Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease

Keller, M. F., Saad, M., Bras, J., Bettella, F., Nicolaou, N., Simon-Sanchez, J., Mittag, F., Buchel, F., Sharma, M. et al (2012) Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 21 (22). pp. 4996-5009. ISSN 0964-6906

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1093/hmg/dds335

Abstract

Genome-wide association studies (GWASs) have been successful at identifying single-nucleotide polymorphisms (SNPs) highly associated with common traits; however, a great deal of the heritable variation associated with common traits remains unaccounted for within the genome. Genome-wide complex trait analysis (GCTA) is a statistical method that applies a linear mixed model to estimate phenotypic variance of complex traits explained by genome-wide SNPs, including those not associated with the trait in a GWAS. We applied GCTA to 8 cohorts containing 7096 case and 19 455 control individuals of European ancestry in order to examine the missing heritability present in Parkinson's disease (PD). We meta-analyzed our initial results to produce robust heritability estimates for PD types across cohorts. Our results identify 27% (95% CI 17–38, P = 8.08E − 08) phenotypic variance associated with all types of PD, 15% (95% CI −0.2 to 33, P = 0.09) phenotypic variance associated with early-onset PD and 31% (95% CI 17–44, P = 1.34E − 05) phenotypic variance associated with late-onset PD. This is a substantial increase from the genetic variance identified by top GWAS hits alone (between 3 and 5%) and indicates there are substantially more risk loci to be identified. Our results suggest that although GWASs are a useful tool in identifying the most common variants associated with complex disease, a great deal of common variants of small effect remain to be discovered.


Repository Staff Only: item control page