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Abstract 

Nuclear fuel reprocessing of fissile materials is carried out in order to provide recycled 

fuel for existing and future nuclear power plants. One aim of reprocessing is to recover 

unused uranium (U-238 and U-235) and plutonium isotopes thereby preventing them 

from being wasted. This can save up to 30% of the natural uranium that is required each 

year for the fabrication of new nuclear fuel. A second aim is to reduce the volume of 

high-level radioactive waste. Along with the separation of uranium and plutonium there 

has been a significant interest in the extraction of short-lived fission products such as 

caesium and strontium, which play critical role during high-level waste handling and 

disposal. 

The PUREX process for reprocessing of irradiated fuel has been unchallenged for more 

than half a century even though it has several deficiencies such as flexibility, non-

specificity of Tri-Butyl Phosphate (TBP), degradation of the extractant, TBP, and 

diluent. This project addresses the development of an alternative separation process to 

either replace and/or complement the PUREX process. Our process is based on the 

chromatographic separation of fission products from U and Pu. This research focuses on 

the synthesis of highly stable and selective materials which could be used as a stationary 

phase in a continuous chromatographic separation for short lived fission products (Cs, 

Sr); a technique patented by UCLan. 

The objectives of this project were to synthesis highly selective adsorbents for fission 

products (primarily Cs and Sr) capable of extracting these cations from acidic liquor (up 

to 3 M HNO3). In addition to selectivity (specificity) and acid stability, the materials 

under investigation would require fast cation uptake and high capacity. 

The research explored three key approaches for ion sorption: 

(1)  Creating charge imbalance into ordered mesoporous MCM-41 structure (chapter 4), 

(2)  Examination of molecular sieves based on their size exclusive property (chapter 5), 

and, 

(3) Preparation of ammonium phosphomolybdate (AMP) encapsulated polymeric 

composites (chapter 6). 
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Various physical and chemical properties of the materials were characterised by XRD, 

SAXS, surface area, pore volume, pore size distribution, SEM, TEM, ATR-IR, 29Si 

NMR and TGA techniques. The cation uptake performance of the materials were 

evaluated for single ion and mixed ions against various nitric acid conditions. The study 

was further extended to rate of uptake in the best performing AMPPAN composites and 

identified area of improvement. 

Insertion of heteroatom e.g. boron into silicate structures, did not produce the desired 

effect; selectivity and capacity for the target fission products (Cs and Sr) were 

negligible compared with the required criteria. The incorporation of a mesoporous shell 

around zeolite structure was effective but the uptake of fission products from nitric acid 

solutions was again disappointing. The uptake of fission products from slightly acid 

solutions (pH value ~5) was more encouraging but not specific to any single ion (e.g. Cs 

or Sr) and this approach could form the basis of further studies. 

The preparation of AMP composites addressed both inorganic and organic substrates; 

AMP alumina composites in a suitable form i.e. spheres/beads was challenging and 

produced materials that were unsuitable and incorporated low AMP concentrations. 

This produced composites with low Cs uptake. The use of an organic substrate such as 

polyacrylonitrile (PAN) produced a composite that had a high selectivity for Cs, near 

specific, from nitric acid solutions but with comparatively low capacity and rate of 

uptake compared to pure AMP. These properties could be improved by manipulation of 

the composite structure; future work in this area is recommended. 
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Chapter 1 

Introduction 

1.1 Nuclear Fuel Cycle 

The nuclear fuel cycle (NFC) comprises of a number of discrete process stages that 

encompass the mining of uranium to its conversion and enrichment and subsequent use 

in a nuclear reactor to reprocessing of irradiated fuel and waste management with the 

subsequent disposal of radioactive wastes. 

 

Figure 1.1 Schematic representation of various processes in Closed Fuel cycle [1] 

 

 
Figure 1.2 Schematic representation of various processes in Open Fuel cycle [1] 
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When the irradiated fuel is reprocessed to allow the uranium and plutonium to be 

subsequently converted into new fuel and recycle to a new reactor, this scheme is called 

the closed nuclear fuel cycle (figure 1.1) [1, 2].  

When reprocessing is not carried out but the irradiated fuel is stored for an interim 

period in engineered, usually concrete structures and then finally treated to ensure 

minimal environmental impact prior to disposal in a purpose constructed repository this 

scheme is called the open fuel cycle (figure 1.2) [1, 2]. 

 

1.1.1 Uranium mining 

Uranium is a relatively abundant element in the earth’s crust some 500 times more 

abundant than precious metals such as gold and as common as tin [1]. Uranium exists in 

several geological forms such as pitchblende, carnotite, tyuyamunite, torbernite and 

autunite and locations Australia, Canada, S Africa, Kazakistan etc. [1]. It is present in 

rocks, sediments, sand/soil, and in seawater (3 ppb). It is extracted from the earth’s crust 

by: 

1  Underground mining 

2 Open cast mining 

3 In situ leaching 

Both underground and open cast mining have several similarities with the UK’s coal 

mining industry of the 1990s. In underground mining, the ore body will normally 

contain 500 to 1000 ppm uranium and is extracted by mechanical means but process 

operatives are present and therefore they have to be protected from radioactive dust and 

gases such as radon and hence adequate ventilation is necessary [1]. Ventilation is not a 

significant factor in open cast mining as the uranium ore is extracted using massive 

diggers and excavators, which gouge huge basins into the earth. In both cases, the 

excavated ore body is transported from the mine to the mill where it is crushed 

producing particles of about 200 microns to assist the sulfuric acid leaching of uranium 

from the ore body [1]. The leaching process uses hot sulfuric acid of pH around 1.0, 

which produces uranyl sulphate solution containing many other elements and a leached 

ore body that are separated. The ore body now depleted of uranium is sent to the tailings 

dam. The uranyl sulphate liquor is processed to recover and purify the uranium using 

either ion exchange and/or solvent extraction technology. The purified uranium is 

precipitated from solution as a diuranate of sodium, ammonium, calcium (depending on 
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which alkali has been used). The diuranate is filtered and the solid calcined to produce 

uranium ore concentrate or yellow cake before being shipped to the refinery [1]. 

In-situ leaching is used when the geology of the ore body is appropriate, generally a 

sandy type, with the area devoid of natural water courses; no mechanical extraction is 

used simply pumping the sulfuric acid through the sandy soil to liberate the uranium as 

uranyl sulphate, which is purified and treated as per mined uranium. Currently the 

majority of uranium is recovered by in-situ leaching [1]. 

1.1.2 Conversion 

The uranium from the mining site is shipped to the refinery in 300 kg quantities (in 200 

l mild steel drums) where it undergoes further purification. The uranium from the mine 

is still not sufficiently pure to be converted into reactor fuel i.e. it is not of reactor grade 

[3]. The uranium ore concentrate will contain uranium that is about 95% pure but still 

contains thorium, radium, several various transition metals such as V, Mo Cr and 

neutron poisons such as Hg, Cd, and B  ions [3]. All these named elements have to be 

removed as they will either follow the uranium through the process conversion stages 

and arrive in the uranium hexafluoride (UF6) or will impinge on the nuclear chain 

reaction in the reactor. 

The purification of the uranium in the UOC (Uranium Ore Concentrate) is 

accomplished by first dissolving in hot 60% nitric acid to produce a uranyl nitrate /nitric 

acid solution (~350 g U/l) which is contacted with 20% v/v TBP/OK (Tri-Butyl 

Phosphate in Odourless Kerosene, BNFL system). The solvent extraction circuit 

produces a uranium of greater than 99% purity [3]. The purified uranyl nitrate (~110g 

U/l) from the solvent extraction circuit is first evaporated to produce 1100g U/l solution, 

which is then thermally denitrated to produce UO3, reduced to UO2 with hydrogen, then 

reacted with anhydrous HF to produce UF4, and finally reacted with fluorine gas to 

produce uranium hexafluoride (figure 1.3) [3]. 

The UF6 is of natural U isotopic composition i.e. 99.3% U-238 and 0.71% U-235 [3]. 

Reactors these days require enriched uranium i.e. uranium with a U-235 content greater 

than 0.71%, usually 2.5 - 4.5 % of U-235. To achieve this higher U-235 content the UF6 

is shipped in specially designed cylinders to the enrichment plant [3]. 
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Figure 1.3 Processes involved in Uranium purification [3] 

1.1.3 Uranium enrichment 

UF6 can exist as a liquid, solid and gas simultaneously (triple point 64 °C). It is the latter 

that is important for the enrichment process. The UF6 is vaporised from the cylinders 

and passed into the enrichment process, which these days is based on centrifugation. 

Although the mass difference between U-238 and U-235 is small (235UF6 is only 

0.852% lighter than 238UF6) by subjecting the uranium hexafluoride to numerous 

separation stages the two isotopes can be separated and U-235 subsequently enriched to 

the required value for the particular reactor system e.g. AGR, PWR, BWR. As U-235 is 

being enriched in some UF6 then some UF6 is being depleted of U-235 i.e. depleted 

uranium [4]. 

The enriched UF6 is now contained in smaller diameter cylinders awaiting shipment to 

the fuel fabrication facility. The depleted UF6 is returned to the same size cylinders that 

contained the natural UF6 and is stored as currently there are few uses for depleted 

uranium [4]. 

1.1.4 Fuel fabrication 

After enrichment, the uranium hexafluoride (UF6) with a U-235 enrichment greater than 

0.71% is sent to the fabrication facility to convert UF6 to ceramic UO2 pellets (figure 

1.4) [5]. First, the enriched UF6 is vaporised to exit from the cylinder and reacted with 

steam and hydrogen to produced powder UO2, which is granulated to helping pressing 

and pressed into pellets before sintering at 1800 °C to produce the fuel pellet [5]. 

Depending on the type of reactor, e.g., gas cooled AGR or water-cooled PWR the 

pellets are contained in either stainless steel or zircaloy tubes (pins) respectively [5]. 
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The pins now containing many pellets are sealed and then subjected to an external 

pressure to squeeze them onto the pellets to ensure good heat transfer and prevent pellet 

rattling whilst in the reactor. Further, they are assembled into a cylindrical formation 

inside a graphite sleeve for AGR reactors and into a square assembly for PWRs. The 

assemblies are transported to the reactor site. 

 

Figure 1.4 Schematic representation of processes involved in UO2 production [5] 

 

1.1.5 Power generation 

A few hundred-fuel assemblies are needed for the initial load (~250 te of U depending 

on the size and type of reactor). In the reactor, the fuel undergoes several changes. 

During its time in the reactor, the fuel (rods, pins) is subject to important physical and 

composition modifications due to the neutron irradiation: 

• The fissile material content (U-235 or Pu-239, Pu-241) decreases progressively by 

fission. 

• Accumulation of new elements in the fuel, resulting from the chain reaction progress 

    – Transuranic elements (Np, Am, Cm), 

    – Fission Products (Sr, Cs, Tc etc.) some of them are neutrons poison such as Gd. 

• The fuel composition changes due to the strong heat released by fission, provoking 

important changes in the physical state of the fuel. 

• Crystals structure modifications (holes or concentrations of atoms) 

• Variation of the volume:  
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– The volume occupied by the atoms created by fission is greater than the one of the 

disappeared matter. 

– Moreover, some fission products are gaseous and their solubility in uranium is 

practically non-existent 

 

 All of these changes will alter the physical properties and the structure of the fuel with 

modifications of the thermal, mechanical, dimensional characteristics. Consequently, 

the cladding can deteriorate which can result in the formation of cracks or even break 

[6].  

This implies that, after a certain period of irradiation time, it is necessary to take the fuel 

out of the reactor due to decrease in the content of fissile material, progressive 

poisoning of the fuel, and risk of cladding break [6]. 

In the reactor, the U-235 isotopes undergo fission due to neutron bombardment to 

produce fission products, energy, and more neutrons (chain reaction) whilst the major U 

isotope U-238 adsorbs one neutron to transmute to U-239, which by two sequential β 

decays produces Np-239 and then Pu-239, which is a fissile isotope that produces 

fission products, heat and more neutrons [6].  

When the fissile energy has decreased and it is no longer cost effective to leave the fuel 

in the reactor it is removed, stored under water at the reactor site to allow the very short-

lived fission products to decay before transport to a reprocessing plant or remains on the 

reactor site for subsequent storage either wet i.e. in ponds or in concrete casks/silos. 

This initial storage period could be about one year to three years depending on the type 

of fuel, burn-up etc. Depending on the country’s spent fuel management strategy the 

fuel can be either: 

1 Reprocessed, 

2 Direct disposal, 

3 Interim storage awaiting a decision if to reprocess or dispose. 

For this research, we are considering option 1 only. 

 

1.1.6 Reprocessing 

Reprocessing is currently practised for commercial irradiated fuel by France, UK, 

Russia and Japan, the latter is awaiting the commissioning of its Rokkasho reprocessing 

plant in 2016 [7]. The UK government has declared that reprocessing at Sellafield will 
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cease after 2018, which will result in about half of the current reprocessing capacity 

being removed from the market, leaving only about 2,500 te capacity available 

worldwide [7]. The US has reprocessing capacity but adopted years ago not to reprocess 

irradiated fuel from civil reactors and its strategy is one of delayed storage and/or direct 

disposal.  

Reprocessing is undertaken to:                                                          

• Conserve natural resources, e.g. uranium, 

• Optimise waste management and disposal conditions, 

• Minimise environmental impact,  

• Improve fuel cycle economics,  

• Improve proliferation resistance  

 

The reprocessing of irradiated fuel uses a tested and well-documented process, PUREX 

(Plutonium Uranium Redox Extraction). The objective of the reprocessing operation is 

to separate U and Pu from fission products (FPs) and minor actinides (MAs) such as 

Np, Am and Cm so that the U and Pu can be converted to new fuel and recycled (figure 

1.5) [7]. This reprocessing results in other benefits such as better waste management, 

particular for the final disposal repository. 

 

 

 
Figure 1.5 Multistage extraction process during reprocessing [7] 
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The separation of U, Pu, FPs, and MAs is achieved by first dissolving the ceramic 

pellets in hot nitric acid to produce a ~350 g U/l and ~3 g Pu/l and ~3 M nitric acid 

solution. This solution is subsequently contacted with 30% TBP/OK in pulsed columns 

to separate the U and Pu from the other radionuclides; the two actinides are extracted 

into the solvent phase leaving the remaining radionuclides in the aqueous phase [7]. 

This latter phase is the high active waste discussed latter. The recovery of the Pu from 

the solvent phase is achieved by manipulating its oxidation state; TBP’s affinity for Pu 

depends on its oxidation state, TBP has no affinity for the Pu (III) oxidation state but a 

moderate affinity for Pu (IV and VI). The reducing agents do not affect the uranyl ion 

(VI) and this is recovered from the solvent phase by adjusting the nitric acid conditions 

(~0.01 M) and at a slightly elevated temperature (~60 °C) [7]. Both U and Pu undergo 

further purification separately again using a solvent extraction process based on 

TBP/OK to produce very pure U and Pu nitrate solutions that are subsequently 

converted to UO2 and PuO2 by thermal denitration and precipitation as oxalate followed 

by calcinations respectively. The final oxides can be blended to produce MOX fuel. 

 

1.1.7 Waste management 

Solid, liquid, or gaseous wastes arise at all stages of the NFC in varying and significant 

amounts, which require treatment before being discharged under strict control and 

authorisations into the environment. Specific to the nuclear industry is further 

categorisation particular for solid and liquid wastes such as: high-level waste (HLW), 

intermediate-level waste (ILW), low-level waste (LLW), and now very low level waste 

(vLLW) [7]. The latter was introduced to accommodate the large quantities of wastes 

that will arise from the decommissioning of nuclear facilities, plant, and equipment in 

the next several decades worldwide. The distinguishing features of these other 

categories (HLW, ILW, and LLW) are: 

 

 

• High Level Waste (HLW) 

High Level Waste is heat-generating waste that has been generated primarily from the 

reprocessing of spent nuclear fuel [8]. The temperature of HLW may rise significantly 

and as a result, this factor has to be taken into account when designing storage or 

disposal facilities. 
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Less than 1% of all radioactive wastes (by volume) are in the HLW category. HLW 

only arises in a liquid form but is converted into a solid product through a process called 

‘vitrification’ [8]. It is generated as a by-product during the reprocessing of spent fuel 

from nuclear reactors. 

 

 

• Intermediate Level Waste (ILW) 

ILW is waste with radioactivity levels exceeding the upper boundaries for Low Level 

Waste (LLW), but which does not need heating to be taken into account in the design of 

storage or disposal facilities [8]. 

About 6% of all radioactive wastes (by volume) are in the ILW category [8]. 

ILW can be any material that has been activated or contaminated by radioactivity. ILW 

may be solid wastes, or in the form of sludges and effluents. ILW arises mainly from 

the reprocessing of spent fuel, and from general operations, maintenance, and 

decommissioning of radioactive plant. 

 

 

• Low Level Waste (LLW) 

LLW includes radioactive wastes which are not suitable for disposal as ordinary wastes, 

but only have low levels of radioactivity i.e. < 4 GBq/m3 of alpha activity and               

< 12 GBq/m3 of beta/gamma activity [8]. About 94% of all radioactive wastes (by 

volume) are in the LLW category [8]. 

 

LLW can be any material that has been activated or contaminated by radioactivity. 

LLW may be solid wastes, or in the form of sludges and effluents.  

 

The front end of the nuclear fuel cycle generates largely LLW during the day to day 

operations; ILW is largely associated with post uranium conversion stage and HLW is 

exclusive to the reprocessing operations but also to reactors if interim storage and/or 

direct disposal is practised for irradiated fuel. HLW represents ~1% of the total waste 

generated by NFC operations but accounts for >99% of the radioactivity [8]. It therefore 

requires special and unique attention when considering treatments and disposal options. 
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1.1.8 Advanced reprocessing 

The next fleet of nuclear reactors to be constructed worldwide will be the third 

generation (GEN III) thermal reactors i.e. moderated neutrons, and will be largely 

pressurised water reactors [7]. The fuel in these reactors will operate at slightly higher 

enrichments (~3.5%) and at significant higher burn-ups and for longer time periods (at 

least 60 years) [7]. Some of the irradiated fuel from these reactors will be reprocessed, 

particularly for France, but the majority (>90%) will be either stored or sent for direct 

disposal when a suitable repository is constructed.  

Advanced reprocessing is targeting the next generation of reactors (GEN IV), fast 

neutron reactors such as the fast reactors [7]. For this generation of reactors even more 

attention will have to be paid to waste management in particular reducing the impact of 

HLW. To achieve this a new advanced reprocessing concept (partitioning) is under 

development that will not only separate the U and Pu for recycle but also FPs and the 

lanthanide elements and MAs so that these can be fabricated into fuels and placed in a 

reactor (likely to be a fast breeder) to allow transmutation of the radionuclides into 

others which have much shorter half-lives i.e. reduced to a few years from >104 years 

[7].  

 

Two well-known extractants with different properties are combined in one diluent 

system:  

1. bi-Terpyridine bis-Pyridine or BTBP, known to extract trivalent actinides and 

separate them from the trivalent lanthanides. This is used to extract pentavalent 

actinides (figure 1.6) [7]. 

Due to strong acid and irradiation, a stable BTBP is needed: CyMe4-BTBP  

 

 

Figure 1.6 Structure of CyMe4-BTBP [7] 
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2. Tri-Butyl Phosphate or TBP; known to extract tetra- and hexavalent actinides 

(PUREX process) (figure 1.7) [7]. 

 

Figure 1.7 Structure of TBP [7] 

Combining processes 1+2, there is no need to adjust actinide oxidation states  

This will be achieved by extending the current PUREX process by adding on 

downstream other solvent extraction technology such as: 

• Group ActiNidE EXtraction (GANEX) is a two extractant system aimed at replacing 

PUREX, without the separation of uranium and plutonium, i.e. more proliferation 

safe – no pure plutonium stream (Homogenous) (figure 1.8) [8]. The aim is to extract 

all the actinides as a group directly from dissolved used fuel. 

 

 

Figure 1.8 GANEX process [7] 
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• DIAMEX/SANEX; this uses a Modified PUREX process upstream of the 

DIAMEX/SANEX solvent extraction circuit (figure 1.9). The main differences in the 

modified PUREX compared with the standard are: 

-  A specific Tc scrubbing cycle is incorporated 

- Co-extraction of Np with Pu and U 

 

Co-extraction of actinides and lanthanides using DMDOHEMA; 

 

 

Figure 1.9 DIAMEX/SANEX process [7] 

It is the development/introduction of GEN IV reactors systems, which offers an 

opportunity to reconsider the sustainability of the PUREX process. 

1.2 UCLan’s concept of advanced reprocessing  

Although well proven and predictable, the PUREX process is not without its challenges. 

The generation of significant quantities of highly active aqueous liquid, containing 

Fission products (FPs) and Minor actinides (MAs), the degradation of the solvent phase 

reagents and non-specific nature of the extractant Tri-Butyl Phosphate (TBP) may have 

contributed to only a fraction of the total annual output of irradiated fuel being 

reprocessed. The PUREX process or really the lack of specificity of TBP requires strict 

control of process conditions (flow sheet parameters) to ensure the decontamination of 

uranium and plutonium are achieved. In addition as the bulk of the heavy metals (U and 

Pu isotopes) are extracted from the aqueous phase into the organic phase requires 

appropriately sized, large, contactors. 
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It is the future nuclear waste management considerations coupled with a renaissance of 

reactor build that will promote greater reprocessing of irradiated fuel. To date (2016) 

about 90,000 te of fuel have been reprocessed of 290,000 te discharged from 

commercial power reactors; based on current reactors and projected reactor installations 

between now and 2030 some 400,000 te of used fuel will be generated worldwide [7]. 

By this date (2016), the PUREX process will be entering its ninth decade, certainly 

mature technology but could it be passed its ‘sell by date’? Any new process must 

overcome the PUREX challenges as well as offering some distinct advantages as both 

regulators and operators have become acclimatised to sixty-year-old technology.  

The concept developed at the University of Central Lancashire [9] is a radical departure 

from PUREX and will offer many advantages as described later. It is based on the 

separation of FPs and MAs from uranium and plutonium isotopes using Continuous 

Chromatographic (CC) separation. 

Chromatography comprises of two distinct components: 

1. The mobile phase, and 

2. The stationary phase 

 

In developing an alternative to the PUREX process, both components will require 

significant effort. 

 

1.2.1 Mobile phase 

The composition of the mobile phase will be dependent on the upstream operations, i.e. 

dissolution and downstream, post separation circuit requirements such as waste 

management. At this stage of the development of this alternative PUREX process, a 

nitrate base system is under consideration, but this does not exclude other aqueous 

systems. Nitrate based systems have several advantages, for example: 

• UCLan’s technology could fit upstream to a PUREX process, having removed a 

significant radiation source (Cs and Sr) thus reducing solvent degradation 

• Recovery of uranium as an oxide is relatively easy by thermal denitration.  

As discussed later the concentration of U and Pu of the separation process feed liquor 

will not dominate the continuous chromatography process conditions unlike the PUREX 

process.  

The head-end operations of the PUREX process involve the de-cladding of the 

irradiated nuclear fuel which is then dissolved in hot acid (nitric acid preferred but 
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sulfuric acid could be considered in the UCLan process) to produce a uranium solution 

of 100 – 300 g/l concentration with a free acidity of about 3 M (UCLan process will 

consider 0.5 - 3 M acidity). At this uranium concentration, some of the more important 

Fission products (FPs) and Minor actinide (MA) concentrations are reported in table 

1.1; these concentrations are based on a typical irradiated PWR 3.5 % U-235 fuel with a 

burn up of 33 GWd/t HM, cooled for 3 years.  

Table 1.1 Dissolver liquor concentrations [10] 

 

Radionuclide 

Approximate 

Concentration 

(g/l) 

U 300 

Y and lanthanides 3.5 

Pu 3.2 

Ru, Rh, Pd 1.3 

Zr 1.2 

Mo 1.1 

alkali metals 

(Cs, Rb) 

1 

alkaline earth metals 

(Sr and Ba) 

0.9 

Tc 0.260 

Am 0.200 

Np 0.150 

Se and Te 0.150 

Ag, Cd, Sn. Sb 0.030 

Cm 0.007 

 

 

1.2.2 Stationary phase   

A vast number of stationary phases have been developed for chromatographic 

separations but few, if any for nuclear reprocessing applications [11]. Both organic and 

inorganic ion exchangers have been used in chromatographic separations largely for 

nuclear waste management applications [12]. These exchangers have included 
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conventional polystyrene-divinely benzene copolymers with sulphonic acid groups, but 

the greater number has involved inorganic materials such as zeolites, hydrous oxides, 

titanates, phosphates, and silicates. Some have demonstrated very good separation 

factors for Cs and Sr from other radionuclides in highly active liquors [13, 14]; 

however, such liquors are depleted of uranium and plutonium isotopes, i.e. the major 

heavy metals.  

The separation of FPs and MAs will rely heavily on the selection/development of 

appropriate stationary phases; it is highly unlikely that a single stationary phase will be 

appropriate for all FPs and MAs. The three major characteristics that the stationary 

phases should exhibit are: 

• Stability to radiation  

• Acid stability, and  

• High selectivity for the FP and/or family of FPs and for a specific MA or family              

of MAs. 

The other, secondary, properties of the stationary phases are: 

• Availability 

• Cost 

• Durability i.e. low attrition  

• Appropriate physical properties such as size, density, porosity, surface area etc. 

• Appropriate chemical characteristics such as fast kinetics, reversible extraction, 

medium/high capacity for the appropriate radionuclide/s, etc. 

 

As the stationary phase will be subjected to high radiation fields whilst in contact with 

the dissolver liquor, and will increase as the radionuclide concentration of the stationary 

phase increases (i.e. the radionuclide/s will be concentrated when extracted by the 

stationary phase), it is unlikely that organic materials will be suitable due to radiolytic 

damage. This radiolytic damage will be true for certain FPs (high-energy gamma 

emitters), but not all (low-energy gamma emitters). This damage could be 

reduced/removed by first separating the offending radionuclides onto an appropriate 

stationary phase (stages 1 and 2 of figure 1.10) [9]. It is extremely unlikely that the 

stationary phases will be sufficiently effective to accomplish isotopic separation of a 

particular radionuclide and therefore in stage 1 short, medium and long-lived isotopes of 

a specific radionuclide will be removed. Thereafter for stage 3 and 4 organic polymeric 
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materials could be employed that have been functionalised with the appropriate ligand. 

Each stage is likely to involve more than one stationary phase for specific radionuclides. 

 

Each stage will consist of a series of columns or other contactor devices connected in 

series as illustrated in stage 1 (figure 1.10) [9]. For stage 1 and likely for stage 2, the 

first choice stationary phase could be based on modified silica, metal oxides, titanates 

etc. as these could satisfy most of the above conditions. 

In subsequent sections some of these stationary phases under consideration, particularly 

their preparative routes, are described in more detail. 

 

Figure 1.10 Proposed separation stages in UCLan’s concept [9] 

1.3 Continuous Chromatography 

Chromatography is one of the most relied upon technologies available to engineers and 

scientists in a variety of fields that include pharmaceuticals, forensics, environment, and 

energy. It has found uses in a wide range of applications where the separation of 

compounds would be incredibly difficult, prohibitively costly or due to the chemistry 

involved, impossible by other means. Continuous Chromatography is based on the 

principle of multiplication of single-stage separation factors by arranging the separation 

medium such that the products of one separation stage directly feed additional stages, 

thus significantly enhancing the degree of separation obtained (figure 1.11) [17]. The 

physical arrangement usually employed is to put the separation medium (typically an 

ion exchange resin) in a vertical column [15]. The feed solution enters from the top or 

bottom of the column where it attaches to the exchange sites of the resin. The 
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chromatographic process occurs as the ions to be separated are eluted preferentially 

through the column with a carefully chosen eluent. 

 

The single biggest challenge associated with chromatography has always been the 

inability of the technique to scale up from the laboratory scale to an industrial process; 

the major limiting factor being the continuous throughput ability of the technology [16]. 

 

To counter this issue, a number of attempts have been made towards developing a 

continuous chromatographic system. These have included; moving and approximated    

moving beds, counter flow, annular beds, radial flow, and disk chromatographic 

systems [15]. However, wide spread industrial use of these techniques is rare even 

within biological and organic applications and virtually non-existent in inorganic 

separations, in particular nuclear reprocessing.  

The first mention of continuous chromatography in the literature is attributed to Martin 

[16], who envisaged methods to move chromatography into the large scale, i.e. an 

industrial separation technique. The author described two methods in which this may be 

achieved which generally persist today; the first is a moving bed configuration in which 

the stationary phase is forced against the flow of mobile phase within a thin tube. If the 

mobile and stationary phase flow rate were balanced correctly, components with higher 

affinity for the mobile phase would be carried further with this than the stationary 

phase. Movement of the mobile phase is inherently plagued with hydrodynamic 

challenges; to overcome them a certain number of fixed beds are connected in series to 

form a closed loop, and the counter-current movement of the solid and liquid phase is 

simulated by periodically shifting the fluid inlets and outlets in the direction of the fluid 

flow i.e. Simulated Moving Bed (SMB) [17]. An example of a laboratory SMB reactor 

is shown in Figure 1.11.  
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Figure 1.11 Schematic representation of moving bed separation technique [17] 

The other idea was continuous annular chromatograph (CAC); it employs continuous 

feed and separation of several species simultaneously. The innovation is embodied in 

equipment that permits continuous feed and separation of chemical species on an 

apparatus consisting of an annular bed of adsorbent particles. The apparatus is rotated 

slowly about its axis while eluent and feed solution are fed into one end of the bed. 

Eluent is fed to the entire bed circumference while the feed mixture is introduced into a 

narrow sector of the circumference at a single point. Helical component bands develop 

with the passage of time extending from the feed point, with slopes dependent on eluent 

velocity, rotational speed, and the distribution coefficient of the component between the 

fluid and sorbent phases. The separated components are continuously recovered once 

steady state is attained as they emerge from the annular column, each at its unique 

position on the circumference of the annular bed opposite the feed end (figure 1.12) 

[19]. Separations can be carried out with simple or gradient elution, wherein the eluent 

concentration is changed [18].  
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Figure 1.12 Continuous annular chromatography [19] 

Current developments have largely concerned biological separations based on simulated 

moving bed (SMB), although there have been attempts to further promote CAC for both 

organic molecules (biotechnology and protein separations) and on a limited scale 

inorganic ions (metal) [19]. The practical applications, which have been reported 

generally, give very encouraging results with good separation and efficiencies 

equivalent to that of conventional batch chromatography [20]. 

1.4 Potential Stationary Phases 

1.4.1 Natural Ion Exchangers 

There are wide range of materials thoroughly researched but only few of them are 

commercially available. Only some inorganic, organometallic, organic type of materials 

have been described in this thesis as they have some of the required stationary phase 

properties; Materials that are not suitable are pharmaceutical ion exchange gels and 

liquid ion exchangers. There are different solid materials, which could be considered as 

a stationary phase as they function as ion exchangers and/or adsorbent.  

1.4.1.1 Natural Inorganic Ion Exchangers 

Many natural compounds such as clays (e.g. bentonite, kaolinite, and illite), vermiculite, 

and natural zeolite (e.g. analcite, chabazite, sodalite, and clinoptilolite) have shown 

some ion exchange properties.  

A short review was studied on application of natural zeolites for environmental 

remediation, which focused on use of clinoptilolite type of natural materials for 
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immobilization of radioactive caesium isotopes [21]. British Nuclear Fuels Limited. 

(BNFL) was the first organisation in the UK to make use of clinoptilolite to remove 

caesium and strontium from cooling pond water in the Sellafield Ion Exchange Effluent 

Plant (SIXEP) [22]. The removal of radioactive Cs-137 and Sr-90 isotopes using 

clinoptilolite from the environment post Three Mile Island and Chernobyl nuclear 

accidents and for the decontamination of waters was evaluated. The review also stressed 

their potential importance for the removal of heavy metals (e.g. Fe, Pb, Cd, Zn) from 

acid mine drainage [23].  

A different comparative study on natural zeolites such as clinoptilolite, chabazite, and 

mordenite was performed for their caesium uptake in low-level radioactive liquid waste 

with consideration of key parameters such as solution pH, contacting time, potassium 

ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. 

The study concluded that natural chabazite had the highest distribution coefficient and 

capacity for Cs ion compared to others [23].  

Another very interesting batch sorption study was conducted in Turkey for the treatment 

of radioactive liquid waste using natural zeolite, which focused on use of clinoptilolite 

for removal of Cs, Co, Sr, and Ag ions from radioactive low-level waste [24]. The study 

revealed that clinoptilolite had high selectivity for Cs and Ag ions. It also concluded 

that in the absence of potassium ions, it could potentially remove Co2+ and Sr2+ 

efficiently from the waste at pH value 6 to 10 [24]. General properties of this type of 

material are summarised in Table 1.2 (page 47). 

 

1.4.1.2 Natural Organic Ion Exchangers 

There are number of organic materials available with varied ion exchange properties 

such as polysaccharides (cellulose, algic acid, straw, and peat), proteins (casein, keratin, 

and collagen) and carbonaceous materials (charcoals, lignites, and coals) [25 - 32]. 

Although these materials have low ion exchange properties, they were nonetheless still 

evaluated as potential sorbents. General properties of these types of material are 

summarised in Table 1.2 (page 47). 
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 1.4.2 Synthetic Ion Exchangers 

Synthetic ion exchangers can be inorganic or organic polymer based materials, which 

are produced by varying process parameters such as nature of the chemicals species, 

altering pH, temperature, pressure, and use of catalysis etc.  

 

1.4.2.1 Synthetic inorganic Ion Exchangers 

1.4.2.1.1 Molecular Sieves and Zeolites 
Molecular sieves are generally porous solids with pore size of 0.3 - 2 nm in diameter, 

which are commercially mass produced for various applications. Zeolites, carbons, 

glasses, and oxides are a few examples of such materials. Zeolites represents the 

majority of molecular sieves in general.  

Zeolites are crystalline aluminosilicate based materials that can be classified based on 

Si/Al composition. There are four categories in general: (i) Low silica, (ii), 

Intermediate, (iii) High silica, and (iv) Silica molecular sieves.  

They are represented by empirical formula: 

M2/n O. Al2O3. ySiO2. wH2O 

Where   y is 2-200, 

        M is the cation 

                                  n is the cation valence, 

                                                       w is the water contained in the voids of the zeolite 

Zeolites are structurally complex crystalline inorganic polymers extended in three-

dimensional, four connected frameworks of AlO4 and SiO4 tetrahedra bridged to each 

other by sharing oxygen ions. Each AlO4 tetrahedron in the framework bears a negative 

charge, which is balanced by the extra framework cations. The whole zeolite framework 

contains crystalline channels that are occupied by cations (e.g. Na, K, Ca etc.) and water 

molecules. The cations in the voids can undergo ion exchange and water may be 

removed by heat. The crystalline channels can be one, two, or three-dimensional. 

There are more than 70 known and distinct framework structures of zeolites [33, 34]. 

Zeolite structures are made up of Aluminium oxide or Silicon oxide tetrahedra, 

assembled into secondary building units, which may be polyhedral such as cubes, 

hexagonal or octahedral.  
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The pore size of zeolites varies from 0.3 - 1 nm and pore volumes from about           

0.10 - 0.35 cm3/g [33, 34]. Typical pore size includes:  

(i) Small pore with eight ring pores; diameters of 0.3 - 0.5 nm (Zeolite A),  

(ii) Medium pore with 10 ring; pores size of 0.6 - 0.8 nm (ZSM-5),  

(iii)Large pore zeolite with 12 ring; pore size of 0.6 - 0.8 nm (zeolite X, Y)  

(iv) Extra-large pore with 14 ring pores (UTD-1) 

 

(i) Preparative routes for synthesis of zeolites and molecular sieves  

There are numerous publications available from International Zeolite Association for 

the different strategies and preparation routes for Zeolites. They are far too extensive to 

summarise all of them in the thesis and hence, this chapter focuses on general and 

commonly used commercially available zeolite synthesis and factors that are important 

during synthesis.  

Typical aluminosilicate zeolite synthesis includes silica as feed material in the form of 

sodium or other alkali silicate solutions, precipitated, colloidal, or fumed silica or 

tetraalkylorthosilicate (alkyl = methyl or ethyl) and certain mineral silicates such as clay 

and kaolin. Alumina is in the form of sodium aluminate, aluminium sulphate solution, 

hydrous aluminium oxide, aluminium nitrate, or aluminium alkoxides. High purity 

reagents are frequently used. In general, water is used as solvent to solubilise all the 

primary oxide components. The two solutions (Si and Al) are mixed together with 

controlled agitation that results in the zeolite gel. Depending on the desired zeolite, 

sometimes the gel is aged at mild temperature to allow initial nucleation of the system. 

The mixture is then digested in a stainless steel autoclave at higher temperature 

(between 50 - 200 °C for a specific period (usually 3 - 7 days) until the desired level of 

product crystallinity is obtained. The digested zeolite gel is washed with sufficient 

amount of distilled water and then air dried subsequently. 

(ii) Important factors during synthesis 

The order of mixing various reagents into the gel stage can be critical. One order of 

mixing may give a coarse slurry while a reversed order of mixing the same reagent may 

give a thick gel.  

The agitation speed of the reaction mixture may result in undesired phase due to non-

uniform nucleation conditions, which can promote potentially an amorphous structure, 
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or particulate material, or unexpected morphology. The method of heating a reaction 

mixture can also be a critical factor.  

Water stoichiometry in a resulting gel can be critical to produce desired phase and 

crystal size and product morphology. Water solubilizes the reagent mixture to a 

different degree, develops the concentration and pH, which influence the nature of the 

framework, and aids in ultimate stabilisation of the crystalline microporosity by 

coordinating with charge balancing cations in the final product and by void filling part 

of the resulting microporosity.  

The final pH is also very critical factor during synthesis, since hydroxide ions are 

involved into fulfilling mineralizing and complexing role in crystallization.  

Filtration and washing of zeolites can also be very important step during zeolite 

synthesis. The aim of this step is to separate crystalline products from mother liquor and 

washing of the material for further use. It is important to note that over washing results 

into decationisation, which involves replacement of cations with H3O+. This may affect 

the product efficiency in various applications. General properties of inorganic resins are 

summarised in Table 1.2 (page 47) 

1.4.2.1.2 Advanced Synthetic zeolites 

Numerous synthetic zeolites have been studied and many review articles have been 

written. This section of the chapter has focused on materials with potential application 

to nuclear reprocessing. 

(i) Crystalline SilicoTitanates (CST) 

Silicotitanates are engineered to adsorb strontium ions from high alkaline nuclear 

wastes. The preparation method is similar to other zeolite preparation as mentioned 

previously where reaction mixture contains titanium source and a silicon source 

followed by hydrothermal treatment to allow these reaction mixtures to form 

silicotitanates composition. The titanium source is from titanium alkoxides, titanium 

halides, and titanium oxides. The silicon source could be silicon alkoxides, colloidal 

silica, silicon oxides, sodium silicates etc. [35, 36].  

The advancement in silicotitanates affinity for important fission products such as 

caesium and strontium was achieved by preparing crystalline silicotitanates [36]. 

Further advancement includes incorporation of transition metals such as niobium to 

improve uptake of radioactive caesium and strontium in high acidic media [36]. 
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(ii) Zirconium phosphates (ZrP) 

Zirconium phosphates are another important type of zeolite for nuclear waste treatment 

due to their acidic nature, high thermal and chemical stability, resistance to ionizing 

radiation, and capacity to incorporate different type of metal ions with different sizes in 

their structure [37, 38]. The first characterisation of this kind of zeolite was performed 

by Clearfield and co-workers and subsequently their structure, ion exchange capacity 

etc. were studied [37]. Most of research focused on two type of zirconium phosphates; 

alpha (α) and gamma (γ) with formulas α-Zr(HPO4)2.H2O, and γ-ZrPO4(H2PO4).2H2O 

respectively [37]. Advancement of synthesis techniques and modifications were 

undertaken on this type of materials, which resulted in various applications in catalysis, 

nanocomposites, nuclear waste management, and drug delivery etc. 

(iii) Ammonium phosphomolybdates (AMP) 

This inorganic ion exchanger can be synthesised by heating ammonium molybdate in 

phosphoric acid and nitric acid. There are numerous examples of their application as a 

very strong caesium adsorbent in acidic media, a key feature for caesium separation in 

nuclear waste [39, 40]. The main benefit of this inorganic material is that it is soluble in 

solution pH value >4 and consequently it is most suitable for separation in acidic media. 

Captured caesium can be easily removed from the zeolite matrix by concentrated 

ammonium salt solutions (NH4NO3, NH4Cl etc.) [41]. 

(iv) Transitional metal cyanoferrates  

Cyanoferrates have been widely demonstrated by various research groups for their 

strong affinity for caesium in low pH from 1 - 5 [39, 42, 43]. Numerous attempts have 

been made to improve their ion exchange capacity by incorporating transitional metal 

ions such as nickel, cobalt, zinc etc. [42 - 45] 

 

1.4.2.1.3 Mesoporous Inorganic Materials 

The development of porous materials with large surface area and slightly larger pore size 

(larger then zeolites) is currently an area of extensive research, particularly with regard 

to potential applications in adsorption, separation, catalysis etc. An upsurge began in 

1992 with the development of the class of periodic Mesoporous silica known as the 

M41S phase. This class of materials are characterized by very large specific surface 

areas, ordered pore channels, and well-defined pore size distributions [46 - 48]. 

Mesoporous materials have pore diameters from approximately 2 - 50 nm and exhibit 



43 

amorphous pore walls. The most well-known representatives of this class include the 

silica solids MCM-41 (Mobile Composition of Matter) which exhibits hexagonal 

structure; MCM-48, which is cubic, and MCM-50, which is a layered structure [46 - 48].  

  

 

Figure 1.13 Schematic representation of M41S family, MCM-50 (Layered), 

MCM-41 (hexagonal) and MCM-48 (Cubic) [46] 

The liquid crystal templating (LCT) mechanism was first proposed in 1991 by Mobile 

Corporation, in which use of surface directing agents such as surfactant micelles were 

used to form the mesoporous particles (figure 1.13) [47]. Since the evolution of these 

novel materials, there have been numerous studies to understand the templating 

mechanism. Templating is defined as a reaction in which organic species act as a mould 

on which oxide moieties organize into a crystalline lattice [46, 47]. Here, organic 

species are the templates and oxide moieties are the inorganic materials. Further, the 

templates in the structures can be removed which results into hollow inorganic 

crystalline structure [46, 47]. The typical mesoporous synthesis is generally carried out 

under high pH (9 - 11) where, cationic or neutral surfactant molecules, and anionic 

silicate species form hexagonal, lamellar, or cubic structures. 

Figure 1.14 illustrates the mechanism where micelle forms a rod shaped micelle and self 

assembles into hexagonal liquid crystals (multiple rods) when they reach critical micelle 

concentration (CMC). Further addition of inorganic species (e.g. silicate etc.) form two 

or three monolayers of silica, which spontaneously pack on the outer surface of 

hexagonal liquid crystal [47]. Further calcination (burning) of these templates results 

into highly ordered hexagonal structure with cylindrical pores.  
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Figure 1.14 Schematic representation of liquid crystal templating 

mechanism of MCM-41[47] 

 

Advancement in mesoporous materials 

Due to their periodic ordered porous structure and high surface area, there are numerous 

ways to manipulate their structure for more suitable applications. Mesoporous materials 

are largely used in catalysis, separation, and adsorption purposes.  

There are various ways these materials can be functionalised but here, the three most 

acceptable techniques are described suitable for nuclear applications.  

(i) One pot-functionalisation; the functional entity such as organic or organometallic 

molecule, nanoparticles, or ions are mixed with the precursors of the matrix which 

is then directly incorporated into the framework during synthesis. 

(ii) Grafting, where functional entities are anchored onto the surface of the voids via 

covalent or ionic interactions. Functional entities were mixed with matrix 

precursors 

(iii) Last approach is the one incorporation of ions into a porous matrix with the hope 

that enough ions will be present at the surface of the pore. 

Post synthesis grafting technique have been used very regularly in catalytic applications 

however, due to leaching effects of this method in harsh conditions, such as nitric acid 

its potential application is limited for nuclear waste separations [48]. 

1.4.2.2 Synthetic Organic Ion exchangers  

These are the largest group of ion exchangers commercially available today for a variety 

of application. Their structure of is made of hydrocarbon chains, which are randomly 

networked. This flexible network carries ionic charge at various locations. Extensive 

researches resulted in an insoluble resin by cross-linking hydrocarbon chains.  
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The degree of cross-linking plays a very crucial role since it determines the mesh width 

of the matrix, swelling ability, ion movement, hardness, and mechanical durability [49 - 

54].  

The properties that influence ion exchange are: 

• The solvent polarity, 

• The degree of cross linking, 

• The exchange capacity, 

• The size and extent of the solvation of counter ions, 

• The concentration of the external solution, 

• The extent of the ionic dissociation of functional group 

General properties of organic resins are summarised in Table 1.2 and the main groups of 

synthetic organic ion exchangers are mentioned below. 

(i) Polystyrene divinylbenzene 

This is the most common form of ion exchange resin available with a range of 

applications. This is based on co-polymer of styrene and divinylbenzene [51]. The 

degree of cross-linking is the most critical factor for their synthesis and it can be 

adjusted by varying the divinylbenzene content and expressed as the percentage of 

divinylbenzene in the matrix. Lowering the amount of cross-linking results in softer 

resins, which swell strongly in solvents [51].  

The main advantage of this type of resin is that fixed ionic groups can be introduced in 

the matrices to create a cation and/or anion ion exchanger. A variety of cation and anion 

functional groups such as –SO3H, -NH3
+ or –N2

+ where, H+ and OH- become mobile or 

counter ion respectively [51]. 

(ii) Phenolic  

Phenolic resin is formed from carbon based alcohol and aldehyde [52]. Formaldehyde is 

the most common raw material for this type but other related chemicals can be used. 

The phenolic structure allows molecules to link to other molecules at selected sites 

around the ring. A functional group aldehyde allows bridging other molecules and 

creates regular pattern or phenol groups. The phenolic –OH groups are very weak acid 

exchangers. Sulphonation of the phenol prior to polymerisation usually used to increase 

the acid strength. The degree of cross-linking is achieved by the amount of 

formaldehyde used in synthesis [52].  
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This resin is hard, heat resistant, and can be mixed with a wide range of materials for 

variety of uses [52]. 

(iii) Acrylic 

This type of resin is prepared by co-polymerisation of acrylic or methacrylic acid with 

divinylbenzene [53]. This resin has excellent transparency, durability, and resistance to 

heat, weather, chemical, water and hence; it has broad range of applications including 

moulding materials, coatings for automotive, architectural, plastic etc., binders for 

paper/fibre, display windows for cellular phones and backlight for liquid crystal 

displays (LCDs) etc. [53]. 

 

1.4.2.3 Organic- Inorganic ion exchangers 

The combination of the properties of organic and inorganic building blocks within a 

single material is particularly attractive because of the possibility to combine the 

enormous functional variation of organic chemistry with the advantages of a thermally 

stable and robust inorganic substrate. The symbiosis of organic and inorganic 

components can lead to materials whose properties differ considerably from those of 

their individual, isolated components. Adjustment of the polarity of the pore surfaces of 

an inorganic matrix by the addition of organic building blocks extends considerably the 

range of materials that can be used for example in chromatography and ion sensing 

devices [54]. 

 

These techniques will be considered simultaneously with selection of the functional 

group and the appropriate combinations tested. There have been many cases where large 

organic molecules such as calixarenes and crownether complex have been incorporated 

by either Post-synthetic functionalization of silica (“Grafting”) or Co-Condensation 

(Direct Synthesis) into/onto a silica substrate [49, 55].  

 

These hybrid resins are in fine powder form or bead shaped structures made with 

interconnected porosity, similar to sponge. All the pores are uniformly functionalised 

with ion specific organic ligands such as calix-crown complex, Tri-Butyl Phosphate 

(TBP) and 2, 6 –bis-(5, 6-dialkyl-1, 2, 4-triazin-3-yl) pyridine (BTP) which contains 

hydrophobic cavity suitable to capture different ions in aqueous solutions [56 - 59]. 
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Table 1.2 Summary of general properties present in various ion exchangers 

 

Property 

Adsorptive material 

Natural Synthetic  

Inorganic Organic Inorganic Organic Organic-

inorganic 

Acid stability      

Radiation Stability      

Selectivity      

Capacity      

Mechanical Stability      

High Temperature 
stability 

     

Rate of uptake      

Ease of preparation      

cost      

Availability      

 

1.5 Aims and Objectives 

The research will encompass the preparation and characterisation of solid materials with 

selective cation exchange properties for the removal of fission products from nitric acid 

solutions.  

To achieve these objectives the research programme will address: 

1. Simple and low cost preparative routes that produced materials that have 
engineered pore size and surface area, 

2. The potential of modified silica templates and/or composite materials, 
3. Materials that have ion exclusion, affinity or ion selectivity properties or a 

combination, 
4. Preparation of granular solid materials and/or spheres that have high cation 

selectivity and capacities and are nitric acid resistant, 
5. Selective removal of Cs and Sr ions from stimulated PUREX spent fuel 

dissolver liquor, 
6. The use of Ce (IV) ions as surrogate for Pu and U. 
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Chapter 2 

Literature review for Cs and Sr removal 

 

2.1 Literature review for Cs and Sr removal 

This chapter is focused on different examples and discussion of both inorganic and 

hybrid (organic-inorganic) materials used for removal of Cs and Sr in nuclear waste.  

A comparative study was performed on commercially available zeolites such as 13X, 

AR-1 (mordenite), 4A and ZSM-5 to study their caesium removal performance in acidic 

waste. The study was performed in batch and column to measure their uptake 

performance [1]. The study concluded that zeolites 13X and 4A had shown good Cs 

uptake in pure solutions, however, they were not effective for the treatment of actual 

waste and were not suitable in acidic solutions with pH 2 or lower. AR-1 (mordenite) 

had shown good selectivity for Cs in actual waste consisting of low dissolved solids 

content but not effective in high dissolved solids contents. ZSM-5 was found very low 

ion exchange capacity for Cs in this study [1].  

Natural zeolite, clinoptilolite has been used post various nuclear disasters such as Three 

Mile Island and Chernobyl where Cs and Sr were removed from the environment [2, 3]. 

Sellafield’s ion exchange effluent plant (SIXEP) used clinoptilolite to reduce Cs and Sr 

in the final discharge of nuclear waste to the Irish Sea previously [4]. 

A very comprehensive study of various titanosilicate materials (ETS-4, ETS-10, CST, 

AM-2, AM-3, AM-4, etc.) was undertaken to influence physical parameters, chemical 

composition, and modification, structure, and uptake properties [5]. The detailed study 

concluded that various titanosilicate materials display very high ion exchange capacity, 

resistance to high irradiation doses (up to 200 kGy), have remarkable uptake capacity 

for various radioactive cations, which does not depend on their ionic radius, hydration 

energy, electropositivity etc., and has shown fast sorption kinetics. The investigations 

also pointed out possible limitations such as high operation and manufacturing costs 

compared to the cost of other natural inorganic ion exchangers, titanosilicates limited 

their potential application [5]. 
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Crystalline silicotitanates (CST) have shown remarkable uptake and capacity for Cs and 

Sr ions from radioactive wastes [6, 7]. The study investigates the synthesis, 

characterisation, and ion exchange properties of crystalline silicotitanates (CST) and 

niobium substituted crystalline silicotitanates (Nb-CST). The study pointed out that the 

morphology of these materials were crystalline with bright cubic and rod shaped 

crystals with varying amounts of Ti, Si, Nb, and O. The result of the study concluded 

that rate of uptake for Sr for both materials was similar however; Nb-CST had slightly 

slower kinetics for Cs compared to Sr kinetics. Hence, promising ion exchanger for 

removal of Cs and Sr from radioactive nuclear waste [6, 7]. 

IONSIV IE-911 molecular sieves are a similar type of crystalline silicotitanates, which 

are currently commercially mass-produced by UOP and originally developed by Sandia 

National Laboratories, USA. This type of material was synthesised by partially 

replacing titanium (Ti) with niobium (Nb), typically called Nb-sitinakite which has very 

strong affinity for both Cs and Sr ions [8, 9]. The research was undertaken to show the 

effect of Na, K, Ca, Mg, and Ba ions on rates of uptake and uptake measurement of 

trace concentration of Cs and Sr onto this type of ion exchanger [8]. The first part of the 

study concluded that the rates of uptake for both Cs and Sr ions were very similar but 

rates of exchange were little affected by pH [8]. The second part of the study focused on 

uptake measurements of Cs, Sr ions, which concluded that uptake of Cs was greater on 

Na/H3O+- Nb-Sitinakite than its Na form, and in contrast, Sr uptake was greater on Na-

Nb-Sitinakite than its Na/H3O+ form [9]. The presence of K, Ba, Mg, and Ca ions had 

very little effect on uptake performance of this type of material [9].  

Various studies have been undertaken to make AMP silica composite, which have 

shown very good selectivity and remarkable uptake for Cs ions in various acidic 

conditions [10 - 14]. A study on Cs ions sorption onto AMP-Silica gel concluded that 

the synthesised composite was crystalline in nature, possessed good acid stability and 

very high selectivity and favourable Cs sorption capacity [10]. A similar study was 

performed to make AMP-Silica gel into bead shape composite for column operation 

[11]. The experiment predicted that the composite’s lengthy separation time for caesium 

from highly concentrated nitric acid (5 M) would be a disadvantage. The adsorbed 

caesium could be removed by simply washing the column by distilled water and 5 M 

ammonium chloride. The study also indicated that the composite had shown maximum 

rate of exchange at 80 °C [11]. Another bead shape composite has been studied which 

involved aluminium instead of silica as support and AMP for selective chromatographic 
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separation of caesium from barium ions [12]. The study suggested that the composite 

was stable up to 6 M HNO3 and NH4NO3 solution. The optimum sorption capacity in 

column operation was found in 2 M HNO3 [12].  

Different studies have been undertaken to make mesoporous zeolite in which AMP was 

incorporated into MCM-41 type inorganic materials [13, 14]. The study used self-

assembling route to synthesise MCM-41, which was further studied for its sorption 

capacity of lead, copper, and cadmium mixed ions aqueous solution. The study 

concluded that the composite had shown the highest selectivity towards lead in multi-

element system [13].  

A different approach to incorporate various heteroatoms into mesoporous MCM-41 and 

measurement of cations uptakes in various conditions has been reported. Part one of the 

series was to demonstrate one pot synthesis method of silica MCM-41 incorporating 

various hetero ions (Al, B and Zn), and their characterisation [15]. Part two of the series 

focused on determining possible cation selectivity [16] which was followed by 

measurements of uptake of Cs, Sr and Co ions in simulated ground water, with 0.1 M 

HNO3, 0.1 M NaNO3 and 0.1 M HNO3/ NaOH media [17]. The research concluded that 

a one pot synthesis method was successfully employed to incorporate various hetero 

ions into the MCM-41 structure. The uptake studies of fission products suggest that 

only aluminium containing MCM-41 structure has ability to take up a small quantity of 

caesium ions from the aqueous media. The distribution coefficient studies of strontium 

in Si-MCM-41 showed remarkable uptake in pH value 6-8. Similar result was obtained 

in boron incorporated MCM-41. Zn incorporated material showed best performance in 

0.1 M NaNO3/OH however, no uptake was observed in presence of HNO3 [18, 19].  

Numerous studies have shown possibilities of impregnation of mesoporous materials 

with organic materials such as calixarenes, crown-ethers etc. to selectively remove Cs 

and Sr ions from the acidic media. However, their leaching and expensive synthesis 

procedures make them unsuitable for nuclear reprocessing and decontamination 

applications [20 – 22].  

Selective separation of caesium ions from high level liquid waste using calix[4] + 

Dodecanol impregnated on silica surface showed excellent Cs ions adsorption compared 

to other metal ions. The research reported that the separation factor of Cs ions increased 

with increasing HNO3 strength and found the optimum at 4 M [20].  
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Similar research was done by impregnating 1,3-[(2,4-diethylheptylethoxy)oxy]-2,4-

crown-6-calix[4]arene (Calix[4]arene-R14) and methyloctyl-2-di-methylbutanemide 

(MODB) into the pores of silica gel for selective absorption of caesium from other 

metal ions in acidic media [21]. The result suggested that the optimum uptake of Cs ions 

was found in 3 M HNO3 [21]. Similar to above ligands, macrocyclic ligand cis-

dicyclohexano-18-crown-6 (cis-DCH18C6) was investigated to absorb Sr ions from 

high-level waste [22]. The study concluded that impregnated ligand had very high 

adsorption capacity and selectivity towards Sr ions in HNO3 [22]. 
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Chapter 3 

Characterisation and experimental methods 

 
3.1 Instruments 

Table 3.1 List of instruments, manufacturer, models, and software 

Instruments Manufacturer Model Software Location 

XRD Bruker D2 Phaser DIFFRAC.EVA
v3.0 

Coventry, UK 

 

29Si NMR 
 

Bruker 
Multinuclear 400 

MHz NMR 
 

 
TopSpin  

Coventry, UK 

Gas sorption Micrometrics ASAP2010 ASAP2010 
v5.02 

Hertfordshire, UK 

SAXS Anton Paar SAXSpace SAXSdriveTM  St Albans 
SEM FEI  Quanta 200 XTMicroscopeC

ontrol 
Eindhoven, ND 

ATR-IR Thermo scientific Nicolet IR200 OMNIC Warrington, UK 
TEM JEOL JEM200EX Gatan Digital Hertfordshire, UK 
TGA Mettler Toledo TGA 1 STAR Default 

DB V13.00 
Leicester, UK 

ICP-MS Thermo Electron 
Corporation 

X Series Plasma Lab Warrington, UK 

Laser 
Diffraction 

Malvern Master sizer 
2000 

- Malvern, UK 

Stainless steel 
autoclave 

Parr Model No 
4748 

 Stockport, UK 

Water bath 
Shaker 

Jalubo SW22 - Peterborough, UK 

Balance VWR LA314i - Lutterworth, UK 
Furnace Vecstar Ltd Temperature 

controller 
- Chesterfield, UK 

Pipettes Bioline Biopette  - London, UK 
pH meter Hanna 

Instruments 
HI 2215 - Leighton Bizzard, 

UK 
Conductivity 

meter 
Jenway 470 - Stone, UK 

Oven Binder - - Bedford, UK 
Hot Plate and 

stir plate 
IKA C-MGG HS7 - Staufen, DE 

Peristatic 
pump 

Watson Marlow - - Cornwell, UK 

Water Bath Clifton - - Somerset, UK 
Centrifuge Jouan B4 - Newport, UK 
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3.2 Analytical Techniques  

3.2.1 Powder X‐Ray Diffraction Spectroscopy (PXRD) 

X-Ray diffraction has been widely accepted as an analytical technique to characterise 

different materials at atomic level [1, 2]. This technique has been developed in past 100 

years based on the understanding that the wavelength of the x-rays are in order of 1Å, 

which are scattered from atoms to produce a diffraction pattern when subjected to a 

radiation beam [1]. The pattern is the product of scattered x-rays by a periodic array 

with long-range order, producing constructive interference at specific angles [1, 2]. The 

basic understanding was explained by Bragg who established the relationship between 

the crystal structure and diffraction pattern since termed as “X-ray diffraction” (XRD) 

[1, 2].  

Bragg’s Law 

Bragg diffraction occurs when radiation, with wavelength comparable to atomic 

spacing, is scattered in a specular fashion by the atoms of a crystal system and 

undergoes constructive interference. Bragg’s 

law is represented as; 

nλ = 2dhklsinθ……...... Equation 3.1 [1] 

Where, n= 0, ±1, ±2, ±3…    

 λ = Wavelength of the x-ray 

dhkl = Spacing between  

crystallographic plane  

θ = diffraction angle  

                Figure 3.1 Bragg’s Law [1] 

The technique is extremely useful for crystalline materials as each material has its own 

specific crystal structure, which can be compared with library of such patterns to 

identify the crystalline phase. It can also be useful in identifying the unit cell 

parameters, crystal structure, crystallite size etc. [1, 2].  

Figure 3.2 represents the basic construction of typical XRD instrument. A typical XRD 

experiment includes five major steps. (1) Sampling, (2) X-ray production, (3) 

diffraction, (4) detection, and (5) interpretation. 
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Figure 3.2 Basic construction of typical XRD instrument [1] 

Experimental procedure  

The powder samples were ground lightly in a pestle and mortar; the resulting powder, 

approximately 5 mg, was densely packed into a sample holder and the surface was 

smoothed by a clean flat glass slide. The experiment was performed on Bruker D2 

Phaser, which uses X-ray generator producing monochromatic Kα X-rays from a copper 

source (wavelength 1.54 Å) along with nickel filter. The instrument operating 

conditions were set at 30 kV, 10 mA and with the step width 0.02° at room temperature. 

To analyse various samples, scattered x-rays were allowed to pass through 0.1 mm and 

0.6 mm divergence slit for mesoporous MCM-41s (chapter 4) and zeolites (chapter 5) 

respectively. The LYNXEYE detector (provide by Bruker) was used to collect scattered 

radiation from the samples and software DIFFRAC.EVA v3.0 was used to report high 

quality data. The data was collected between 1.5 - 40° and 5 - 90° 2θ region for     

MCM-41s and zeolites respectively.  

 

3.2.2 Small Angle X-ray scattering (SAXS) 

SAXS is a non-destructive technique, which works on a similar principle as XRD and 

enables the study of correlations at the mesoscopic scale. SAXS is a technique 

performed on liquid and/or powdered sample between 0.3 - 10° 2θ region [2]. In a 

typical SAXS experiment, an X-ray beam is bombards on the sample, which interacts 

with electrons of the sample and is subsequently scattered [2]. The detected scattering 

pattern at low angle can be used to determine the size, shape, internal structure, and 

porosity of the sample.  
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The detected scattering pattern is generally represented as scattering vector q and the 

equation is represented as  

…………………………………………………………Equation 3.2 [2] 

………………………………………………………………Equation 3.3 [2] 

Where, q = scattering vector, 

             θ = scattering angle, 

             λ = Wavelength of the x-ray 

            d = change in the electron density  

  Figure 3.3 represents the difference between two techniques (SAXS and XRD).  

  
Figure 3.3 Difference between SAXS and WAXS (XRD) techniques [2] 

Experimentation  

SAXS analysis was performed on Anton Paar SAXSpace instrument by Dr Amin 

Dilmaghani in School of Food Science & Nutrition, University of Leeds. Synthesised 

mesoporous zeolite samples (chapter 5) were deposited on the sample holder and 

scattering pattern was analysed by SAXSdriveTM software. The instrument parameters 

were set as following:  

Table 3.2 SAXS experiment set up parameters 

Measuring temperature 25 °C 

Acquisition time 300 Seconds 

Number of frames 3 

Vacuum 1.4 mbar 

Wavelength 1.54 Å 

Voltage 40 kV 

Current 50 mA 
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3.2.3 Surface area and Pore analysis 

Surface area and texture (pore size, volume, and shape) of materials are fundamental 

properties to analyse in material science, the surface properties can be analysed by 

various adsorption techniques such as gas sorption and non-wetting method (mercury 

porosimetry) [3]. Gas sorption is a widely acceptable technique due to its versatile use 

to characterise wide range of pore sizes (micro-, meso-, and macropores), non-

destructive and cost effective method [3]. Various gases (e.g. argon, krypton, nitrogen) 

can be used depending on the nature of the material [3]. Nitrogen (N2) gas sorption has 

been used for the analysis of various materials in this thesis.  

Adsorption is a consequence of the field force at the surface of the solid (adsorbent), 

which attracts the gas molecules (adsorbate) [3]. An adsorption isotherm is produced, 

by varying the partial pressure of the gas, which reflects the adsorption of the gas on the 

surface of the material. This technique is crucial for characterising various information 

such as surface area, pore size, pore size distribution, pore shape, and pore volume.  

Figure 3.4 (a) represents six common types of gas sorption profiles as classified by 

IUPAC [4]. Type I and IV (represents microporous and mesoporous respectively) are 

the most relevant types for this thesis. Type I isotherm, for pore sizes of less than 2 nm 

in diameter reflects adsorption of a high volume of N2 at very low relative pressure     

[3, 4]. Type IV represents an isotherm of mesoporous materials, which have pore 

diameter of    2 - 50 nm [3]. This isotherm is similar in profile to isotherm I until point 

B (figure 3.3 (a)) which then further extends with a loop profile at higher relative 

pressure. This is called “hysteresis loop” [3, 4]. Figure 3.4 (b) represents 

adsorption/desorption at various stages of a cylindrical-shape mesopore. The gas 

sorption in mesoporous materials are initiated by the formation of an adsorbate 

monolayer across the surface, which results in a rise in adsorbed volume (stage A). 
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(a) 

 
(b) 

Figure 3.4 N2 gas sorption, (a) six types of adsorption isotherm, and (b) hysteresis 

loop of type IV isotherm [3]   

Further increase in the relative pressure, results in multiple layer adsorption on the 

surface due to large pore size (stage B). After reaching a critical point (stage C), 

capillary condensation takes place (transition from stage C to D). Stage D represents the 

position where the pore is completely filled. Stage E is the representation of cylindrical 

pore with both ends open. Pore evaporation begins by lowering the relative pressure 

(Stage E-F). The point at which the loop ends corresponds to the multilayer. The 

occurrence of the hysteresis loop is due to condensation at both ends of the pore at 

different relative pressures. The loop will be absent in the situation where one end is 

open and the other is closed since condensation takes place at only one end (open end) 
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which further expands to the end of the pore. The process occurs at the same relative 

pressure hence no hysteresis loop [3, 4]. 

3.2.3.1 Brunauer-Emmett-Teller (BET) Method  

Brunauer, Emmett, and Teller, first explained the Langmuir’s theory to multilayer 

adsorption [3]. The theory assumes that the uppermost layer of the adsorbed gas 

molecules are in equilibrium with the vapour. In other words, there is always an 

equilibrium between layers and vapour despite the number of layers and the number of 

adsorbed molecules in each layer.  

The equation for BET is presented as,  

 ………………………….. Equation 3.4 [3]  

Where,   ϑ = number of moles adsorbed 

            p/p0 = relative pressure 

              ϑm    = monolayer capacity  

All the surface area measurements were calculated by using equation 3.4 

 

 

 

3.2.3.2 Barrett-Joyner-Halenda (BJH) Method 

The pore analysis of various mesoporous materials were calculated by Barrett-Joyner-

Halenda (BJH) method. The method is based on the modified Kelvin equation (3.5) 

which examine the correlation between pore diameter and pore condensation pressure, 

i.e. Pore diameter (Dp) is directly proportional to relative pressure (P/Po) [3]. 

 The pore size and pore size distribution of all the materials studied were analysed by 

this method.  

        …………………………………………. Equation 3.5 [4] 

 

 

 



68 

Where, R = universal gas constant, 

           γ = surface tension 
 Ө = contact angle of the liquid against the pore wall 

  Δ ρ = change in the density 

 T = temperature  

 rm = radius of the mean curvature 

            tc = statistical thickness prior to condensation  

 

3.2.3.3 Horvath-Kawazoe (HK) method  

The HK method is more suitable to analyse micropores (< 2 nm). The technique 

estimates the pore size distribution in microporous region by considering the relative 

pressure (P/Po) required for the filling of micropores [3]. In other words, micropores are 

progressively filled with an increase in adsorbate pressure.  

The pore size distribution of Zeolite 5A (chapter 5) were performed by this method.  

Experimental procedure  

The surface area and pore analysis was performed by Micromeritics ASAP 2010. All 

physisorbed species were removed from the adsorbent surface prior to the determination 

of the various properties, this was performed by using a small amount of sample (e.g. 

200 mg) that was carefully weighed in a clean glass tube with a stopper at the open end 

of the tube and outgassed at low pressure for 24 hours at 150 °C. The change in weight 

after degassing was used in calculating the various properties of the material using 

ASAP2010 v5.02 software (provided by Micromeritics) and data reported with ± 1% 

error.  

 

3.2.4 Attenuated Total Reflectance – Infrared spectroscopy (ATR ‐ IR) 

Infrared (IR) spectroscopy a vibrational spectroscopic technique based on the 

interaction between electromagnetic radiation and sample in the infrared region       

(4000 – 400 cm-1) [5, 6]. The technique is used to identify functional groups of 

materials as they absorbed IR radiation at selected frequencies, which corresponds to 
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vibration of bonds [5, 6]. The vibration in the functional group can be either stretching 

(changes in the bond length) or bending (change in the bond angle) [5, 6].  

ATR is a tool of IR spectroscopy, which measures the changes that occur in a total 

internally, reflected IR radiation when the beam of IR is exposed to a sample [5, 6]. 

Figure 3.5 represents the principle of ATR-IR spectroscopy.  

 

Figure 3.5 Principle of ATR-IR [6] 

Experimental procedure  

Nicolet IR200 from Thermo Scientific Instrument was used for qualitative analysis of 

functional groups of various materials. A small amount (~1 mg) of the sample was 

placed in a direct contact with a diamond crystal that has higher reflective index than 

the sample. The transmission of the reflected IR beam was recorded by the detector. To 

establish the consistency of the recorded data, a blank curve was recorded prior to every 

analysis followed by 64 scans on each sample and the reflected beam data analysed by 

OMNIC software.  

 

 

3.2.5 Scanning electron Microscopy (SEM) and Transmission Electron Microscopy 

(TEM) imaging 

SEM and TEM are two similar techniques, used to produce high-resolution images [7]. 

Both techniques produces an image by scanning and recording the scattered electrons 

from a thin layer of sample when bombarded with a beam of electrons.  

In a SEM imaging, secondary electrons (SE) and back-scattered electrons (BSE) are 

reflected form the sample and detected [7]. The most common technique is to detect SE 

which are low energy electrons emitted from the surface of the sample. The local 

variations in the detected secondary electron density produces the SEM image.  
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Figure 3.6 A schematic representation of Everhart-Thornley secondary detector in 

SEM [7]. 

SEM experimental procedure  

SEM imaging was performed on Quanta 200, SW39  with an Everhart-Thornley detector 

accompanied by XT Microscope Control software. Sticky carbon tape was placed on the 

specimen stub and a small amount of sample was deposited on the surface of the carbon 

tape, for AMPPAN composites, a bead was bisected to analyse the core morphology. 

The SEM imaging was performed under 3.4×10-5 Torr pressure and 20 kV conditions 

for all samples. The area of interest was focussed and images were recorded.   

In TEM, the scattered and un-scattered electrons transmitted through a thin layer of 

sample were analysed [7]. In the image, denser areas of atoms and heaver elements 

appear darker due to increased scattering of electrons [7]. This technique was used to 

produce images at nanometre scale.     

TEM experimental procedure  

TEM images were analysed by JEOL , JEM200EX with Gatan Digital software. A small 

amount of sample (a few particles) was suspended in 1 ml Eppendorf filled with 

absolute ethanol. The sample was prepared by placing a drop of this suspension on a 

carbon grid. The prepared grid was allowed to dry for 15 minutes and inserted into the 

sample chamber, which was under vacuum for analysis.  

3.2.6 Thermogravimetric analysis (TGA) and Differential Thermal Analysis (DTA) 

TGA is a technique, which monitors the amount and rate of change of mass of a sample 

as a function of temperature or time in a controlled environment [8]. The DTA is a plot 

of differential temperature against time, or temperature [8]. 
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The technique primarily is used to analyse composition of materials and predict their 

thermal stability within the required range (up to 1100 °C).  

A TGA instrument consists a sample pan that is supported on a precision balance. The 

sample pan placed in a furnace, which is linked with purge gas and sample gas inlets. 

The furnace is heated and cooled in controlled manner (i.e. 5 °C/min) up to the desired 

temperature. The sample gas is fed in a controlled manner (i.e. 20 ml/min) which 

regulates the furnace environment during the experiment and further purge gas 

(nitrogen) is used to prevent any contamination. The rate of change in mass upon 

heating is recorded by the balance and the weight loss data analysed. 

Experiment Procedure 

A TGA 1 from Mettler Toledo was used with data recorded on STAR Default DB 

V13.00. The ultra-micro balance was capable of 0.0025% and 0.005% weighing 

accuracy with a measurement range 1 µg - 5 g. The furnace chamber was purged with 

nitrogen gas for 5 minutes at 20 ml/min before and after each experiment. A known 

amount of sample was weighed in a 90 µl aluminium pan and the experiment was 

performed at 10 °C/min from 25 - 1000 °C in 20 ml/min airflow. For consistency the 

blank curve was produced which was deducted from the measured sample curve for all 

samples.  

3.2.7 Solid State Nuclear Magnetic Resonance Spectroscopy (NMR) 

Nuclear magnetic resonance, an analytical technique used to characterise structural 

arrangements (chemical bonds) in the sample. This technique is based on the principle 

that when a magnetic field is applied to a molecule, which contains a magnetic nucleus, 

a resonant electromagnetic field is produced, which is analysed [9]. The NMR is 

conducted on elements, which have an odd number of protons and neutrons such as 1H, 
11B, 13C, 15P, 19F, 29Si etc., this property allows a spin, or magnetic moment which can 

interact with an external magnetic field [9]. The recorded frequency can be further 

interpreted as spectra, often called chemical shift where characteristic peaks are 

identified according to their local magnetic field [9]. 

29Si NMR has been used for chemical analysis within the thesis (Chapter 4). 
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Experiment Procedure 

Analysis was performed on Bruker solid-state 400 MHz instrument. A small amount         

(1 mg) of sample powder was finely ground and packed tightly into the rotor. The 

sample was rapidly spun (7 kHz) at a magic angle (54.74°) with respect to magnetic 

field. The chemical shift was recorded and compared with other samples.  

 

3.2.8 Laser diffraction  

This technique is used to measure particle size distribution in the range 0.02 – 2000 µm 

by measuring the intensity variation of light scattered when a laser beam passes through 

a dispersed particulate sample [10]. In general, large particles scatter light at small angle 

and small particles vice versa [10]. Laser diffraction uses Mie theory of light scattering, 

which assists in the calculation of the degree of light scattered and produces a particle 

size distribution, based on an equivalent volume of a sphere [10]. 

Experiment Procedure 

Particle size distribution was performed on a Malvern Mastersizer 2000. A small 

amount of sample (~5 mg) was dispersed in deionised water (reflective index 1.330) in 

a 2 ml Eppendorf. A vortex mixer was used to disperse particles homogeneously, few 

drops of this prepared suspension was dropped into the sampling chamber, and particle 

size distribution was recorded which is an average of three measurements.  

 

3.2.9 Inductively Coupled Plasma Mass Spectrometer (ICP‐MS) 

ICP-MS is a multi-element analytical technique, which is capable of analysing very low 

concentrations of elements (ppb), based on the elements’ isotopic compositions [11]. 

Figure 3.7 represents a schematic diagram of the important components of ICP-MS. In a 

typical experiment, a small amount (10 µl) of sample diluted in ~1% nitric acid is 

introduced into the ICP via the nebuliser-spray. The plasma has a high electron flux and 

temperature, which act as both atomiser and ioniser on the sample. The resulting sample 

passes through a most common quadrupole mass spectrometer (MS). This MS acts as a 

filter, allowing the pre-selected mass/charge ratio of the element of interest to pass, 

which is eventually detected [11]. Diluted acidic sample (1% HNO3) was used due to 

high sensitivity of the instrument.  



73 

 

Figure 3.7 A schematic representation of ICP-MS [11] 

Experiment Procedure 

All measurements were carried out on Thermo Electron Corporation; X Series ICP-MS. 

Samples were prepared by measuring 10 µl aliquot using previously calibrated 

micropipettes and diluted in a 10 ml plastic tube. In order to ensure a consistency,     

100 µl of 1 ppm Be and Ba as internal standards for B and Cs, Sr and Ce measurement 

respectively was used. The remaining volume of the sample was made up by analytical 

grade 1% v/v nitric acid and shaken thoroughly.  

Prior to the measure of samples, the detection chamber was cleaned with 1% nitric acid 

followed by calibration for each ion of interest with a blank, which consisted of 100 µl 

of the respective internal standard and 1% nitric acid. The standards were prepared by 

estimating highest and lowest concentration of each ion in the solution and set as 0.5, 1, 

3, 5, 7, and 9 ppm. The regression analysis of this calibration curve was considered 

when r2 ≥ 0.998 for all the measurements in this thesis.  

Each sample was analysed three times and carried out in duplicate (n = 6 samples) for 

further consistency. The analytical procedure required for every third sample fresh 1% 

v/v nitric acid was sprayed into the instrument. All the results were reported with 95% 

confidence limit. The measured errors are very low and consequently no error bars are 

shown on the appropriate figures. 

The elemental analysis were performed on natural occurring isotopes; B-11, Cs-133,   

Sr-88, Ce-140, Ba-137, Be-9, Mo-95, and Al-27.  
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3.2.10 Uptake Measurements 

The performance of various synthesised materials was measured by contacting a known 

quantity of sample with single ions and mixed ion solutions of different nitric acid 

strength.  

In a typical nuclear waste,  

Cs+, Sr2+, and Ce4+ cations were selected as: 

1. Their chemistries and behaviour are different, 

2. Cs and Sr ions account for a significant amount of β/γ activity present in spent fuel 

dissolver liquor [13], 

3. Ce is a good inactive simulant for Pu and/or U in the PUREX process [14, 15]. 

Cs, Sr and Ce are present as Gp1, Gp2 and lanthanide elements respectively in the 

periodic table; consequently their hydrated ionic radii, complexation behaviour and 

general chemistry are different for example the Ce4+ forms relatively weak nitrato 

complexes in nitric acid solution (~1 M), with the Ce4+ ion predominating but with 

Ce(NO3)3
+  and Ce(NO3)2

2+ ions increasing in stronger nitric acid [12], neither Cs or Sr 

exhibit such behaviour.    

Caesium and strontium isotopes account for about 50% of the total activity (TBq/t) from 

fission products for 10-year cooled fuel, with a burn-up of 33 GWd/t [13]. At cooling 

times 10 - 1,000 years the activities of strontium-90, a strong β emitter with a half-life 

of 28.8 years, and caesium-137 with a half-life of 30.2 years, a strong β/γ emitter 

dominate among the fission products [13]. They are the two most important fission 

products when considering reagent stability in a reprocessing flowsheet. 

Cerium ions (3+/4+) have been used as a surrogate for Pu in a variety of studies ranging 

from reprocessing, fuel fabrication to waste management [14]. The liquid-liquid 

extraction of cerium ions from nitrate solution using Tri- Butyl Phosphate was well 

established even before the conception of the PUREX process [15]. 

The salts chosen to prepare the solutions for various batch studies were caesium nitrate 

(CsNO3), strontium nitrate (Sr(NO3)2) and ammonium cerium nitrate Ce(NH4)2(NO3)6. 

All the ion exchange work was performed in a non-radioactive environment.  



75 

The various stock solutions of different cations used along with different nitric acid 

strength are reported in table 3.3. 

Table 3.3 Composition of various cationic solutions 

Acidity 

(M) 

Single ion  Mixed 

ion CsNO3 Sr(NO3)2 (NH4)2Ce(NO3)6 

Weakly acidic (D.W)     

0.5     

1     

3     

 

Mixed ion solutions contained approximate 5 mM CsNO3, 5 mM Sr(NO3)2 and 50 mM 

(NH4)2Ce(NO3)6. 

Single ion solutions contained approximate 5 mM of respective nitrate salt. The stock 

solutions were prepared by dissolving relevant metal salt in relevant acidic or D.W 

media. The concentration of ions (Cs, Sr and Ce) were measured quantitatively by ICP-

MS, which were found as approx. 675 ppm for Cs, 450 ppm for Sr and between       

4300 - 6900 ppm for Ce. The elemental concentrations of the various solutions were 

achieved by dissolving appropriate qualities of respective salts in either HNO3 or in d.w.  

0.5 g sample of the synthesised material was contacted with 25 ml of chosen stock 

solution in a 50 ml Duran glass bottle. The bottles were placed in a water bath for            

24 hours at 25 °C. A sample of liquor was taken after 24 hour (assumes equilibrium has 

been attained) and analysed by ICP-MS.  

The result are reported by measuring the cation concentration of the stock solution and 

after equilibration with the exchange material. 

The distribution coefficient (Kd) was calculated by  

 (ml/g) …..……………………………………………… Equation 3.6  

The capacity (q) was calculated by 
 

  (mg/g) ………………………...…………………………. Equation 3.7 
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Where, Co = Initial concentration (ppm) 

             Ce = Final concentration (ppm) 

             v = volume of the liquor (ml) 

             m = mass of the sample (g) 

 

3.2.11 Rate of Uptake Measurements 

The cation rate of uptake measurement of the synthesised materials was performed in a 

similar manner as capacity measurement but 100 µl liquid samples were removed at 

specific times during the equilibration. These measurements were performed mainly on 

AMPPAN composites due to their high Cs capacity compared to other synthesised 

materials reported in this thesis.  

1 g of composite was contacted for 2880 minutes (48 hours) with 100 ml of 5 mM 

CsNO3 liquor in a 150 ml Duran glass bottle. The experiment was conducted in two 

groups, (1) different acidity (1 M and 3 M nitric acid) at 25 °C, and (2) different 

temperature (25 °C and 50 °C) in 1 M nitric acid. 100 µl liquid samples were removed 

after 10, 30, 60, 180, 1440 and 2880 minutes and the concentration of Cs ions 

determined. The rate of percentage uptake was calculated by setting the 48-hour Cs 

concentration as 100% uptake. 

The rate of uptake expression is represented as:  

....................………………… Equation 3.8 

Where, Kd = distribution coefficient (Equation 3.6) 

             t = sampling time (0, 10, 30, 60, 180, 360, 1440 minutes) 

 Kd 2880 = Kd value of sample 2880 minutes (48 hours) 
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Chapter 4 

Preparation of modified mesoporous MCM-41  

4.1 Introduction 

MCM-41 (Mobile Composition of Matter No 41) is often referred as a model 

mesoporous adsorbent. The main characteristics of MCM-41 are: 

 (1) it consists of an array of uniform hexagonal channels,  

(2) the pore length is greater than pore diameter,  

(3) the absence of pore channel intersections,  

and (4) it has high surface area and narrow pore size distribution [1-4].  

The only route to synthesise this type of material is by using templates or structure 

directing agents (SDA) [2, 4]. These templates can be anionic, cationic, or neutral 

surfactant or non- surfactant. The basic idea of preparing MCM-41 is to form a central 

structure about which oxide moieties organise into a crystalline lattice. Further, when 

the templates are removed it leaves behind a mesoporous skeleton.  

Researchers at Mobile Oil Corporation proposed a mechanism for how typical MCM-

41, assemblies of surfactant micelles (e.g. alkyltrimethylammonium surfactants) play a 

role of a template or SDA for the formation of mesopores [5]. In figure 4.1, pathway-1, 

rod shaped micelles self-organise into an hexagonal array, further condensation of 

silicate species (formation of a sol-gel) around templates results into hexagonal ordered 

rod-like structure [1]. In pathway-2, condensation of silicate species occurs before 

formation of hexagonal arrays and further self assembles, which leads to hexagonal 

structure shown in figure 4.1 and figure 4.2 [4]. It is very difficult to confirm by which 

pathway this material is synthesised. Further calcination of templates results into highly 

ordered hexagonal structure. 

 
Figure 4.1 Schematic representation of liquid crystal templating mechanism in two 

possible pathways [1] 
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Figure 4.2 Mechanism of formation of MCM-41[4] 

 

4.1.1 Role of surfactant during MCM-41 synthesis 

Surfactants or surface directing agents play a crucial role in the formation of 

mesoporous structure. A surfactant consists of a hydrophobic tail and hydrophilic head. 

At a low concentration, surfactant molecules carry very low energy hence exist as 

monomers. Further increase in concentration, these monomers self-assemble together 

and form micelles. The degree or point at which micelles form is called critical micelle 

concentration (CMC) [1, 3].  

The formation of a particular phase (hexagonal, cubic or lamellar) depends on the 

concentration of surfactant and the nature of the surfactants such as the length of the 

hydrophobic carbon chain, head group, and counter ions for ionic surfactants. It also 

depends on external factors such as pH, temperature, ionic strength, and other additives. 

It is important to note that in the case of MCM-41 structure formation, a high surfactant 

concentration, high pH, low temperature and slow silicate polymerisation leads to 

cylindrical micelles and hexagonal mesophase as shown in figure 4.3[1 - 3].  

The interaction of organic parts and inorganic parts play a very important role in the 

assembly [1]. There are various possible types of interactions depending on the charge 

of surfactant (S) S+ or S-, on inorganic species (I), I+ or I-, and the presence of mediating 

ions, i.e. X- or M+ as shown in figure 4.4 [1, 4] . The size of the pores can be controlled 

by selecting different size of the surfactant chain length and addition of organic 

compounds [1]. 
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(1) 

 
(2) 

Figure 4.3 (1) Schematic representation of micelles formation and sub sequentially 
transformation into different mesoporous phases [1], (2) Schematic representation 

of C16TAB in water and its transformation into different phases [3]. 
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Figure 4.4 Schematic representation of possible interaction between types of 

silicate species to surfactant molecules [1]. 

 

4.1.2 Silicate chemistry during MCM-41 synthesis  

There are different silica sources such as sodium silicate, tetramethoxysilane (TMOS), 

tetraethoxysilane (TEOS), fumed silica etc. that can be employed as an inorganic 

species during synthesis [2, 4]. 

 In a typical synthesis procedure,  

Step 1- The source of the silica undergoes hydrolysis in presence of water, which leads 

to production of silanol group (Si-OH) 

Step 2- Further, silanol group condense with another silanol group, building strong 

siloxane (Si-O-Si) bonds, and produces water as a by-product. As the reaction proceeds 

the number of siloxane bonds increase, the particles tends to aggregate into a sol, which 

appears in the solution as small silicate clusters. Further condensation of these silicate 

clusters forms a thick gel along with water molecules.  

Step 3 - The removal of these trapped molecules by heat treatment leads to formation of 

hard network. The whole process is termed as sol-gel as the species starts from solution 

(Sol) and leads to thick gel network (Gel).  
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4.1.3 Role of Catalyst 

As explained in silicate chemistry above, in general hydrolysis and condensation of 

inorganic alkoxides (Si-O-R) are very rapid in absence of catalysts (acid or basic). 

However, hydrolysis of alkoxysilanes (RO)4-Si is very slow hence, catalysts are needed. 

In the presence of acid catalyst, nucleation is the rate-controlling step where hydrolysis 

is very rapid. This process leads to less siloxane bonds and high number of silanol 

groups; in presence of base catalyst, hydrolysis is faster than acid catalyst and inhibit 

quick aggregation of particles, which produces dense materials with few silanol groups 

in the structure [1]. 

 

4.1.4 Boron substituted MCM-41 

The idea of doping or substitution of silicate materials with boron (B3+) ions is to create 

chemical and cation diversity in the framework. For example doping with trivalent 

cation (B3+) into silicate network creates a negative charge around the network hence, it 

now becomes suitable host to adsorb cations such as caesium. In other words, it forms a 

Bronsted acid site depending on the nature of the trivalent cation [7, 8]. Boron 

containing MCM-41 structure carries [BO4
-] tetrahedral units in the silicate network. It 

has been observed that boron changes its coordination to trigonal planar after calcination 

in which boron removed from the framework now resides within pores and is hydrated 

upon exposure to atmospheric humidity [7]. The study also revealed that calcined B-

MCM-41 if brought into atmospheric moisture changes its trigonal coordinated 

geometry to a four- coordinate state and it removes another part of the boron from the 

framework [9]. Moreover, it demonstrate that low boron containing samples carry 

significant part of the boron presence in a strongly coordination state which is not 

removable by further thermal treatment [9]. Further, boron is an excellent natural 

neutron absorber [10] hence, this property could be ideal for stationary phase treating 

high level radioactive waste if fissile material is present provided its uptake and kinetics 

are good enough. 
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4.2 Material and Methods 
 

4.2.1 Materials 

All the reagents were purchased in the reasonably purest form and used without any 

prior treatment. The source and purity of the reagents used are presented in table 4.1. 

Table 4.1 Reagents, their purity and source of purchase  

Reagents  Company Purity/Grade 

Sodium Silicate (Na2O7Si3) Sigma Aldrich Reagent Grade 

Hexadecyltrimethylammonium bromide (CTAB) VWR ≥98% 

Boric Acid (H3BO3) VWR ≥99% 

Sodium Hydroxide (NaOH) Sigma Aldrich ≥98% 

Sulfuric Acid (H2SO4) Fisher ≥95% 

Nitric Acid (HNO3) Sigma Aldrich Reagent Grade (≥69%) 

Deionised Water (H2O) NA ≥18.2 MΩ.cm-1 

Caesium nitrate (CsNO3) Sigma Aldrich ≥99.999% 

Strontium nitrate (Sr(NO3)2) Sigma Aldrich ≥99.995% 

Ammonium cerium nitrate (Ce(NH4)2(NO3)6) Sigma Aldrich ≥99.9% 
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4.2.2 Synthesis Method 

4.2.2.1 Synthesis of Si- MCM-41 with different quantities of Na ions 

Pure silica MCM-41 (Si-MCM-41) was synthesised from aqueous solution of sodium 

silicate (Na2O7Si3) as the silica source and hexadecyltrimethylammonium bromide 

(CTAB) as pore forming agent. The materials were synthesised in the same molar ratio 

as describe by Dyer et al. [8] but different amount of Na ions in the following molar 

ratio X Na2O: 0.53 CTAB: 1 SiO2: 100 H2O. The required quantity of chemicals are 

listed in table 4.2 and the synthesised samples were denoted as the mole ratio of Na2O. 

As shown in table 4.2, 1.27 - 2.55 g of NaOH were dissolved in 80 ml of water, which 

was stirred at 50 °C until complete dissolution. 10.72 g of CTAB was mixed into the 

above solution and stirred until a clear solution was obtained (solution A). In a separate 

50 ml glass beaker, 12 ml of sodium silicate (Na2O7Si3) solution and 20 ml of deionised 

water were mixed by stirring at room temperature (Solution B). Solution B was mixed 

with     solution- A dropwise with constant stirring and continued stirring for 2 hours at 

50 °C. The pH of the mixture was then adjusted to between 9 and 10 from 12 by adding 

concentrated sulfuric acid (H2SO4) dropwise. The cloudy white gel was transferred to a 

125 ml Teflon-lined autoclave and heated to 150 °C for (72 hours) in an oven. The 

vessel was allowed to cool to room temperature and the gel was gravity filtered through 

a Whatman No 6 filter paper. The solids were washed with 500 ml of deionised water 

and further drying at 50 °C for 24 hours. The dry solids were ground and subsequently 

calcined at in a furnace from room temperature to 560 °C at heating rate 2 °C/min 

before being held at the final temperature for 6 hours.  

Table 4.2 Amount of reagents used for Si-MCM-41 synthesis 

Samples Na2O7Si3 

(ml) 

CTAB 

(g) 

X (NaOH) 

(g) 

H2O 

(ml) 

0.29 Si-MCM-41  

12 

 

10.72 

 

1.27  

100 0.43 Si-MCM-41 1.89 

0.58 Si-MCM-41 2.55 

 

4.2.2.2 Synthesis of boron substituted MCM-41 

Different weight percentages of boron substituted MCM-41s were prepared by similar 

technique as mentioned above, with increased (3 times) the quantity of starting reagents 

and only modification of adding boric acid. Y amount (table 4.3) of boric acid (H3BO3) 

was carefully weighed and dissolved in 20 ml of deionised water (Solution C) and 
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added dropwise after addition of sodium silicate (Solution B). The washed liquor was 

collected for boron analysis. The required quantity of chemicals are listed in table 4.3. 

Table 4.3 Amount of reagents used for B-MCM-41 synthesis 

Samples Na2O7Si3  

(ml) 

CTAB 

(g) 

NaOH 

(g) 

H2O 

(ml) 

Y (H3BO3) 

(g) 

5% B-MCM-41  

      37.32 

 

32.16 

 

 

5.67 

 

300 

 

0.51 

10% B-MCM-41 1.03 

20% B-MCM-41 2.06 

30% B-MCM-41 3.09 

 

4.2.3 Characterisation  

The structural characterisation of all the samples was achieved by low angle PXRD. The 

textural characteristics were evaluated by nitrogen sorption. Different physical 

properties were analysed by SEM, TEM, FTIR, 29Si NMR, and TGA. These techniques 

have been explained in chapter 3.  

The amount of boron in the structure was calculated by measuring amount of boron 

present in the synthesis gel and amount found in the washed liquor by ICP-MS. The 

difference was assumed to be substituted in the structure. The detailed measurement 

experiment has been described in ICP-MS experimentation section in chapter 3.2.9  

The uptake measurement of various ions by ICP-MS has been explained in chapter 3.2.9 

 

4.3 Results and Discussion  

The synthesised materials were white powders and approximately 10 g (from four 125 

ml autoclaves), approximately 66% yield obtained after calcination, with particle size   

≤ 2 µm. It was noted that during the addition of silica source to the surfactant solution a 

cloudy solution was produced; this was believed to be due to the interaction of 

hydrolysed silica with micelles. Further condensation was taking place whilst the pH of 

the final gel mixture was being adjusted from 12 to 9 – 10 producing hydrolysed silica. 

These observations support the theory explained earlier in figure 4.1 and 4.2 and found 

by previous work [2, 5, 7, 8]. 

The structural and physiochemical data will now be discussed.   
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4.3.1 PXRD 

 

Figure 4.5 Low angle PXRD comparison of different amount of NaOH synthesised 

Si-MCM-41 

The Powder X-ray powder diffraction pattern of the different sodium ratios materials 

are shown in figure 4.5. Each diffraction pattern was the same as those of MCM-41 

previously described elsewhere [2, 7-9, 11]. A sharp Bragg peak ascribed to the (100) 

reflection of the structure was observed between 1.7 – 1.8° which corresponds to d 

spacing 47 – 51 Å. Besides the strong peak, two weak peaks were also recorded which 

were ascribed to (110) and (200) reflections. The three clear peaks (one strong and two 
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peaks) indicate that the long-range order in the structure had been achieved which was 

similar to previously reported data [2, 5, 7-9, 11].  

Increased amounts of sodium content had a little effect on the XRD pattern. The d 

spacing of reflection (100) was reduced with increasing sodium content. Subsequently 

the reflection angle was also changed and hence their overall lattice parameter (figure 

4.5) (table 4.4).  

Table 4.4 Lattice parameters in Si-MCM-41 

 

Samples 

Lattice parameter 

(a0=2d100/√3) 

(Å) 

0.29  58.92 

0.43  57.34 

0.58  54.27 

 

The PXRD profiles of different quantities of boron as a hetero-cation substituted in 

MCM-41 framework are presented in figure 4.6. There were again three reflections 

observed which are characteristic x-ray profile for hexagonal MCM-41 structure as 

reported by previous work [1, 7, 11]. The profile contained three broad but separated 

reflections between 1 – 6° 2θ regions which was consistent with previous results [1, 7, 

11] and that indicates high ordering in the material at atomic level even after boron ions 

substitution.  

Substitution of various cations into the framework could affect size of the unit cell [8]. 

Boron substituted MCM-41 had shown similar (100) reflection intensities compared to 

Si-MCM-41, which indicates the higher atomic distribution in the synthesised material.  

Increased quantities of boron resulted in decreased d spacing which is compared and 

shown in figure 4.6 (100 reflection) except 10%B sample. The lattice parameter 

calculations has also shown decrease in the unit cell, which was consistent due to 

decreased d spacing and hence overall structure. 

The intensities of peak 1 in all boron substituted MCM-41 samples were similar except 

for 10%B constituent, which was slightly less. Comparison of overall lattice parameter 

of boron substituted MCM-41 structures revealed that 10%B has the biggest lattice 
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parameter (Table 4.5). Pore analysis has shown highest total pore volume of this 

structure (table 4.8). The variation in 10%B MCM-41 structure was attributed to highest 

amount of boron that had been incorporated into the structure measured by ICP-MS 

(Table 4.6). Hence, the loss of intensity could be defined by the loss of structural 

integrity due to increased substitution of boron in the structure compared to other boron 

substituted MCM-41 materials. Similar evaluation also reported by Dyer et. al. [8]  

 

 

Figure 4.6 Low angle PXRD pattern of boron substituted MCM-41 
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Table 4.5 Lattice parameters of boron incorporated MCM-41 

 

Samples 

Lattice parameter 

(a0=2d100/√3) 

(Å) 

5% B-MCM-41 55.47 

10% B-MCM-41 57.06 

20% B-MCM-41 55.04 

30% B-MCM-41 53.49 

  

 

 

Table 4.6 Amount of boron in MCM-41 structure measured by ICP-MS 

Samples 

Amount of 

Boron during 

synthesis 

(ppm) 

Amount of 

Boron in 

filtrate 

(ppm) 

Difference 

(ppm) 

Boron content in  

structure  

(%) 

5% B-MCM-41 290 56 233 80% 

10% B-MCM-41 580 7 572 98% 

20% B-MCM-41 1161 320 841 72% 

30% B-MCM-41 1731 466 1265 73% 
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4.3.2 Surface area and Pore analysis 

The textural properties of porous MCM-41 and heteroatoms (boron) substituted MCM-

41 structures were characterised by gas (Nitrogen) sorption method by analysing their 

surface area, pore size distribution, and pore volume. The method of gas sorption has 

been explained in chapter 3. 

Nature of isotherm 

The isotherms obtained from siliceous and boron substituted MCM-41 were very 

similar to type IV isotherm according to classification of IUPAC [14]. The type IV 

isotherms exhibit characteristic hysteresis loop between 0.3 - 0.5 relative pressure which 

is associated with capillary condensation taking place in mesoporous and limiting 

uptake over a range of high relative pressure (P/Po) (figure 4.7 and 4.8) [14]. The 

starting point of the isotherm of this kind is attributed to monolayer-multilayer 

adsorption [14].  

Figure 4.7 represents the comparison of Si-MCM-41 different sodium ratios. As the 

concentration of Na ions increased, the volume of gas adsorption decreased. There is 

very marginal difference between sample 0.29 and 0.43 Si-MCM-41 samples. 

Figure 4.8 represents the comparison of 0.43 MCM-41 to boron substituted MCM-41. 

The study revealed that boron substituted samples had shown similar gas sorption 

profile to Si-MCM-41 (For comparison 0.43 Si-MCM-41 was used as a benchmark). 

The shape of the hysteresis loops can be associated with specific pore structures [14]. 

Si-MCM-41, 5%, 10%, 20% B-MCM-41 show similar hysteresis loops where 30%B 

MCM-41 has shown a narrow loop which could be due the size and the geometry of the 

pore structure affected by amount of boron incorporated into the lattice. 

All the samples show absence of extension in the relative pressure region 0.9 - 1 which 

also indicate absence of macro pores. Hence, materials have a well-ordered mesoporous 

structure as already established from PXRD studies.  

Surface area, pore volume and poresize distribution 

BET analysis was performed to determine the specific surface area. As shown in table 

4.7, the specific surface area was affected by increased quantities of Na ions. The 

surface area decreased as amount of Na ions increased, which supports isotherm 

evaluation results.  
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In the case of boron-substituted samples, 5% and 10% samples show increased surface 

area where 20% and 30% samples had diminishing effect (table 4.8). Similar trend was 

observed with 20% and 30% samples that had the boron content 72% and 73% (table 

4.6). Hence, amount of boron in the structure can be very important in the preparation of 

this kind of material. This was possibly due to bond length of Si-O and B-O as it affects 

the overall structure. The mean Si-O and B-O bond length were estimated to be 1.59 Å 

and 1.20 Å respectively [15, 16]. The study was not intended to measure actual bond 

length.  

BJH calculations were performed to measure pore size and pore size distributions in the 

synthesised samples. Figures 4.9 and 4.10 illustrate the narrow pore size distribution, 

which confirms the uniform and highly ordered structure. Pore volume analysis also 

revealed the effect of Na ions, which was consistent from isotherm and surface area 

evaluations. 0.29 Si MCM-41 has highest pore volume and biggest pore size. In the case 

of boron substituted samples, 10%B sample has highest pore volume and biggest pore 

size while others gradually decreased (table 4.8).  

 

 
Figure 4.7 Isotherm comparison of different amount of Na synthesised Si-MCM-41 
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Figure 4.8 Isotherms comparison with 0.43 Si-MCM-41 and boron substituted 

MCM-41 

 
Figure 4.9 Comparison of pore size distribution of different amount of Na 

synthesised Si-MCM-41 
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Figure 4.10 Comparison of pore size distribution in boron substituted MCM-41  

 

 

 

Table 4.7 Surface area and Pore analysis of Si-MCM-41 

 

Samples 

Specific Surface area 

(BET) “SBET” 

(m2/g) 

Total Pore 

Volume “VP” 

(cm3/g) 

Av. Pore diameter 

“DP”  

(Å) 

0.29Si-MCM-41 585 0.620 34.74 

0.43Si-MCM-41 577 0.613 34.68 

0.58Si-MCM-41 545 0.538 33.40 
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Table 4.8 Surface area and Pore volume analysis of boron substituted MCM-41 

Samples Specific Surface area 

(BET) 

(m2/g) 

Total Pore 

Volume 

(cm3/g) 

Av. Pore 

diameter 

“Dp” (Å) 

5% B-MCM-41 613 0.589 32.96 

10% B-MCM-41 690 0.674 33.68 

20% B-MCM-41 596 0.564 33.22 

30% B-MCM-41 557 0.524 33.02 

 

 

 

 

4.3.3 ATR-IR 

 

Figure 4.11 ATR-IR Study of 0.43 Si-MCM-41 
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Figure 4.12 ATR-IR Study of boron substituted MCM-41 

 

Table 4.9 Observed IR band position in MCM-41 

Sample Symmetri
cal 

Stretchin
g Si-O-Si 

(cm-1) 

Si-O-H 
(cm-1) 

Asymmetrical 
(external 

Stretching) 
Si-O-Si 
(cm-1) 

Si-O-H 
(cm-1) 

B-O 
(cm-1) 

O-H 
(cm-1) 

0.43 Si-

MCM-41 

806 1030 1200 1630 NA 3250-

3700 

5% B-

MCM-41 

807 1037 1200 1623 1375. 3250-

3700 

10% B-

MCM-41 

809 1045 1200 1626 1387 3250-

3700 

20% B-

MCM-41 

810 1043 1200 1626 1384 3250-

3700 

30% B-

MCM-41 

812 1040 1200 1625 1387 3250-

3700 
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4.3.4 29Si NMR 
 

Table 4.10 Observed chemical shifts in solid state NMR 

 

Samples 

29Si  (ppm)  

Figure No. Q4 

(Si–O–)4Si 

Q3 

(Si–O–)3Si 

Q2 

(Si–O–)2Si(OH) 

Si-MCM-41 -111 -103 -99 4.13 (a) 

5%B MCM-41 -111 -101 -96 4.13 (b) 

10%B MCM-41 -112 -102 -95 4.13 (c) 

20%B MCM-41 -111 -101 -92 4.13 (d) 

30%B MCM-41 -111 -101 -94 4.13 (e) 

 

ATR-IR and 29Si NMR studies were carried out to understand chemical interaction 

between the species in synthesised materials. Figures 4.11 and 4.12 represent a typical 

profile of vibration bonds between the chemical species in Si-MCM-41 and boron 

substituted MCM-41 respectively. 

For NMR, these species have been designated as Qn where n = 0 - 4 and the number of 

next nearest adjacent Si atoms. High percentage of Q3 and Q4 had been identified 

previously for these kind of silica based mesoporous materials by 29Si NMR [17, 18]. It 

has been generally agreed that bands found in IR spectroscopy at ≈1200 cm-1 were 

caused by asymmetrical Si-O (external stretching vibrations) and those between                          

1100-1000 cm-1  were by internal vibrations of the Q3 and Q4  species which were 

assigned to (Si–O–)3SiOH and (Si–O–)4Si respectively [7, 8, 12, 17, 18]. Further, a 

broad absorption band has been observed in the range of 3554 cm-1, which can be 

assigned to hydrogen bonded OH group shown in ATR-IR results (figures 4.11 and 

4.12). 

As seen from table 4.10, Q2, Q3 and Q4 species were found in all the MCM-41 materials 

where Q4 species dominates. This represents high order of polymerisation in the 

material.  
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For boron substituted MCM-41, it has been observed that the small peak at 1391 cm-1 

could be assigned to boron-oxygen (B-O), measured by ATR-IR studies of all B-Si-

MCM-41,which was consistent with previous result [19]. The later study observed that 

boron changes its coordination to trigonal planar after calcination in which boron when 

removed from the framework now resides within pores and becomes hydrated upon 

exposure to atmospheric humidity [7]. Studies also revealed that calcined B-MCM-41 if 

brought into the presence of atmospheric moisture, it changes its trigonal coordinated 

geometry to a four- coordinate state, and it removes another part of the boron from the 

framework [9]. This could be verified by 11B NMR, which should show sharp boron 

peaks indicating position of B-O in various arrangements, however this was not 

performed.  

From the ATR-IR and 29Si NMR results, it is reasonable to conclude that: 

1) The impregnation of boron in silica network was successfully achieved 

2) As the intensity of Q4 species were dominating in all the synthesised materials 

possibly indicates the higher degree of polymerisation of silica network had been 

successfully accomplished (figure 4.13). This was confirmed by the 1030 cm-1 peak in 

the IR spectra. 

 

 

Figure 4.13 (a) 29Si NMR peaks analysis on of Si-MCM-41 
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Figure 4.13 (b) 29Si NMR peaks analysis of 5% boron substituted MCM-41 

 

 

  

Figure 4.13 (c) 29Si NMR peaks analysis of 10% boron substituted MCM-41 
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Figure 4.13 (d) 29Si NMR peaks analysis of 20% boron substituted MCM-41 

 

 

Figure 4.13 (d) 29Si NMR peaks analysis of 30% boron substituted MCM-41 
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4.3.5 SEM 
 

 

 

Figure 4.14 SEM Image of Si-MCM-41 with 4000X magnification 

 

Figure 4.15 SEM Image of boron substituted MCM-41with 4000X magnification 
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4.3.6 TEM 
 

 
(a)                                                            (b) 

 
         (c )                                                                  (d) 

 
                                   (e)                                                                (f) 

Figure 4.16 TEM images of (a and b) Si-MCM-41, (c, d, e and f) boron substituted 

MCM-41 
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The morphology, shape, and size of the mesoporous Si-MCM-41, and B-Si-MCM-41 

materials were characterised by high resolution scanning electron microscopy (SEM) 

and Transmission Electron Microscopy (TEM). The micrographs in figures 4.14 and 

4.15 show agglomerated porous framework of the material. High-resolution TEM 

images of all MCM-41 particles show well-ordered hexagonal structure. Similar 

material and textural properties have been previously reported [2, 5, 7 - 9, 12]. TEM 

images of mesoporous MCM-41 show well defined channels and walls (figure 4.16). 

The study revealed the consistency of the materials previous evaluated in this research 

by PXRD, and gas sorption. 

4.3.7 TGA analysis 
 

 

 
Figure 4.17 TGA evaluation of MCM-41 

Thermal stability of MCM-41 materials were found to be very robust up to 1000 °C in 

air, losing only maximum 7% by weight. The initial weight loss up to 100 °C was due to 

loss of moisture. The weight loss was inversely proportional to the boron content of the 

structure; higher the boron quantity, lower the weight loss (figure 4.17). This evaluation 

suggests that loss of water at higher temperature originated from hydroxyl groups in 

pure Si-MCM-41, but in the reduced presence of these groups in higher boron 

substituted MCM-41 resulted into lower weight loss. This study may have more value 

for characterisation of catalysis rather than ion exchange materials.  
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4.3.8 Cation uptake measurements  

The main objective of preparing and characterising these materials was to understand 

the separation of different cations by creating negative imbalance in an ordered 

structure. Different cation simulants were used to mimic the radionuclide concentration 

in high-level nuclear waste. Ce4+ ions was used as surrogate for Pu and/or U ions. High-

level waste is usually in 1 - 3 M HNO3 condition however, the study was extended to 

weakly acidic (D.W) system as the materials may have potential for treating other liquid 

nuclear wastes.  

Table 4.11 Caesium ion concentrations in various aqueous systems 

Samples Initial (ppm) Final (ppm) Volume (ml) Weight 

(g) 

Kd 

(ml/g) 

1 M HNO3 

Si-MCM-41  

 

654±8 

 

642±6  

 

25 

 

 

0.50 

 

0.93 

5%B-MCM-41 644±8 0.78 

10%B-MCM-41 640±6 1.09 

20%B-MCM-41 645±10 0.70 

30%B-MCM-41 640±6 1.09 

0.5 M HNO3  

Si-MCM-41  

 

680±8 

 

 

664±7  

 

25 

 

 

0.50 

 

1.20 

5%B-MCM-41 680±15 0.00 

10%B-MCM-41 664±9 1.20 

20%B-MCM-41 671±13 0.67 

30%B-MCM-41 670±10 0.75 

Deionised water (pH 4.60) 

Si-MCM-41  

 

691±11 

 

 

642±14  

 

25 

 

 

0.50 

 

3.82 

5%B-MCM-41 624±12 5.37 

10%B-MCM-41 632±8 4.67 

20%B-MCM-41 641±10 3.90 

30%B-MCM-41 608±9 6.83 
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Figure 4.18 Cs ion Kd value for various aqueous systems  

Table 4.12 Strontium ion concentrations in various aqueous systems  

Samples Initial (ppm) Final (ppm) Volume (ml) Weight 

(g) 

Kd 

(ml/g) 

1 M HNO3 

Si-MCM-41  

 

464±6 

 

 

439±6  

 

25 

 

 

0.50 

 

2.85 

5%B-MCM-41 450±7 1.56 

10%B-MCM-41 433±8 3.58 

20%B-MCM-41 429±5 4.08 

30%B-MCM-41 438±4 2.97 

0.5 M HNO3 

Si-MCM-41  

 

455±8 

436±5  

 

25 

 

 

0.50 

 

2.18 

5%B-MCM-41 442±5 1.47 

10%B-MCM-41 446±4 1.01 

20%B-MCM-41 448±7 0.78 

30%B-MCM-41 440±7 1.70 

Deionised water (pH 5.60) 

Si-MCM-41  

 

462±10 

 

371±5  

 

25 

 

 

0.50 

 

12.26 

5%B-MCM-41 361±3 13.99 

10%B-MCM-41 436±7 2.98 

20%B-MCM-41 425±8 4.35 

30%B-MCM-41 421±8 4.87 
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Figure 4.19 Sr ion Kd value for various aqueous systems 
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Table 4.13 Mixed ions concentrations in various aqueous systems  

Samples Initial 
(ppm) 

Final 
(ppm) 

Volume 
(ml) 

Weight 
(g) 

Kd 
(ml/g) 

 Sr Cs Ce Sr Cs Ce   Sr Cs Ce 

1 M HNO3 

Si-MCM-41  

 

444±7 

 

 

 

 

627±11 

 

 

 

6829±94 

 

 

435±5 611±7 6728±158  

 

25 

 

 

0.50 

 

0.72 1.31 0.75 

5%B-MCM-41 450±11 630±14 6457±109 0.00 0.00 2.88 

10%B-MCM-41 447±6 628±11 6519±210 0.00 0.00 2.37 

20%B-MCM-41 445±6 626±6 6665±92 0.00 0.08 1.23 

30%B-MCM-41 441±7 619±13 6446±238 0.24 0.65 2.97 

0.5 M HNO3 

Si-MCM-41  

 

445±7 

 

 

 

 

640±12 

 

 

 

 

7068±212 

 

 

442±8 632±10 6640±158  

 

25 

 

 

0.50 

 

0.23 0.63 3.22 

5%B-MCM-41 445±4 634±5 6445±172 0.00 0.47 4.83 

10%B-MCM-41 448±5 636±7 6553±188 0.00 0.31 3.92 

20%B-MCM-41 437±8 623±13 6342±317 0.63 1.36 5.72 

30%B-MCM-41 456±8 650±12 6304±104 0.00 0.00 6.05 

Deionised water (pH 1.20) 

Si-MCM-41  

 

416±9 

 

 

 

591±21 

 

 

 

4357±113 

 

 

427±5 607±15 3993±87  

 

25 

 

 

0.50 

 

0.00 0.00 4.56 

5%B-MCM-41 441±6 625±12 4100±43 0.00 0.00 3.13 

10%B-MCM-41 417±4 592±13 4355±100 0.00 0.00 0.02 

20%B-MCM-41 411±6 590±16 4260±83 0.00 0.08 1.14 

30%B-MCM-41 429±8 608±18 4164±195 0.00 0.00 2.32 
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Figure 4.20 Mixed ions Kd values for various aqueous systems 
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Observation in single ion solutions 

The uptake behaviour of all the materials showed similar properties in presence of Cs 

ions in different media (table 4.11 and figure 4.18). The materials were only capable of 

adsorbing trace amounts of cations in acidic (0.5 M and 1 M HNO3) conditions. This is 

likely to be due to highly competing H+ ions in the solution. It was expected to behave 

slightly better in deionised water system, as the hydrogen ion completion would be 

much lower however, the result was not too encouraging. This was due to the pH value 

of the deionised water was reduced to 4.60 when CsNO3 dissociates in water. It was 

again H+ ions, which were believed to be competing against cations. Similar results 

have been reported with zeolites uptake in acidic media [20].  

A similar study was performed with a different cation, 5 mM Sr ion as the nitrate salt      

Sr(NO3)2. The study revealed that the uptake was low which was similar to Cs ions 

measurement (table 4.12 and figure 4.19). Hence a similar explanation for Sr ions as for 

Cs ions could be made; a small difference however was measured in weakly acidic 

system, which was due to the slightly difference in pH values (cf. pH 4.2 with pH 5.60). 

The rate of uptake studies were not performed since the uptake capacity of the materials 

were negligible in acidic media.   

Observation in mixed ions solutions 

Further experiments were carried out with mixed ions solution at different acidic 

strengths. The media consisted of 10 times the concentration of Ce ions compared to Cs 

and Sr ions counterparts to mimic actual dissolver liquor composition as mentioned 

earlier in chapter 1 (table 1.1).  

The cation uptake measurements in acidic media were low which were similar to 

previous measurements. The pH value was 1.20 when different salts dissociated in 

deionised water hence, similar type of uptake were obtained as reported earlier.  

 The analysis showed that incorporation of boron into silica structure had no significant 

advantages for Cs and/or Sr removal and that weakly acidic media (media with 

moderate pH) were the best for all examples.  
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4.4 Conclusions 

The main objective of the project was to make suitable stationary phases for the column 

separations for UCLan’s continuous chromatography concept explained in chapter 1.3  

MCM-41 type materials were used primarily because of their unique structure and easy 

modification properties, which could mimic zeolites or molecular sieves. The size of the 

particles were measured approx. ≤ 2 µm, which was an important consideration for 

packing columns.  

The preparative route was easy and a one pot synthesis ideal for preparing large 

quantities at industry level. The surface area and large pore size of the materials 

benefitted maximum interaction of metal ions.  

Silica affords high stability in acidic media and should provide good radiolytic stability; 

these two considerations have a major influence on matrix selection. Boron 

incorporation into the silica matrices was selected as first, it provides a negative charge 

imbalance thus favouring cation uptake and second it is a good neutron poison [10] in 

the event of liquors to be treated containing fissile material. 

The various characterisation techniques employed have provided extensive knowledge 

and sound understanding of the synthesised materials; the data are also consistent with 

previous studies on similar materials.  

Cation uptake measurements were somewhat disappointing in acidic media, which was 

not too surprising as it is a known problem and has been reported on various occasions 

with zeolites.  
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Chapter 5 

Zeolite molecular sieves and mesoporous zeolite molecular 

sieves 

 

5.1 Introduction 

This chapter focusses on the examination of commercially available LTA type zeolite A 

in their various cationic forms. Zeolite A, often known as molecular sieves are available 

in three different pore sizes 3 Å, 4 Å, and 5 Å and their and cationic form K+, Na+ and 

Ca2+. The study was conducted to examine the possibilities of Cs and Sr ion separation, 

as they possess different hydrous ionic radii. The study further explored the creation of 

a mesoporous coating around the zeolite to confer bimodal (microporous- mesoporous) 

structure. This structure in this thesis is termed ‘mesoporous zeolite’. The idea was to 

create a protecting layer (coating), which incorporate channels, around the zeolite, that 

would minimise direct acid attack on the zeolite but would influence ion diffusion 

during ion exchange. Various characterisation techniques were employed for their 

structure confirmation and measurement of their ion-exchange properties. 

5.1.1 Molecular Sieves 

The most common type of zeolite molecular sieves are Type A and X [1]. These 

molecular sieves are generally synthesised by a sol-gel method, in common with other 

zeolites. In a typical process, a 1:1 molar ratio of alumina and silica are mixed in basic 

aqueous solution to give a gel, followed by heat treatment (100 - 300 °C) to give a 

crystallise form of zeolite [1].    

Molecular sieves are very important in various industries such as catalysis, gas sorption 

and purification, ion exchange etc. because of their distinct crystal structure. Type A 

zeolite molecular sieves exhibit Linde Type A (LTA) structure [1] which has a 3-

dimensional pore structure where pores are situated perpendicular to each other in x, y 

and z planes. The framework is composed of truncated octahedral (sodalite cages) in a 

cubical array which forms an internal cavity approx. 11 Å in diameter (alpha cage) [1]. 

Each alpha cage is entered through six circular apertures formed by a regular ring of      

8 oxygen atoms with a free diameter of 4.2 Å [1]. The truncated octahedra enclose a 

second set of smaller cavities approximately 6.6 Å in internal diameter (beta cages). The 
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smaller cavities are connected to larger cavities via a ring of six oxygen atoms (figure 

5.1) [1].   

In general, Type A zeolite molecular sieves are synthesised in the form of Na+ which 

can be replaced with other cations to alter the pore size. 

The general element composition of Type A molecular sieves is 

Na12 [(AlO2)12(SiO2)12].27H2O 

 

 

Figure 5.1 Schematic representation of type A zeolite molecular sieve [1] 

Type 3A are produced by replacing Na+ ions by K+ ions , since potassium ions have a 

larger ionic radius than sodium ions hence the pore size is reduced to approx. 3Å. Na+ 

form of type A molecular sieves exhibits pore size approx. 4 Å diameter and in type 5A 

molecular sieves, Ca2+ replaces Na+ ions, resulting into pore size approx. 5Å.  

Along with size exclusion property, Type A zeolite modified with different cations also 

behaves as ion exchange molecular sieves. The cations in the zeolites are exchangeable 

with other cations giving zeolites an ion exchange property. The silica in the framework 

structure i.e. shared oxygen atoms with the corresponding aluminium atoms, which 

itself is sharing adjacent oxygens has a valence of +4 making the SiO4 tetrahedra 

neutral, while the AlO4 tetrahedra are negatively charged because aluminium has a 

valence of +3, creating a Brönsted acid site due to the resulting charge imbalance in the 

framework structure, which imparts exchangeable sites to the zeolite structure [1]. 

Therefore, the ion exchange capacity of zeolites depends on its chemical composition 

[2].  

A batch and column comparative study of Cs ions sorption has been previously carried 

out on various commercially available synthetic zeolites 13X, 4A, AR-1 (mordenite) 

and ZSM-5, which demonstrated the performance of these zeolites in moderate pH 
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liquid solution [2]. The study suggest zeolite AR-1 (mordenite), 13X, and 4A had high 

Cs ion exchange capacity and fast kinetics under moderate pH ionic solutions but not 

suitable for actual waste clean-up due to instability in higher acidic solutions of pH 2 or 

less [2]. 

A separate batch and column study was performed on zeolite A for the removal of Cs 

and Sr ions from an aqueous chloride solution [3]. The reported data indicates that the 

performance of zeolite A is largely affected by pH changes [3]. An increase in the acidic 

pH results in the degradation of the zeolite structure with a significant reduction in 

cation uptake. [3] The best performance of this zeolite was between pH 6-8 and higher 

Sr ion capacity than Cs ions [3].  

Another study was performed on zeolite A for the removal of Sr ions, as they have 

preference over Cs ions at various pH values; the study also included zeolite A’s 

performance in presence of Na ions [4]. The experimental data were consistent with 

other results and an appropriate working pH was reported between 6 and 8, the 

concentration of Na ions had a negative effect on Sr ions sorption [4].  

 

5.1.2 Mesoporous zeolite molecular sieves  

These molecular sieves exhibit two types of porous (microporous and mesoporous) 

structure in a single structure. The idea is to prepare a porous structure with the benefit 

of having different size pores.  

There are few synthesis options for this type of molecular sieves 

5.1.2.1 Post treatment synthesis  

This technique involves partial extraction of cations (aluminium, silica) from the zeolite 

framework by steaming or partial leaching by HCl and/or NaOH [5]. This process 

removes some of the crystal framework species and creates voids in the mesopore size 

(figure 5.2) [5]. The steaming process leads to hydrolysis of Al-O-Si in the framework, 

which subsequently partially removes the hydrolysed products leaving mesopores in the 

structure. The strong acid and base treatment removes Al ions Si atoms respectively 

from the framework and creates gaps in the zeolite [5]. It is often reported that 

synthesised mesoporous zeolite structures possess low crystallinity compared to parent 

zeolite due to structure deformation and disordered pores by various treatments.   
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Figure 5.2 Synthesis of mesoporous zeolite by post treatment [5] 

 

 

5.1.2.2 Template assisted synthesis  

There are two approaches for this technique hard and soft templating as mentioned 

below, 

5.1.2.2.1 Hard/ solid templating 

As the name suggest, this technique requires the use of a mesoscale inorganic 

nanostructure as a hard template. During zeolite synthesis, the hard templates are slowly 

encapsulated in the growing zeolite crystal, which is then removed by combustion. The 

space left by combustion creates mesopores in zeolites (figure 5.3) [5]. Carbonaceous 

nanomaterials such as carbon nanopowders, nanotubes, and nanofibers are the most 

common hard templates in the size range of 5 - 15 nm used in this technique [5]. The 

synthesised mesoporous zeolites show good crystallinity but possess disordered pore 

structure and the synthesis procedure are often complex and time-consuming [5]. 

 
Figure 5.3 Synthesis of mesoporous zeolite by hard/solid templating method [5] 
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5.1.2.2.2 Soft templating 

This technique involves self-assembly of surfactant molecules, which results in regular 

large patterns such as micelles and appears as templates for mesopore formation in 

zeolites [5]. A variety of mesoporous zeolite morphologies can be synthesised by fine 

tuning geometrical packing parameters of the surfactant molecules and the functional 

groups. This technique relies highly on properties of the selected templates (surfactants) 

such as interaction, stability, morphology, and cost [5]. The most common type of 

surfactants used are CTAB and Pluronic P123 due to their strong interactions with silica 

species, strong stability in alkaline media and high thermal stability (up to 400 °C), 

ability to form fibre-like morphology (micelles) and low cost. Figure 5.4 represents a 

soft template method of synthesising mesoporous zeolite Y [6].  

 

 

Figure 5.4 Synthesis of mesoporous zeolite Y by soft templating method [6] 

A study of the effective removal of Mg2+ and Ca2+ ions by mesoporous zeolite A (LTA 

type) to understand the enhancement of cation exchange sites created by additional 

mesoporous surface area on conventional zeolite A has been undertaken [7]. The study 

demonstrated the synthesis technique for preparing inter-crystalline mesopores of 3 nm 

by using organic functionalised fumed silica as source. The reported surface area 

suggested the increased surface area and pore volume were due to mesopores. The 

comparative ion exchange study of zeolite A and mesoporous zeolite A for Mg2+ and 

Ca2+ ions suggested that mesoporous zeolite A possess higher cation exchange volume 

due to mesopores and it has two kinds of ion exchange sites suitable for Mg2+ and Ca2+ 

ions [7]. The study also reported that mesoporous zeolite A had improved Mg2+ ions 
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kinetics compared to parent zeolite A hence, a promising candidate for water softening 

application [7]. 

A similar study was conducted to remove Hg2+ ions from an industrial waste stream by 

a composite of polypyrole/thiol-functionalized beta zeolite/MCM-41[8]; which involved 

a two-step hydrothermal route. The ion exchange data suggested that a suitable working 

condition was between pH 6 - 8 and the cation exchange capacity significantly 

decreased below pH 5 [8]. The synthesised composite had fast kinetics (10 minutes) and 

high sorption capacity for Hg2+ ions due to enhance mesoporous surface area and higher 

cation exchange sites [8].  
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5.2 Material and Methods 

5.2.1 Materials 

Table 5.1 Reagents, their purity and source of purchase 

Chemical Company Purity 

Sodium Silicate Sigma 

Aldrich 

Reagent grade 

Aluminium sulphate octadecahydrate 

Al2(SO4)3. 18H2O 

VWR ≥98%+ 

Hexadecyltrimethylammonium bromide 

(CTAB) 

VWR ≥98% 

Tetraethylorthosillicate 

(TEOS) 

Sigma 

Aldrich 

≥99% 

Molecular sieves 3A  Sigma 

Aldrich 

Pellets 1.6 mm 

Molecular sieves 4A  Sigma 

Aldrich 

Pellets 1.6 mm 

Molecular sieves 5A Sigma 

Aldrich 

Beads 8-12 mesh 

Nitric Acid  

(HNO3) 

Sigma 

Aldrich 

ACS reagent grade 

≥69% 

Sodium Hydroxide  

(NaOH) 

Sigma 

Aldrich 

≥98% pellets 

Deionised Water (H2O) Nanopure ≥18.2 MΩ.cm 

Caesium nitrate 

(CsNO3) 

Sigma 

Aldrich 

≥99.9% 

Strontium nitrate  

(Sr(NO3)2) 

Sigma 

Aldrich 

≥99.9% 

Ammonium cerium nitrate  

(Ce(NH4)2(NO3)6) 

Sigma 

Aldrich 

≥99.9% 

The reagents, their purity, and source of purchase used in this chapter are reported in 

table 5.1 
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5.2.2 Zeolite Molecular sieves 3A, 4A and 5A 

Zeolite Molecular sieves 3A, 4A, and 5A in various granular forms are illustrated in 

figure 5.5.  

 

 

Figure 5.5 Zeolite Molecular sieves 3A, 4A, and 5A 

 

5.2.3 Synthesis of mesoporous zeolite molecular sieve 5A  

The synthesis of mesoporous zeolite 5A was carried out by the sol-gel technique, with 

minor modifications, using CTAB as structure directing agent [6, 10]. Instead of 

synthesising zeolite nanocrystals, zeolite 5A pellets were purchased ground in a mortar 

and pestle and screened (stainless steel sieve) to produce 2 µm or smaller particles.  

The thickness of the mesoporous coating depends on mass ratio of TEOS: zeolite [10]; 

mass ratio of 1.12 was considered for this study. 

For preparing only silica-coated mesoporous 5A, a mixture of CTAB, ethanol, 

ammonium hydroxide, and deionised water was prepared by weighing appropriate 

quantities as reported in table 5.2. The mixture was allowed to stir at room temperature 

until clear solution was produced. 2 gm of ground zeolite was suspended in the prepared 

mixture followed by ultrasonication treatment at r.t. for 30 minutes. TEOS was added to 

the mixture drop wise and the mixture was stirred at r.t. for 4 hours. The synthesised 

composites were gravity filtered through a Whatman No 6 filter paper and washed 

several times by deionised water, followed by pure ethanol. The collected samples were 

air dried at 100 °C for 24 hours. After this, the samples were calcined with a heating 

rate of 2 °C/min up to 560 °C and held at this temperature for 6 hours in presence of air 

to remove the templates. The resultant materials were named 5A@Si.  
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The study was expanded to incorporate Al ions and Si ions to coat zeolite 5A. Two 

different Al and Si coated zeolites were synthesised by varying the Al:Si mass ratio. 

Synthesis of these two materials was similar to the process previously explained but up 

to the ultrasonication treatment. After the addition of the ground zeolite, aluminium 

sulphate octadecahydrate (dissolved in small quantity of water) was added drop wise, 

followed by addition of TEOS. The mixture was allowed to stir for 4 hours at room 

temperature. Further filtration, washing, drying, and template removal procedures 

employed as describe previously. The synthesised materials were named as 5A@Si-Al 

0.31, and 5A@Si-Al 0.72.  

Table 5.2  Reagent quantities used to synthesis mesoporous zeolites 

Samples Sample 

(g) 

CTAB 

(g) 

Ethanol 

(ml) 

Ammonium 

hydroxide 

(ml) 

Water 

(ml) 

TEOS 

(ml) 

Aluminium 

sulphate 

(g) 

5A@Si  

 

2 

 

 

1.4 

 

 

15.20 

 

 

2.77 

 

 

400 

2.40 NA 

5A@Si-Al 
0.31 

1.20 1.12 

5A@Si-Al 
0.72 

0.94 2 

 

5.2.4 Characterisation  

The structural characteristics of mesoporous zeolite 5A was analysed by PXRD and 

SAXS. The analysis of pore structure and surface area were characterised by nitrogen 

sorption studies. The particle morphology was imagined by SEM. The ion exchange and 

ion sieve properties of the various forms of zeolite, and synthesised mesoporous zeolites 

were examined by contacting them with nitrate salts of caesium, strontium, and cerium 

in different strength nitric acid solutions. In addition, the rate of uptake of cations by 

zeolite 5A was also undertaken. The experimental details have already been described 

in chapter 3. 
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5.3 Results and Discussion 

The purchased zeolite molecular sieves were used without prior treatment. The amount 

of synthesised mesoporous zeolites obtained were approx. 2.25 g after calcination in 

powder form with average particle size 2 µm. the sol-gel technique had produced a 

mesoporous coating around the parent zeolite particle that appeared to have higher 

surface area and pore volume. Various structural and ion exchange properties are 

reported later.  

5.3.1 PXRD 

The PXRD pattern of parent zeolite 5A shows a characteristic diffraction peak assigned 

to typical LTA structure. The crystal structure of this type of zeolite was reported as 

cubic with cell parameter 11.9 Å [1, 11]. 

 

Figure 5.6 PXRD profile comparison of molecular sieves 5A and mesoporous 

molecular sieves 5A 
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The synthesised mesoporous zeolite materials had lower intensities when compared to 

parent zeolite 5A however, the peak position were retained (figure 5.6). This suggests 

that formation of thin layer of mesopores had occurred, which can be further verified by 

change in their surface area (gas sorption technique) and negligible effect on their 

crystalline zeolite structure.  

Further, the possibility of mesoporous structure can be identified by performing small 

angle scattering as characteristics pattern of mesoporous structure are typically observed 

at low angle (1 - 5° 2θ).  

5.3.2 SAXS 

 
Figure 5.7 SAXS profile comparison of synthesised mesoporous 5A zeolites 
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The SAXS pattern of synthesised mesoporous zeolite clearly shows the appearance of 

mesoporous structure at lower scattering vector (q) between 1- 4 nm-1, which is ascribed 

to mesoporous structure. The appearance of sharp peaks at 5 nm-1 and 7 nm-1 was 

believed to be due to microporous structure. In comparison, 5A@Si mesoporous peaks 

were more pronounced and peaks broader with Si and Al mixture coatings. The 

comparison suggests, mesoporous structure in 5A@Si were highly ordered compared to 

5A@Si-Al 0.31, and 5A@Si-Al 0.72. 

 

 

5.3.3 Surface area and pore analysis   

The textural properties of microporous parent zeolite 5A and synthesised mesoporous 

zeolite 5A were analysed by gas (nitrogen) sorption technique. This measurement 

technique provides the specific surface area, microporous and mesoporous surface area, 

pore volume of micropores and mesopores, and pore size distribution. The method of 

gas sorption has been explained in chapter 3.2.3  

Nature of Isotherm 

The nature of the isotherm obtained for parent zeolite 5A was similar to type I isotherm 

according to IUPAC classification [9]. This type of isotherm exhibits very sharp gas 

adsorption at very low relative pressure followed by straight line indicating no or 

negligible gas sorption at higher relative pressure (figure 5.8) [9]. The synthesised 

mesoporous zeolite 5A@Si isotherm began at high gas sorption profile, similar to 

parent zeolite A and exhibits mesoporous characteristic loop between 0.3 and 0.5 

relative pressure (isotherm type IV). The presence of both type I and IV isotherm 

indicated a structure consisting both mesopores and micropores in the synthesised 

material and the study further support the PXRD and SAXS results.  
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Figure 5.8 Isotherm comparison of 5A and mesoporous 5A 

The adsorption and desorption of the gas sorption followed the same path which can be 

seen in figure 5.8. The materials zeolite 5A@ Si-Al 0.31 and zeolite 5A@ Si-Al 0.71 

synthesised by mixture of Al and Si ions lead to similar isotherm profiles to silica 

zeolite 5A@Si but exhibit lower gas adsorption which indicates the mesoporosities 

affected by high Al:Si ratio. 

 

Surface area, pore volume and poresize distribution 

The surface area of the parent zeolite 5A and synthesised mesoporous zeolite 5A were 

calculated by BET method. Table 5.3 reports the data related to surface area, pore 

volume, and pore diameter. The surface area (SBET) of parent zeolite 5A was expected to 

be lower than the synthesised mesoporous zeolites as zeolites consists of micropores, 

which exhibit lower surface area than mesopores. The reported data were consistent 

with this hypothesis. The highest surface area was found for zeolite 5A@Si, which 

reduced when, Al:Si ratio increased (table 5.3). The surface area of micropores (SMicro) 

were found highest in parent zeolite and tend to reduce with mesopore coating. A 

similar trend was found with lowest surface area of mesopores (SMeso) in parent zeolite. 

Examination of the micropore volume of mesoporous zeolite suggests that the highest 

value is for parent zeolite and reduces with mesopore coating. The average micropore 

pore size distribution was calculated by HK method and found to be consistent for all 

samples. The mesopore pore size distribution was calculated by BJH method and it 

varied with increasing Al:Si ratio. The absence or negligible amount of mesopores were 

found in parent zeolite 5A (table 5.3). 
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Table 5.3 Surface area and pore analysis of various molecular sieves 

Sample 

 

SBET 

(m2/g) 

SMicro 

(m2/g) 

SMeso 

(m2/g) 

VTotal 

(cm3/g) 

VMicro 

(cm3/g) 

VMeso 

(cm3/g) 

Dia.Micro 

(Å) 

Dia.Meso 

(Å) 

5A 369 319 49 0.250 0.160 0.089 5.7 - 

5A@Si 530 150 380 0.308 0.071 0.229 5.7 23.5 

5A@Si-
Al_0.31 

484 228 256 0.370 0.120 0.242 5.7 38.0 

5A@Si-
Al_0.72 

396 175 220 0.468 0.092 0.375 5.7 47.1 
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5.3.4 SEM 

 

 

 
Figure 5.9 SEM image of zeolite 5A 

 

 
Figure 5.10 SEM image of mesoporous zeolite 5A@Si 

 

The SEM images show that most of the particles were of cubic shape but some were 

distorted (with rough corners) due to grinding. Figure 5.9 shows the absence of 

mesopores in the parent zeolite 5A, whereas figure 5.10 clearly shows the appearance of 

mesopores in silica coated zeolite 5A which further confirms the PXRD, SAXS, and 

surface area and pore analysis results.  
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5.3.5 Cation uptake measurements 

The objective of using molecular sieve zeolite with different pore sizes was to 

understand size dependant Cs and Sr ions separation in acidic medium. The study was 

also extended to weakly acidic media. The molecular sieve zeolites used were in the 

form of K, Na, and Ca that exhibit 3Å, 4Å, and 5Å pore size respectively. Batch 

equilibrium experiments were employed to understand the molecular sieves’ 

performance for various cations e.g. Cs, Sr, and Ce ions in acidic media. The study was 

also expanded to mesoporous zeolites to understand the effect of different pore size on 

their ion uptake performance. 

 

 

 

Table 5.4 Caesium ion concentrations in various aqueous systems 

Samples 
Initial 

(ppm) 

Final 

(ppm) 

Volume 

(ml) 

Weight 

(g) 

Kd 

(ml/g) 

Capacity 

(mg/g) 

1 M HNO3 

3A  

658±9 

 

620±13 

25 0.50 

3.06 1.90 

4A 600±11 4.83 2.90 

5A 572±13 7.51 4.30 

0.5 M HNO3 

3A  

652±9 

 

580±3  

25 

 

0.50 

6.20 3.60 

4A 538±2 10.59 5.70 

5A 514±2 13.42 6.90 

Deionised water (pH 4.60) 

3A  

660±11 

 

63±1 

25 0.50 

473.80 29.85 

4A 32±1 981.25 31.40 

5A 28±1 1128.57 31.60 
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Table 5.5 Strontium ion concentrations in various aqueous systems 

Samples Initial 
(ppm) 

Final 
(ppm) 

Volume 
(ml) 

Weight 
(g) 

Kd 
(ml/g) 

Capacity 
(mg/g) 

1 M HNO3 

3A  

436±6 

 

420±4 

25 

 

0.50 

 

1.90 0.80 

4A 390±6 5.80 2.30 

5A 337±4 10.89 3.90 

0.5 M HNO3 

3A  

445±11 

 

387±5  

25 

 

 

0.50 

 

7.49 2.90 

4A 393±5 6.61 2.60 

5A 343±4 14.86 5.10 

Deionised water (pH 5.60) 

3A  

499±6 

 

23±1 

25 0.50 

1025.21 23.78 

4A 23±1 1039.51 23.80 

5A 20±1 1197.50 23.95 
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Table 5.6 Mixed ions concentrations in various aqueous systems 

Samples Initial 
(ppm) 

Final 
(ppm) V 

(ml) 
W 
(g) 

Kd 
(ml/g) 

Capacity 
(mg/g) 

 
Sr Cs Ce Sr Cs Ce Sr Cs Ce Sr Cs Ce 

1 M HNO3 

3A 
 

402±5 

 

 

626±9 

 

 

6752±75 

 

430±12 647±11 6113±90 

25 

 

0.50 

 

0.00 0.00 5.22 0.00 0.00 31.95 

4A 428±10 634±7 6057±110 0.00 0.00 5.73 0.00 0.00 34.75 

5A 334±6 487±14 4704±101 10.24 14.21 21.76 3.40 6.95 102.4 

0.5 M HNO3 

3A  

426±8 

 

 

676±11 

 

 

6364±67 

 

424±14 616±9 5189±91 

25 

 

0.50 

 

0.23 4.77 11.32 0.10 3.00 58.75 

4A 365±10 530±13 5128±130 8.38 13.59 11.97 3.05 7.30 61.80 

5A 311±8 448±5 4361±80 18.49 25.35 22.91 5.75 11.40 100.10 

Deionised water (pH 1.20) 

3A  

425±5 

 

 

668±13 

 

 

6587±80 

 

373±9 506±12 4328±75 

25 

 

0.50 

 

6.97 16.00 26.09 2.60 8.10 112.95 

4A 379±7 490±9 4486±86 6.06 18.16 23.41 2.30 8.90 105.05 

5A 189±5 259±5 2710±98 62.43 78.95 71.53 11.8 20.45 193.85 
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Figure 5.11 Mixed ions Kd values for various aqueous solutions 

 

 



132 

Observation in single ion solutions 

The uptake behaviour of various molecular zeolites has shown similar trends in 

presence of Cs ions in various aqueous media (table 5.4). The area of interest is the 

uptake performance of zeolites in presence of acidic media; the materials were only 

capable of adsorbing trace amount of cations from 0.5 M and 1 M HNO3 media. This is 

due to highly competing H+ ions in these solutions, which is a similar observation to 

data reported in the previous chapter. In addition it could be due to acid attack of the 

zeolite framework, destroying the structure as Al-O-Si bonds are weaker than Si-O-Si 

bonds as reported elsewhere [3]. The materials, however, have performed exceptionally 

well in weakly- acidic media (pH 4.60) due to less competing hydrogen ions. 

The higher uptake was also related with higher pore size, allowing cations with higher 

hydrated diameter into the pore structure. Table 5.8 reports hydrated ionic diameters for 

the three cations studied.   

Table 5.7 Hydrated ionic diameter [12] 

Ions Hydrated ionic diameter 

(Å) 

Cs+ ~2.5 

Sr2+ ~5.0 

Ce4+ ~11 

 

A similar Sr study ion was performed and the results were consistent with zeolite 

performance for Cs ions (table 5.5). Hence, a similar explanation can be made that 

competing ions and acid attack were the main reasons for poor performance in 0.5 and 

1.0 M nitric acid solutions but at pH 5.6 (weakly acidic system) the Sr uptake has 

increased to about 24 mg/g.  

Observation in mixed ion solutions 

Mixed ions solution experiments at different acidic strengths were undertaken. The 

media consisted of 10 times the concentration of Ce ions compared to Cs and Sr ions to 

mimic actual dissolver liquor composition as mentioned earlier in chapter 1 (table 1.1).  

The cation uptake measurements in acidic media (1 M and 0.5 M nitric acid) were low 

similar to previous measurements. The increased pore size had a similar effect on ion 

sorption into the zeolite framework (table 5.6 and figure 5.11). The pH value of the 

three cation nitrate salts (Cs, Sr and Ce) when dissolved in deionised water was 1.20 
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resulting in higher uptake values, similar trend to single cation solutions as reported 

earlier. The Ce ions sorption was higher in all aqueous system, which was likely due to 

a concentration effect i.e. 10 times more concentrated than Cs and Sr ions. The poor 

performance of all the zeolites in mixed ions weakly acidic system compared to single 

ions weakly acidic system (pH 1.20) could explained due to pH value. The lower pH 

value had influenced the zeolite performance.  

5.3.6 Uptake measurements of mesoporous zeolite in 0.5 M HNO3 

A mixed ion sorption study was performed on the prepared mesoporous coated 

molecular zeolite. The coated zeolite 5A (mesoporous layer) was studied as it had better 

uptake performance as described earlier. Mesoporous zeolite 5A was coated with Si and 

two different Al:Si ratios. Table 5.8 reports the competitive ions uptake study of zeolite 

5A and mesoporous zeolite 5A in mixed ions 0.5 M HNO3 system.  

Synthesised 5A@Si sample compared with 5A showed only marginal increase in Sr and 

Ce ion uptake. This uptake increase was likely due to increased surface area formed by 

Si framework; the silica surface contains Si-OH in hydrated form hence H+ could have 

exchanged with available ions. The higher uptake of Sr and Ce ions were observed due 

to preference towards multivalent ions compare to single valent ions (figure 5.12). 

 

Figure 5.12 Proposed mechanism of multivalent ion sorption on Si surface 

Al:Si coated zeolite 5A has shown diminishing uptake compared to only silica coated 

zeolite. This was due to the nitric acid destroying the mesoporous framework structure 

resulting from Al-O-Si bonds being weaker than Si-O-Si bonds. As the mesoporous 

zeolite materials did not show any significant improvement in their ion uptake. Further 

study of various aqueous system was abandoned.    
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Table 5.8 Mixed ions concentrations in 0.5 M HNO3 

Samples Initial 
(ppm) 

Final 
(ppm) 

V 
 (ml) 

W 
 (g) 

Kd 
(ml/g) 

 Sr Cs Ce Sr Cs Ce Sr Cs Ce 

5A@Si 429±7 669±10 6656±145 309±5 474±9 3936±81  

 

25 

 

 

0.50 

 

19.42 20.57 34.55 

5A@Si_Al_0.31 429±7 669±10 6656±145 326±4 497±9 4711±73 15.73 17.23 20.56 

5A@Si_Al_0.72 429±7 669±10 6656±145 326±7 500±6 4648±69 15.73 16.83 21.51 

5A 426±8 676±11 6364±66.9 311±8 448±5 4361±80 18.49 25.35 22.91 
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5.3.7 Rate of uptake of molecular sieves 5A 

The kinetics of exchange enables the viability of an ion exchange material in separation 

technology to be understood, helps in identifying the reaction pathway and rate 

dependence on the limiting reacting systems. These rates and mechanisms are governed 

by ion exchange conditions, nature of the exchanger and exchanging ionic species. Ion 

exchange kinetics involves the diffusion of metal ions through the solution to the 

surface and particle pores of the resin followed generally by the chemical exchange 

between hydrogen ions and metal ions at the exchanging sites and the diffusion of the 

displaced hydrogen ions out of the interior and surface of resin into the solution. Both 

film and particle diffusion mechanisms are prevalent in ion exchange process, although 

normally the slowest step (rate-limiting step) for a given system controls the speed of 

ion exchange. Earlier studies noted that film diffusion control prevail in systems with 

ion exchangers of high concentrations of fixed ionic groups, small particle size, dilute 

solutions and with inefficient agitation;  while high metal ion concentration, relatively 

large particle size of the ion exchanger and vigorous shaking of the exchanging mixture 

favour a particle controlled process. 

Zeolite 5A was selected, has it had better uptake capacities than other zeolites studied, 

for kinetic studies. Table 5.9 and figure 5.13 reports the rate of various ions uptake in 

0.5 M HNO3. The investigation indicated that rate of uptake for Cs, Sr ions were quite 

rapid, and up to 80% equilibrium was achieved within first 60 minutes but uptake of Ce 

ions was much slower. The difference in rate of uptake for Ce ion in two different 

concentrations suggest high concentration of Ce ions in mixed ion system (10 times) 

could have influenced Cs and Sr ion uptake performance.  
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Table 5.9 Rate of uptake on molecular sieve 5A in 0.5 M HNO3 

Samples 

(Minutes) 

5 mM Cs(I) 

(%) 

5 mM Sr(II) 

(%) 

5 mM Ce(IV) 

(%) 

50 mM Ce(IV) 

(%) 

0 0 0 0 0 

60 85 72 23 54 

180 100 88.3 68.6 97 

720 100 100 100 100 

1440 100 100 100 100 

2880 100 100 100 100 

 

 

 

Figure 5.13 Rate of uptake of various ions on molecular sieve 5A in 0.5 M HNO3 
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5.4 Conclusions 

The objective of the research was to identify potential use of size exclusion property of 

zeolite A with various pore sizes to selectively remove FPs. The study was expanded to 

include the synthesis of mesoporous zeolite 5A; a mesoporous layer was coated around 

zeolite particles and expected to act as a protection layer against its direct contact with 

the aqueous system. 

The synthesised materials were characterised by various analytical techniques. The 

mesoporous coating on zeolite 5A were successfully accomplished by sol-gel technique 

and characterised by PXRD, SAXS, surface area, and SEM imaging. The x-ray 

diffraction comparison of zeolite 5A and three different mesoporous coatings were 

observed where peak positions remains same however, the intensity of those peaks were 

reduced with various coatings. The mesoporosity was also confirmed by SAXS and 

surface area studies. The surface area for 5A@Si was highest 530 m2/g in comparison to 

369 m2/g for zeolite 5A. The increased surface area suggest mesoporosity with pore size 

23.5 Å. The characteristic loop (type IV) in gas sorption isotherm further confirms 

mesoporosity of synthesised mesoporous 5A particles.  

The cation uptake studies in single ions and mixed ions suggest zeolite A was not 

capable of separating the cations based on hydrated ion size exclusion. Zeolite A had 

shown uptake of Ce ions although the hydrated diameter was 11 Å, larger than biggest 

pore size zeolite 5A.   

All the zeolite A’s have shown marginal uptake of Cs, Sr and Ce ions in 0.5 M and 1 M 

HNO3 system for both single and mixed ions system. The uptake was remarkably higher 

(up to 31 mg/g for single ions) in weakly acidic systems and pH value higher than 4, 

which was consistent from previous research on zeolites. 

The rate of uptake values were encouraging; up to 80% equilibrium for Cs and Sr ions 

were achieved within 60 minutes in 0.5 M HNO3 system at room temperature.  

Mesoporous coating only has a marginal effect, not more than 10% on cation uptake 

performance and was therefore further studies were discontinued.  
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Chapter 6 

AMP composites 

 
6.1 Introduction 

6.1.1 Ammonium phosphomolybdate (AMP) 

Ammonium phosphomolybdate (AMP) is a salt of 12-heteropoly-acids family and their 

first synthesis mechanism was reported by Berzelius [1]. It was synthesised by heating 

ammonium molybdate in a mixture of concentrate phosphoric acid and nitric acid, 

which yields yellow fine precipitate of ammonium phosphomolybdate and ammonium 

nitrate in solution and water [1- 3].   

The detailed x-ray crystal structure of AMP was first reported by Illingworth and 

Keggin [4]. 

 

 

 

Figure 6.1 Schematic representation of AMP in (a) Ball stick structure, (b) crystal 

structure, and (c) chemical structure [5] 
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The reaction can be represent as  

12(NH4)2MoO4 + H3PO4 + 21 HNO3 → (NH4)3PMo12O40↓ + 21 NH4NO3 + 12 H2O 

According to their findings, the phosphomolybdate complex (PMo12O40) consist of a 

hollow sphere formed by 12MoO6
6- octahedra with PO4

3- group in the centre of the 

crystal structure of the ammonium salt of this ion. The ammonium ions (NH4
+) are 

probably fitted between these spheres thus balancing the crystal charge in the lattice 

(Figure 6.1) [5].  

The first ion exchange properties of AMP were reported by Smit et al., who 

investigated the exchange of monovalent alkali metal ions by ammonium ions. The 

study concluded that AMP had an excellent distribution coefficient (Kd) and good 

selectivity for caesium ions compared to other ions in up to 10 M HNO3 media [6, 7].  

A different study was carried out with K+, Rb+, Cs+, Sr2+, Ag+, Hg2+, and Tl3+ ions 

uptake on AMP from pH solution of 2 - 5 [8]. The study revealed that metal ions that 

form insoluble heteropolyacid salts will exchange significantly with the ammonium ions 

in acidic solutions (pH < 2) [9]. A similar ion exchange capacity study has been 

reported where monovalent ions (Na+, K+, Rb+, and Cs+) were exchanged by NH4
+ [7, 

10].  

Caesium separation from highly salted nuclear waste was carried out with AMP that 

demonstrated there was no significant difference in Kd uptake in presence of 10g/l Na 

ions [12]. Various studies were also performed to measure rate of uptake of caesium on 

AMP all of them recorded fast kinetics (< 30 min) and equilibrium was established 

immediately [8, 11, 12]. 

The caesium uptake of AMP was also studied in acidic conditions (0.2 - 10 M) before 

and after irradiation at approximately 1 MGy and the study reported no significant 

change in capacity and minor change in caesium Kd after irradiation [13].  

A solubility study was performed by Archer, where they reported its finite solubility in 

water and acids and it dissolves readily in alkaline solution (pH > 8) [14].  
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Advantages of AMP are: 

• rapid rate of sorption equilibrium 

• high distribution coefficient in acidic media 

• high loading capacity 

• high selectivity for caesium in complex matrices  

• soluble in alkaline solutions 

• elution is possible with ammonium nitrate solutions. 

Disadvantages of AMP are: 

• it is a microcrystalline structure which is not suitable for column use, 

• the high Cs loadings of AMP result in high radiation doses and hotspots on the 

column requiring cooling systems, 

• heat generation could affect the support (i.e. melt the organic support) 

 

6.1.2 AMP- Al2O3 composite  

To overcome the particulate size and solubility in acidic media, a granular 

(microsphere) form of composites were developed based on metal oxides which are 

practically insoluble in 1 - 5 M HNO3 and provides support matrix to Cs selective 

zeolites [16, 17].  

Preparation of granular (microsphere) form can provide ideal flow dynamics for column 

operations. Microspheres can also be tailored by varying physical and chemical 

parameters to control selectivity and loading capacity of the ion exchanger [16]. 

First synthesis of metal oxide microspheres by internal gelation method was 

demonstrated to make spheroidal uranium oxide in the nuclear fuel cycle and later it 

was extensively researched in the area of inorganic ion exchangers at ORNL [15, 16].  

Internal gelation process is a chain of reactions where hydrous metal oxides undergo 

stepwise hydrolysis and polymerisation [17]. In a typical synthesis of aluminium 

microspheres mixing of pre-cooled solution of hexamethylenetetramine (HMTA) and 

urea to pre-cooled aluminium nitrate solution and then dispersing it as droplets into hot 

oil is involved [17]. The key of internal gelation process is a slow or delayed gelation at 

low temperature (0 – 5 °C) and quickly transferred into hot organic media (silicon oil) 

to allow rapid gelation. 
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Aluminium nitrate internal gelation chemistry 

Al(NO3)3 + xH2O          Al(NO3)3-x (OH) x+ xHNO3 ………………….   (1) 

HNO3 + NH4OH            NH4NO3 + H2O………………………………..   (2) 

(CH2)6N4 + HNO3          (CH2)6N4.HNO3………………………………      (3) 

Al(NO3)3-x (OH) x+ (3-x) H2O           Al(OH)3 + (3-x) HNO3……………... (4) 

Reaction (1) describes the partial hydrolysis of aluminium nitrate, which release free 

acid. In the internal gelation process, free acid (nitrates) have to be neutralised as excess 

acid to aluminium ratio affect the retention of the spherical shape [17]. The 

neutralisation of free acid can be achieved by strong base (NaOH) but NH4OH is 

usually preferred because of easy volatisation and thermal decomposition of NH4
+ [18]. 

Reaction (3) describes the neutralisation of free acids when mixture of hydrolysed metal 

oxide was added to HMTA solution. HMTA plays a very critical role during gelation; 

excessive amount of HMTA results in premature gelation and insufficient amount 

results in softer gel or incomplete gelation [18]. Internal gelation process also requires 

urea, which forms a complex with metal ions (Al3+) when hydrolysed aluminium nitrate 

solution was added to the mixture of HMTA, and urea [17, 18]. Urea reacts with free 

nitrate in acidic solution of aluminium nitrate and yields gaseous nitrogen and CO2 [18]. 

Thus, it shields Al3+ ions during addition of HMTA and prevents premature 

precipitation [18]. 

A detailed study of the preparation of ZrHP-AMP microspheres by internal gelation and 

their caesium uptake was performed on actual INEEL acidic waste [16]. The evaluation 

revealed that a spheroidal inorganic composite was successfully produced which 

possessed good strength, low tendency for surface erosion and high caesium selectivity 

and loading capacity in acidic high salt INEEL waste [16]. 

Synthesis of AMP loaded aluminium oxide microspheres were investigated for 

production of granular form of caesium selective ion exchangers in acidic media [19, 

20]. The studies concluded that maximum of 16 wt % of AMP was able to load into 

Al2O3 spheres by internal gelation technique [20]. The study also reported that increased 

quantity of AMP resulted in a softer gel of AMP-Al2O3, which did not retain its shape; 

increased quantities of HMTA and urea did not further improve the gel structures [20].  
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The study was also extended to separate Cs+ ions from Ba2+ ions in up to 8 M HNO3 

media the spheres exhibited respectable distribution coefficient and selectivity for Cs+ 

in up to 2 M HNO3 [20]. 

A different preparative method of producing AMP-Al2O3 spheres was investigated by 

Onodera et al. where phosphomolybdic acid was used as the starting chemical, which 

was converted to ammonium phosphomolybdate after loading into commercially 

available aluminium microspheres [21]. The study reported that about 50% AMP 

loading was possible after series of impregnations of Al2O3 spheres. The caesium 

sorption study in mixed ion high-level waste reported that Cs+ possessed high Kd value 

in presence of other ions except Na+ in 1 M HNO3 media [21].  

6.1.3 AMPPAN composite   

Polyacrylonitrile (PAN) is a synthetic, semi-crystalline organic polymer with the linear 

formula (C3H3N)n. It is a copolymer made from a mixture of monomers with 

acrylonitrile as the main chemical species [22]. A typical one-step synthesis process, 

involves a radical polymerisation of acrylonitrile monomers initiated by peroxides or 

redox systems at temperature below 100 °C. It is classified as thermoplastic and varies 

in their molecular weight from 40,000 - 150,000 g/mol.  

The most common properties are: 

- Fast, simple and cheap synthesis 

- Easy modification of physiochemical properties (mechanical strength, porosity, 

and hydrophilicity) 

- Hardness and Stiffness 

- High melting point 

- Thermoplastic  

- Resistant to most solvents and chemicals, UV, heat, microorganisms [23, 24] 

- Radiation stability [24] 

- Can be moulded into different shapes and size 

 

Figure 6.2 Molecular structure of polyacrylonitrile (PAN) [22] 
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The first discovery of AMPPAN composite was made by Sebesta et al. by using PAN 

as a binding or support material for microcrystalline AMP [23]. The concept was to 

overcome the particulate structure of AMP to produce a granular form, which would be 

suitable for column work. The study reported that the rate of uptake of Cs ions in 0.1 M 

HCl was little slower than particulate pure form of AMP however, the difference was 

not significant and could be employed for Cs ions separation in acidic nuclear waste 

[23]. The study also emphasised that binding polymers had no major effect on Cs ions 

sorption and its properties do not change when reacting in acidic or in the presence of 

reducing agents [23].  

A separate caesium uptake study on AMPPAN composite was performed with a 

simulated sodium bearing waste, which contained different radionuclides [23]. The 

study demonstrated excellent caesium selectivity and capacity of the composite in 

mixed ions acidic solution [23].  

Similar research was performed by Todd et al., where AMPPAN composites were 

evaluated for removal of caesium from Idaho National Engineering and Environment 

Laboratory (INEEL) concentrated acidic tank waste [25]. The study evaluated different 

concentrations of sodium, potassium and in different acid strength, the results showed 

that sorption of caesium was in order Cs+>>K+>H+≈Na+ [25]. The study also extended 

to columns where the caesium sorption capacity was reported as 22.5, 29.8, and         

19.6 mg Cs/g, for 5, 10, and 20-bed volume respectively [25]. The evaluation also 

confirmed the thermal stability of the composite up to 400 °C [25]. 
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6.2 Material and Methods 

6.2.1 Materials 

The source and purity of the reagents are presented in table 6.1. 

Table 6.1 Reagents, their purity and source of purchase 

Reagents Source Purity/Grade 

Ammonium 

phosphomolybdate (AMP) 

(NH4)3PMo12O40 ·3H2O 

 

Alfa Aesar 

 

Reagent Grade 

Aluminium Nitrate 

(Al(NO3)3 ·9H2O) 

Sigma Aldrich ≥99% 

Urea 

(NH2CONH2) 

VWR ≥98% 

Hexamethylenetetramine 

(C6H12N4) 

Sigma Aldrich ≥99%, 

ACS reagent 

Ammonium hydroxide, 

(NH4OH) 

VWR Reagent Grade 

28%-30% NH3 basis 

Tween 80 Sigma Aldrich Reagent Grade 

Dimethyl Sulfoxide 

((CH3)2SO) 

Fisher Reagent Grade 

Polyacrylonitrile 

(C3H3N)n 

Sigma Aldrich Reagent Grade 

Dichloromethane 

(CH2Cl2) 

VWR ≥99.8% 

Deionised Water 

(H2O) 

NA ≥18.2 MΩ.cm-1 

Silicon Oil 

(Polydimethylsiloxane) 

Mistral Industrial 

Chemicals 

100% 

Caesium nitrate 

(CsNO3) 

Sigma Aldrich ≥99.9% 

Strontium nitrate 

(Sr(NO3)2) 

Sigma Aldrich ≥99.9% 

Ammonium cerium nitrate 

(Ce(NH4)2(NO3)6) 

Sigma Aldrich ≥99.9% 
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6.2.2 Synthesis Method 

 

6.2.2.1 AMP-Al2O3 composites 

The synthesis of AMP-Al2O3 composites was initiated by preparing Al2O3 and further 

encapsulating AMP in the process.  

Synthesis of Al2O3 granules  

The synthesis Al2O3 granules were prepared using the same technique reported by Pillai 

et.al. with slight modification [17]. The preparative route was initiated by preparing    

100 ml stock solution of 3 M aluminium nitrate and 3 M mixture of HMTA and urea in 

a volumetric flask by weighing required quantity of each reagents and making up the 

solution to 100 ml with d.w. (table 6.2). Further, 5.12 ml of ammonium hydroxide was 

added to the aluminium nitrate stock solution to adjust molarity to 2.85 M.  

Table 6.2 Amount of reagents used for preparation of stock solution  

Reagents Molarity 

(M) 

Weight 

(g) 

Aluminium Nitrate 

(Al(NO3)3 · 9H2O) 

3 M 112.5 

Urea 

(NH2CONH2) 

3 M 18 

Hexamethylenetetramine 

(C6H12N4) 

3 M 42.05 

Ammonium hydroxide, 

(NH4OH) 

NA 4.60 

 

For synthesis of Al2O3 granules, 49.2 ml of ammonium treated aluminium nitrate stock 

solution (2.85 M) was measured into a beaker; to this a further 10.36 ml NH4OH was 

added to this solution and cooled in an ice bath at between 0 - 5 °C,  solution-A. In a 

separate beaker, 45 ml of 3 M mixture of HMTA and urea stock solution was dispensed 

and cooled in an ice bath at between 0 - 5 °C, Solution- B. 

Chilled Solution B was added slowly to Solution A with constant stirring by magnetic 

stirrer in an ice bath. After stirring for about 10 minutes, the chilled viscous mixture 

(gel) was added dropwise by a pipette into hot (90 °C) silicon oil. The synthesised 
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granules were separated from oil and degreased by washing twice with dichloromethane 

(CH2Cl2) which was followed by at least 4-washings with 2 M NH4OH and measuring 

the solution conductivity. The granules were then dried in an air oven at 80 °C under 

vacuum overnight followed by calcination in a furnace at 380 °C with 2 °C/min in air. 

Synthesis of AMP-Al2O3 granules 

AMP-Al2O3 composites granules were synthesised in a similar technique as Al2O3 

granules by adding “X” quantity of AMP to Solution-A (table 6.3). The whole process 

was repeated as mentioned earlier with exception of washing stage where granules were 

washed with 0.1 M NH4OH at least 4-times and measuring the solution conductivity. 

Table 6.3 Amount of AMP used during AMP-Al composite preparation 

Samples “X” AMP 

(g) 

AMP-Al2O3-1 0.8 

AMP- Al2O3-2 0.7 

AMP- Al2O3-3 0.5 

 

Al2O3 and AMP- Al2O3 composite granules were prepared using two different 

equipment set-ups. As shown in figure 6.3 (a), a temperature controlled pumping system 

filled with silicon oil was connected to approx. two 60 cm long glass jacked columns by 

rubber tubing. Inlet and outlet of both columns connected in such a way that hot oil 

passes through vertical column first and then inclined column and back to the heated 

pump reservoir. The flow of the pumping system was regulated by a manual valve that 

maintained the oil level of the vertical column half-full. The end of the inclined column 

was placed on a sieve supported by funnel on the Erlenmeyer flask with DURAN side 

outlet. 

The Erlenmeyer flask, which contained silicon oil, was placed on a magnetic hot stirrer 

plate. The temperature was elevated to 150 °C with constant stirring and the oil was 

directed to pumping system to maintain the required temperature in the vertical column. 

The vertical column was insulated with aluminium foil.   

A quick fit glass connector was placed on top of the vertical column to achieve two 

inlets. The hot silicon oil passes through side inlet and composite mixture was 

introduced by 2 ml Pasteur pipette drop wise through the other.  
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Figure 6.3 Synthesis of Al2O3 and AMP-Al2O3 (a) Column setup, and (b) Bowl 

setup   

A different system was constructed which is shown in figure 6.3(b). An easier setup, 

which consisted a 2.5 L Pyrex glass bowl, filled with silicon oil up to 85% capacity. The 

bowl was placed on a magnetic hot plate and oil was stirred continuously for 

homogeneous heat transfer. The temperature was constantly recorded by a thermometer. 

A 45 microns stainless steel sieve was submerged in the heating oil and allowed to 

achieve a constant temperature of 90 - 95 °C. The composite mixture was injected by     

25 ml syringe into the hot silicone oil to produce the required granules. The injected 

composite mixture was allowed to gel in the oil for 2 - 3 minutes and the sieve 

containing the granular was lifted out of the oil. The oil was allowed to drain and 

retained materials were processed further as explained in synthesis method.  

 

6.2.2.2 AMPPAN composites 

AMPPAN composites were prepared by same method as previously reported by Park et 

al. [27]. The matrix of required quantities of reagents are reported in table 6.4. The 

synthesis of AMPPAN composite was initiated by dissolving “z” quantity of Tween 80 
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in “L” amount of dimethylsulfoxide (DMSO) and mixed by an overhead stirrer at 

approximately 250 rpm. “Y” quantity of ammonium phosphomolybdate (AMP) was 

added to the solution and the mixture was kept in a water bath at 50 °C for 1 hour. After 

one hour, a homogeneous yellowish green colour mixture was obtained, “X” amount of 

polyacrylonitrile (PAN) powder was added and the solution was maintained at 50 °C 

with  constant stirring (~250 rpm) for 6 hours. The composite mixture was allowed to 

drop under gravity into ~400 ml of d.w. The spheres were left overnight in d.w and 

further washed 3 times with fresh d.w. every 30 minutes. The washed beads were 

separated and dried in an air oven at 60 °C for 24 hours. The synthesised composites 

were identified as AMPPAN weight percentage (table 6.4). 

Table 6.4 Amount of reagents used AMPPAN composite preparation 

wt% 

AMP 

Sample PAN (g) 

“X” 

AMP (g) 

“Y” 

TWEEN 80 (g) 

“Z” 

DMSO (ml) 

“L” 

70 AMPPAN 70 4 10 0.4 100 

50 AMPPAN 50 20 20 0.8 200 - 225 

25 AMPPAN 25 18.75 6.25 1.6 200 - 250 

12.5 AMPPAN 12.5 20 2.5 1.6 200 - 250 

 

In the first experiment the AMPPAN 70 composite mixture was allowed to drop under 

gravity through a 2 mm ID pipette; in the second series of experiments a Watson 

Marlow peristaltic pump  was used to provide a constant head of composite mixture in 

the 25 ml pipette (figure 6.4). The in-house nozzle system was developed as 

commercially available vibrating nozzle systems had long lead times and are expensive. 

As shown in figure 6.3, one end of the plastic tubing was dipped in the mixture 

container and other end was passed through peristaltic pump to 25 ml glass pipette. The 

peristaltic pump was operated between 100 - 200 rpm to maintain an appropriate flow 

rate and constant head in the pipette. The viscosity of the mixture was adjusted by 

adding extra amount of DMSO directly into warm mixture. The pipette end was capped 

with 1 ml pipette tip to make 2 - 3 mm spheres and the mixture was dropped in to a 

beaker containing d.w. Second pipette was installed to make the synthesis process 

quicker. The video of the actual working arrangements can be found on youtube [31]. 
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Figure 6.4 Continuous pumping setup for AMPPAN composite production 
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6.2.3 Characterisation 

The structural morphology of all the composites were studies by SEM. The textural 

characteristics were evaluated by nitrogen sorption. ATR-IR was used to study the 

changes that have occurred during synthesis. The thermal properties of various 

composites were evaluated by TGA at 10 °C/min and in air supply of 20 ml/min. The 

experimental details of the uptake and rate of uptake measurements were performed by 

ICP-MS and explained in chapter 3.  

The chemical stability of the composites was studied using a known quantity of material 

(0.5 g) with 25 ml of various HNO3 solutions (0.5 M, 1 M and 3 M) in a 150 ml Duran 

glass bottle. The bottles were placed in a shaking water bath and composites/solutions 

were agitated for 24 hours at ~170 rpm at 25 °C. Subsequently, the composites were 

separated from HNO3 solutions, and the ions leached from the composite into the acid 

measured by ICP-MS. Al and Mo ions were measured to evaluate chemical stability of 

AMP-Al2O3 composites and only Mo ions were measured for AMPPAN study. The 

experimental detail has been explained in chapter 3.2.9 
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6.3 Results and Discussions  

Preparation of Al2O3 and AMP- Al2O3  

The synthesis of composites using the continuous column set up (figure 6.3 (a)) did not 

produce the required spheres and after several modifications to the apparatus it was 

abandoned in favour of the much easier arrangement. The bowl set up produced 

different shape and size of the composites however; the major challenge with this 

equipment was product yield. The granules were dropped into hot oil that collected on a 

submerged sieve. The spontaneous gelling property of the composite mixture, coupled 

with the close proximity of spheres or granules on the sieve produced gelled material 

that had no specific shape. In an attempt to overcome these challenges, only small 

quantities of material were prepared thus preventing gelling on the sieve. This process 

was time consuming.   

The internal gelation technique was not without significant challenges starting with the 

aluminium nitrate crystals not being of the stoichiometric ratio of 1:3 and this required 

the excess nitrate to be neutralised by the addition of the appropriate quantity of 

ammonia solution. The correct Al to nitrate ratio was crucial as it influenced the nature 

of the gel (softer or harder); a ratio of 1:3.25 produced a softer gel. A series of 

experiments was carried out in which the ratio of Al to nitrate was changed by the 

addition of ammonia solution to ascertain which conditions produced the better harder 

gels. The harder gel in this research referred to gel which retains the shape (granules 

and/or spherical) after washing stage. The different feed composites were evaluated as 

reported earlier by Pillai et.al. [17]. 

 

 

Table 6.5 Stock solution for Al2O3 and AMP- Al2O3 preparation 

Trial Al/NO3 mole ratio Remarks 

1 1:3 Softer gel 

2 1:3.15 Softer  gel 

3 1:3.25 Softer gel 
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Table 6.6 Feed composition for Al2O3 and AMP-Al2O3 preparation 

NO3/Al  

mole ratio 

Feed composition Remarks 

 Al  
(M) 

HMTA-Urea/Al mole ratio 
(M) 

2.85 1.40 1 Harder gel 

 

Table 6.7 Conductivity monitoring during washing 

Wash 

 number 

Conductivity 

(mS) 

Retained shape during calcination 

 (Yes/No) 

Al2O3 AMP-Al2O3 Al2O3 AMP-Al2O3 

2  17.81 18.30 No No 

4 3.25 7.15 Yes No 

6 NA 4.35 NA No 

8 NA 2.85 NA Yes 

NA- Not Applicable 

Table 6.5 represents series of experiments with different stock solutions for the 

synthesis of Al2O3 and AMP-Al2O3 granules. Table 6.6 represents the feed solution 

composition used for the study and table 6.7 represents the significance of washing 

stage. Due to AMP solubility in NH4OH, AMP- Al2O3 composite  was washed with   

0.1 M NH4OH and Al2O3 granules were washed with 2 M NH4OH. The study was 

conducted to prevent the powder formation during calcination. This was due to high 

osmotic pressure inside the granules due to high presence of NH4NO3, which resulted 

into cracking of granules [17]. Repeated washing step would remove excess nitrates in 

the structure.  

The obtained materials were hard granules, which referred to harder gel of approx.        

1 mm wide and 3 - 4 mm long (figure 6.6 and 6.7). The colour of Al2O3 and           
AMP- Al2O3 granules were white and yellow respectively. The yellow colour was due 

to AMP entrapment during Al2O3 polymerisation.  
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Figure 6.5 Softer gel formation 

 

 

Figure 6.6 Synthesised Al2O3 granules 

 

Figure 6.7 Synthesised AMP- Al2O3 composite granules 
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Preparation of AMPPAN composite spheres 

The AMPPAN composites were easier to synthesise and for the scale up of the 

equipment. The AMPPAN 70 spheres produced by manual dropping technique (using a 

25 ml syringe) under gravity produced non-uniform spheres (1 - 3 mm) where other 

composites produced by continuous pumping system were of a more consistent 

diameter (1.5 - 2 mm). Although the viscosity of the AMPPAN solution was not 

measured, if necessary, it could be adjusted by additional DMSO, with little change to 

the morphology of the composites. Figure 6.8 represents AMPPAN composites and 

colour variation from dark green to pale yellow was considered to be due to amount of 

AMP entrapped in PAN.  

 

 

Figure 6.8 Image of synthesised AMPPAN composites 
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6.3.1 SEM 

SEM on various composites was carried out to understand the morphology of the 

synthesised materials. Figure 6.9 represents SEM granules micrograph of (a) AMP-

Al2O3 and (b) Al2O3 composites respectively. The surfaces of the granules were rough 

and cracked which could be due to the synthesis technique. There was no channel like 

structure since no surfactant was used. AMPPAN composites had a distinctive 

morphology (figure 6.10 – 6.13). The outer surface was smooth however, dissection of 

spheres revealed a continuous channel-like structure as reported previously [27]. This 

could be due to pore formation by surfactant, which was removed during the washing 

step.  

 
(a) 

 
(b) 

Figure 6.9 SEM image of (a) AMP- Al2O3 granules and (b) Al2O3 granules 
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Figure 6.10 SEM images of AMPPAN 12.5 composite 
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Figure 6.11 SEM images of AMPPAN 25 composite 
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Figure 6.12 SEM images of AMPPAN 50 composite 
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Figure 6.13 SEM images of AMPPAN 70 composite 
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6.3.2 Surface area and pore analysis   

 

Figure 6.14 Isotherm comparison of AMP- Al2O3 and Al2O3 materials 

 

 

Figure 6.15 Isotherm comparison of AMPPAN composites 
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Nature of isotherm 

The isotherm in figure 6.14 represents a typical mesoporous gas sorption profile similar 

to type IV isotherm as per IUPAC [27]. Both composites (Al2O3 and AMP-Al2O3) had 

shown similar profiles but volumes of gas sorption varied. The decreased sorption data 

was largely due to AMP encapsulation producing small pores (micropores) of AMP, 

which resulted in negligible gas adsorption. The characteristic loop in relative pressure 

(P/Po) 0.4-0.6 indicates mesoporosity and well uniform pore structure. The BET 

calculation also supports isotherm data; the Al2O3 composite surface area higher than 

AMP- Al2O3 composite (table 6.8).  

In figure 6.15, the isotherm comparison indicates higher population of macropores 

present at relative pressure (P/P0) close to 1 in AMPPAN 25 and AMPPAN 12.5. This 

was attributed to the increased amount of surfactant (Tween 80) (table 6.4) employed in 

the preparation of the composites. The volume adsorbed and the isotherm profile looks 

identical for these two composites (figure 6.15). The decreased quantity of Tween80 

and increased quantity of AMP in AMPPAN 50 had a little effect on sorption volume 

but the profile was similar to AMPPAN 25 and AMPPAN 12.5, i.e. similar in profile 

but different volumes of the gas sorption. The most distinct isotherm was observed for 

AMPPAN 70 composite where very little gas sorption was found which could be 

attributed to the lowest quantity of surfactant and the highest quantity of used AMP. 

The surface areas of the composites were also consistent with isotherms where 

increased quantity of surfactant and decreased quantity of AMP resulted into higher 

surface area (table 6.8). 

Table 6.8 Surface area and Pore analysis of various AMP based composites 

Samples Amount  Specific 
Surface 

area(BET) 
(m2/g) 

Total  
Pore 

Volume 
(cm3/g) 

Av. Desorption 
pore diameter 

“dp” (Å) AMP 
wt% 

Tween 
80 (g) 

AMPPAN 12.5 12.5 1.6 21.52 0.049 152.99 

AMPPAN 25 25 1.6 20.64 0.050 167.91 

AMPPAN 50 50 0.8 15.05 0.032 128.82 

AMPPAN 70 70 0.4 2.54 0.004 80.52 

AMP- Al2O3 2 NA 388.94 0.306 32.02 

Al2O3 NA NA 486.77 0.407 32.01 

NA- Not applicable 
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Surface area, pore volume and poresize distribution 

The pore analysis of these composites was performed by the BJH method. The results 

indicate that higher pore volume in Al2O3 composite compared to AMP- Al2O3, which 

is consistent with surface area data. There was narrow pore size distribution observed 

and average pore diameter for both composite of the order 32 Å (table 6.8). The pore 

analysis data indicated that AMP was not affecting formation of pore diameter however; 

it reduced the pore volume because of micro-porosity.  

The effect of surfactant had a key role during formation of porous structure in 

composites. Higher the quantity, higher the pore volume as reported in table 6.8. The 

BJH method of pore diameter calculations was performed to observe the uniformity of 

the porous structure.  

The study indicated that all the AMPPAN composites had large pore size distribution in 

the structure and pore diameter varied from micropores to macropores. The average 

pore diameters are reported in table 6.8.  

The SEM images of AMPPAN 70 (figure 6.13) have shown good porosity; but 

significantly lower surface area (table 6.8). This was possibly due to the incorporation 

of the highest amount of AMP, which resulted in most prominent microporosity in 

AMPPAN 70; thus preventing gas molecules entering into the structure 
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6.3.3 ATR-IR 

 

 

 

Figure 6.16 IR spectra comparison for Al2O3 and AMP- Al2O3 composite 

 

 

 

Table 6.9 Observed IR band position in Al2O3 and AMP- Al2O3 composites 

Sample Mo-O-Mo 

(cm-1) 

Mo=O 

(cm-1) 

P-O 

(cm-1) 

NH4+ 

(cm-1) 

Al(OH3) 

(cm-1) 

Al-OH 

(cm-1) 

-OH 

(cm-1) 

Al2O3 NA NA NA NA 985-

1040 

1640 3000-

3700 

AMP- 

Al2O3 

752 NA 1041 1380-

1400 

1033 1639 3000-

3700 
NA- Not applicable 

 

 

 

 



166 

 

 

Figure 6.17 ATR-IR Study of various AMPPAN composites 

 

Table 6.10 Observed IR band position in pure AMP and AMPPAN composites 

Sample Mo-O-Mo 

(cm-1) 

Mo=O 

(cm-1) 

P-O 

(cm-1) 

NH4+ 

(cm-1) 

−C≡N 

(cm-1) 

-OH 

(cm-1) 

AMPPAN 12.5 770-812 953 1076 1450 2252 2800 - 3000 

AMPPAN 25 770-810 955 1075 1446 2248 2800 - 3000 

AMPPAN 50 770-805 954 1075 1446 2245 2800 - 3000 

AMPPAN 70 770-760 955 1074 1403 2243 2800 - 3000 

Pure AMP 770 & 860 956 1060 1400 NA 3000 - 3500 

    NA – Not Applicable 

Figure 6.16, a comparison of ATR-IR spectra for Al2O3 and AMP- Al2O3 composites. A 

broad peak starting from 2800 - 3500 cm-1 represents adsorbed moisture and can be 

attributed to -OH stretching which are attached to Al ions [17]. The broad peaks could 

be due to varied amount and orientation of adsorbed moisture molecules. Another 

characteristics peak of -OH bending modes from adsorbed water was found at          

1640 cm-1. A very weak shoulder found from 985 - 1040 cm-1 that can be attributed to 
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Al(OH)3 as previously reported [17]. The characteristic peaks found in AMP- Al2O3 

composite were absent in Al2O3 composite, such as Mo-O-Mo, vibration between 

corner MoO6
6- octahedron; P-O symmetric stretching vibration of central PO4

3- 

tetrahedron and characteristic vibration of NH4
+ in the region of 752 cm-1, 1041 cm-1 

and 1400 cm-1 respectively (table 6.9 ) [28].  

 

A weak intensity peak at 1041 cm-1 from AMP-Al composite was believed to be a 

combination of vibration frequencies of Al(OH)3 and P-O species. Few weak signals are 

also found at 1380 cm-1 in the aluminium composite, which can be attributed to 

impurities present in the structure as reported earlier [17].  

 

Similarly, figure 6.17 illustrates IR vibration spectra and peak attributions are reported 

in table 6.10. A comparison study of pure AMP showed their characteristic peaks as 

mentioned earlier P-O, Mo-O-Mo, M=O and NH4
+ which are shown in figure 6.17 [27]. 

AMPPAN composites exhibited all of the above peaks including the peak at 2245 cm-1, 

which corresponds to −C≡N vibration frequencies; these observations are similar to 

previous study [27]. 

 

6.3.4 TGA and DTA analysis 

 

Figure 6.18 TGA comparison profile of AMP- Al2O3 composite 
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Figure 6.19 DTA comparison profile of AMP- Al2O3 composite 

Table 6.11 Weight loss comparison in AMP- Al2O3 composites 

 

Sample 

 

100 – 300 °C 

 

300 – 550 °C 

 

550  - 950 °C 

 

Weight 

(mg) % 

                 mg 

% 

               mg 

% 

               mg 

 

Pure AMP 

NA 

                NA 

3.19 

            0.29 

65.84 

               6.01 

 

9.13 

 

AMP- Al2O3 

3.9 

              1.21 

4.30                                                                                     

            1.74 

1.8 

               0.73 

 

40.61 

 

Al2O3 

3.5 

             1.50 

2.79 

             1.20 

1.79 

               0.76 

 

42.97 

 

To determine the thermal stability of the synthesised composites, thermogravimetric 

analysis (TGA) and differential thermal analysis (DTA) were performed with the 

following temperature ramp and gas flow respectively; 10 °C/min and 20 ml/min air. 

Figures 6.18 and 6.19 are the TGA and DTA comparison profiles of AMP- Al2O3, 

Al2O3 composites and pure AMP respectively. Both results show similar profile of 

weight loss in AMP- Al2O3 composite and Al2O3. The initial weight loss of approx. 4% 

below 150 °C can be attributed to loss of moisture content in both structures. The 

previous study reports a weight loss at 280 °C, which belongs to chemically bound 
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water molecules [17]; no such weight loss was observed in this study. This lack of 

moisture could be attributed to the use of a vacuum oven for drying the synthesised 

materials. Loss of weight at higher temperatures are reported in table 6.11; marginal 

losses of weight are due to removal of hydroxyl groups, which form oxy bridges, which 

is consistent with a previous study [17]. The thermal study found that a broad weight 

loss peak between 450 – 550 °C was confirmed by DTA profile (figure 6.19). A similar 

weight loss was also observed in AMP- Al2O3 composites; difference in weight could 

be due to amount of AMP in the structure. A sharp endothermic peak was observed 

between 750 – 950 °C that was due to complete decomposition of AMP. There was no 

such peak observed in AMP- Al2O3 composite due the AMP to Al2O3 ratio was very 

low hence it followed Al composite trend. 

A similar study was performed that compared AMPPAN composites and are shown in 

figures 6.20 and 6.21, which represents TGA and DTA comparison respectively. The 

weight loss data has also reported in table 6.12.  

There was marginal weight loss observed below 150 °C in all the composites, which can 

be due to adsorbed moisture. A very sharp weight loss observed at 280 °C in all the 

samples except pure AMP, which could be due to chemically bonded water as 

previously reported [17]. Subsequent weight loss between 450 – 550 °C was due to 

decomposition of both AMP and PAN. The lowest weight loss was observed for AMP 

only with AMP to PAN ratio influencing weight loss from the composites; greater 

weight loss was recorded for the 12.5, 25, and 50% AMP that is confirmed from DTA 

profile (Figure 6.21, table 6.12. AMPPAN composites are intended to be used for 

reprocessing of nuclear fuels; the dissolver liquor from the dissolution of ceramic fuel 

pellets is unlikely to exceed 60 °C due to radioactive decay of fission products. The 

synthesised composites would be thermally stable at these temperatures. 
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Table 6.12 Weight loss in AMPPAN composites 

 

Samples 

280 – 300 °C 450 – 550 °C 750 – 950 °C  

Weight 

mg % 

                 mg 

% 

                  mg 

% 

                  mg 

AMPPAN 70 3.82 

               0.80 

26.98 

                 5.70 

52.86 

               11.18 

21.15 

AMPPAN 50 4.10 

              0.50 

37.78 

                4.62 

35.02 

                 4.29 

12.25 

AMPPAN 25 6.04 

             0.45 

60.61 

                4.59 

14.72 

                 0.11 

7.58 

AMPPAN 12.5 7.81 

             0.66 

70.68 

                5.99 

7.41 

                 0.62 

8.43 

Pure AMP NA 

             NA 

3.19 

                0.29 

65.84 

                6.01 

9.13 

Pure PAN 8.27 

                0.69 

77.17 

                 6.46 

NA 

                  NA 

8.38 

NA- Not Applicable 

 

 

Figure 6.20 TGA comparison profile of AMPPAN composite 
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Figure 6.21 DTA comparison profile of AMPPAN composite 

 

 

 

 

6.3.5 Acid Stability 

The potential use of these composites for separation of fission products will be 

dependent on several factors such as their stability in 3 M nitric acid will be one. The 

composites were tested in different HNO3 solutions for at least 24 hours and leaching of 

Al and Mo ions from AMP-Al2O3 and Mo ions in AMPPAN composites were measured 

by ICP-MS. Table 6.13 represents leached ions in different HNO3 solutions after          

24 hours of acid treatment at room temperature.  

The results shows that both composites were reasonably stable as maximum of 5 ppm 

and 0.02 ppm of Al and Mo ions respectively from AMP-Al2O3 leached out in higher 

acid solution (3 M).  

Similar results were observed for Mo ions from AMPPAN composites. Leaching of Mo 

ions increased with higher acidity with a maximum of 12 ppm Mo ions were measured 

in 3 M HNO3 solution. Maximum leaching was AMPPAN 70 composites as it contains 

the highest wt% of AMP.  
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Table 6.13 Acid Stability of various composites in HNO3 

Samples Al (ppm) Mo (ppm) 

0.5 M 1 M 3 M 0.5 M 1 M 3 M 

AMP- Al2O3 2.14±0.02 4.5±0.03 5.2±0.05 0.01±1 x10-4 0.01±1 x10-4 0.02±2 x10-4 

AMPPAN 70 NA NA NA 8.72±0.08 9.84±0.10 12.04±0.18 

AMPPAN 50 NA NA NA 2.64±0.02 3.02±0.03 6.73±0.06 

AMPPAN 25 NA NA NA 1.49±0.01 1.49±0.01 4.84±0.04 

AMPPAN 12.5 NA NA NA 0.72±7 x10-3 0.72±1 x10-3 3.26±0.03 

      NA-Not Applicable 
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6.3.6 Cation Uptake measurements  

 

Table 6.14 Uptake measurements of AMP- Al2O3 composites in various conditions 

HNO3 

(M) 
Initial 
(ppm) 

Final 
(ppm) 

 
V 

(ml) 

 
W 
(g) 

Kd 
(ml/g)  

Capacity 
(mg/g) 

Sr Cs Ce Sr Cs Ce Sr 
 

Cs 
 

Ce 
 

Sr 
 

Cs 
 

Ce 
 

 Caesium Nitrate 

0.5 NA 806±14 NA NA 790±11 NA  

12.5 

 

0.25 

NA 1.0 NA NA 0.7 NA 

1 NA 778±10 NA NA 672±9 NA NA 7.7 NA NA 5.2 NA 

3 NA 796±12 NA NA 710±8 NA NA 6.0 NA NA 4.2 NA 

 Strontium Nitrate 

0.5 530±6 NA NA 533±7 NA NA  

12.5 

 

0.25 

0.0 NA NA 0.0 NA NA 

1 526±7 NA NA 527±6 NA NA 0.0 NA NA 0.0 NA NA 

 Ammonium cerium nitrate 

0.5 NA NA 730±9 NA NA 330±5  

12.5 

 

0.25 

NA NA 59.6 NA NA 19.7 

1 NA NA 720±7 NA NA 192±3 NA NA 136.2 NA NA 26.2 

 Mixed ions 

0.5 524±7 806±14 8146±179 528±7 803±11 6357±146  

12.5 

 

0.25 

0.0 0.1 14.0 0.0 0.1 89.4 

1 522±7 813±15 8143±150 525±8 770±9 7813±123 0 2.7 2.08 0.0 2.1 16.2 
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In order to understand the uptake behaviour of caesium, strontium, and cerium ions on 

AMP- Al2O3 composite, the distribution ratio (Kd) was measured in different nitric acid 

solutions containing single ions and mixed ions equilibrated for 24 hours at 25 °C (table 

6.14).  

Observation in single ion solutions 

The calculated data clearly shows that AMP-Al2O3 composites have little or no affinity 

for strontium ions but a respectable distribution ratio for caesium ions in the single 

(caesium) ions solution. The maximum Cs Kd value was observed in 1 M HNO3 

consistent with previously published data [20]. The distribution ratio value decreased 

from 1 - 3 M HNO3, which was a similar trend, reported earlier [20]. Cerium ions had 

shown maximum uptake, in comparison to other single ion solutions, and the value 

increased with increasing acidity (up to 1 M) (table 6.14).  

Observation in mixed ions solutions 

The potential use of AMP-alumina composite as a stationary phase will depend on 

various factors such as its selective removal of fission products (Cs and/or Sr) from a 

solution contain several other radionuclides. This selectivity for Cs ions has been 

demonstrated in these studies as this fission product could be selectively removed from 

acid solution when ten times the concentration of cerium (IV) ions, as surrogate for U 

and/or Pu, were present. Hence, for the remit of this project, i.e. separation of fission 

products from ions in dissolver liquor these composites would not be appropriate.  

Similar uptake studies were performed to assess the suitability of AMPPAN composite 

as a potential stationary phase in acidic solutions. The study has shown AMPPAN’s 

clear affinity for Cs ions in various acidic single ion and mixed ions solutions (tables 

6.15 – 6.18). The results indicate that lower the amount of AMP, lower the caesium 

uptake with the exception of AMPPAN 70. This is most likely due to amount of AMP is 

directly proportional to amount of NH4 ions hence less NH4 ions will exchange with Cs 

ions . The trend was consistent in the single ion (Cs) acid solutions with the exception 

of AMPPAN 70. The reason for which are described later in Cs ions rate of uptake 

results.  

The uptake measurements in mixed ions in various acid solutions had lower distribution 

values than from single ion solutions. This is believed to be due to use of ammonium 

based cerium nitrate salt (ammonium cerium nitrate). Previous studies reported that Cs 
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ions were exchanged with NH4 ions in AMP hence, presence of additional NH4
 and H 

ions in higher acidity could most likely compete with Cs ions.  

Table 6.15 Cs ions uptake measurements in AMPPAN composites  

Samples Initial 

(ppm) 

Final 

(ppm) 

Volume 

(ml) 

Weight  

(g) 

Kd 

(ml/g) 

Capacity 

(mg/g) 

0.5 M HNO3  

AMPPAN 70 
 

 

705±10 

 

241±3  

25 

 

0.50 

95.90 23.10 

AMPPAN 50 190±3 135.30 25.70 

AMPPAN 25 417±7 34.40 14.30 

AMPPAN 12.5 569±6 11.80 6.70 

1 M HNO3  

AMPPAN 70 
 

 

691±14 

 

232±4  

25 

 

0.50 

98.50 22.90 

AMPPAN 50 190±3 131.70 25.00 

AMPPAN 25 433±6 29.80 12.90 

AMPPAN 12.5 569±6 10.70 6.10 

3 M HNO3  

AMPPAN 70 
 

 

808±15 

 

371±5  

25 

 

0.50 

59.60 21.70 

AMPPAN 50 267±4 100.50 26.80 

AMPPAN 25 556±6 22.60 12.50 

AMPPAN 12.5 723±10 5.80 4.23 

 

 
Figure 6.22 Cs ions uptake in AMPPAN composites in different HNO3 system 
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Table 6.16 Sr ions uptake measurements in AMPPAN composites  

Samples Initial 

(ppm) 

Final 

(ppm) 

Volume 

(ml) 

Weight 

(g) 

Kd 

(ml/g) 

Capacity 

(mg/g) 

0.5 M HNO3 

AMPPAN 70 
 

 

 

438±6 

 

439±5  

 

25 

 

 

0.50 

0.00 0.00 

AMPPAN 50 440±6 0.00 0.00 

AMPPAN 25 438±5 0.00 0.00 

AMPPAN 12.5 439±5 0.00 0.00 

1 M HNO3 

AMPPAN 70 
 

 

 

447±5 

 

449±6  

 

25 

 

 

0.50 

 

0.00 0.00 

AMPPAN 50 447±5 0.00 0.00 

AMPPAN 25 448±5 0.00 0.00 

AMPPAN 12.5 448±8 0.00 0.00 

 

 

Table 6.17 Ce ions uptake measurements in AMPPAN composites  

Samples Initial 

(ppm) 

Final 

(ppm) 

Volume 

(ml) 

Weight 

(g) 

Kd 

(ml/g) 

Capacity 

(mg/g) 

0.5 M HNO3 

AMPPAN 70 
 

 

 

730±10 

 

731±8  

 

25 

 

 

0.50 

 

0.00 0.00 

AMPPAN 50 732±9 0.00 0.00 

AMPPAN 25 730±8 0.00 0.00 

AMPPAN 12.5 731±9 0.00 0.00 

1 M HNO3 

AMPPAN 70  

 

720±7 

 

721±10  

 

25 

 

 

0.50 

 

0.00 0.00 

AMPPAN 50 723±8 0.00 0.00 

AMPPAN 25 720±8 0.00 0.00 

AMPPAN 12.5 721±7 0.00 0.00 



 

177 
 

 

 

Table 6.18 Mixed ions uptake measurements in AMPPAN composites                      

 

 

Samples 

Initial 

(ppm) 

Final 

(ppm) 

 

V 

(ml) 

W 

(g) 

Kd 

(ml/g)  

 

Capacity 

(mg/g) 

Sr Cs Ce Sr Cs Ce Sr Cs Ce Sr Cs Ce 

0.5 M HNO3  

AMPPAN 70  

540±11 

 

 

828±16 

 

 

8312±154 

 

542±9 270±4 8315±123  

25 

 

0.5 

 

0 102 0 0 27 0 

AMPPAN 50 540±9 318±6 8311±140 0 80 0 0 25 0 

AMPPAN 25 543±10 557±10 8312±160 0 24 0 0 13 0 

AMPPAN 12.5 541±15 708±10 8310±139 0 8 0 0 0 0 

1 M HNO3  

AMPPAN 70  

537±9 

 

 

835±17 

 

 

8398±165 

 

537±8.5 286±5 8396±149  

25 

 

0.5 

 

0 95 0 0 27 0 

AMPPAN 50 539±10 332±6 8397±175 0 75 0 0.1 25 0 

AMPPAN 25 538±13 586±9 8399±140 0 21 0 0.1 12 0 

AMPPAN 12.5 536±16 726±9 8400±139 0 7 0 0.1 5 0 
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Table 6.19 Capacity comparison of Cs ions in AMP- Al2O3 composite 

Samples Experimental 
Capacity 

(mg/g) 

Theoretical 
Capacity 

(mg/g) 

% Used 

 

AMP - 213 100 

AMP- Al2O3 composite 

0.5 M HNO3 0.7 6.99 0.10 

1 M HNO3 5.2 6.99 74 

3 M HNO3 4.2 6.99 60 

 

 

Table 6.20 Capacity comparison of Cs ions in AMPPAN composites 

 

Samples 

Experimental 

Capacity 

(mg/g) 

Theoretical  

Capacity 

(mg/g) 

 

% Used 

0.5 M HNO3 

AMPPAN 70 23.15 149.10 15.53 

AMPPAN 50 25.75 106.50 24.18 

AMPPAN 25 14.38 53.25 27.02 

AMPPAN 12.5 6.76 26.63 25.41 

1 M HNO3 

AMPPAN 70 22.89 149.10 15.36 

AMPPAN 50 25.05 106.50 23.53 

AMPPAN 25 12.91 53.25 24.25 

AMPPAN 12.5 6.10 26.63 22.93 

3 M HNO3 

AMPPAN 70 21.76 149.10 20.44 

AMPPAN 50 26.87 106.50 25.24 

AMPPAN 25 12.57 53.25 23.61 

AMPPAN 12.5 4.23 26.63 15.89 
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Tables 6.19 and 6.20 summarise the capacity uptake of Cs ions in various acid media. 

The theoretical capacity of pure AMP was calculated by assuming all NH4 ions were 

exchanged with Cs ions and previously reported as 213 mg of Cs /g of AMP [12].  

The reported experimental values for AMPPAN composites were significant lower than 

the theoretical values which was similar to previous data [24]. The optimum capacity 

(highlighted in table 6.20) was obtained in 3 M HNO3 solution and the capacity was 

reduced with decreasing amount of AMP in the composite. AMPPAN 50 had the 

highest Cs loading capacity 26.87 mg/g of composite in 3 M HNO3 solution, which was 

marginally less than previously reported 32 mg/g but with column studies [24]. The 

decreased value is most likely due to size and uniformity of beads and amount of AMP 

in the composite however this comparison was not possible since the reference did not 

state the composition and bead size. It is inevitable to note that 3 M HNO3 was the most 

suitable acidic condition for Cs ions removal from the data, which was also previously 

reported and this study [24]. 
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6.3.7 Rate of uptake of AMPPAN composites 

 

Table 6.21 Rate of uptake at different temperature in 1 M HNO3 

Time 

(Minutes) 

AMPPAN 70 

(%) 

AMPPAN 50 

(%) 

50 °C 25 °C 50 °C 25 °C 

0 0 0 0 0 

10 12 9 34 19 

30 12 11 50 29 

60 16 14 68 35 

180 29 23 84 59 

360 42 33 87 79 

1440 78 75 98 88 

2880 100 100 100 100 

 

 

Figure 6.23 Cs ions rate of uptake at different temperature in 1 M HNO3 
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Table 6.22 Cs ions rate of uptake at 25 °C in different acidity 

Time 

(Minutes) 

AMPPAN 70 AMPPAN 50 

3 M HNO3 1 M HNO3 3 M HNO3 1 M HNO3 

0 0 0 0 0 

10 7 9 10 19 

30 9 11 19 29 

60 16 14 30 35 

180 27 23 63 59 

360 39 33 81 79 

1440 79 75 91 88 

2880 100 100 100 100 

 

 

Figure 6.24 Cs ions rate of uptake at 25 °C in different acidity 

Rate of uptake or kinetics is the speed with which equilibrium (ion exchange) takes 

place. Kinetics of Cs ions were studies on two AMPPAN composites (AMPPAN 70 and 

AMPPAN 50) since both possess good caesium Kd values. The study was carried out as 

a function of (1) temperature (25 and 50 °C), and (2) acidity of HNO3 (1 and 3 M).  
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A general hypothesis was assumed that increased temperature tends to increase the 

diffusion rate of ions, which alters the ion exchange rate. Hence, rate of uptake at 50 °C 

was assumed to exhibit faster kinetics. Figure 6.23 and table 6.21 represent the rate of 

Cs sorption in AMPPAN 70 and AMPPAN 50 at different temperatures. As seen from 

figure 6.23, both composites have shown faster kinetics with increased temperature. In 

comparison, AMPPAN 50 had faster kinetics compared to AMPPAN 70 at both 

temperatures. 

A rate of uptake of Cs ions in various acid solutions is represented in figure 6.24 and 

table 6.22. Kinetics of both composites were similar at different acid conditions. 

AMPPAN 50 had faster kinetics than AMPPAN 70, which was similar to kinetics study 

at different temperature. Both composites had faster kinetics in 1 M HNO3 up to 180 

minutes, but for longer time period the kinetics were better in 3 M HNO3.  

Overall comparison of AMPPAN composites with AMP indicate that composites are 

slower than AMP, which has much faster rate of uptake (within 1 - 15 minutes) as 

previously reported [12].   

The rate of uptake of cations involves the diffusion through the film of solution on the 

periphery of the spheres and then into the spheres (beads) via the pore solution [29]. 

This mechanism was not evaluated in this study as the spheres/beads produced were 

somewhat of irregular shape and pore structure. Producing more beads of greater 

regularity should be considered for future work.  

The equation of ion exchange in AMP can be represent as,  

(NH4)3PMo12O40 + xCs+ (aq)               Csx (NH4)3-x PMo12O40 + x (NH4)+ (aq) 

 

Simple explanation can be derived from hydrated ionic radii that the ion exchange of 

NH4 with Cs ions takes place since the hydrated ionic radii of both ions are in close 

proximity [30]. The hydrated ionic radii of NH4 and Cs ions were reported as 1.48 Å 

and 1.69 Å respectively with Sr ions radii 1.13 Å [30]. Therefore, Cs ions most likely to 

exchange and be retained in the voids created by NH4 ions in the ion exchange process. 

The slower kinetics in AMPPAN 70 could be due to their poor porous structure as 

reported earlier in pore analysis. The pore volume of AMPPAN 70 was 0.004 cm3/g 

compared to 0.032 cm3/g for AMPPAN 50 (table 6.11). Therefore, the diffusion of ions 

through the pores were slower hence slower kinetics.  
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6.4 Conclusion 

The aim of the project was to synthesis selective stationary phases for removal of 

fission products (Cs, Sr) from irradiated fuel dissolver liquor. Ammonium 

phosphomolybdate (AMP) was chosen as the sorbent due to its Cs ion selectivity and 

stability in acid media.  

The ways of entrapping AMP within different matrices were evaluated by internal 

gelation technique with Al2O3 and polymer encapsulation with PAN. The study was 

primarily focused on synthesis of suitable shape and size of the composites and further 

evaluating their suitability for Cs removal from acid media.  

There were immense challenges to synthesis AMP-Al2O3 composites since the 

technique required specialised equipment to form beads, their complexity in synthesis 

and fast gelating property, and limitation with tiny quantity of AMP entrapment. The 

yield of this technique was also a major flaw for their suitability as a stationary phase.  

Polymeric entrapment of AMP was significantly less challenging and an easy to upscale 

technique. The technique offers easy one pot synthesis, which is a key parameter for 

industrial use of a stationary phase. The technique offered considerable amount of yield 

and easy to handle.   

Both techniques had offered porous structures, which was important to achieve 

maximum access for ion exchange. The findings of chemical stability suggests both 

techniques had lost negligible quantity of Al and Mo ions for AMP-Al2O3 and Mo ions 

for AMPPAN composites. The TGA studies indicate that the composites made by both 

techniques were stable at temperatures up to 280 °C, which is more than sufficient if 

these composites were employed to treat spent fuel dissolver liquor. Even allowing for 

the heat generated from the radioactive decay of isotopes dissolver liquors prior to the 

solvent extraction circuit would not exceed 60 °C. 

The pore volume is an important criterion when considering cation kinetics (rate of 

uptake); an open pore structure that allows ready access to exchange sites will confer 

fast kinetics. In this study, AMPPAN 50 had a greater pore volume, which was reflected 

in its superior rate of uptake of Cs compared with AMPPAN 70. 

The uptake measurements on AMPPAN composites have shown significant distribution 

(Kd) values (up to 135 ml/g) and capacity for Cs ions (up to 26 mg/g) in acid media and 

remarkable selectivity which was a deciding factor for their potential use as a stationary 

phase for removal of fission product (Cs) from reprocessing liquors.  
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Chapter 7 

Summary and future work 

7.1 Summary  

The current separation process of spent nuclear fuel has been carried out by universally 

accepted and well-understood solvent extraction technique - PUREX. The major 

challenge of this technique is its lack of specificity for U and Pu isotopes requiring a 

multi-stage process, strict process control, solvent and diluent degradation, and other 

process challenges.   

The technique under development at UCLan offers an alternative approach, targeting 

minor components such as fission products (FPs) and minor actinides (MAs) compared 

with U and Pu isotopes, the latter represents about 95% of spent nuclear fuel. UCLan’s 

process should provide better waste management and a more flexible separation flow 

sheet. The proposal offers removal of the major heat generating β/γ emitting 

components e.g. Cs and Sr first which significantly reduces the heat and radiation 

dosage to down-stream operations, waste management, and disposal.   

Three key approaches to achieve selective stationary phases that were acid stable were 

evaluated: 

(1) Creating charge imbalance into ordered Mesoporous MCM-41 structure (chapter 4),  

(2) examination of molecular sieves based on their size exclusion property (chapter 5), 

and  

(3)  preparation of ammonium phosphomolybdate encapsulated composites (chapter 6).  

A sol-gel process was chosen to prepare all the materials described in this thesis, as the 

yields from this technique were few gram quantities at a time, achieving some of the 

initial project criteria, i.e. simple, low cost, and one pot synthesis technique.  

The hydrothermal sol-gel process to synthesise ordered MCM-41 and boron modified 

MCM-41s produced approximately 10 g/batch of final product. Zeolites 3A, 4A, and 5A 

were purchased in beads/pellets form and modified to mesoporous zeolite 5A which 

could be produced in approximately 2.25 g/batch. The yield for AMP-Al2O3 and 

AMPPAN composites were approximate 2 g and 10 g/batch respectively.  

The synthesised MCM-41s and mesoporous zeolite 5A were fine powders, which were 

not ideal for column work however; AMPPAN and AMP-Al2O3 were spherical beads 

and granular form respectively. 



188 

The synthesis route to produce spheres of AMP-Al2O3 composite was unsuccessful due 

to very fast gelling nature of the components. It was difficult therefore, to transform the 

gel into uniform spheres/beads shape in comparison to AMPPAN composite route. An 

alternative approach to use phosphomolybdic acid as starting reagent and later convert 

that into AMP may be a promising route, proposed by Onodera et al. requires further 

investigations The surfactant assisted AMPPAN synthesis was the most easiest and 

quickest technique in comparison to all other synthesis techniques and could potentially 

be scaled-up to kilogram quantities with little modifications.  

Various physical and chemical properties of the materials were characterised by several 

analytical techniques. The surface area and porosity of the MCM-41s were highest (up 

to 690 m2/g) in comparison to other materials. They have shown ordered porous 

structure also confirmed by XRD. The microporosity and the mesoporosity of the 

mesoporous zeolites suggest the coating of mesoporous surrounding zeolite 5A was 

achieved which was confirmed by surface area, SEM, SAXS, and XRD analysis. The 

AMP-Al2O3 composite had a rough surface, analysed by SEM, which was due to poor 

synthesis technique. SEM images of bisected AMPPAN composite beads indicated a 

channel like porous network; the images also indicated the opening of pores due to 

increased surfactant amount in AMPPAN composites. The TGA studies showed only 

6% loss in up to 1000 °C for MCM-41 materials, with AMP-Al2O3 and AMPPAN 

composites had losses of up to 10% and 100% loss respectively due to their different 

compositions. AMPPAN composites were stable up to 280 °C which is should be more 

than sufficient for cation separation since the spent fuel dissolver liquor is unlikely to 

exceed 70 °C due to radionuclide decay.  

The cation uptake performance of the prepared stationary phases were analysed in 

approx. 5 mM CsNO3, 5 mM Sr(NO3)2 as single ion and in mixed ions solutions, the 

latter also contained 50 mM Ce(NH4)2(NO3)6 in various concentrations of nitric acid 

and deionised water. Ce ions were selected as surrogate for U/Pu ions due to their 

similar separation chemistry with TBP.  

The distribution coefficient value (Kd) and capacity for all the MCM-41s and zeolite A 

were significantly low in 0.5 M, and 1 M nitric acid system due to highly competing H+ 

ions where AMPPAN and AMP-Al2O3 composites have shown good uptake in acidic 

systems. MCM-41 has shown marginal increase in Cs, Sr, and Ce ions uptake in weakly 

acidic solution (pH ~5) but non-specificity was found for any individual ion.  
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Boron was chosen to create charge imbalance in the Si-MCM-41 structure and its 

neutron absorbance property. Boron modified MCM-41 did not show any significant 

improvement in cation uptake performance.  

Zeolite 5A showed significant increase in cation uptake performance at lower acidity 

however, these were again non-selective for any individual ion. The coating of 

mesoporous zeolite also has not shown any significant improvement in ion uptake 

performance for mixed ions studies.  

AMPPAN composites had highest Kd value of 135 ml/g and capacity of 26 mg/g in     

up to 3 M HNO3 solutions in comparison to all the other materials and has shown 

remarkable discrimination for Cs to Sr ions, which suggest its suitability for selective 

Cs ions removal from the acidic liquor. The composite has shown high selectivity for Cs 

ions and performed exceptionally well even in presence of 10 times Ce ions 

concentration. AMP-Al2O3 composites have shown marginal Cs ions uptake due to the 

amount of AMP loading which was the biggest limiting factor.  

Acid stability studies on best performing AMPPAN composite have shown marginal 

loss of Mo ions in 3 M HNO3 which subsequently reduced with lower acidic conditions. 

The reported data indicates further justification of AMPPAN as the most suitable 

material for a stationary phase.  

The rate of uptake data from 1 M HNO3 at 25 °C indicates much faster kinetics in 

AMPPAN 50 compared to AMPPAN 70; this was consistent for the 50 °C results. 

These faster uptake results for AMPPAN 50 can be explained due to its more open 

channel/pore structure. This could be due to AMPPAN 50 having more accessible ion 

exchangeable sites compared to AMPPAN 70. Further studies therefore to optimise the 

amount of surfactant for preparation of these composites are necessary.  
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7.2 Future Work 

This research was significantly focused on the identification of suitable materials based 

on: 

• various parameters such as Cs and Sr ions selectivity, uptake and rate of uptake 

performance in acidic media,  

• acid, radiation and temperature resistance,  

• one pot synthesis, to be potentially scaled-up etc.  

The research has shown AMPPAN composites have satisfied all of the above 

parameters and potential to improve their rate of uptake by modifying structural 

changes, which could be achieved by: 

1) Use of greater quantities of surfactant in the synthesis of AMPPAN composites, 

2) Use of surfactants with longer chain length that could possibly improve pore 

structure. 

3) Modified version of droplet technique to improve uniform bead formation and 

reduced size that could improve overall surface area. 

In addition, future studies should address: 

(1)  Modified AMP compositions to improve the exchangeable sites to increase 

composite Cs cation capacity; 

(2)  Identifying Sr ion selective materials which could be encapsulated in PAN with 

composites similar to AMPPAN;  

(3)  Column work to simulate continuous chromatography and their breakthrough 

and elution data;  

(4)  Selection of other cations such as Na, Zr, Mo, Tc etc. 

(5)  To expand simulate spent fuel composition which should be used to evaluate 

further stationary phases;  

(6)  The potential of zeolites/modified zeolites for Cs and/or Sr removal from 

slightly acidic and alkaline solutions for other waste management challenges. 
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