bayes-todcor software is that

the fundamental parameters for the best-fit spectral models are output as poste-
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rior distributions, enabling the correlations between parameters to be explored and

providing more robust uncertainty estimates. The bayes-todcor program has pri-

marily been applied to synthetic spectra, although has also been used to determine

the radial velocities derived from the Kitt Peak spectra of KIC8164262 (see Chap-

ter 4). The bayes-todcor software played a fundamental role in the analysis of

KIC8164262 as it provided posterior distributions for the fundamental parameters

and radial velocities for the primary component. Of specific importance for this

object was the determination of the posterior for the primary star’s log g, as this

was used to constrain the photometric model and allowed a self-consistent solution

to be reached.

To model the photometric and radial velocity curves of heartbeat stars the binary

modelling software, phoebe, was used. To make this extensive and intricate code

applicable to the unusual light curves of heartbeat stars, it was required that the code

be augmented. Additions to the code included the ability to model tidally induced

pulsations by adding sine waves to the light curve model. As the frequencies of

tidally induced pulsations are known to a high precision and are multiples of the

orbital frequency, we elected to fix the frequencies and fit the phases and amplitudes

of the sine waves.

Another addition was the ability to model Doppler boosting. The function, taken

from Eqn 2 of Bloemen et al. (2011) and extended to account for beaming in both

components, requires the effective temperature, log g and radial velocities of each

star, and the relative luminosity of the stars. Look-up tables are also used to de-

termine the passband-weighted boosting factors, which are dependent on the wave-

length range of the observations. Doppler boosting provides an extra constraint on

otherwise degenerate parameters such as the stellar radius and the mass ratio.

A third important addition was the implementation of Markov chain Monte Carlo

techniques to arrive at a best-fit solution. emcee, a python implementation of the

afine-invariant version of MCMC (Goodman & Weare, 2010), was combined with
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phoebe to enable an improved statistical approach to fitting the model parameters.

The outcome of the new models is a set of posterior probability distributions that

provide robust uncertainties and display the correlations between parameters. Other

updates to the code include the ability to set priors on the stellar radii instead of

the potential; the implementation of the critical-potential boundaries, which stop

stars from overflowing their Roche lobes; and the ability to calculate (instead of fit)

the relative luminosity, reducing the number of fitted parameters by one. These up-

dates were implemented by interfacing between python and phoebe, and provide

adequate improvements that enable the phoebe code to effectively model heartbeat

stars.

Figure 9.1: Upper panel: Best-fit phoebe model without pulsations (green line) and including
7 pulsations (black line), and the phased Kepler light curve (blue points) of KIC 3749404. The red
envelope depicts the 1σ spread of the final 128 models determined using MCMC for the model
with 7 pulsations. Lower panel: the residuals (blue points) of the best-fit model. The uncertainties
are depicted on the residual points, although they are not visible on the scale provided.

The augmented version of the phoebe binary modelling software was applied to a

selection of objects, including KIC3749404 (see Fig. 9.1), the heartbeat star with

rapid apsidal motion. First, a general binary star model was generated, which was
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a combined solution of the light and radial velocity curves. This demonstrated

that KIC3749404 contains an A and an F star in a close orbit with a period of

p=20.3 d and an eccentricity of e=0.66. The separation of the two components

at periastron is ∼16R⊙. We then used the light curve solution to determine the

rate of apsidal advance. To do this, two sections of the light curve, one at the

beginning and one at the end of the Kepler data set (which spans Quarters 0–

17) were modelled to determine the change in the argument of periastron. The

majority of parameters were fixed to those determined for the general model and

only the phase shift, argument of periastron and a pulsation shift were fitted. It was

determined that KIC3749404 has an apsidal motion rate of ω̇obs = 1.166(1)◦/yr. The

theoretical rate for the classical and general relativistic apsidal motion was found to

be ω̇CL+GR
theor = 0.007(6)◦/yr. We attribute this significant difference in values to the

tidally induced pulsations present in KIC3749404, as predicted by Claret & Willems

(2002).
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Figure 9.2: Upper panel: A magnified region of the best-fit light curve model (red line) to
the phased Kepler data of KIC 8164262 (black), focused on the ellipsoidal variation. one sigma
uncertainties are displayed on the data points. Lower panel: The corresponding residuals of the
best-fit model.
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Another object we elected to study in detail is KIC8164262. KIC8164262 con-

tains a slightly evolved A star and an M star in a highly eccentric (e=0.882) or-

bit. This object piqued our interest as it presented one high-amplitude (∼1mmag)

pulsation peak (see Fig. 9.2), which made it a candidate for the resonant locking

mechanism. Resonant locking was proposed by Witte & Savonije (1999), Witte &

Savonije (2001), Fuller & Lai (2012) and Burkart et al. (2012) to be the mecha-

nism that enables a stellar pulsation to remain in resonance with the binary orbit.

Without any mechanism, due to the evolution of the binary star orbit, the pulsation

would pass through resonance on a short time-scale, thus it would be unlikely that

we would observe objects with resonantly excited pulsations. In the Kepler data

alone, however, we have identified thirteen candidates, suggesting that there is a

mechanism that prolongs resonance.

As two stars orbit each other, assuming the orbit is eccentric, the orbit evolves via

the transfer of angular momentum. This causes the orbit to circularise and get

smaller, thus the orbital period to get shorter, and the stars to spin faster. In paral-

lel, due to the increase in the stellar rotational velocities, the stellar eigenfrequencies

change. The theory of resonance locking states that, when in resonance, these two

effects happen on equal time scales, such that the stellar eigenfrequencies are chang-

ing simultaneously with the changing orbital period. Consequently, rather than

passing through resonance, the tidally induced pulsations are locked in resonance

with the orbit. Our contribution to this problem was to provide the fundamental

stellar and pulsational properties of KIC8164262. Now we are working alongside

theorists to determine whether the high-amplitude pulsation is indeed in resonance

and furthermore, if it is resonantly locked.

We studied a sample of 18 red-giant heartbeat stars to assess their properties as

solar-like oscillators. We selected one of the 18 objects, KIC5006817, to study in

detail (see Fig. 9.3). The purpose of this study was to incorporate the results of

the solar-like oscillation analysis to constrain the results of the binary star analysis.

This was especially useful in the case of KIC5006817 as the secondary component is
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Figure 9.3: Theoretical phoebemodel without beaming (red line) and observed light curve (black
points) of the phased (94.82d), binned Kepler long cadence data of Quarters 0–12 for KIC5006817.
Lower panel: the residuals of the best-fit model. The dashed and solid lines are centred on the
times of superior and inferior conjunction respectively. Our analysis showed that the long term
Doppler boosting component was not present in the data. We expect that this is a consequence of
the Kepler processing pipeline and our own detrending.

a low mass (M =0.3 M⊙), main-sequence star, and consequently has an insignificant

flux contribution to the light curve and spectra. The modelling was done both with

and without the addition of Doppler boosting due to the apparent absence of the

signature in the light curve away from the periastron variation. It is likely that

the long term component of the Doppler boosting signal was missing from the light

curve due to the long orbital period (∼90 d) of the binary: the Kepler satellite is not

stable enough to preserve signals over long time scales. Furthermore, the closeness of

the orbital period to a single Kepler Quarter also make it difficult to extract signals

that are cyclic over a complete orbit. Another interesting result from KIC5006817

is that, given the mass and radius determined through asteroseismology, the gravity

darkening exponent (β≈ 1) did not agree with theoretical values: β=0.32 (Lucy,

1967) and β=0.5 (Claret & Bloemen, 2011)). We expect that this is a consequence

of the tidal distortion of the object at periastron, as suggested by Espinosa Lara &
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Rieutord (2012).
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Figure 9.4: An echelle diagram of the p-mode frequencies modulo the orbital frequency using
the short cadence Kepler data of Quarters 7 and 8 for KIC4544587. The points are coloured in
terms of their amplitude in units of relative flux × 10−3 (see the key at the right of the figure).
The filled circles are the identified p-mode values and the open circles represent further frequencies
with amplitudes in the region 0.02−0.04×10−3 relative flux units, which are below our predefined
confidence limit of 3σ. The uncertainty in the frequencies is smaller than the points, thus not
depicted. A high pass filter was applied to the g-mode region prior to the identification of the
pmodes to remove any possible window pattern.

KIC4544587 is a short-period (P =2.189 d), eccentric (e=0.275), doubly-eclipsing

binary star with tidally induced g-modes, mode coupling and tidally influenced p-

modes. This interesting object was modelled using phoebe, following which, the

uncertainties for the most correlated parameters were determined using Monte Carlo

simulations. The results of the light and radial velocity curve fit showed that the

system contains a late A and early F star in a detached system. The purpose of

modelling this object was to determine the binary and fundamental parameters and

prove that it was pulsating with tidally induced pulsations. During the analysis, by

creating an echelle-like diagram (modulo the orbital period), we found that many

of the p-modes were separated by, but not multiples of, the orbital frequency (see

Fig. 9.4). Our current theory is that these multiplets are a consequence of non-

linear coupling between a single p mode and the tidally induced g (gravity) modes.
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Finally, we found that the g modes that are not multiples of the orbital frequency

are all combination modes excited by parametric three mode resonance, which is in

line with our asteroseismic models that suggest neither star should pulsate with g

modes.
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Figure 9.5: Upper panel: theoretical phoebe model (red line) and observed Kepler light curve
(black points) for KIC8569819. The width of the line depicts the spread of the final 1048 models
determined using MCMC. Lower panel: the residuals (black points) of the best-fit model. The
per-point uncertainty in the model is displayed as error bars.

While not a heartbeat star, the tools developed for the analysis of heartbeat stars

were applied to KIC8569819, a double eclipsing binary star with a strong FM (fre-

quency modulation) signal (see Fig 9.5). In a binary star, stable pulsation frequencies

are modulated by the motion of the star as it orbits its companion. The FM signa-

ture is displayed as a main peak with sidelobes that are all separated by the orbital

frequency. The phases of the sidelobes must also be equal to each other, but be

π/2 rad different from the main peak. The analysis of these sidelobes provides the

orbital period, mass function and eccentricity of the binary (Shibahashi & Kurtz,

2012), and the argument of periastron (Shibahashi, Kurtz & Murphy, 2015b). The

purpose of this work was to provide an obvious observational case of FM, with a

binary star model that corroborates the results of the FM analysis (the period and
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eccentricity - the theory for the argument of periastron had not been developed at

this point). An interesting outcome of this analysis is that a second set of peaks was

found that suggested a tertiary component. However, the eclipses showed no evi-

dence of eclipse timing variations, showing that the peaks were not the consequence

of a third component. This result further highlighted the need for more than one

set of sidelobes to ensure a reliable result.

9.2 Future Work

While working on heartbeat stars I have come across many interesting objects, and

choosing which to study in detail is a task in itself. Below is the description of a

couple of objects that I feel have significant merit that make them worthy of detailed

study, although there is a plethora of interesting objects that, given enough time

and (wo)man power, could lead to some very interesting results:

KIC5733154 was identified by Simon Murphy, through the application of the PM

(phase modulation) method, to be a heartbeat star that is a black hole candidate.

The PM method is a different approach to extracting the same physics as the FM

method. Initial analysis has been able to eliminate the possibility that the mass ratio

(1.3±0.3) is due to an A-type main-sequence or evolved companion to the pulsating

δ Sct star (assuming the pulsating component is the less massive component) and

further data collection (in the form of spectra) and analysis (specifically binary star

modelling) will help distinguish between a neutron star, a smaller companion to the

δ Sct star and a black hole. If the analysis supports the hypothesis that this object

is a black hole, it will be the closest known black hole to the Earth.

KIC5034333 is a short period (P =6.9 d) eccentric binary system with a heartbeat

star light curve (cf. Fig. 9.6). The combination of the pulsations and the FM

signature suggest that the secondary component is a δ Sct star and the primary

component is ∼3 M⊙. The most interesting feature of KIC5034333 is that it has
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Figure 9.6: The Kepler long-cadence time series (left) and phased light curve (right) of
KIC 5034333 for Quarter 9. The phased data clearly depict the presence of tidally driven modes
as the pulsations are commensurate with the orbital period. This object does not appear to have
any eclipses, although the shape of the light curve is rich in information about the fundamental
parameters due to the tidal distortions of the stellar components and as such will be an ideal object
to model.

one tidally excited mode at 9.5 c d−1, making it the first tidally excited pressure (p)

mode. Other interesting features include a strong FM signature; naturally occurring

p modes that allow for pulsational modelling; and an interesting triplet at 53.3 c d−1

that has a splitting of twice the orbital period, specifically the frequencies are 8,

8.5 and 9 times the orbital frequency. Nine spectra have been taken at Kitt Peak

National Observatory, by both myself and my collaborators, and also a single high

quality spectrum has been acquired at Calar Alto. These data will be incorporated

into the subsequent analysis of KIC5034333.

Finally, the heartbeat star group, including myself, has recently obtained radial

velocities for 42 objects ranging from 2 to 13 radial velocities per object. The aim

of this work is to determine statistical properties of heartbeat stars, especially those

with tidally induced pulsations. The sample of stars includes all those known to have

tidally induced pulsations, those with rotational peaks in the Fourier transform and

those with naturally occurring pulsations (where tidally induced pulsations are the

highest priority). The next step in this work will be to fit the radial velocity data to
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determine orbital information and in the case of double-lined spectroscopic binaries,

the masses. Furthermore, if we employ the bayes-todcor software, we will also

obtain the Teff , log g and rotational rates of the stars. We then intend to build

a pipeline that will model the light curves of heartbeat stars and provide a full

complement of parameters for each object. The scientific intention of this work

is to better understand the mechanism that excites tidally driven pulsations by

studying the correlations between the presence of tidally induced pulsations and the

fundamental stellar paramters, including temperature, mass, periastron distance and

stellar structure, to name but a few. We anticipate that the energy transfer process

in the stellar envelopes (thus effective temperatures of the stars), stellar masses,

eccentricities and periastron distances will all play an important role in determining

the presence and amplitudes of tidally induced pulsations. We anticipate that the

analysis of our current data set will bring us closer to understanding heartbeat stars

and the ringing of tidally induced pulsations.
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Appendix A

The BayesTodcor Software: the χ2

version and the CCR version

This appendix contains the python code for the bayes-todcor program. It is

divided into two sections, one containing the code for the χ2 version and one con-

taining the CCR version, as described in Chapter 2.

A.1 The χ2 version

#!/usr/bin/python

"""

19/06/14: This program uses TODCOR, a two dimensional cross correlation

program to determine the velocities by finding the best templates. It

also generates posteriors for teff, logg, metallicity and vrot of two

objects in a binary system and the light ratio.

You must run this program in the TODCOR directory. This program will

store an interpolated spectrum for each processor in a directory

called interp_spec. Each time you run this program it will delete the
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directory containing spectra from the previous run.

You must specify directories with a trailing / in all cases.

In TAPE1 you must specify all the inputs as usual, EXCEPT the request

must be set to "U" for the file names of the synthetic spectra and

the observed spectrum so that they will be requested interactively.

Do not leave any empty lines in TODCOR’s TAPE1 as this will cause a

malfunction.

There may be some inf’s in the output file (<star name>.posteriors.dat).

This is the value returned if the values are out of bounds,

unphysical yet in bounds, or if TODCOR does not produce a value for

the given parameters. The mcmc chains will move away from these

parameters in time.

The velocities are now outputted in "blobs" which means that they are

selected when the lnprob is selected by the sampler. The velocities

are not posteriors, they are distributions based on the output of

TODCOR.

To Start, adjust all the values in the INPUT box. You will need a folder

that contains a set of synthetic spectra. Your prior ranges must be

within the range of spectra that you have, ie. if your synthetic

spectra have Teff’s starting at 5000 K, your priors must not go below

5000 K.

"""

import emcee

from emcee.utils import MPIPool
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import re

import numpy as np

import pylab as pyl

import os

import logging

import shutil

from subprocess import Popen, PIPE

from phoebe.algorithms import interp_nDgrid

from phoebe.parameters import tools

from phoebe.atmospheres.tools import broadening_rotational

import phoebe.atmospheres.tools as atm

from interp import interp

import pickle

import sys

from mpi4py import MPI

import random

from phoebe.atmospheres.tools import broadening_instrumental

import matplotlib.pyplot as pl

###########################################################

#######################INPUTS##############################

#n_walkers: number of walkers, must be even and can be too

#small. Usually 128 will suffice

n_walkers = 128

#iters: number of iterations for each walker

iters = 1000000

# state: set to None to start MCMC from scratch or to a

# file name that contains your last <n_walkers> posteriors

# to start from the end of your last run
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state = "priors.dat"

#spec_dir: the directory containing the synthetic spectra

spec_dir = "../data/bin0.04/"

#todcor_dir: the name of the directory where you run this

#program /and/ where TODCOR is contained.

todcor_dir = "/home/kmh/Stars/tools/todcor/mcmc/"

#obs_spec: list of the observed spectra

ex_dir = str(1)

ex = str(2)

sd = "../ex/ex"+ex_dir+"/prep/"

obs_spec = [sd+"prep_noise_ex"+ex+"_0.dat",sd+"prep_noise_ex"+ex+"_1.dat",

sd+"prep_noise_ex"+ex+"_2.dat",sd+"prep_noise_ex"+ex+"_3.dat",

sd+"prep_noise_ex"+ex+"_4.dat",sd+"prep_noise_ex"+ex+"_5.dat",

sd+"prep_noise_ex"+ex+"_6.dat",sd+"prep_noise_ex"+ex+"_7.dat",

sd+"prep_noise_ex"+ex+"_8.dat",sd+"prep_noise_ex"+ex+"_9.dat",

sd+"prep_noise_ex"+ex+"_10.dat",sd+"prep_noise_ex"+ex+"_11.dat",

sd+"prep_noise_ex"+ex+"_12.dat",sd+"prep_noise_ex"+ex+"_13.dat",

sd+"prep_noise_ex"+ex+"_14.dat",sd+"prep_noise_ex"+ex+"_15.dat",

sd+"prep_noise_ex"+ex+"_16.dat",sd+"prep_noise_ex"+ex+"_17.dat"]

#obj_name: the name of the object to be added as a prefix

#to the results file

obj_name = ’../ex/ex’+ex_dir+’/output/chi2_CCR_ex’+ex_dir

#sigma: uncertainty in the data

sigma = 0.08
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#disp: dispersion or bin width of the observed data

disp = 0.04

#State the prior ranges (min and max vals) on the temp1, temp2, logg1,

#logg2, metal, vrot1, vrot2 and alpha (the light ratio). In this program

the stars are assumed to

#have the same metallicity.

prior_boxes = [(6000.,8000.),(5000.,7000.),(3.,5.),(3.,5.),(-0.5,0.5),

(0.,50.),(0.,30.),(0,1.0)]

###########################################################

###########################################################

n_blobs = [0. for i in range(len(obs_spec)*4)]

def group(x, nr_elements):

# Cut of the last elements so that x contains an exact

# multiple of nr_elements

x_cut = x[:nr_elements*(len(x)/nr_elements)]

#print x_cut

# reshape the array so that it is grouped in groups on nr_element

x_2D = x_cut.reshape((len(x_cut)/nr_elements, nr_elements))

#print x_2D

# average the groups with nr_elements

x_new = np.average(x_2D, axis=1)

return x_new

def unique(myset):

d = dict()

for elem in myset:

d[elem] = 1.
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return d.keys()

def rpars(pars):

#return [random.gauss(p[0],p[1]) for p in pars]

return [np.random.rand() * (p[1]-p[0]) + p[0] for p in pars]

def save_pickle(data, fn):

f = open(fn, ’w’)

pickle.dump(data, f)

f.close()

def get_vals():

res = open("TAPE7", "r")

ccr = 0.0

vel1 = -1000.

vel1_u = -1.

vel2 = -1000.

vel2_u = -1.

for line in res:

if re.match("(.*)BOUNDARY(.*)", line):

print "WARNING: INCREASE SEARCH AREA"

return ccr,vel1,vel1_u,vel2,vel2_u

if re.match("(.*)1\)(.*)",line):

if line[18] != "*" and line[5] != "*":

vel1 = float(line[3:11])

vel1_u = float(line[16:])

if np.isnan(vel1_u) == True:

return 0.0, -1000, -1, -1000, -1

else:
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return 0.0, -1000, -1, -1000, -1

elif re.match("(.*)2\)(.*)",line):

if line[18] != "*" and line[5] != "*":

vel2 = float(line[3:11])

vel2_u = float(line[16:])

if np.isnan(vel2_u) == True:

return 0.0, -1000, -1, -1000, -1

else:

return 0.0, -1000, -1, -1000, -1

elif re.match("(.*)CORRELATION SCORE(.*)", line):

if line[43] != "*":

ccr = float(line[41:49])

if (ccr < 0):

print "Correlation less than 0"

return 0.0, -1000, -1, -1000, -1

else:

return 0.0, -1000, -1, -1000, -1

return ccr,vel1,vel1_u,vel2,vel2_u

#MPI settings

comm = MPI.COMM_WORLD

myrank = comm.Get_rank()

nprocs = comm.Get_size()

TAG_REQ = 11

TAG_CONTINUE = 22

if myrank == 0:

node = comm.recv(source=MPI.ANY_SOURCE,tag=TAG_REQ)
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#Make a directory to keep all the interpolated spectra

os.system("rm -r interp_spec/")

os.mkdir("%s" % ("interp_spec/"))

packet = {}

packet[’continue’] = True

for node in range(1,nprocs):

comm.send(packet,node,tag=TAG_CONTINUE)

else:

while True:

comm.send(myrank,0,tag=TAG_REQ)

packet = comm.recv(source=0,tag=TAG_CONTINUE)

if packet[’continue’] == True:

break

#Load the wavelengths (same for all synthetic spectra)

lambd=np.loadtxt(spec_dir+str([fname for fname in

os.listdir(spec_dir)][0])).T[:1]

#Make empty lists for the parameter names and values

temp = []

logg = []

metal = []

temp_val = []

logg_val = []

met_val = []

new_file = []

#Read in the file names of the spectra
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files = os.listdir(spec_dir)

#Create lists of parameter names from the file names

for file_name in files:

temp.append(file_name[0:6])

logg.append(file_name[6:9])

metal.append(file_name[9:12])

#Identify all unique parameters

temps = unique(temp)

loggs = unique(logg)

metals = unique(metal)

#Sort parameter names (metals are more complicated)

temps.sort()

loggs.sort()

#Make lists of values (for axes)

i=0

for i,t in enumerate(temps,0):

temp_val.append(float(t[1:]))

i=0

for i,l in enumerate(loggs,0):

logg_val.append(float(l[1:])*0.1)

#Separate positive and negative metals

i=0

for i,m in enumerate(metals,0):

if m[0] == "M":

met_val.append((float(m[1:])*-1.))
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else:

met_val.append(float(m[1:]))

met_val.sort()

i=0

for i,m in enumerate(met_val,0):

if (m < 0):

metals[i]="M"+str(m*-1)

else:

metals[i] = "P"+str(m)

if (len(metals[i]) < 5):

metals[i] = metals[i][:1]+"0"+metals[i][1:-2]

else:

metals[i] = metals[i][:-2]

met_val[i] = met_val[i]*0.1

#Make a list of inf’s, the same length as the spectra files

empty = np.ones(len(lambd[0]))*np.inf

#Create a list of empty lists for each parameter

temp_e = [[empty]]*len(temps)

logg_e = [[empty]]*len(loggs)

met_e = [[empty]]*len(metals)

#Create a grid of empty lists

template_ = np.asarray([empty for x in temp_e for y in logg_e for z in

met_e])
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#Reshape the grid

template = np.reshape(template_,(len(temp_e),len(logg_e),len(met_e),-1))

#Populate the grid with flux for combinations with spectra

i,j,k=0,0,0

for i,t in enumerate(temps,0):

for j,l in enumerate(loggs,0):

for k,m in enumerate(metals,0):

for f in files:

if f == (t+l+m+".spectrum"):

template[i][j][k] = np.loadtxt(spec_dir+f).T[-1:]

#Create grid axes

axes = (np.array(temp_val), np.array(logg_val), np.array(met_val))

print "axes = ", axes

#Bin the synthetic wavelength data so that it is the same length as the

observed

lambd_obs, flux_obs = np.loadtxt(obs_spec[0],skiprows=1,unpack=True)

print "len_obs = ", len(lambd_obs)

lambd_new = [i for i in lambd[0] if (i < lambd_obs[-1] and i >

lambd_obs[0])]

print "lambd new = ", len(lambd_new)

bin_size = round(float(len(lambd_new))/float(len(lambd_obs)))

print "bin_size = ", bin_size

bin_lambd = group(lambd[0], bin_size)

def lnprob(x,prior_boxes,lambd,ndim):

i=0
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#Set the limits of the parameters

for i in range(0,ndim):

if x[i] < prior_boxes[i][0] or x[i] > prior_boxes[i][1]:

print "Value out of bounds",x[i], prior_boxes[i][0],

prior_boxes[i][1]

return -1.*np.inf,n_blobs

print "pars = ", x[0],x[1],x[2],x[3],x[4],x[5],x[6]

pars = np.array([[x[0], x[2], x[4]], [x[1], x[3], x[4]]])

spectra = interp(pars,axes,template)

if np.isnan(spectra[0][0]) == True or np.isnan(spectra[1][0]) == True:

print "Unphysical parameters: ", pars

return -1.*np.inf,n_blobs

spec1_b = broadening_rotational(lambd, spectra[0], x[5])

spec2_b = broadening_rotational(lambd, spectra[1], x[6])

#Instrumentally broaden spectra

spec1_inst =

broadening_instrumental(lambd,spec1_b,disp,width_type=’sigma’)

spec2_inst =

broadening_instrumental(lambd,spec2_b,disp,width_type=’sigma’)

bin_flux1 = group(spec1_inst, bin_size)

bin_flux2 = group(spec2_inst, bin_size)

#Make a new spectrum file for each synthetic spectrum

#the same two spectra are used for all observations

#(one for each star)
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f1 = open(’%sstar1synth%d.dat’ % ("interp_spec/",myrank), "w")

f1.write("%2.1f %2.1f %2.1f %s\n" % (0.0, 0.0, 0.0, "spec1"))

f2 = open(’%sstar2synth%d.dat’ % ("interp_spec/",myrank), "w")

f2.write("%2.1f %2.1f %2.1f %s\n" % (0.0, 0.0, 0.0, "spec2"))

for i in range (len(bin_lambd)):

f1.write("%7.2f %9.8f\n" % (bin_lambd[i], bin_flux1[i]))

f2.write("%7.2f %9.8f\n" % (bin_lambd[i], bin_flux2[i]))

f1.close()

f2.close()

i=0.

blobs = []

ccr_func = 0.

alpha = x[7]

L2 = alpha/(1. + alpha)

L1 = 1. - L2

chi2_tot = 0.

for i in range(0,len(obs_spec)):

process = Popen("./todcor", shell=False, stdin=PIPE, stdout=PIPE)

process.communicate(’%s\n%sstar1synth%d.dat\n%sstar2synth%d.dat\n%f\n’

%

(obs_spec[i],"interp_spec/",myrank,"interp_spec/",myrank,alpha))

#Get the values from TAPE7 (the output from

#TODCOR that contains the results)

c,v1,v1_u,v2,v2_u = get_vals()

blobs.append(v1)
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blobs.append(v1_u)

blobs.append(v2)

blobs.append(v2_u)

if v1 == -1000 or v2 == -1000 or c == 0.0:

print "TODCOR didn’t converge: ",v1,v2

return -1*np.inf,n_blobs

# shift the interpolated spectra according to the values from

# TODCOR

sh1 = np.array(atm.doppler_shift(lambd, v1, flux=spec1_inst))

sh2 = np.array(atm.doppler_shift(lambd, v2, flux=spec2_inst))

# interpolate the spectra so that model and obs have equal points

# for the chi2 calculation

lambd_obs, flux_obs =

np.loadtxt(obs_spec[i],skiprows=1,unpack=True)

spec1_interp = pyl.interp(lambd_obs,lambd,sh1,left=None,

right=None)

spec2_interp = pyl.interp(lambd_obs,lambd,sh2,left=None,

right=None)

chi2 = 0

for j in range(len(lambd_obs)):

chi2+=((flux_obs[j]-(spec1_interp[j]*L1 +

spec2_interp[j]*L2))**2)/

(sigma*sigma)*(1./v1_u**2)*(1./v2_u**2)

chi2_tot +=chi2

lnp = -0.5*chi2_tot
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print "chi2_tot = ", -0.5*chi2_tot

return lnp, blobs

def run(prior_boxes, state, n_walkers, iters, partial_save=True):

#specify the number of dimensions

ndim = 8

#load new priors or start from the beginning

if state is not None:

p0 = np.loadtxt(state)[:, 1:-1]

else:

p0 = np.array([rpars(prior_boxes) for i in xrange(n_walkers)])

pool = MPIPool()

if not pool.is_master():

pool.wait()

sys.exit(0)

#Generate the samples

sampler = emcee.EnsembleSampler(n_walkers, ndim, lnprob, pool=pool,

args=[prior_boxes,lambd[0],ndim])

#partial save if specified

if not partial_save:

pos, prob, state, bl = sampler.run_mcmc(p0, 2)

pool.close()
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save_pickle([pos, bl, prob, sampler.chain],

obj_name+’mcmc_run.dat’)

#Extract the values from the sampler and save in multiple files

else:

f = open(obj_name+’.posteriors.dat’, "w")

f2 = open(obj_name+’.vels.dat’,"w")

f3 = open(obj_name+’.all.dat’,"w")

f.close()

f2.close()

f3.close()

for result in sampler.sample(p0, iterations=iters,

storechain=False):

position = result[0]

blob = result[3]

f = open(obj_name+’.posteriors.dat’,"a")

f2 = open(obj_name+’.vels.dat’,"a")

f3 = open(obj_name+’.all.dat’,"a")

#Write out all the information to the files

for k in range(position.shape[0]):

f.write("%d %s %f \n" %

(k, " ".join([’%.10f’ % i for i in position[k]]),

result[1][k]))

f2.write("%d %s %f \n" %

(k, " ".join([’%.10f’ % l for l in blob[k]]),

result[1][k]))
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f3.write("%d %s %s %f \n" %

(k, " ".join([’%.10f’ % i for i in position[k]]),

" ".join([’%.7f’ % l for l in blob[k]]),

result[1][k]))

f.close()

f2.close()

f3.close()

pool.close()

save_pickle([result, 0, sampler.chain], obj_name+’.mcmc_run.dat’)

run(prior_boxes, state, n_walkers, iters, True)
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A.2 The CCR version

#!/usr/bin/python

"""

19/06/14: This program uses TODCOR, a two dimensional cross correlation

program to determine the velocities by finding the best templates. It

also generates posteriors for teff, logg, metallicity and vrot of two

objects in a binary system and light ratio.

You must run this program in the TODCOR directory. This program will

store an interpolated spectrum for each processor in a directory

called interp_spec. Each time you run this program it will delete the

directory containing spectra from the previous run.

You must specify directories with a trailing / in all cases.

In TAPE1 you must specify all the inputs as usual, EXCEPT the request

must be set to "U" for the file names of the synthetic spectra and

the observed spectrum so that they will be requested interactively.

Do not leave any empty lines in TODCOR’s TAPE1 as this will cause a

malfunction.

There may be some inf’s in the output file (<star name>.posteriors.dat).

This is the value returned if the values are out of bounds,

unphysical yet in bounds, or if TODCOR does not produce a value for

the given parameters. The mcmc chains will move away from these

parameters in time.

The velocities are outputted in "blobs" which means that they are

selected when the lnprob is selected by the sampler. The velocities
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are not posteriors, they are distributions based on the output of

TODCOR.

To Start, adjust all the values in the INPUT box. You will need a folder

that contains a set of synthetic spectra. Your prior ranges must be

within the range of spectra that you have, ie. if your synthetic

spectra have Teff’s starting at 5000 K, your priors must not go below

5000 K.

"""

import emcee

from emcee.utils import MPIPool

import re

import numpy as np

import os

import logging

import shutil

from subprocess import Popen, PIPE

from phoebe.algorithms import interp_nDgrid

from phoebe.parameters import tools

from phoebe.atmospheres.tools import broadening_rotational

from interp import interp

import pickle

import sys

from mpi4py import MPI

import random

from phoebe.atmospheres.tools import broadening_instrumental
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###########################################################

#######################INPUTS##############################

#n_walkers: number of walkers, must be even and can be too

#small. Usually 128 will suffice

n_walkers = 128

#iters: number of iterations for each walker

iters = 10000000

#example number for test purposes

ex = str(2)

ex_dir = str(2)

# state: set to None to start MCMC from scratch or to a

# file name that contains your last <n_walkers> posteriors

# to start from the end of your last run

state = None

#spec_dir: the directory containing the synthetic spectra

spec_dir = "../data/bin0.04/"

#todcor_dir: the name of the directory where you run this

#program /and/ where TODCOR is contained.

todcor_dir = "/home/kmh/Stars/tools/todcor/mcmc/"

#obs_spec: list of the observed spectra

sd = "../ex/ex"+ex_dir+"/prep/"

obs_spec = [sd+"prep_noise_ex"+ex+"_0.dat",sd+"prep_noise_ex"+ex+"_1.dat",

sd+"prep_noise_ex"+ex+"_2.dat",sd+"prep_noise_ex"+ex+"_3.dat",

sd+"prep_noise_ex"+ex+"_4.dat",sd+"prep_noise_ex"+ex+"_5.dat",
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sd+"prep_noise_ex"+ex+"_6.dat",sd+"prep_noise_ex"+ex+"_7.dat",

sd+"prep_noise_ex"+ex+"_8.dat",sd+"prep_noise_ex"+ex+"_9.dat",

sd+"prep_noise_ex"+ex+"_10.dat",sd+"prep_noise_ex"+ex+"_11.dat",

sd+"prep_noise_ex"+ex+"_12.dat",sd+"prep_noise_ex"+ex+"_13.dat",

sd+"prep_noise_ex"+ex+"_14.dat"]

#obj_name: the name of the object to be added as a prefix

#to the results file

obj_name = ’../ex/ex’+ex_dir+’/output/CCR_ex’+ex_dir

#sigma: uncertainty in the method/data

sigma = 0.04

disp = 0.04 #the same as bin width, but can be more accurate for

broadening

#State the prior ranges (min and max vals) on the temp1, temp2, logg1,

#logg2, metal, vrot1, vrot2 and alpha (the light ratio). In this program

the stars are assumed to

#have the same metallicity.

prior_boxes = [(7500.,8500.),(3500.,4500.),(3.,5.),(3.,5.),(0.0,0.5),

(0.,70.),(0.,30.),(0,1.0)]

###########################################################

###########################################################

n_blobs = [0. for i in range(len(obs_spec)*4)]

def group(x, nr_elements):

# Cut of the last elements so that x contains an exact

# multiple of nr_elements

234



A.2. The CCR version

x_cut = x[:nr_elements*(len(x)/nr_elements)]

#print x_cut

# reshape the array so that it is grouped in groups on nr_element

x_2D = x_cut.reshape((len(x_cut)/nr_elements, nr_elements))

#print x_2D

# average the groups with nr_elements

x_new = np.average(x_2D, axis=1)

return x_new

def unique(myset):

d = dict()

for elem in myset:

d[elem] = 1.

return d.keys()

def rpars(pars):

#return [random.gauss(p[0],p[1]) for p in pars]

return [np.random.rand() * (p[1]-p[0]) + p[0] for p in pars]

def save_pickle(data, fn):

f = open(fn, ’w’)

pickle.dump(data, f)

f.close()

def get_vals():

res = open("TAPE7", "r")

ccr = 0.0

vel1 = -1000.

vel1_u = -1.

vel2 = -1000.
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vel2_u = -1.

for line in res:

if re.match("(.*)BOUNDARY(.*)", line):

print "WARNING: INCREASE SEARCH AREA"

return ccr,vel1,vel1_u,vel2,vel2_u

if re.match("(.*)1\)(.*)",line):

if line[18] != "*" and line[5] != "*":

vel1 = float(line[3:11])

vel1_u = float(line[16:])

if np.isnan(vel1_u) == True:

return 0.0, -1000, -1, -1000, -1

else:

return 0.0, -1000, -1, -1000, -1

elif re.match("(.*)2\)(.*)",line):

if line[18] != "*" and line[5] != "*":

vel2 = float(line[3:11])

vel2_u = float(line[16:])

if np.isnan(vel2_u) == True:

return 0.0, -1000, -1, -1000, -1

else:

return 0.0, -1000, -1, -1000, -1

elif re.match("(.*)CORRELATION SCORE(.*)", line):

if line[43] != "*":

ccr = float(line[41:49])

if (ccr < 0):

print "Correlation less than 0"

return 0.0, -1000, -1, -1000, -1

else:

return 0.0, -1000, -1, -1000, -1

return ccr,vel1,vel1_u,vel2,vel2_u
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#MPI settings

comm = MPI.COMM_WORLD

myrank = comm.Get_rank()

nprocs = comm.Get_size()

TAG_REQ = 11

TAG_CONTINUE = 22

if myrank == 0:

node = comm.recv(source=MPI.ANY_SOURCE,tag=TAG_REQ)

#Make a directory to keep all the interpolated spectra

os.system("rm -r interp_spec/")

os.mkdir("%s" % ("interp_spec/"))

packet = {}

packet[’continue’] = True

for node in range(1,nprocs):

comm.send(packet,node,tag=TAG_CONTINUE)

else:

while True:

comm.send(myrank,0,tag=TAG_REQ)

packet = comm.recv(source=0,tag=TAG_CONTINUE)

if packet[’continue’] == True:

break

#Load the wavelengths (same for all synthetic spectra)
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lambd=np.loadtxt(spec_dir+str([fname for fname in

os.listdir(spec_dir)][0])).T[:1]

#Make empty lists for the parameter names and values

temp = []

logg = []

metal = []

temp_val = []

logg_val = []

met_val = []

new_file = []

#Read in the file names of the spectra

files = os.listdir(spec_dir)

#Create lists of parameter names from the file names

for file_name in files:

temp.append(file_name[0:6])

logg.append(file_name[6:9])

metal.append(file_name[9:12])

#Identify all unique parameters

temps = unique(temp)

loggs = unique(logg)

metals = unique(metal)

#Sort parameter names (metals are more complicated)

temps.sort()

loggs.sort()
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#Make lists of values (for axes)

i=0

for i,t in enumerate(temps,0):

temp_val.append(float(t[1:]))

i=0

for i,l in enumerate(loggs,0):

logg_val.append(float(l[1:])*0.1)

#Separate positive and negative metals

i=0

for i,m in enumerate(metals,0):

if m[0] == "M":

met_val.append((float(m[1:])*-1.))

else:

met_val.append(float(m[1:]))

met_val.sort()

i=0

for i,m in enumerate(met_val,0):

if (m < 0):

metals[i]="M"+str(m*-1)

else:

metals[i] = "P"+str(m)

if (len(metals[i]) < 5):

metals[i] = metals[i][:1]+"0"+metals[i][1:-2]

else:

metals[i] = metals[i][:-2]
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met_val[i] = met_val[i]*0.1

#Make a list of inf’s, the same length as the spectra files

empty = np.ones(len(lambd[0]))*np.inf

#Create a list of empty lists for each parameter

temp_e = [[empty]]*len(temps)

logg_e = [[empty]]*len(loggs)

met_e = [[empty]]*len(metals)

#Create a grid of empty lists

template_ = np.asarray([empty for x in temp_e for y in logg_e for z in

met_e])

#Reshape the grid

template = np.reshape(template_,(len(temp_e),len(logg_e),len(met_e),-1))

#Populate the grid with flux for combinations with spectra

i,j,k=0,0,0

for i,t in enumerate(temps,0):

for j,l in enumerate(loggs,0):

for k,m in enumerate(metals,0):

for f in files:

if f == (t+l+m+".spectrum"):

template[i][j][k] = np.loadtxt(spec_dir+f).T[-1:]

#Create grid axes

axes = (np.array(temp_val), np.array(logg_val), np.array(met_val))

print "axes = ", axes
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#bin the synthetic wavelength data so that it is the same length as the

observed

len_obs = len(np.loadtxt(obs_spec[0],skiprows=1))

print "len_obs = ", len_obs

print "len lambd = ", len(lambd[0])

bin_size = int(len(lambd[0])/len_obs)

bin_lambd = group(lambd[0], bin_size)

def lnprob(x,prior_boxes,lambd,ndim):

i=0

#Set the limits of the Gaussian

for i in range(0,ndim):

if x[i] < prior_boxes[i][0] or x[i] > prior_boxes[i][1]:

print "Value out of bounds",x[i], prior_boxes[i][0],

prior_boxes[i][1]

return -1.*np.inf,n_blobs

print "pars = ", x[0],x[1],x[2],x[3],x[4],x[5],x[6]

pars = np.array([[x[0], x[2], x[4]], [x[1], x[3], x[4]]])

spectra = interp(pars,axes,template)

if np.isnan(spectra[0][0]) == True or np.isnan(spectra[1][0]) == True:

print "Unphysical parameters: ", pars

return -1.*np.inf,n_blobs

#rotationally broaden the spectra

spec1_b = broadening_rotational(lambd, spectra[0], x[5])

spec2_b = broadening_rotational(lambd, spectra[1], x[6])

#instrumentally broaden spectra
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spec1_inst =

broadening_instrumental(lambd,spec1_b,disp,width_type=’sigma’)

spec2_inst =

broadening_instrumental(lambd,spec2_b,disp,width_type=’sigma’)

bin_flux1 = group(spec1_inst, bin_size)

bin_flux2 = group(spec2_inst, bin_size)

#make a new spectrum file for each synthetic spectrum

#the same two spectra are used for all observations

#(one for each star)

f1 = open(’%sstar1synth%d.dat’ % ("interp_spec/",myrank), "w")

f1.write("%2.1f %2.1f %2.1f %s\n" % (0.0, 0.0, 0.0, "spec1"))

f2 = open(’%sstar2synth%d.dat’ % ("interp_spec/",myrank), "w")

f2.write("%2.1f %2.1f %2.1f %s\n" % (0.0, 0.0, 0.0, "spec2"))

for i in range (len(bin_lambd)):

f1.write("%7.2f %9.8f\n" % (bin_lambd[i], bin_flux1[i]))

f2.write("%7.2f %9.8f\n" % (bin_lambd[i], bin_flux2[i]))

f1.close()

f2.close()

i=0.

blobs = []

ccr_func = 0.

alpha = x[7]

for i in range(0,len(obs_spec)):

process = Popen("./todcor", shell=False, stdin=PIPE, stdout=PIPE)

process.communicate(’%s\n%sstar1synth%d.dat\n%sstar2synth%d.dat\n%f\n’
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%

(obs_spec[i],"interp_spec/",myrank,"interp_spec/",myrank,alpha))

#Get the values from TAPE7 (the output from

#TODCOR that contains the results)

c,v1,v1_u,v2,v2_u = get_vals()

blobs.append(v1)

blobs.append(v1_u)

blobs.append(v2)

blobs.append(v2_u)

if v1 == -1000 or v2 == -1000 or c == 0.0:

print "TODCOR didn’t converge: ",v1,v2

return -1*np.inf,n_blobs

ccr_func += -0.5*((1-c*c)/(sigma*sigma))

return ccr_func, blobs

def run(prior_boxes, state, n_walkers, iters, partial_save=True):

#specify the number of parameters with priors (excluding blobs)

ndim = 8

#load new priors or start from the beginning

if state is not None:

p0 = np.loadtxt(state)[:, 1:-1]

else:

p0 = np.array([rpars(prior_boxes) for i in xrange(n_walkers)])
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pool = MPIPool()

if not pool.is_master():

pool.wait()

sys.exit(0)

#Generate the samples

sampler = emcee.EnsembleSampler(n_walkers, ndim, lnprob, pool=pool,

args=[prior_boxes,lambd[0],ndim])

#partial save if specified

if not partial_save:

pos, prob, state, bl = sampler.run_mcmc(p0, 2)

pool.close()

save_pickle([pos, bl, prob, sampler.chain],

obj_name+’mcmc_run.dat’)

#Extract the values from the sampler and save in multiple files

else:

f = open(obj_name+’.posteriors.dat’, "w")

f2 = open(obj_name+’.vels.dat’,"w")

f3 = open(obj_name+’.all.dat’,"w")

f.close()

f2.close()

f3.close()

for result in sampler.sample(p0, iterations=iters,

storechain=False):

position = result[0]

blob = result[3]
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f = open(obj_name+’.posteriors.dat’,"a")

f2 = open(obj_name+’.vels.dat’,"a")

f3 = open(obj_name+’.all.dat’,"a")

#Write out all the information to the files

for k in range(position.shape[0]):

f.write("%d %s %f \n" %

(k, " ".join([’%.10f’ % i for i in position[k]]),

result[1][k]))

f2.write("%d %s %f \n" %

(k, " ".join([’%.10f’ % l for l in blob[k]]),

result[1][k]))

f3.write("%d %s %s %f \n" %

(k, " ".join([’%.10f’ % i for i in position[k]]),

" ".join([’%.7f’ % l for l in blob[k]]),

result[1][k]))

f.close()

f2.close()

f3.close()

pool.close()

save_pickle([result, 0, sampler.chain], obj_name+’.mcmc_run.dat’)

run(prior_boxes, state, n_walkers, iters, True)
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The heartbeat Star Modelling

Software

This appendix contains the python code for the heartbeat star modelling software.

This software incorporates Markov chain Monte Carlo methods and interfaces with

the binary modelling software, phoebe, to generate posteriors for the binary model

paramters of heartbeatstars, as detailed in Chapter 3.

#!/usr/bin/python

import emcee

from emcee.utils import MPIPool

import numpy as np

import phoebeBackend as phb

import pickle

import sys

from phoebe.algorithms import interp_nDgrid

from phoebe.dynamics import keplerorbit
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#**************************************************************#

#######################CHANGE THIS SECTION######################

#**************************************************************#

ph_pars = [’phoebe_incl’,’phoebe_perr0’,’phoebe_ecc’,

’phoebe_pshift’,’phoebe_rm’,’phoebe_sma’,’phoebe_vga’,

’phoebe_grb1’,’phoebe_grb2’,’phoebe_radius1’,

’phoebe_radius2’]#radii must go last in list

ph_prior_boxes = [(60.,6.),(1.9, 0.4),(0.6,0.1),(-0.2,0.2),

(0.72,0.04),(43.,5.),(-17.,5.),(0.8,0.2),

(0.3,0.5),(1.6,1.),(1.1,0.35)]

puls_pars =[’amp1’,’phase1’,’amp2’,’phase2’,’amp3’,’phase3’,’amp4’,

’phase4’,’amp5’,’phase5’,’amp6’,’phase6’,’amp7’,’phase7’]

puls_prior_boxes

=[(3e-5,5e-5),(2.3,0.4),(2e-5,7e-5),(0.75,0.4),(1e-5,5e-5),

(2.8,0.7),(1e-5,9e-5),(0.8,0.7),(1e-5,3e-5),(1.8,0.8),

(0.5e-6,8e-5),(0.7,0.4),(5e-6,5e-5),(4.2,1.0)]

freq_multi = [21,24,20,23,22,25,18]

phoebe_file = ’../param/3749_mcmc.ph’

lc_file = "../data/3749_binned-cleaned.dat"

rv1_file = ’../data/K03749404_RV1.dvel’

rv2_file = ’../data/K03749404_RV2.dvel’

n_pulse = str(7)

state = ’priors.dat’ #set to None to start MCMC from scratch

nwalkers = 128 #Must be at least twice the number of parameters and even

niter = 10000

ztime = 55611.3423 #Tzero in param

period = 20.30635
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vsini1 = 29.2 #In km/s

vsini2 = 9.2

#**************************************************************#

################################################################

#**************************************************************#

c = 2.99792458e5 #Speed of light in km/s

table = np.loadtxt(’/home/users/kmhambleton/pulse/tables/BF_grid.dat’).T

axval, pgrid = interp_nDgrid.create_pixeltypegrid(table[:2], table[-1:])

rv_time=np.linspace(0.,1.,100)

rv1_time,rv1_data,rv1_sigma=np.loadtxt(rv1_file,unpack=True)

rv2_time,rv2_data,rv2_sigma=np.loadtxt(rv2_file,unpack=True)

rv_phase = (np.array((rv1_time)-ztime)%period)/period

time, flux, sigma = np.loadtxt(lc_file, unpack=True)

def save_pickle(data, fn):

#Save file as a pickel

f = open(fn, ’w’)

pickle.dump(data, f)

f.close()
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def get_conjunction_phase (conj_o,phase_o):

#This function is related to the phase shift, but calculating the

#phase shift for heartbeat stars didn’t seem to work so well.

ecc = phb.getpar("phoebe_ecc")

omega = phb.getpar("phoebe_perr0")

ups_c = np.pi/2. - omega #(’+’=inferior, ’-’=superior)

E_c = 2. * np.arctan ( np.sqrt ((1.-ecc)/(1.+ecc)) * np.tan

(ups_c/2.) )

M_c = E_c - ecc * np.sin (E_c)

conj_n = (M_c + omega) / 2. / np.pi - 0.25

if (conj_o == 100):

#For the first time just determine the phase of conjunction.

return conj_n

else:

phase = phase_o + (conj_o - conj_n)

#Set phase to new value in phoebe

if (phase < -0.5):

phase = phase + 1.0

elif (phase > 0.5):

phase = phase - 1.0

phb.setpar("phoebe_pshift",phase,0)

return phase

def get_lum(model):

#Calculates the luminosity and shifts the model vertically

hla = phb.getpar("phoebe_hla",0)

cla = phb.getpar("phoebe_cla",0)

if (cla <= 0.):

return False, False
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alpha = 0

sum_model = 0.

for i in range(len(model)):

alpha += model[i]*flux[i]*sigma[i]*sigma[i]

sum_model += model[i]*model[i]*sigma[i]*sigma[i]

alpha = alpha/sum_model

model = alpha*model

#Calculate new light fractions using alpha

z = (hla+cla)/(4.*np.pi)

y = hla/cla

cla = z*4.*np.pi*alpha/(y+1.)

hla = y*cla

light = hla/(hla + cla)

if (light <=0 or cla <= 0):

return False, False

return light, model

def interp_beaming(teff, logg):

#Interpolates the beaming tables (you need the tables for

#this to work)

B = interp_nDgrid.interpolate([[teff], [logg]], axval, pgrid)

return B[0][0]

def add_boosting(light,model_rv,model_rv2,model):

#Adds Doppler boosting to the model

vga = phb.getpar("phoebe_vga")

teff1 = phb.getpar("phoebe_teff1")

teff2 = phb.getpar("phoebe_teff2")
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logg1 = phb.getpar("phoebe_logg1")

logg2 = phb.getpar("phoebe_logg2")

if (logg2 >= 5.0):

logg2 = 4.999

if (logg1 >= 5.0):

logg1 = 4.999

if (teff2 < 3500.):

teff2 = 3500.

if (teff1 < 3500.):

teff1 = 3500.

B = interp_beaming(teff1, logg1)

B2 = interp_beaming(teff2, logg2)

func1 = light*B*(model_rv-vga)/c

func2 = (1-light) * B2*(model_rv2-vga)/c

return model*(1.- func1 - func2)

def get_potential(radius,val):

#I found it easier to work with radii instead of potentials. This

#function converts to potentials from the inputted radii

sma = phb.getpar("phoebe_sma")

rad = radius/sma

delta = 1. + phb.getpar("phoebe_ecc")

lamda = 1.

nu = 0.

if val == 1:

f = phb.getpar("phoebe_f1")

rm = phb.getpar("phoebe_rm")

return 1./rad + rm*(1./np.sqrt(delta**2 + rad**2 - \

2.*rad*lamda*delta) - rad*lamda/delta**2) + \

0.5*f**2*(1. + rm)*rad**2*(1. - nu**2)
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else:

f = phb.getpar("phoebe_f2")

rm = 1./phb.getpar("phoebe_rm")

pot = 1./rad + rm*(1./np.sqrt(delta**2 + rad**2 - \

2.*rad*lamda*delta) - rad*lamda/delta**2) + \

0.5*f**2*(1. + rm)*rad**2*(1. - nu**2)

return pot/rm + 0.5*(rm-1)/rm

def check_pars(x):

#For all the parameters set the new values and check that they are

#in bounds. If they are out of bounds then the log probability

#(chi2) will be reduced to -np.inf

for i in range(len(ph_pars)):

#Convert from radius to potential:

if ph_pars[i] == "phoebe_radius1" :

if x[i] < ph_prior_boxes[i][0] or x[i] > (ph_prior_boxes[i][1]

+ ph_prior_boxes[i][0]):

print "radius 1 is out of range", x[i]

return False,False

f1_val = set_f_ratio(x[i],1)

phb.setpar("phoebe_pot1",get_potential(x[i],1),0)

elif ph_pars[i] == "phoebe_radius2" :

if x[i] < ph_prior_boxes[i][0] or x[i] > (ph_prior_boxes[i][1]

+ ph_prior_boxes[i][0]):

print "radius 2 is out of range", x[i]

return False,False

f2_val = set_f_ratio(x[i],2)

phb.setpar("phoebe_pot2",get_potential(x[i],2),0)

else:

phb.setpar(ph_pars[i], x[i], 0)

return f1_val,f2_val
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def crit_pot():

#My program was crashing due to phoebe overflowing the critical

#potential. This function checks to see if the potential is smaller

#than the critical potential.

q = phb.getpar("phoebe_rm")

pot1 = phb.getpar("phoebe_pot1")

pot2 = phb.getpar("phoebe_pot2")

d = 1. - phb.getpar("phoebe_ecc")

new_x1 = d/2.

f = phb.getpar("phoebe_f1")

pot_l1_1 = get_lagrange(q,f,d,new_x1)

if (pot1 < pot_l1_1):

print "pot 1 less than crit pot", pot_l1_1, pot1

return False

f = phb.getpar("phoebe_f2")

q = 1./q

pot_l1_2 = get_lagrange(q,f,d,new_x1)/q + 0.5*(q-1)/q

if (pot2 < pot_l1_2):

print "pot 2 less than crit pot", pot_l1_2, pot2

return False

return True

def get_lagrange(q,f,d,new_x):

#This function gets the lagrangian points do determine the

#critical potential

x = -1e50

while (np.abs(x-new_x) > 0.0000000001):

x = new_x
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y = -x*(x*x)**-1.5 -q*(x-d)*((x-d)*(x-d))**-1.5 -q/d/d +

f*f*(1+q)*x

d_y = (2*x*x)/(x*x)**2.5 + q*(2*(x-d)*(x-d))/((x-d)*(x-d))**2.5 +\

f*f*(1+q)

new_x = x - y/d_y

pot = 1.0/np.sqrt(new_x*new_x) +

q*(1.0/np.sqrt((new_x-d)*(new_x-d))-new_x/d/d) +

0.5*f*f*(1+q)*(new_x*new_x)

return pot

def test_logg():

#This function checks phoebe’s log g is within range. This is

different from the logg used in this

#program, due to the different orbital point at which the radius is

defined.

logg1 = phb.getpar("phoebe_logg1")

logg2 = phb.getpar("phoebe_logg2")

if (logg1 <= 1.0 or logg1 >= 5.0):

print "log g 1 is out of bounds ", logg1

return False

if (logg2 <= 1.0 or logg2 >= 5.0):

print "log g 2 is out of bounds ", logg2

return False

return True

def make_cos (time,freq,amp,phi):

#This function makes the sine that is applied to the light curve
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return tuple(amp*np.cos(2*np.pi*(np.array(time))

*freq+phi))

def add_sines(time,x,freq_multi,numb_sine,puls_prior_boxes):

#Create a list of sine curves, each with the

#new values for amp, and phase.

amp = 0.

phi = 0.

k = 0.

y_tot = np.zeros([len(time)])

#Sum up the sine waves

for k in range(numb_sine):

amp = x[len(ph_pars)+2*k]

phi = x[len(ph_pars)+1+2*k]

if amp < puls_prior_boxes[2*k][0] or amp >

(puls_prior_boxes[2*k][1] + puls_prior_boxes[2*k][0]):

return False,[]

if phi < puls_prior_boxes[1+2*k][0] or phi >

(puls_prior_boxes[1+2*k][1] + puls_prior_boxes[1+2*k][0]):

return False,[]

y_tot += (make_cos(time,freq_multi[k],amp,phi))

if amp < 1e-6 or phi < 0. or phi > 6.2831853071:

return False, []

y_tot += 1.

#Combine the pulsations and binary model

return True, y_tot
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def get_chi2_lc(data,model,error):

j = 0

#Includes the sqrt(flux) to accuount for the increase

#in noise when less photons are being received

chi2 = 0

for j in range (len(data)):

chi2+=((data[j]-model[j])**2)/(error[j]*error

[j]*np.sqrt(data[j]))

return chi2

def get_chi2_rv(rv_phase,rv1_data,rv1_sigma,rv2_data,rv2_sigma):

model_rv1_chi2 = np.array(phb.rv1(tuple(rv_phase),0))

model_rv2_chi2 = np.array(phb.rv2(tuple(rv_phase),0))

k=0

chi2_rv1 = 0

chi2_rv2 = 0

for k in range (len(rv1_data)):

chi2_rv1+=((rv1_data[k]-model_rv1_chi2[k])**2)/(rv1_sigma[k]**2)

chi2_rv2+=((rv2_data[k]-model_rv2_chi2[k])**2)/(rv2_sigma[k]**2)

return chi2_rv1 + chi2_rv2

def rpars(pars):

return [np.random.rand() * p[1] + p[0] for p in pars]

def r_from_logg(x,ph_pars):

for i in range(len(ph_pars)):

#Convert from radius to potential:

if ph_pars[i] == "phoebe_logg1" :

logg1 = x[i]

256



g = 10**(logg1)/100. #g in m/s**2

if ph_pars[i] == "phoebe_rm":

rm = x[i]

if ph_pars[i] == "phoebe_sma":

sma = x[i]*0.0046491 #sma in Au

p = period/365.242 #period in years

m1m2 = sma**3/p**2

m1 = m1m2/(1.+rm)

m = m1*1.9891e30

return m1, (np.sqrt(6.67e-11*m/g))/6.955e8

def set_f_ratio(radius,val):

#Calculate the rotation parameter

incl = phb.getpar("phoebe_incl")

if (val == 1):

vrot = vsini1

else:

vrot = vsini2

vrot_day = vrot*24*60*60/np.sin(incl/360.*np.pi*2.)

radius_km = radius*695500

fval = period/(2.*np.pi*radius_km/vrot_day)

if (val == 1):

phb.setpar("phoebe_f1",fval, 0)

return fval

else:

phb.setpar("phoebe_f2",fval, 0)

return fval

##########################################################################
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##########################################################################

def lnprob(x, prior_boxes, time, flux, sigma, ph_pars, numb_sine, nu_orb,

freq_multi):

#Determine the posterior probabilities

blobs = []

#Check all the phoebe parameters are in bounds

#and convert radii to potentials

fval_1, fval_2 = check_pars(x)

if (fval_1 == False):

return -np.inf, [0.0,0.0]

#Determine if the potentials are less than the

#critical potentials

if (crit_pot() == False):

return -np.inf, [0.0,0.0,0.0]

#Update the limb darkening coefficents (create a model

#first to update the logg)

model_test = (phb.lc((0.0,),0))

#Test logg values are in bounds

if (test_logg() == False):

return -1.*np.inf, [0.0,0.0,0.0]

#Update limb darkening values

phb.updateLD()

#Generate a model of lcs and rvs

model = np.array(phb.lc(tuple(time),0))
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#Make rv models

#rv_time is an array of 100 phase points.

model_rv_ = np.array(phb.rv1(tuple(rv_time),0))

model_rv2_ = np.array(phb.rv2(tuple(rv_time),1))

#Interpolate the rvs (faster) to get same number of points

#as lc data

model_rv = np.interp(time,rv_time,np.array(model_rv_))

model_rv2 = np.interp(time,rv_time,np.array(model_rv2_))

#Calculate light levels

light, model = get_lum(model)

if (light == False):

return -np.inf, [0.0,0.0,0.0]

#Calculate boosting

b_model = add_boosting(light,model_rv,model_rv2,model)

#Re-calculate light levels

light_n, b_model = get_lum(b_model)

if (light_n == False):

return -np.inf, [0.0,0.0,0.0]

sine_val, sines =

add_sines(time,x,freq_multi,numb_sine,puls_prior_boxes)

if (sine_val == False):

return -np.inf, [0.0,0.0,0.0]

tot_model = sines*tuple(b_model)

#Make blobs from calculated data
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blobs.append(light_n)

blobs.append(fval_1)

blobs.append(fval_2)

#Calculate chi2 for light curve

chi2 = get_chi2_lc(flux,tot_model,sigma)

#Calculate chi2 for rv1 and rv2

chi2_rv = get_chi2_rv(rv_phase,rv1_data,rv1_sigma,rv2_data,rv2_sigma)

#Calculate the log probability and check to see if

lnp = -0.5 * (chi2 + chi2_rv)

#Write out the parameter values and the log probability

sys.stderr.write("% 9.4f " * len(x) % tuple(x))

sys.stderr.write("% 12.6f\n" % lnp)

#Return the log probability

return lnp, blobs

###############################################################################

###############################################################################

def run(phoebe_file, ph_pars, puls_pars, ph_prior_boxes, puls_prior_boxes,

state, nwalkers, niter, freq_multi, partial_save=False):

phb.init()

phb.configure()

phb.open(phoebe_file)

numb_sine = len(puls_pars)/2
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priors = ph_prior_boxes + puls_prior_boxes

ndim = len(puls_pars+ph_pars)

nu_orb = 1./float(phb.getpar("phoebe_period"))

#Set penalties for an out-of-bounds situation:

for i, par in enumerate(ph_pars):

phb.setlim(par, ph_prior_boxes[i][0],

ph_prior_boxes[i][0] + ph_prior_boxes[i][1])

#Load from previous mcmc run if option is not None

if state is not None:

p0 = np.loadtxt(state)[:, 1:-1]

else:

p0 = np.array([rpars(priors) for i in xrange(nwalkers)])

#Tests to see if nodes are available for MPI

pool = MPIPool()

if not pool.is_master():

pool.wait()

sys.exit(0)

#Generate the emcee sampler with given inputs

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob,

args=[priors,time,flux,sigma,ph_pars,numb_sine,

nu_orb, freq_multi],

pool=pool)

if not partial_save:

pos, prob, state,blob = sampler.run_mcmc(p0, 2)

pool.close()

save_pickle([pos, blob, prob, sampler.chain], phoebe_file +
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’.7.mcmc_run.dat’)

else:

f = open(phoebe_file + ’.7.mcmc_chain.dat’, "w")

f.close()

for result in sampler.sample(p0, iterations=niter,

storechain=False):

position = result[0]

blobs = result[3]

f = open(phoebe_file + ’.7.mcmc_chain.dat’, "a")

for k in range(position.shape[0]):

f.write("%d %s %s %f\n"

% (k, " ".join([’%.10f’ % i for i in

position[k]])," ".join([’%.10f’ % j for j

in blobs[k]]),result[1][k]))

f.close()

pool.close()

save_pickle([result, 0, sampler.chain], phoebe_file +

’.7.mcmc_run.dat’)

phb.quit()

#**************************************************************#

if __name__ == "__main__":

run(phoebe_file, ph_pars, puls_pars, ph_prior_boxes,

puls_prior_boxes, state, nwalkers, niter, freq_multi, True)
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