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Abstract—In this paper we introduce MINT (Materialized In-
Network Top-k) Views, a novel framework for optimizing the
execution of continuous monitoring queries in sensor netwas.
A typical materialized view V' maintains the complete results of a
query @ in order to minimize the cost of future query executions.
In a sensor network context, maintaining consistency betwen V'
and the underlying and distributed base relation R is very expen-
sive in terms of communication. Thus, our approach focusesro
a subsetV’(C V) that unveils only the k highest-ranked answers
at the sink for some user defined parameterk. We additionally
provide an elaborate description of energy-conscious algithms
for constructing, pruning and maintaining such recursively-
defined in-network views. Our trace-driven experimentation with
real datasets show that MINT offers significant energy redutions
compared to other predominant data acquisition models.

Index Terms—View Management, Top-K Query Processing,
In-Network Aggregation, Sensor Networks.

I. INTRODUCTION

is to optimize top-k queries oveanulti-tuple answers. Such
answers are very typical for queries wittGROUP- BY clause
or for non-aggregate queries.

A view V in relational databases is a virtual table that
contains the results from an arbitrary quefy which is
evaluated every timé’ is referred to. In order to avoid the
unnecessary re-execution 6f it is beneficial to stord” on
secondary storage. This introduces the notion wisgerialized
view (referred to awiew hereafter). Views have a cleapace
versudimetradeoff: Afully materialized view” requires more
space but also less time in evaluatiQg whereas gartially
materialized viewV’ requires less space but also more time
in evaluating@. Materialized views can potentially conserve
energy as the application can avoid the expensive re-di@hua
of the in-networkQ.

Materialized views have been studied in numerous seminal
papers including [3], [7], [6], [18]. Although a fully mater

The improvements in hardware design along with the widdized view V' maintains the complete results of a quepy

availability of economically viable embedded sensor syste
make it feasible today to interact and understand the palysi
world at an extremely high fidelity [29], [17], [21]. The

the distributed nature of a sensor network environmentglo
with its distinct characteristics, imposes some fundaadent
limitations to this model:

applications of sensor networks range from environmentali, Firstly, maintaining consistency betweéh and the un-

monitoring (such as atmosphere and habitant monitorinfj [29

[25]) to seismic and structural monitoring as well as indyst
manufacturing [8], [21]. One of the key challenges in thig/ne

era of sensor networks is the retrieval of sensor readinigg us

energy-aware algorithms.

In traditional data acquisition techniques [20], [30], T17
the sensor data is transmitted to thimk (also denoted as
base statioror querying nodgimmediately after it is acquired

from the physical world. Although in-network aggregation

significantly reduces the consumption of energy, the odulisi

derlying and distributed base relatidd (defined by the
sensor readings) is very expensive in terms of energy.
Thus, we focus on maintaining a sub3ét(C V) that
unveils only thek highest-ranked answers for some user
definedk; and

Secondly,V” is recursively defined using the results that
are stored at the lower-levels of the multi-hop routing tree
which interconnects the sink with the sensing devices.
Thus, traditional view maintenance techniques are not
directly applicable.

transmission of all query results from all sensors at everyTo facilitate our description, consider the scenario in-Fig
acquisition round is still the most energy demanding fact@fe 1, where we illustrate a deployment of 9 sensors in a

in such environments [29], [36], [25], [38].

4-room building. We are interested in answering Query 1 at

In this paper we model the retrieval of data on the prehe sink (rooted above,;). In particular we want to find the

sumption that the user is only interested in thehighest-

average temperature of each room every one minute.

ranked answers rather than all of them. We propose MINJuery 1

Views, a novel framework to minimize messaging and th'&ELECT r oonmo,

energy consumption in the execution of continuous momitpri

AVERACE(t enp)
FROM sensors

queries. Like other frameworks, we support single-refatidGROUP BY r oomrmo
queries with the standard aggregate functions but our foddBOCH DURATION 1 nin
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Fig. 1. The left figure illustrates a sensor network scentré consists of
9 sensorgs1, ..., sg } deployed in four room§ A, B, C, D}. The label next
to each sensor denotes the identifier of the node and the texglerature
reading. The figure on the right presents a recursively défineNetwork

View (V) to query 1. The label next to each node indicate tlml@verages
for each room.

The key idea of the MINT pruning algorithm is to exploit
a set of|y| descriptors { = {v1,72,...}) in order to bound
above the score of tuples that are not known at a given level
of the sensor network. The elements 4nare application
specific: these can either be known in advance, or these can
be defined prior to setting up the execution of a query. In our
discussion and experimentation, we will utilize the follog
instancesry; ="Maximum possible temperature valueind
~v2 ="Number of sensors in each room'For instance, the
temperature sensor on the Mica Weather Board [29] might
only record values between -40F to 250F and the barometric
pressure module can only measure pressure in the range
300mb to 1100mb. Thus;; can be known in advance.
Additionally the acquisition and dissemination of can be
performed during initialization.

With the predominant TAG-based [21], [20] in-networkO o
. ur Contribution
aggregation approach each node forwards tuples of the form

(room,sum,count) to its parent every single time instanOae
alternative approach is the notion of &mNetwork View {')
(Figure 1 on the right)V materializes the result of) and
utilizes these results to speedup the next executiof.ofhe

performance ofi largely relies on the premise of temporal
coherence between consecutively acquired sensor reaaéngs

local changes will affect the intermediate views until theks

In this paper we make the following contributions:

« We formulate the problem of constructing a hierarchy of
recursively defined top-k views. We solve this problem
by introducing MINT Views. We also present a state-
less, non-materialized version of MINT, coinédT (In-
Network Top-k) Views, that is appropriate for sensing
device with limited memory.

To improve the performance penalty of In-Network Views,
we propose to prune the local views stored at each node and
focus on the k highest-ranked answers rather than all of them
This turns out to be extremely useful because now sensors
can discard view updates that do not refektbighest-ranked
answers. On the other hand, this also imposes an extremely

We introduce the notion of &-covered bound sev”’
which only maintains the tuples df that lead to the

k highest ranked answers at the sink. We additionally
provide energy-conscious techniques to incrementally and
immediately updaté’”’.

We experimentally validate the efficiency of our proposi-

challenging problem®a naive local greedy pruning strategy
may easily discard tuples that will be finally among the
highest-ranked answers”.

To understand this problem, consider again Query 1 but

tions, with an extensive experimental study that utilizes
real sensor readings from the UC-Berkeley study at
the Great Duck Island in Maine [29] and atmospheric
readings from the University of Washington [12].

assume that we are only interested in the top-1 result.-l-he remainder of the paper is organized as follows: Sec-

Such a query should return roof®,75F). Assuming that

tion Il formalizes our system model and Section Il overvgew

each node naively eliminates anything below its local tORge rejated research work. Section IV introduces the MINT

1 result will lead us to the erroneous answ@p, 76.5F).
In particular, the leaveqss, sg, s7, s, s9} Will send their
only tuple to their respective parent. The parefds, ss3, s4}

will then aggregate the results of their children along wit

their own result and forward this result to their own pare
(i.e., s1). In particular,so will send (C,75F), s3 the tuple
(D,76.5F) and s4 the tuple(B,42F). It is now easy to see
that if s; aggregates the results of its childrény, s3, s4}
along with its own result B,40F), then this will yield
Vy""9={(D,76.5F), (C,T5F), (B,41F)}, where roomD is
the top-1 answer rather than roath

View Framework along with a description of its three phases:
construction, pruning and updatingSection V presents an
extensive experimental study and Section VI concludes our

aper.
tp

Il. SYSTEM MODEL AND TERMINOLOGY

In this section we will formalize our system model and
the basic terminology upon which we will describe our al-
gorithms. The main symbols and their respective definitions
are summarized in Table I. Let S denote a set.afensing

Our MINT algorithm utilizes an intelligent upper bounding?€Vices S = {s1,52,..., s,}. Assume thats; (i < n) is

algorithm and a local parametgrto construct a subset df,
denoted as thk-covered bound-sét’, to be materialized. We
will show that any tuple outsid&’ can safely be eliminated
during the execution of a query because this tuple cannot
among thek highest-ranked results.

1For clarity in Figure 1, we only depict the average (i.e., &gant).

able to acquirem physical attributesA = {a1,aq,...,am}
from its environment at every discrete time instarcd his
generates tuples of the forfn, a1, as, ..., a,, } at each sensor.
Rkany given time instance, the aforementioned scenaridyie
an n x m matrix of readingsR:=(s;;)nxm. This matrix is
horizontally fragmentedcross the: sensing devices (i.e., row
1 contains the readings of sensgrand R = U;c,, R;.



TABLE | . - . .
Definition of Symbols A method for continually providing approximate answers in

a hierarchical sensor network scenario by exploiting teralpo
coherency was addressed ThNA [26], [27]. The basic idea

[ Symbol | Definition |

A Quer . ) ! .
C,g Nu?nube?/of requested results behind TINA is to send a reading from a sensor only if
5 Sensor numbei (so denotes the sink). the reading differs from the last recorded reading by more
n Number of Sensorg§si, s2, ..., sn } than a stated tolerance In the experimental evaluation of
m Eumllm\?/f_ of /(“\tg“bUteSltatteaé;‘ ansc{f$17?27<~~~v)aer} Section V, we will evaluate the performance of our proposed
ocal View e resulits to arsensey (r < n : H ;
vy Pruned View ats; (unveils the topk answers a:) algorithms against the version of TINA that always returns

the correct answer (i.e¢, = 0). The problem of continually
providing approximate tog-answers in a client-server setting
was studied in [2]. The problem is tackled by installing
In order to disseminate the query to thesensors, we utilize arithmetic constraints at each node which define the current
a typical tree-based query dissemination mechanism [18hp-k scores at any point. This work was later extended
where the querying node sends the quéryto one sensor to a hierarchical sensor network environment in [10]. In all
s1 which recursively forwards the given query to all ofcases the results are approximate and continuous overla sing
its neighbors until alln sensors have received the givemttribute, thus operate over individual attributes (cahsin
query. Without loss of generality, we adopt thleild anchor while our approach is exact and operates horizontally ¢oger
mechanism proposed in [38], where a sensoconfirms to all tuple attributes.
exactly one of its neighbors; that it wants to be its child. View Management has been another area of great contri-
This providess; with a list of children so that; can know butions over the last decades [3], [7], [6], [18]. Material-
when all the answers from its children have arrived. We al$ped Views, in particular, have been extremely important in
assume a TAG [21] topology maintenance policy that adapgid AP and Data Warehousing, where users are required to
to a shifting network by having each node to monitor the linget quick answers to their aggregate queries over extremely
quality of its neighbors and to switch parents if the qualitiarge datasets. Most of the proposed solutions assume fudwer
drops below a given threshold. and complex centralized or distributed DBMSes. Materéliz
views have also been extremely important in mobile database
because they provided the means to support disconnected
The main contribution of this paper is the integration obperations [34], [33]. Similarly to mobile databases, weuf®
the seemingly unrelated areasTafp£ Query Processingnd on wireless (sensor) devices with limited energy, CPU and
View Managemernin order to provide a novel framework formemory resources. Additionally, our work is fundamentally
the continuous acquisition of query answers from a senddifferent from Temporal View Management [31], [22], as our
network. gueries are not historic.
Top-k Query Processing has been studied in a variety The notion of views in the context of sensor networks, has
of contexts including middleware systems [13], [14], welppeared in two very recent works. The first one proposes a
accessible databases [4], [23], stream processors [2}; paew abstraction, coineModel-based Viewsvhich provides
to-peer systems [1] and other distributed systems [5],,[38]sers with a unified view of data that hides away the irreg-
[37]. For instance the queriFind the k=5 rooms with the ularities of sensor data [11]. These views are implemented
highest average temperatureturns a subset of the completeutside the sensor network. Thus, their scope and objeistive
answer set in order to minimize some cost metric that sipplementary to our approach, in which we utilize in-netwo
associated with the retrieval of the complete answer sas Thiews to optimize the acquisition of data from sensing dewic
cost is usually measured in terms of disk accesses or netwdtie second work [35] is similar to our approach but it uses
transmissions, depending on where the data physicallgessi in-network views to support ad-hoc queries in a data-centri
It has been shown in numerous studies [13], [5], [4], [38Environment as opposed to continuous and top-k queries in
that top-k query processing is meaningful only if the pratéc our approach.
k refers to a small subset of the complete answer set (usuallyrhe problem of materialized views which are generated by
up-to 5%). For larger values dof, the query optimizer can top-k queries in a centralized DBMS scenario was recently
choose to retrieve the complete answer set. addressed in [9]. In particular, the authors study the @bl
The wave of centralized top-k query processing algorithnod answering a top-k query from a set &f materialized top-k
was succeeded in recent literature by their distributechtou  answers. These answers refer to different top-k queriestwhi
parts, namely th& PUT [5] algorithm, theTJA[38] algorithm are neither distributed nor organized in a hierarchy, as ighi
and theTPAT[32] algorithm. The distributed top-k query pro-the case in our setting. Finally in [19], the authors propose
cessing problem with probabilistic guarantees rather éxact exploit fully materialized views in sensor networks in arde
answers was studied KLEE [24]. In all these scenarios, theto speedup the execution of multiple queries. However these
queries are sporadic while we focus on continuous scenaridgsws are complete, rather than top-k, therefore theiirggtt
where a query is repeatedly evaluated over a specific perisdcloser to the TINA framework rather than the solutions
of time. proposed in this paper.

I1l. BACKGROUND AND RELATED WORK



IV. THE MINT V IEW FRAMEWORK Algorithm 1 : Construct MINT/INT View

. . . . . Input: A distributed sensog; (Vs; € S) that generates: attributes
In this section we describe the underlying algorithms qf, 4, ... ..}, a queryQ, an empty bufferv; = {}

the MINT View Framework. These also support, INT ViewsQutput: A set of n distributed viewsV = {Vi, Vz, ..., Vi, }.
MINT's stateless version that is appropriate for sensingage 1. procedure CONSTRUCT MINT _VIEW(s:, Q)
with limited memory. For ease of exposition, we present oue: Il Execute Q and store the answerlih (takesO(1) time).

framework in the following three conceptual phases: 3. insert(mq(oq(current_reading())), Vi);
. . . L4 for j =1 to |children(s;)| do
A. The Cre_auon Phasaexecu_teq during the first acquisition g, ¢ = child(si, j); Il ¢ is thej*" child of nodes;
of readings from the distributed sensors. This phase: Il wis a list of tuples returned to query Q.
results inn distributed viewsV; (i < n); 7 w = Construct_Mint_View(c, Q);
B. The Pruning Phaseduring which each sensag locally & for I =1 to |w| do

Il w; is thel™ entry of tablew.
/I Inserts tuplew; into local tableV; in O(1) time.
insert(w, Vi);

prunesV; and generateg; (C V;). V/ contains only the >
tuples that might be located among the final top-k resultg;.

and 12: end for
C. The Update Phaseexecuted once per epoch, duringa: end for
which s; updates its parent node witly'. 14:  send(Vi, parent(s:));

N 15: end procedure
The above conceptual phases are executed distributiviely us

the tree-based query routing protocol established by tlee-op

ating system layer [16] after the query has been dissentinat rogm 5‘2%”01 Cozm sgzng) room | K-Covered
to then sensors. c 570 4 360 . i B 9
. 6 500 | 5 500 6
A. MINT Creation Phase 11 | 460 | 4 580 11
The first phase of the algorithm is a recursive executio ié igg g 238 ﬁ |
of Algorithm 1 at all sensors in a given network. Recall SUM 100 200 400 600800

that a sensor generates &m + 1)-tuple of the formv =

{t,a1,as,...,a,,} at each timestamp. A sensor starts out _ _ . . .

b f . the selectiom that retains the tuples thatFlg' 2. The left table illustrates the; of a given node during the execution
y _per orming . ) _' Q ! up of query Q2. The right figure illustrates the intuition of theuning algorithm.
satisfy the selection criterion (e.g., temperateB@). Note that In particular, we plot the (Ib,ub) ranges for the variousineed tuples at some

a sensor can acquire concurrently several readings alhighy arbitrary node. We then generate a k-covered bound/seising Algorithm

. . . ’ 2. We only propagate a tuple to the parent of;, if u € V.
might not be of interest to a particular query. For examplg, :
the MICA Weather board which was utilized in the Great
Duck Island study [29] supplements the MICA motes with

14 physical parameters. Thus, we only project the attriiout\é/h'Ch returns the k rooms with the highest average tempera-

related toQ prior to storing the result in the in-memory bufferture' If 5; could locally dgfme the k_-hlghest answers to Q.2 (at
), thens; could use this information to prune its local view

Vi (line 3). The next step of the algorithm merges the tpl ;. However, this is a recursively defined problem that can

that arrive from the children of; into V; (line 4-13). This only be solved once all tuples percolate up to the sigkin

yields an in-network view similar to Figure 1 (right). order to avoid this, we utilize a set of descriptersvhich are
If the various values at each node of the depicted tree do n ? ' ptar

change across consecutive timestamps, #aran efficiently {Rlized to bound above the attributes 1y and subsequently

provide the answer to the subsequent re-executio.oOn enable a powerful pruning framework.

the contrary, whenever we have a deviation, or a change, inConS|der the example of Figure 2 (left), where we illus-

ate theV; for a given sensor. Prior to the execution of

a parameter at;, this change has to cascade all the way ué . e ) .
to the sink. A change at all sensors has a worst-case mess Ve established that, =*Maximum possible temperature

complexity of O(n) for every single timestamp of thepoch ue’=120 andy,="Number of sensors in each room5.

duration, thus we seek to optimize this process through tiln-lé'e glgureB|nd|(l:)ates.theunT and 300u,m for se;/er_z;ll broom
proposition of the pruning phase. numbers. By observing column 3 (i.e., count), it becomes

evident that theum for the rooms(2, 5,11, 12,15} is a partial
B. MINT Pruning Phase value of thesum returned at the sink (sincg, = 5).

] . ] On the contrary, the tuple of room 6 is already in its final
Algorithm 1 constructs a hierarchy of views, where ancestgy,y, (i.e., 500). In this example theum of each row is

nodes in the routing hierarchy maintain a superset view gfnded above using the following formuam’ = sum +

their descgndan_ts_. Before we explain the details of theipgm_( »—count) +v; and bounded below using the actual attribute
phase Wh_lch minimizes messaging between sensors Consﬁ;’h' This creates six lower-bound (Ib) and upper-bound (ub)
the following query: pairs which precisely show the range of possible values for
@="SELECT TOP k room avg(tenp) FROM the sum attribute at the sink.

SENSORS GROUP BY room EPOCH DURATI ON 1ni n" Having such knowledge locally, it can now help us to prune



(Ib, ub) pairs which will not be in the final top-k result. TheAlgorithm 2 : Prune MINT/INT View

intuition behind our algorithm is to identify the!" highest Input: A distributed sensos; (Vs; € S), a buffer V; that contains
lower bound (i.e.!’) and then eliminate all the tuples thalth;a{?nc‘;g‘ﬂ’;ew- a set of descriptors = {v1,72,...}, a query result
h_ave an upper bO‘_‘“‘?' (i-e") beI_ow vy - Figure 2 (”ght)_' pOutput: A locally pruned viewV;, such thatVy can be utilized to
visually depicts this idea. We will prove that by applyinginswer a top-k querg.

locally such an operation yields at the end the correct top-

s ) ) - Pi. procedure PRUNE_MINT _VIEW(V;)
k tuples at the sink. In order to achieve this we define the. for j =1 to |Vi| do // Identify the pruning threshold’.

notion of ak-Covered Bound-Seis following: 3: v; = Vi[j] I v;=(i, v¥?) pair.
" N 4: kHighest(v'* kBuff)
Definition 1: k-Covered Bound-Set /) is the subset of; . bucketinsert(v'*® sortedUB3
that satisfies the following condition: If there is somet V/, 6: end for
thenv"? < vi?, wherev’ is the k' highest lower bourd 7. v = min(kBuff);
8: for j =1 to |sortedUB$ do
Algorithm 2 illustrates the pruning of; at some arbitrary o: v =sortedUBs[j]
node s; and the construction of the candidate $&t This 10: If (vy* < v}?) then break; end if
algorithm applies to both the MINT View and the INTLL: add to_candidategv;, V;);

2: end for

View frameworks. The first step of the algorithm (lines 2-613, end procedure

identifies the pruning thresholg’. This threshold allows the
algorithm to prune-away tuples that will not be in the result
Altho_ugh | physical_ly re§ides in main memory, we Wanb MINT Update Phase
to minimize the running time of our algorithms in order
to accommodate the scarce energy budget. In particular, wén the previous step, we transformdd into a pruned
utilize similarly to the well knownselection algorithma k- subsetV;’. We shall now describe how to incrementally and
element bufferkBuff in order to locatev!’ in linear time recursively updaté//. Let 7" denote theV/ taken at the last
(i.e., O(k) per tuple). This procedure takes place inside ttRxecution of@Q. The below description only applies to the
kHighest function which insertSvé.b into kBuff, if the MINT View framework, for whichT" is available. The update
former is larger than the minimum item #Buf f. phase of the INT View framework is simply a re-execution of
The next step of the algorithm is to locate the tuples thAdgorithm 1 which re-construct$]’ from the beginning.
have an upper bounet® below the threshold!®. By visually Since our objective is to identify the correct results at the
examining Figure 2, it is easy to see that an efficient way &nk, we utilize animmediateview maintenance mechanism:
do so is to create an ordered list of upper bounds and thehs soon as a new tuple is generatedsat this update is
perform a linear scan in descending order until a tugte reflected inV;/”. In order to minimize communicatior,; only
(<vl?) is located. Any upper bound below or equakt@ can re-transmitsV; to its parent, ifV has changedt¢mporal
be safely eliminated. coherence filter as in TINA Additionally, in order to min-
The ordered list can be constructed in parallel with thi&ize energy consumption even further, we seek to minimize
location of the pruning threshold!®. In particular, while Pprocessing consumption as well. Therefore, our objective i
scanning forv!®, we insert each upper boum)‘b into a new constructV/ by avoiding the re-executing of Algorithm 2.
table sortedUBs(line 5). This takes only O(1) per tuple as Algorithm 3 presents the MINT Update Algorithm. In
we utilize an idea similar tbucketsort. However, if memory particular, line 3 shows that any tuple updatevith an upper
is limited then this optimization can be avoided without anpound (denoted as“’) less than thesi’ can beignored In
consequence on the correctness of our approach. the opposite case, we add the tupl¢o the set of candidates
In lines 8-12, we finally perform a linear scan of thd/ (line 4). Now the remaining question is whethef has
sortedUBstable in descending order and stop when we findehanged by this addition of. If 2 < vl is true thenv!’ has
tuple v}/ that is beloww;”. The correctness of our algorithmnot changed. Consequently, only propagates the update
is established by Theorem 1. towards its parent rather than a complete view update. In the
) - implementation we buffer these updates until all childrends
Theorem 1.The k-Covered Bound-Sef correctly identifies ,qj updates to their parents. If on the contralfy< 2%, then
the k-highest ranked answers to Q. _ v!* might have changed. As a result has to reconstruct;
Proof (by contradiction): Let v denote an arbitrary tuple ,ging Algorithm 2 and transmit the compléié to its parent.
which is not included in the k-Covered Bound-S&t. We  1is™re_construction procedure is necessary to guarahtee t

hav_e to show that will hqve a smaller value than any of thecorrectness of our framework. Note that the reconstruction
k highest-ranked tuples (i.e.,v < w). Assume that > w. It

) _ ) 3 only happens foV;/| elements rather than all the elements
always holds that“® > v which consequently yields“®> > w

X _ (i.e., |Vi]), had we executed Algorithm 2 for the first time.
(by using the assumption). Howeverif® > w, thenv would
have been included i/, by definition 1, a contradictioRl  D. Discussion

2Due to contraposition, the condition could also be exprbasging the MINT VS' INT: The d_|ffer§nces of the tYVO algor'thms are
implication if v® > v, thenv € V. summarized as following: i) MINT exploits a temporal co-



Algorithm 3 : Update MINT View V. EXPERIMENTAL EVALUATION

Input: A buffer T’ that contains thé&’; of the previous time instance,

the v® of 77, a tuple update: from some child. In this section we present an extensive experimental com-
Output: A locally pruned viewV;, such thatVy can be utilized to parison of INT and MINT Views against two other popular

answer a top-k query). query processing frameworks namely, TAG and TINA.
1: procedure UPDATE_MINT _VIEW(T", v, z)

2' ifV;(U;CbTS’Iub) then A. Experimental Methodology

g ﬁd(dm‘ziogcggghti%tﬁ s(a, Vi We adopt a trace-driven experimental methodology in which
6 send(z, parent(s;)); I/ Single tuple x update a real dataset from sensors is fed into our custom-built C++
7 else // z'® > vl . . simulator. Our methodology is as following:

g: Pr”gev'\{”NT—\A?"‘(W?;//”CUS'”% /tAIg‘;/grlthr(l;f Algorithms: We implemented i)TAG, which relies on in-
0. end it (Vi parent(s:)); I/ CompleteV:’ update network aggregation to minimize communication; ii) TINA
110 end if (exact), which deploys in addition to in-network aggregati
12: T =V{; suppression of consecutive values if these do not charipe; ii
13: end procedure INT and MINT Views, as these were described in section V.

As a baseline for comparison we utilize the results from the
TAG approach.

Communication Protocol: Our communication protocol is
ig%ctured in the following way: each message is associated
th a 5 Byte TinyOS header. This is augmented with an

ditional 6B application layer header that includes: g t

herence in order to suppress view updates that do not cha
between consecutive time instances, while INT has to re-se

these updates, because it is stateless. ii) In MINT, we o _ . . .
have to updaté’’ using Algorithm 3 (in O[V/|) time), while sensor identifier (1B), (i) the message size (4B) and the
p ! ' epth of a cell from the querying node (1B). In each message

in INT we have to construct it every time from the beginningﬂ/ i .
e allocate 2B for environmental readings (e.g., tempeeatu

in O(|V;]) time, using Algorithm 2. iii) INT has the advantag - .
of not requiring any extra storage thus is more appropriate umidity, et(?.), 4B for aggregate values (max, min and sum)
sensors for which the storage is at premium. and §B for tmestamps.

Sensing Device:We use the energy model of Crossbow’s
Deferred View Updates:In order to minimize communication new generation TelosB [8] sensor device to validate oursdea
even more in the MINT/INT Views, we could have opted folTelosB is a ultra-low power wireless sensor equipped with a
a deferredview maintenance mechanism, rather thaima 8 MHz MSP430 core, 1MB of external flash storage, and a
mediateone. Adeferredmechanism could propagate changess0Kbps RF Transceiver that consumes 23mA when the radio
periodically, after a certain number updates or even ramglorris on. Our performance measureBsergy in Joules that is
In all cases this would produce probabilistic answers at thequired at each discrete time instance to resolve the query
sink, as the sink would not have at its disposal the most up-tbhe energy formula is as followingEnergy(Joules) =
date view. Although deferred view maintenance mechanismsits x Amperes x Seconds. For instance the energy to
are extremely interesting in the context of sensor netwa&s transmit 30 bytes at 1.8V is 1.8V x 23 x 10734 x 30 x
these allow us to trade accuracy versus energy consumptigiits/250kbps = 39u.J.

in this paper we only focus on exact answers. Datasets: We utilize two datasets: iyVashington State Cli-

In-Memory Buffering: The materialized views and temporar)fnelllte (Ac';mol\élgn):'l'hls IS a rr:aalv\?atzset of atrr:jogpherlc data
results of all algorithms, can either reside in an SRAM-blas oflected at 32 sensors in the Washington and Oregon states,

buffer or a Flash-based buffer. For instance, a typical MIC y the D_epartment of Atmosph_e_ric Sciences at the University
mote with a 2KB SRAM might need to exploit the 512KBOf Washington [12]. More specifically, each of the 32 sensors

on-chip flash memory, while Intel's i-mote might easily gtor maintains the average temperature and wind-speed on an

these results in the 64KB SRAM. There is a growing treng%urly basis for 208 days between June 2003 and June 2004

for more available local storage in sensor devices [36] a L 4990 time moments). iBreat Duck Island (GDI 2002):

therefore local buffering of results is not a threat to ourdelo Is is a_real dataset from the habitat monito_ring_ project
¢ deployed in 2002 on the Great Duck Island which is 15km

Supported Query Types:We support single-relation queriesoff the coast of Maine [29], USA. We use readings from the
with the standard aggregate functions (iStJM M N, MAX 14 sensors that had the largest amount of local reading®fout
and AVERAGE). In contrast with other frameworks, we opti-the initial 43 sensors). The GDI dataset includes readingk s
mize queries withmulti-tuple answers. Such answers coulds: light, temperature, thermopile, thermistor, humidityd

be generated by 8ROUP- BY clause, or by a non-aggregatesoltage. In both datasets we randomly and uniformly divide t
qguery. Note that fosingle-tupleanswers, such as those gensensors in 16 and 4 areas respectively. Our queISE ECT
erated by an aggregate query without a group-by clauses th&OP-k area, AVG(temp) FROM sensors GROUP BY area”
is no notion of a top-k result. where k is configured as the 5% of the complete answer set.
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Fig. 3. Energy Consumption for the TAG, TINA, INT View and MINView frameworks using the TelosB sensor energy model.

B. Energy Consumption which consists of only of 14 sensors. We also observe in this
illustration the surges (deviations) in the INT View Mechsam

é{.g., at time instance 780). This is an indication that tpek
answer has changed at the particular timestamp and that this
apias brought some increase in energy consumption, until the
u%'dates propagate to the sink. Similar surges also exi$tein t
(I\a/llNT curve but these can not be observed due to the temporal
coherence fluctuation.

In the first experimental series we evaluate the ener
consumption of the four algorithms. Due to the exploitatidén
temporal coherence in the TINA and MINT Views, the energ
value between consecutive time instances can greatly v
To facilitate our presentation, we apply a spline interpota
smoothing between consecutive data points which accyrat
approximates the TINA and MINT curves.

In Figure 3 (left), we plot the results using the AtmoMorC. Pruning Magnitude

dataset. Since we utilize TAG as the baseline of comparisonyye next study the pruning magnitude of the k-Covered
it always has a value of 100%. The TAG line accounts fq§,yngd-Set’. In Figure 4 we plot with a white box the

approximately 5.3mJ of energy for all 32 nodes of the ”et‘Norlc‘tverage number of tuples at each level of the topology (for

Recall that in TAG a sensor always transmits all aggregatgfl 4990 time instances). We also plot with a dashed box the
tuples to the sink. Although TINA (exact) still returns a”aggregate number of tuples eliminated by Algorithm 2.
answers to the sink, it takes the energy consumption down tQue opserve that the closer we move towards the sink, the
4.4mJ with a standard deviation of 0.66mJ. This validates thning power of our framework increases exponentiallysTh
by exploiting temporal coherence can be beneficial in Magtatributed to the fact that the cardinality 6f can increase in
cases. The INT Views approach on the other hand, perforgg \yorst case exponentially as well (i.e., each sensomtspo
in-network pruning of the results which reduces the energy gitferent room number). In particular, we observe that the
consumption to 2.26mJ (i.ex 58% less than TAG). pruning at level five to one ranges from 0% (where only leaf

Finally MINT Views exploit temporal coherence in adnodes exist), to 39% in level two and 77% in level one. It is
dition to top-k pruning and only consume an average @hportant to highlight the fact that such a pruning presents
1.69m3:0.23mJ which is equivalent to a 68% energy redugeduction of more than 20,000 tuples at level one alone.
tion from TAG, 38% energy reduction from TINA and 10% A final remark is that these results apply to both MINT
from INT. The reason why the TINA and MINT Views follow ang INT, as these two algorithms only differ in how/ is
a similar pattern is because in both curves the energy reiuctmaintained and not on the final content of the in-network view
is dominated by the savings that are due to the temporal
coherence between consecutive time points. VI. CONCLUSIONS AND FUTURE WORK

By repeating the same experiment on the GDI'02 dataset,This paper introduces and formalizes the problem of
we observe in Figure 3 (right), that MINT continuous t@xploiting materialized in-network views in order to opiz®
maintain a competitive advantage over TAG and TINA. Ithe execution of continuous queries in sensor networks.
particular, we observe that MINT consumes 30% less energde formulate the problem of constructing a hierarchy of
than TAG (i.e. 1.96:0.19mJ versus 2.83mJ). We noticed thatcursively defined top-k views. We solve this problem
smaller-sized networks are not beneficial for INT and MINDy introducing MINT Views. We also present a stateless,
Views, because shallow query routing trees can not falitanon-materialized version of MINT, coinelNT (In-Network
top-k pruning. This is also the case for the GDI'02 datas@bp-k) Views that is appropriate for sensing device with
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Fig. 4. Pruning Magnitude of MINT Views.
[22]

limited memory. Our trace-driven experimentation withlreapzs)
datasets from UC-Berkeley and the University of Washington
show that MINT offers tremendous energy reductions. In th&4
future we plan to implement and validate our ideas using g
nesC prototype that is currently under development. We also
aim to provide an efficient solution to approximate top—k[26]
views which could offer even more energy savings when
exact answers are not needed. [27]
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