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Abstract 

Over the last two decades, social networking over the Internet has attracted the attention of 

millions of users and becomes a new factor that drives business intelligence and economic growth 

worldwide. People have strong social instincts and they tend to socialise and communicate with 

each other in every possible scenario thus, social networks have been extended to different types 

and forms beyond the Internet. Mobile Social Networks (MSN) represent a new form of social 

networks that take advantage of the close proximity and the unique features offered by mobile 

devices to establish social links among mobile users. More recently, Vehicular Social Networks 

(VSN), a special type of MSNs, have emerged as a new communication paradigm for social 

networking on the roads. VSNs are decentralised opportunistic communication networks formed 

among vehicles (Vegni and Loscri 2015), where the communication takes place in three 

dimensions: human to human, human to machine, and machine to machine communications. The 

flourish of vehicular networks development over the last decade has made the social interaction 

on the roads possible promising more enjoyable experience for vehicular travellers. 

Prior to discussing VSNs and their connectivity patterns, it is important to develop an 

understating of vehicular networks on one hand and the human social behaviour in VSNs from a 

social theory viewpoint on the other hand. Vehicular networks are characterised with high mobility 

and frequent network topology changes, which make the connectivity between vehicles tends to 

be vulnerable. On the other side, in addition to being within the communication range of each 

other, sharing the same social interests and/or characteristics is a prerequisite for any two vehicles 

to socially interact in VSNs.  
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This chapter is intended to present a novel social connectivity model for VSNs by utilising the 

evolving graph theory. First, the properties of VSNs are briefly introduced in the context of 

vehicular networks. The social metrics of the communicating vehicles are then reviewed using the 

concepts of social theory along with the conventional connectivity metrics in vehicular networks. 

Thereafter, a novel social evolving graph-based connectivity model that considers both social and 

conventional metrics of the communicating vehicles is developed using an extended version of the 

evolving graph. Moreover, the proposed connectivity model suggests new social links with 

vehicles that enter the communication area of other vehicles with similar social interests. Finally, 

the developed connectivity model is investigated in a highway scenario to demonstrate its abilities 

in capturing the evolving characteristics of social interactions among vehicles and selecting the 

best paths to forward data. Data forwarding decisions are made based on a combination of social 

and communication metrics of the communicating vehicles. Simulation results showed that the 

proposed connectivity model facilitates the social interactions among vehicles and is able to 

establish reliable social paths among the communicating vehicles. 

Introduction 

Nowadays, social networking over the Internet has become one of the most popular methods 

for social interactions among people thanks to the modern and ubiquitous communication 

technologies/devices. Besides the traditional online social networks, which are offered by service 

providers such as Facebook, Twitter, LinkedIn, etc., mobile social networks (MSN) have emerged 

as a new platform over which participants interact within a virtual social network using their 

mobile devices. These mobile devices take advantage of their close proximity and leverage 

different communication technologies such as Bluetooth, Wi-Fi Direct, etc. Thus, MSNs offer the 

possibility of opportunistic social interaction where opportunistic networking is utilised to allow 
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each node to send, receive and relay information without a server dictating the communications. 

This feature makes MSNs an attractive option for supporting social interactions and collaborations 

among people in a number of mobile environments where MSN can take advantage of both 

infrastructure-based wireless networks, e.g. the mobile Internet, and opportunistic networks, e.g., 

wireless mobile ad-hoc networks (Hu, et al. 2015). 

Vehicular social networks (VSN) are one of the main application domains of MSNs. VSNs are 

defined as decentralised opportunistic communication networks that facilitate social interactions 

including content creating and sharing between travellers on roadways. Due to the lack of high 

rate Internet connections on roadways, especially on highways and rural areas, VSNs encourage 

vehicles’ travellers to create, share and relay information using the available low-cost 

communication links in vehicular networks including Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) communications. Direct inquiry of others with similar experience in proximity 

over social networks tends to be the most convenient and efficient approach to acquire an up-to-

date, specialised and domain-specific content and information for travellers (Luan, Lu, et al. 2015). 

Furthermore, recent TripAdvisor survey of more than 1700 US respondents reveals that 76% of 

travellers share their travel experience including photos and clips via social networks and 52% do 

that while travelling/driving back home (TripAdvisor, Inc. 2012). Thus, VSNs represent a unique 

form of localised mobile social network that exploit the vehicular communication links and offer 

vehicular travellers the opportunity to engage in social activities along the road. 

Given the unique features it provide, VSNs can serve as a platform for various vehicular and 

traffic related applications. Therefore, VSNs have received more attention and research efforts 

from academia and industry worldwide. These efforts resulted in developing many applications 

and frameworks that can operate upon VSNs. RoadSpeak (Smaldone, et al. 2008), Verse (Luan, 
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Shen, et al. 2015), Clique Trip (Knobel, et al. 2012), NaviTweet (Sha, et al. 2013), and Toyota 

Friend (Kageyama 2011) are few examples of these applications.  

While VSNs promise a new communication platform for social interactions along the roads, it 

inherits the connectivity problems that already exist in vehicular networks. This includes the high 

mobility of network nodes and the frequent changes of the network topology. In vehicular 

networks, the network topology could vary when vehicles change their velocities and/or lanes. 

These changes depend on the drivers’ behaviours, i.e., human factors, and road situations and are 

normally not scheduled in advance. Here, we assume that vehicles are driven by humans. Self-

driving vehicles can be considered as part of a VSN however, this case needs more investigation 

and is left for future work. Thus, in other words, the VSN can be defined as a vehicular network 

that takes the social characteristics of human beings such as human mobility, human selfish status 

and human preferences into account. Therefore, the current connectivity models, which are 

designed for vehicular networks, cannot guarantee to capture the social evolving connectivity 

patterns in VSNs. This problem is the subject of this chapter.    

Basics of Social Theory  

As we have mentioned above, the human factor has a significant impact on the operations and 

consequently the performance of VSNs. The human factor in VSNs can be considered from two 

different points of view: the passengers’ social behaviours and the drivers’ social behaviours since 

driving itself has been constructed as a set of social practices, embodied disposition, cybernetic 

associations and physical affordances (Smyth and King 2006). However, in this chapter, we 

consider the social behaviour of travellers in general, i.e., both drivers and passengers, and the 

social aspects of vehicles as network nodes in the social network. Considering different behaviours 

of different travellers in the same vehicle in the context of VSNs is an open research challenge and 
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is left for future work.  

In social theory, there are several indexes that can be used to localise the most significant nodes 

and quantify their relative importance to other nodes (Batallas and Yassine 2006, Lu 2012). These 

indexes and measures are similar to those utilised in graph theory since the social network itself 

represents a communication graph. Thus, in this section, we follow the categorisation of graph 

theory to these social indexes and metrics (Pallis, et al. 2009) which are concerned with local, 

network-wide and community-wide metrics in VSN. In the following, we describe these measures 

along with the model of social morality of vehicular travellers. 

Local Metrics  

Propinquity  

Under equal conditions, propinquity means that if two vehicles are geographically near to each 

other, they are more likely to be connected.  

Homophyly  

In social theory, homophyly is defined as the common social attributes, i.e., the similarity, between 

two users such as having the same favourites, working for the same organisation, having the same 

travelling destination, etc. Thus, it is more likely that travellers with the same social attributes, i.e., 

high homophyly, to have a connection. Thus, the higher the homophyly the more likely two 

vehicles will be socially connected (Lu 2012). 

Let HPi be the social attributes of an entity ni where each item in HPi is a binary variable that 

indicates whether ni has an interest in the corresponding item or not. For instance, let assume the 

following social attributes/interests {Football, Rap music, Thai food, Mountain climbing} and HPi 

= {1, 1, 1, 0}, i.e., ni likes watching football, listening to rap music and eating Thai food but he/she 

does not like mountain climbing. In order to match the similarity between two entities in terms of 
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their social attributes/interests, we adopt the vector space model (VSM) as described in (Li, Guo 

and Zhao 2008). Let HPi ={Si,x} where x ∈ 1…n and Si,x ∈ {0,1} be the social attributes/interests 

profile of ni. The homophyly between two entities ni and nj, i.e., the social interests similarity, can 

be evaluated as follows (Luan, Lu, et al. 2015): 
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If SHPij = 1, then users ni and nj have exactly the same social attributes/interests and consequently 

they are more likely to socially communicate, i.e., create a social connection in VSNs. Otherwise, 

if SHPij = 0, then ni and nj have no interests in common and it is unlikely for them to have a social 

connection in VSNs. The evaluation of the homophyly SHPij factor between two travellers in two 

different vehicles is the first step to determine the likelihood of establishing a social connection 

between them in the context of VSN.    

Degree Centrality 

In definition, a central node is the one that relates to a large number of nodes in the network, i.e., 

have a large number of in-links and out-links with other nodes. The degree of a node ni can be 

measured by counting the number of links incident to it and is represented by d(ni) (Snijders and 

Borgatti 1999). Since the distinction between in-links and out-links in social networks is not 

needed, the centrality of a node ni, denoted as CD(ni), can be calculated as follows:  
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where xij = 1 if i is incident to j and xij = 0 otherwise. It can be noted that CD(ni) depends on the 

size of the network and it becomes complex to use when comparing different networks. Let N be 

the total number of nodes in the network, one way to standardise the degree centrality metric CD(ni) 
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is to divide (2) by the maximum number of nodes that ni can be connected to as follows: 
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In the context of VSNs, choosing nodes with high degree centrality index to forward a message 

means that the chance of delivering this message to its destination will be high.  

Social Link Duration 

In order to have a social link SLij between two nodes ni and nj, a communication link lij should first 

exist, i.e., both vehicles should be within the transmission range of each other. Since the social 

attributes of travellers are less likely to change over the road, i.e., their homophyly, the social link 

duration mainly depends on the communication link duration between two vehicles. Let H denote 

the wireless transmission range and vi(t) and vj(t) the velocities of ni and nj at time t, respectively, 

the social link duration SLij(t) can be accurately estimated as follows: 
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where θ = -1 and ϑ = 1 when nj overtakes ni, θ = 1 and ϑ = 1 when ni moves forward in front of nj, 

θ = -1 and ϑ = -1 when ni and nj are moving toward each other, and θ = 1 and ϑ = -1 when ni and 

nj are moving away from each other. 

However, the calculation of SLij(t) in (4) does not take into consideration the possible changes in 

vehicles’ velocities values. Therefore, we utilise the concept of link reliability, which is introduced 

in (Eiza and Ni 2013), to accurately estimate the expected social link duration. The link reliability 

is defined as the probability that the communication link between two nodes ni and nj will stay 

continuously available over a specified time period. Given SLij(t), the estimated duration for the 

continuous availability of a social link SLij between two vehicles at time t as calculated in (4), the 
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link reliability value rt(SLij) is expressed as follows: 

rt(SLij) = P{To continue to be available until t + SLij | available at t} 

We assume that the velocity of vehicles has a normal distribution (Niu, et al. 2006, Schnabel and 

Lohse 1997). Thus, rt(SLij) can be calculated as follows: 
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where f(T) is defined as follows: 
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where µΔv and σΔv
2 denote the average value and the variance of relative velocity Δv = |vi – vj|, 

respectively. Hence, the expected social link duration ET(SLij) can be estimated as follows: 

)()()( tSLSLrSLET ijijtij ×=      (7) 

Network-wide Metrics  

Closeness Centrality 

It can be noticed in (2) that the degree centrality metric does not consider the indirect connections 

that a node can establish with other nodes using the available paths in the network. Thus, the degree 

centrality metric is not enough to recognise the most important nodes in VSN. We define a node 

as a central-close if it can reach other nodes through short distance paths. Hence, the closeness 

centrality metric is related to the inverse of distance between nodes, e.g., the higher the distance, 

the less central-close. In social theory, the shortest distance path between two nodes is defined as 

a geodesic. Thus, the closeness centrality index should consider the geodesics that a given node 

has to all other nodes in the network. Let d(ni, nj) be the geodesic between two nodes ni and nj, the 
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standardised closeness centrality )( i
'
C nC of a node ni can be calculated as follows: 
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In (8), it can be noticed that the closeness centrality index for ni will be zero if there is at least one 

node nj that is unreachable from ni, i.e., its geodesic will be infinite. In the context of VSNs, 

choosing nodes with high closeness centrality index to forward a message will optimise the 

resources needed to deliver it and ensures a faster delivery as well. 

Betweenness Centrality 

Betweenness is another measure of centrality that focuses on nodes that lie in the path between 

other nodes. In order to calculate the betweenness centrality index, it is assumed that nodes prefer 

to communicate via the shortest paths in the network. Thus, the standardised betweenness 

centrality )( i
'
B nC  of a node ni, which expresses the number of shortest paths, i.e., geodesics, that 

pass through ni, is calculated as follows 

 

2
))1)(2((

)(

)(
--

=
å

¹¹<

nn
g
ng

nC ki,ji,kj jk

ijk

i
'
B      (9) 

where gjk(ni) is the number of geodesics linking nj and nk that contain ni in between and gjk is the 

total number of geodesics linking nj and nk. A node with a high betweenness centrality index plays 

the role of “broker” and has a great influence on the data dissemination in VSN.   

Bridging Centrality 

The bridging centrality of a node ni is expressed as the product of its betweenness centrality and a 

bridging coefficient β(ni). The bridging centrality metric defines nodes that are central to the 

network graph, connecting two highly connected sub-graphs and have a low number of direct 
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connections relative to their neighbour connections. The bridging coefficient β(ni) is the ratio of 

the inverse of a node degree to the sum of the inverses of all its neighbours’ degrees. The bridging 

centrality can be calculated as follows: 
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where β(ni) is calculated as follows 
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Social Path Duration 

When two nodes ni and nj are not adjacent to each other, the social path SPij is defined as the set 

of social links that connect ni and nj via multiple hops in the network. Without loss of generality, 

for any given path SPij, let us denote the number of its formed links by k, i.e., SPij = {SL1, SL2 … 

SLk}. The expected social path duration SPij(t) is defined as the minimum of social links durations 

that comprise this path, i.e.,  

k...ωwhereSLETmintSP
ijSPSLij 1)()( == wÎw

  (12) 

while the reliability of the social path, denoted as Rt(SPij), can be calculated as follows: 
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Community-wide Metrics  

Number of Clusters  

Considering the mobility patterns of vehicles on the roads and the traffic conditions, the formation 

of non-connected clusters is inevitable in VSNs. We define the cluster as a sub-graph of the whole 

network that contains a number of connected vehicles where there is a path between any pair of 
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nodes. The higher the number of clusters in VSNs the lower the chance of creating new social 

connections among vehicles in the network. 

Number of Social Groups 

Different from the cluster approach, the social group/community in VSNs is a sub-graph of the 

whole network that still has a connection with the rest of network. However, the number of intra-

group links is larger than the number of inter-group links. Nodes within a social group usually 

share the same social attributes/interests. The formation of social groups is quite important in 

VSNs to attract users’ attention and encourage them to join. The higher the number of social groups 

the better the experience users will have when joining the VSN.   

Model of Social Morality 

In a fully autonomous system, users independently behave based on the rational calculation of 

expediency (Fukuyama 1996). Generally, users take their decision to act in social interactions from 

two points of view: 1) economic and motivated by self-interest; and 2) noneconomic and motivated 

by collective interest and moral obligation. In reality, when users violates a deeply internalised 

norm, which governs users’ behaviour in economic and noneconomic spheres of activity, they will 

feel guilty to some extent and would likely punish themselves in some manner whether anyone 

else knew of their actions or not. This is known as social morality (Liang, et al. 2012).  

In the context of social networks, both cooperative and non-cooperative behaviours of users have 

a significant impact on the performance of the social network. It has been shown that users who 

experienced a feeling of guilt after a non-cooperative behaviour tend to show higher level of 

cooperation in the later social interactions (Ketelaara and Aub 2003). As a matter of fact, the 

feeling of guilt encourages users to depart from their typical non-cooperative behaviour. In VSNs, 

the cooperation is highly desirable among users to promote social interactions and consequently 
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help with delivering data packets. Since the VSN users are autonomous and intelligent individuals, 

it is reasonable to assume that they are rational and their behaviours are driven by personal profit 

and morality. Thus, we are interested in observing two forms of social morality that are resulted 

based on the decisions taken by users whether to accept and forward data packets, i.e., cooperative 

behaviour, or to reject and drop data packets, i.e., non-cooperative behaviour. These two forms of 

social morality are guilt and high-mindedness where users feel high-minded when they choose to 

cooperate and they feel guilty otherwise.  

Let g(ni) be a self-regulated morality factor for a node ni, which quantitatively depicts the internal 

moral force of the user. This factor is based on the following two elements (Liang, et al. 2012): 

• Morality state mt(ni). This element has a variable value and reflects the behaviour history 

of the user. It increases by one level for a single cooperation behaviour and decreases by 

one level due to a single defection conduct. The initial state is set to 0, which means neither 

guilty nor high-minded. States with a positive index are high-minded states that imply 

frequent cooperative behaviour in the past. On the other hand, states with a negative index 

are guilty states that imply an overwhelming defection conduct in the past.  

• Sociality strength st(ni). This element is related to the user’s personal experience such as 

education and habitation. It is less independent and stabilised measure with short-term 

behaviour changes. If the sociality strength of a user is significant, the user experiences a 

significant increment of guilt toward a single defection behaviour and a significant 

increment of high-mindedness toward a single cooperation behaviour. The st(ni) value is 

chosen in the range [0, 1].  

In order to evaluate the morality factor g(ni) the current morality state mt(ni) and the sociality 

strength st(ni) are utilised as follows: 
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where the value of g(ni) increases as mt(ni) decreases or st(ni) increases. The function f can be 

selected from the following three morality functions the linear function f1, the natural logarithm 

function fe, and the common logarithm function f10  
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where δ is a tuneable coefficient in the range [0, +∞[. These three morality functions represent 

three different levels of morality force that affect user cooperation behaviour, respectively. They 

always output a nonnegative value. In the context of VSNs, choosing a node with a high morality 

factor value is very important to ensure the delivery of data packets. Moreover, this will attract 

more users to joint the VSN and promote the cooperative nature of these networks. This issue is 

further discussed in Section 4.    

The Evolving Graph Theory  

The evolving graph theory is proposed as a formal abstraction for dynamic networks (Ferreira 

2002). The evolving graph is an indexed sequence of λ sub graphs of a given graph, where the sub 

graph at a given index corresponds to the network connectivity at the time interval indicated by 

the index number, as shown below in Fig. 1. 

It can be observed from Fig. 1 that edges are labelled with corresponding presence time intervals. 

For instance, in Fig. 1, {A, D, C} is not a valid journey since edge {D, C} exists only in the past 

with respect to edge {A, D}. Hence, the journey in the evolving graph is the path in the underlying 

graph where its edges time labels are in increasing order (Eiza & Ni, 2013). In Fig. 1, it is easy to 
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find that {A, B, E, G} and {D, C, E, G} are valid journeys while {D, C, E, G, F} is not. 

 

Fig 1. Basic Evolving Graph Model (Monteiro 2008) 

Let G(V, E) be a given graph and an ordered sequence of its sub graphs, SG = G1(V1, E1), G2(V2, 

E2), G3(V3, E3) … Gλ (Vλ, Eλ) such that Gi = Gλ
i=1 . The evolving graph is defined as Ɠ = (SG, G) 

where the vertices set of Ɠ is VƓ = Vi and the edges set of Ɠ is EƓ = Ei. Suppose that the sub 

graph Gi(Vi, Ei) at a given index i is the underlying graph of the network during time interval Ŧ = 

[ti-1, ti] where t0 < t1 < ...< tτ, the time domain Ť is now incorporated in the model. 

Let Ω be a given path in the evolving graph Ɠ where Ω = e1, e2, e3… ek with ei ∈ EƓ in G. Let Ωσ 

= σ1, σ2, σ3 … σk with σi ∈ Ť be the time schedule indicating when each edge of the path Ω is to be 

traversed. We define a journey J = (Ω, Ωσ) if and only if Ωσ is in accordance with Ω, Ɠ and Ŧ. This 

means that J allows the traverse from node ni to node nj in Ɠ. 

In the current evolving graph theory, three journey metrics are defined: the foremost, shortest, and 

fastest journey. They are introduced to find the earliest arrival date, the minimum number of hops, 

and the minimum delay (time span) path, respectively. Let J = (Ω, Ωσ) be a given journey in Ɠ 

where Ω = e1, e2, e3… ek and Ωσ = σ1, σ2, σ3… σk then: 

• The hop count h(J) or the length of J is defined as h(J)= |Ω|. 

• The arrival date of the journey a(J) is defined as the scheduled time for the traversal of the 
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last edge in J, plus its traversal time, i.e., a(J) = σk + ƭ(ek). 

• The journey time t(J) is defined as the past time between the departure and the arrival, i.e., 

t(J) = a(J) – σ1. 

Social Evolving Graph-based Connectivity Model for VSNs 

Motivation 

The current evolving graph theory cannot be directly applied to VSNs because the evolving social 

properties of the VSN communication graph cannot be scheduled in advance. Moreover, the 

current evolving graph model does not consider the social metrics of the communicating nodes. In 

order to facilitate the establishment of social links/paths in VSNs and the data forwarding process, 

we extend the current evolving graph model to develop a social evolving graph-based connectivity 

(SEGC) model for VSNs. The SEGC model has two main goals in the context of VSNs. First, it 

captures the social characteristics of the existing nodes and, by considering both social and 

connectivity metrics, it establishes social links/paths among these nodes. Secondly, the SEGC 

model facilitates the data forwarding among the socially connected vehicles using the social theory 

indexes we have mentioned above along with the conventional connectivity metrics. In the 

following, we introduce the proposed SEGC model and explain the data forwarding mechanism 

that takes advantage of the developed SEGC model.  

Social Evolving Graph-based Connectivity (SEGC) Model 

As we have mentioned before, establishing new social connections between two vehicles does not 

only depend on being within the transmission range of each other but also on their social attributes 

and interests. Thus, in the proposed SEGC model, each link is characterised with a set of attributes 

that include all the connectivity and social indexes we have mentioned before. The social link is 
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only established between two vehicles ni and nj if it satisfies the following two conditions. First, 

the SHPij, i.e., the homophyly, should be higher than a predefined threshold ΨH thus the users share 

the minimum level of interest. Secondly, the expected social link duration ET(SLij) should be 

higher than a predefined time threshold ΨL. The value of ΨH can be defined/advertised by the 

vehicle itself, e.g., high value of ΨH indicates that the user is only interested in communicating 

with other users that have a lot in common with himself/herself. On the other hand, the time 

threshold ΨL can be determined by the current application. For instance, in order to share a video 

clip with other vehicles, the connection time should be long enough to watch/download the video 

file.  

Fig. 2 shows an example of the SEGC model on a highway at two time instants t = 0 s and t = 5 s 

where ΨH = 0.5, ΨL = 10 s. Each node in Fig. 2 shows a vehicle on the highway. It can be seen in 

Fig. 2 that unlike the corresponding presence time intervals for each link as shown in Fig.1, we 

associate the following tuple (t, SHPij, ET(SLij)) with each link where t denotes the current time, 

SHPij denotes the homophyly between ni and nj and ET(SLij) denotes the expected social link 

duration. 

In the SEGC model, the social link between two vehicles is not available if SHPij < ΨH or ET(SLij) 

< ΨL. Therefore, even if the communication link exists between two vehicles and satisfies the 

connection time threshold, e.g., the communication link between vehicles A and D in Fig.2 (a), the 

social link is not established since it does not satisfy the condition of the homophyly as 0.23 < 0.5. 

Fig. 2(a) shows the SEGC status and the corresponding SHPij and ET(SLij) values associated to 

each link at t = 0 s. It can be noticed that the following social links are established {A, B}, {A, C}, 

{B, E} and {E, G}. After 5 seconds, in Fig. 2 (b), the set of the established social links changes 

and becomes as follows {A, B}, {A, C}, {B, C}, {E, G} and {F, G}. It is worth noting that all links 
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in Fig. 2 are eligible to be traversed. However, if the link is eligible to be traversed, it does not 

necessarily mean that a social link will be established.  

 

(a) 

 

(b) 

Fig 2. Social Evolving Graph-based Connectivity (SEGC) Model at (a) t = 0 s and (b) t = 5 s 

In VSNs, we assume that each vehicle along the road has its own version of the SEGC model 

shown in Fig. 2. This is possible using the information received within the basic safety messages 

(BSMs) that are periodically exchanged in vehicular networks when the 5.9-GHz dedicated short-

range communication (DSRC) standard is deployed (Kenney 2011). In this way, each vehicle ni 

can be only concerned with vehicles of interest, i.e., vehicles that share the same social 

attributes/interests with ni. It can be noticed that unlike the conventional evolving graph, the 

A 

B 

D 

C E 

G 

F 

(0, 0.68, 27.8) (0, 0.45, 33.8) 
 

Social Link 
Comm Link 

H 

A 

B 

D 

C E 

G 

F 

(5, 0.68, 21.8) 
 

(5, 0.45, 31.2) 

Comm Link 

Social Link 

H 



 

 

18 

 

presence time of the social link in the SEGC model is continuous and depends on the current 

vehicular traffic status and the social attributes of vehicles. In this case, there is no need to check 

the order of the presence times of the link when searching for a valid journey.  

In order to establish a social path, between two non-adjacent vehicles in the network, the same 

principle is applied. However, forwarding the data along the established multi-hop social path from 

the source to the destination should take into account different parameters than those that were 

considered while establishing the social link. These different parameters are related to the relay 

vehicles along the established path and are illustrated in the following section. 

SEGC-based Data Forwarding Mechanism 

In order to forward data packets in VSNs among non-adjacent connected vehicles, social paths 

should be established. In this section, we propose a new forwarding data mechanism that can 

benefit from the SEGC model advantages and properties. The proposed mechanism utilises the 

SEGC model and considers both social and connectivity metrics while searching for a path from 

the source to the destination. The considered metrics are degree centrality, morality factor, 

closeness centrality, betweenness centrality, and bridging centrality. However, establishing the 

social path for data forwarding between two vehicles subject to these multiple metrics features a 

multi constrained path (MCP) selection, which is proven to be an NP-hard problem (Wang and 

Crowcroft 1996) if the constraints are mutually independent (Reeves and Salama 2000). Therefore, 

we propose the following evaluation function EF(SLij) that considers these metrics and its weights:  

)()()()()()( j
`
RRj

`
BBj

`
CCj

`
DDjgij nCnCnCnCngSLEF g+g+g+g+g=  (16) 

Where γg, γD, γC, γB, and γR are weighting factors for the morality factor, degree centrality, closeness 

centrality, betweenness centrality and bridging centrality, respectively. These factors are chosen 

in the range [0, 1]. We worked out this function by experimentation and its validity is illustrated 
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by the simulation results presented later. In order to explain the purpose of these weighing factors, 

let assume that the source and the destination vehicles belong to different social 

communities/groups. In this case, γB is given high value because it is important to forward data 

packets through a vehicle with a high bridging centrality value. On the other hand, γg is always 

given a high value because data packets should be forwarded through vehicles with high morality 

factor, i.e., vehicles that showed cooperative behaviour in the past, to ensure a successful data 

packets forwarding. When the source vehicle has data to send at time t, it evaluates the 

communication links in the current SEGC model and assigns each link with a single value EF(SLij) 

as estimated in (16). Finding the optimal path in the SEGC model according to EF(SLij) value is 

equivalent to finding the optimal journey in the underlying graph where a modified version of 

Dijkstra’s algorithm can be applied (Eiza and Ni 2013). The modified Dijkstra’s algorithm scans 

all the network nodes in the SEGC model and returns the optimal route according to EF(SLij) value. 

Performance Evaluation 

The main objective of this performance evaluation is to identify the impact of high dynamics of 

network topology changes in VSNs on the establishment of social connections among the 

communicating vehicles. In addition, we want to check the benefits of using the proposed SEGC 

model in the highway scenario. We construct our performance evaluation using the OMNet++ 

network simulator (Varga 2003). OMNet++ is an extensible modular component based C++ 

simulation library and framework. The simulations are run on a six-lane traffic simulation scenario 

of a 10 km highway with two independent driving directions in which vehicles move. For each 

simulation, we perform 20 runs to obtain its average results. The results are compared to those 

when SEGC model is not involved, i.e., greedy forwarding mechanism is applied.   

In our simulation scenario, the average velocity of vehicles in the first two lanes are 40 and 60 
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km/h, respectively, while we change the average velocity of the vehicles in the third lane only from 

60 to 130 km/h. We use the highway mobility model developed in (Eiza, Ni and Owens, et al. 

2013), which is built based on traffic theory rules and considers the drivers’ behaviours. The 

number of vehicles on the highway is 120 vehicles and the data packet size is 2 KB. The social 

attributes profile of each vehicle HPi is generated randomly to match the following set {Travel 

destination, Rap music, Mountain climbing, Thai food, Work place, Football, Jogging, Cooking}. 

This set is imaginary and designed for the purpose of this simulation. In a real-world scenario, this 

set could contain over 100 elements. The social attributes profile is assumed to be transmitted 

periodically for vehicles that want to participate in social interactions along the road over VSNs. 

The morality factor g(ni) is evaluated using the linear function f1 in (15) where δ = 1. The sociality 

strength st(ni) value for each vehicle is randomly selected in the range [0, 1]. The weighting factors 

in (16) are set as follows: γg = 1, γD = 0.7, γC = 0.5, γB = 0.5, and γR = 1 if the source and the 

destination belong to different social groups, otherwise γR = 0.1. Finally, the homophyly threshold 

ΨH is randomly selected in the range [0, 1] for each vehicle at the beginning of the simulation run 

and stays fixed for the rest of the simulation time. The time threshold ΨL is set to 10 seconds. When 

SHPij ≥ ΨH and ET(SLij) ≥ ΨL between two vehicles, data packets transmission takes place. The 

simulation parameters are summarised in Table I. 

TABLE I – SUMMARY OF THE SIMULATION PARAMETERS 
Simulation Area 1 km x 10 km 
Mobility Model Highway  
Communication Range 450m 
MAC Layer IEEE 802.11p 
Vehicles’ velocities Normally distributed 
Vehicles’ distances Exponentially distributed 
Number of runs 20 
Simulation duration 300 seconds 
Morality function ))(()())(),((1 iiii nmtnstδnstnmtf -××=  

Morality function coefficient δ = 1 
Weighting factors γg = 1, γD = 0.7, γC = 0.5, γB = 0.5, γR = 1 or γR = 0.1 
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Performance Metrics 

The following performance metrics are considered for the simulations. 

• Packet delivery ratio (PDR): It represents the average ratio of all successfully received data 

packets at the destination node over all data packets generated by the application layer at 

the source node. 

• Social connections: It represents the average number of social connections that are 

established among the communicating vehicles.  

• Link failures: It represents the average number of communication link failures during the 

data forwarding process. This metric shows the efficiency of the data forwarding algorithm 

in avoiding link failures. 

• Social path lifetime: It represents the average lifetime of the established social path 

between two vehicles. A longer lifetime means a more stable and more reliable path. 

Simulation Results 

In Fig. 3, it can be seen that the average PDR reduces noticeably when the average velocity in the 

third lane starts to exceed 80 km/h. This reduction comes from the fact that the network topology 

becomes more dynamic, and thus links/paths are more vulnerable to disconnection. In this 

particular case, it is important to establish reliable social paths among the communicating vehicles. 

The utilisation of SEGC model ensures that only reliable paths are established among the socially 

connected vehicles. These paths are calculated using the SEGC model where the evolving 

characteristics of the network topology are considered via (13). Moreover, the evaluation function 

in (16) ensures that data packets are relayed through vehicles with high morality factor and high 

degree centrality. Thus, the probability of a successful data delivery is high.  
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Fig 3. Average Packet Delivery Ratio 

 

Fig 4. Average Number of Established Social Connections 

The average number of established social connections among the communicating vehicles is 

shown in Fig. 4. It can be noticed that when SEGC model is utilised, the number of social 

connections is high in comparison to the case where SEGC is not presented. The reason is that 

each vehicle has its own SEGC model which is updated regularly when a new vehicle enters the 
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communication range of that vehicle. If the homophyly exceeds the defined threshold, the SEGC 

establishes the social link/path between the two vehicles and commences data packets 

transmission. 

In Fig. 5, the utilisation of SEGC helps obtaining a very low number of social link failures in 

comparison to the case when SEGC is not utilised. The number of link failures increases when the 

velocity increases. In this case, it is essential to accurately capture the changes of vehicular 

velocities and establish reliable paths between the communicating vehicles. Furthermore, choosing 

relay vehicles with high morality factor is crucial to guarantee that the established path will not 

break if one of the vehicles along the established path refuse to cooperate in the data packets 

forwarding process. 

 

Fig 5. Average Number of Link Failures 

In Fig. 6, we show the average social path lifetime obtained in this performance evaluation. When 

the SEGC model is utilised, longer social path lifetimes are achieved thanks to establishing the 

most reliable paths in the network and utilising the social indexes to forward the data among the 

communicating vehicles effectively. This observation explains the high PDR shown in Fig. 3. 
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Fig 6. Average Social Path Lifetime 

Conclusion 

In this chapter, we have extended the evolving graph theory and utilised the social theory concepts 

to develop a novel social evolving graph-based connectivity (SEGC) model for VSNs. The 

proposed connectivity model considers both social metrics of the communicating vehicles and the 

conventional connectivity issues in VSNs. Therefore, the social links/paths are established 

between the communicating vehicles based on their social characteristics and interests rather than 

just their kinematic information. The performance of SEGC has been compared with the one when 

greedy data forwarding mechanism is utilised through our simulations. The simulation results 

showed that the utilisation of SEGC model helped achieving higher PDR and establishing stable 

social paths with longer lifetimes. Since it establishes the most reliable social path between the 

source and the destination, it also achieves the lowest number of social link failures. The SEGC 

model shows promising results in the context of VSNs. However, more investigation and therefore 

more simulations are needed to validate the SEGC model in different traffic scenarios with 
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different traffic parameters. In the future work, we will investigate the role of self-driving vehicles 

and their effects on the connectivity patterns in VSNs. Moreover, we will develop a model to 

consider different social attributes profiles for individuals inside the vehicles including the 

travellers and the drivers.     

References 

Batallas, Diego A., and Ali A. Yassine. 2006. “Information Leaders in Product Development Organizational 

Networks: Social Network Analysis of the Design Structure Matrix.” IEEE Transactions on Engineering 

Management 570-582. 

Eiza, M.H., and Q. Ni. 2013. “An evolving graph-based reliable routing scheme for VANETs.” IEEE Transactions 

on Vehicular Technology 1493–1504. 

Eiza, M.H., Q. Ni, T. Owens, and G. Min. 2013. “Investigation of routing reliability of vehicular ad hoc networks.” 

EURASIP Journal on Wireless Communications and Networking 1-15. 

Ferreira, A. 2002. “On models and algorithms for dynamic communication networks: The case for evolving graphs.” 

The 4e rencontres francophones sur les ALGOTEL. Mèze, France. 

Fukuyama, F. 1996. Trust: Social Virtues and the Creation of Prosperity. New York: The Free Press. 

Hu, Xiping, Terry H. S. Chu, Victor C. M. Leung, Edith C.-H. Ngai, Philippe Kruchten, and Henry C. B. Chan. 

2015. “A Survey on Mobile Social Networks: Applications, Platforms, System Architectures, and Future 

Research Directions.” IEEE Communication Surveys & Tutorials 1557-1581. 

Kageyama, Yuri. 2011. 'Toyota Friend' Social Networking Service Is A Twitter For Car Owners. 23 May. Accessed 

Nov 22, 2015. http://www.huffingtonpost.com/2011/05/23/toyota-friend-social-network_n_865437.html. 

Kenney, J. B. 2011. “Dedicated Short-Range Communications (DSRC) Standard in the United States.” Proceedings 

of the IEEE 1162–1182. 

Ketelaara, Timothy, and Wing Tung Aub. 2003. “The effects of feelings of guilt on the behaviour of uncooperative 

individuals in repeated social bargaining games: An affect-as-information interpretation of the role of 

emotion in social interaction.” Cognition and Emotion 429-453. 

Knobel, Martin, Marc Hassenzahl, Melanie Lamara, Tobias Sattler, Josef Schumann, Kai Eckoldt, and Andreas 

Butz. 2012. “Clique Trip: Feeling Related in Different Cars.” Proceedings of the Designing Interactive 

Systems Conference. Newcastle, UK: ACM. 29-37 . 

Li, Xin, Lei Guo, and Yihong (Eric) Zhao. 2008. “Tag-based Social Interest Discovery.” Proceedings of the 17th 

international conference on World Wide Web. ACM. 675-684. 

Liang, Xiaohui, Xu Li, Tom H. Luan, Rongxing Lu, Xiaodong Lin, and Xuemin Shen. 2012. “Morality-Driven Data 

Forwarding With Privacy Preservation in Mobile Social Networks.” IEEE Transactions on Vehicular 

Technology 3209-3222. 



 

 

26 

 

Lu, Rongxing. 2012. Security and Privacy Preservation in Vehicular Social Networks. PhD Thesis, Waterloo, 

Canada: University of Waterloo. 

Luan, Tom H., Rongxing Lu, Xuemin (Sherman) Shen, and Fan Bai. 2015. “Social on The Road: Enabling Secure 

and Efficient Social Networking On Highways.” IEEE Wireless Communications 44-51. 

Luan, Tom H., Xuemin (Sherman) Shen, Fan Bai, and Limin Sun. 2015. “Feel Bored? Join Verse! Engineering 

Vehicular Proximity Social Networks.” IEEE Transactions on Vehicular Technology 1120-1131. 

Monteiro, J. 2008. “The use of evolving graph combinatorial model in routing protocols for dynamic networks.” XV 

Concurso Latinoamericano de Tesis de Maestrìa. 1–17. 

Niu, Z., W. Yao, Q. Ni, and Y. Song. 2006. “Link reliability model for vehicle ad hoc networks.” London 

Communication Symposium. Lodnon. 1-4. 

Pallis, George, Dimitrios Katsaros, Marios D. Dikaiakos, Nicholas Loulloudes, and Leandros Tassiulas. 2009. “On 

the Structure and Evolution of Vehicular Networks.” IEEE International Symposium on Modeling, Analysis 

& Simulation of Computer and Telecommunication Systems. London, UK: IEEE. 1-10. 

Reeves, D.S., and H.F. Salama. 2000. “Distributed algorithm for delay-constrained unicast routing.” IEEE/ACM 

Transactions on Networking 239–250. 

Schnabel, W., and D. Lohse. 1997. Grundlagen der Straßenverkehrstechnik und der Verkehrsplanung. Berlin: Aufl 

Verlag für Bauwesen. 

Sha, Wenjie, Daehan Kwak, Badri Nath, and Liviu Iftode. 2013. “Social Vehicle Navigation: Integrating Shared 

Driving Experience into Vehicle Navigation.” Proceedings of 14th Workshop on Mobile Computing 

Systems and Applications. New York, US: ACM. 161-166. 

Smaldone, Stephen, Lu Han, Pravin Shankar, and Liviu Iftode. 2008. “RoadSpeak: enabling voice chat on roadways 

using vehicular social networks.” Proceedings of the 1st Workshop on Social Network Systems. Glasgow: 

ACM. 43-48 . 

Smyth, Tanya L., and Mark J. King. 2006. “Driver-vehicle interactions in 4WDs: A theoretical review.” 

Australasian Road Safety Research, Policing Education Conference. Queensland, Australia: Queensland 

University of Technology. 

Snijders, T., and S. Borgatti. 1999. “Non-Parametric standard errors and tests.” Connections 161–170. 

TripAdvisor, Inc. 2012. TripAdvisor Survey Reveals Three Quarters Of U.S. Travelers Sharing Trip Experiences On 

Social Networks. 20 Sept. Accessed June 19, 2015. http://www.tripadvisor.co.uk/PressCenter-i5414-c1-

Press_Releases.html. 

Varga, Andras. 2003. OMNeT++ - Discrete Event Simulator. Accessed 2011. https://omnetpp.org/. 

Vegni, Anna Maria, and Valeria Loscri. 2015. “A Survey of Vehicular Social Networks.” IEEE Communicaitons 

and Tutorials 2397-2419. 

Wang, Z., and J. Crowcroft. 1996. “Quality-of-service routing for supporting multimedia applications.” IEEE 

Journal on Selected Areas in Communications 1228–1234. 

 


