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wall... an unobtrusive

Intelligent multisensory mirror for well-being status
self-assessment and visualization
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Bjorgart, Giorgos Giannakak?s Matthew Pediaditiy
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Abstract—A person's well-being status is re ected by their face

through a combination of facial expressions and physical signs.

The SEMEOTICONS project translates the semeiotic code of the

human face into measurements and computational descriptors

that are automatically extracted from images, videos and 3D

Other smart mirrors have been proposed for different pur-
poses, such as virtual clothes tting [1], make-up rendgfi2]
and biofeedback [3]. The latter paper described a multifhoda
system using an interactive mirror and biomedical sensors

scans of the face. SEMEOTICONS developed a multisensory (camera, hand-held ECG, blood pressure and skin temperatur

platform in the form of a smart mirror to identify signs related to
cardio-metabolic risk. The aim was to enable users to self-monitor
their well-being status over time and guide them to improve
their lifestyle. Signi cant scienti ¢ and technological challenges
have been addressed to build the multisensory mirror, from
touchless data acquisition, to real-time processing and integration
of multimodal data.

Index Terms—Cardio-metabolic risk, unobtrusive well-being
monitoring, multimodal data integration, 3D face detection and
tracking, 3D morphometric analysis, psychosomatic status receg
nition, multispectral imaging, breath analysis.

I. INTRODUCTION

HE principal communication channel among humans is
the face; it is a mirror of physical conditions, mood and
emotions. As such, the face is the basis of medical semsjotic

revealing the well-being status of an individual througbidh

expressions and a combination of physical signs (e.g.,usubc
taneous fat, skin color). This paper describes how the EU FP7
project SEMEOTICONS (http://www.semeoticons.eu/) moves

medical semeiotics to the digital realm, translating theesie

sensors and pressure pad). The main difference between [3]
and the device developed in this work is that the Wize
Mirror integrates a user-friendly interface (Fig. 1) withehth
composition analysis and contactless imaging of facidlies

for advanced multimodal physiological analysis. The défe
sensors collect heterogeneous data, including (multisgdgc
images, videos, 3D scans and gas concentration signats, fro
the user in front of the mirror. Dedicated algorithms praces
the data, and extract colorimetric, morphometric, bioioetr
and compositional descriptors of facial signs. According t
the semeiotic model of the face for cardio-metabolic risk [4
the descriptors include:

3D morphological face descriptors related to asymmetry,
swelling, overweight and obesity computed from a 3D
reconstruction of the face (Section V).

Facial descriptors revealing emotional status including
stress, anxiety and fatigue, captured via 2D expression
analysis on video sequences (Section V).

Physiological parameters such as respiratory rate, heart
rate and heart rate variability, all estimated from videos

otic code of the face into measurements and computational

by detecting subtle color changes and cyclic movement

descriptors obtained from images, videos and 3D scans of
the human face. The developed Wize Mirror, an intelligent
multisensory device, can detect and monitor facial sigres ov
time correlating them with cardio-metabolic risk and pobrg
personalized guidance to users on how to improve their fiabit
Cardiac-related conditions are the leading cause of mortal
ity worldwide, therefore, a device that can monitor cardio-
metabolic risk is an important tool to maintain a healthy
lifestyle.

during the observation time (Section VI).
Descriptors associated with cholesterol, metabolic end
products found in diabetes and endothelial dysfunction,
evaluated using a novel multispectral imaging system
assessing skin tissue, including microcirculation (Sec-
tion VII).
Exhaled gas composition, measured using a novel gas-
sensing device, which gives quantitative feedback about
noxious habits such as smoking and alcohol intake (Sec-
1University of Central Lancashire, Preston, UK tion VIII).
2National Research Council of ltaly, Pisa, Italy
3Linkdping University, Linkyping, Sweden
4Norwegian University of Science and Technology, Trondheitmrway
S|nstitute of Computer Science, Foundation for Research authiology
- Hellas, Heraklion, Greece

6Department of Informatics Engineering, Technological Etiocal Insti-
tute of Crete

All these descriptors are integrated to de ne a virtual
individual model and an individual wellness index. Thiserd
enables a user to self-monitor and self-assess their wéigb
status over time. The Wize Mirror also offers personalized
user guidance towards the achievement and maintenance of a
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TABLE |
THE WIZE MIRROR SENSORS AND THE SEMEIOTIC MODEL DESCRIPTORS
CALCULATED BASED ON THE CORRESPONDING SENSING MODALITY

Sensor Descriptor Section
Depth Sensor (DS) 3D Face Morphology (3DFM) v
Color Video (CV) Facial Descriptors (FaDe) \%
Color Video (CV) Physiological Parameters (PhPa) VI

Multispectral Imaging Cameras (MSI) Multispectral Measurements (MuMe Vil

Wize Sniffer (WS) Exhaled Gas Compositions (EXGC Vil

Fig. 1. The Wize Mirror prototype; on the left the multisensoack, with
from top to bottom: 5 multispectral imaging cameras (MSI), andOaffss

color video camera (CV) and depth sensor (DS). stage for the analysis is face detection, tracking and Ifacia
landmark estimation (see Fig. 3). Face detection and tmgcki
is only performed once using the data from the depth sensor
rather than on each data stream. This approach is more robust
% varying illumination. In this method, the user is detecte
rst in 3D space, and a model face mask is matched to the
depth sensor data to estimate the position and orientation
of the user's face. Subsequently, the positions of preda ne
facial landmarks are calculated (see Section Ill). Thea, 3D
processing work ow integrates all these multimodal dat#hwi face coordin_ates are prpjepted into th(_a 2.D frames of differe
cameras using the intrinsic and extrinsic parameters of the

t_he cglcglated cardio m_etabollg ”.Sk descriptors and thrb M cameras. These parameters are obtained when the mirror is
timedia interface enabling ubiquitous and unobtrusiver usg : o .
) . . o ) assembled using camera and stereo calibration techniffijes (
interactions. The taxonomies, describing the data proogss

ow and the data sources, are introduced to guide the rea d [6]). Using the proposed work ow, the face detection and

through the intricacy of the system detailed in the subsequ% roggscgallj;ﬁ%d{ﬁ::;(es;?:jn;go;njtggeprljjer;%ﬁ:gf i?leare;tncgr:e
sections. Section Il describes the processing multimedék-

. . 3D face mask into the corresponding 2D image space (see
(Eig. 2). The projection is performed by multiplying each 3D

sensors for user detection, recognition, p03|t|on|n_gellatg vertex, given in homogeneous coordinates, of the matched
and 3D measurement. The details of each multimodal pr,

; . ) ! PIe mask by a camera projection matkix = A [RjT] built
cessing §ybsystem are pregen.t gd n Sect|0n§ IV'V“'.' I);"’nalfrom 3x4 extrinsic parameter matrix (encoding mask rotatio
the de nition of the virtual individual model integratinglla

calculated risk descriptors is presented in Section IX ded tR and translatior ) and 3x3 matrbA describing the intrinsic

. . . : camera parameters:
conclusions are described in Section X. P
2

positive lifestyle.

Designing and building the Wize Mirror required solvin
signi cant scienti ¢ and technological challenges, froouth-
less data acquisition to real-time processing of multinhddta
to obtain reliable measurements correlated with cliniécs r
factors. Section Il introduces the sensing modalities used
the Wize Mirror. It also brie y describes how the implemedite

2 3

X
-arm§ Y L
Different data fusion and multi-sensor integration tasies a z
performed on the Wize Mirror, including blending of 3D and 1
2D inputs, merging multispectral images and building th@hereu=w andv=w represent the 2D coordinates in the image
virtual individual well-being model. reference systemss;y and z are the 3D point coordinates
This section brie y describes the sensing modalities usétbm the depth sensor reference systdis a 3x3 rotation
in the mirror and how they correspond to different semeinatrix encoding the rotation about three ax@&sis a vector
otic model descriptors. The sensors' interaction strecamd containing the translation from the origin and:
overall data ow are also presented to aid the description of

3

u

II. MULTIMODAL DATA INTEGRATION 4y 5
w

the system integration strategy. The details of each sgnsin A= @fO ¢ Uo A
modality and the corresponding data analysis method are B 0 0 Vi’

described in the subsequent sections. The multiple seasdrs
computed descriptors are given in Table I. Additionallye thwheref is the focal length; is the skew parameter; and
table lists the sections of the paper where the details of th&);Vvy) are the coordinates of the principal point.
corresponding data analysis are given. The computational descriptors of face signs (given in Sec-
A multi-sensor integration is performed using 3D dattion I) are integrated into the virtual individual model taild
(obtained from the depth sensor) to simplify the face daiact a representation of the users status, which is consisteht wi
and labelling process on the 2D data from the other cameraardio-metabolic risk (see Fig. 3). Data fusion techniques
This makes the system more robust and ef cient. A commare used to synthesize the wellness index, a non-diagnostic
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Face detection and tracking (Section IlI-A)

My [Ms| [ 375 [Be)

2D detection and
segmentation
(Section I1I-A)

/&
| ;

3D reconstruction
and labelling
(Section I1I-B)

Fig. 2. Face detection and tracking performed on depth datprjected into

multiple 2D images from different cameras. The depth sensoigislighted 3D anthropometric
in orange (DS), color video camera is highlighted in green @vd the quantification ) Emotional and
ve multispectral imaging cameras are shown in blue (MSI). Sncalbred (Section 1V) Multispectral mesurements pshychometric

(Section VII) status (Section V)

Stress

boxes on top(M1 to Mg) represent different camera projection matrices 3
calculated using camera calibration. They are applied todétected face
point coordinates given in the depth sensor reference rayieconvert them
into each camera's reference system.

estimation for self-assessment and self-monitoring oflicar g
metabolic risk. Conceptually, the values obtained from the

Anxiety

L]
=

Normal

analysis can be seen as the components of a state vect «4———Breath analysis
moving in a multidimensional well-being state space. Sub- (Section Vil
sequently, the model is mapped into three separate wellne: V‘”“?é'e”;ijgir?gfl'”""°de'

subspaces related to physical wellness, emotional wesliaed

lifestyle habit wellness (see Section IX for details). Fig. 3. Multimedia data work ow: from sensors, preprocegsand analysis

To facilitate validation of the Wize Mirror subsystems arsd g Virtual individual model calculation.

part of the mirror development a dedicated SEMEOTICONS'

Reference DataseiSRD was built. TheSRD includes all 5 eeq for user face detection, 3D head pose tracking and
the modalities _d?SC”bEd in this paper as well as the_,resué@osequent face image segmentation (Section 1lI-A). More-
of reference clinical tests capturing 46 different physil oo 15 detect and monitor facial changes due to weight,
cal parameters. Additionally, 12 behavioral and psychemetg q|jing |ocal growth and facial asymmetry and to perform
parameters were obtained using clinically validated doeSt oot hio-morphometric analyses over time, the Wize Mirror
naires. The reference dataset was collected in two ac@uisiti 5pje o perform 3D face reconstruction (Section I1I-B).
campaigns conducted in May 2018RD'14 and May 2015 Additionally, a 3D face labelling stage is needed to provide

(SRD'19 at the National Research Council of ltaly in Pisgyitarent subsequent tasks with the approximate positiains

SRD'14 consists of 23 subjects, including 16 males and if,qrtant facial landmarks (Section 111-C). A bespoke face

females, aged between 25 and 61 years. The mean age i nition system is also implemented to facilitate useeas

years and the sta_ndard_ devia}tion (SD) .is 11 ye8RD'1S ool A detailed description of the face recognition mied
consists of 26 subjects, including 14 subjects (11 males3an§an be found in [7].

females) fromSRD'14 aged between 32 and 62 years, with a
mean age of 48 years (SD 10 years). The remaining 12 subjects
(8 males and 4 females) BRD'15 aged between 29 and 61A. Face detection and tracking

years (mean age of 46 years and SD of 9 years), were only,ce detection and tracking are performed using depth data
recruited for the second campaigdRD'15was collected dur- g0 4 range sensor as the only input. The proposed face

ing system development, with the methods validation based @etection and 3D head pose estimation are based on the
SRD'14 leading to sensors upgrades and changes in the dgiyroach described in [8], the tracking method presented in
processing methods. Other publically available dataset®Wqgj and a personalized 3D labelled mask explained in Sestio
used to further support the Wize Mirror subsystems valeiati ;g and |1I-C. First, a random forest framework is used to
Information about the datasets used for the validation Oheaclassify depth image patches between two classes (head and
method is given in the corresponding section. no head) and to perform regression in the continuous spaces
of the head position and orientation. Then the detectiosenoi
I1l. 2D/3D MEASUREMENT FACILITATION is reduced using a Kalman Iter method [9]. Finally, the 3D
The vast majority of measurements performed by the Wireask is registered to the input range data using an iterative
Mirror are based on data acquired from multiple imaginglosest point algorithm [10] with the previously estimajexse
devices. To facilitate unobtrusive data acquisition and-syused for initialization. Mask registration improves theatal
chronization of the different Wize Mirror sensors, there iaccuracy of the pose estimation and provides the approgimat
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Fig. 4. Results of the face tracking procedure on a sampledsovirames. V
The 3D labelled mask is projected into 2D images after head gstimation.

Fig. 5. Results of 3D the face reconstruction and face laigelfor two
subjects.

locations of different facial landmarks, such as the eyesen

mouth and chin (see the results in Fig. 4). As all the cameras i i i )

the system were previously calibrated with respect to thgea Presented in [14] did not include landmarks on the mouth
sensor (as indicated in Section II), the registered 3D ma@k chin. The labelling process for the Wize Mirror produces
can be projected into images captured by any of the camelfig approximate positions of the center_ of the eyes, tip ef th
installed on the Wize Mirror, enabling face segmentatioh®Se and centers of the mouth and chin on the reconstructed
and landmark location in different video streams. This stdfce- This labelling is an important requirement for morpho
avoids the redundancy of performing face detection in ealdgical analysis, multispectral measurements and arsalysi
video. The computations are reduced because face detectith PSychosomatic status as the relevant processing isl base
is performed on the depth data stream only, subsequerﬂf%the facial regions de ned by these landmarks. The praphose

transforming the vertices of the annotated 3D face maslgusiiPe!ling method uses a 3D-deformable annotated modes. Thi
rigid transformations and the projective camera model. model is registered to the reconstructed face as described i

[15], which explains how to build the model. The 3D faces
. . are represented by a low-dimensional shape space vectog of t
B. 3D face segmentation and reconstruction statistical shape model, which is calculated through a frode

As a preprocessing step, a face segmentation method Wased surface registration process. After the deformatitey,
proposed as the rst stage of the reconstruction method. Th: labels are near the real landmarks. Then, the closest poi
face segmentation is based on the face pose estimation. Wihthe label from the mesh is selected for each label. The
the calculated pose, a 3D model is transformed to match th@thod was tested BRD'15 and all the reconstructions were
input depth data. The matched model de nes the scan regiaftfirectly labelled using the proposed method. Examplekeof t
which are subsequently used for the 3D face reconstructiofesults are shown in Fig. 5.

The implemented reconstruction approach is based on the

Kinect fusion method [11]. Originally, the reconstruction |y 3D FACE ANTHROPOMETRIC QUANTIFICATION

method was designed to reconstruct static scenes of rigid .
objects by moving a range sensor and capturing differe&tAnthrOpometry Is the study of body and face morphology.

. . . . nthropometric measurements are usually performed manu-
points of view of the scene. The reconstruction requiresent . )
. : . o lly by trained personnel; therefore, they are often adféct
for the Wize Mirror are different, as the sensor is in a xe

position and the subject is moving. In the proposed algarith y inter- and mtra-obsgrver_ variability. Leslie G. Farkas
the relative motion of the head is reversed with respectéo t loneer of modern craniofacial morphology, gathered a et o

sensor to estimate the point of view. This is achieved bygusi gual measurements across different ethnic groups, o
istances, angles and areas enclosed by anatomical lakelmar

only the output from the face segmentation. More detailaiib ; . .
i : gzarkas also studied the relations of some syndromes witiethe
the segmentation and reconstruction method can be found in

measures [16]. Most face morphometry methods are based

[12]. . .
For the face morphological analysis explained in Secti on 2D images rather than 3D data and require the accurate

IV the mesh to be processed has to be a manifold, wi %Cgrt:gno? {rfzcclzﬁgl‘laenndrgzrgfs .SEMEOTICONS is the automatic
no holes and no duplicated points or triangles. Although the 9

reconstructed meshes obtained with the mentioned methgggn putation of geometric descriptors of 3D facial data, ac-

are visually good, they, sometimes, do not fully meet all th uired via a low-cost scanner, to monitor and quantify an in-

requirements for a correct morphological analysis (Sedtt ividual's temporal facial shape changes in relation taliwar
d P 9 Y maetabolic risk and body fat accumulation. There is a redfiv

of the 3D reconstruction. Therefore, the re-meshing meth? rge number of techniques reported in the literature based

Erlé] :;/\é)asre?:%zlls?;ju(t:?iggearrissrllt:)r\]/gnsig Eic;ntsclouds. Samples gsparse set of 2D facial landmarks (often obtained by manual

annotation); [17] proposes a method for the prediction of no

) mal and overweight females based on body mass index (BMI).

C. 3D face labelling This method uses 2D features (Euclidean distances, angles,
Among the previous works on landmark localization reand face areas) computed on selected soft-tissue landmarks

ported in the literature, one interesting example is thehoet The study was extended in [18] by investigating the relation

described in [14], which uses a point distribution moddietween visceral obesity and facial characteristics terdghe

and performs face detection as the rst stage. The modék best predictor of normal waist and visceral obesity.eRec
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[lI-B) and a commercial portable structured light scanner
(Artec Eva [21]).

The agreement between the reconstructed 3D faces captured
by the two scanning platforms was assessed through the intra
class correlation coef cient (ICC) [22]: the ICC values icate
strong agreement for MorphoE, MorphoG and MorphoANN
(respectively,:913 :894, and:775), and moderate agreement
for MorphoAB (:678).

Fig. 6. A visualization of the curves used to de ne the face sueements A set of physical parameters was collected for each subject,
implemented in the Wize Mirror. From left to right: MorphoE, kbthoANN, according to the literature ([23], [24]): weight, BMI, wéis
MorphoAB. . . . .
circumference (WC), hip circumference (HC), neck circum-
ference (NC), and fat mass (FM). The proposed digital mea-

technological advances of the depth sensors for 3D aciguisitsurements were computed on facial meshes obtained from both
and modeling fostered the employment of digital descriptothe depth sensor, as described in Sectionlll-B, and thecArte
from Shape ana|ysis to Study the morphometric properties sganner. The Pearson's correlation coef cients between th
3D models [19]. Promising results on how to quantify théligital measurements and the physical parameters areteepor
facial Shape variation related to We|ght gain/|OSS, ar@meﬂ in Table Il for the Artec scans and in Table Ill for the depth
in [20], where complex shape descriptors, from the geomet§ensor scans. The correlation patterns are similar, itidgca
theory of persistent homology, were computed on a sub#g@t the quality of the depth data does not signi cantly etffe

(23 points) of the Farkas landmarks, and tested on a syathdfle geometric descriptors.
dataset of 3D faces. In both cases, all facial features are highly correlatedh wit

weight, BMI and NC (up tor = 0:795), and all correlations

are highly signi cant. The correlation with WC and HC is

slightly lower but still signi cant. The correlation for FMs
The Wize Mirror is intended to be used by people for thaot signi cant (p-value 0:1), which may be related to the

self-assessment of their well-being. Overweight and ®peskize and composition of the sample.

are among the most relevant factors of cardio-metabolic ris

A. Digital measurements

The requirements of the shape measures (§reot requiring TABLE I
the detection of a large number of landmarks (dif cult, espe PEARSON S CORRELATION COEFFICIENTS ANDP VALUES BETWEEN THE
Cla”y for poorly geometl’ically characterized Iandmafk@b) PHYSICAL PARAMETERS AND FACIAL FEATURES COMPUTED ON FACE

. A . MESHES ACQUIRED USING THEARTEC SCANNER
being well-de ned, easy to implement, and computationally

ef cient; (iii) being independent of rotation, translation, and

scale;(iv) being robust to noise and pose estimation errors: MorphoE | MorphoG | MorphoANN | MorphoAB
The digital measurements implemented are: Weight  r 7195 .784 687 668
hoE: the | h of th imal hode p .000 .000 .000 .000
MorphoE: the length of the maximal curve among those gy =16 =17 502 596
given by the intersection between the face mesh and a p .000 .000 .002 .010
family of concentric Euclidean spheres, centered in the WC 1 -ggg -ggg -gig -gﬁ
nose tip (Fig. 6); , AC r | 564 547 462 460
MorphoG: the geodesic analogue of MorphoE; p .006 .008 .030 .031
MorphoANN: the area of an annuli at the border of the NC  r -ggg -Sgg -ggg '85%
facg mask (likely affected by an increase in subcutanegus : TET EE 070 023
fat); p 491 481 855 917

MorphoAB: the length of a geodesic path in the neck
region joining two speci ¢ points, under the ears.

MorphoE, MorphoG, and MorphoANN require the detection
of only three landmarks (eyes and nose tip), which are
automatically located on 3D face meshes (Section IlI-Ce Th The Wize Mirror includes methods to analyze facial cues
distance between eyes is used to normalize the measures wittl physiological measures that are related to anxiegsstr
respect to the user. MorphoAB requires the location of d®ection V-A) and fatigue (Section V-B).

additional landmark (chin).

V. EMOTIONAL STATUS

A. Stress and anxiety detection

B. 3D face measures and physical parameters Stress and anxiety are states of emotional strain that can
Experiments on the reference dataS&D'15 established signi cantly affect a person's quality of life. Accordingtthe

the relation between the described digital measurememts diterature, there are distinct facial cues that are reprtasiee

a set of physical parameters related to cardio-metabdlic ri of stress/anxiety that appear in the facial areas of the eyes
The subjects had their face reconstructed using both the leand mouth, and in the motion pattern of the head [25]. For

cost depth sensor integrated in the Wize Mirror (see Sectioantactless detection of these cues, a high-resolutiorei@m
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TABLE Ill
PEARSON S CORRELATION COEFFICIENTS ANDP VALUES BETWEEN THE
PHYSICAL PARAMETERS AND FACIAL FEATURES COMPUTED ON FACE
MESHES OBTAINED FROM THE MIRROR3D SCANNER.

MorphoE | MorphoG | MorphoANN | MorphoAB
Weight r 733 .719 .669 .675
p .000 .000 .001 .001
BMI r 711 .716 .651 671
p .000 .000 .001 .001
WC r .614 .619 547 579
p .002 .002 .008 .005
HC r -569 568 518 957 Fig. 7. Left panel: Facial ROI (blue: face, green: mouth) aamtimarks (red:
P -007 .007 016 -009 eye-related landmarks, yellow: head motion/speed landmailgymination
NC r .788 781 178 .648 used for stress and anxiety detection. Right panel: Timesefi eye aperture
p -000 -000 000 001 (top left), mouth motion (bottom left), head motion (top rigtehd head speed
M T 272 316 211 349 (bottom right).
p 221 152 .347 112

These methodologies and feature estimating algorithms

] ] i ) ) _were tested orSRD'14 and a subset of 24 subjects from
is embedded in the Wize Mirror. Advanced video processitgrp15 Each subject performed 12 tasks (3 neutral, 8

algorithms are used to extract and quantify the approprialgess/anxiety and 1 relaxed states), providing a goolinit
facial information to asses a subject's psychophysicalistm  qaaset to evaluate stress/anxiety. Different stressers used

a reliable and effective manner. The algorithms used foe fagy,jng poth acquisition campaigns to investigate variypes
detection, tracking and region of interest (ROI) segmemmat ot siress and anxiety. These features were subsequently use

are described in Section Ill. _ to develop the virtual individual model and to de ne the
The head motion algorithm can detect and quantify thgsrsonalized wellness index.

movement of a person's head based on a 2D video le. An
ROI, dened as the region of the face between the eyes Fatigue detection

and mouth, is determined, and the landmarks on the fourThe Wize Mirror computes a fatigue score that depends on
edges of the ROI are tracked. This ROl was selected ast' b 9 P

It - . .
is characterized by the absence of eyes and mouth movem I Sf_requenpy and_duratlon of yawns, weighted V\."th respect t
time-point of video capture. The yawn detection aldonit

due to facial expressions; thus, the resulting measuremen‘?based on real-time tracking of 68 facial landmarks [32].

) ; IS.
is only related o head motion. The Kanade Lucas Toma?c’éwns are detected by matching landmark-based geometric
features of each video frame with templates representing

(KLT) tracker [26] is applied to track the landmark pointsy$

creating a time series of the temporal evolution of posgion : . .
awning and neutral expressions. [Eebe a stored expression

Rat is represented by a set of templates (Ty;::5 Ty ).

These time series describe the magnitudes of head mo
and velocity, as well as their projections in the horizortad Then, letC be the current expression. The similarity score
between the expressioré and E is the sum of similarity

vertical directions.
Eye-related features are also estimated by the Wize Mirrgéores betwee€ and the set of templates &
to detect stressful emotional states [27]. These featamest
from stress, can be modulated by environmental conditions
such as temperature and illumination conditions. Active ap
pearance models (AAM) [28] are used to specify landmarks
in the eye perimeters that are tracked throughout the vid&§€"€ K(C T2
recording. Their distances and relative distribution tzea S(C; Ti) = exp( M)
time series that provides eye activity information, indhgl . ) N
measures of the eye aperture and the rate of blinking, whi¢hiS @ feature vector encoding landmark positiohsk,
are known to be correlated with a stressed emotional stafg@resents the.? norm, and is a constant controlling
[25][27]. the smoothness of the score distribution. In the exp_erisnent
Mouth activity is also analyzed in terms of dense opticdfPorted = 10 was used. Two vector representations of
ow [29] to obtain a description of the motion patterns ofeXPressions were implemented:
the lips. Optical ow is applied only on the Q channel of the A feature vector including the coordinates of all 68
YIQ colorspace of the mouth ROI, in which the lips appear landmarks de ned in the Multi-PIE dataset [33]).
brighter than the surrounding tissue [30]. The maximum A feature vector encoding information extracted from the
motion magnitude over the entire video is taken as the source Mouth region, including: bounding box ratio and distance

hd
s(C;E) = s(C; Ti)
i=1

for subsequent feature extraction, including featuremftbe of the mouth landmarks from the mouth centroid.
time and the frequency domains [31]. An illustrative exaenpl The probability that an expressidh represents a yawn is
of the analysis framework and the resulting signals is shown s(C;Y)

in Fig. 7. PCY)= Sevy+ sy
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in synchronization with the cardiac cycle. This variation i
blood volume in the arteries and capillaries underneath the
skin induce subtle skin color changes. The method explores
the use of video recordings of the human face, PPG and
ambient or diffused white light to detect the subtle color
changes caused by variations in re ected light due to a
change in blood volume in the facial region during the cardia
cycle. The initial goal of the color camera-based physiicialg
sign monitoring approach is to estimate the PPG waveform,
which is proportional to these changes in skin color, since
physiological parameters, such as HR, HRV and breathirgg rat
(BR), can be derived from the acquired PPG waveform. The

Fig. 8. Yawn probability in a video sequence. The method isusbio iImplemented computational pipeline is presented in [36].
occlusion.

B. Experimental validation

whereY and N are the stored templates of yawning and The computational pipeline was tested on the SEMEOTI-
neutral expressions, respectively. Only subsequent Bamith CONS Reference Dataset and the electrocardiogram (ECG)
p(C;Y) > 0:5 for a duration> 1 second are considered arecorded simultaneously with the videos. The results pitese
positive detection of yawning. The system uses a mean proh-Table IV demonstrate that a highly accurate estimation of
ability computed on the basis of two vector representatione HR from the processing of facial videos is possible. The
Fig. 8 shows the probability of an expression representingr@ported results, applying the computational and analytic
yawn for each frame of a video sequence: peaks are corregfigeline, indicate accuracies on the order of 95-99% com-
located in correspondence to each yawn. The detection is m@dred to the ground truth measurement computed from the
frame by frame, and the set of subsequent frames belonglB@G signal. The analysis was performed on videos acquired
to the same yawn are grouped into o@eent Each event is under two recording conditions: a motionless scenario wher
characterized by its start and duration (number of frames). participants were recorded while mimicking a neutralingst
The algorithm was tested on two datasets: state and a scenario where participants performed a mental
1. A set of 10 videos approximately 30 s long acquired intask, in particular the Stroop test [37], which is a scenario
controlled environment, with a resolution of 1920 x 108¢hat includes natural motion. The method was also tested
at 50 fps. The whole set contains 20ents(yawns). In with participants with deeply pigmented skin both included
this set, 19 events were correctly detected. the dataset and removed from the dataset. Overall, inaease
2. Aset of 10 videos from the YAWDD dataset [34] containerror was observed between trial 8 (4.85% or 5.01%), in
ing 28 events The videos show tired subjects, simulatingvhich a higher level of motion was observed and trial 3
driving a car, occasionally yawning. The videos werél.56% or 1.96%), where the subjects demonstrated the least
captured in an uncontrolled environment with naturanhotion. Moreover, the results indicate that the accuracy of
illumination and challenging subject positions; each widethe estimation is signi cantly in uenced, in both recordin
is approximately 1 minute long and was acquired at 3genarios, by the inclusion of darker-skinned subjects.
fps, with resolution 640 x 480. In this set, 21 events out
of 28 were correctly detected, 7 events were not detected, TABLE IV

H H THE % ERROR PRODUCED FROMHR MEASUREMENT USING THE
and 3 events were incorrectly classi ed as yawns. SEMEOTICONSRERERENCE DATASET

VI. PHYSIOLOGICAL STATUS

. T ecording Participants No of | Reference| % error

A Computgtlonal plpglmg was constructed to gletect and .enario record-
estimate facial semeiotic signs of the user's physiologye T ings
main objective was the development, implementation aﬁd/“"l'C'T'”?t Exclude dark skinned 16 ECG 1.56

N . . - [ neutral state
optimization of the necessary methods and algorithms ttyeas ymicking Include dark skinned! 18 ECG 1.96
and accurately extract heart rate (HR) and respiration ratgeutral state
parameters, as well as to perform heart rate variabilityMHR gimop :65: llfxclluge c?arlf Slf_'nneg g% Egg ‘51251)

. - . roop tes ncluae dark skinne .

analysis from color video recordings of the face. Total Rumber of recordings -5 Average | 3.35
A. Measurement approach In addition, an evaluation of the HR, respiratory rate and

The proposed procedure exploits the photoplethysmographiRV was performed on a subset of 5 participantsSRD'14
(PPG) principle [35], a noninvasive optical technique fofor which ve minutes of continuous video recordings were
measuring blood ow. The foundation of this approach isollected. The analysis of HRV was performed using a short
based on the fact that as the heart pumps blood, the volumeedording time (5 minutes) since it is unrealistic to have th
blood in the arteries and capillaries varies by a small amowsubject positioned in front of the mirror for more than a
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Fig. 10. Concentration of AGE in facial skin (grayscale isigepby-pixel
ratio of 475 nm image/ 360 nm image). Colored pixels within theef mask
are selected to estimate the AGE concentration.

VII. M ULTISPECTRAL MEASUREMENTS

A multispectral imaging (MSI) system for facial skin anal-
ysis has been proposed and evaluated. The MSI system is
based on ve compact monochrome Flea3 3.2 MP USB 3.0
CMOS cameras (Point Grey) with band-pass Iters at selected
gavelengths and two computer-controlled LED light sources

Fig. 9. Motion artifacts on the ECG and video signals due tdigpant
movement (published with permission of the subject).

few minutes. The results con rmed the previously reported””. . ' .
outcomes for HR measurements. The HRV analysis W\ghﬂ_e and ultraviolet (U\_/) Ilght).Aheaterfan for remotiis
unsatisfactory, with considerable divergence from theiesl eating has_ also been integrated in the _system. The cameras
obtained from the ECG analysis (cf. Table V). are placed in a three by two pattern adjacent to each other.
The camera lters (Edmund Optics) are bandpass Iters with
center wavelengths and (FWHM) of 360 (45), 475 (50), 560

LRy ( TABLE V ) . (10), 580 (10), 650 (50).
RESULTS(THREE INDICATIVE CASES) FROM 5-MINUTE VIDEO . .
RECORDINGS _ Advanqed glycation end prpducts (AGE) are. linked to
in ammation and atherosclerosis and play a role in both the
microvascular and macrovascular complications of diabete
Heart Rafe Varability fTequency Components esiimation In this project a noninvasive, contactless novel technique
LF ampli- HF ampli- LF power HF power LF HF . . . . . .
tude tude o o frequency | frequency | js proposed to quantify AGE deposits in skin tissue. The
Q Q Q ) . . .
s1g s lg s lg | |g]¢s g technique collects MSI images during UV exposure from a

365 nm LED (Smart Vision Lights). The method is presented
in detail elsewhere [38]. In summary, the AGE level was
assessed as the ratio of the uorescence intensity (475 nm
camera) to the illumination intensity (360 nm camera). The
These outcomes indicated that although the HR resuitsage acquisition and processing involved: 1) modulatghi li
achieved from the proposed method were satisfactory, impBources for ambient light suppression; 2) a ROl mask; 3)
ing that the preprocessing phase of the HRV analysis was pregoiding areas with specular re ections (Fig. 10); and 4) a
erly implemented, the constructed signal was not suf dientsimple calibration procedure. The method was evaluated on
representative of the BVP signal or the subsequent praowgssiata from SRD'15 The results from 16 subjects with skin
was not as accurate as required. Finally, measurementt@jes ranging from fair to deeply pigmented showed that
respiration rate was derived from the HF-Frequency bam@sE measured using MSI in forearm skin was signi cantly
of HRV from both signals (ECG and video) and thereforgorrelated with the AGE reference method on forearm skin
depended on the accuracy of the HRV estimation. [39] [38]. These results support the use of the technique for
Visual inspection of the video signals revealed that thegontactless measurement of the AGE content in either facial
were not of suf cient quality for the required signal duati or forearm skin tissue over time.
(i.e., ve minutes) for accurate HRV analysis. Signal segtse  Lipids accumulate in the skin of persons with increased risk
were seriously contaminated by noise/artifacts (Fig. ®usl of cardiovascular disease. Xanthelasma is an accumulafion
the unreliability of the HRV estimate can be explained ifipids in the periorbital skin. It appears as a soft, yellopid
part, by the bad quality and unreliability of the particulaskin inclusion. This condition is clearly visible to the mak
recordings, both ECG and video. However, this analysis preye, and can thus in principle be quanti ed using the MSI sys-
vided evidence for the feasibility of the proposed methotem. The skin cholesterol concentration is therefore ctmrsd
The reliability should be further tested on datasets designan interesting parameter in the assessment of overallazardi
speci cally for HRV analysis, providing ECG and videometabolic risk [40] [41]. The MSI system estimates choleste
recordings acquired in parallel for 5 minutes and compatibby calculating the cholesterol skin fraction. Detection of
with basic HRV acquisition requirements. cholesterol in the visible spectral range is challengincabse

1010 2765[ 488 [ 705 | 77 208 | 56 73
6288| 22468 2475| 5060 536 | 2037| 391 | 853
6440| 4243| 1164| 395 | 437 | 240 | 209 | 61
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Fig. 11. Cholesterol characterization of subject with higbod cholesterol.
Original image (left), small cholesterol deposits enhaneedge (mid), and

xanthelasma enhanced image (right).
ge (right Fig. 12. The fraction of red blood cells in facial skin tissfiggc ; color

map indicates a relative scale). Thggc is calculated in the selected ROI
at baseline (left panel) and 9-10 min after local heatinghripanel). A
cholesterol does not have a speci ¢ spectral signatureig tltomputer-controlled fan focused heated air on the left cheek

wavelength range. However, it may be detected as a conse-
guence of increased scattering due to the high refractiexin
in lipids, increased specular re ection and replacemertér
skin constituents with cholesterol. The last feature leada
lower observed blood volume and pigment absorption in dipi
rich areas. The main spectral feature targeted in this q:lrojg\’hen exposed to heat.

is the scattering change observed due to the high refractive

index found in lipids. The proposed method uses a single VIIl. A NALYSIS OF BREATH COMPOSITION

wavelength (560 nm or 580 nm). The measurement of skinpany studies attempted to nd a correlation between breath
cholesterol is implemented as a cholesterol droplet Wactiyg|atile organic compounds (VOCs) and particular diseases
measure (Fig. 11, mid panel). In this method an area of sKip] [43], as breath analysis enables monitoring the nwtab
beneath the eye is selected for analysis, and the fractiongphcesses that occur in the human body in a noninvasive way.
pixels covered with spots showing increased skin re ectiophjs technique is promising and complex; the analysis of the
(white spots) is calculated. The presented algorithm,ie@pd preath gases must take into account a variety of factors fro
the data from the same subjects used for the AGE assessmgyt, subject's posture [44] to the ow rate [45], conditions
easily identi es xanthelasma lesions (Fig. 11, right panel  of the environmental air [46], and the subject's lung volume
Endothelial dysfunction is a mechanism that can lead {87]. For this reason, the majority of studies in this eld
coronary artery disease. The endothelium balances vasodilse sensitive and accurate instrumentation to analyzehbrea
tion and vasoconstriction during varying blood ow needsmolecules, such as gas chromatography - mass spectrome-
Endothelial dysfunction can result from and/or contribtde try [48]. However, such instrumentation is expensive, time
several disease processes such as hypertension, hygsrchebnsuming and not easy-to-use.
terolemia, and diabetes. In this project, endothelial fiomc In the framework of SEMEOTICONS, the challenge was to
is measured using MSI based on the response of facial skifalyze the user's breath composition by means of a portable
microcirculation to partial facial skin heating 8 C using cheap, and easy-to-use device to detect breath gases and
a controlled heated air ow. Reference recordings of fonéaranalyze them in real-time: the Wize Sniffer [49].
skin during local heating with a ber optic probe system indi  The Wize Sniffer can detect molecules present in the breath
cated that the response should be evaluated continuousty awat are related to the most noxious habits for cardio-nui@b
the axon re ex period, 1-6 min after the start of heating. Thgsk: sensors for carbon monoxide can monitor smoking babit
maximum response during this period was used to calculaied sensors for ethanol and hydrogen can help the user
an index of endothelial function. This index was based on twg maintain their diet under control and avoid an abuse of
parameters calculated from the MSI images in the 475-650 rfitoholic drinks. In addition, variation in the output ofygen
range: hemoglobin oxygenatio8Q,) and the fraction of red and carbon dioxide gas sensors provides a measure of how
blood cells in the skinfec ; Fig. 12). much oxygen is retained in the body, and how much carbon
The facial skin heating technique, developed using dioxide is produced as a by-product of cellular metabolism.
computer-controlled heated air ow and an IR thermometer The Wize Sniffer is composed of three modules: one for
to measure facial skin temperature, worked well. This systebreath sample acquisition, one for breath molecule detecti
was tested during the acquisition 8RD'15 Normally the and one for data analysis. The acquisition device includes a
temperature at the end of the 10-min period was withi€ gas sampling box (600 ml tidal volume [50] and composed
of the target temperature (rang&5 40 C). In only a few of ABS and Delrin) with six gas sensors (manufactured by
cases a higher skin temperature was reached for a shortipefigaro Engineering) and widely employed open source con-
of time, probably due to head movement. troller board (Arduino Mega2560). Since the sensors' outpu
Artifacts were identi ed due to co-registration dif cults in is affected by the water vapor present in the exhaled gas, an
the MSI setup. This mainly affected ttf®O, images, while HME lter is placed at the beginning of a corrugated tube to
thefrgc displayed less sensitivity. One way to minimize theeduce the humidity from 90% to 60-70%. The humidity and
effect of miss-alignment is to take a spatial average overt@mperature percentage are also monitored within the sagnpl

fairly large ROI for each MSI image before calculating the
SO, and frgc estimates. For data fro8RD'15 all ROI
g\veraged estimates displayed consistent and expecteltsresu
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Fig. 14. VIM maps self-monitoring data, represented as ves{tprto vector
w(t) belonging to a 3D well-being space.

Fig. 13. The Wize Sniffer nal con guration. The user blowsitd the

corrugated tube while attempting to keep the expiratory aterconstant.
The owmeter can be used to calculate the exhaled breath voldmeshing IX. SEMANTIC DATA INTEGRATION AND USER GUIDANCE

pump purges the chamber to recover the sensor's steady stateebetwo g gl gim of the Wize Mirror is to monitor individual
consecutive measures. The Wize Sniffer was designed to bgrated into

the Wize Mirror or to be used as a stand-alone device. well-being with respect to cardio-metabolic risk and totéos
a healthy lifestyle. According to medical semeiotics of CM
risk, the set of computational descriptors previouslyioetl is
box. Two additional gas sensors with shorter response tin@¢pected to convey properly meaningful pieces of inforomati
work in owing regime by means of a sampling pump, whicH4]. For completeness, the entire set of descriptors pred by
operates at 120 ml/s. The sensor outputs are read by the mirror and the related risk factors are summarized ieTab
Arduino Mega2560 and sent to the Wize Mirror's main boar¥l. Unfortunately, the direct use of a large heterogeneais s

via an USB connection. of descriptors is unsuitable for evaluating a user's statitls
Fig. 13 shows the nal con guration and the use of théespect to medical knowledge and, even more importantly, to
Wize Sniffer. facilitate interaction with the user. This is why the intetion

The concentration of each of the breath molecules detecf¥@c€ss produced by the virtual individual model (VIM) was
by the Wize Sniffer was calculated using a non-linear eguati Nntroduced. o o _
model. The analysis of the gas sensors con rmed their non-AS illustrated in Fig. 14 and detailed in Section IX-A, the
linear behavior and their non-selectivity [51], thus impeg V!M maps the data produced by the mirror, which can be
the exact discrimination of several substances. Thergforeconsidered as poirgin a high-dimensional space, to point
more classic approach based on principal component agaly¥i in Semantically structured space, called the well-being
and the K-nearest neighbour classi cation was adopteds THiPace. This semantic structure provides the physiolqgical
method uses the sensors' raw data to indicate which “clag¥®ychological and behavioral interpretation of the meagur
the user belongs to, according to their habits (“no risk”otfn parameters. This process partitions thespz_ice into three
erate smoker”, “heavy smoker’, “moderate drinker”, “heavyubspaces, p, e and  named the physical, emotional,
drinker”, etc), thus integrating and completing the dativeel and lifestyle-related subspaces,_respecnygly.compns_es Fhe
from the lifestyle questionnaires (see Section 1X). parameters related tq the physmal condition of an indi&idu
(e.g., blood oxygenation, skin cholesterol, face morpgp)o

e includes the features (e.g., descriptors of facial expres-
Fions, and neurovegetative imbalance) directly relatethéo
gnotional status of the subject. Finally, is spanned by
%5 riptors on an individual's dietary habits, physicaity,

A measurement protocol was drafted for testsSRD'15
subjects with different ages, habits, lifestyles and boghes.
A “mixed respiratory” procedure was selected from ava#ab
breath sampling procedures [46], [52]. This procedure w
selected because the focus was on both endogenous (der . NN
from alveolar exchanges) and exogenous (derived from fogbCOhOI cpnsumptlgn, anq .n|c-ot|ne intake. .
and beverages) breath molecules. In addition, since the C%E]Accordlng to this partitioning, the well-being space has

position of each breath may vary considerably, to average ree axes that describe physical wellness, emotionahesd),

breath-by-breath uctuations in composition, a samplirig 0anol lifestyle-related wellness. To provide the user a @nci
multiple (three) breaths was performed ’ description of her/his overall condition, the state of thivV

. . . is used to compute a wellness index (WI), which is an

The KNN classi er correctly classi ed 20/26 subjects on . P , .
. . . : ) appropriately scaled indicator of a user's wellness. Ivjates

the basis of their noxious habits. Unfortunately, the dlass ppropriately ind . W ot

) . . . dIhe basis for communicating with the user and driving the
was unable to recognize smoking subjects. This may be @?ldance system
to the high detection threshold of the carbon monoxide sens '

This will be solved by replacing the Figaro gas sensor with
another sensor with a lower LOD (MQ7 sensor, for exampleéd. Virtual Individual Model and Wellness Index

While alcohol consumption of up to 1-2 alcohol units/day The data collected by the Wize Mirror includes the computa-
is not considered noxious (in healthy subjects), smoking ti®nal descriptors obtained by mirror sensors and datdrudda
considered very bad for cardio-metabolic risk in all cases. by user interaction. In Table VI descriptors from the sessor
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TABLE VI
THE WIZE MIRROR CARDIO-METABOLIC RISK DESCRIPTORS ALONG WITH
THE CORRESPONDING MEASURED PARAMETERS AND LINKED RISK
FACTORS SEE TABLE | TO LINK THE DESCRIPTORS WITH THE SENSORS
THAT OBTAIN THE CORRESPONDING DATA

Descriptor | Measured Parameter Risk Factor
Overweight
3DFM Face geometry Obesity
Head movement
Eyebrow movement
Lip movement Stress,
Yawns Anxiety
FaDe Eyelid movement Fatigue
Gaze distribution
Blushing
Reddening
Pallor
HR Neurovegetative
PhPa HRV imbalance
RR
Blood volume/oxygenation Endothelial
Skin perfusion and thermal vasodilation ~ dysfunction
MuMe Skin cholesterol accumulation Dyslipidemia
. . Glucose
Skin AGE concentration metabolism
Exhaled gas:
CO Smoking
ExGC H Alcohol intake
Ethanol

are listed along with the related data source and the prmvale

connected risk factor. In addition, when initializing thérrar,
the user is requested to provide a few pieces of data, imdudi

age, weight, height, and waist circumference. The usersis al

asked to Il out short questionnaires describing their péred

health status and stress conditions (the SF-12 mental and
physical components [53] and the Perceived Stress Scdle [54

Finally, questionnaires pertaining to lifestyle habite a@so
administered to describe dietary habits (DASH [55]), pbski
activity (IPAQ [56]), alcohol consumption (AUDIT-C [57]),
and smoking habits (Fagerstn [58]). The latter question-

11

cose metabolism abnormalities, overweight/obesity ang ne
rovegetative imbalance. These changes, in turn, causgeban
in the input. Each of these causal relationships is modéied

a linear equation with the cause(s) as independent vaf&gble

Structural equation models (SEMs) were used to implement
the association phase [59]. SEMs are widely used in psy-
chometry and behavioral sciences. This choice was motivate
by the moderate complexity of a linear SEM, which despite
a possible negative in uence on the estimation accuracy, is
advantageous with respect to over tting issues. More cexpl
(non-linear) models will be investigated in future develop
ments of the system. Evolution of the data-fusion schema is
planned with respect to several aspects, including the fise o
more general non-linear causal relationships and the &hopt
of more advanced methods such as those emerging for crowd-
sourcing and multi-socials integration [60]. These aresefgd
to ef ciently cope with partial data inconsistencies, inding
missing data. Although data incongruence was not observed
in the experiments, it can be expected when the mirror is
deployed in a general environment.

The completeSRDwas used to estimate the model coef -
cients. This dataset includes data from volunteers thahare
affected by a known disease. For each subject it contains:

a complete medical objective examination based on stan-
dard clinical testing for CM risk, including four well-
established risk scores: Heart SCORE [61], Fatty-Liver
index [62], HOMA index [63], FINDRISC index [64];
nutritional assessment obtained by validated question-
naires and indirect calorimetry;

psychological evaluation based on validated question-
naires;

a set of images, pictures, and signals acquired with a suite
of sensors operating in experimental conditions close to
the Wize Mirror setup that can estimate facial descriptors
of CM risk.

naires are included in the guidance system (see subsecfltns database contains the input data from sensors in the Wiz

IX-B for more details).

Mirror, user-provided data, and clinical and psycholobica

According to medical knowledge, both computed and useeference evaluation data, and its usage made it possible to

provided data can be mapped onto a speci c axis ajpace as

summarized in Table VII. It follows that VIM implementation

is referred back to estimating three mappings,

P: p7' »
E: 7' E
L: 7' .

between the prede ned subspaces( g, and ) of
and the three axes 6; g, and ) of . In this view,

estimation of the components of the VIM status is based on the
hybrid fusion process depicted in Fig. 15 for the physicas ax

t the VIM using the SEM maximum-likelihood estimator.

TABLE VI
CARDIO-METABOLIC RISK FACTOR AND WELL-BEING AXIS.

Risk factor
Endothelial dysfunction
Dyslipidemia

Glucose metabolism abnormalities
Overweight/Obesity
Neurovegetative unbalance
Anemia/Plethora/Jaundice

Stress
Fatigue
Anxiety
Smoking
Alcohol intake
Dietary habits
Physical exercise

Well-being axis

Physical

Emotional

Lifestyle

(analogous schemas were adopted for the other components).

The major aim is to correlate VIM status with a medical
standard. This led to the adoption of simple but generabfusi
schema based on the assumption that each component of
VIM status causes changes in the risk factors (see Table Vil

For example, the physical component was hypothesized

cause changes in endothelial dysfunction, dyslipidemiia; g

The temporal evolution of the VIM statws is expected to
ide a concise but complete description of the companent

a user's health status. To make it suitable for interactith

qgneral usersy is converted into WI using the equation:
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Fig. 15. The schema of data fusion used to estimate the mapptogroduce
the physical component of the VIM status.

Fig. 16. Graphical representation of the wellness index appears in the

. . . Wize Mirror prototype. The global wellness (64) is presenéong with the
Similar to the SEM method mentioned above, the coef cientsysical (68), emotional (72) and lifestyle (53) components.

ap;ae, and a were estimated from the reference dataset

by assuming thatv,, we, andw; depend linearly orw| .

apWp, aWe, andayw; can be interpreted as physical wellnes$pllowing questionnaires are administered at the begipiih
emotional wellness, and lifestyle wellness, respectivélye self-monitoring activity:

proposed WI is innovative. In contrast to other indices (e.g. - WHO-5 Well-being Index [65] a short questionnaire

WHO-5) based on subjective user evaluation, the proposed providing a reliable measure of emotional traits (positive
WI combines objective measurements (gathered from sensors) mood, vitality and general interests).

with the subjective evaluation of perceived health statels p - General Self-Ef cacy Scale (GSE) [66] assessment of the

formed by the individual. This feature is expected to signi perceived self-ef cacy and understanding of an individ-

cantly impact self-monitoring strategies and the effestizss ual's motivation to change.

of user gwdance. . L The guidance uses a battery of standardized questionnaires
To gain an understanding of the relat|ye importance of the, o previously mentioned) to provide suggestions to pro-

two kinds of data (sensed and user-provided) we observe t te lifestyle improvement. In particular the Wize Mirror

the estimated values of the three weights age= 1:23,

incorporates:
a. = 0:50, anda = 0:73. By normalizing their sum to unity, P ) ) 4 i
the relative impacts on the totéf | of the physical, emotional  ~ _IPAQ'SF qugsn_onnawe [56], [67]: four que_st|ons requ_est
and lifestyle components are 50%, 20%, 30% respectively. mg_t_hat an |nd|V|dua! recall aspects of his/her physical
User-provided data are used to set the initial status of the activity over the previous 7 days;
VIM and to computew; that, with the exception of smoke " A reV|§ed Alcohol Use Disorders Ideny cation Test Con-
and alcohol consumption which can be measured by the Wize SUMPtion _(AQDIT'C) [57]: three questions about alcohol
sniffer, can not be captured by the sensors in the mirror, Consumption; o _
Sensors are therefore responsible for approximately 70% of Fager_stom Test for N|c0t|ne_ Depen(_jence_ [58]: a sta_n-
the W computation. darq mstrume_nt for assessing the intensity of physical
Fig. 16 shows a graphical representation of the WI compo- addiction to nicotine; i
nents as they appear in the Wize Mirror prototype. - DASH assessment [55]: a standard instrument for assess-
ing diet;
- Insomnia Severity Index (ISI) [68]: a brief screening

] i ] . . measurement of insomnia.
The Wize Mirror provides customized and personallze[ge

. . . . ending on the score of each behavior a speci ¢ suggestion
suggestions and messages, in accordance with the estimate . . g )

. ; . IS provided. The messages are tailored to the user's traits
WI and its change over time, the user prole in terms o

. . . improve th r mmunication and en ment. Th
attitudes, habits and preferences, and contextual infiwma 0 improve the users communication and engagement €

. . . resentation, visualization and linguisti le of (11:)]
about the users life circumstances. The guidance has fgu?se tat(_) ; Visualizatio a d Igu stic stye_zo_ Sug "
L are tuned in accordance with user's characteristics. Foahd
major lifestyle targets:

a proactive decision support system is under development.

B. Personalized guidance

diet,

physical activity,

smoking, X. CONCLUSIONS

alcohol intake. This paper described the work performed in the Euro-

Target selection is automatically triggered by the WI. Thpean project SEMEOTICONS to develop the prototype of a
guidance control includes a set of modulators used for gunimultisensory platform that detects and monitors faciahsig
the intensity and the frequency of coaching messages. Tdwrelated with cardio-metabolic risk, and gives persiaedl
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guidance for lifestyle changes. SEMEOTICONS brings medg]
ical semeiotic analysis to everyday life, from the of ce of
medical doctors to the home, the gym and the pharmacy. THY
empowerment of individuals, in terms of their ability tofsel
monitor their status and improve their lifestyle, is expecto  [9]
have a great impact on the reduction of disease burden :ﬂ‘bq
health expenditure.

Different technological challenges have been addressed in
this work, including contactless analysis of facial sigmsyiti- 11l
modal data integration and development of a virtual indiaid
model. To achieve all the goals, it was necessary to study,
implement and test interdisciplinary techniques such as fd12]
detection, tracking and reconstruction, morphometridyesis
expression analysis, heart rate estimation, multispestesa- [13]
surements, cholesterol and AGE estimation. In many cases
new approaches were proposed. (14]

The clinical validation of the Wize Mirror is ongoing. The
system is being used in a study at three clinical cent€ns]
involving 60 subjects. This validation study focuses on the
reproducibility of measurements provided by the Wize I\/h'rro[16
and the correlation of estimated wellness with respect to
cardio-metabolic risk charts (Heart SCORE, Fatty-Livater, [17]
HOMA index, FINDRISC index) which are the groundtruth
for the wellness index validation [4]. (18]
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