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Abstract We propose a novel method for real-time ca-
mera motion tracking in planar view scenarios. This me-
thod relies on the geometry of a tripod, an initial esti-
mation of camera pose for the first video frame, and a
primitive tracking procedure. This process uses lines and
circles as primitives, which are extracted applying CART
(Classification and Regression Tree). We have applied
the proposed method to HD (High Definition) videos of
soccer matches. Experimental results prove that our pro-
posal can be applied to processing high definition video
in real time. We validate the procedure by inserting vir-
tual content in the video sequence.

Keywords Camera motion tracking, Camera calibra-
tion, Tripod, Primitives tracking, CART

1 Introduction

Camera motion tracking of video sequences is an impor-
tant issue in computer vision. It is a challenging problem
that involves different techniques, such as feature extrac-
tion, feature tracking or camera calibration. It has many
applications like, for instance, in 3D scene reconstruc-
tion, surveillance applications, broadcast [1], augmented
reality [2], virtual reality [3], mosaicking, change of the
view point, automatic summarization or virtual objects
insertion. Some of these tasks require a highly precise
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and fast motion tracking of the cameras which are usu-
ally mounted on a tripod. These cameras are fixed in
location and can freely rotate and change their intrinsic
parameters by zooming. Cameras mounted on a tripod
have 3 degrees of freedom: Pan, Tilt and Zoom (PTZ).
Pan and Tilt represents the tripod axis rotation angles
and Zoom represents the lens focal distance.

Most methods for camera motion tracking consist
of several stages: initialization, feature extraction (e.g.
primitives, key points), movement estimation, tracking
and camera parameters computation. We propose a novel
method for real-time camera motion tracking in planar
view scenarios. An inherent difficulty related to this prob-
lem is due to the small number of visible primitives, or
due to the large size of HD video sequences. To over-
came this problem, we make the following assumptions:
the camera is fixed on a tripod, and background (grass)
and white lines in the scenario show an appreciable vi-
sual contrast in the RGB space. Additionally, we assume
that the color of the background presents a rather uni-
form color.

The main contribution of this paper is the design of
a new method to obtain real time camera calibration
in planar view scenarios using cameras mounted on a
tripod. The proposed method is a combination of the
tripod geometry restrictions, a CART method design to
extract image primitives and an iterative procedure to
camera motion estimation.

We propose an incremental-like approach, that is, we
assume small variation between any pair of consecutive
frames. This assumption is also reinforced by the fact
that the camera motion is highly resctricted due to the
tripod. Camera calibration parameters are: extrinsic pa-
rameters (3D spatial location) and intrinsic parameters
(zoom setting, pixel aspect ratio and the projection of
principal point in the image). In our case, these camera
parameters are estimated from the PTZ values, which
are obtained from information available in the image:
the primitives. We denote by primitives the lines and
the circles in a model of a soccer field with actual di-
mensions, which are projected using the homography es-
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timated from the previous two frames. It means that
in the primitive tracking stage we search for the primi-
tives in the image using the estimated projection of the
reference primitives as starting points. Then we use a
decision tree to determine primitive location. In our ap-
proach, we use CART [22] to classify primitive pixels and
background pixels. Since we start searching the primitive
from a near point, always inside the soccer field, we only
need to differentiate two classes with the decision tree:
primitives (given by white lines or circles) and grass.

This paper is organized as follows: in Sect. 2, we sum-
marize the state of the art. Sect. 3 explains the geometry
and calibration process for cameras mounted on a tripod.
The proposed method is explained in Sect. 4. We show
the experiments and the results in Sect. 5. Finally, in
Sect. 6, we present our main conclusions.

2 Related works

Different approaches have been presented to tackle the
problem of camera motion tracking in certain situations.
A method for self-calibration of rotating and zooming
cameras is described in [4], and some other works pro-
pose alternative camera motion tracking techniques [5,6].
Other works present methods for multi-camera calibra-
tion [7,8]. Based on those techniques, some optimisations
for the calibration of PTZ (Pan-Tilt-Zoom) cameras have
been introduced [9], and there are also some methods
that do not require predefined patterns for tracking [10].

Focusing on sport scenarios, it is common to deal
with cameras mounted on a fixed tripod and with a pla-
nar view scenario. Therefore, the complexity of the ca-
mera pose problem is highly reduced, which greatly sim-
plifies the camera model, as explained in [11]. We can
find some works that use the camera motion tracking in
this kind of environments [1,12–15]. They follow a sim-
ilar strategy, which consists of certain tasks applied to
each video frame: feature extraction (e.g. primitives and
background), camera motion estimation (based on the
previous frames), primitive tracking, and improvement
of camera parameters estimation.

There exists sensorized tripods that by using inertial
systems are able to estimate tripod motion. This kind of
methods does not require a visual system but they are
expensive and do not provide the high accurate motion
estimation required in applications like sport broadcast-
ing.

An important stage of the process is the primitive
tracking. Different approaches have previously been pro-
posed to perform the primitive tracking. In [13], a line
tracking method guided by camera parameters is de-
scribed, using a proximity rule to match the detected
lines with the estimated ones. A correlation technique
is applied in [12]. In [16], camera parameter ranges are
defined and a search for the optimal matching is carried
out. The approach presented in [17] uses YCbCr color

space to detect white lines in the image. Then, the para-
meters for each line detected are refined by minimizing
the distance to the nearest field line. The method de-
scribed in [15] is based on detecting corresponding fea-
ture points between consecutive frames and on object
texture extraction method that uses the estimated ho-
mography matrix of every frame.

A similar technique for real-time camera tracking in
planar view scenarios was presented in [1]. In this case,
the proposed method relies on a simplified version of a
tripod model: the principal camera point and the tripod
rotation center are assumed to be the same and the tri-
pod rotations are modeled using basic rotations around
the main axes. The author of this work uses lines as
primitives to perform the camera motion matching and
applies a variation of the Hough transform to extract
the lines in the scene. To initialize the camera position,
the author steps through the plausible ranges of pan, tilt
and zoom values and projects the lines of the sport court
model into the image.

Another method for real-time video calibration fo-
cused on soccer scenarios, is described in [18]. The pro-
cedure relies on point correspondences of a soccer court
model and the extracted lines with the Hough transform,
and a KLT (Kanade-Lucas-Tomasi) tracker. The KLT
algorithm is necessary when transiting from side views
to central views due to the loss of significant lines for
homography calculation.

The computation of camera parameters is usually
based on a soccer field model using the line correspon-
dece ([1], [17] and [18]). The approach explained in [19]
calculates the camera rotation using the vanishing points
of the field parallel lines. One variation of the common
pitch model is presented in [20], where the authors use
the offside lines between the different grass colors, but
as there are no rules indicating the number of these lines
in a field, they may vary between different stadiums.

In the line detection stage, it is common to proceed
as is described in [21]. First of all, the soccer field re-
gion is located using a Gaussian Mixture Model. Then,
they extract the edges with a Gaussian-Laplacian detec-
tor. Finally, to extract the lines, the Hough transform is
applied. But, nowadays, decision trees are widely used
in image segmentation and classification because they
generate easy-to-understand rules and they are fast to
train and apply (see, for instance, [23] and [24]). Fur-
thermore, decision trees can manage different features
to classify the pixels. This classification is used on im-
ages in different areas, for instance, medical images [25]
or satellite images [26,27]. They usually work with RGB
(Red-Green-Blue) channels combined with other color
spaces, such as HSV (Hue-Saturation-Value) or the dif-
ferent bands of satellite images, for example infrared.



3

3 Geometry and motion of the camera

As it has been explained in Sect. 1, it is usual to find real
videos recorded by cameras mounted on a tripod. To be
able to track the camera motion in this situation, we
have to take into account the mathematical model and
geometry related with a tripod. A tripod is defined by

a center of rotation X̄0 = (X0, Y0, Z0)
T
and two unitary

rotation axes ē0 =
(
ē0x, ē

0
y, ē

0
z

)T
and ē1 =

(
ē1x, ē

1
y, ē

1
z

)T
.

The matrix to rotate by an angle of θk about axis ēk, is
called R

(
ēk, θk

)
. In order to rotate a 3D point X̄ about

axis ēk using the center of rotation X̄0, the transforma-
tion yields the following equation:

X̄ (θk) = X̄0 +R
(
ēk, θk

) (
X̄ − X̄0

)
. (1)

The composition for two rotations of the above type
defines the general motion of a tripod. The center of
rotation X̄0 is assumed to be the same for both axes.
This is equivalent to assume that the two rotating axes
of the tripod intersect at a point. The general equation
for the motion of a tripod is given by:

X̄ (θ0, θ1) = X̄0 +R
(
ē0, θ0

)
R
(
ē1, θ1

) (
X̄ − X̄0

)
. (2)

From now on, we use the following notation:

R (θ0, θ1) ≡ R
(
ē0, θ0

)
R
(
ē1, θ1

)
, (3)

t̄ (θ0, θ1) ≡ X̄0 −R (θ0, θ1) X̄0. (4)

Therefore, Equation (2) can be rewritten as:

X̄ (θ0, θ1) = R (θ0, θ1) X̄ + t̄ (θ0, θ1) . (5)

The general equation for the projection of a 3D point

X̄ = (X,Y, Z)
T
onto the image plane is as follows:

s

x
y
1

 = A (f0)R0[Id| − c̄0]

X
Y
Z
1

 , (6)

where s is an arbitrary scale factor, c̄0 =
(
c̄0x, c̄

0
y, c̄

0
z

)
is

the camera focus, R0 is a rotation matrix and

A (f0) =

 f0 0 xc

0 rf0 yc
0 0 1

 ,
[
Id| − c̄0

]
=

1 0 0 −c̄0x
0 1 0 −c̄0y
0 0 1 −c̄0z

 ,

(7)

with (xc, yc) the coordinates of the principal point and f0
the focal length, which varies with the camera zooming.

In Equation (6) it is assumed that the possible lens
distortion has been previously corrected. The projection
matrix is P0 = A (f0)R0

[
Id| − c̄0

]
. For each frame, i,

we can determine the projection matrix with the values
of

(
fi, θ

i
0, θ

i
1

)
as follows:

P
(
fi, θ

i
0, θ

i
1

)
=

A (fi)R0

[
Id| − c̄0

](R
(
θi0, θ

i
1

)
t̄
(
θi0, θ

i
1

)
0 1

)
. (8)

Therefore, considering the following expression:

Pi

(
fi, θ

i
0, θ

i
1

)
=

A (fi)R0R
(
θi0, θ

i
1

) [
Id|RT

(
θi0, θ

i
1

) (
t̄
(
θi0, θ

i
1

)
− c̄0

)]
,

(9)

we can deduce that, for the frame i, the rotation and
focus of the camera after the motion are:

Ri = R0R
(
θi0, θ

i
1

)
, (10)

c̄i = −RT
(
θi0, θ

i
1

) (
t̄
(
θi0, θ

i
1

)
− c̄0

)
. (11)

One of the main novelties of this approach is that
the tripod rotation center and camera projection cen-
ter are not supposed to be the same, because assuming
that both centers are located at the same point is an
usual simplification of the model. Notice that any previ-
ous view acquired with the actual position of the tripod
constitutes a new reference which can be used to esti-
mate the new camera pose along the video sequence.

4 Camera motion tracking by means of a
decision tree

The tracking procedure is divided in three main stages:
initialization, primitive tracking and camera motion pa-
rameters computation (see Fig. 1). In the first step, we
obtain some information, such as the geometrical para-
meters of the tripod (center of rotation and the initial
orientation of the two rotation axis), the training classes
for the decision tree, and the camera parameters for the
first video sequence frame.

Once the initialization stage is done, as explained in
Sects. 4.1 and 4.2, we proceed to track the camera motion
for the entire video sequence by means of an incremen-
tal approach. To perform this step, we track the camera
motion in each frame using the tracking information es-
timated from the previous frames. Usually, this process
is initiated from the first frame, but it can be carried
out selecting the last frame and reversing the sequence
frame by frame. Note that the optimal case should in-
clude a subtask consisting of selecting the frame showing
the maximum number of visible primitives. From our ex-
perience, we prefer to proceed forwardly which is also the
natural way.

Once the tripod has been correctly calibrated, track-
ing the camera motion in each frame consists of estimat-
ing three parameters: pan, tilt and zoom. Therefore, for
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Fig. 1 Camera motion tracking procedure stages.

a given frame n, we have to compute the set pn, tn, zn.
Next, we calculate the parameters pn, tn, zn following
these steps:

1. Initialize pn, tn, zn. We use a standard extrapolation
method to estimate an initial value of pn, tn, zn from
the previous frames.

2. Track for the frame n the white lines which delimit
the soccer field (explained in Sect. 4.3). Applying a
proximity rule, the central points of these lines are as-
sociated with the reference field primitives in frame
n. The main assumption we do is that the camera
moves in a smooth way. Therefore, the central points
of the white lines in frame n are close to the previ-
ously estimated points.

3. Recompute the parameters pn, tn, zn using the new
primitives tracked in frame n. We minimize the RMS
error for the field primitives and their recalculated
projection with the new camera parameters (explained
in Sect. 4.4).

4.1 Tripod and first frame calibration

In order to estimate the geometry of the tripod, we pre-
viously calibrate some isolated frames from the video
sequence using the automatic camera pose recognition
technique explained in [28]. We estimate the geometry
of the tripod using a standard bundle adjustment tech-
nique.

The last step in the initialization stage is the calibra-
tion of the first frame, i.e., to obtain the camera intrinsic
and extrinsic parameters. This frame is calibrated using
the technique detailed in [28].

This process includes an inner step to calculate the
radial lens distortion model for the first frame. This mo-
del is used in the whole sequence, but note that it is
only calculated once (for the first frame). The distortion
model used is the one explained in [29].

Fig. 2 Binary decision tree. Ci represents the channel we use
and Xi the threshold value applied is such channel to obtain
the new child nodes T1 and T2. nl represents the number of
pixels in node T1 labeled in the class Kl and n′

l represents
the number of pixels in node T2 labeled in the class Kl.

4.2 Decision tree building and learning to classify
primitives

Building a decision tree is a process that starts with a
learning stage. That stage is based on a training set con-
taining information about different classes (see, for in-
stance, [30]). Then, for each video sequence we need a
suitable classification data set, which contains informa-
tion about two classes: primitives and background. In
this data set, there are RGB values obtained from a seg-
mentation performed for the first frame of the sequence.
Usually, in soccer field scenarios, the primitives are white
and the background (grass) is green. From the RGB
triplets provided by this training set, a three-channel de-
cision tree is assembled. It determines, within each node,
which channel provides the best discrimination between
the two classes. With this purpose, we use a measure to
estimate the impurity of the sets based on Gini index,
which is widely used in CART techniques [31]:

∑
K ̸=K′

PKPK′ =

N∑
K=1

PK (1− PK) , (12)

where PK is the probability of a point belonging to a
class K. In order to decide what channel and threshold
are selected at each node, we minimize the resulting im-
purity measure for the whole set of points (see Fig. 2).
The aim is to find the valuesXi and Ci that minimize the
compound energy in Equation (13), which is calculated
from the energies of both child nodes:

Gini(Xi, Ci) = E(T1) + E(T2), (13)

where

E(T1) =

2∑
l=1

nl

n1 + n2

(
1− nl

n1 + n2

)
, (14)

and E(T2) is defined in a similar way replacing nl by n′
l

(see Fig. 2 for the notation). In our method, this building
and learning stage is performed only once for each video
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sequence. In the initialization procedure, a single frame
is conveniently segmented to provide the two classes: one
containing the white delimiting lines and the other con-
taining the grass (see, for example, Fig. 9). Then, with
this information, we build and train the decision tree for
tracking the primitives. The tree building procedure is
explained in Algorithm 1.

BuildTree(data)

begin
if data.K.size = 1 then

currentNode.K ← data.K ;
return ; // If only 1 class: leaf.

else
D ← FindDiscriminateChannel(data) ;
// Finds X,C which minimize Eq.(13).
currentNode.X ← D.X ;
currentNode.C ← D.C ;
S ← SeparateData(data,D.X,D.C);
leftNode ← BuildTree(S.dl);
rightNode ← BuildTree(S.dr);

end
end

Algorithm 1: Building CART: data is a set com-
posed by n points with an associated K value repre-
senting the class and with m values corresponding
to each considered channel, data.K.size is the num-
ber of classes in the set, S.dl is a subset extracted
from those data values in the channel X satisfying
i <=D.C., and the subset S.dr satisfies i >D.C.

4.3 Primitive tracking using the decision tree

Tracking the primitives in the planar view scenarios is
required to obtain the position of the objects used for
the camera parameters computation. In our case, the
elements used to estimate the camera motion tracking
are the primitives of a soccer field (lines and circles).
After the initialization stage defined in Sects. 4.1 and
4.2, we start the tracking through the video sequence.

For each frame, we first initialize the primitive loca-
tion using the information of the two previous frames.
This initialization provides an estimation of the changes
in pan, tilt and zoom values, taking into account the
possible camera movement in the previous two frames.
These estimated parameters are used to calculate the
homography. We project all the points belonging to the
reference primitives (lines and circles) onto the frame us-
ing this homography. Afterward, we perform an inverse
distortion evaluation applying the lens distortion model
previously calculated in the initialization stage.

When projecting a reference point onto the image,
two cases are possible: the resulting primitive point may
be either located on a white primitive or on the back-
ground (grass). If the pixel is classified into the primitive

Fig. 3 Search for the edges in the primitive tracking proce-
dure. The red point is the point initialization based on the
previous frames. The blue dotted line is the orthogonal line
that we examine to find the edges. The green square is the
center of the primitive.

class by the decision tree, we search for the edges of the
primitive in both directions of the perpendicular orien-
tation (see the left image in Fig. 3). Once we have found
the edges, the midpoint between both edges is calculated.
This point is considered as the center of the primitive. On
the other hand, if the projected point pixel is classified
into the background class, we also search for a primitive
pixel in both directions of the perpendicular orientation.
However, as soon as a primitive pixel is found, we only
continue moving in that direction, searching for the other
primitive edge. When we find that edge, we calculate the
midpoint (see the right image in Fig. 3). The pixels are
classified by the decision tree as it is explained in Algo-
rithm 2.

Classify(pixel)

begin
if isLeaf then

return currentNode.K ;
else

if currentNode.C(pixel) <= currentNode.X
then

return leftNode.Classify(pixel);
else

return rightNode.Classify(pixel);
end

end
end

Algorithm 2: Classifying a pixel: currentN-
ode.C(pixel) is the value of the pixel in the channel
C, which is the discriminant channel of the node,
currentNode.X is the threshold and currentNode.K
is the class.

In both situations, in order to avoid considering large
white zones, such as advertisements or players wearing
white clothes, the thickness of the primitives has to be
controlled by means of a threshold parameter. This thres-
hold is dynamically obtained because farther primitives
are thinner than closer ones. We calculate this threshold
as the distance between the projections of a reference
point and another point obtained with the addition of
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Fig. 4 Primitive tracking stage in a scale model sequence.
Black points represent all analyzed points to find the white
primitives. Colored points are those selected as primitive cen-
ter.

Fig. 5 Primitive tracking stage in a real soccer match video.
Black points represent all analyzed points to find the white
primitives. Colored points are those selected as primitive cen-
ter.

a certain thickness (in this case the actual thickness of
a soccer field line). If more pixels than the width limit
have been examined, the primitive detection is rejected
at that point. We can see that by using this threshold
parameter it is avoided to consider players occluding the
primitives (see Fig. 5).

Instead of processing all the image pixels, as it is done
in the method described in [32] and used in our initial-
ization stage, with this tracking proposal we only have
to classify pixels in a primitive neighborhood of the pre-
vious primitive location. This tracking strategy allows to
reduce the processed image pixels to a restricted neigh-
borhood around the primitive location estimations (see
Fig. 4 and Fig. 5). Consequently, the processing time is
highly reduced compared to the brute-force alternative of
processing all the pixels in the image. This feature, added
to the fast pixel classification provided by the decision
tree, makes it possible to attain real-time processing.

4.4 Camera motion parameters computation

The camera motion parameters computation is the stage
where the pan, tilt and zoom parameters (pn, tn, zn) are

calculated for the current frame. First, we use camera
parameters provided by the previous frames to initialize
(pn, tn, zn) using a basic linear extrapolation procedure.
Next we optimize (pn, tn, zn) by minimizing the projec-
tion error of the obtained image primitive center points
to the reference soccer court primitives, that is, we min-
imize the error function:

L(H) =
1

| P |
∑
pi∈P

distance(H(pi), C)2, (15)

where C is the collection of tracked court primitives and
P the reference primitives. H is a homography (a 3 × 3
matrix, obtained from pan, tilt and zoom) and p is a 2D
point. We denote by H(p) the perspective transforma-
tion induced by H on point p. The function distance is
the Euclidean distance between the court primitives and
their transformations.

Finding the minima of the above function is a diffi-
cult problem. The method we propose is based on build-
ing homography candidates from the estimated parame-
ters. We observe that as the admissible camera maneu-
vers is highly constrained, the number of candidates to
deal with is small and so is the number of iterations to
reach a suitable solution. After significantly reducing the
space of search, the well-known Levenberg-Marquardt al-
gorithm is applied.

As we have an approximation of the homography, we
can obtain the camera parameters in situations where
the standard procedures would fail. For example in im-
ages without enough visible primitives to perform the
matching with the corresponding reference lines or cir-
cles.

5 Experiments and results

5.1 Decision tree configuration experiments

In order to achieve the best results for classification, we
have tested different CART configurations varying the
number of channels. These tests consist in building a
decision tree with a set of training data. After the learn-
ing procedure, the data is classified with the decision
tree and the pixels classified with errors are counted. Fi-
nally, we compare decision tree classifications with man-
ual classifications on four random frames extracted from
each video showing different parts of the soccer field.
The results are shown in Table 1 and Table 2, where the
first row shows the classification results of training data
set and other rows are the classification results for some
random video sequence images. We can observe that the
best configuration for the decision tree channels is RGB
(it has the lowest average classification error rate).

The performance of the decision tree is also illus-
trated in Fig. 6 and Fig. 7. We note that we only focus in
the grass/primitive discrimination in a neighborhood of
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Table 1 Decision tree configurations percentage error rates, scale model images (best values in boldface).

R G B H S V RGB HSV
0.068 0.268 0.153 1.112 0.060 0.268 0.005 0.009
0.067 0.128 0.100 0.563 0.055 0.128 0.049 0.051
0.087 0.119 0.101 0.399 0.065 0.119 0.066 0.072
0.069 0.110 0.067 0.270 0.076 0.110 0.059 0.046
0.049 0.049 0.076 0.475 0.035 0.091 0.040 0.047

Table 2 Decision tree configurations percentage error rates, real images (best values in boldface).

R G B H S V RGB HSV
0.200 0.344 0.194 0.398 0.322 0.344 0.067 0.070
0.174 0.246 0.157 0.297 0.230 0.246 0.121 0.124
0.231 0.358 0.201 0.414 0.322 0.358 0.102 0.105
0.215 0.268 0.208 0.396 0.315 0.268 0.163 0.166
0.146 0.292 0.154 0.263 0.206 0.292 0.124 0.134

Fig. 6 Scale model image segmented by means of the CART
method. The points classified as primitive are painted in yel-
low.

Fig. 7 Real image segmented by means of the CART me-
thod. The points classified as primitive are painted in yellow.

primitive initialization so, the result of the decision tree
for other areas in the image is not relevant.

We have compared the classification results obtained
with the decision tree using RGB and the results of clas-
sifying with the morphological method described in [32].
We have tested both methods with four manually seg-
mented images from two different videos, scale model
and real soccer match videos. In Table 3 the percentage
error rates are shown.

Table 3 Comparison of percentage error rates between de-
cision tree method and morphological method. RGBs and
RGBr are results obtained with CART in scale model images
and real images. Ms and Mr account for the results using the
morphological method.

RGBs Ms RGBr Mr
0.049 0.072 0.121 0.198
0.066 0.253 0.102 0.312
0.059 0.259 0.163 0.328
0.040 0.084 0.124 0.185

Fig. 8 Video camera mounted on a tripod and scale soccer
court model.

5.2 Camera motion tracking experiments setup

In this section we explain the experiments carried out for
both, the scale soccer court model sequence (823 frames)
with size 1440 × 812 pixels, and the real sequence (385
frames) from a soccer match in HD (1920×1080 pixels).
The scale model sequence was taken using a domestic
video camera (Sony HDR-SR5E) mounted on a tripod
as it is shown in Fig. 8. The real soccer match sequence
was recorded with a professional camera, this video was
provided by a TV producer and the characteristics were
not given.

For each video sequence we need some information
before starting the camera motion estimation, as ex-



8

Fig. 9 Two different classes are used in the segmentation:
white primitives and grass. Grass is segmented using poly-
gons, whereas segments are used for primitives. Scale model
image.

Fig. 10 Two different classes are used in the segmentation:
white primitives and grass. Grass is segmented using poly-
gons, whereas segments are used for primitives. Real image.

plained in Sects. 3 and 4.2. One of these requirements
is the training data set for the decision tree. This data
set is obtained by segmenting the first frame of the se-
quence with only two different classes: primitives (white
lines and circles) and grass. Examples of segmentation
are shown in Figs. 9 and 10.

The other requirement to start the tracking stage
consists of calculating the tripod calibration geometry,
which is estimated from some frames extracted at dif-
ferent instants of the video sequence. The calibration of
those frames is computed with standard calibration tech-
niques, obtaining both, intrinsic and extrinsic parame-
ters. The selected frames to obtain the tripod geometry
are shown in Fig. 11, where it can be appreciated from
the projection of the primitives on the image that the
camera calibration is efficiently estimated.

When the initialization stage is done, we can continue
with the camera motion tracking in the whole video se-
quence. In Figs. 12 and 13, we can observe some track-
ing results from some extracted frames. See on the left,
images with the tracked primitive centers, and on the
right the reference field projected onto the image using
the computed homography. This homography was calcu-

lated from the tripod geometry and primitives location
as explained in Sect. 4.4.

5.3 Camera motion tracking results

To show the performance of the proposed method, we
have tracked the camera motion in two different sequen-
ces. The processing time for these sequences are in Ta-
ble 4. All experiments were executed in an Intel Core
i7 2.00 GHz processor with 4 GB RAM. The camera
motion tracking procedure for a 1440 × 812 frame lasts
around 3 milliseconds for the scale model sequence and
around 5 milliseconds for the real sequence (frame size is
1920×1080). For the times shown, the primitive tracking
and camera parameters computation are also included
but the image loading time is not considered due to
its strong dependency on the system architecture. From
that, it is clear that the proposal can be applied to real
time video processing.

Results shown in Table 4 are for a multi-thread and
sequential implementations of the primitive tracking stage.
The multi-thread version is a simple parallelization that
consists of assigning the calculation related to each prim-
itive to a thread using OpenMP. Specifically only the
simple OpenMP sentence parallel for, which assigns to
each thread an iteration of the loop, was used [33]. How-
ever, the sequential implementation is also able to pro-
cess the frames in real time (see Table 5).

We observe that our method is faster than the one
proposed in [1], which requires 5.8 milliseconds for pro-
cessing a 720×576 frame, running on a 3.4 GHz Pentium
4, but there is processed only half of the image lines (ac-
tually 720 × 288 frame). Moreover, we can see that our
method is even faster than the recent work described in
[18] which requires 4.5 ms per 720×576 frame on a stan-
dard PC and using GPU implementation of the Hough
transform (under Windows XP SP3, processor Intel Core
2 Quad 2.4 GHz, 2GB RAM and 2xNVIDIA 8800 GTX
as graphic board). A comparison between the processing
times of the different methods is shown in Table 6.

We note that, in some video frames, there are only a
few visible primitives in (see Figs. 14, 15). For example
in the scale model sequence there are 51 frames with only
3 visible primitives. The histograms in Figs 14, 15 show
that using our proposal, few primitives are enough for an
efficient calibration. In that case, standard techniques to
recover the camera motion parameters fail because they
require more robust information, for example they need
at least four visible lines or four points, etc. Since we
deal with cameras mounted on a tripod, the restrictions
due to the geometry of the tripod strongly simplify the
problem and allow to use the primitive tracking to ac-
curately recover the camera motion parameters, even for
the case that only two primitives are visible.

The experimental results clearly demonstrate that
the camera parameters obtained by our method are very
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Fig. 11 Tripod geometry calibration for three reference frames. To validate the results, soccer field primitives are projected
onto the real images using different colors.

Fig. 12 Camera motion tracking results. Scale model: Images on the left show the tracked lines. Images on the right illustrate
where the reference soccer field was projected onto the image using the calculated camera parameters.

accurate. This is an important issue for a subsequent
visual processing task. As we can observe in Table 7,
which shows the numerical error of the results, the pro-
jection errors are very small in both types of sequences.
We measure the accuracy with the average squared Eu-
clidean distance between the projected points and their
corresponding soccer field primitives.

To illustrate the quality and accuracy of the camera
motion tracking, we have used the camera parameters
obtained in the tracking procedure to insert some com-
puter generated graphics into the video. When the ca-
mera motion and intrinsic parameters are known, we can
synchronize the real camera with a virtual camera and

render objects with the same perspective. These exper-
iments were chosen, because this kind of application re-
quires an accurate and fast camera motion tracking com-
putation. The results of these experiments are shown in
Fig. 16. Those frames were extracted from the video se-
quences hosted in http://www.ctim.es/demo108/.

6 Conclusions

The main contribution of this paper is a new method
to obtain real time camera calibration in planar view
scenarios. The proposed method is a combination of the
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Fig. 13 Camera motion tracking results. Real images: Images on the left show the tracked lines. Images on the right illustrate
where the reference soccer field was projected onto the image using the calculated camera parameters.

Table 4 Average processing time for both sequences in milliseconds per frame. The scale model sequence contains 823
frames with size 1440× 812 pixels. The real sequence is 385 frames long and the frame size is 1920× 1080.

Stages Scale model sequence Real sequence
Primitive tracking 1 ms/frame 2 ms/frame
Camera parameters computation 2 ms/frame 3 ms/frame
Camera motion tracking (total) 3 ms/frame 5 ms/frame

Table 5 Average processing time for different primitive tracking implementations, sequential and parallel in milliseconds
per frame.

Primitive tracking implementation Scale model sequence Real sequence
Sequential 2 ms/frame 5 ms/frame
Parallel 1 ms/frame 2 ms/frame

tripod geometry restrictions to strongly simplify the ca-
mera motion, a CART method designed to extract image
primitives in real time and an iterative procedure to ca-
mera motion estimation. One important added value of
the proposed new method is that it can deal with com-
plex calibration scenarios where a very few primitives are
visible.

We first assumed that the camera is mounted on a tri-
pod, which is a common situation in practice, and study
the geometry of the tripod from a mathematical point of

view. This assumption strongly simplifies the calibration
problem and allows recovering the frame calibration in
situations where general calibration techniques fail. One
of the main novelties of the tripod model is the fact that
the tripod rotation and camera projection centers do not
necessarily coincide.

Concerning the experimental results, the most rel-
evant conclusion is the high accurate camera calibra-
tion we obtain in real time using the proposed method.
This accuracy is showed in two ways: on the one hand
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Table 6 Comparison between different methods performance.

Method Processor frame size ms/frame ms/pixel
Thomas [1] 3.4 GHz Pentium 4 720× 288 5.8 2.7970e-005
Battikh et al. [18] Intel Core 2 Quad 2.4 GHz 720× 576 4.5 1.0850e-005
Authors (Sequential) Intel Core i7 2.00 GHz 1440× 812 3 2.5656e-006

Fig. 14 Number of frames with respect to the number of
primitives used to calibrate. Scale model sequence.

Fig. 15 Number of frames with respect to the number of
primitives used to calibrate. Real match sequence.

Table 7 Average squared error (in meters, given by Equa-
tion (15)) between the projection of the extracted primitive
points and the soccer field primitives using the camera mo-
tion tracking

Sequence Error
Scale model 0.01610
Real 0.01468

the primitive reprojection error showed in Table 7 is
very small which is a quantitative quality evaluation cri-
terium; on the other hand, we show some videos where
some artificial objects have been inserted in the sequen-
ces using the proposed method. The good visual qual-
ity of the position of such graphic object through the
sequence is a very good qualitative evaluation of the re-
sults. These videos are shown in www.ctim.es/demo108.

We present experiments using HD videos of sport
events (soccer matches) in both, scale soccer court mod-
els and real scenarios. The experimental results show
that the method is real time. The average processing

time is around 5 milliseconds per HD frame. In terms of
computational complexity, the main novelties are that
the computation of a decision tree is very fast and the
method is local, i.e., we only need to process a neigh-
borhood around the primitive location in the previous
frame.

Future work would consider a new decision tree strat-
egy to suit the possible light condition variations through
the video sequence.
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