
Central Lancashire Online Knowledge (CLoK)

Title C-RAM: Breaking Mobile Device Memory Barriers Using the Cloud
Type Article
URL https://clok.uclan.ac.uk/id/eprint/18481/
DOI https://doi.org/10.1109/TMC.2015.2513040
Date 2016
Citation Pamboris, Andreas and Pietzuch, Peter (2016) C-RAM: Breaking Mobile

Device Memory Barriers Using the Cloud. IEEE Transactions on Mobile
Computing, 15 (11). pp. 2692-2705. ISSN 1536-1233

Creators Pamboris, Andreas and Pietzuch, Peter

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1109/TMC.2015.2513040

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

1

C-RAM: Breaking Mobile Device
Memory Barriers Using the Cloud

Andreas Pamboris and Peter Pietzuch

Abstract—Mobile applications are constrained by the available memory of mobile devices. We present C-RAM, a system that
uses cloud-based memory to extend the memory of mobile devices. It splits application state and its associated computation
between a mobile device and a cloud node to allow applications to consume more memory, while minimising the performance
impact. C-RAM thus enables developers to realise new applications or port legacy desktop applications with a large memory
footprint to mobile platforms without explicitly designing them to account for memory limitations. To handle network failures with
partitioned application state, C-RAM uses a new snapshot-based fault tolerance mechanism in which changes to remote memory
objects are periodically backed up to the device. After failure, or when network usage exceeds a given limit, the device rolls back
execution to continue from the last snapshot. C-RAM supports local execution with an application state that exceeds the available
device memory through a user-level virtual memory: objects are loaded on-demand from snapshots in flash memory. Our C-RAM
prototype supports Objective-C applications on the unmodified iOS platform. With C-RAM, applications can consume 10× more
memory than the device capacity, with a negligible impact on application performance. In some cases, C-RAM even achieves a
significant speed-up in execution time (up to 9.7×).

Index Terms—Cloud-based memory, application state partitioning, snapshot-based fault tolerance, user-level virtual memory

F

1 INTRODUCTION

While the compute, memory and network resources on mo-
bile devices such as smartphones and tablets have increased
substantially over the years, their capabilities fundamentally
lag behind those of servers and desktop machines. In
particular, due to form factor constraints, the amount of
main memory in mobile devices must be balanced against
the incurred reduction in battery lifetime [1]. With the
advent of even smaller wearable devices such as smart
watches and glasses [2], [3], memory is likely to become an
even more constrained resource in the forthcoming years.

At the same time, mobile application developers have
started realising more memory-demanding applications:
users now expect mobile games to include sophisticated
AIs that search large game state [4], [5], image and video
editing applications that maintain large media objects in
memory to apply video transcoding and image effects in
real-time [6], [7] and augmented reality platforms such as
Google Glass [8] to process large volumes of data with
advanced computer vision algorithms.

For many applications, available device memory there-
fore becomes a limiting factor [9]. On an Apple iPho-
ne 4S phone, for example, an application is left with
just 213 MB of usable main memory, out of a total of
512 MB, with the difference reserved for the iOS operating
system. Applications that exhaust the available memory
are automatically terminated by iOS. Considering that a
single 8-megapixel photo has over 30 MB of bitmap data,
an image editing application is terminated for having just
seven photos resident in memory.

A. Pamboris and P. Pietzuch are with the Department of Computing at
Imperial College London.
E-mail: {ap5309, prp}@doc.ic.ac.uk

To support applications with a large memory footprint,
developers often adopt a client/server model, with the server
side implementing the memory-intensive functions. Such
a model, however, entails several challenges: developers
must understand the memory requirements of different parts
of their application to decide on what objects should be
maintained remotely; they must ensure that the additional
client/server communication does not degrade application
performance; and, perhaps most importantly, they face
the challenge that the application now requires network
connectivity to the remote server in order to function.

Instead, we propose to split application state automat-
ically between a mobile device and a remote node based
on fine-grained profiling of the application. An application
can thus utilise a total amount of memory that exceeds
the device memory without requiring additional developer
effort. A major challenge, however, is to enable the split
application to continue functioning even when access to the
remote state was lost due to network failure. In addition,
to increase adoption, we only want to modify applications
but not the mobile platform (i.e. iOS or Android) itself.

We describe C-RAM, a system for Objective-C ap-
plications that splits application state on the unmodified
iOS platform, while being resilient to network failures. It
achieves this by automatically partitioning the application
source code without developer intervention. The contribu-
tions of C-RAM are:
Application state partitioning. Based on the results of
an offline profiling step, C-RAM applies an optimisation-
based partitioning algorithm to split the application state,
as represented by Objective-C objects, between the mobile
device and a remote node. The goal of the partitioning
is to enable memory-intensive application workloads while
minimising application response time. Each object is placed

2

permanently either on the local or on the remote node,
while respecting resource limits. Access to remote objects
is supported transparently via proxy objects, which relay
invocations using remote procedure calls (RPCs) [10].
Snapshot-based fault tolerance. C-RAM uses a new fault
tolerance mechanism, which allows the mobile device to
recover missing objects after losing network connectivity.
Consistent snapshots of changes to the local and remote
application state are stored on the device. After failure,
application state is rolled back to the last snapshot, and
execution resumes from an earlier point in time. To control
the network overhead of snapshot transmission, C-RAM
has a tunable snapshot interval and also disables offloading
when network usage exceeds a configurable threshold.
User-level virtual memory. After failure, C-RAM must
execute the application locally but with a state size that is
larger than the available memory. Since iOS does not sup-
port kernel-level virtual memory with on-demand paging,
C-RAM implements a virtual memory scheme at user level:
objects from state snapshots remain stored in flash memory
and are loaded into main memory on-demand. This permits
offline execution, albeit with degraded performance.

C-RAM does not require modifications to iOS or Objective-
C. We evaluate a C-RAM prototype with three memory-
intensive applications: a two-player board game with an AI
component, a spreadsheet application and an image retrieval
application. We show that, by partitioning application state,
C-RAM can support large memory sizes—e.g. 10× the
available device memory— without degrading application
performance. In some cases, it can even speed up execution
by a factor ranging from 2× to 9.7×, depending on the
application workload and network properties.

Its fault tolerance mechanism incurs only a modest over-
head and permits a choice between reducing network usage
or the amount of lost state. After network failure, local
execution exhibits a 25% performance reduction caused by
the on-demand loading of objects from flash memory as
part of C-RAM’s user-level virtual memory scheme.

In the remainder of the paper, §2 discusses the implica-
tions of limited memory on mobile devices; §3 presents the
C-RAM design and partitioning mechanism; §4 describes
the snapshot-based fault tolerance mechanism and the user-
level virtual memory scheme; §5 presents evaluation results
from using C-RAM with real-world applications; and §6
discusses related work. We conclude the paper in §7.

2 BACKGROUND

This section explores the implications of limited memory
on mobile devices and discusses existing approaches for
overcoming such limitations.

2.1 Memory Limitations on Mobile Devices

Owing to their smaller form factor, today’s mobile devices
lack the memory capacity of most desktop and server sys-
tems [11]. While technological advances have allowed for

a device’s circuit board space to be used more efficiently—
e.g. using packaging methods that combine vertically pro-
cessor cores and memory—still almost 100% of the top
silicon on CPU dice is used for memory [12]. To further
complicate matters, the bulky packaging that is required
by larger memory also affects the power and cooling
requirements of devices because the memory subsystem is
a major energy consumer [1], [13].

The memory on smartphones typically varies from
512 MB (e.g. Apple iPhone 4) to 1 GB (e.g. Apple
iPhone 6). A substantial portion of this is reserved for the
operating system and multitasking. For example, on an iOS
device with 512 MB (or 1 GB) of memory, an application is
left with approximately 213 MB (or 550 MB, respectively),
assuming no background activity [9]. On an Apple iPad 3
with 1 GB of memory, this translates to allowing roughly
45 frames of uncompressed video to be resident in memory,
corresponding to 0.75 seconds of video at full frame rate—
a single frame requires 12 MB of bitmap data. Buffering
a second of full-screen video would therefore exhaust the
available memory.

Low system memory is one of the most common causes
of application crashes [14], making it perhaps the most crit-
ical resource for mobile devices. Unlike desktop operating
systems such as Mac OS, which allow for virtual memory to
“spill over” to stable storage, mobile platforms such as An-
droid and iOS provide no swap space to fall back on, mainly
due to the implications on application responsiveness and
battery lifetime [15]. Instead, they terminate applications
under low-memory conditions.

Another consequence of the limited availability of mem-
ory is the fact that platforms such as iOS do not support
proper multitasking [16]. While an active application can be
moved to a background state, iOS suspends it automatically
to conserve memory. The iOS app store review process im-
poses further constraints: short-lived background execution
is confined to specific application functions, such as audio,
location tracking, downloads or VoIP calls.

2.2 Existing Approaches
Memory-efficient application development. Mobile ap-
plication developers are given guidance how to implement
memory-efficient applications. They must comply with
manual memory management policies and follow specific
practices for allocating, deallocating and accessing applica-
tion state: e.g. reusing memory buffers, allocating memory
at the finest granularity, managing multiple memory pools
efficiently and reacting promptly to low-memory warnings
at runtime [17], [18], [19].

This places the burden of efficient memory management
on developers. It leads to additional development effort, and
assumes that developers have a good understanding of vari-
ous low-level memory management techniques available on
different mobile platforms.

Restricting mobile applications. For applications that are
intrinsically memory-intensive, mobile versions remain no-
ticeably inferior in terms of functionality compared to their

3

Profiler

A B

C D

Resource
consumption graph

Partitioner

A B

C D

Local Remote

Compiler

B

D
A

C

Fig. 1: Overview of the C-RAM system

desktop counterparts. For example, desktop games with ad-
vanced AIs, which require large in-memory data structures
for the AI computation (e.g. as used by the Latrunculi board
game [20] under Mac OS) have restricted mobile versions
in order to comply with the memory limits of mobile
devices—the iOS version of Latrunculi [21] offers fewer
AI difficulty levels to avoid exhausting the device memory.
Similarly, Adobe’s Photoshop editor, which utilises over
2 GB of RAM in the desktop version [22], has a mobile
version, Photoshop Touch, that imposes constraints on
image sizes due to insufficient device memory [23].

Specialising mobile applications. As more features are
added to mobile applications over time, their growth also in-
creases their memory footprint. Eventually, the application
may have to be split into multiple more specialised versions,
each focusing on a subset of the original functionality. As
evidence for this trend, popular feature-heavy mobile ap-
plications such as the Facebook, LinkedIn and Foursquare
clients have begun splitting themselves into multiple uni-
functional applications [24]. For example, Facebook re-
cently removed the messaging component from its client
application and released it as a stand-alone application, thus
reducing its application footprint considerably [25].

Using a client/server model. Mobile applications that
adopt a client/server model can exploit the memory re-
source of remote servers. Developers must however decide
on a split between the client- and server-side for an appli-
cation. This requires them to understand the resource re-
quirements of different application components, and judge
the amount of network traffic exchanged.

For simplicity, developers often adopt an extreme when
splitting an application between client and server function-
ality: they place all functions on the remote server, thus
turning the mobile application into a thin client [26]. A thin-
client model, however, requires network communication for
all functionality, even if it could have been implemented on
the mobile device only. We already witness that, without
network connectivity, a large class of today’s smartphone
applications cease to function [27].

3 APPLICATION STATE PARTITIONING

C-RAM helps developers create new mobile applications
or port existing desktop applications to a mobile platform
without having to worry about restrictions on the available
device memory. It automatically partitions application state
across the mobile device and a remote server, thus allowing
the application to have a memory footprint beyond the
capacity of the device.

C-RAM performs automatic source code rewriting to cre-
ate a partitioning of an Objective-C application. Objective-
C applications are composed of a set of classes. Each class
contains a number of fields and methods, which access
these fields. Classes are instantiated as objects at runtime,
which constitutes the application state. C-RAM partitions
applications at a class granularity, i.e. all objects of the
same class are assigned to a given partition. By distributing
objects among a local and remote node, C-RAM splits the
application state and distributes the computation.

As shown in Figure 1, C-RAM has three main compo-
nents: (1) the Profiler collects information about the mem-
ory and CPU consumption of application objects; (2) this
is used by the Partitioner to derive an efficient partitioning
that utilises the remote memory; and (3) the Compiler
realises the partitioning by rewriting the application source
code. Next we discuss these components in more detail.

3.1 Dynamic Resource Profiling
C-RAM uses dynamic profiling to measure the memory
and CPU consumption of the application and to identify
the call graph dependencies of an application under a set
of workloads. The Profiler collects information about (i) the
amount of memory used by objects of each class and (ii) the
average execution times of object methods on both the local
and remote nodes.

A profiling run p relates to one particular execution trace
in a workload. Multiple profiling runs P capture the appli-
cation behaviour for different inputs, chosen to represent
average workloads. C-RAM does not attempt to explore all
possible workloads exhaustively, but rather to identify parts
of the application that are consistently memory-intensive
and thus would benefit from remote placement.

C-RAM profiles each application twice: a local profiling
run lp records application behaviour on the local device; a
remote profiling run rp executes the application using a de-
vice emulator on the remote node. This is used to quantify
the memory that is consumed by the different application
objects. It also provides an upper bound on the performance
that a partitioning may achieve when the whole application
executes remotely, ignoring communication overheads.

Profiling methodology. The Profiler uses two techniques to
obtain profiling information. First, it utilises DTrace [28],
an efficient framework for fine-grained dynamic tracing,
to collect information about the memory consumption of
objects and interactions with platform-native functionality,
such as GUI libraries or the hardware sensors. DTrace in-
troduces probes, i.e. points of instrumentation, in supported
OS kernels. Probes can be composed to create custom
probes that are queryable at runtime. Custom probes are
compiled to binary code and patched dynamically into a
kernel, with only a modest runtime overhead. The Profiler
creates custom probes to log the memory activity of objects
and identify native method callers. This technique is used
only during remote profiling runs because applications that
exhaust the available device memory are forcibly termi-
nated on the mobile device.

4

Second, the Profiler automatically adds instrumentation
to the application source code to measure the duration
of each method. To correctly account for the time spent
in nested method invocations, it uses a per-thread global
stack to record durations. At the start of each method, the
contents of the call stack are used to construct a class call
graph, which is output on completion of a profiling run.

The latter technique is used during both the local and
remote profiling runs. The goal is to compare the execution
times of individual methods on each type of node to infer
the impact of offloading on application performance. Such
a comparison is only meaningful for application workloads
that do not exceed the available device memory. To assess
the accuracy of this technique, we measured the impact of
the code instrumentation on application performance and
observed a modest 8% overhead.

Profiling output. The primary output of each profiling
run p is a memory consumption relation M . Given an
application class x and a time t, M(x, t) denotes the
amount of memory consumed by all objects of class x at t.
This information is used to ensure that the total amount of
memory consumed by objects assigned to the local node
does not exceed its memory capacity.

The Profiler also outputs a CPU consumption graph, G =
(C, TL, TR, E), where C is a set of application classes,
T provides execution times for classes, and E specifies
call dependencies. For a class x ∈ C, TL(x) and TR(x)
return the average execution times of class x on the local
and remote nodes, respectively. E(x, y) is a pair (callsx,y,
datax,y) that states that an average of callsx,y calls from
methods in class x to y occurred, and each call used an
average of datax,y bytes for its arguments.

In the CPU consumption graph, a special node called
native amalgamates all library functions that offer I/O and
device-specific functionality. A list of these functions is
created manually once for a given platform such as iOS.
The Profiler uses DTrace to identify objects that call native
functions and thus cannot be placed remotely by C-RAM.

3.2 Partitioning Algorithm

C-RAM assigns each application class to a local or remote
set, which contain the classes hosted by the local and the
remote node, respectively. Based on the Profiler output,
the Partitioner decides how to partition classes so that the
memory consumed by local objects during execution does
not exceed the available device memory.

In addition, the Partitioner considers the execution times
of each object on both the local and remote nodes, as well
as the communication cost that each possible partitioning
entails. The goal is to provide the illusion of effectively
“unlimited” local memory by ensuring that the partitioned
application has a performance that is no worse than that of
the original version. To assess the ability of a partitioning to
achieve this goal, the Partitioner compares the performance
of a partitioned version and the original application for
workloads that do not exhaust the available device memory.

Given the above, a valid partitioning must satisfy the
following three constraints:
Constraint 1: An application class belongs either to local
or remote , but not both.
Constraint 2: The local node’s memory capacity mem is
sufficient to accommodate all local objects. (We assume
that the remote node’s capacity is effectively unlimited.)

∀rp ∈ P, ∀t
∑

x∈ local

M(x, t) < mem

Constraint 3: Classes in remote do not call native library
functions only available at the local node:

∀x ∈ remote @E(x,native) ∧ @E(native, x)

The Partitioner derives a set of valid partitionings V ,
which contains pairs of the form v = (local , remote). It
then selects the partitioning v ∈ V that minimises the
total execution time O, in an attempt to mask the network
overhead due to the partitioned execution.

We use a function Tnet(x) to express the time needed
to make a remote call over a network net such as Wi-
Fi or 3G, with x bytes for its arguments. Tnet is derived
experimentally by benchmarking the execution time of
remote calls with different arguments. This, combined with
the CPU profiling results, is used to estimate O as follows:

O(v) =
∑

x∈local

TL(x) +
∑

y∈remote

TR(y) +∑
x∈local

y∈remote

callsx,y × Tnet(datax,y) + callsy,x × Tnet(datay,x)

The execution time O for a partitioning v is the sum of:
(i) the execution time on the local node, i.e. the sum of all
TL(x) for classes in local ; (ii) the execution time on the re-
mote node, i.e. the sum of all TR(y) for classes in remote;
and (iii) the communication delay of calls between objects
residing on different nodes. This is equal to the number of
calls between any such pairs of classes, callsx,y , multiplied
by the average delay of each call, i.e. Tnet(datax,y). The
Partitioner selects the best partitioning using a standard
integer linear programming (ILP) approach.

3.3 Application Transformation
Next we describe how the Compiler transforms the Object-
ive-C application to implement a given partitioning. It splits
the source code into a local and a remote code partition that
are deployed on the local and remote nodes, respectively.

Proxy objects. Objects interact transparently across parti-
tions using proxy objects. A proxy object relays method
calls to an object residing on the other partition through
remote procedure calls (RPCs) [10]. An RPC sends a
request message to the remote node, which executes the
target method with the supplied parameters. While the
remote node executes a call, the caller thread blocks waiting
for a response message. Proxy objects are small, and their
size is independent of the size of the remote object.

After state partitioning, an object either resides on a parti-
tion or is represented by a proxy object. As a consequence,
pointers to objects passed as arguments to a remote call

5

Local Class A Proxy Class A

1: int field;
2: B* method1(B* arg) {...}
3: A* method2(A* arg) {...}
4: OID* entry1(OID* argID)
5: B* arg = get_proxy(argID);
6: return method1(arg).id;
7: OID* entry2(OID* argID)
8: A* arg = get_object(argID);
9: A* res = method2(arg);

10: return get_id(res);

11: OID* id;
12: RPC* rpc;
13: B* method1(B* arg)
14: OID* argID = get_id(arg);
15: OID* resID = rpc.entry1(argID);
16: B* res = get_object(resID);
17: return res;

18: A* method2(A* arg)
19: OID* resID = rpc.entry2(arg.id);
20: A* res = get_proxy(resID);
21: return res;

Original source code

Fig. 2: Example of a partitioned class

must be converted by the callee to the associated local or
proxy objects. The same applies to pointers returned by
remote calls, which must be converted by the caller.

To make these conversions, the Compiler assigns a
unique object identifier to each object on creation. The
object identifier is a pair of values: a boolean identifying the
partition and the memory address on that partition. Objects
can be referenced in cross-partition interactions through a
global identifier table, which maps identifiers to local and
proxy objects. When processing RPC calls, the referred
objects are retrieved based on their object identifiers.

Source code rewriting. The Compiler rewrites classes as
shown in Figure 2. In this example, we consider two classes,
A and B, that interact across partitions. Class A contains
two methods, method1 and method2, which accept one
parameter each: pointers to class B and class A objects,
respectively; method1 returns a pointer to a class B object
and method2 returns a pointer to a class A object. The
figure illustrates how class A is transformed into a local
class and a proxy class, which are placed on the local and
remote nodes, respectively.

In general, local classes retain their original fields and
methods (lines 1–3), with some modifications to handle in-
coming remote calls. Each method receives a corresponding
entry point method to serve incoming RPC requests. Given
an object identifier, it retrieves required local and proxy
objects from the identifier table and invokes the method
of the local object (lines 4–10). Proxy classes contain the
object identifier (line 11) of the object residing on the other
partition, and a reference rpc to an RPC object used to
initiate remote calls (line 12).

Our C-RAM prototype uses the Internet Communications
Engine (ICE) [29], an object-oriented RPC toolkit with
support for Objective-C. It automatically generates RPC
classes with the same method signatures as the underlying
classes to serialise and deserialise method parameters. In
the proxy class, the two methods are replaced with wrappers
that execute the remote calls. The remote calls are invoked
through the RPC object, after translating method parameters
with object pointers to the corresponding object identifiers
(lines 14 and 19). Returned pointer values are translated to
local (line 16) or proxy objects (line 20) using the identifier
table before returning them to the caller.
Object life-cycle. In Objective-C, the lifetime of an object
is managed by means of reference counting. NSObject is the
root class of most Objective-C class hierarchies, providing

1: RPC* requestRPC (string class_name)
2: switch(class_name) {
3: case "A":
4: A* obj = /* allocate new class A object */;
5: RPC* rpc = /* create new class RPC object for obj */;
6: return rpc;
7: case "B": ...
8: void release (int objID)
9: void* obj = get_proxy(objID);

10: if (obj == NULL) obj = get_object(objID);
11: obj.release();
12: void retain (int objID)
13: void* obj = get_proxy(objID);
14: if (obj == NULL) obj = get_object(objID);
15: obj.retain();

Fig. 3: Allocator class for managing object life-cycles

basic functionality. One of NSObject’s fields is retainCount
and denotes the number of ownership claims on an object.
When a new object is allocated, it has a retainCount of
one. When a method acquires ownership of an object,
it calls its retain method (inherited from NSObject) to
increment the retainCount; relinquishing ownership is done
by calling release. When retainCount becomes zero, the
object’s dealloc method is called automatically to free the
allocated memory.

This reference counting mechanism, however, is unaware
that C-RAM distributes objects across the local and re-
mote nodes. To allocate and deallocate partitioned objects
correctly, the Compiler therefore synthesises a new Allo-
cator class, shown in Figure 3. It provides a requestRPC
method that, given a class name, allocates a new object
on the remote partition and returns the associated RPC
object (lines 1–7). This object is then wrapped by the cor-
responding proxy class on the partition issuing the request.
Calls to release and retain on local and proxy objects are
intercepted and forwarded to the associated proxy and local
objects across partitions. This is done via the corresponding
methods provided by the Allocator class (lines 8–15).

Library access. C-RAM treats shared iOS library classes,
whose source code is not available, the same way as custom
application classes. Since Objective-C uses late-binding,
the implementation of library methods can be replaced at
runtime using method swizzling [30]: when the Objective-
C runtime loads a binary, all objects have their fields and
method implementations defined in memory, along with
a map associating method names with implementations.
These mappings can be modified at runtime by replacing
the original implementation with a user-defined function.
C-RAM is thus able to replace existing methods with
replacement methods that relay method invocations to the
corresponding library objects residing on the remote node,
as described in §3.3.

3.4 Discussion
Objective-C is a superset of the C programming language,
and, at present, C-RAM only supports object-oriented
Objective-C code, i.e. code that does not utilise pure C
data structures to maintain application state. If application
state is stored in C data structures, it may be accessed
directly using arbitrary pointers, e.g. by adding a byte offset
to a pointer. Such direct state access would complicate
the Compiler’s task of identifying all accesses to remote

6

application state in order to relay them to the appropriate
node during execution. In future work, we plan to extend
the Compiler to generate automatically wrapper classes for
C data structures, converting pointer references to object
method calls.

4 SNAPSHOT-BASED FAULT TOLERANCE

Partitioned application state makes it hard to mask network
failures. To revert to local execution after failure, it is nec-
essary to recover remote state after it becomes inaccessible.
C-RAM employs a fault tolerance mechanism in which the
local node periodically retrieves a snapshot of the remote
state, which is used to resume execution after failure.

This raises several challenges: (i) how to take consistent
snapshots across local and remote state; (ii) how frequently
to take snapshots, balancing freshness with overhead;
(iii) how to implement snapshots in Objective-C without
changes to the runtime system; and (iv) how to handle
remote state after failure that is larger than the available
memory of the device.

4.1 State Snapshots
A complete snapshot of the application state consists of
a local and a remote snapshot. A local snapshot has the
information needed to resume execution from a consistent,
well-defined point. It includes: (a) all active objects on the
heap; (b) the state of all machine registers, obtained using
inline assembly code; (c) the current user call-stack; and
(d) a table with object identifiers for all local objects. The
local snapshot is written as a byte array to flash memory.
Execution can resume from a local snapshot by overwriting
the allocated heap, machine registers and call-stack with the
data from the snapshot.

A remote snapshot is a byte array of serialised remote
objects, including: (a) their object identifiers; (b) the values
of all primitive fields; and (c) the object identifiers of fields
pointing to other objects. Previously remote objects can
be recreated locally from a remote snapshot as follows:
(1) primitive data fields are restored with the values from
the snapshot; (2) fields with pointers to other previously
remote objects are set to the corresponding object identifiers
so that the objects can be loaded on-demand (see §4.5);
and (3) fields with pointers to local objects, which used
to point to proxy objects on the remote node, are assigned
addresses of the corresponding local objects based on the
object identifiers from the snapshot.

4.2 Snapshotting Mechanism
Local and remote snapshots must be taken at exact execu-
tion points, i.e. before control of execution is transferred to
and from the remote node via remote calls. This ensures
that the local node always has a consistent view of the
entire application state (local and remote).

C-RAM’s snapshotting strategy, however, decouples the
transmission of snapshots from remote calls and permits an
arbitrary snapshot transmission frequency. The benefit of

t1 -- Start application

call R1 t4 --

12

t18 --

5

local remote

Remote Snapshot RS 2 14

call R3

t3 -- Local Snapshot LS 1

t16

t17 Local Snapshot LS 3

t8

t11

return R1

call R2

t9 Local Snapshot LS 2

Remote Snapshot RS 1 6-- t 7

t10 --

background

RS1

t19 -- Undo local updates using LS2

-- t15
t13

return R2

t2
thread

T

 --

 --

 --
 --

 --

 -- t
 -- t

 -- t
 -- t

Fig. 4: C-RAM’s snapshot-based fault tolerance mechanism

this approach is that when frequent remote calls modify a
large amount of remote memory, C-RAM can be configured
to reduce the impact of increased snapshot transmission
delays on application response time. This, however, comes
at the cost of potentially losing the most recent application
updates after failure. Since the most recent remote snapshot
available locally may be inconsistent with the current local
state, C-RAM may need to roll back the application to an
earlier point in time.
Snapshot creation. A remote snapshot is taken when
execution returns from the remote node to the local node. A
challenge is that remote calls may be nested, i.e. a remote
call may in turn execute a new call passing control back
to the local node. A local node is said to have control of
execution when it has no remote calls in progress, otherwise
execution is controlled by the remote node. Nested calls do
not transfer control.

After failure, the latest remote snapshot received by the
local node may be inconsistent with the local state. There-
fore, C-RAM also takes a local snapshot before transferring
control of execution to the remote node. This is then used to
roll back the local state to that snapshot, before rebuilding
the remote state to restart local execution after failure.
Snapshot transmission. C-RAM’s snapshotting mecha-
nism relaxes the requirement that each transfer of control
must include the transmission of the corresponding remote
snapshot. Instead, a background thread periodically trans-
fers updated remote snapshots at a configurable frequency.

After a failure, C-RAM periodically checks if connectiv-
ity to the remote node was restored. When this is the case,
it takes a snapshot of the objects that were originally part
of the remote partition and sends it to the remote node.
The remote node then updates pointers between objects
across partitions using proxy objects. Finally, remote code
offloading is enabled again.
Example. The operation of the snapshotting mechanism is
shown in Figure 4. The local node initiates three remote
calls R1–R3. The background thread transfers the latest
remote snapshot to the local node every T seconds. Re-
mote snapshots RS 1 and RS 2 are taken at t6 and t14,
respectively, before control of execution returns to the local

7

node. This ensures that they are consistent with the local
snapshots taken earlier (at t3 and t9).

Before the remote call R1 returns, a remote snap-
shot RS 1 is taken at t6. Note that local execution continues
at t8, before the transfer of RS 1 finishes at t13. The transfer
of RS 1 is concurrent with the next remote call R2 at t12,
which returns at t16.

Consider the case in which the next remote call R3 fails
at t18. The corresponding remote snapshot RS 2 was taken
at t14 but was not yet transferred to the local node before
the failure. At this point, the local node must reconstruct the
remote objects based on the last available remote snapshot,
which is RS 1. The local node thus reverts to the consistent
corresponding local snapshot, which in our example is the
local snapshot LS 2 from t9. Any updates to the local state
after t9 are not reflected in the remote snapshot RS 1 and
have to be discarded. Based on the snapshots RS 1 and LS 2,
the local node has access to the entire application state,
effectively reverting application execution back to t10.

4.3 Snapshot Frequency

By setting T = 0 s, remote snapshots are transferred to
the local node synchronously after each remote call, which
ensures that the local node always has an up-to-date copy
of all remote objects. The advantages of opting for a non-
zero snapshot frequency T are twofold: (1) applications
can transmit remote snapshots asynchronously to the local
node, in parallel with any computation that takes place on
either the local or remote node. The transmission cost is
thus amortised over time, reducing its impact on application
response time; (2) potentially less snapshotting data must
be sent because multiple updates to the same object may be
combined and only transferred once. The larger the snap-
shotting frequency T , the greater these benefits become. A
large value of T , however, also results in potentially more
application state being lost after failure.

4.4 Incremental State Snapshots

To reduce the size of snapshots, C-RAM creates incremen-
tal snapshots that only include modified objects since the
last snapshot. As a result, an individual remote snapshot
is no longer self-contained but depends on all previous
remote snapshots when reconstructing the latest version of
the remote node state during recovery.

For incremental snapshots, the Compiler statically analy-
ses the source code to identify when object state is updated:
for primitive data and pointer fields, updates are caused
by assignments; for collection data structures, such as
arrays and dictionaries, updates also include the addition or
removal of elements. The Compiler synthesises code that,
when a new object is allocated or its state is modified, it is
added to a global list of modified remote objects, dirtyObjs .
Object deallocations are modified to remove entries from
this list. When a remote snapshot is taken, only objects in
dirtyObjs are included in the snapshot. For easy reference,
each remote snapshot contains a hash table that maps each

object identifier to the remote snapshot with the most up-
to-date version of that object.

Since creation and transmission of snapshots are de-
coupled, multiple incremental snapshots may have to be
merged before transmission to avoid sending old state. C-
RAM uses a global snapshotList to store remote snapshot
entries per object that are pending transmission to the local
node. The list is updated when object state changes and
new snapshots are taken.

4.5 Virtual Memory Scheme
When reverting to local execution after failure, the appli-
cation state may be larger than the device memory. The
iOS platform does not support virtual memory and instead
terminates applications in low memory conditions.

To overcome this issue, C-RAM realises a virtual mem-
ory scheme at user level. Rather than restoring all objects
locally before resuming with local execution, the Compiler
synthesises code that loads remote objects from a snapshot
on demand. Such objects are added to a loadedObjs table,
indexed by their object identifiers. The Compiler statically
identifies points in the code at which methods of a remote
object are invoked. Before such an invocation, it adds
checks if, based on the object identifier, the object exists in
loadedObjs . When the caller is a proxy object, the object
identifier is passed in the id field; if the caller is another
instantiated remote object, it is derived from the object
identifier stored in the caller’s field that used to point to
the called object in the remote node’s address space. If
the remote object exists in loadedObjs , the call proceeds;
otherwise, the remote object is loaded from the remote
snapshot and added to loadedObjs .

The total size of objects is limited by the amount of
available device memory. When memory is exhausted, an
object from loadedObjs is evicted from main memory and
potentially written back to flash memory. In our prototype
implementation, objects are evicted at random subject to
two rules: (1) objects that are on the call stack must not
be evicted for correctness; and (2) priority is given to evict
“clean” objects, i.e. objects that have not been modified,
to avoid the cost of writing them back to flash memory.
Dirty objects are identified as part of the incremental
snapshotting technique from §4.4. Although more efficient
eviction policies exist, e.g. taking temporal and spatial
locality of references into account [31], [32], we defer their
exploration to future work.

4.6 Network Usage Throttling
State snapshotting can cause a significant increase in net-
work usage for applications that periodically update large
amounts of remote state. While the corresponding impact
on response time and energy consumption can be controlled
by a tunable snapshot interval (see §5), users on metered
mobile data plans would still be required to pay more when
using C-RAM.

To address this problem, C-RAM has a mechanism
for network usage throttling: offloading is disabled when

8

the traffic caused by C-RAM exceeds a threshold that
represents a user’s limit on network usage. The background
thread that transmits remote state snapshots to the device
also maintains the total network usage of the offloaded
application, and transmits snapshots only if the network
usage is below the specified threshold; otherwise, C-RAM
reverts to local execution using its virtual memory scheme.

4.7 Discussion
The snapshot-based fault-tolerance mechanism of C-RAM
assumes that only a single partition executes at any point
in time. This ensures that local and remote snapshots are
consistent with each other because remote calls synchronise
the local and remote state. This is not the case, however,
for multi-threaded applications, in which different threads
execute on both the local and remote nodes in parallel. This
means that state updates caused by local threads and in-
coming remote calls cannot be distinguished, necessitating
a more complex technique such as log-based recovery [33].

Our mechanism also assumes that applications have no
external side-effects such as network communication or file
I/O. Since C-RAM does not record which operations of
a method call that are not reflected in the state snapshots
executed successfully before failure, all such operations are
repeated on the local node during recovery. This may lead
to unexpected behaviour for operations with side-effects.

Operations with side-effects typically use dedicated iOS
library APIs, which C-RAM could be made to identify,
similar to how platform native method calls are handled as
part of the profiling step (see §3.1). In future work, we plan
to extend C-RAM to record operations with side-effects and
avoid repeating them during failure recovery.

5 EVALUATION

We evaluate C-RAM experimentally to investigate: (1) its
effect on applications that consume large amounts of mem-
ory during execution; (2) how application response times
are affected by application state partitioning using C-RAM;
(3) the effect that C-RAM has on network and energy
usage; and (4) the overheads of C-RAM’s fault tolerance
mechanism and its user-level virtual memory scheme.

5.1 Experimental Set-up
For our experiments, we use an Apple iPhone 4S as the
local node and a 2.26 Ghz Intel Core 2 Duo machine with
8 GB of RAM as the remote node. We use an 802.11 WiFi
network with an average round trip time (RTT) of 40 ms
and a bandwidth of 6.3 Mbps, and a 3G network with an
average RTT of 523 ms and a bandwidth of 0.4 Mbps.

We show how C-RAM enables developers to imple-
ment new or port existing memory-intensive applications
to mobile platforms assuming unlimited device memory by
applying C-RAM on three Objective-C applications. The
first two were ported from Mac OS to the iOS platform,
which only affected UI classes; the third was designed and
implemented as a monolithic mobile application.

Latrunculi board game. Latrunculi [20] is an open-source
board game, in which two players alternate moving pieces
until all opponent’s pieces have been captured. Its AI
component uses the minimax algorithm to search a tree of
future moves for the best next move. The search depth is
configurable and determines the strength of the game AI.
iSpreadsheet application. This application operates on
CSV files and supports a range of features, including load-
ing/saving and editing spreadsheets; sorting by row/column;
and calculating complex user-defined formulas over multi-
ple cells with operations such as sum, average and median.
Loading a spreadsheet file parses the CSV data and creates
objects for each cell; saving generates the corresponding
file from the spreadsheet objects. The application manages
arbitrary amounts of state depending on the size of the
spreadsheet file.
Content-based image retrieval (CBIR) application. This
application uses computer vision techniques to retrieve im-
ages based on user queries. It can be used to identify similar
products at a point-of-sale or faces in a video stream,
similar to systems such as Picalike [34], Empora [35] or
eBay’s Image Search [36]. The CBIR application searches
for images in a large in-memory database [37] based on
an input image. Using an in-memory database allows for
almost instant responses to search queries.

We apply C-RAM to the above applications, generating
partitionings based on the profiled workloads. For the
Latrunculi game, the profiling workload consists of a com-
plete game play for different AI search depths. C-RAM
creates a remote partition with the classes responsible for
maintaining the board and the game AI.

The profiling workload for the iSpreadsheet application
includes loading 2 MB–14 MB spreadsheets, sorting them,
calculating formulas and saving them. The obtained parti-
tioning places the classes responsible for the loading/saving
functionality (i.e. parsing and storing CSV files in appli-
cation objects and exporting the object representation of
a spreadsheet to CSV format, respectively), sorting and
calculation of formulas on the remote node.

Note that, since the spreadsheets are initially stored in
CSV format on the device’s flash memory, the loading and
saving of the spreadsheet under this partitioning requires
the transmission of the CSV data to and from the remote
node. The transmission cost for this, however, is low
because the CSV data is significantly smaller than the
object representation of the spreadsheet.

For the CBIR application, the profiling workload consists
of multiple queries by image content using variable-sized
image databases. C-RAM places the classes responsible
for maintaining the pre-processed image database and the
processing of user queries on the remote node.

5.2 Memory Utilisation
First we observe the memory utilisation of the parti-
tioned and unpartitioned versions of the above applications.
Figure 5 shows how C-RAM mitigates device memory
constraints by partitioning application state. We plot the

9

5

10

15

20

25

2375

2 3 4 5

M
em

or
y

(M
B)

AI Search Depth

Unpartitioned
C-RAM 233

2376

(a) Latrunculi

 0

 100

 200

 300

 400

 500

 600

 700

2 6 10 14

M
em

or
y

(M
B)

CSV File Size (MB)

Unpartitioned
C-RAM

(b) iSpreadsheet

 0

 100

 200

 300

 400

 500

 600

 700

 800

500 1000 1500 2000

M
em

or
y

(M
B)

Number of Images

Unpartitioned
C-RAM

(c) CBIR

Fig. 5: Maximum memory utilisation for different application workflows (with and without C-RAM)

maximum memory utilisation of all three applications as
a function of different application parameters that affect
memory consumption. For the Latrunculi game, we vary
the difficulty level by changing the AI search depth; for
the iSpreadsheet application, we consider different input
CSV files that are loaded—ranging from 2 MB–14 MB;
and, for the CBIR application, we vary the amount of
images included in the in-memory database, against which
user queries are executed. We compare memory utilisation
for (i) the unpartitioned; and (ii) the partitioned application
versions using C-RAM.

For the Latrunculi game (Figure 5a), the memory utili-
sation increases exponentially due to the increasing com-
plexity of the game AI. For a search depth above three,
the unpartitioned application is terminated due to insuffi-
cient memory; using C-RAM, the game continues to run,
exploiting the larger memory of the remote node.

For the iSpreadsheet application (Figure 5b), we measure
the memory footprint when loading a spreadsheet from
CSV files. The unpartitioned version cannot process CSV
files larger than 6 MB due to a lack of memory, while the
partitioned version continues to work.

Figure 5c shows the memory consumption of the CBIR
application with different image database sizes. The un-
partitioned version can only support up to 500 images,
limiting the search space for user queries. Using C-RAM,
however, the application can support an arbitrary number
of images, which is only limited by the memory available
on the remote node.

For all applications, C-RAM’s peak memory utilisation
slightly exceeds that of the unpartitioned version. This
increase is due to the additional metadata needed by the
snapshotting mechanism (see §4.1). It depends on the num-
ber of remote memory objects rather than the actual size of
the remote application state. For both the Latrunculi game
and the CBIR application, the peak memory utilisation
increases by at most 12% compared to the unpartitioned
versions. For the iSpreadsheet application, which has a
large number of remote objects (in the order of tens of
thousands of small spreadsheet cell objects), the increase is
28%. Note that this does not affect the local device because
any metadata is maintained by the remote node, which is
not memory-constrained.

Discussion. The above results show the effectiveness of

C-RAM in supporting memory-intensive applications on
mobile devices, without having to explicitly change their
design. The memory footprint of an application running on,
for example, an Apple iPhone 4S is no longer limited to
210 MB, but, as shown in Figure 5, can exceed 2 GB of used
memory. In doing so, C-RAM improves user experience
for all three applications: it enables a stronger game AI,
supports the processing of larger CSV files and allows
search over more images.

5.3 Application Response Time
We also investigate the performance impact of C-RAM and
its snapshot-based fault tolerance mechanism. Application
performance is calculated based on the average time to
respond to a series of user actions. For the Latrunculi game,
we measure a single move with a given AI depth; for
the CBIR application, we measure the time to conduct an
image search over a fixed-size image database. We consider
two workflows for the iSpreadsheet application: a simple
workflow in which a user loads a spreadsheet; and a complex
workflow in which a user loads a spreadsheet, sorts it by
a row and then sorts it by a column. For all experiments,
response time is measured over both WiFi and 3G network
connectivity; the results correspond to averaged values over
ten experimental runs.

First, we compare the performance of the unmodified
applications to that of the partitioned versions using C-
RAM. For these experiments, the workflows for each appli-
cation are chosen such that they can also execute entirely on
the device, i.e. without exhausting the device memory, for
which a performance comparison is possible. In particular,
we use an AI search depth of three for the Latrunculi game,
a 4 MB CSV file for the iSpreadsheet application, and an
in-memory database of 500 images for CBIR.

Second, we compare C-RAM against an approach that
uses virtual memory with on-demand paging to enable
applications to consume memory that exceeds the capacity
of the device. Since by default iOS does not support kernel-
level virtual memory, we instead use C-RAM’s virtual
memory scheme, which is implemented in user space. For
this set of experiments, we use an AI search depth of 4 for
Latrunculi, a 10 MB CSV file for iSpreadsheet and 1000
images for CBIR, all of which exhaust the device memory.
Comparison with original applications. Figure 6 shows
the speed-up achieved using C-RAM with different snapshot

10

1

3

5

7

9

11

13

15

C-RAM
T=0s

C-RAM
T=1s

C-RAM
T=30s

Sp
ee

d-
up

 fa
ct

or

Latrunculi
iSpreadsheet (simple)

iSpreadsheet (complex)
CBIR

(a) WiFi network

1/4

1/2

1

3

5

7

9

11

C-RAM
T=0s

C-RAM
T=1s

C-RAM
T=30s

Sp
ee

d-
up

 fa
ct

or

Latrunculi
iSpreadsheet (simple)

iSpreadsheet (complex)
CBIR

(b) 3G network

Fig. 6: C-RAM vs. Original applications (response time)

1

3

5

7

9

11

13

15

C-RAM
T=0s

C-RAM
T=1s

C-RAM
T=30s

Sp
ee

d-
up

 fa
ct

or

Latrunculi
iSpreadsheet (simple)

iSpreadsheet (complex)
CBIR

(a) WiFi network

1/4

1/2

1

3

5

7

9

11

C-RAM
T=0s

C-RAM
T=1s

C-RAM
T=30s

Sp
ee

d-
up

 fa
ct

or

Latrunculi
iSpreadsheet (simple)

iSpreadsheet (complex)
CBIR

(b) 3G network

Fig. 7: C-RAM vs. Virtual memory approach (response time)

 0

 20

 40

 60

 80

 100

C-RAM
T=0s

C-RAM
T=1s

C-RAM
T=30s

Br
ea

kd
ow

n
(%

)

WiFi WiFi WiFi3G 3G 3G

Remote Execution

(a) Latrunculi

 0

 20

 40

 60

 80

 100

C-RAM
T=0s

C-RAM
T=1s

C-RAM
T=30s

Br
ea

kd
ow

n
(%

)

WiFi WiFi WiFi3G 3G 3G

Snapshot Creation

(b) iSpreadsheet (simple)

 0

 20

 40

 60

 80

 100

C-RAM
T=0s

C-RAM
T=1s

C-RAM
T=30s

Br
ea

kd
ow

n
(%

)

WiFi WiFi WiFi3G 3G 3G

RPC Delays

(c) iSpreadsheet (complex)

 0

 20

 40

 60

 80

 100

C-RAM
T=0s

C-RAM
T=1s

C-RAM
T=30s

Br
ea

kd
ow

n
(%

)

WiFi WiFi WiFi3G 3G 3G

Synch. Transfers (for T=0s)

(d) CBIR

Fig. 8: Breakdown of application response times

frequencies T and for different application workflows. In
Figure 8, we break down the response time in terms of
the time spent on (a) remote code execution; (b) local
code execution; (c) state snapshot generation; (d) RPC
invocations; and (e) synchronous transfers of remote snap-
shots (when T=0 s). The asynchronous transfers of remote
snapshots (when T>0 s) are not included because they
occur concurrently with remote execution—users witness
the effects of a remote call before asynchronous transfers
are completed. We will show that, in practice, some of
the overhead of asynchronous transfers is reflected in the
remote execution times (see Figure 9).

Configuring C-RAM with T=0 s gives a lower bound
on the attainable speed-up because it transmits snapshots
of all remote state updates in a synchronous fashion. As
shown in Figure 6, with just one exception (the simple
iSpreadsheet workflow over 3G), application performance
still improves despite the additional transmission delays
of snapshots. Over WiFi, the speed-up is higher than the
corresponding speed-up over the 3G network, which is due
to the higher latencies of RPC calls and smaller bandwidth
of the 3G network: from 1.3× to 7.2× for WiFi and
from 0.4× to 2× for 3G. The break-down in Figure 8
confirms that, for T=0 s, the network delays associated with
synchronous snapshot transmissions contribute significantly
to the overall application response times.

We repeat the experiment with T=1 s and T=30 s, repre-
senting frequent and sporadic snapshots, respectively. Con-
sistently, a non-zero T outperforms T=0 s by decoupling
the transmission of snapshots from remote execution: from
3.5× to 9.7× for WiFi and from 2× to 8.6× for 3G. This

is due to the fact that the remote node continues to serve
remote calls in parallel to any asynchronous transmissions
of remote snapshots. For example, multiple calls related to
UI updates that occur after loading a spreadsheet can be
handled by the remote node before the transmission of the
large snapshot has completed.

For some applications, namely the Latrunculi game and
the CBIR application, the relatively modest performance
improvement of using a non-zero T does not justify the use
of asynchronous checkpoints and the associated potential
loss of state updates after failure. For the Latrunculi game,
the amount of modified remote state after each board move
is relatively small. (The state allocated by the game AI
for the tree search—although large—is only transient and
therefore not included in the snapshots.) The same applies
to the CBIR application, which does not modify any non-
transient remote state during the execution of a search
query. This can be seen in Figures 8a and 8d, respectively,
which show that the performance overhead due to snapshot
creation and synchronous transfers is relatively small.

In contrast, for the iSpreadsheet application with the
simple workflow, setting T=0 s can lead to a slow-down
in performance (see Figure 6b). This is caused by the
transmission cost of the large remote snapshots, which
include the entire spreadsheet data (see Figure 8b).

Comparison with pure virtual memory approach. Next
we compare C-RAM against an approach that uses only
C-RAM’s virtual memory scheme to allow an application
to consume more than the available device memory. Fig-
ure 7 shows that, across all our applications and work-
loads, C-RAM achieves a significant speed-up because the

11

0 30 60 90 120 150

T=1s

T=30s

Time (s)

Remote state snapshots received
(no roll-back required after failure)

aFT TransfersApplication response time

UI updates completed

180

Application Response Time Asynchronous Transfers

Fig. 9: Effect of T for iSpreadsheet (complex)

virtual memory scheme introduces a 19%–28% overhead
compared to the unmodified application execution. Virtual
memory with on-demand paging carries a fundamental
overhead, mostly due to the time to load and store applica-
tion objects from/to flash memory during execution. This is
a reason why current mobile platforms do not offer support
for on-demand paging to work around memory limitations.

Snapshot frequency. The choice of the snapshot fre-
quency T has implications on application performance.
Figure 9 shows the application response time for the
iSpreadsheet application (complex workflow) over 3G with
varying snapshot frequencies T . The black bars indicate the
duration of asynchronous snapshot transfers relative to the
application response time.

With a larger snapshot interval (T=30 s), the speed-
up is higher because remote execution is no longer con-
current with snapshot transmission, thus improving the
performance of the remote node. In addition, with higher
snapshot frequencies, overlapping updates to remote objects
are combined to obtain the latest version of the state, further
reducing the transmitted data.

For T=1 s, three distinct remote snapshots are taken, i.e.
one for each of the load, sort-by-row, and sort-by-column
operations, leading to three asynchronous transfers. With
T=30 s, only one remote snapshot is transferred, after all
three operations have completed. However, using a higher
snapshot frequency has the downside that execution may
need to roll-back more during failure recovery because
snapshots are received later by the local node (as indicated
by the end times of the black bars).

Discussion. C-RAM’s goal is to allow applications to utilise
memory that exceeds the available device memory. We
showed that, in contrast to an approach that merely uses a
virtual memory scheme, C-RAM achieves this goal while
reducing application response times: it benefits from the
faster CPU on the remote node to mask the additional com-
munication overhead due to its fault tolerance mechanism.

Different applications require different snapshotting fre-
quencies. For applications that do not modify large amounts
of state during remote execution, a snapshotting frequency
T=0 s is almost as efficient as T>0 s. Since the latter may
require rolling back execution after failure, such applica-
tions should use the former setting.

The asynchronous transmission of snapshots (T>0 s)
yields better performance for applications that may po-
tentially create large state snapshots by updating remote
state frequently. It decouples the transmission of snapshots

1/2

1

3

5

7

Latrunculi iSpreadsheet
(simple)

iSpreadsheet
(complex)

CBIR

En
er

gy
 e

ffi
ci

en
cy

fa
ct

or

C-RAM (WiFi)
C-RAM (3G)

Fig. 10: Effect of C-RAM on device energy consumption

from remote execution. In general, the best strategy to be
used for a given application can be decided during a post-
partitioning profiling run when the application’s behaviour
with regards to remote state updates can be observed.

5.4 Energy Usage

To investigate C-RAM’s impact on energy consumption,
we use Apple’s Energy Usage Instrument [38]. This tool
captures information about the energy consumed on a
device and outputs the relative energy usage. For this set
of experiments, we set T=0 s to account for all snapshot
transfers from the remote node to the device.

In Figure 10, we compare the energy usage of C-RAM
with that of the unmodified applications for the same
workloads as used in §5.3. During snapshot transmission
and RPC calls, the energy usage level is approximately
12% and 21% (over WiFi and 3G, respectively) higher
than during local execution. Nevertheless, we observe that,
in the majority of cases, C-RAM is overall more energy
efficient than the original applications because execution
time is significantly reduced. In particular, over WiFi, C-
RAM is able to achieve reductions in energy consumption
by 1.4–6.2×. Energy savings diminish when using a 3G
network (at most 1.6×) due to the fact that 3G consumes
more energy and increases transmission delays.

In some cases, such as iSpreadsheet’s simple workflow
over 3G, energy consumption can increase considerably
using C-RAM. This is due to the transmission of a large
snapshot that contains the entire spreadsheet data when
loading a spreadsheet initially. For this simple workflow, the
energy savings due to remote execution are not enough to
compensate for the associated snapshot transmission cost.
Nevertheless, usually this overhead is a one-time cost that
is followed by compute-intensive processing on the loaded
data, and is therefore masked over time by the savings
due to remote execution (as in the case of the complex
workflow, which is a superset of the simple workflow).

Discussion. Although C-RAM primarily aims to extend
the memory of mobile devices, it can also save energy.
However, similar to the speed-ups observed for execution,
energy savings are not guaranteed for all applications—they
are instead a consequence of C-RAM’s state partitioning
approach, which tries to mask the associated network
overhead by distributing execution accordingly.

12

 0
 20
 40
 60
 80

 100
 120
 140

 0 50 100 150 200 250 300
 0
 5
 10
 15
 20
 25
 30

M
em

or
y

(M
B)

N
et

w
or

k
(M

B)

Time (s)

Memory Usage
Network Usage

 Local Remote

Network
threshold

Fig. 11: Network usage throttling for iSpreadsheet

100

300

500

700

∞

25 50 75 100

Su
pp

or
te

d
st

at
e

si
ze

 (M
B)

Network threshold (MB)

C-RAM Virtual Memory only (degraded performance)
C-RAM offloading (good performance)

Fig. 12: Effect of network threshold on supported state sizes

5.5 Network Usage

We also measured the network usage during the above ex-
periment. For the Latrunculi game, most of the remote state
is transient, therefore resulting in small snapshots (43 KB).
Similarly, for CBIR, a snapshot of individual image objects
is small because it does not contain the image itself but
rather its unique path identifier (the image database is
part of the application’s bundle, which is present on both
the local and remote nodes), totaling 32 KB of network
traffic. For the spreadsheet application, snapshots are larger
(21 MB and 29 MB for the simple and complex workflows,
respectively) but still remain significantly smaller than the
corresponding object representation of spreadsheets.

Figure 11 shows the impact of the network usage throt-
tling mechanism (see §4.6). We set the network threshold
to 25 MB and plot the device memory and network usage
for the complex spreadsheet workflow over 3G. Initially,
memory usage remains low because the bulk of the appli-
cation state resides remotely. Network usage then increases
due to the transmission of large state snapshots, but once
the specified threshold is exceeded, C-RAM reverts to local
execution to avoid further transfers. As a result, memory
consumption increases due to the remote state that is
instantiated on the device during local execution.

Based on the same set-up, Figure 12 shows how the net-
work usage threshold affects the application. For different
thresholds, we show how much application state C-RAM
can offload to the remote node without having to revert to
local execution (using C-RAM’s virtual memory scheme).
By increasing the threshold, more application state can be
offloaded, thus augmenting device memory without trading
off performance.

200

400

600

800

1000

1200

2600

2 4 6 8

Ti
m

e
(s

)

File Size (MB)

()

C-RAM - aFT (T=30s)
Unpartitioned

Post-Failure C-RAM
Flash Memory Reads

2589

Fig. 13: Post-failure overhead for iSpreadsheet

5.6 Post-Failure Overhead
Next we explore the overhead of C-RAM’s user-level
virtual memory scheme, which loads objects on-demand
after failure recovery (see §4.5). We compare the re-
sponse time of the iSpreadsheet application when sorting
spreadsheets of different sizes with (i) an unpartitioned
application (local execution); (ii) remote execution using
C-RAM; and (iii) post-failure execution using C-RAM, i.e.
local execution with on-demand loading of remote objects
from snapshots stored in flash memory. The values for post-
failure execution include recovery times, which are on the
order of milliseconds. We also indicate the time required
to load objects from flash memory.

Figure 13 shows that, for all state sizes, C-RAM achieves
a speed-up of approximately 14× compared to unparti-
tioned execution. For state sizes above 8 MB, the unparti-
tioned execution exhausts memory, while C-RAM resumes
local execution after a failure using its virtual memory
scheme. After failure, local execution exhibits approxi-
mately a 25% reduction in performance—15% is caused by
the object loading from flash memory, and the rest is due
to the additional checks if objects are present in memory.

6 RELATED WORK

Next we discuss previous work on cloud-assisted execution,
application partitioning, and checkpointing and logging.

Cloud-Assisted Execution. Balan et al. [39] first intro-
duced cyber foraging, i.e. the opportunistic use of re-
mote resources to augment smartphone capabilities. With
the rise of cloud computing, this idea generated interest
in the systems community, leading to proposals such as
Cloudlets [40] and Virtual Smartphone over IP [26]. Both
approaches treat smartphones as thin clients served by
virtual device images on remote servers. In contrast to C-
RAM, this requires a high-bandwidth network, and execu-
tion cannot continue in the absence of network connectivity.

Over time, cyber foraging took the form of more rigorous
offloading systems such as MAUI [41], Thinkair [42],
CloneCloud [43], POMAC [44] and EdgeReduce [45].
These approaches apply a more fine-grained partitioning
with optimisation goals such as reducing application re-
sponse times, energy consumption, or the network traffic
between mobile applications and backend services. Appli-
cations are partitioned by either converting local method

13

calls into remote calls, migrating entire VM images from
the device to a remote server, or intercepting method
invocations at the VM instruction level, which are then
redirected to a remote server for execution. The state of
applications is typically transferred back and forth with ev-
ery offloaded function call. Alternatively, approaches such
as COMET [46] and UpShift [47] use distributed shared
memory (DSM) to maintain replicas of the application state
across nodes and propagate only changes when offloading.
This requires support for DSM by the runtime system and
incurs the intrinsic cost of DSM.

Other offloading approaches have focused more on re-
ducing the overheads associated with cloud-assisted ex-
ecution. Cloudlet + Clone [48] and LOCO [49] reduce
communication delays due to offloading by either intro-
ducing a nearby middle layer between devices and dis-
tant cloud-based nodes or leveraging available devices in
the vicinity of mobile users to serve as remote nodes.
COSMOS [50] further improves performance by scheduling
offloading requests intelligently to reduce contention for
cloud resources. It also makes offloading decisions that
account for the high variability in network conditions;
similarly Smartphone Energizer [51] makes more informed
offloading decisions based on a wider set of contextual
information. Berg et al. [52] propose capturing partial
results of offloaded code to handle cases where offloaded
execution is interrupted by network failures.

While the above systems focus on compute, energy or
network resources, C-RAM’s goal is to extend memory.
Therefore existing offloading approaches do not partition
application state permanently between the local and remote
nodes, but instead always keep the state locally. For each
offloaded function call, application state is transferred to the
remote node for computation and then migrated back. This
restricts application memory usage to the available device
memory. In contrast, C-RAM aims to facilitate memory-
intensive applications via state partitioning, which allows
applications to maintain a large amount of state remotely.

Application Partitioning. Application partitioning has also
been investigated outside the context of cloud-assisted
execution. J-Orchestra [53] automatically partitions Java
applications using byte code rewriting. Similar to C-RAM,
it exploits proxy objects but it is simpler due to Java’s
higher-level, type-safe object model, especially with regard
to memory management. It also only offers a partitioning
mechanism without policies and does not handle failures.

Coign [54] partitions binary applications built from COM
components. It applies a graph-cutting algorithm to the
component communication graph of an application. In
contrast, C-RAM operates at the source-code level and does
not assume an already modularised application architecture.

Swift [55] splits web applications in a secure fashion
using information flow analysis, with the goal of improving
UI response times. Developers express security policies
through declarative annotations to guide the partitioning
process, while static analysis is used to identify data flow
between methods. A traditional max-flow min-cut algorithm

outputs the placement of code and data. Fabric [56] is a
system for building secure distributed information systems.
It partitions applications across a set of heterogeneous
storage, worker and dissemination nodes. Both Swift and
Fabric assume high-level languages with annotations for
application development whereas C-RAM targets existing
applications written in a low-level C dialect.

Wishbone [57] partitions dataflow applications between
sensors and servers to minimise network and CPU usage for
high-rate data processing applications. It estimates resource
requirements at compile time by profiling functions against
sample data. In contrast to C-RAM, Wishbone assumes a
sensing application structured as a data processing pipeline.

Checkpointing and Logging. Rollback-recovery tech-
niques have been used for failure recovery and debugging.
Toolkits like DMTCP [58] and CLIP [59] allow transparent
user-level checkpointing of distributed applications, relying
on single process checkpointers, namely MTCP [60] and
libckpt [61]. Both copy entire memory regions and per-
thread metadata to disk, which are used to roll back
execution by restoring memory contents. libckpt supports
additional optimisations such as incremental and copy-
on-write checkpointing using page protection hardware to
capture only the updated state since the last checkpoint.

While coordinated checkpointing of multiple processes
requires suspending execution, the task of C-RAM is easier:
with only two nodes, consistent snapshots are taken when
control is transferred via remote calls. Merging local and
remote snapshots, however, requires semantic knowledge,
making techniques that copy entire heap regions or memory
pages not applicable. Since access to page protection mech-
anisms is unavailable under iOS, C-RAM uses program
analysis to detect updates to object state.

Rx [62] is a rollback-recovery technique used for recov-
ering from software bugs. Based on checkpoints, shadow
processes are forked and immediately suspended to be used
as replacements after failure. Since the fork system call is
not available under iOS, this approach cannot be used.

Log-based techniques [33], [63], [64] model applica-
tion execution as a sequence of intervals starting with a
non-deterministic event (e.g. user input or state changes
based on a random number generator). They log all non-
deterministic events to stable storage and maintain consis-
tent checkpoints. As part of recovery, they replay events
in the original order from the most recent checkpoint to
recreate the application state.

The benefit of log-based techniques is that application
state is reconstructed entirely after failure. This assumes,
however, that all non-deterministic events can be identified
and logged, which requires an understanding of the applica-
tion logic, thus contradicting C-RAM’s goal of automated
application state partitioning. For example, in the Latrunculi
game (see §5.1), the game AI’s next move is chosen at
random from a set of best moves. A log-based approach
would have to log this random choice, requiring knowledge
of the internals of the application.

14

7 CONCLUSIONS

C-RAM is a system that automatically partitions the state
of Objective-C applications to allow them to execute on
memory-constrained devices by leveraging the memory
of remote nodes. Remote state may become inaccessible
after network failure, and C-RAM overcomes this problem
through a new snapshot-based fault tolerance mechanism.
State changes are periodically backed up to the device,
which can thus recover lost state after a failure. To support
application states that are larger than the device memory
after network failure, C-RAM loads objects from snapshots
on-demand with the help of a virtual memory scheme
implemented at user level.

C-RAM is implemented under iOS without platform
modifications or changes to the Objective-C language. We
showed experimentally that C-RAM supports the execution
of application workloads that would otherwise exhaust local
memory. It also takes advantage of the remote node’s faster
CPU to execute compute-intensive application code when
possible, thus controlling the impact of partitioned execu-
tion on application performance and energy consumption.

REFERENCES

[1] B. Diniz, D. Guedes, W. Meira, Jr., and R. Bianchini, “Limiting the
Power Consumption of Main Memory,” in ISCA, 2007.

[2] Mashable, Wearable Devices, 2014, http://goo.gl/RmqXq4.
[3] Young, Elisabeth, 90 Million Wearable Devices Expected to Ship in

2014, 2014, http://goo.gl/PPXJvU.
[4] Apple, Shredder Chess, 2009, http://goo.gl/bHdB9y.
[5] ——, Reversi, 2008, http://goo.gl/ZoZHwp.
[6] ——, Lumify Video Editor, 2013, http://goo.gl/xfxDaz.
[7] ——, Magisto - Magical Video Editor, 2013, http://goo.gl/SRA44o.
[8] Google, Google Glass, http://www.google.com/glass/.
[9] D. Crawford, Why mobile apps are slow, 2013, http://goo.gl/7fK168.
[10] A. D. Birrell and B. J. Nelson, “Implementing Remote Procedure

Calls,” in TOCS, 1984.
[11] Samsung, Mobile Memory Package, 2014, http://goo.gl/iqYKou.
[12] iFixit, Apple A6 Teardown, 2014, http://goo.gl/XObLF7.
[13] Greenberg, Marc and Allan, Graham, LPDDR4 DRAM Meets Mobile

Power and Performance Demands, 2014, http://goo.gl/Ac3itt.
[14] Levin, Jonathan, Handling low memory conditions in iOS and

Mavericks, 2013, http://goo.gl/i4dSPV.
[15] Ars Technica, The Apple Ecosystem, 2013, http://goo.gl/m05hrn.
[16] Speirs, Fraser, Misconceptions About iOS Multitasking, 2012, http:

//goo.gl/7CGu2J.
[17] Apple, Advanced Memory Management Programming Guide, 2014,

http://goo.gl/Y5JeSf.
[18] ——, Optimizing Memory Performance, 2014, http://goo.gl/aKejZT.
[19] ——, Memory Usage Perf. Guidlines, 2014, http://goo.gl/B7XSOg.
[20] Latrunculi, Latrunculi, 2006, mactrunculi.sf.net.
[21] Stricker, Sandro, Latrunculi LE, 2009, http://goo.gl/XyF3ZF.
[22] Mac Performance Guide, Monitoring How Much Memory Is Used,

2009, http://goo.gl/qhJn0g.
[23] Joemmac, Photoshop Touch, 2012, http://goo.gl/53KuTf.
[24] Mallin, Noah, Why Are Facebook, LinkedIn and Foursquare Splitting

Their Apps?, 2014, http://goo.gl/x7Xzyg.
[25] TechTimes, Facebook users on iOS, 2014, http://goo.gl/aYwT2s.
[26] E. Y. Chen and M. Itoh, “Virtual Smartphone over IP,” in WOW-

MOM, 2010.
[27] AnywhereTS, Why Thin Clients, 2014, http://goo.gl/2YEhYd.
[28] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic

Instrumentation of Production Systems,” in USENIX ATC, 2004.
[29] ZeroC, Internet Comm. Engine (ICE), 2005, zeroc.com.
[30] CocoaDev, MethodSwizzling, 2013, http://goo.gl/lQmuYZ.
[31] N. Megiddo and D. S. Modha, “ARC: A Self-Tuning Low Overhead

Replacement Cache,” in FAST, 2003.
[32] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee, “CFLRU: A

Replacement Algorithm for Flash Memory,” in CASES, 2006.

[33] J. F. Bartlett, “A NonStop Kernel,” in SOSP, 1981.
[34] Picalike, Picalike Visual Technologies, 2014, http://goo.gl/Y5MM8f.
[35] Empora, Empora Group, 2014, http://www.empora.com.
[36] Ebay, More Like This, 2014, http://www.ebay.co.uk/mlt.
[37] PASCAL, The PASCAL Object Recignition Database Collection,

2014, http://goo.gl/6eiQcS.
[38] Apple, Energy Usage Instrument, 2014, http://goo.gl/7Sv4Dp.
[39] R. Balan, J. Flinn, M. Satyanarayanan, H.-I. Yang, and S. Sinnamo-

hideen, “The Case for Cyber Foraging,” in SIGOPS, 2002.
[40] M. Satyanarayanan, P. Bahl et al., “The Case for VM-based

Cloudlets in Mobile Computing,” in IEEE PerCom, 2009.
[41] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,

R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
With Code Offload,” in MobiSys, 2010.

[42] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic Resource Allocation and Parallel Execution in the Cloud
for Mobile Code Offloading,” in INFOCOM, 2012.

[43] B. Chun, S. Ihm et al., “CloneCloud: Elastic Execution Between
Mobile Device and Cloud,” in EuroSys, 2011.

[44] M. A. Hassan, K. Bhattarai et al., “POMAC: Properly Offloading
Mobile Applications to Clouds,” in HotCloud, 2014.

[45] A. Pamboris and P. Pietzuch, “EdgeReduce: Eliminating Mobile
Network Traffic Using Application-Specific Edge Proxies,” in Mo-
bileSoft, 2015.

[46] M. S. Gordon, D. A. Jamshidi et al., “COMET: Code Offload by
Migrating Execution Transparently,” in OSDI, 2012.

[47] C.-K. Lin and H. T. Kung, “Mobile App Acceleration via Fine-Grain
Offloading to the Cloud,” in HotCloud, 2014.

[48] C. M. S. Magurawalage, K. Yang, L. Hu, and J. Zhang, “Energy-
Efficient and Network-Aware Offloading Algorithm for Mobile
Cloud Computing,” in Computer Networks, 2014.

[49] A. Ferrari, D. Puccinelli, and S. Giordano, “Code Offloading on
Opportunistic Computing,” in PerCom Workshops, 2014.

[50] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and
E. Zegura, “COSMOS: Computation Offloading As a Service for
Mobile Devices,” in MobiHoc, 2014.

[51] A. Khairy, H. H. Ammar, and R. Bahgat, “Smartphone Energizer:
Extending Smartphone’s Battery Life with Smart Offloading,” in
IWCMC, 2013.

[52] F. Berg, F. Dürr, and K. Rothermel, “Optimal Predictive Code
Offloading,” in MOBIQUITOUS, 2014.

[53] E. Tilevich and Y. Smaragdakis, “J-Orchestra: Enhancing Java Pro-
grams With Distribution Capabilities,” in TOSEM, 2009.

[54] G. C. Hunt and M. L. Scott, “The Coign Automatic Distributed
Partitioning System,” in OSDI, 1999.

[55] S. Chong, J. Liu et al., “Secure Web Applications via Automatic
Partitioning,” in SIGOPS, 2007.

[56] J. Liu, M. D. George et al., “Fabric: A Platform for Secure
Distributed Computation and Storage,” in SOSP, 2009.

[57] R. Newton, S. Toledo et al., “Wishbone: Profile-based Partitioning
for Sensornet Applications,” in NSDI, 2009.

[58] J. Ansel, M. Rieker et al., “User-level Socket-based Checkpointing
for Distributed and Parallel Computation,” in CoRR, 2007.

[59] Y. Chen, J. S. Plank, and K. Li, “CLIP: A Checkpointing Tool for
Message-passing Parallel Programs,” in Supercomputing Conf., 1997.

[60] M. Rieker, J. Ansel, and G. Cooperman, “Transparent User-Level
Checkpointing for the Native Posix Thread Library for Linux,” 2006.

[61] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
Checkpointing under Unix,” in USENIX ATC, 1995.

[62] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: Treating Bugs
as Allergies,” in SIGOPS, 2005.

[63] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, “Fault
Tolerance Under UNIX,” in TOCS, 1989.

[64] R. Strom and S. Yemini, “Optimistic Recovery in Distributed Sys-
tems,” in TOCS, 1985.

Andreas Pamboris received his Ph.D. degree in computer sci-
ence from Imperial College London. He is currently a post-doctoral
researcher in the Department of Computing at Imperial College
London, conducting research on mobile cloud and edge computing.

Peter Pietzuch received his Ph.D. degree in computer science from
the University of Cambridge. He is currently a Reader (Associate
Professor) in the Department of Computing at Imperial College
London, leading the Large-scale Distributed Systems (LSDS) group
that does research on scalable software systems of any kind.

http://goo.gl/RmqXq4
http://goo.gl/PPXJvU
http://goo.gl/bHdB9y
http://goo.gl/ZoZHwp
http://goo.gl/xfxDaz
http://goo.gl/SRA44o
http://www.google.com/glass/
http://goo.gl/7fK168
http://goo.gl/iqYKou
http://goo.gl/XObLF7
http://goo.gl/Ac3itt
http://goo.gl/i4dSPV
http://goo.gl/m05hrn
http://goo.gl/7CGu2J
http://goo.gl/7CGu2J
http://goo.gl/Y5JeSf
http://goo.gl/aKejZT
http://goo.gl/B7XSOg
mactrunculi.sf.net
http://goo.gl/XyF3ZF
http://goo.gl/qhJn0g
http://goo.gl/53KuTf
http://goo.gl/x7Xzyg
http://goo.gl/aYwT2s
http://goo.gl/2YEhYd
zeroc.com
http://goo.gl/lQmuYZ
http://goo.gl/Y5MM8f
http://www.empora.com
http://www.ebay.co.uk/mlt
http://goo.gl/6eiQcS
http://goo.gl/7Sv4Dp

	Introduction
	Background
	Memory Limitations on Mobile Devices
	Existing Approaches

	Application State Partitioning
	Dynamic Resource Profiling
	Partitioning Algorithm
	Application Transformation
	Discussion

	Snapshot-Based Fault Tolerance
	State Snapshots
	Snapshotting Mechanism
	Snapshot Frequency
	Incremental State Snapshots
	Virtual Memory Scheme
	Network Usage Throttling
	Discussion

	Evaluation
	Experimental Set-up
	Memory Utilisation
	Application Response Time
	Energy Usage
	Network Usage
	Post-Failure Overhead

	Related Work
	Conclusions
	References
	Biographies
	Andreas Pamboris
	Peter Pietzuch

