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ABSTRACT 

 
 
Dendrimers are a novel class of highly branched polymers with a high degree of 

uniformity and monodispersity. As a result of the unique properties and characteristics 

of dendrimers, they have found a wide range of pharmaceutical applications. This study 

investigated the ability of polyamidoamine (PAMAM) dendrimer-based drug delivery 

systems to enhance the permeability of a drug that is a substrate of P-glycoprotein (P-gp) 

efflux transporter with low water solubility. This thesis described the syntheses, 

characterisations and biological evaluations of the dendrimer-based drug delivery 

system to overcome the cellular barriers. 

 

G3 PAMAM dendrimers were conjugated with lauryl chains via a carbamate bond. 

Paclitaxel, a low water solubility P-gp substrate and anti-tumour drug, was conjugated 

to G3 and/or lauryl-G3 PAMAM dendrimer conjugates via a glutaric anhydride linker. 

Unmodified G3 PAMAM dendrimer and all the dendrimer conjugates (lauryl-G3 and 

G3-drug conjugates) were labelled with fluorescein isothiocyanate (FITC) for 

quantitative detection by spectrofluorimetry in permeability studies. These conjugates 

were characterised using various techniques including thin layer chromatography, 1H 

and 13C NMR, ESI-MS and dynamic light scattering. Chemical stability studies showed 

that the tested dendrimer conjugate (FITC-G3L6-glu-pac) was stable at all test pHs (1.2, 

7.4, and 8.5) after 48 h of incubation at 37oC. The ester bond of the conjugate was stable 

under several chemical conditions after 10 days of incubation. 

 

Biological evaluation of the dendrimer conjugates was initially conducted using Caco-2 

cells. Lactate dehydrogenase (LDH) release assay showed that conjugation of lauryl 

chains and paclitaxel molecules on the surface of G3 PAMAM dendrimer significantly 

(p < 0.05) increased the cytotoxicity in Caco-2 cells. The permeation of G3 PAMAM 

dendrimer and drug conjugates was investigated by measuring the apparent permeability 

coefficient (Papp) in both apical to basolateral A B and B A directions across Caco-2 

cell monolayers at 37oC. The B A Papp of paclitaxel was found to be significantly (p < 

0.05) higher than the A B Papp, indicating active function of P-gp efflux transporter 

system in the cell model. Covalent conjugation of paclitaxel to G3 PAMAM dendrimer 
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via a glutaric anhydride linker significantly (p < 0.05) increased its A B Papp through 

Caco-2 cell monolayers. A more pronounced increase of paclitaxel permeation was 

observed when surface modified G3 PAMAM dendrimers with six lauryl chains were 

used as the carrier. L6-G3-glu-pac was found with highest permeability across the 

Caco-2 cell monolayers. The results suggested that G3 PAMAM dendrimer-based drug 

delivery systems enhance the permeability of paclitaxel and bypass P-gp efflux 

transporter system in Caco-2 cell monolayers, thereby overcoming the intestinal barrier. 

 

Further biological evaluation was carried out using porcine brain endothelial cells 

(PBECs) as a blood-brain barrier (BBB) cell model to examine the potential of G3 

PAMAM dendrimer as a carrier for paclitaxel (P-gp substrate) to bypass the BBB. Cell 

culture conditions of PBECs were monitored and examined to establish optimal 

conditions for cell growth. PBECs were successfully cultured with characteristic 

elongated spindle-like morphology. Integrity of the cell monolayers was evaluated by 

measuring the transendothelial electrical resistance (TEER) across the cell monolayers. 

Successfully cultured cell monolayers that achieved TEER values of higher than 200 

Ω.cm2 were used for permeability studies. Elevation of TEER was observed when 

PBEC monolayers were cultured in the serum-free medium with hydrocortisone and 

treated with the cAMP/RO-20-1724 solution mixture. 

 

G3 PAMAM dendrimer was found to be relatively non-toxic to PBECs compared to all 

other conjugates. Conjugation of lauryl chains and paclitaxel molecules on the surface 

of G3 PAMAM dendrimer significantly (p < 0.05) increased the cytotoxicity in PBECs, 

as assessed by LDH assay. Permeability studies of paclitaxel across the PBEC 

monolayers showed a similar transport profile to that of Caco-2 cell. The significant 

higher B A Papp of paclitaxel compared to the A B Papp indicated active function of 

P-gp efflux transporter system in the cell model. The A B Papp of L6-G3-glu-pac was 

found to be approximately 12 fold greater than that of free paclitaxel across the PBEC 

monolayers, where lauryl chains were acting as permeability enhancer. The cytotoxicity 

and permeability results using PBECs were found to be in good agreement with the 

findings when Caco-2 cells were used as the cellular barrier cell model.  
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From these studies, it can be concluded that G3 PAMAM dendrimers-based drug 

delivery systems are potential nanocarriers for low solubility and P-gp substrate drug to 

bypass the P-gp efflux transporter system and overcome cellular barriers. 
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ABBREVIATIONS 

 
 
A   Apical 

ABC   Adenosine triphosphate binding cassette 

ATP   Adenosine triphosphate 

B   Basolateral 

BBB   Blood-brain barrier 

BCEC   Brain capillary endothelial cell 

BCRP   Breast cancer resistance protein 

Caco-2   Human Caucasian colon adenocarcinoma 

cAMP   3′, 5′-cyclic monophosphate sodium salt  

Da   Dalton 

DCM   Dichloromethane  

DMEM  Dulbecco’s Modified Eagle’s Medium 

DMF   Dimethylformamide  

DMSO   Dimethyl sulfoxide 

DNA   Deoxyribonucleic acid  

DPC    Diphenyl phosphoryl chloride  

EDA    Ethylenediamine 

EDTA   Ethylenediaminetetraacetic acid 

ESI-MS  Electrospray ionisation-mass spectrometry  

EtOAc   Ethyl acetate  

FITC   Fluorescein isothiocyanate 

FBS   Foetal bovine serum  

G   Generation 

G3-Lx/ Lx-G3  G3 PAMAM-lauryl conjugates/ lauroyl-G3 PAMAM conjugates 

G3-glu-pac  G3-glutarate-paclitaxel 

GI   Gastrointestinal 

glu   Glutarate 

GLUT1  Glucose transporter 1 

HBSS   Hank’s Balanced Salt Solution 

HEPES  4-(2-hydroxylethyl)-1-piperazineethanesulfonic acid 
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HIV   Human immunodeficiency virus 

L   Lauroyl chain  

Lx-G3-glu-pac Lauryl-G3-glutarate-paclitaxel  

LDH   Lactate dehydrogenase 

[M+]   Mass of positive ion 

mAb   Monoclonal antibody 

MDR   Multidrug resistance 

MRP   Multidrug resistance-associated protein 

MW   Molecular weight 

NHS    N-hydroxysuccinimide 

NMR   Nuclear magnetic resonance  

pac    Paclitaxel  

PAMAM  Polyamidoamine 

Papp   Apparent permeability coefficient 

PBS   Phosphate buffer saline 

PEG   Poly (ethylene glycol) 

P-gp   P-glycoprotein 

PBEC   Porcine brain endothelial cell 

Rf   Retention factor 

RP-HPLC  Reverse-phase high performance liquid chromatography 

rpm   Revolutions per minute 

SDPP   N-hydroxysuccinimide diphenyl phosphate 

TEA    Triethylamine  

TEER   Transepithelial/ transendothelial electrical resistance 

THF   Tetrahydrofuran  

TLC   Thin layer chromatography 

TFA   Trifluoroacetic acid 

Tf   Transferrin 

TfR   Transferrin receptor 

TMS   Tetramethylsilane 

UV   Ultraviolet 

δ   Chemical shift 

λ   Wavelength 

Ω   Ohm 
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1.1 Drug delivery across cellular barriers 

 
The development of an effective drug delivery system to overcome cellular barriers 

remains a major challenge for pharmaceutical scientist. Cellular barriers such as the 

intestinal and the blood-brain barriers are generally responsible of maintaining the cell 

environment for the optimal activity of organs, regulating the trafficking of essential 

nutrients and xenobiotics across the cells and providing protection from circulating 

toxins (1, 2). Apart from providing protection from potential harmful xenobiotics, these 

cellular barriers also significantly limit the entry of many therapeutic drugs from 

reaching the targeted site of effect. For example, it was reported that the blood-brain 

barrier prevented approximately more than 95% of drugs to brain exposure (3).  

 

Many attempts have been made to develop drug carrier systems that bypass cellular 

barriers to enhance the therapeutic efficacy of drugs. The general properties of efficient 

drug carrier systems are the ability to enhance solubility hence the bioavailability of the 

drugs, enhanced absorption, in vivo stability, biodegradable, and selective delivery to 

the target site. This should be accompanied by minimal toxicity and immunogenicity. In 

addition, during the selection and design of drug carrier systems, it is desirable to obtain 

an optimal balance of lipophilicity and hydrophilicity. Adequate lipophilicity can enable 

rapid and easy entry of the system across the lipid membrane; yet the system can still be 

soluble in the aqueous site and less able to diffuse back due to the hydrophilicity (1, 4-

6). Trafficking across the intestinal and the blood-brain barriers is not only governed by 

the nature of physical barrier, but also controlled by numerous biological transport 

systems (1, 6). Therefore, the ability of carriers to utilise transport systems as delivery 

pathways and to circumvent the efflux pump systems needs to be taken into 

consideration during the design of efficient drug delivery systems. 

 

Drug carriers such as antibodies (7), liposomes (8), nanoparticles, and polymers 

prodrugs (9) have been widely investigated. Classical polymers (e.g. linear, branched 

and random coiled polymers) have received significant attention in the development of 

drug carrier systems but their applications may be limited due to issues such as high 

polydispersity (10). A new class of polymer, namely dendrimers, have emerged as a 

popular drug carrier candidate. Dendrimers, with their monodispersity and well-defined 
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structures, allow precise control of size and shape. The terminal groups are amenable 

for specific functionality. With their unique properties, dendrimers have been recently 

investigated as drug carriers to overcome cellular barriers (11).  

 

In general, chemical and biological characteristics of drug carriers together with the 

understanding of transport mechanisms across the cellular barriers such as the intestinal 

barrier and the blood–brain barrier (BBB) are vital to the successful development of 

new and effective drug delivery systems.  

 

1.2 Mechanism of intestinal barrier absorption 

 
The absorption of both nutrients and therapeutics from the intestinal tract is mainly 

controlled by the physical and biochemical barrier factors of the intestinal membrane. 

The cell membrane, which is a physical selective permeable barrier, mainly consists of 

lipid bilayers of phospholipids with inter-dispersed carbohydrates, integral membrane 

proteins and cholesterol components (12) (Figure 1-1). The lipid bilayer membrane 

exhibits the characteristics of a lipoidal semi permeable sieve which allows high 

permeation for lipophilic molecules and low permeation for hydrophilic molecules. The 

cholesterol component helps to maintain the lipid membrane fluidity and prevents close 

packing of fatty acid chains, hence enhancing the permeation of lipid-soluble molecules. 

Water and small hydrophilic molecules are able to permeate across the cell membrane 

through numerous protein channels formed by the integral membrane protein (12). The 

tight junctions which are located at the apical site of the cell membrane restrict the 

permeation of molecules across the membrane through the aqueous pores between the 

cells (13). The biochemical barrier factors include a number of transport mechanisms 

and transporter proteins which require energy to selectively transport molecules back 

and forth across the membrane. In general, nutrients and therapeutics can be transported 

across the membrane barrier via transcellular pathway (across the cells) and paracellular 

pathway (between the cells) (12). A summary of the membrane transport mechanisms is 

illustrated in Figure 1-2. 
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Figure 1-1: Structure of the cell membrane [taken from (14)]. 
 
 
 

Figure 1-2: Mechanism of intestinal absorption. (a) passive transcellular transport, 
(b) paracellular transport, (c) vesicular endocytosis/endocytosis, (d) carrier 
mediated transport, and (e) P-gp mediated efflux transport [modified from (6)]. 
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1.2.1 Transcellular pathway 

 
Transcellular pathway is a general route for non-ionic and lipophilic molecules to be 

transported across cells. It can be further divided into simple passive transcellular 

diffusion, carrier-mediated transport and endocytosis which will be further discussed in 

the following sections. 

 

1.2.1.1 Passive transcellular diffusion 

 
Low molecular weight and lipophilic molecules and drugs generally prefer to cross the 

intestinal epithelium transcellularly via passive diffusion. In this non-energy dependent 

process, molecules or drugs will undergo a partitioning process between the 

gastrointestinal aqueous fluid and the lipoidal-like membrane of the intestinal 

epithelium. Diffusion then occurs across the lipid bilayer membrane, the molecules and 

drugs will be absorbed from a high concentration region in the lumen to a relatively low 

concentration region in the blood. The rate of absorption can be described 

mathematically by Fick’s first law of diffusion: 

 

dC/dt = k(C1 –C2)  

 

in which the rate of diffusion across a membrane (dC/dt) is proportional to the 

difference in concentration on each side of the membrane (C1-C2), and k is a 

proportionality constant (12). 

 

The solubility characteristics of a drug have an important role in its absorption. Due to 

the oleaginous nature of the membrane, a minimum level of lipophilicity is needed for 

molecules or drugs in order to partition into epithelial cell membranes and to be 

absorbed transcellularly through passive diffusion (15). In general, the absorption rate is 

determined by the physicochemical properties of the drug, the nature of the membrane 

and the concentration gradient of the drug across the membrane (12). 
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1.2.1.2 Carrier-mediated transport 

 
Carrier-mediated transport involves carrier or membrane protein transporters which are 

located at the apical cell membrane to transport the substances across the epithelial 

membrane. There are two main types of transport: active transport and facilitated 

diffusion. Active transport involves transportation of a substrate against a concentration 

gradient across the cell membrane thus energy is required in this process. The energy 

sources for active transport may either derive from the hydrolysis of ATP or from the 

transmembrane ion gradients (mostly Na+, Ca2+, and H+ gradients) and/or electrical 

potential. Unlike active transport, facilitated diffusion cannot work against 

concentration gradient; it does not require energy input and transport substrate from a 

high concentration region to a low concentration region across the cell membrane (12).  

 

Carrier systems with specific membrane protein transporters are concentrated at 

different segments of the GI tract and provide transportation for electrolytes, amino 

acids, dipeptides, saccharides, lipids, carboxylic acids, organic cations, phosphates 

nucleosides, and water soluble vitamins. Each transporter will interact with the substrate 

according to its specific chemical structure, forming a transporter-substrate complex. 

However, some transporters have broader specificity, allowing drugs with a chemical 

structure similar to natural substances to be transported via this mechanism (12, 16). For 

example, studies show that the human peptide transporter 1 (hPepT1) is involved in 

transporting various peptide-like drugs such as cephalosporins, angiotensin-converting 

enzyme (ACE) inhibitors, and 5’-amino acid ester prodrugs of antiviral nucleosides, 

acyclovir and azidothymidine (AZT) (17-19). At a high concentration, the rate of 

absorption will remain constant as the carrier system is saturated. Thus, competition 

between two substrates with similar chemical structure for the same transport 

mechanism will result in inhibition (12).  

 

Apart from facilitating the intestinal drug absorption process, transporters are also 

crucial in limiting drug uptake by eliminating/effluxing substances from the cell to the 

intestinal lumen. Efflux transporters from the ATP binding cassette (ABC) superfamily 

include the multidrug resistance protein (MDR), P-glycoprotein (P-gp), and multidrug 

resistance-associated protein (MRP) family. P-glycoprotein (also called ABCB1, MDR1 

and PGY1) is a prominent energy-dependent efflux pump located at the apical 
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membrane of biological barriers. P-gp has very broad substrate specificity and was 

reported to limit the uptake of anticancer drugs (anthracyclins (20), etoposide (21),  

vinblastine (22) and paclitaxel (23, 24)), peptides (cyclosporine), and cardiac glycoside 

(digoxin) (12, 16, 25). However, calcium channel blocker such as nifedipine and 

verapamil (22) are found to inhibit the P-gp action thus may improve the bioavailability 

of other substrate drugs.  

 

1.2.1.3 Endocytosis/ Vesicular transport 

 
Endocytosis is a general term for a group of processes that transport macromolecules, 

large particles and organisms into the cells (12). There are mainly three types of 

endocytosis: phagocytosis, pinocytosis (fluid-phase endocytosis) and receptor-mediated 

endocytosis. In all these three processes, the plasma membrane invaginates around the 

absorbed molecules, forming small pockets which then deepen and become intracellular 

membrane-bound vesicles. This vesicle separates from the plasma membrane and 

migrates with its contents to the cell’s interior. Phagocytosis involves engulfment of 

particles larger than 500 nm. While pinocytosis or fluid-phase endocytosis is the 

engulfment of small droplets of extracellular fluid such as fat soluble vitamins A, D, E 

and K. Receptor mediated endocytosis occurs when molecules with suitable ligands are 

bound to the receptors at the cell surface. The ligand-receptor complexes are then 

progressively internalised and delivered to early endosomes. The ligands usually 

dissociate from their receptors within the endosomes and many of the receptors are then 

recycled to the plasma membrane (12). Frequently, the dissociated ligands and solutes 

will be delivered for degradation in lysosomes. Occasionally, ligands that gain access to 

a vesicle targeted to the basolateral membrane for release can bypass lysosomes, 

transport across the cells via transcytosis and secrete in a non-degraded form on the 

opposite site of the cells (12, 26).   

 

1.2.2 Paracellular pathway 

 
Differing from all other absorption pathways, paracellular pathway can be considered as 

an aqueous route where substances are transported through the intercellular space 
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between adjacent cells. The cells are joined together via closely fitting junctional 

complexes at the apical side of the cells which consist of (a) tight junctions or zonula 

occludens, (b) zonula adherens, and (c) desmosome or macula adherens. Tight junctions 

(TJs) primarily regulate paracellular permeability by selectively allowing the passage of 

small hydrophilic compounds, forming an intermembrane diffusion barrier by 

maintaining enterocyte polarity and excluding potentially toxic molecules (12, 27). The 

aqueous nature of the paracellular pathway allows absorption of ions (calcium, sodium 

and potassium), sugars, amino acids and peptides through passive diffusion (12). Small 

hydrophilic and charged drugs with molecular mass less than 200 Da cross the cell 

membrane via the paracellular pathway, although higher molecular mass drugs (more 

than 200 Da) have been reported to be absorbed via this route (12). The use of 

paracellular permeation enhancers such as calcium chelators (EDTA), medium chain 

fatty acids, medium chain glycerides, chitosan (28), and some drugs such as verapamil 

(29) have been reported to be able to disrupt the TJs structure, hence enhancing the 

absorption via the paracellular pathway.  

 

The total area of the paracellular pathway, relative to the transcellular route, has been 

reported to represent about 0.1% (12, 30) of the total surface area of the intestinal 

epithelium, which is 2,000,000 cm2 (31). The corresponding value of the paracellular 

surface area theoretically will be about 2000 cm2, which should not be underestimated 

since even the absorption of minute quantities of a potent therapeutic drug may be 

sufficient to exert a biological effect (31). 

 

1.3 Transport across the blood-brain barrier 

 
The central nervous system (CNS) requires a perfectly regulated environment in order 

to maintain a level of homeostasis for optimal activity. Protection from circulating 

toxins is especially important for the brain compared to most other tissues of the body. 

Thus, the maintenance of homeostasis and prevention of unrestricted exchange of 

substances between the CNS and the blood is crucial and is mainly regulated by the gate 

keeper, the blood-brain barrier (32, 33).  
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However, apart from protection from circulating toxins, the blood-brain barrier also 

significantly limits the penetration and entry of many drugs and prevents them from 

reaching therapeutic targets within the brain. For this reason, it is important to 

understand the physiology and pharmacological role of the blood-brain barrier (BBB) 

for the development of drug delivery and targeting strategies that can enhance the 

transport of therapeutics across the BBB for the management of CNS diseases (4, 33). 

 

1.3.1 The blood-brain barrier 

 
The existence of a barrier between the blood and the brain was first reported by Ehrlich  

following the observation that the barrier prevented entry of a xenobiotic into the CNS 

(34). The blood-brain barrier is generally a selective barrier which encompasses three 

main aspects of barrier function including physical, transport and metabolic aspects.  

 

Physical barrier 

 
The physical barrier is mainly formed by brain capillary endothelial cells, surrounded 

by basal lamina and astrocyte end-feet, with pericytes embedded within the basal lamina 

membrane (35, 36). Brain capillary endothelial cells are distinct from the endothelial 

cells in most other tissues, characterised by the presence of complex tight junctions and 

lack of pinocytic vacuoles (33). The endothelial cells are closely packed to each other, 

forming complex tight junctions. This hinders the paracellular transport of most 

hydrophilic molecules through the junctions and forces most molecular traffic to take 

the transcellular pathway across the BBB.  Small gaseous and lipophilic molecules such 

as O2, CO2, alcohol, caffeine, nicotine and anaesthetics can pass the plasma membrane 

by passive diffusion (37). Lipophilic drugs such as barbiturates and ethanol can also 

diffuse through the lipid membrane via this route (36). Figure 1-3 shows a schematic 

diagram of a cerebral capillary which encompasses endothelial cells that build up the 

capillary surrounding by pericytes and astrocyte end-feet. The cross section of the 

capillary is illustrated in Figure 1-4. 

 

Astrocytes and pericytes, located at the close vicinity around capillary endothelial cells, 

play an important role in the formation and functions of the BBB. Astrocytes end-feet 
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are closely attached to the blood microvessel wall on one side and to the neurons on the 

other. It forms a specific relay station between the neurons and the blood (33) which 

provides the cellular link to the neurons (36). Astrocytes are involved in inducing and 

maintaining brain intercellular signalling, neuronal metabolism, and discharge of used 

substrates, which have crucial effect on the BBB stability and normal function (38). Cell 

culture studies strongly indicate that astrocytes can upregulate many BBB features 

which include tighter tight junctions, expression and polarised localisation of transporter 

such as P-gp and glucose transporter 1 (GLUT1), and specialised enzyme systems (2, 

39-41). Pericytes embedded within the basal lamina membrane surrounding the BBB 

play a key role in angiogenesis, structural integrity and differentiation of the vessel and 

formation of endothelial TJs (35). Pericytes are also known to be responsible for the 

regulation of endothelial activity, mediation of inflammation and control of capillary-

like structure formation and capillary diameter (33).  

 

 

 

 
Figure 1-3: Schematic diagram of a cerebral capillary [taken from (42)]. 
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Figure 1-4: Cellular components of the blood-brain barrier [modified from (36)]. 
 

 

Transport barrier 

 
Specific transport systems existing at the luminal (blood) and abluminal (brain) 

membrane act as selective ‘transport barriers’. Ionic and small hydrophilic molecules 

are only able to cross the barrier through special membrane transporters, thus allowing 

required nutrients to reach the brain and limiting the entry of potentially harmful 

compounds (36, 43).  

  

Metabolic barrier 

 
Apart from specific transport systems, enzymatic activity in cerebral endothelium cells 

provides a ‘metabolic barrier’ which prevents unwanted toxic compounds, including 

drugs, from entering the brain. Extracellular enzymes such as peptidases and 

nucleotidases regulate the metabolism of peptides and ATP, respectively, while 

intracellular enzymes such as monoamine oxidase and cytochrome P450 can inactivate 

many neuroactive and toxic compounds (4, 36).  
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1.3.1.1 Tight junctions 

 
The presence of complex tight junctions is one of the specific characteristics that 

distinguish cerebral endothelial cells from the peripheral endothelial cells. Tight 

junctions formed within the cerebral endothelial cells are characterised by extremely 

high transepithelial electrical resistance (TEER) of 1500 to 2000 Ω.cm2 (33, 44) 

compared to those of peripheral capillaries (TEER of 2-20 Ω.cm2), and those within the 

epithelial cells in the colon (TEER of 150 – 400 Ω.cm2). The unique characteristic of 

the complex tight junction (or zonula occludens) structure is due to the existence and 

interaction of numerous plasma membrane proteins that tightly seal the paracellular 

pathway.  Among those identified as main contributors to the tight junctions are the 

transmembrane proteins claudin and occludin, and the adherens junction (AJs) 

molecules (33, 35, 36, 45).  

 

Occludin and claudin are proteins with four transmembrane domains and two 

extracellular hoops. Occludin was found to interact with zonula occludens protein 1 

(ZO-1) and is responsible for stabilising the tight junction. Claudin 1/3, 5 and 12 

expressed in the BBB appear to contribute to the high TEER. Junctional adhesion 

molecules (JAMs) are involved in the formation and maintenance of tight junctions. 

JAM-A, JAM-B and JAM-C were found to be present in brain endothelial cells and may 

play a role in cell adhesion and monocyte migration through the BBB. Identified 

cytoplasmic proteins including zonula occludens protein 1 (ZO-1), ZO-2 and cingulin 

were shown to link the transmembrane proteins (occludin and claudin) to actin, a 

primary cytoskeleton protein which maintains the structural and functional integrity of 

the endothelium (Figure 1-5). The interaction of these plasma membrane proteins 

regulates and allows paracellular transport to be modulated in response to different 

stimuli. In epithelial cells, tight junctions and adherens junctions are strictly separated 

from each other, but these junctions are intermingled in endothelial cells (33, 35, 36, 45). 

Adherens junctions contribute to the second component in stabilising and tightening 

endothelial cell structure. The transmembrane protein cadherins are linked to the actin 

cytoskeleton by catenins to form adhesive contacts between cells. Cadherins on the 

surface of adjacent cells interact homotypically in the presence of calcium ions (Figure 
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1-5). Both tight and adherens junctions contribute to the human BBB. It was reported 

with evidence that ZO-1 and catenin interact with each other, suggesting that TJs and 

AJs function together to maintain the integrity (46).  

 

Tight junctions are important in regulating paracellular permeability across the cerebral 

endothelia cells. The functions of various numbers of plasma membrane proteins and 

the negative charges on the endothelial membrane contribute to the size and charge 

selectivity properties Furthermore, tight junctions also segregate the luminal and 

abluminal membrane domains, preserving a polarised cell membrane (33, 35, 36, 45, 

47). 

 

 

Figure 1-5: A schematic diagram of the tight junction and adherens junction of the 
blood-brain barrier [taken from (48)]. 
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1.3.2 Therapeutic pathways across the blood-brain barrier 

 
The existence of the blood brain barrier tight junctions, together with numerous 

functions of complex cell membrane domains almost seal off the paracellular pathway. 

As a result, the trafficking of essential nutrients, blood gases as well as removal of 

neurotoxic or xenobiotic molecules between blood and brain is predominantly via 

transcellular routes. Many transcellular transport systems have been discovered to play 

important roles not only in maintaining the blood-brain barrier integrity and 

homeostasis; but also in influencing drug delivery to the brain. Diffusion of most 

hydrophobic drugs across the blood-brain barrier via the paracellular aqueous pathway 

is almost negligible. However, enhanced delivery can be achieved via 

opening/disruption/shrinking of tight junctions which has been proven to be a more 

aggressive approach (43). It has been reported in numerous studies that by improving 

strategies such as chemical modification, the transport of drugs across the barrier via the 

transcellular route can be adapted and improved. The transcellular routes across the 

blood-brain barrier are (a) transcellular lipophilic pathway (or transcellular passive 

diffusion/partitioning pathway), (b) carrier-mediated transport (or solute carriers/ 

transporters pathway), (c) receptor mediated transcytosis, and (d) adsorptive-mediated 

transcytosis (4, 36, 43, 47). A summary of the transport mechanism across the blood-

brain barrier is shown in Figure 1-6 below. 
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Figure 1-6: Transport mechanisms across the blood-brain barrier [taken from 
(36)]. 
 

 

1.3.2.1 Transcellular lipophilic pathway 

 
As indicated by the route’s term, transcellular lipophilic pathway or passive diffusion/ 

partitioning generally transport lipid-soluble molecules across the barrier. The rate of 

diffusion depends on the lipophilicity and molecular weight of the solute. Studies 

indicate that the rate at which a solute enters the CNS correlates with its lipid solubility 

(4, 43, 47). There are others factors that restrict the penetration of solutes across the 

barrier, e.g. high polar surface area or charge of the solutes or drugs, the tendency to 

form more than six hydrogen bonds when penetrating the membrane, a molecular 

weight of less than 450 Da and the presence of rotatable bonds in the molecule. 

However, there are still many examples of effective CNS active drugs in clinical use 

which do not comply with these molecular and physicochemical factors for the blood-

brain barrier penetration, thus these general rules are not always an absolute indication 

for the brain permeation.  
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Compared to negatively charged acids, positively charged bases are thought to have a 

better permeation due to their cationic nature which can interact with the negatively 

charged glycocalyx and phospholipids head groups. Supply of oxygen and carbon 

dioxide to the brain is through passive diffusion across the barrier with their 

concentration gradient and the rate is blood-flow dependent. The permeation of 

therapeutic drugs across the barrier via lipophilic pathway could be enhanced by the 

addition of hydrophobic groups. It was reported that the consecutive addition of methyl 

groups to a series of barbiturate homologues increased the lipophilicity and brain 

penetration, leading to increased hypnotic activity in vivo (4). 

 

1.3.2.2 Carrier-mediated transport 

 
Numerous membrane transporters or solute carriers are localised on the luminal and 

abluminal membranes in the brain capillary endothelial cells. These transporters/solute 

carriers, forming a functional carrier-mediated transport system, are responsible in 

regulating the transcellular transport of essential nutrients between the blood and brain, 

as well as effluxing the potential harmful substances.  

 

Essential polar nutrients such as glucose and amino acids are transported across the 

barrier via the GLUT1 glucose carrier and several amino acid carriers (large neutral 

amino acid transporter (LAT1), L-system), respectively. More than 20 influx 

transporters/carriers including transporters for nucleosides, nucleobases, several organic 

anion and cation transporters are also found to be highly expressed on the brain 

endothelium (36, 49). GLUT1 and LAT1 are bidirectional; they can be present in both 

luminal and abluminal membranes, or predominantly in one. These transporters were 

found to be responsible for moving substrates against a concentration gradient (50). The 

utility of these transport systems for drug delivery to the brain has been explored. 

Glucose carrier has very limited usage for drug delivery as it has very restrictive 

substrate diversity and will only transport molecules closely resembling D-glucose. In 

contrast, the amino acid carrier L-system is less specific and drugs that closely mimic 

the substrate including baclofen (muscle relaxant) (51), gabapentin (anticonvulsant) (52),  

L-DOPA (treatment for Parkinson’s Disease) (49) can be transported across the barrier 

via this carrier system. However, the brain delivery of these agents is limited due to low 
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transport affinity. Various strategies including substrate modifications were developed 

to enhance carrier binding and transport. The development of analogues of 

phenylalanine (a natural L-system substrate) – melphalan and d,l-2-amino-7-bis[(2-

chloroethyl)–amino]-1, 2, 3, 4-tetrahydro-2-naphthoic acid (D,L-NAM) was reported to 

have greatly improved brain uptake (with increased uptake by more than 20 fold for the 

D,L-NAM). The enhanced affinity of these phenylalanine derivatives for the amino acid 

transporters were thought to be the result of interaction of the additional side chains 

with a hydrophobic-binding site on the carrier (53). Thus, it was suggested that the L-

system amino acid carrier could enhance drug delivery to brain by drug modification 

with hydrophobic side chains (4).  

 

Apart from carrier systems that facilitate the entry of nutrients across the barrier, efflux 

transporters from the ABC superfamily including P-glycoprotein (P-gp), the Multidrug 

Resistance-associated Protein (MRPs, ABCC1, 2, 4, 5 and possibly 3 and 6) and Breast 

Cancer Resistance Protein (BRCP, ABCG2) are of greatest significance for actively 

effluxing a diverse range of lipid-soluble compounds as well as limiting drug uptake by 

eliminating/extruding substances out of the brain capillary endothelium cells. Amongst 

these transporters, P-gp has gained the highest attention. The outstanding role of P-gp 

has attracted most interest and been an obvious target for therapeutic approaches to 

overcome the blood-brain barrier.  

 

1.3.2.2.1  P-glycoprotein efflux transporter 

 
P-glycoprotein (also called ABCB1, MDR1 and PGY1) is an ATP energy-dependent 

efflux pump that is found predominantly in the apical membrane of numerous epithelial 

cell types in the body, including the luminal surface of the small intestine and colon, 

and the brain capillary endothelial cells that form the blood-brain barrier. In the blood-

brain barrier, P-gp is highly concentrated on the luminal membrane (54). P-gp has been 

proven to prevent the cellular uptake and accumulation of many compounds, e.g. 

neurotoxic endogenous or xenobiotic molecules and a variety of drugs in the brain by 

efflux transport of these compounds from the brain back to the blood circulation (55). 
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P-gp has very broad substrate specificity and has been reported to limit the uptake of 

numerous types of drug with diverse chemical structures and sizes. The reported 

substrate drugs include: antineoplastic agents anthracyclines (daunorubicin and 

doxorubicin), vinca alkaloids (vincristine and vinblastine), taxanes (paclitaxel and 

docetaxel), immunosuppressive agents (cyclosporine A), antibiotics (erythromycin and 

actinomycin), cardiac glycosides (digoxin) and several human immunodeficiency virus 

(HIV) protease inhibitors (indinavir and saquinavir) (56-58). P-gp is not only localised 

in the brain capillary endothelia cells, but is also highly expressed in multi-drug 

resistant tumour cells. It pumps out therapeutic drugs back to the blood thus limiting the 

CNS therapeutic effect of the administered drug.  

 

Several strategies to overcome the barrier and to circumvent the P-gp efflux pump have 

been explored. There are drugs that act as inhibitors of P-gp, such as verapamil and 

cyclosporine A which might help in improving bioavailability of other P-gp substrates. 

PSC-833 (Valspodar), which is a derivative of cyclosporine A, has demonstrated 

increased CNS levels of paclitaxel and decreased tumour volume of a paclitaxel-

sensitive orthotopic transplanted human glioblastoma in nude mice by 90% when co-

administrated with paclitaxel. No significant effect on the tumour volume was observed 

with paclitaxel alone as well as when the combination of drug and inhibitor were 

administered to a non-paclitaxel sensitive implanted U-87 MG tumour. It was suggested 

that direct inhibition of P-gp transporters may enhance the brain uptake of drugs which 

are substrate to the efflux transporter. However, reservations on the chronic 

administration of inhibition agents remains, given the protective role of the efflux 

transporter in the blood-brain barrier (59). Another strategy reported was encapsulation 

of substrate drugs to bypass P-gp efflux pumps. P-gp substrates have been shown to be 

delivered efficiently via receptor-mediated endocytosis to the brain by encapsulation in 

immunoliposomes (60, 61). Similar delivery method was reported with liposomes 

coupled to cationised albumin (62). The exploitation of nanoparticles in overcoming P-

gp efflux pumps via the endocytosis route has also been demonstrated successfully for 

the delivery of several substrate drugs into the brain in chemotherapy treatment of brain 

tumours (63).  

 

The quantity structure-activity relationship (QSAR) for the P-gp efflux transporter were 

studied to provide more understanding on the well defined structural features 
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responsible for the substrates and inhibitory activities. There are suggestions that 

explain that the hydrophobic and amphipathic nature of P-gp substrates probably relates 

to the mechanism of drug translocation by P-gp, which may depend on the ability of the 

drug to insert into one hemileaflet of the membrane lipid bilayer (64). Stouch and 

Gudmundsson (57) later found that the affinity of compounds to P-gp depended on two 

important characteristics: high lipophilicity and hydrogen bonding capability.  

 

1.3.2.2.2  Multidrug resistance-associated proteins 

 
Multidrug resistance-associated proteins (MRPs) are the second efflux transport protein 

subfamily which also belongs to the ABC protein superfamily. Apart from P-gp efflux 

transporter, MRPs also play a significant role in multidrug resistance. To date, 9 

proteins (MRP1-9) for the mammalian MRP family have been reported (65). MRPs 

were found expressed in both luminal and abluminal sides of the brain endothelial cell 

membrane, in contrast to P-gp which is found located generally at the luminal site. 

However, it has been suggested that only luminal localisation confers in the restriction 

of substrate penetration and protective efflux activity (66). MRPs were found to 

primarily transport organic anions, and were also able to transport neutral organic drugs 

across the endothelium (33).  

 

MRP1 and 2 are the best characterised family members. MRP1 have been reported to 

mediate resistance to a number of anti-tumour agents including vincristine and 

daunorubicin when it is overexpressed (67). In some studies, the transport of phenytoin 

was found to be restricted by MRP2 expression (68). MRP roles in the protection 

against toxic compounds were demonstrated by experiments with MRP inhibitors (e.g., 

probenecid, MK-571). Drugs efflux was inhibited from isolated endothelial cells and 

enhanced drug penetration into the brain was observed after the inhibitor was applied 

(68). Leggas and co-workers (69) investigated the role of MRP4 and found that the 

transport of topotecan was limited by the expression of MRP4 in Mrp4 knock-out mice. 

It was suggested that MRP4 not only acted to inhibit the penetration of toxic anionic 

compounds to the brain, but also extruded therapeutic organic anions and transported 

metabolites from the brain. 

. 
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1.3.2.2.3  Breast cancer resistance protein 

 
Breast cancer resistance protein (BCRP) (also called ABCG2 or mitoxantrone resistance 

protein, MRP) is another member of the ABC superfamily and is reported to have a 

significant efflux function at the BBB. BCRP was primarily discovered in a 

chemotherapy-resistant breast cancer cell line for high resistance to mitoxantrone, hence 

how the name of the transporter was derived. Similar to P-gp, BCRP was found to be 

expressed in the luminal membrane of the blood-brain barrier. The similar localisation 

of BCRP with P-gp implies its possible functions in efflux transporting of xenobiotics 

which plays an important role in multi-drug resistance for brain protection. It was 

reported that BCRP was likely to serve as a cellular defense mechanism in response to 

mitoxantrone and anthracycline exposure (33, 45, 47, 70). Initial in vitro studies carried 

out by Eisenblätter and co-workers (71) demonstrated active extrusion of daunorubicin 

from porcine brain endothelial cells mediated mainly by BCRP (or ABCG2) compared 

to P-gp, suggesting an important role of BCRP in the efflux transport of xenobiotics 

from the brain.  

 

Numerous influx and efflux transporters in the blood-brain barrier are important in 

protecting and maintaining the normal functions of the brain by transporting essential 

nutrients and metabolites as well as limiting entry of neurotoxic and harmful substances 

into the brain. However, it is still a major impediment to the transport and delivery of 

therapeutic drugs to the brain. Although it has been shown that the brain uptake of drug 

substrates can be enhanced with the use of inhibitors of ABC transporters, toxic 

substrates might gain unrestricted entry to the brain due to the down regulated efflux 

transport activity. Therefore, a drug delivery system which can overcome these barriers 

is needed. Important characteristics such as: i) better lipid solubility, ii) ability to 

perform biochemical opening of tight junctions, and iii) ability to bypass the efflux 

transporters need to be considered during the design of delivery systems for the efflux 

transporters substrate and low solubility drugs (59).  
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1.3.2.3  Receptor mediated transcytosis 

 
Macromolecules including peptides, proteins and genes are able to enter the brain 

endothelial cells following uptake into endosomal vesicles and exocytosis via receptor-

mediated transcytosis and adsorptive-mediated transcytosis (in section 1.3.2.4). 

Receptor-mediated transcytosis occurs when macromolecules with suitable ligand bind 

to specific receptor on the cell surface. This triggers an endocytotic process where the 

receptor-ligand complexes are internalised at the luminal (blood) side, by forming a 

caveolus (about 50-80 nm in diameter) which is pinched into vesicles. These 

internalised vesicles are progressively moved through the endothelium cytoplasm in 

which the macromolecules with ligand are dissociated from the receptor and exocytosed 

at the abluminal (brain) side of the brain capillary endothelium cells (5, 43, 47). 

However, to avoid degradation of the molecules, the vesicles are required to transport 

across the cell by routing the primary endosomes and its contents away from the 

lysosomal acidic degradation compartment. Thus, the application of a lysosomal escape 

mechanism is significant to ensure intact transcytosis of macromolecules such as 

essential peptides/protein as well as specific delivery/ targeting of large drug molecules 

or drug- carrier across the blood-brain barrier endothelia cells via receptor-mediate 

transcytosis route (43, 47). Examples of receptor involved in receptor-mediated 

transcytosis are the transferrin receptor, insulin receptor and lipoprotein receptor (43).  

 

1.3.2.3.1  Transferrin receptor 

 
The transferrin receptor (TfR) is a transmembrane receptor consisting of two 90kDa 

subunits linked by a disulfide bridge where each of the subunits can form a bond with 

one transferrin molecule. The transferrin receptor is found to be expressed on the brain 

endothelial cells (both luminal and abluminal membrane with greater abundance on the 

luminal membrane) as well as on other cells (hepatocytes, erythrocytes, intestinal cells 

and monocytes) with the main function of mediating the cellular uptake of iron bound to 

transferrin (72).  

 

Endogenous ligand transferrin had been shown to achieve drug targeting to the 

transferrin receptor in drug delivery. Visser et al. (8) reported targeted delivery to the 
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bovine brain endothelial cells in vitro using PEGylated liposomes which were loaded 

with protein or peptide drugs and tagged with transferrin. The binding studies showed 

that the transferrin-tagged liposomes displayed a significant higher binding to the brain 

capillary cells compare to untagged liposomes. It was also found that liposomes 

released some of their content within the BBB, making targeting of transferrin-tagged 

liposomes to the transferrin receptors on BCEC an attractive approach for brain drug 

delivery.  

 

Another approach that was found to be effective in drug targeting to the transferrin 

receptor was by the use of monoclonal antibodies directed against the rat transferrin 

receptor (OX26; anti-rat TfR). The OX26 antibody can be linked to a drug or 

peptide/protein, serving as a vector for preferential delivery to the blood-brain barrier. It 

was thought that the binding of OX26 antibody to the transferrin receptor appeared to 

trigger endocytosis followed by transcytosis of the whole construct across the cell. It 

was reported that vasoactive intestinal polypeptide, nerve growth factor, glial-derived 

neurotrophic factor, and brain derived neurotrophic factor can be delivered successfully 

to the central nervous system by using an OX26 antibody vector (7, 73). 

 

1.3.2.3.2  Insulin receptor 

 
Another classical and widely characterised receptor-mediated transcytosis system for 

targeted drug delivery to the brain is the insulin receptor. It is a 300 kDa heterotetramer 

protein consisting of two extracellular-α and two transmembrane-β subunits. The α and 

β subunits are linked by disulfide bonds, forming a cylindrical structure. Upon binding 

of insulin, the shape and conformation of the receptor change into a tunnel, allowing 

entry of molecules into the cells. After internalisation into endosomes, receptors are 

generally recycled to the cell surface or endocytosis of the insulin receptor might occur 

to remove insulin from the cell allowing time-limited response of target cell to the 

hormone (74).  

 

Studies to target drug delivery to the brain via the insulin receptor have been reported. 

Murine 83-14 monoclonal antibody (mAb) that binds to the human insulin receptor was 

used for drug or gene delivery in rhesus monkeys. By using this mAb, radiolabelled 
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amyloid-β peptide1-40 serving as a diagnostic probe for Alzheimer’s disease and 

PEGylated immunoliposomes containing plasmid DNA encoding for β-galactosidase 

were successfully synthesised by Pardridge and colleagues for delivery to the brain of 

primates. Unfortunately, immunogenic reactions were reported with 83-14 mAb thus 

ruling out its application in humans. Nevertheless, drug and gene delivery to the human 

brain via the insulin receptor can still be achieved with genetically engineered, effective 

forms of the mAb (73, 75).  

 

1.3.2.3.3  Lipoprotein receptor 

 
The potential of lipoprotein receptors application in targeted drug delivery to the brain 

has been extensively explored during the past decades. Low density lipoprotein 

receptor-related protein 1 (LRP1) and LRP2 are among the lipoprotein family, that have 

been widely characterised. Both receptors are highly expressed at the blood-brain 

barrier and share a large number of substrates (76). 

 

It was first reported by the group of Béliveau (76) that the transport of melanotransferrin 

(iron binding protein P97) across the blood-brain barrier was via transcytosis mediated 

by the LRP1 receptor. With this finding, Gabathuler et al. (77) conjugated doxorubicin 

(or adriamycin) to melanotransferrin and successfully delivered the drug to brain 

tumours in animal studies. This showed significant potential of melanotransferrin as an 

effective therapeutic drug targeting technology (NeutroTrans®) across the BBB. 

Another approach of protein-based drug delivery was also reported by Pan and co-

workers (78) where receptor-associated protein (RAP) has been efficiently transferred 

across the blood–brain barrier by the LRP1 and LRP2 receptors.  

 

In recent years, angiopep-2, (one of the ‘angiopeps’ of a series of 19 amino acid 

peptides) targeted to LRP1 receptor was developed by Demeule et al. (79, 80). 

Enhanced transcytosis across a brain endothelial monolayer system in vitro and 

improved brain uptake by in situ perfusion were demonstrated by angiopep-2. The 

research group of Béliveau (79, 80) conjugated 3 molecules of paclitaxel to angiopep-2 

via cleavable ester linkages, yielding a drug-peptide conjugate namely ANG1005 which 

has been shown to have activity against subcutaneously implanted glioblastoma and 
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lung tumors, and to extend the survival of mice with intracerebral tumors (81). Further 

investigation by Thomas and co-workers (82) reported successful and significant 

increased uptake of paclitaxel in the form of ANG1005 into brain using in situ rat brain 

perfusion, which indicated the peptides vector, angiopep-2 as a promising drug delivery 

vehicle for the treatment of brain tumors. 

 

1.3.2.4  Adsorptive-mediated transcytosis 

 
In adsorptive-mediated transcytosis, peptide/protein molecules with excess positive 

charges can bind to the negatively charged plasma membrane on the cell surface. The 

charge interaction between the molecules and the luminal cell surface of the 

endothelium cells directly induces endocytosis with the formation of vesicles and 

internalisation as in receptor-mediated transcytosis. Cationic peptides/proteins and 

cationised albumin that possess significant positive charges may be transcytosised via 

this pathway. The intactness of the molecules being transported generally depends on 

the lysosomal escape mechanism as described in section 1.3.2.3 (5, 43, 47). 

 

1.3.3 Therapeutic delivery across cellular barriers 

 
Various approaches have been devised to enhance therapeutic delivery to cross the 

intestinal and the blood-brain barrier barriers. Chemical modification of drugs which 

involves either the addition of lipophilic moiety to increase the permeability across the 

lipid membrane via passive diffusion or the use of endogenous transport systems has 

shown enhanced delivery across the barriers. However, alteration of the drugs chemical 

structure might result in a decreased biological action. Thus, an improved understanding 

of transport mechanisms across these barriers certainly plays an important role in the 

design and development of drug delivery systems. In general, for an efficient drug 

delivery system to overcome cellular barriers, it must possess ideally most of the 

characteristics such as: (a) small molecular weight and hydrophilicity to passage via the 

paracellular diffusion pathway, (b) lipophilicity (balanced with optimal hydrophobicity 

for dissolution and to prevent back diffusion) for passive transcellular lipid pathway or 

passive diffusion, (c) ability to be transported via specific carrier-mediated mechanism, 
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(d) ability to circumvent efflux system, (e) ability to be transported via receptor or 

absorptive mechanism. Efficient drug delivery systems which involve drug carriers such 

as antibodies (7), liposomes (8), polymers (9) and dendrimers prodrugs (11, 83-87) have 

been widely investigated. 

 

1.4 Dendrimers 

  
The term dendrimer was coined in the early 1980s by Donald Tomalia from the Greek 

words ‘dendron’ which refers to tree and ‘meros’ which means parts, describing the 

tree-like branched structure of the macromolecules (88). As described, dendrimers are 

highly branched macromolecules which consist of three main components: (a) initiator 

core, (b) interior branches and (c) terminal groups with specific functionality (Figure 

1-7). Interior cavities are formed due to the steric hindrance between the branches as 

well as the closely packed terminal groups (89).  

 

Unlike classical linear and random coil polymers, dendrimers possess well defined 

architectures. Dendrimers are monodisperse macromolecules with large molecular 

weights and a high number of terminal groups. During the stepwise design of dendrimer, 

homo-structural layers are formed on the terminal groups starting from the core towards 

the outer periphery. Each homo-structural layer formed is termed as a generation. Thus, 

the initiator core is denoted generation 0 (G0), and a first generation (G1) dendrimer is 

synthesised after a homo-structural layer is formed on the terminal groups of the core 

(90). The size and shape of a dendrimer change with generation, for example, low 

generation polyamidoamine (PAMAM) dendrimers have a tertiary structure that is 

ellipsoidal while the structure of higher generation are spherical. Thus, distinct from 

linear polymers, dendrimers have a comparably lower hydrodynamic radius due to their 

spherical structure (91).  
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Figure 1-7: Generic structure of a dendrimer molecule [taken from (92)]. 
 

 

1.4.1 Synthesis of dendrimers 

 
Dendrimers can be synthesised by two controlled stepwise approaches: (a) divergent 

synthesis and (b) convergent synthesis (Figure 1-8).  

 

1.4.1.1  Divergent synthesis 

 
Divergent synthesis was first reported by Tomalia (88) and Newkome (93) in the 1980s. 

In this approach, the construction of the dendrimer originates from the initiator core in a 

stepwise manner and is built towards the outer periphery through a series of reaction 

and purification steps. The stepwise reactions are repeated for several generations until 

further reactions of the ends groups are prevented by steric hindrance (94). The 

dendrimer generation increases with each step, where each generation has its own 

individual properties, e.g. differences in size, shape, molecular weight and number of 

terminal functional groups. 

 

This approach is relatively straight forward and is able to produce dendrimers with high 

molecular weight. However, synthesis of higher generations requires a higher number of 

reactions at each step. This is because more reaction sites are formed owing to the 

increasing number of terminal functional groups. At higher generations, synthesis 

problems such as intramolecular cyclisation and intermolecular coupling result in low 

Interior branches

Internal cavities

Closely packed 
terminal group

Initiator core

Interior branches

Internal cavities

Closely packed 
terminal group

Initiator core



 47

yield and imperfect structure (95). This leads to difficulties in purification and 

separation due to the similar properties and size of the dendrimer and its impurity (96). 

Polypropyleneimine (PPI) and PAMAM dendrimers are synthesised by this approach 

and are commercially available in the market.  

 

1.4.1.2  Convergent synthesis 

 
In contrast to the divergent approach, convergent synthesis, reported by Fréchet and 

Hawker (97), starts from the periphery and builds towards the central core. Branching 

subunits (dendrons) are constructed and attached to the centre core by stepwise addition.  

 

In the convergent approach, there are less reaction sites which reduce the number of 

side reactions. Hence the number of imperfect dendrimers is reduced, the purification 

and separation steps are simplified (96). Multifunctional dendrimers can be synthesised 

by attaching dendrons with different functional terminal groups to the dendrimer (97). A 

drawback of this approach is the limitation on the size and generation of dendrimers due 

to steric hindrance causing difficulties in final attachment (98).  
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Figure 1-8: Divergent and convergent syntheses of dendrimers [taken from (94)].  
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1.4.2 Pharmaceutical applications of dendrimers 

 
The potential pharmaceutical applications of dendrimers have been explored extensively 

due to their unique properties. Over the years, dendrimers have found use in many 

pharmaceutical applications such as enhancing drug solubility (99, 100), gene delivery 

(94, 101), drug encapsulation (88), magnetic resonance imaging (102), drug delivery 

system to enhance bioavailability (83, 86, 103) and targeted site delivery (104, 105). 

 

With their spherical, three dimensional, highly uniform structure and low polydispersity, 

dendrimers have good stability and therefore should lead to predictable pharmokinetic 

data, which are important parameters in the consideration of drug carriers (85, 86). The 

large number of surface groups which are amenable to different functionalities allow 

attachment of molecules which can enhance solubility (11, 84, 86, 87), enable target site 

delivery and lower cytotoxicity of a free drug (103, 106). Another attractive property is 

the high drug solubilisation capacity due to the availability of the terminal functional 

groups. Apart from the surface groups, the internal cavities created by the spherical 

dendritic structure allow encapsulation of drugs (10). More specific pharmaceutical 

applications of PAMAM dendrimers will be further discussed in detail in section 1.5.3. 

 

1.5 Polyamidoamine (PAMAM) dendrimers 

1.5.1 Synthesis of PAMAM dendrimers 

 
PAMAM dendrimers are synthesised by the divergent approach, starting from an 

initiator core of ammonia or ethylenediamine (EDA). The synthesis follows a two-step 

reaction, as shown in Figure 1-9, firstly (a) a Michael addition of methyl acrylate to the 

amine group, which yields a half generation PAMAM with a carboxyl-terminated 

intermediate. This is followed by a second reaction (b) amidation of the carboxyl-

terminated intermediate with EDA, which produces a full generation PAMAM (G0 – 

G10) (107).  

 

In the synthesis of PAMAM, the divergent approach is favoured over the convergent 

approach due to self limiting growth of the dendrimers. At higher generations, steric 
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hindrance arises due to the high number of terminal groups; the reaction step of 

assembling the dendrons in a convergent approach becomes more difficult. Therefore, 

the divergent approach, which is able to yield higher generation number, is applied. 

 

 

 

 
 
 
Figure 1-9: Synthesis of PAMAM dendrimers [taken from (108)]. 
 
 

1.5.2 Physicochemical properties of PAMAM dendrimers 

 
As the generation of PAMAM dendrimers grows higher, the distinct features of the 

dendritic architecture and molecular properties become more obvious in terms of size, 

shape and molecular weight, number and functionality of surface terminal groups, 

density of the outer shell and internal cavities formed.  
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Computer-simulated modelling of the structure of PAMAM dendrimers showed that 

early generation (G0 – G3) PAMAM dendrimers have a range of open amorphous 

shapes and as the generation increases, PAMAM dendrimers grow to a more tangled 

spheroidal network, forming a globular shape for the higher generation of G4 – G7 (91). 

PAMAM dendrimers at the fourth generation and above are globular and the molecular 

dimension is comparable to a medium size protein. The internal cavities provide binding 

or encapsulating sites for free drug showing mimicry of liposome functionality in drug 

delivery application. Figure 1-10 shows a dimensionally scaled comparison of G4 – G7 

PAMAM dendrimers with globular proteins and bio-assemblies (108).  

 

The ionisable groups present on the surface and interior of PAMAM dendrimers result 

in pH driven conformation changes. Full generation PAMAM dendrimers were studied 

using computer simulation models. It was found that at low pH (pH ≤ 4), surface 

primary and interior tertiary amines were protonated, causing electrostatic repulsion 

between the positively charged ammonium groups which lead to an extended 

conformation. At neutral pH, hydrogen bonding occurred between the protonated 

surface primary amines and unprotonated tertiary amines; backfolding occurred leading 

to a denser dendrimer core. At higher pH (pH ≥ 10), as the charge of molecules 

becomes neutral, the dendrimer contracted and appeared in a more spherical structure 

with a loose compact network (109).  

 

1.5.3 PAMAM dendrimers as drug carriers 

 
PAMAM dendrimers have shown great potential as drug carriers due to their well-

defined architecture. PAMAM dendrimers with amine (full generation) and carboxylic 

(half generation) as the surface functional groups can act as drug carriers by drug 

encapsulation within the internal cavities of the dendritic structure. Prodrugs can be 

synthesised by interacting free drugs or through linker molecules via electrostatic 

interaction or covalent bonds respectively, with the surface functional groups (10, 108). 
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Figure 1-10: A dimensionally scaled comparison of a series of PAMAM 
dendrimers (G4 – G7) with a variety of proteins, a typical lipid bilayer membrane 
and DNA, indicating the closely matched size and contours of important proteins 
and bioassemblies [taken from (108)]. 
 
 

1.5.3.1  Drug encapsulation 

 
PAMAM dendrimers, especially the higher generations (G3 – G5), have demonstrated 

the ability to encapsulate therapeutic agents in the internal cavities within the dendritic 

structure. The encapsulation ability is generally based on hydrophobic interactions, 

ionic interaction and physical entrapment (110). Successful non-covalent encapsulation 

of hydrophobic drugs into the PAMAM dendrimers has been established over the years.  

 

PAMAM dendrimers have demonstrated the ability to enhance the solubility of low 

water insoluble drugs (107). Devarakonda and co-workers (111) studied the effect of G0 
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– G3 PAMAM dendrimers on the aqueous solubility of nifedipine, a low solubility 

calcium channel blocking agent. The solubility of nifedipine was found to be increased 

significantly when the drug was encapsulated and formed a complex with PAMAM 

dendrimers. The increasing order of drug solubility at pH 7 was G2.5 > G3 > G1.5 > G2 

> G0.5 > G1 > G0, indicating that drug solubility depends on the size and type of 

surface functional groups. The greatest solubility increase of nifedipine was observed in 

the presence of half generation PAMAM dendrimer at pH 7 compared to pH 4 and pH 

10. The dependence of nifedipine solubility on pH leads to a potential of pH dependant 

controlled-release drug delivery system design. 

 

Further studies were carried out by Devarakonda et al. (112) to investigate the effect of 

PAMAM dendrimers on the aqueous solubility and in vitro cytotoxicity of a poorly 

soluble drug, paclitaxel. Up to 16 molecules of paclitaxel were successfully formed 

complexes with both G3 and G5 PAMAM dendrimers. The aqueous solubility of 

paclitaxel was found to increase significantly with increasing dendrimer concentration. 

The cytotoxicity of free paclitaxel and dendrimer-paclitaxel complexes was compared 

and studied using prostate cancer cells (PC-3M). A significantly higher percentage of 

cell death was observed with the cells treated with dendrimer-paclitaxel complexes. The 

enhanced cytotoxic effect of the complexes could be due to the increased solubility of 

the drug and/or cellular uptake of the complexes by the cancer cells. 

 

Charge complexation and encapsulation of ibuprofen to PAMAM dendrimers has been 

reported by Milhem et al. (99), Kolhe et al. (113) and Kannan et al. (114). Milhem et al. 

(99) found that the solubility of the hydrophobic drug ibuprofen was significantly 

increased in PAMAM G4 dendrimer solutions. The solubility was directly proportional 

to dendrimer concentration. Kolhe et al. (113) suggested that formation of complex was 

due to the ionic interaction between the amine end groups of PAMAM dendrimer and 

carboxylic group of ibuprofen. Kannan et al. (114) found that the number of ibuprofen 

molecules forming ionic complexes with dendrimers was charge and size dependent of 

the dendrimers. Both Kolhe et al. (113) and Kannan et al. (114) studied the cellular 

entry of the dendrimer-ibuprofen complex into A549 human lung epithelial carcinoma 

cells. A higher and rapid cellular entry of the dendrimer-ibuprofen complex (more than 

80%) into the A549 cells was obtained compared to the free ibuprofen (40%) within 1 h. 

The same group also reported high payloads of drug when complexed with PAMAM 
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dendrimers (up to 78 drug molecules), suggesting the PAMAM dendrimers can act as 

efficient drug carriers and facilitate rapid cellular entry of ibuprofen. 

 

Ke and co-workers (115) successfully incorporated doxorubicin, a P-gp substrate and 

drug with poor bioavailability into G3 PAMAM dendrimers. The doxorubicin-PAMAM 

complex demonstrated time and concentration dependent cellular uptake by Caco-2 

cells. Drug transport from the mucosal side to the serosal side in different segments of 

the small intestine of rats was significantly improved with the drug-dendrimer complex 

compared to the free drug. Higher bioavailability was obtained by doxorubicin-

PAMAM complex indicating that drug-dendrimer complex may represent a potential 

oral delivery system. 

 

1.5.3.2  PAMAM-drug conjugates 

 
The potential of PAMAM dendrimers to act as a drug carrier has been further developed 

by direct covalent conjugation of drug molecules to the dendrimer surface or via 

biodegradable spacers/linkers. In addition, PAMAM dendrimers with the amenable 

terminal functional groups can be surface engineered for specific applications, e.g. 

enhancement of drug solubility and permeability, and targeted delivery.  

 

Jevprasesphant et al. (103) found that the properties of PAMAM dendrimer such as 

solubility, cytotoxicity and permeation across Caco-2 cells, were changed significantly 

when surface engineered with lauroyl chains. Surface modified cationic PAMAM 

dendrimers (G2, G3 and G4) displayed reduced cytotoxicity and enhanced permeability 

across Caco-2 cell monolayers. It was reported that the transport of dendrimers and 

conjugates across Caco-2 cell monolayers involved both paracellular and transcellular 

pathways. Dendrimers provided better delivery as they not only enhanced transcellular 

transport but also enhanced paracellular transport by opening up the tight junctions (84, 

103). These findings suggested that surface engineered PAMAM dendrimers can be 

used as effective drug delivery systems.  

 

Studies were carried out by the same group (83) to develop a dendrimer based drug 

delivery system to enhance oral bioavailability. Propranolol (P), a low solubility and P-
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glycoprotein (P-gp) efflux transporter substrate drug was conjugated covalently to 

surface modified and unmodified PAMAM dendrimers. The solubility of propranolol 

was increased by at least two orders of magnitude when conjugated to surface modified 

dendrimers. Propranolol conjugates with both surface modified and unmodified 

PAMAM dendrimers demonstrated the ability to bypass P-gp efflux in Caco-2 

monolayers. Interestingly, propranolol conjugates with lauryl modified PAMAM 

dendrimers gives a higher apical (A) to basolateral (B) apparent permeability coefficient 

(Papp) than the conjugates with unmodified dendrimers, with G3L6-P showing highest 

Papp. These findings demonstrate the potential application of dendrimer nanocarriers as a 

drug delivery system for low solubility and P-gp substrate drugs. 

 

Khandare and co-workers (116) reported the conjugation of methylprednisolone to G4-

OH PAMAM dendrimers via glutaric acid as a spacer. Methylprednisolone-glutaric acid 

was first prepared and subsequently conjugated to the PAMAM-OH dendrimers. A high 

payload dendrimer-drug conjugate (12 molecules of methylprednisolone per dendrimer) 

had been successfully synthesised due to lower steric hindrance at the dendrimer surface 

and higher stability and reactivity of methylprednisolone. In addition, the conjugates 

were fluorescently labelled with fluoroisothiocyanate (FITC) for the dynamic studies on 

cellular entry using A549 human lung epithelial carcinoma cells. It was found that over 

the study period, the conjugates were localised primarily in the cytosol and showed 

comparable therapeutic activity to the free drug.  

 

Khandare et al. (117) further reported the conjugation of the chemotherapeutic drug 

paclitaxel to G4-OH PAMAM dendrimers via a succinic acid spacer. In vitro 

cytotoxicity studies of the conjugates using A2780 human ovarian carcinoma cells 

showed a 10-fold increase in cytotoxicity by G4-OH-succinic acid-paclitaxel conjugates 

when compared with free drug. Applications of PAMAM dendrimers as drug carrier for 

paclitaxel were studied by several researcher groups. Majoros and co-workers (105) had 

synthesised a partially acetylated G5 PAMAM dendrimer conjugated with paclitaxel, 

folic acid and labelled with FITC. The function of the partial acetylation was to prevent 

nonspecific targeting interactions while conjugation of folic acid was for targeting the 

over-expressed folate receptors on specific cancer cells. In vitro targeted delivery of the 

dendrimer conjugates was investigated using KB cells (Human epidermoid carcinoma 

cells that over-express the folate receptor). Flow cytometry analysis found that only KB 
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cells with up-regulated folic acid receptors (KB+) treated with dendrimer conjugates 

showed green fluorescence and cytotoxicity study using XTT assay showed that only 

KB+ were sensitive to the cytotoxicity effect of the dendrimer conjugates at 100 nM. 

While KB cells with down-regulated folic acid receptors (KB-) remained viable and 

comparable to untreated cells. These results indicated uptake and specific delivery of 

the dendrimer conjugates. Bi et al. (118) also synthesised similar dendrimer conjugates 

as developed by Majoros et al. (105) and studied the stability of the conjugates. Two 

linkers, succinic acid and glutaric acid were employed to attach paclitaxel to dendrimer. 

The kinetic study of the hydrolysis of the dendrimer conjugates with succinic linker 

showed that paclitaxel was released through ester bond hydrolysis in a time-dependent 

manner with a 10 h half life in PBS buffer (pH 7.4) while no significant paclitaxel 

hydrolysis was observed for dendrimer conjugates with glutaric linker after 7 days.   

 

Najlah et al. (85, 87) reported the synthesis and in vitro evaluation of dendrimer 

prodrugs for oral delivery. Naproxen (nap), a low aqueous solubility drug, was 

conjugated either directly to G0 PAMAM dendrimers or via a linker, L-lactic acid (lac) 

or diethylene glycol (deg). G0-nap prodrug formed by a direct amide covalent bond, 

demonstrated high stability in plasma and liver homogenate and was therefore 

unsuitable for prodrug development. The advantages of using a linker in the synthesis of 

prodrugs were observed with G0–lac–nap and G0–deg–nap prodrugs. G0–lac–nap 

prodrug has a high stability in plasma with slow hydrolysis in liver homogenate, 

suggesting potential application in controlled release systems. G0–deg–nap prodrug 

demonstrated high chemical stability but readily released drug in plasma and liver 

homogenate, thus a potential candidate for poorly soluble drugs (85). Cytotoxicity 

studies showed that G0 PAMAM dendrimers and conjugates were not toxic toward 

Caco-2 monolayers. From permeability studies, naproxen transport was shown to 

increase in both directions when the drug was conjugated to G0 dendrimer. When a 

lauryl chain was attached to the dendrimer surface, a higher increase in naproxen 

transport was observed. These results illustrated the potential of G0 PAMAM 

dendrimers as nanocarriers for enhancing oral bioavailability. 

 

Further studies were carried out by Najlah et al. (86) who synthesised G1 PAMAM 

dendrimer prodrugs and assessed their enhancement of the cellular permeability of P-gp 

substrates. In this study, terfenadine (Ter), a water-insoluble P-gp substrate drug was 
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conjugated to G1 PAMAM dendrimers using biodegradable linkers, succinic acid (suc) 

and deg. G1–Ter conjugates with a covalent linkage displayed a significant increase of 

terfenadine transport across Caco-2 monolayers compared to the unchanged terfenadine 

transport profile in the presence of G1 PAMAM dendrimer in the transport medium. 

When G1 PAMAM dendrimers were modified with lauryl chains, a more pronounced 

increase in terfenadine transport was observed with the prodrugs. These findings are in 

agreement with previous work by the same group (85, 87, 103, 106).  

 

Several other studies have been carried out to explore the potential of PAMAM 

dendrimers for gene delivery to the brain. Huang and co-workers (119) investigated the 

cellular and brain uptake of brain-targeting gene vector based on PAMAM dendrimers, 

in vitro and in vivo. PAMAM-PEG-Tf conjugate was synthesised by conjugating brain-

targeting ligand, transferrin (Tf) to PAMAM via polyethylene glycol (PEG). Cellular 

uptake studies of the conjugate were reported to be concentration dependent and a 2.25 

fold increase of brain uptake was observed when compared to PAMAM and PAMAM-

PEG in vivo. The transfection efficiency of PAMAM-PEG-Tf/DNA complex was 

reported to be significantly higher than PAMAM/DNA and PAMAM-PEG/DNA 

complexes in brain capillary cells. The brain gene expression of the complex with Tf 

(PAMAM-PEG-Tf/DNA) was found to be 2 fold higher than those without Tf 

(PAMAM/DNA and PAMAM-PEG/DNA). Similar studies were conducted using the 

PAMAM-based conjugate synthesised with lactoferrin (Lf) as the brain-targeting ligand 

(120). It was found that Lf-conjugate/complex demonstrated significantly increased 

brain uptake, transfection efficiency, and brain gene expression compared to that of Tf-

conjugate/complex. These results suggest that PAMAM-PEG conjugated with the Tf or 

Lf ligand offer a promising nonviral approach for gene delivery to brain via non-

invasive administration. It can be concluded from these reviews that PAMAM 

dendrimers has the potential to act as nanocarriers for delivery across the cellular 

barriers. 
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1.6 Characterisation techniques 

1.6.1 Thin layer chromatography (TLC) 

 
Thin layer chromatography is a chromatographic technique widely used for organic 

compound separation. TLC is often used to monitor the progress of organic reactions 

and purity of products due to the simplicity and rapidity of the technique (121).  

 

Thin-layer chromatography consists of a stationary phase, a mobile liquid phase, and a 

developing chamber. The stationary phase is a TLC plate of glass, metal or plastic 

coated with a thin layer of solid absorbent (usually silica or alumina). A small amount 

of the sample mixture, either liquid or dissolved in a volatile solvent, is deposited as a 

spot at 1-2 cm from the bottom of the TLC plate. The components of a sample can be 

identified by running standards with the unknown simultaneously. This plate is then 

placed in a developing chamber which contains a shallow pool of the mobile phase 

(comprising one or more miscible solvents) (121).  

 

The mobile phase moves up the plate by capillary action. When the solvent front 

reaches about ¾ distances up the plate, the plate is removed and dried. The separated 

spots are visualized with ultraviolet light or by placing the plate in iodine vapour (121). 

The different components in the mixture move up the plate at different rates due to 

differences in their partitioning behaviour between the mobile phase and the stationary 

phase. Figure 1-11 illustrated the TLC technique.  

 

The retention factor (Rf) is defined as the distance travelled by the compound (D sample) 

divided by the distance travelled by the solvent (D mobile phase). 

 

Rf = D sample / D mobile phase 
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Figure 1-11: Schematic diagram of TLC and measurement of Rf. 
 

 

1.6.2 Nuclear magnetic resonance (NMR) spectroscopy 

 
Nuclear magnetic resonance (NMR) spectroscopy is a pre-eminent technique to 

determine the structure of organic and inorganic compounds. It is an absorption 

spectrometry based on the quantum mechanical magnetic properties of an atom’s 

nucleus having a nuclear spin (I) in the presence of an applied magnetic field (122). 

 

In general, a sample is dissolved in a solvent which itself does not give rise to an NMR 

signal that can interfere with the signals of the sample in the spectrum, and then lowered 

into a sample chamber applied with a homogeneous magnetic field. When the 

frequencies of the nuclei, e.g. 1H and 13C (most commonly used), are in resonance with 

the applied radio frequency, the nuclear spin will be promoted from the low energy state 

(parallel to the field) to the high energy state (anti-parallel). A receiver records the 

changes in magnetic moment as the nuclei relax back to an equilibrium state. Fourier 

Transform of the data gives the different frequencies of the nuclei in different electrical 

environments in the sample. The spectrometer will then record and plot the spectrum as 

absorption against the frequency (122).  
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The frequencies are measured as a relative difference from an internal standard, usually 

tetramethysilane (TMS). The position of the relative difference to TMS is called 

chemical shift (δ), and is measured in parts per million (ppm). 

 

1.6.3 Mass spectrometry (MS) 

 
Mass spectrometry is an analytical method used to identify a compound or sample 

chemical composition based on the mass-to-charge (m/z) ratios of the charged particles 

generated by the spectrometer. A mass spectrometer can be separated into three 

fundamental parts: ionisation source, mass analyser, and detector (122). 

 

Sample is introduced into the ionisation source of the instrument in the vapour phase. 

The sample molecules are ionised by accelerated electrons generated in the ionisation 

chamber. These ions are extracted into the mass analyser region where they are 

deflected and separated according to their m/z ratios. Lastly, the separated ions are 

detected; their relative abundances are recorded and plotted against their m/z values in 

the format of a m/z spectrum. There are many different types of ionisation sources, mass 

analysers and detectors that can be used for different mass spectrometers depending on 

the type of sample under investigation (122).  

 

Figure 1-12 illustrates a simplified schematic of mass spectrometer with different 

available fundamental parts. The ionisation source, analyser and detector need to be 

maintained under high vacuum to allow the ions to travel from one end of the 

instrument to the other without any hindrance from air molecules.   

 

 

Figure 1-12: A simplified schematic of a mass spectrometer.  
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1.6.4 High performance liquid chromatography (HPLC) 

 
HPLC is a chromatographic technique that has been widely used to separate, identify, 

quantify and purify the individual components of a mixture of compounds (biological or 

chemical molecules). Separation of molecules is based on different distribution of size 

and charge and the interaction between the stationary and mobile phase in the system 

(123, 124).  

 

The components of a basic HPLC system consist of a solvent reservoir, pump, injector, 

column, detector and waste reservoir (Figure 1-13). In general, solvent/eluent (mobile 

phase) is propelled by the high pressure generated by the pump through a densely 

packed column (stationary phase).  In reverse-phase high performance liquid 

chromatography (RP-HPLC), a high polar mobile phase and a non-polar hydrocarbon 

stationary phase is used. The sample (analyte) is introduced by the injector into the 

continuously flowing mobile phase stream that carries the sample into the HPLC 

column. Individual components of the sample are separated during their migration 

through the stationary and mobile phase. Analytes eluted from the column will be 

analysed by the detector that provides a characteristic retention time. Analyte retention 

time varies with factors such as the strength of its interactions with the stationary phase, 

the type and the ratio/composition of solvent(s) used, and the flow rate of the mobile 

phase. The mobile phase that exits the detector will be sent to waste. The qualitative 

analysis is determined by the retention time while the quantitative analysis is 

determined by the peak area or height in comparison with reference standards (124).  

 

Figure 1-13: Schematic diagram of HPLC instrumentation [taken from (125)]. 
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1.7 Cell lines and cell culture 

1.7.1 Intestinal barriers in vitro cell model 

 
For the investigation of in vitro drug absorption across intestinal cell barriers, 

morphological and functional properties similar to those of normal human small 

intestine are generally the main criteria for the selection of a cell culture model. In this 

study, Caco-2 cells were used as an in vitro cell culture model to investigate the 

transport of dendrimer-based drug carrier across the intestinal barrier as it has been 

commonly used as a cell model for dendrimer uptake (11, 83, 84, 86, 87, 103, 106).  

 

Although Caco-2 cells are derived from the human colon carcinoma, the cells become 

differentiated and polarized such that their phenotype, morphologically and functionally, 

resembles the small intestine enterocytes when cultured under specific conditions (126). 

Caco-2 cells closely resemble small intestine enterocytes characteristic with the 

expression of tight junctions, microvillus, and a number of enzymes (peptidases, 

esterases) and transporters (P-glycoprotein, uptake transporters for amino acids, bile 

acids and carboxylic acids) (127-129). However, one of the limitations displayed by 

Caco-2 cells is its high TEER value which is similar to value in colon rather than that in 

the small intestine. This is due to their origin from colon carcinoma cells (126, 130). 

Despite this limitation, good correlation between the in vitro apparent permeability 

coefficient (Papp) across Caco-2 monolayers and the in vivo fraction absorbed (fa) has 

been well established, thus making Caco-2 cell a widely used in vitro cell culture model 

for studies of intestinal drug absorption (131). 

 

1.7.2 Blood-brain barrier in vitro cell lines and cell culture models 

 
Numerous attempts have been made to develop well-characterised in vitro models that 

can be used to examine and to further understand the transport mechanisms across the 

blood-brain barrier (58). To date, in vitro endothelial cell culture models or cell lines 

have been the most useful model to study the BBB mechanisms at the cellular and 

molecular level (58). However, no specific in vitro BBB model has yet been accepted as 

an ‘industrial standard’. The selection of cell culture model in experiments are usually a 
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compromise between the application, convenience, availability of resource, cost, time 

and how closely a model needs to resemble the in vivo conditions (32, 45). A variety of 

BBB in vitro cell models including immortalised cell lines and primary cultures have 

been developed and characterised to predict the BBB permeability (58, 132). 

 

1.7.2.1 Immortalised brain endothelial cell lines 

 
Immortalised brain endothelial cell lines were developed by transfection of pure brain 

endothelial cells. Rat and mouse brain, in particular, received most attention to be 

developed into cell lines due to their general application as small laboratory animals in 

many in vivo BBB studies. Therefore, rat brain endothelial (RBE) cell culture systems 

have been developed to provide more information for in vitro and in vivo correlation 

(133). 

 

Immortalised BBB cell models such as transgenic rats TR-BBB (134) and RBE4 cell 

lines (133), have been developed and widely characterised. Immortalised cell lines are 

generally useful in examining transport mechanism and cell-cell interaction as they 

retain the expression of many typical endothelial markers (45). However, a great 

drawback found with characterisation studies of these immortalised BBB cell lines (e.g. 

TR-BBB cell lines) was that they generally form an insufficiently tight barrier for use in 

permeability studies (132-134).  

 

1.7.2.2 Primary brain endothelial cultures 

 
In general, bovine and porcine tissues have been utilised as source for primary brain 

endothelial cell cultures due to the brain size and availability. Primary cultures of 

microvessel endothelial cells from brain tissue have been generated by a series of cell 

isolation procedures which include enzymatic digestion, filtration, centrifugation, 

differential adhesion on different matrices, and techniques to kill contaminants in order 

to obtain maximum yield and purity and to eliminate fast-growing contaminating cells. 

Contaminating cells are mainly pericytes, fibroblast and smooth muscle cells (58).   
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Primary or low passage cell cultures were found to retain several morphological and 

biochemical properties of the BBB in vivo phenotype, including endothelial enzymes, 

transporters, receptors and complex tight junctions (45). Primary cultured bovine brain 

microvessel endothelial cells (BBMECs) and primary porcine brain microvessel 

endothelial cells (PBMECs) are among the most well established primary cultures. 

 

1.7.2.2.1 Porcine Brain Endothelial Cells (PBECs) 

 
The use of primary porcine brain microvessel endothelial cells (PBMECs) has been 

assessed by several research groups (135-137) for in vitro permeability studies. It was 

suggested that the PBMEC model might provide a more restrictive paracellular pathway 

compared to the BBMEC model (135).  

 

Recently, Zhang et. al. (132) have developed, characterised and evaluated the use of 

PBMECs as an in vitro model to predict the blood-brain barrier (BBB) permeability in 

vivo. It was reported that higher TEER values of 300 – 550 Ω.cm2 were achieved than 

those of previously reported BBMVECs (80 – 140 Ω.cm2) (138) and in-house 

observation TR-BBB (5 – 20 Ω.cm2) (132). It has been showed that higher TEER values 

were achievable by brain endothelial cells when co-culturing with astrocyte-conditioned 

medium (36, 139-141). However, Zhang and co-workers (132) reported unchanged 

sucrose permeability across the PBMEC model. The expression of the mRNA of several 

BBB uptake and efflux transporters (GLUT1, LAT1, MRP1, MRP4, MRP5, P-gp, and 

BCRP) was observed with the cell cultured. Study of functional activity also suggested 

that P-gp was functionally active and was predominantly located on the apical 

membrane. Moreover, PBMEC model was reported to take shorter times (5 – 6 days) to 

reach confluency compared to BBMEC which needed 10 – 12 days.  

 

PBMEC model maintains the complexities of the in vivo BBB and demonstrates strong 

and significant quantitative correlations between the in vitro and in situ permeability 

(132), indicating that the PBMEC model can be used as an effective in vitro model to 

study the BBB permeability. 
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1.8 Aims and objectives 

 
Working hypothesis: Is it possible to develop dendrimer-based delivery to overcome 

cellular barriers during drug delivery? 

 

The development of effective drug delivery system to overcome the cellular barriers has 

been a major challenge for oral drug delivery as well as drug delivery to the CNS for the 

management of many CNS diseases. One of the key problems encountered is limited 

drug entry, especially drugs that are P-gp substrates (e.g. paclitaxel) across the intestinal 

and blood-brain barriers. The main aim of this study was to develop dendrimer-based 

drug delivery systems to overcome these cellular barriers. 

 

The specific objectives of study are: 

- to synthesise and characterise dendrimer-based drug delivery systems using G3 

PAMAM dendrimer to enhance cellular permeability of paclitaxel, a poorly 

soluble drug and substrate of P-gp efflux transporter.  

- to determine the cytotoxicity of G3 PAMAM dendrimer-based drug delivery 

systems on Caco-2 cells using the LDH assay and determination of IC50 values. 

- to examine the permeation of G3 PAMAM dendrimer-based drug delivery 

systems across the Caco-2 cell monolayers. 

- to determine the cytotoxicity of G3 PAMAM dendrimer-based drug delivery 

systems on porcine brain endothelial cells (PBECs) using the LDH assay and 

determination of IC50 values. 

- to investigate the potential of G3 PAMAM dendrimer to act as a drug carrier for 

paclitaxel to bypass P-gp transporters, using PBECS as the blood-brain barrier 

cell model. 

- to examine the influence of surface modification of G3 PAMAM dendrimer with 

lauryl chains as permeability enhancer on the cytotoxicity and permeability of 

the resulting dendrimer-based drug delivery systems. 
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CHAPTER 2: SYNTHESIS AND CHARACTERISATION OF G3 

PAMAM DENDRIMER AND DRUG CONJUGATES 
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2.1 Introduction 

 
Over the years, numerous attempts have been explored to devise therapeutic delivery 

systems able to cross the cellular barriers for efficient drug delivery (4). Problems 

encountered during drug delivery are normally associated with low solubility and 

permeability of therapeutic drugs (4). Efflux transporter systems (e.g. P-gp efflux 

transporter) actively function at cellular barriers and limit drugs which are substrates 

from transport across the barrier. Chemical modification is one of the strategies to 

enhance permeability and solubility of drugs for more efficient delivery. Addition of 

lipophilic components to drugs and conjugation of drugs to a carrier with high solubility 

or carrier which can bypass the P-gp system have been shown to demonstrate higher 

permeation across the cellular barriers (4). 

 

In this study, paclitaxel was selected as the model drug and a P-gp substrate with poor 

water solubility. It represent a new class of antimicrotubule anticancer drugs which has 

been shown experimentally to have antitumor activity (142, 143). Paclitaxel has been 

reported to demonstrate remarkable efficacy against ovarian and breast cancer and more 

recently, against malignant gliomas and brain metastases (24). However, pharmaceutical 

applications of paclitaxel are greatly limited by its low solubility as well as low 

permeability across cellular barriers due to exclusion by the P-gp efflux transport 

system present in cellular barriers, e.g. the intestinal and the blood-brain barriers.  

 

Dendrimers with their unique properties and characteristics have been of great interest 

for pharmaceutical applications for the encapsulation/ solubilisation of drugs and 

conjugation of drugs for transepithelial transport (83). They are highly branched 

polymers with a high degree of uniformity and monodispersity. The surface groups of 

dendrimers can be engineered to specific functionality. G3 PAMAM dendrimer was 

reported to bypass the P-gp efflux transporter and enhance permeability of P-gp 

substrate drug with low water solubility (e.g. propranolol and terfenadine) (83). Surface 

engineered PAMAM dendrimers with lauryl chains demonstrated enhanced 

permeability and lower cytotoxicity compared to unmodified dendrimers (103, 106).  
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In this chapter of the study, a third generation (G3) polyamidoamine (PAMAM) 

dendrimer-based drug delivery system to enhance the permeability of paclitaxel and to 

overcome the cellular barriers (e.g. the intestinal barrier and the blood-brain barrier) was 

synthesised and characterised. G3 PAMAM dendrimers were conjugated with lauryl 

chains at 1:3, 1:6 and 1:9 molar ratios. Paclitaxel was conjugated to G3 and/or lauryl-G3 

dendrimer conjugates via a glutaric anhydride linker by using the N-

hydroxysuccinimide (NHS) active ester method. Unmodified G3 PAMAM dendrimer 

and all the dendrimer conjugates (lauryl-G3 and G3-drug conjugates) were labelled with 

fluorescein isothiocyanate (FITC) for quantitative detection by spectrofluorimetry in 

permeability studies. These conjugates were characterised using various techniques 

including thin layer chromatography (TLC), proton (1H) and carbon (13C) nuclear 

magnetic resonance (NMR), electrospray ionisation-mass spectrometry (ESI-MS) and 

dynamic light scattering. Chemical stability of the dendrimer conjugate was studied in 

buffer at three different pHs: pH 1.2 (hydrochloric acid buffer), pH 7.4 (phosphate 

buffer), and pH 8.5 (borate buffer) at 37oC. 
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2.2 Materials and methods 

2.2.1 Materials 

 
G3 PAMAM dendrimer with an ethylenediamine core (20% w/w in methanol) was 

purchased from Dendritech Inc. 1-dodecanol, 4-nitrophenyl chloroformate, 

triethylamine (TEA), Sephadex LH20 (bead size: 40-120 μm), diphenyl phosphoryl 

chloride (DPC), N-hydroxysuccinimide (NHS), fluorescein isothiocyanate (FITC) 98%, 

dimethyl sulfoxide (DMSO), sodium chloride (NaCl), disodium hydrogen phosphate 

(Na2HPO4), sodium dihydrogen phosphate (NaH2PO4), glutaric anhydride, pyridine, 

magnesium sulphate (MgSO4), potassium chloride (KCl), hydrochloric acid (HCl), 

dipotassium hydrogen phosphate (K2HPO4), potassium dihydrogen phosphate 

(NaH2PO4), sodium tetraborate decahydrate (NaB4O7.10H2O), boric acid (H3BO3) 

phenanthrene, and trifluoroacetic acid (TFA) were purchased from Sigma-Aldrich Co. 

Ltd. (Gillingham, Dorset, UK). Tetrahydrofuran (THF), hexane, dimethylformamide 

anhydrous (DMF), methanol, dialysis membrane (Spectra/Por® 7, 1000 Dalton 

molecular weight cut-off, MWCO), membrane filter (Millex pore size 0.45μm), 

chloroform, ammonium hydroxide, dichloromethane (DCM), and ethyl acetate (EtOAc) 

were purchased from Fisher Scientific UK Ltd (Loughborough, UK). Paclitaxel was 

purchased from Advance Tech. & Ind. Co., Ltd. (Kln, Hong Kong). Diethyl ether and 

silica gel for flash chromatography were purchased from BDH Laboratory Supplies 

(Lutterworth, UK).  

 

2.2.2 Synthesis of lauryl-G3 PAMAM dendrimers 

 
G3 PAMAM dendrimers modified with lauryl chains were expressed as G3-Lx with x 

being the average number of lauryl chains per dendrimer. Lauryl chains were attached 

covalently to the surface of G3 PAMAM dendrimers as described by Najlah et  al. (86). 

The lauryl chain was activated to form lauryl 4-nitrophenyl carbonate, which was then 

reacted with the surface amine groups of G3 PAMAM dendrimers. 
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2.2.2.1 Synthesis of lauryl 4-nitrophenyl carbonate 

Lauryl alcohol (1-dodecanol) (1.86 g, 10 mmol) was dissolved in anhydrous THF (5 ml) 

and TEA (2.02 g, 20 mmol) was added. The mixture was stirred for 10 min and 4-

nitrophenyl chloroformate (4.03 g, 20 mmol) in THF (2 ml) was added portion wise 

over 4-5 h, followed by stirring for 24 h at room temperature under a nitrogen flow. 

Figure 2-1 showed the reaction scheme for the synthesis of lauryl 4-nitrophenyl 

carbonate. 

 

 
Figure 2-1: Schematic diagram showing the synthesis of lauryl 4-nitrophenyl 
carbonate. 
 

 

 

Purification of lauryl 4-nitrophenyl carbonate 

 
The yellowish reaction mixture was evaporated under vacuum (Buchi Rotavapor R-215, 

Switzerland) to remove THF. The residue was dissolved in hexane: EtOAc (90:10), 

filtered through a Whatman No. 1 filter paper and purified by silica gel column 

chromatography. The solvent ratio, hexane: EtOAc (90:10), was obtained by using thin 

layer chromatography (TLC) to give a value of Rf = 0.6. Silica gel particles were added 

to the sample in solution, mixed well before being evaporated under vacuum. The dried 

mixture was placed carefully at the top of a silica gel chromatography column with 
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hexane: EtOAc (90:10) as mobile phase. The column was eluted with the mobile phase 

at a flow rate of 2 ml/min, and portions of 5 ml eluents were collected and analysed by 

TLC to identify the purified compound. Evaporation of the combined eluents gave 

lauryl 4-nitrophenyl carbonate with a yield of 82%.  

 

Characterisation of lauryl 4-nitrophenyl carbonate 

 
The product was characterised by proton (1H) and carbon (13C) nuclear magnetic 

resonance spectroscopies (NMR). 13C and 1H NMR spectra were obtained using Bruker 

Avance 400, Bruker, Coventry, UK). Samples were dissolved in deuterated solvent with 

tetramethylsilane (TMS) as an internal standard. The Free Induction Decay (FID) files 

were converted to NMR spectra using MestRe-C software (Mestrelab Research, Spain). 

 
1H NMR (CDCl3): 0.80 (3H, t, J = 6.9, CH3), 1.30-1.10 (18H, m, 9x-CH2-), 1.68 (2H, 

pentet, J = 6.8, -CH2-), 4.20 (2H, t, J=6.8, -CH2-O-CO-), 7.35-7.25 (2H, m, Ar), 8.20-

8.15 (2H, m, Ar).  

 
13C NMR (CDCl3): 14.5 (-CH3), 23.1 (-CH2-), 26.0 (-CH2-), 30.0-28.9 (7x-CH2-), 32.3 

(-CH2-), 70.0 (-CH2-O-CO-), 122.1 (2xCH, Ar), 125.6 (2xCH, Ar), 145.7 (CH, Ar), 

152.9 (CH, Ar), 156.0 (-CO-). 

 

2.2.2.2 Synthesis of G3L3, G3L6 and G3L9 conjugates 

 
G3 PAMAM dendrimer was reacted with 20% excess of the required amount of lauryl 

4-nitrophenyl carbonate to yield the target molar ratios G3: lauryl of 1:3 (G3L3), 1:6 

(G3L6) and 1:9 (G3L9). Lauryl 4-nitrophenyl carbonate for target ratios of 1:3 (91.0 mg, 

0.259 mmol), 1:6 (182.2 mg, 0.518 mmol) and 1:9 (272.7 mg, 0.776 mmol) in DMF (2 

ml) were added drop-wise to stirred solutions of G3 PAMAM dendrimer (500.0 mg, 

0.072 mmol) in DMF (1 ml) over a period of 4-5 h. The reaction mixture was stirred for 

5 days at room temperature under a nitrogen flow. Figure 2-2 represents the reaction 

scheme for the conjugation of lauryl chains to G3 PAMAM dendrimer. 
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Figure 2-2: Schematic diagram showing the conjugation of lauryl to G3 PAMAM 
dendrimer. 
 

 

Purification and characterisation of G3-lauryl conjugates 

 
The reaction mixture was evaporated under vacuum and the resulting product was 

purified by size exclusion chromatography using Sephadex LH 20 as a stationary phase 

(column diameter 25 mm). The mobile phase was composed of methanol:water (85:15). 

The Sephadex LH20 particles were pre-swollen in methanol and left standing 

undisturbed for 24 hr before use. The dried reaction mixture was dissolved in methanol 

and was loaded carefully into the column. Portions of 1.5 ml eluents were collected and 

analysed by TLC to identify the purified compound. Evaporation of the combined 

eluents gave the G3-lauryl conjugates with a yield of 65% for G3L3, 61% for G3L6 and 

68% for G3L9. The products were characterised by 1H NMR spectroscopy.  

 

G3L3: 1H NMR (d4-MeOD): 0.90 (9H, t, J = 6.9, 3 x CH3, L3), 1.45-1.20 (54H, 3 x (9 x 

-CH2-, L3), 1.70-1.54 (6H, pentet, J=9.7, 3 x -CH2-, L3), 2.45-2.30 (120H, m, c-G3), 

2.65-2.50 (60H, m, a-G3), 2.90-2.67 (178H, 2m, b-G3, f-G3), 4.04-3.96 (6H, t, J=7.4, 3 

x -CH2-, L3). 

 

G3L6: 1H NMR (d4-MeOD): 0.90 (18H, t, J = 7.1, 6 x CH3, L6), 1.45-1.20 (108H, 6 x  

(9 x -CH2-, L6), 1.70-1.55 (12H, pentet, J=6.6, 6 x -CH2-, L6), 2.47-2.30 (120H, m, c-
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G3), 2.67-2.50 (60H, m, a-G3), 2.93-2.70 (178H, 2m, b-G3, f-G3), 4.12-3.95 (12H, t, 

J=6.8, 6 x -CH2-, L6). 

 

G3L9: 1H NMR (d4-MeOD): 0.90 (27H, t, J = 6.9, 9 x CH3, L9), 1.45-1.25 (162H, 9 x  

(9 x -CH2-, L9), 1.70-1.55 (18H, pentet, J=6.5, 9 x -CH2-, L9), 2.48-2.32 (120H, m, c-

G3), 2.62-2.52 (60H, m, a-G3), 2.90-2.71 (178H, 2m, b-G3, f-G3), 4.11-3.97 (18H, t, 

J=6.3, 9 x -CH2-, L9). 

 

(1H NMR peak assignments are shown in Figure 2-11 to Figure 2-13.) 

 

2.2.3 Synthesis of G3-glutarate-paclitaxel/lauryl-G3-glutarate-paclitaxel 

conjugates 

 
Paclitaxel was conjugated to G3 and lauryl-G3 PAMAM dendrimer conjugates through 

glutaric anhydride as a linker using the NHS method (144). Firstly, paclitaxel was 

reacted with glutaric anhydride to yield 2’-glutaryl-paclitaxel (pac-glu). The drug-linker 

was converted to pac-glu-NHS ester, followed by covalent conjugation to G3 or lauryl-

G3 PAMAM dendrimer conjugates.  

 

2.2.3.1 Synthesis of 2’-glutaryl-paclitaxel 

 
Paclitaxel (100 mg, 0.12 mmol) and glutaric anhydride (16.4 mg, 0.14 mmol) were 

dissolved in DCM (6 ml) and stirred for 10min, followed by addition of dry pyridine 

(95 μl, ~10x molar excess). The reaction mixture was stirred for 3 days at room 

temperature. Figure 2-3 showed the reaction scheme for the synthesis of 2’glutaryl-

paclitaxel. 
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Figure 2-3: Schematic diagram showing the synthesis of 2’-glutaryl-paclitaxel. 
 

 

Purification and characterisation of pac-glu conjugates 

 
The reaction mixture was evaporated under vacuum to remove pyridine. The dried 

residue was re-crystallised from DCM, and the white crystals formed were separated by 

filtration. The product purity was determined by using TLC with methanol:chloroform 

(3:97) as eluent.  

 

The crystalline product, pac-glu, with a yield of 78% (Rf = 0.3) was characterised and 

verified by 1H and 13C NMR spectroscopies and electrospray ionisation mass 

spectrometry (ESI-MS). Electrospray ionisation mass spectra (ESI-MS) were obtained 

using Thermo Fisher Scientific Finnigan LCQ Advantage MAX (UK). 
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1H NMR (CDCl3): 1.35-1.0 (6H, m, 2 x CH3), 1.72-1.57 (3H, s, CH3CCHO), 1.98-1.72 

(7H, m, C-OH, CH3CCHOH, COOCH2CH2CH2COOH, HOCHCHCHO), 2.64-2.10 

(14H, m, COOCH2CH2CH2COOH, CH-OH, HOCHCHCHO, CH3COOCH, 

CHOCH2COH,   CH3COOCHCO), 3.81 (1H, d, J=6.8, CHOCHCO), 4.18, 4.19 (2H, d, 

J=8.2, COCH2OCH), 4.43 (1H, quartet, J=6.4, CH2CHOH), 4.97 (1H, d, J=8.8, CH2CH-

O), 5.49 (1H, d, J=2.8, NHCHCHOCOO), 5.68 (1H, d, J=6.8, COHCHOCO-Ar), 6.0 

(1H, quartet, J=6.4, NHCHCHOCOO), 6.26 (2H, m, COCHOC(O)CH3, O-CHCH2), 

7.66-7.30 (11H, m, 11 x CH, Ar), 7.73 (2H, d, J=7.6, 2 x CHCCNH, Ar), 8.14 (2H, d, 

J=7.6, 2 x CHCCOO, Ar). 13C NMR (CDCl3): 9.65 (CH3CCHOH), 14.81 (CH3CCHO), 

19.72 (COOCH2CH2CH2COOH), 20.86 (CH3COOCHCO), 22.18 (CH3), 22.71 

(CH3COOCH), 26.83 (CH3), 29.72 (CHOCH2COH), 32.39 (COOCH2CH2CH2COOH), 

32.70 (COOCH2CH2CH2COOH), 35.60 (HOCHCH2-CHO), 43.24 (HOCC(CH3)2), 

45.63 (CHOCHCO), 52.84 (NHCHCHOCOO), 58.50 (CH3CCHOH), 71.96 

(CH2CHOH), 72.10 (OCHCH2), 74.21 (NHCHCHOCOO), 75.17 (COHCHOCO-Ar), 

75.65 (COCHOC(O)CH3), 76.47 (COCH2OCH), 78.93 (CH2C(OH)CHO), 81.15 

(CHCOCH2O), 84.47 (CH2CH-O), 126.58 (2 x CH-CCNH, Ar), 127.20 (2 x CH, Ar), 

128.53 (CH, Ar), 128.72 (2 x CH, Ar), 128.77 (2 x CH, Ar), 129.12 (2 x CH, Ar), 

129.29 (C, Ar), 130.27 (2 x CH, Ar), 132.07 (CH, Ar), 132.94 (CH3CCCHO), 133.62 

(C, Ar), 133.69 (CH, Ar), 136.81 (C, Ar), 142.60 (CH3CCHO), 166.93 (OCNHCH), 

167.80 (CHOCO-Ar), 168.22 (CH3COOCHCH2O), 169.91 (CH3COOCHCO), 171.29 

(NHCHCHOCOO), 171.98 (COOCH2CH2CH2COOH), 176.26 

(COOCH2CH2CH2COOH), 203.81 (COCOCCH3). (+)-ESI-MS: 990.20 [M+ + Na], 

968.20 [M+ + H]. (Theoretical: (C52H57NO7) 967.91 g/mol). 
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2.2.3.2 Synthesis of pac-glu-NHS ester 

 
Formation of N-hydroxysuccinimido diphenyl phosphate (SDPP)  

 
TEA (1.01 g, 10 mmol) in DCM (7 ml) was added slowly to the stirred mixture of DPC 

(2.69 g, 10 mmol) and NHS (1.15 g, 10 mmol). The mixture was stirred at room 

temperature for 30 min and dried under vacuum to obtain crude SDPP. Crude SDPP 

was triturated with diethyl ether and filtered. The residue was collected, dissolved in 

EtOAc, washed twice with water (10 ml) and dried with MgSO4. The mixture was 

filtered and dried under vacuum (yield of 89%). The purity of the resulting product was 

determined by TLC using methanol:chloroform (3:97) as eluent. 

 

Synthesis of pac-glu-NHS active ester 

 
TEA (62 μl, 0.43 mmol) was added to a stirred solution of pac-glu (100 mg, 0.10 mmol) 

and SDPP (53.8 mg, 0.15 mmol) in acetonitrile (5 ml). The reaction mixture was stirred 

for 6 h at room temperature under a nitrogen flow. Figure 2-4 illustrated the reaction 

scheme for the synthesis of pac-glu-NHS ester. 

 

Purification and characterisation of pac-glu-NHS ester 

 
The reaction mixture was evaporated under vacuum to remove acetonitrile. The residue 

was dissolved in EtOAc:hexane (70:30) and purified using silica gel chromatography as 

described in section 2.2.2.1 with a yield of 52% (Rf = 0.4).  

 

The pac-glu-NHS ester was characterised and verified by 1H and 13C NMR 

spectroscopies. 
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Figure 2-4: Schematic diagram showing the synthesis of pac-glu-NHS ester. 
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1H NMR (CDCl3): 1.35-1.0 (6H, m, 2 x CH3), 1.72-1.57 (3H, s, CH3CCHO), 2.30-1.72 

(15H, m, C-OH, CH3CCHOH, COOCH2CH2CH2COON, HOCHCHCHO, NC(O)CH2-

CH2C(O)), 2.95-2.30 (14H, m, COOCH2CH2CH2COON, CH-OH, HOCHCHCHO, 

CH3COOCH, CHOCH2COH,   CH3COOCHCO), 3.81 (1H, d, J=11.2, CHOCHCO), 

4.18, 4.29 (2H, d, J=8.8, COCH2OCH), 4.43 (1H, br quartet, J=13.6, CH2CHOH), 4.97 

(1H, d, J=12.8, CH2CH-O), 5.48 (1H, d, J=5.2, NHCHCHOCOO), 5.68 (1H, d, J=11.2, 

COHCHOCO-Ar), 6.0 (1H, quartet, J=10.4, NHCHCHOCOO), 6.27 (2H, m, 

COCHOC(O)CH3, O-CHCH2), 7.66-7.3 (11H, m, 11 x CH, Ar), 7.71 (2H, d, J=11.2, 2 

x CHCCNH, Ar), 8.12 (2H, d, J=11.2, 2 x CHCCOO, Ar). 13C NMR (CDCl3): 9.60 

(CH3CCHOH), 14.86 (CH3CCHO), 20.10 (COOCH2CH2CH2COON), 20.84 

(CH3COOCHCO), 22.10 (CH3), 22.73 (CH3COOCH), 25.49 (NC(O)CH2-CH2C(O)), 

26.78(COOCH2CH2CH2COON),  26.86 (CH3), 29.41 (CHOCH2COH), 32.02 

(COOCH2CH2CH2COON), 35.56 (HOCHCH2-CHO), 43.14 (HOCC(CH3)2), 45.60 

(CHOCHCO), 52.81 (NHCHCHOCOO), 58.42 (CH3CCHOH), 71.85 (CH2CHOH), 

72.07 (OCHCH2), 74.42 (NHCHCHOCOO), 75.06 (COHCHOCO-Ar), 75.59 

(COCHOC(O)CH3), 76.40 (COCH2OCH), 78.96 (CH2C(OH)CHO), 80.98 

(CHCOCH2O), 84.41 (CH2CH-O), 126.67 (2 x CH-CCNH, Ar), 127.26 (2 x CH, Ar), 

128.46 (CH, Ar), 128.71 (2 x CH, Ar), 128.78 (2 x CH, Ar), 129.04 (2 x CH, Ar), 

129.18 (C, Ar), 130.19 (2 x CH, Ar), 131.64 (CH, Ar), 132.76 (CH3CCCHO), 133.61 

(C, Ar), 134.08 (CH, Ar), 136.93 (C, Ar), 142.66 (CH3CCHO), 166.87 (OCNHCH), 

167.58 (CHOCO-Ar), 168.03 (COOCH2CH2CH2COON),  168.12 (CH3COOCHCH2O), 

169.27 (OCNCO), 169.76 (CH3COOCHCO), 171.17 (NHCHCHOCOO), 171.79 

(COOCH2CH2CH2COOH), 203.83 (COCOCCH3). 

 

2.2.3.3 Synthesis of G3-glu-pac/ lauryl-G3-glu-pac 

 
Pac-glu-NHS was conjugated to G3, G3L3 and G3L6 conjugates at 1:1.2 molar ratio. 

For example, pac-glu-NHS (18.5 mg, 0.017 mmol) in DMF (2 ml) was added drop-wise 

to a stirred solution of G3 (100 mg, 0.014 mmol) in DMF (1 ml) over a period of 4-5 h. 

The reaction mixture was stirred for 5 days at room temperature under a nitrogen flow. 

Figure 2-5 showed the reaction scheme for the synthesis of L-G3-glu-pac. 
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Figure 2-5: Schematic diagram showing the synthesis of lauryl-G3-glu-pac. 
 

 

Purification and characterisation of G3-glu-pac, L3-G3-glu-pac and L6-G3-glu-pac 

conjugates 

 
The reaction mixture was evaporated under vacuum and purified by size exclusion 

chromatography as described in section 2.2.2.2.  

 

G3-glu-pac (54% yield), L3-G3-glu-pac (87% yield) and L6-G3-glu-pac (81% yield) 

conjugates were characterised and verified by 1H and 13C NMR spectroscopies. 
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2.2.4 Synthesis of FITC-labelled G3 PAMAM dendrimer and conjugates 

 
Synthesis of FITC-labelled G3 PAMAM dendrimer and conjugates were carried out by 

two methods, previously described by Majoros et al. (105) and Jevprasesphant et al. 

(103). 

 

Method I (105) 

 
FITC (4.7 mg, 0.012 mmol) dissolved in DMSO (2 ml) was added to dendrimer (69.1 

mg, 0.01 mmol) in DMSO (2 ml). The reaction mixture was allowed to stir in the dark 

for 24 h under a nitrogen flow. 

 

Method II (103) 

 
FITC (4.7 mg, 0.012 mmol) dissolved in methanol (2 ml) was added to dendrimer (69.1 

mg, 0.01 mmol) in phosphate buffer saline (PBS) (2 ml). The reaction mixture was 

allowed to stir for 24 h in the dark under a nitrogen flow at room temperature. Figure 

2-6 showed the reaction scheme for the synthesis of FITC labelled G3 PAMAM 

dendrimer. 

 

Purification and characterisation of FITC labelled G3 PAMAM dendrimer 

 
The reaction mixture was dialysed against deionised water using dialysis membrane 

(1000 MWCO) to separate the non-reacted FITC until no free FITC was detected by 

TLC (mobile phase was composed of chloroform: methanol: ammonium hydroxide 

(50:40:10)). Further purification was carried out using size exclusion chromatography 

as described in section 2.2.2.2 with a mobile phase of chloroform:methanol:ammonia 

(5:4:1). 

 

FITC-labelled G3 PAMAM dendrimer and conjugates were characterised and verified 

by 1H and 13C NMR spectroscopies. The particle size of all the FITC-labelled PAMAM 

dendrimer conjugates was measured using dynamic light scattering (Zetasizer Nano, 

Malvern Instruments, UK). The conjugates were dissolved in HBSS and filtered through 

a 0.22 μm pore size PVDF filter into the scattering cell. All measurements were carried 

out at 37oC.  
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Syntheses of all products have been repeated more than 3 times. The conjugation of all 

the products have been characterised and confirmed by NMR after each synthesis. 

 

 

 

 
 
 
Figure 2-6: Schematic diagram showing the labelling of G3 PAMAM dendrimer 
with FITC. 
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2.2.5 Chemical stability of G3 PAMAM dendrimer conjugates 

 
The hydrolysis of G3 PAMAM dendrimer conjugates was investigated in buffers at pH 

1.2 (0.1 M hydrochloric acid buffer), 7.4 (0.1 M phosphate buffer) and 8.5 (0.2 M 

borate buffer). Conjugates with a concentration of 0.0002 M were prepared in a 5 ml 

preheated buffer solution using screw-capped test vials. The solutions were maintained 

at 37oC and 100 μl of samples were withdrawn at appropriate intervals over a period of 

240 h. 100 μl of methanolic solution of phenanthrene was added and samples were 

analysed by HPLC. HPLC analyses were carried out using Agilent 1100 Series HPLC 

system (UK) equipped with a Luna 5 μm, C18 column (250 mm x 4.6 mm) 

(Phenomenex, Cheshire, UK).The solvent system used was MeOH:TFA (0.05% w/v) 

(80:20) for FITC-G3L6-glu-pac, with phenanthrene as an internal standard, the flow 

rate was 1.0 ml/min and UV detection was at λ = 230 nm. 

 

2.2.6 Statistical analysis of data 

 
All data were expressed as mean values ± standard deviation (mean ± SD). Statistical 

analysis was carried out using the Student’s t-test. Probability values of p < 0.05 were 

considered to be statistically significant. In this study, the experiments were replicate of 

between 3-5 times for each synthesis. The syntheses of all products have been repeated 

more than three times. The conjugation of the products have been characterised and 

confirmed by NMR and ESI-MS after each synthesis. 
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2.3 Results and discussion 

2.3.1 Synthesis and characterisation of lauryl-G3 PAMAM dendrimer 

conjugates 

2.3.1.1 Synthesis of lauryl 4-nitrophenyl carbonate 

 
The results of this study have shown that lauryl alcohol was attached to the surface 

primary amine groups of the G3 dendrimer using 4-nitrophenyl chloroformate as the 

coupling agent. Lauryl alcohol demonstrated higher stability and provided more 

consistent yields (85) compared to lauroyl chloride used in the method described by 

Jevprasesphant et al.(103). In the method described by Najlah et al. (85), lauryl alcohol 

was reacted with 4-nitrophenyl chloroformate to obtain lauryl 4-nitrophenyl carbonate ( 

Figure 2-7) which was purified and characterised by TLC and 1H NMR spectroscopy. 

The results from the 1H NMR spectrum (Figure 2-8) confirmed that lauryl 4-nitrophenyl 

carbonate was successfully synthesised. 

  

 

 

 
 
Figure 2-7: Chemical structure of lauryl 4-nitrophenyl carbonate. 
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Figure 2-8: 1H NMR spectrum of lauryl 4-nitrophenyl carbonate.  
 
 

2.3.1.2 Conjugation of lauryl alcohol with G3 PAMAM dendrimers 

 
G3 PAMAM dendrimer (Figure 2-9) was reacted with lauryl 4-nitrophenyl carbonate at 

the appropriate molar ratios (1:3, 1:6 and 1:9) to yield lauryl-G3 PAMAM dendrimers 

(G3L3, G3L6 and G3L9). Lauryl chains were conjugated covalently to the surface 

primary amine groups of G3 PAMAM dendrimer via carbamate bonds. The G3 

PAMAM dendrimer and the lauryl-G3 PAMAM dendrimers were analysed by TLC and 
1H NMR spectroscopy. 

 

The TLC chromatogram of the purified lauryl-G3 PAMAM dendrimers showed a single 

spot at the baseline with Rf = 0.0. The 1H NMR peaks in the G3 PAMAM dendrimers 

spectrum (Figure 2-11) were assigned accordingly to use as a comparison and reference 

for the spectra of lauryl-G3 PAMAM dendrimers (Figure 2-13). The chemical shifts of 

G3 PAMAM dendrimer were assigned as shown in Table 2-1. Figure 2-11 shows the 

peaks originating from G3 PAMAM dendrimer at chemical shifts between 2.35-3.33 

ppm. The additional peaks at the chemical shifts at 0.90-1.70 ppm and 3.90-4.12 ppm 

found in Figure 2-13 confirmed the successful conjugation of lauryl chains to G3 

PAMAM dendrimers. 
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The number of lauryl chains attached to dendrimer was determined by comparing the 

relative integrals of the 1H NMR peaks originating from the lauryl substituents to those 

of G3 dendrimers. By comparing the peak integrations of lauryl at chemical shift 0.90 

ppm and G3 PAMAM dendrimer’s at 2.57 ppm, the number of protons in each peak 

was calculated to determine the ratio of lauryl to G3 PAMAM dendrimer. 1:3, 1:6 and 

1:9 molar ratios of G3 to lauryl were calculated and shown in Table 2-2. 

 

 

Figure 2-9: Chemical structure of G3 PAMAM dendrimer. 
 

 

 

Figure 2-10: A branch of G3 PAMAM dendrimer with a lauryl chain attached via 
a carbamate bond. 
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Figure 2-11: 1H NMR spectrum of G3 PAMAM dendrimer. 
 
 
 

Dendrimer c a f b e 

G3 2.38 2.60 2.74 2.81 3.26 

 
Table 2-1: Assignment of peaks and chemical shifts for G3 PAMAM dendrimer. 
 

 

 

 

Figure 2-12: Schematic diagram of G3 PAMAM dendrimer with a lauryl chain 
attached. 
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Figure 2-13: 1H NMR spectra of lauryl-G3 dendrimer conjugates (a) G3L3 (b) 
G3L6 and (c) G3L9. 
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G3 conjugates 
Conjugation ratio 

G3: lauryl 

G3L3 1: 3.19 

G3L6 1: 6.39 

G3L9 1: 9.18 

 
 
Table 2-2: Molar ratios of lauryl chains conjugated to G3 PAMAM dendrimer by 
comparison of relative peak integrals from the 1H NMR spectra. 
 

2.3.2 Synthesis and characterisation of G3-glu-pac/lauryl-G3-glu-pac 

conjugates 

 
The dendrimer based drug delivery system consisting of the dendrimer – G3 PAMAM 

dendrimer, the permeability enhancer moieties – lauryl chains, the linkers – glutaric 

anhydride, and the drug – paclitaxel was synthesised and characterised.  

 

2.3.2.1 Conjugation of linker (glutaric anhydride) to paclitaxel 

 
Paclitaxel was reacted with glutaric anhydride in an equimolar ratio to obtain 2’-

glutaryl-paclitaxel (pac-glu). Paclitaxel was linked by its hydroxyl group at the C2’ 

position with the carboxyl group in glutaric acid, forming an ester bond between the 

drug and linker (Figure 2-17). The successful formation of the ester bond between 

paclitaxel and glutaric acid was demonstrated by the upfield shift of the methine group 

(CH-O) from 4.78 ppm in the paclitaxel 1H NMR spectrum (Figure 2-15) to 5.49 ppm in 

the pac-glu spectrum (Figure 2-18). The upfield shift of the C3’ proton was observed to 

change from 5.76 ppm in paclitaxel 1H NMR spectrum to 6.00 ppm in pac-glu 1H NMR 

spectrum due to the ester bond formed.  

 

This ester bond formation at C2’ position was further confirmed with 13C NMR. In the 

pac-glu 13C spectrum (Figure 2-19), the appearance of g2, g3, g4 and g5 peaks at 32.39, 

19.72, 32.70 and 176.26 ppm, respectively, indicates the existence of glutaric acid in the 

product. A new ester carbonyl peak was also found at 171.98 ppm (C-COO) which 
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corresponded to the covalent bond between the drug and linker. Furthermore, the 

downfield shift of the C2’ peak from 73.33 ppm in paclitaxel (Figure 2-16) to 74.21 

ppm in pac-glu (Figure 2-19), and the upfield shift of C3’ peak from 55.20 ppm to 52.84 

ppm indicated successful ester bond formation at the C2’ position in paclitaxel. 

Theoretically, there are 3 hydroxyl groups at C2’, C1 and C7 in paclitaxel that can be 

used as reaction sites for the ester bond formation. It has been reported previously that 

C2’ and C7 hydroxyl groups are the most suitable sites for structural conjugation in 

paclitaxel (117, 145). The primary C2’ hydroxyl is a more reactive site than C7 

hydroxyl due to less steric hindrance, hence esterification is more likely to occur at C2’ 

position (146-148). However, there are possibilities that conjugates with more than one 

confirmation can be formed if reaction occurs at either these two sites. In this work, the 

peaks corresponding to C1 and C7 were observed to be unchanged in the 13C NMR 

spectrum of pac-glu (Figure 2-19) compared to the spectrum of non-reacted paclitaxel 

(Figure 2-16). Therefore, this confirmed that the ester bond was formed only at the C2’ 

hydroxyl position of paclitaxel.  

 

The conjugation of paclitaxel and glutaric anhydride was also confirmed by using 

electrospray mass spectrometry (ESI-MS). In Figure 2-20(a), two peaks of free 

paclitaxel were detected at a molecular weight of [M+ + H] 854.2 Da/e and [M+ + Na] 

876.20 Da/e which is consistent with the theoretical molecular weight of paclitaxel 

(C47H51NO4) 853.91 g/mol. After the conjugation with glutaric anhydride, two peaks at 

molecular weight of [M+ + H] 968.20 Da/e and [M+ + Na] 990.20 Da/e were observed 

in Figure 2-20(b). The spectra results were consistent with the theoretical molecular 

weight of 2’-glutaryl-paclitaxel (C52H57NO7) (967.91 g/mol), indicating the successful 

synthesis of 2’-glutaryl-paclitaxel. 
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Figure 2-14: Chemical structure of paclitaxel with numbered carbons.  

 
Figure 2-15: 1H NMR spectrum of paclitaxel. 
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Figure 2-16: 13C NMR spectrum of paclitaxel. 
 
 

 

Figure 2-17: Chemical structure of 2’-glutaryl-paclitaxel with numbered carbons. 
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Figure 2-18: 1H NMR spectrum of 2’-glutaryl-paclitaxel. 
 
 
 

 
Figure 2-19: 13C NMR spectrum of 2’-glutaryl-paclitaxel. 
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Figure 2-20: Electrospray ionisation mass spectra (ESI-MS) of (a) paclitaxel, and 
(b) 2’-glutaryl-paclitaxel. Synthesis was repeated more than 3 times and products 
were characterised after each synthesis. 
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2.3.2.2 Synthesis of pac-glu-NHS active ester 

 
2’-glutaryl-paclitaxel (pac-glu) was reacted in an equimolar ratio with G3 and/or lauryl-

G3 PAMAM dendrimers using the active ester NHS method (144). The active ester was 

prepared by using N-succinimidyl diphenylphosphate (SDPP) (synthesised in section 

2.2.3.2) rather than the DCC method (149). Using the phosphate coupling agent, the 

NHS method was found to be more convenient and efficient than the DCC method. Pac-

glu-NHS ester was characterised with 1H NMR and 13C NMR spectroscopies.  

 

From the 1H NMR spectrum of pac-glu-NHS ester (Figure 2-22), four additional 

protons were observed from the peak integration at chemical shifts of 1.72 – 2.3 ppm. 

These four protons originate from n3 and n4 in the active ester (Figure 2-21) and 

indicate the existence of succinimide in the product. This was further confirmed by the 

appearance of two new peaks of -CH2- at 169.27 and 25.49 ppm found in the 13C NMR 

spectrum of pac-glu-NHS (Figure 2-23). These two peaks correspond to n1, n2 and n3, 

n4 carbon molecules of the active ester. The successful conjugation between the 

carboxyl group of pac-glu and the succinimide was confirmed by the 13C NMR 

spectrum. The g5 carbon peak shifted upfield from 176.26 ppm in the 13C NMR 

spectrum of pac-glu to 168.03 ppm in pac-glu-NHS spectrum; where the g4 carbon peak 

shifted upfield from 32.70 ppm to 26.78 ppm, indicating the successful formation of 

covalent bond between the carboxyl group at the g5 and succinimide. 

 
 

Figure 2-21: Chemical structure of pac-glu-NHS ester with numbered carbons. 
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Figure 2-22: 1H NMR spectrum of pac-glu-NHS. 
 
 
 

 
Figure 2-23: 13C NMR spectrum of pac-glu-NHS. 
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2.3.2.3 Conjugation of pac-glu to G3/ lauryl-G3 PAMAM dendrimers 

 
Pac-glu-NHS was conjugated to the surface amine group of G3 and/or lauryl-G3 

PAMAM dendrimers via an amide bond. The dendrimer conjugates were purified by 

size exclusion chromatography and characterised with TLC and 1H NMR spectroscopy. 

The 1:1 molar ratio of dendrimer to paclitaxel was determined by comparing the peak 

integrals of the aromatic protons of paclitaxel (7.23 – 8.25 ppm) to those of G3 

PAMAM dendrimers (Figure 2-25). The average number of pac-glu per G3 and/or 

lauryl-G3 PAMAM dendrimers was calculated and shown in Table 2-3. 

 

 

 

Figure 2-24: Chemical structure of L-G3-glu-pac conjugate. 
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Figure 2-25: 1H NMR spectra of (a) G3-glu-pac, (b) L3-G3-glu-pac, and (c) L6-G3-
glu-pac. 
 

ppm
0.01.02.03.04.05.06.07.08.0

1.00

2.01

0.25

TMS

c

a

b+f
e+f'

Benzene ring 
of paclitaxel

G3 PAMAM

(a)

ppm
0.01.02.03.04.05.06.07.08.0

1.00

2.01

0.25

TMS

c

a

b+f
e+f'

Benzene ring 
of paclitaxel

G3 PAMAM

(a)

 
 
 

G3 PAMAM Lauroyl

Benzene ring 
of paclitaxel

(b)

G3 PAMAM Lauroyl

Benzene ring 
of paclitaxel

(b)

 
 
 

(c)

G3 PAMAM

Lauroyl

Benzene ring 
of paclitaxel

(c)

G3 PAMAM

Lauroyl

Benzene ring 
of paclitaxel

 



 98

 

G3 conjugates 
Conjugation ratio 

G3Lx: glu-pac 

G3-glu-pac 1: 1.0 

G3L3-glu-pac 1: 1.04 

G3L6-glu-pac 1:1.20 

 

Table 2-3: Molar ratio of pac-glu conjugated to G3 and lauryl-G3 PAMAM 
dendrimers determined by comparison of relative peak integral from the 1H NMR 
spectra (n = 3). 
 
 

2.3.3 Synthesis and characterisation of FITC-labelled G3 PAMAM 

dendrimer and conjugates 

 
Fluorescein isothiocyanate (FITC) was conjugated to G3 dendrimer through a thiourea 

bond between the dendrimer surface amine group and the isothiocyanate group of FITC. 

Method II used by Jevprasesphant (103) was preferred due to difficulties in removing 

DMSO from the final product in method I. However, the dialysis purification method 

employed by both methods could not remove free FITC molecules efficiently. Free 

FITC traces were detected by TLC. Thus, purification of the FITC labelled dendrimer 

conjugates was conducted by using size exclusion chromatography. The absence of free 

FITC in the conjugates was confirmed by TLC. The final purified conjugates were 

characterised by 1H NMR spectroscopy. 

 

Proton peaks corresponding to FITC occur in the chemical shift region of 6.50 – 8.02 

ppm, whereas dendrimers demonstrated a group of peaks in the region of 2.00 – 3.40 

ppm. The 1H NMR spectrum of the FITC-labelled G3 PAMAM dendrimer (Figure 2-26) 

showed peaks in both regions. The 1:1 molar ratio of the dendrimer and/or dendrimer 

conjugates to FITC can be determined by comparing the integrations of the 1H NMR 

peaks originating from the FITC substituents to those of G3 dendrimers. In the 1H NMR 

spectrum (Figure 2-26), peak a represents 60 protons from the G3 dendrimer whilst 

peak b represents 6 protons from FITC, giving a molar ratio of 1:1 for G3: FITC. TLC 

analysis was also conducted for an equimolar mixture of FITC and dendrimer 
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conjugates. The TLC results demonstrated isolation of FITC. This eliminated the 

possibility of an electrostatic interaction between FITC and dendrimer in the conjugates 

(150). Hence, the TLC and 1H NMR spectroscopy results confirmed the covalent 

conjugation.  

 

Prior to use in biological studies, the chemical stability of the thiourea bond between the 

FITC and G3 dendrimer was examined by incubating the conjugates in HBSS (pH 7.4) 

at 37oC for 5 days. The TLC results with a single spot at the baseline (Rf = 0.0) 

observed indicated that no free FITC was released. FITC-labelled G3 PAMAM 

dendrimer and conjugates were found to possess a stable thiourea linkage. 

 

 

 

Figure 2-26: 1H NMR spectrum of FITC-G3 PAMAM dendrimer. 
 

 

 

Analysis of size distribution of all the FITC-labelled PAMAM dendrimer conjugates 

was performed using dynamic light scattering. The light scattering study results were 

summarised in Table 2-4. As shown in the table, the diameters of FITC-labelled G3, -

G3L3, -G3L6 conjugates are 6.72, 10.49 and 10.67 nm, respectively. After conjugation 

with drug, the diameter of the dendrimer conjugates was observed to increase 
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accordingly. The diameters of FITC-labelled G3-glu-pac, -G3L3-glu-pac and -G3L6-

glu-pac were found to be 11.34, 13.62 and 13.66 nm. There is no significant aggregation 

or presence of large particles observed from the particle size measurements (Figure 2-27 

and Figure 2-28). 

 

 

Dendrimer conjugates Diameter (nm) 

FITC-G3 6.72 ± 1.35 

FITC-G3L3 10.49 ± 0.19* 

FITC-G3L6 10.67 ± 0.10* 

FITC-G3-glu-pac 11.34 ± 0.73* 

FITC-G3L3-glu-pac 13.62 ± 2.75* 

FITC-G3L6-glu-pac 13.66 ± 1.25* 

 
Table 2-4: Hydrodynamic diameter of FITC-labelled G3 PAMAM dendrimer and 
dendrimer conjugates in HBSS at 37oC (mean ± SD, n = 10 of triplicate 
experiments). * indicates a significant difference (p < 0.05) for other conjugates 
compared to FITC-G3. 
 



 101

(a) 

 
 
(b) 

 
 
(c) 

 
 

Figure 2-27: Size distribution of (a) FITC-labelled G3, (b) FITC-labelled G3L3, 
and (c) FITC-labelled G3L6, (mean ± SD, n = 10 of triplicate experiments). 
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(a) 

 
 
(b) 

 
 
(c) 

 
 

Figure 2-28: Size distribution of (a) FITC-labelled G3-glu-pac, (b) FITC-labelled 
G3L3-glu-pac, and (c) FITC-labelled G3L6-glu-pac, (mean ± SD, n = 10 of 
triplicate experiments). 
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2.3.4 Chemical stability of G3 PAMAM dendrimer conjugates 

 
Stability studies of the dendrimer conjugates were conducted at pH 1.2, 7.4 and 8.5. 

FITC-G3L6-glu-pac was chosen as the dendrimer conjugate for the studies. The 

percentage of conjugates remaining after hydrolysis of the ester bond is shown in Table 

2-5. The results showed that the stability of dendrimer conjugates were high with more 

than 90% of conjugates remains intact at all pHs after 48 h of incubation at 37oC. At pH 

1.2, approximately 84% and 69% of the conjugates were remained stable after 5 and 10 

days. Stability of conjugates in the alkaline conditions (pH 8.5) was slightly higher than 

that at pH 1.2 with approximately 87% and 75% of conjugates remain intact after 5 and 

10 days.  The ester bond of the dendrimer conjugates showed good stability under 

physiological conditions (pH 7.4 and 37oC) with more than 85% of conjugates remain 

intact even after 10 days of incubation. It has been previously reported that paclitaxel 

can be released from various conjugates via hydrolysis of ester bond at different rates 

(118, 151-153). Stability assay reported by Bi and co-workers (118) showed that no 

significant release of free paclitaxel for the conjugates using glutaric acid linker after 7 

days of incubation in PBS buffer (pH 7.4). Our results of stable ester bond of FITC-

G3L6-glu-pac under similar chemical conditions are in agreement with their findings. 

 

 

% Conjugate remaining 
Time, h 

pH = 1.2 pH = 7.4 pH = 8.5 

48 96.20 ± 0.7 98.83 ± 1.0 93.85 ± 1.4 

120 84.65 ± 1.2 96.43 ± 1.7 87.45 ± 2.3 

240 69.51 ± 0.5* 87.05 ± 0.5* 75.24 ± 0.6* 

 

Table 2-5 Chemical stability of FITC-G3L3-glu-pac incubated at pH 1.2, 7.4 and 
8.5 (37oC). (mean ± SD, n = 3 of triplicate experiments). * indicates a significant 
difference (p < 0.05) from 48 h compared to pH change at 240 h. 
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2.4 Conclusions 

 
Novel dendrimer-based drug delivery systems consisting of the dendrimer – G3 

PAMAM, the permeability enhancer moieties – lauryl chains, the linker – glutaric 

anhydride and the drug – paclitaxel were successfully synthesised and characterised. 

Lauryl chains were conjugated covalently to the surface amine groups of G3 PAMAM 

dendrimer through carbamate bonds, giving dendrimer conjugates of G3L3, G3L6 and 

G3L9. The 1:3, 1:6 and 1:9 molar ratios of dendrimer to lauryl chains were determined 

by 1H NMR spectroscopy. Paclitaxel was attached to the dendrimer surface amine group 

via a glutaric anhydride linker using the active ester NHS method. The drug-linker (pac-

glu) and the active ester (pac-glu-NHS) were characterised with 1H NMR, 13C NMR 

spectroscopies and ESI-MS. The active ester, pac-glu-NHS, was subsequently 

conjugated to the unmodified G3 and surface modified G3L3 and G3L6, giving G3-glu-

pac, G3L3-glu-pac and G3L6-glu-pac conjugates. The number of drug-linker attached 

to the unmodified and surface modified G3 PAMAM dendrimer was determined from 

the relative integrals of the 1H NMR peaks of paclitaxel and G3 dendrimer conjugates. 

All the dendrimer conjugates were labelled with a fluorophore (namely FITC) at a 

molar ratio of 1:1, and characterised by TLC and 1H NMR. The average hydrodynamic 

diameter of FITC-labelled G3 PAMAM dendrimer (FITC-G3) was approximately 6.72 

nm while the average diameters of FITC-labelled G3 PAMAM conjugates (FITC-G3L3, 

FITC-G3L6, FITC-G3-glu-pac, FITC-G3L3-glu-pac, and FITC-G3L6-glu-pac) were 

approximately 10 – 14 nm. Chemical stability studies showed that dendrimer conjugates 

were stable at all pHs after 48 h of incubation. Ester bond of the conjugates are stable in 

a range of pHs following 10 days of incubation. The FITC-labelled dendrimer 

conjugates were evaluated in quantitative permeability studies using Caco-2 and blood-

brain barrier cell monolayers. 
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CHAPTER 3: BIOLOGICAL EVALUATION OF G3 PAMAM 

DENDRIMER AND DRUG CONJUGATES  WITH  

   CACO-2 CELLS 
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3.1 Introduction 

 
The pharmaceutical applications of dendrimers have been extensively explored. The 

dendritic well-defined structure allows precise control of size, shape and surface group 

functionality (88, 91). More recently, dendrimer-based delivery systems have 

demonstrated effective intracellular transport of drugs across cellular barriers.    

 

Previous work in our research group has shown the ability of PAMAM dendrimer 

conjugates to enhance drug solubility and bypass P-glycoprotein (P-gp) efflux 

transporters, therefore increasing drug bioavailability (83, 86, 87). G3 PAMAM 

dendrimer was reported as a potential drug carrier for propranolol, a P-gp substrate drug 

with low water solubility. Enhanced permeability and ability to bypass the P-gp efflux 

transporter were observed when propranolol was conjugated to surface modified G3 

PAMAM dendrimer (83). Surface engineered PAMAM dendrimers with lauryl chains 

demonstrate enhanced permeability and lower cytotoxicity compared to unmodified 

dendrimers (103, 106). Conjugation of drugs to PAMAM dendrimers via biodegradable 

linker was assessed by Najlah et. al. (85-87). Diethylene glycol (deg) and succinic acid 

(suc) were used as linkers to conjugate drugs to PAMAM dendrimers. Enhanced 

solubility and permeability were found when naproxen was conjugated to G0 PAMAM 

dendrimer via a deg linker. Further studies were conducted with conjugates of 

terfenadine (a water-insoluble P-gp substrate drug) with a lauryl surface modified G1 

PAMAM dendrimer via a double linker (suc-deg). The dendrimer prodrug demonstrated 

enhanced permeability and solubility, and ability to bypass the P-gp efflux transport 

system. 

 

In the present study, paclitaxel was selected as an unambiguous P-gp substrate drug 

with low water solubility. Paclitaxel is a chemotherapeutic agent and belongs to a new 

class of antimicrotubule anticancer drugs (143). It promotes microtubule polymerisation 

which disrupts the normal tubule dynamics essential in cellular division, leading to cell 

death by apoptosis (154). Despite of its clinical efficacy, pharmaceutical applications of 

paclitaxel are limited by its low water solubility. Paclitaxel permeability across the 

intestinal barrier is also significantly limited by the P-gp efflux transport system, 

resulting in low oral bioavailability. 
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Novel drug carrier systems based on PAMAM dendrimer, consisting G3 PAMAM 

dendrimer, the permeability enhancer moieties – lauryl chains, the linker – glutaric 

anhydride, and the drug – paclitaxel, were biologically evaluated in the present study. 

Cytotoxicity of G3 PAMAM dendrimer and conjugates was determined using Caco-2 

cells. Caco-2 cells is a widely used in vitro cell culture model for studies of intestinal 

drug absorption (131). Lactate dehydrogenase (LDH) release assay was used to 

determine dendrimer and conjugates toxicity towards the Caco-2 cells. The permeation 

of dendrimer and conjugates across the cell monolayers was conducted using non-toxic 

concentrations of the dendrimer and conjugates as determined from cytotoxicity study. 

Integrity of the cell monolayers was also evaluated by measuring the transepithelial 

electrical resistance (TEER) across the cell monolayers.  
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3.2 Materials and methods 

3.2.1 Materials 

 
Triton X-100, trypan blue, Corning Transwell® polycarbonate membrane inserts (pore 

size 3.0μm, membrane diameter 12mm), Corning® Costar® 96 well flat bottom cell 

culture plates, phosphate buffer saline (PBS), and dimethylsulfoxide (DMSO) were 

purchased from Sigma-Aldrich Co. Ltd. (Gillingham, Dorset, UK). Dulbecco’s 

Modified Eagles Medium (DMEM) high glucose, foetal bovine serum (FBS), L-

glutamine, non-essential amino acid, 50 IU/ml penicillin and 50mg/ml streptomycin, 

trypsin-ethylenediaminetetraacetic acid (EDTA) 0.25%,  (4-(2-hydroxylethyl)-1-

piperazineethanesulfonic acid) buffer solution (HEPES), and Hank’s Balanced Salt 

Solution (HBSS) were purchased from Gibco BRL, Invitrogen (Paisley, UK). 

Cytotoxicity detection kit (LDH) was purchased from Roche Applied Science 

(Mannheim, Germany). Caco-2 cells were kindly provided by Dr. Jeff Penny at The 

University of Manchester. G3 PAMAM dendrimers with ethylenediamine cores in 

methanol (20% w/w) were purchased from Dendritech Inc. Paclitaxel was purchased 

from Advance Tech. & Ind. Co., Ltd. (Kln, Hong Kong). G3 PAMAM-lauryl 

conjugates (G3-Lx), 2’glutaryl-paclitaxel (pac-glu), G3-glutarate-paclitaxel (G3-glu-pac) 

and lauryl-G3-glutarate-paclitaxel (Lx-G3-glu-pac), and FITC-labelled G3 PAMAM 

conjugates were synthesised and characterised as described in chapter 2. 

 

3.2.2 Caco-2 cell culture techniques 

3.2.2.1 Maintenance and optimisation of growth conditions 

 
Caco-2 cells (passage 54-68) were maintained in 75 cm2 flasks containing growth 

medium (DMEM supplemented with 10% v/v FBS, 1% v/v non-essential amino acids, 2 

mM glutamine, 50 IU/ml penicillin and 50 μg/ml streptomycin) at 37oC in an 

atmosphere of 5% CO2 and 95% relative humidity.  
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3.2.2.2 Reviving cell stocks 

 
A vial of Caco-2 cell lines stock stored in a liquid nitrogen tank was retrieved and 

thawed rapidly in a 37oC warm water bath. Contents of the vials were quickly 

transferred to a universal tube containing 4 ml growth medium. Cells were centrifuged 

at 1000 × g for 5 min and a cell pellet was formed. After removing the medium 

carefully, the cell pellet was resuspended in 10 ml growth medium in a T75 flask and 

incubated at 37oC in an atmosphere of 5% CO2 and 95% relative humidity. Growth 

medium was changed on alternate days until the cells achieved 80 – 90% confluency for 

passaging. 

  

3.2.2.3 Passaging cells 

 
Upon achieving 80 – 90% cell confluency, growth medium was removed and cells were 

washed with 5 ml sterile PBS. After removing the PBS, cells incubated with 3 ml 

trypsin-EDTA solution (0.25% v/v) at 37oC in an atmosphere of 5% CO2 and 95% 

relative humidity for 3-5 min to allow cell detachment. The trypsin solution was 

inactivated by adding the same amount (3 ml) of growth medium. The cells suspension 

was transferred to a universal tube and centrifuged at 1000 rpm for 5 min. After 

removing the supernatant, the cell pellet was resuspended and transferred as a 1:6 split 

to T75 flasks containing 10 ml growth medium. 

 

3.2.2.4 Viable cell number counting by trypan blue assay 

 
The number of viable cells was assessed by 0.4% (w/v) trypan blue exclusion analyses 

with a haemocytometer. The principle behind the assay was that viable cell with an 

intact membrane would exclude the dye and would appear to be stain free. In contrast, 

non-viable cells without an intact membrane would take up the dye and would appear to 

be stain blue.  

 

The cell pellet was resuspended in growth medium as described in section 3.2.2.3. 0.2 

ml cell suspension was added to a 1.5 ml microfuge tube containing 0.5 ml trypan blue 
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and 0.3 ml HBSS with 25mM HEPES, mixed well and incubated for 5-15 min, allowing 

the dye uptake by the non-viable cells. A volume of 20 μl of the trypan blue cell 

suspension mixture was placed in each chamber of the haemocytometer and the number 

of viable cells was counted. Cell count was expressed as cells per ml or total cells. 

 

3.2.2.5 Cryopreserving cells 

 
After passaging, the cell pellet was resuspended in freezing medium (growth medium 

with 10% v/v DMSO). Cell suspension (1 ml) was transferred to a cryogenic vial and 

maintained at -80oC overnight prior to long term storage in liquid nitrogen. 

 

3.2.3 Measurement of in vitro cytotoxicity of G3 PAMAM dendrimers and 

paclitaxel conjugates using Caco-2 cells 

 
The in vitro cytotoxicity of G3 PAMAM dendrimer and paclitaxel conjugates was 

determined using the lactate dehydrogenase release (LDH) assay. Cell seeding density 

was obtained by optimal cell concentration determination and cytotoxicity tests on 

Caco-2 cells were conducted by quantification of lactate dehydrogenase release using a 

LDH detection kit (Roche Diagnostics). 

 

3.2.3.1 Lactate dehydrogenase release assay 

 
Lactate dehydrogenase (LDH) is a stable cytoplasmic enzyme found in all cells. Upon 

damage of the plasma membrane, LDH is rapidly released. The released LDH from 

damaged cells when reacted with the reaction mixture of the assay, reduces NAD+ 

(Nicotinamide adenine dinucleotide) to NADH + H+ by the oxidation of lactate to 

pyruvate. This oxidation process then reduces the yellow tetrazolium salt INT (2-[4-

iodophenyl]-3-4-nitrophenyl)-5-phenyltetrazolium chloride) by diaphorase catalyst to a 

red formazan salt. Figure 3-1 showed the reaction scheme of the enzyme release activity. 

The amount of red formazan formed was directly proportional to the number of lysed 

cells. Based on this principle, the assay measured the LDH release activity of damaged 

cells to determine the cytotoxicity of a substance.  
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Figure 3-1: Reaction scheme of LDH assay enzyme activity, taken from (155). 
 

3.2.3.2 Optimal cell concentration determination 

 
After passaging cells as in section 3.2.2.3, the cell pellet was resuspended in growth 

medium (DMEM supplemented with 1% v/v FBS, 1% v/v non-essential amino acids, 50 

IU/ml penicillin and 50 μg/ml streptomycin) and cell number was assessed by trypan 

blue assay described in section 3.2.2.4. Cell suspension concentration was adjusted to 1 

x 106 cells/ ml and followed by two-fold serial dilutions (up to 7 dilutions) with growth 

medium across the 96-well plate. The cells were incubated overnight at 37oC in an 

atmosphere of 5% CO2 and 95% relative humidity to allow cells adherence. After 24 h, 

the growth medium was removed and the cells were washed with sterile PBS. The 

removed growth medium was replaced with 200 μl of low control (i.e. spontaneous 

LDH release, assay medium HBSS with 25 mM HEPES) or 200 μl of the high control 

(i.e. maximum LDH release, 1% Triton X-100 in assay medium). A volume of 200 μl of 

assay medium was also added to triplicate wells without cells as background control. 
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After 3 h of incubation at 37oC and 5% CO2, a 100 μl sample of the supernatant 

medium was removed from each well and placed into the corresponding wells of 

another 96-well plate. 100 μl of freshly prepared reaction mixture was added to each 

sample and then incubated for 30 min at room temperature, protected from light. The 

sample absorbance was then measured at 492 nm (reference wavelength of 612 nm) by 

a multiplate reader (TECAN GENios Pro, Grödig, Austria). A curve of the absorbance 

vs. cell seeding density was plotted for both low and high controls. The seeding density 

that produced the greatest difference between the high and low control absorbances with 

a value of less than or equivalent to 1 was identified as the optimal cell concentration. 

 

3.2.3.3 Cytotoxicity studies 

 
Caco-2 cells (Passage 54-62) in 100 μl growth medium (DMEM supplemented with 1% 

v/v FBS, 1% v/v non-essential amino acids, 50 IU/ml penicillin and 50 μg/ml 

streptomycin) were seeded into a 96-well plate at the optimal cell density determined in 

section 3.2.3.2.  The cells were then incubated overnight at 37oC in an atmosphere of 

5% CO2 and 95% relative humidity to allow adherence of cells. After 24 h, the growth 

medium was removed and the cells were washed with sterile PBS. 200 μl of assay 

medium (HBSS with 25 mM HEPES) containing different concentrations of G3 

PAMAM dendrimer, surface modified-G3 PAMAM, paclitaxel and conjugates were 

added to each well. Cells were also treated with low control (blank assay medium HBSS) 

and high control (1% Triton X-100 in assay medium). 200 μl of blank assay medium in 

the well without cells was used as background control. After 3 h of incubation, a 100 μl 

of the supernatant medium was removed from each well and placed into the 

corresponding wells of another 96-well plate to react with 100 μl of freshly prepared 

reaction mixture for 30 min at room temperature, protected from light. The sample 

absorbance was then measured at 492 nm (reference wavelength of 612 nm) by a 

multiplate reader. The percentage of cytotoxicity was calculated using equation below: 

 

% Cytotoxicity = [(exp. – low control)/(high control – low control)] x 100% 
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3.2.4 Transepithelial transport studies across Caco-2 cell monolayers 

 
A well established method was used to investigate the transport of compounds across a 

monolayer of cells grown on a Transwell® insert. Figure 3-2 showed a sketch of the 

Transwell® insert. The upper chamber or apical side represented the luminal side of the 

intestinal epithelium while the lower chamber or the basolateral side represented the 

serosal side of the epithelium. Cell culture models were grown on the insert semi-

permeable membrane and the permeability across the cell monolayers was measured as 

apparent permeability coefficient (Papp). The transepithelial transport and permeability 

of a compound ccould be determined across the cell monolayers in two directions, 

apical to the basolateral (A B) and basolateral to the apical (B A) directions. 

Permeation in the A B direction indicates the quantitative intestinal absorption of a 

test compound across the cell culture model, while permeation in the B A direction 

suggested mediated transport by efflux transporters (e.g. P-gp) when a relatively higher 

apparent permeability coefficient of B A than A B is observed. 

 

 

Figure 3-2: A diagram of cell monolayer cultured on a Transwell® insert (108). 
 

3.2.4.1 Caco-2 cell monolayer integrity 

 
Measurement of transepithelial electrical resistance (TEER) of cells grown on 

Transwell® insert was conducted using a Voltohmmeter (EVOM, World Precision 
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Instruments, Sarasota, FL, USA) to assess the cell monolayers integrity. In general, the 

electrical resistance was measured using the chopstick electrodes with the shorter 

electrode placed in the inner Transwell® chamber whilst the longer electrode placed in 

the external bath solution. Reading of the background resistance of the filter membrane 

was taken as the blank control and the TEER for the monolayer was determined as the 

following equation: 

 

TEER (Ω.cm2) = (Rtotal – Rblank) x A 

 

Rtotal  = measured resistance of solution, membrane, and tissue 

Rblank  = measured resistance of solution and membrane 

A  = the surface area of filter (1 cm2) 

 

3.2.4.2 Permeability studies 

 
Caco-2 cells (passage 54-62) with a density of 1.2 x 105 cells/cm2 were seeded onto a 

polycarbonate 12-well Transwell® insert (pore size 3.0μm). Cells were grown and 

maintained in growth medium (DMEM supplemented with 10% v/v FBS, 1% v/v non-

essential amino acids, 50 IU/ml penicillin and 50 μg/ml streptomycin) at 37oC in an 

atmosphere of 5% CO2 and 95% relative humidity, with medium change on alternative 

days for 21-23 days. The integrity and tight junction formation of the Caco-2 cells 

monolayers were tested on alternative days (during medium change, 21-23 days), before 

and after experiments by measuring the TEER.  

 

Before conducting the permeability experiments, cells were washed twice with PBS and 

subsequently equilibrated with transport medium (HBSS with 25 mM HEPES) for 20 

min at 37oC in an atmosphere of 5% CO2 and 95% relative humidity, and the TEER was 

measured. Only confluent monolayers with TEER values (corrected against the blank 

filter resistance) in a range of 800-1000 Ωcm2, were used in studies. Transport of FITC-

labelled G3 PAMAM dendrimer and surface-modified dendrimers (Lx-G3, Lx-G3-glu-

pac and G3-glu-pac), free paclitaxel and pac-glu was determined in both A B and 

B A directions. Dendrimers and conjugates solutions (each equivalent to 50 nM of 
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paclitaxel) in transport medium were placed in the donor compartment and were 

incubated at 37oC in an atmosphere of 5% CO2 and 95% relative humidity for 3 h.  

 

During the permeability experiment, TEER values were recorded every 30 min. 

Samples (100 μl) were collected from the receiver compartment at 0, 60, 120, 180 min 

and from the donor compartment at 180 min. Fluorescence of FITC labelled conjugates 

samples were determined using a multiplate reader at excitation/ emission of 485 nm/ 

535 nm. FITC and conjugates standard curves (Figure 6-9 to Figure 6-14, Appendix III) 

were constructed to quantify the conjugates concentration. Free paclitaxel and pac-glu 

were analysed by HPLC. The solvent system used was same as described in section 

2.2.5. 

 

The apparent permeability coefficient (Papp) was calculated using the equation below 

(130): 

 

Papp (cm/sec)  = dc/dt x V/AC0 

 

 dc/dt = the change in donor concentration over time (mol/l.sec) 

 V = the volume in the reservoir of receiver side (cm3) 

 A = the surface area of membrane (1 cm2) 

 C0 = the initial concentration in donor side (mol/l) 

 

3.2.5 Statistical analysis of data 

 
All data were expressed as mean values ± standard deviation (mean ± SD) with n = 3 – 

4 of triplicate experiments. Statistical analysis was carried out using the Student’s t-test. 

Probability values of p < 0.05 were considered to be statistically significant. 
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3.3 Results and discussion 

3.3.1 Cytotoxicity studies of G3 PAMAM dendrimer and drug conjugates 

using Caco-2 cells 

 
In the present study, optimal cell concentration of the Caco-2 cells was first determined 

to obtain cell density for use in cytotoxicity studies. The influence of G3 PAMAM 

dendrimer and conjugates (possessing lauryl and/or pac-glu moieties) on the viability of 

Caco-2 cells was evaluated using the LDH release assay. The cytotoxicity studies were 

conducted to determine the non-cytotoxic concentration of dendrimer and conjugates to 

be used later in permeability studies across the Caco-2 cell monolayers.  

 

3.3.1.1 Optimal cell concentration determination using LDH assay 

 
Preliminary experiments were conducted to determine the optimal seeding density for 

Caco-2 cells. Figure 3-3 shows LDH absorbance measured at 492 nm with a reference 

wavelength of 612 nm. The maximum amount of releasable LDH enzyme activity was 

determined by lysing the cells with Triton X-100 (as high control) while the 

spontaneous release of LDH activity was determined by incubating the cells with assay 

medium (as low control). The seeding density that produced the largest difference 

between the high and low controls with absorbance less or equivalent to 1 was 0.6 x 104 

cells per well, which was identified as the optimal cell concentration for Caco-2 cells. It 

is important to determine the optimal seeding density as different cell types may contain 

different amounts of LDH and have different sensitivities to cytotoxic compounds (156). 

The optimal cell concentration determined was used in cytotoxicity studies of G3 

PAMAM dendrimers and conjugates on the Caco-2 cells. 
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Figure 3-3: The absorbance of Caco-2 cell seeding densities incubated with assay 
medium (low control) or Triton X-100 1% (high control) for optimal concentration 
determination, (mean ± SD, n = 3 of triplicate experiments). 
 

 

3.3.1.2 The effect of G3 PAMAM dendrimer and drug conjugates on  

Caco-2 cell viability 

 
The cytotoxicity effect of G3 PAMAM dendrimer and conjugates towards Caco-2 cells 

was determined using the LDH assay with the cell seeding density obtained from the 

optimal cell concentration determination. G3 PAMAM dendrimer was relatively non-

toxic to Caco-2 cells compared to all the G3 PAMAM conjugates at the test 

concentrations (0.05 – 50 μM) (Figure 3-4). A comparison of IC50 of G3 PAMAM 

dendrimer and other conjugates as illustrated in Table 3-1 and shows that G3 PAMAM 

dendrimer with an IC50 value of 279.38 ± 13.60 μM is significantly (p<0.05) less toxic. 

After the addition of lauryl chains, G3L3 and G3L6 were found to be relatively more 

toxic than G3 PAMAM dendrimer, with significantly reduced IC50 values of 2.53 ± 0.58 

and 3.32 ± 0.75 μM, respectively. These results are in contrast to those by 

Jevprasesphant et al. (103, 106) who reported surface modified cationic PAMAM 
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dendrimers (e.g. G2, G3 and G4) with lauroyl chloride chains were less toxic toward 

Caco-2 cells. However, later studies carried out by our research group showed increased 

cytotoxicity of PAMAM dendrimers conjugated with lauryl alcohol moieties, which 

supported the finding in the present study (157-160). PAMAM dendrimer conjugated 

with lauroyl chloride has an amide bond between the dendrimer and lauroyl chains (103, 

106) whilst PAMAM dendrimer conjugated with lauryl alcohol has a carbamate bond 

(157-160). The different cytotoxicity profiles might due to the different linkages 

between the lauroyl/ lauryl moieties and the dendrimer. 

 

 

Dendrimer IC50 (μM) 

G3 279.38 ± 13.60* 

G3L3 2.53 ± 0.58 

G3L6 3.32 ± 0.75 

G3glu-pac 18.58 ± 4.68 

L3-G3-glu-pac 14.40 ± 0.84 

L6-G3-glu-pac 8.60 ± 0.46 

 

Table 3-1: The cytotoxicity effect of G3 PAMAM dendrimer and drug conjugates 
on the Caco-2 cells as determined by IC50 (mean ± SD, n = 3 of triplicate 
experiments). * indicates a significant difference (p < 0.05) from other conjugates. 
 

 

After conjugation of paclitaxel via a glutaric anhydride linker to G3 PAMAM 

dendrimer, cytotoxicity of the conjugate (G3-glu-pac) was also significantly increased. 

The IC50 of G3-glu-pac was decreased to 18.58 ± 4.68 μM compared to that of parent 

G3 PAMAM dendrimer. The IC50 values of G3L3-glu-pac and G3L6-glu-pac were 

found to be 14.40 ± 0.84 and 8.60 ± 0.46 μM, respectively. These results indicate that 

the addition of paclitaxel to G3 PAMAM dendrimer caused significant (p<0.05) 

increase in cytotoxicity towards Caco-2 cells. Nonetheless, decreased cytotoxicity of 

G3L3-glu-pac and G3L6-glu-pac was observed when compared to G3L3 and G3L6 

conjugates. Decreased cytotoxicity of G3L3-glu-pac and G3L6-glu-pac



 

 

Figure 3-4: The cytotoxicity effect of G3 PAMAM dendrimer, free paclitaxel and conjugates on the Caco-2 cells (mean ± SD, n = 4 of 
triplicate experiments). * indicates a significant difference (p < 0.05) from other conjugates.
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was observed when compared to G3L3 and G3L6 conjugates. Studies of the cellular 

internalisation mechanism using surface modified PAMAM dendrimers by 

Saovaprakhiran et al. (157) showed that the surface properties of PAMAM dendrimer 

have significant influences on cell internalisation. The addition of pac-glu molecules to 

the lauryl modified G3 PAMAM dendrimers changes the surface properties of the 

conjugates, which is likely to modify the interaction and internalisation of the 

conjugates into the cells, thus changing the cytotoxicity profile.  

 

As shown in Figure 3-4, pac and pac-glu were relatively non-toxic at the test 

concentrations of 0.001 – 5 μM after 3 h incubation time. No significant difference of 

cytotoxicity in Caco-2 cells was observed after the addition of linker to paclitaxel. 

Previous work has reported that the cytotoxicity of paclitaxel was shown to be time 

dependent with incubation time of 5 h or more (152, 161). 

 

When conducting cytotoxicity test using LDH release assay, cell growth medium such 

as DMEM was not used as an assay medium. This is due to pyruvate (an inhibitor of 

the LDH reaction) contents in some formulations of DMEM.  

 

3.3.2 Permeability studies of G3 PAMAM and conjugates on Caco-2 cells 

3.3.2.1 Permeation of G3 PAMAM dendrimer and drug conjugates across 

Caco-2 cell monolayers 

 
The permeation of paclitaxel, G3 PAMAM dendrimer and conjugates across Caco-2 

cell monolayers was evaluated in both the A B and B A directions at the non-toxic 

concentrations as determined in the cytotoxicity studies using the LDH release assay. 

The results of the permeability studies are summarised in Figure 3-5. Paclitaxel, a 

known unambiguous P-gp efflux transporter substrate, showed a significantly (p<0.05) 

higher B A Papp than A B Papp, consistent with the previous finding of paclitaxel 

transport profile across cell lines with functionally active P-gp efflux transporters (162). 

After attaching the linker (glu) to the drug, no significant difference in permeability 

was observed suggesting that the conjugation of the glutaric anhydride linker to 

paclitaxel did not affect the permeability of the drug. 
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The A B Papp of G3 PAMAM dendrimer was approximately 1.26 x 10-6 cm/s. After 

adding lauryl chains, the A B Papp values of G3L3 (approximately 2.63 x 10-6 cm/s) 

and G3L6 (approximately 3.18 x 10-6 cm/s) were significantly (p<0.05) greater than 

that of unmodified G3 PAMAM dendrimer. It has been reported that surface modified 

dendrimers with medium chain fatty acids significantly enhanced permeation across 

Caco-2 cell monolayers (103). Lauryl alcohol was also reported to function as a 

permeability enhancer (28). The addition of the permeability enhancer, lauryl moieties 

to G3 PAMAM dendrimer might facilitate the interaction with the cell membrane, thus 

increased the permeation across cell monolayers. 

 

 

Figure 3-5: The A B (■) and B  A (■) permeability of G3 PAMAM dendrimer, 
free paclitaxel and conjugates across the Caco-2 cell monolayers after 3 h 
incubation at 37oC (mean ± SD, n = 3 of triplicate experiments). * p < 0.05. 
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As shown in Figure 3-5, conjugation of paclitaxel via glu linker to G3 PAMAM 

dendrimer (G3-glu-pac) increased the A B Papp by approximately 5.4 fold compared 

to that of the free drug. Permeability of L3-G3-glu-pac and L6-G3-glu-pac were further 

increased. A B Papp of L6-G3-glu-pac was 12.4 fold greater than that of paclitaxel. 

The A B Papp values of G3 and lauryl-G3 were not significantly (p > 0.05) different 

from the B A Papp values, suggesting that these molecules are not substrates for the 

intestinal efflux transporter. Thus, it is proposed that G3 PAMAM dendrimer and 

surface modified G3 with lauryl chains can act as carriers to enhance the permeability 

of paclitaxel, and can bypass the P-gp efflux transporters which are functionally active 

in Caco-2 cell monolayers. These findings are supported by previous research which 

showed that PAMAM dendrimer is able to enhance permeability of drugs which are P-

gp substrates (83, 86, 162).  

 

3.3.2.2 The effect of G3 PAMAM dendrimer and drug conjugates on 

Caco-2 cell monolayers integrity 

 

Transepithelial electrical resistance (TEER) measurements were conducted during the 

3 h incubation with test substances at 37oC to examine the effect of G3 PAMAM 

dendrimer and conjugates on the monolayer integrity. Figure 3-6A shows the changes 

in the TEER values of Caco-2 cell monolayers following the apical incubation with G3 

PAMAM dendrimer and conjugates.  After incubation with G3 PAMAM dendrimer, 

the average TEER value of the Caco-2 cell monolayers was decreased by 

approximately 15% (84.5 ± 5.9%) with slight fluctuation over 3 h. Apical incubation 

with G3L3, G3L6, G3-glu-pac and L3-G3-glu-pac resulted in a decrease in TEER 

(86.0 ± 5.6%, 89.5 ± 2.4%, 86.4 ± 2.4% and 85.0 ± 3.1% respectively), similar to that 

of G3 PAMAM dendrimer. A noticeable 32% (approximately) drop of TEER was 

observed when cells were exposed to L6-G3-glu-pac at the apical side after 3 h. 

Permeability of L6-G3-glu-pac was significantly (p < 0.05) higher than those of other 

conjugates, suggesting that the decrease of TEER might be due to modulation of tight 

junctions, hence enhancing the permeability. PAMAM dendrimer was previously 

reported to demonstrate transepithelial transport via both transcellular and paracellular 

pathways across Caco-2 cell monolayers (11, 103, 162, 163). 
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The TEER measurement following 3 h incubation with pac and pac-glu showed a 

significant (p < 0.05) decrease of TEER, for pac (approximately 42%) and pac-glu 

(approximately 53%). However, the permeability of pac and pac-glu was lowest among 

all conjugates tested. Previous work by D’Emanuele group (103) showed that G3 

PAMAM dendrimers enhance paracellular transport by opening up tight junctions. 

D’Emanuele et al. (83) reported that the transport of propranolol across the Caco-2 cell 

monolayers was not enhanced in the presence of G3 PAMAM dendrimers. This 

suggests that the route of propranolol transport is mainly via transcellular even when 

G3 PAMAM dendrimer with the ability of opening up tight junctions was in presence. 

El-sayed et al. (162) also reported that PAMAM dendrimers demonstrated modulation 

of tight junctions of Caco-2 cell monolayers, leading to an increase in the paracellular 

permeability. However, transport study of paclitaxel by El-sayed et al. (162) 

demonstrated no difference in the permeation of drug in the presence or absence of G2 

PAMAM dendrimers. Their finding indicated transport of paclitaxel across the 

epithelia was solely via transcellular route and was not influenced by PAMAM 

dendrimers (162). This could explain the low permeability of pac and pac-glu even 

though pronounced decreases of TEER of Caco-2 cell monolayers were observed in 

the present study. TEER has been described as the measure of for paracellular 

permeability (164). 

 

There was no significant (p > 0.05) difference in TEER values when dendrimer and 

conjugates were incubated on the apical side compared with the basolateral side. The 

recovery of TEER to approximately 100% was observed following the removal of G3 

PAMAM dendrimer and conjugates from the cells after experiments (data not shown). 
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Figure 3-6: The effect of G3 PAMAM dendrimer, free paclitaxel and conjugates 
on the TEER of Caco-2 cell monolayers after (A) apical and (B) basolateral 
incubation at 37oC (mean ± SD, n = 3 of triplicate experiments). *p < 0.05. 
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3.4 Conclusions 

 
Biological evaluation of PAMAM dendrimer and conjugates using Caco-2 cells 

showed that the cytotoxicity was dependent on the surface properties of dendrimer and 

conjugates. G3 PAMAM dendrimer was found to be relatively non-toxic compared to 

all the other conjugates at all the test concentrations. Conjugation of lauryl chains and 

paclitaxel molecules on the surface of G3 PAMAM dendrimer significantly (p < 0.05) 

increased the cytotoxicity in Caco-2 cells. Surface modification of G3 PAMAM 

dendrimers has also influenced the permeation of dendrimer and drug conjugates, and 

the integrity of Caco-2 cells monolayers. The B A Papp of paclitaxel was found to be 

significantly (p < 0.05) higher than the A B Papp, indicating active function of P-gp 

efflux transporter system in the cell model. Covalent conjugation of paclitaxel to G3 

PAMAM dendrimer via glutaric anhydride as a linker significantly (p < 0.05) increased 

its A B Papp across Caco-2 cell monolayers. A more pronounced increase of 

paclitaxel permeation was observed when surface modified G3 PAMAM dendrimer 

with six lauryl chains was used as a carrier. L6-G3-glu-pac showed the highest 

permeability across the Caco-2 cells monolayers where lauryl chains were acting as 

permeability enhancer. The transport of G3-paclitaxel conjugates across the cells is 

thought to occur via both paracellular and transcellular routes. The results suggest that 

G3 PAMAM dendrimer-based drug delivery systems can be used as potential 

nanocarriers for low water soluble and P-gp substrate drug (e.g. paclitaxel) to enhance 

solubility and permeability, furthermore to bypass P-gp efflux transporter system in 

cellular barriers. 

 

 

 

 

 

 

 



 126

CHAPTER 4: BIOLOGICAL EVALUATION OF G3 PAMAM 

DENDRIMER AND DRUG CONJUGATES WITH             

PORCINE BRAIN ENDOTHELIAL CELLS 
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4.1 Introduction 

 
The blood-brain barrier (BBB) has long been described as an important barrier to most 

drugs which are efflux transporters (e.g. P-gp) substrate and have poor aqueous 

solubility. Various in vitro cell models have been developed and used to investigate the 

permeability of this barrier, but an ‘industrial standard’ has not been well established. 

Caco-2 and Mardin-Darby Carnine Kidney (MDCK) cells have been commonly 

applied as ‘BBB surrogates’ models in permeability studies across the barrier layer to 

estimate entry of drugs to brain. Despite their gastrointestinal origin, these models can 

still provide reasonable prediction for compounds that penetrate the brain by passive 

partition into brain endothelial membranes without involving interaction with 

transporters (165). However, it has recently been described that the lipid membrane 

nature between the gastrointestinal (GI) tract and the BBB is different. Furthermore, 

the profile of transporter expression in the GI and the BBB is certainly different (58). 

Therefore, a real BBB-based model will give a better prediction for CNS targeted 

drugs that are substrates for efflux transporters. During the selection of BBB-based cell 

model, two major features are important, namely, tightness of the tight junctions and 

polarised expression of transporters. Effective tight junctions of a fully differentiated 

BBB represent the physical barrier and defining roles of the BBB. Polarisation of 

transporter to apical and basolateral membrane domains also largely depends on 

effective tight junctions. Possessing these two major features, porcine brain endothelial 

cells (PBECs) are among the in vitro BBB cell models that are commonly used in 

pharmaceutical assays (58, 135, 166). 

 

The results from biological evaluation of G3 PAMAM dendrimers and drug conjugates 

using Caco-2 cells indicated that G3 PAMAM dendrimers and prodrugs can bypass the 

P-gp efflux transporter with significantly enhanced permeation across the Caco-2 cell 

monolayers. Thus, further biological evaluation was carried out using PBECs as the 

blood-brain barrier cell model to examine the potential of G3 PAMAM dendrimer as a 

carrier for paclitaxel (P-gp substrate) to bypass the blood-brain barrier. 

 

In this present study, PBECs were selected as the cell model to assess the permeability 

of G3 PAMAM dendrimer and prodrugs across the blood-brain barrier. Effects of cell 
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culture conditions were investigated to establish optimal conditions for cell growth. 

Cell growth and cell morphology were monitored until desired confluency was 

achieved. G3 PAMAM dendrimer conjugates that were successfully synthesised 

(chapter 2) were biologically evaluated using the PBECs. Cytotoxicity of G3 PAMAM 

dendrimer and its drug conjugates towards the PBECs was determined using lactate 

dehydrogenase (LDH) release assay. Permeability studies of dendrimer and drug 

conjugates across the cell monolayers was conducted using non-toxic concentrations of 

the dendrimer and conjugates determined from cytotoxicity studies. This was to ensure 

that the dendrimer and conjugates treatment induced no toxicity in endothelial cells. 

TEER measurements were performed on PBEC monolayers that were grown and 

maintained in Transwell® filter inserts until the cell monolayers achieved the desired 

TEER values and were ready to be used for permeability studies. Integrity of the cell 

monolayers was also evaluated by measuring the TEER across the cell monolayers. 
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4.2 Materials and methods 

4.2.1 Materials 

 
Triton X-100, trypan blue, fibronectin, Dulbecco’s Modified Eagles Medium (DMEM) 

low glucose, 10 KU/ml penicillin and 10 mg/ml streptomycin, L-glutamine, 100 KU 

Heparin, puromycin, 8-(4-Chlorophenylthio)adenosine 3′,5′-cyclic monophosphate 

sodium salt (cAMP), hydrocortisone, Hank’s Balanced Salt Solution (HBSS) without 

calcium ions and magnesium ions, trypsin-EDTA, dimethylsulfoxide (DMSO) and 

Corning® Costar® 96 well flat bottom cell culture plate were purchased from Sigma1-

Aldrich Co. Ltd. (Gillingham, Dorset, UK). Dulbecco’s Modified Eagles Medium 

(DMEM) without phenol red and (4-(2-hydroxylethyl)-1-piperazineethanesulfonic acid) 

buffer solution (HEPES) were purchased from Gibco BRL, Invitrogen (Paisley, UK). 

Bovine plasma derived serum was purchased from First Link Ltd. (Birmingham, UK). 

4-(3-Butoxy-4-methoxybenzyl)-2-imidazolidinone (RO-20-1724) was purchased from 

Merck-Calbiochem Chemicals Ltd. (Beeston, Nottingham, UK). BD type 1 rat tail 

collagen was purchased from Scientific Laboratory Supplies Ltd. (Wilford, 

Nottingham, UK). Tissue culture flask EasYFlask angled neck polystyrene radiation 

sterilised filter cap 75 cm2 growth area, Costar Transwell-Clear 12 well tissue culture-

treated sterile polyester membrane inserts (pore size 0.4 μm, membrane diameter 12 

mm), syringe filter Millex GP PES (33 mm 0.22 μm pore size) Millipore, bottle top 

Nalgene filter unit MF75 series disposable SFCA membrane 50 mm (fits 45 mm neck, 

150 ml 0.2 µm pore size) were purchased from Fisher Scientific UK Ltd 

(Loughborough, UK). Cytotoxicty detection kit (LDH) was obtained from Roche 

Applied Science (Mannheim, Germany). Solution of G3 PAMAM dendrimer with an 

ethylenediamine core in methanol (20% w/w) were purchased from Dendritech Inc. 

Paclitaxel (pac) was purchased from Advance Tech. & Ind. Co., Ltd. (Kln, Hong 

Kong). G3 PAMAM-lauryl conjugates (G3-Lx), 2’-glutaryl-paclitaxel (pac-glu), G3-

glutarate-paclitaxel (G3-glu-pac) and lauryl-G3-glutarate-paclitaxel (Lx-G3-glu-pac), 

FITC-labelled G3 PAMAM conjugates were synthesised and characterised as 

described in chapter 2. Primary porcine brain endothelial cells (PBECs) were acquired 

from Professor Joan N. Abbott, Blood-Brain Barrier Group in King’s College London. 
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4.2.2 PBECs cell culture techniques 

4.2.2.1 Preparation of lab-made rat tail collagen 

 
Removal of collagen fibres 

 
Rat tails were removed and collected from experimental rats. The rat tails can be kept 

frozen at -20oC with storage of more than one year without appreciable loss of 

solubility of collagen fibres. Approximately 2 h before preparation, the tails were 

allowed to thaw slowly at room temperature. Once the tails were thawed, a longitudinal 

incision was made along the length of the tail from the base to the tip of tail. The skin 

was then pulled off from the tail. The distal three or four vertebrae at the tip of the tail 

were then broken off and pulled away slowly to remove the collagen fibres/muscle 

tendons that were attached to the vertebrae. This procedure was repeated with every 

two or three vertebrae going from the tip to the base of the tail to collect the removed 

vertebrae and collagen fibres. The collagen fibres were severed from the points of 

attachment on the vertebra and left to dry at room temperature for approximately 3 h. 

The dried fibres were then weighed.  

 

Sterilisation and dilution of collagen fibres 

 
The dry fibres were sterilised by exposing to UV light generated by a germicidal UV 

lamp for 48 h. The UV sterilised collagen fibres were transferred into an 0.1% acetic 

acid solution (1 g of collagen fibres in 300 ml solution) and stirred with a pre-sterilised 

magnetic stirrer bar at low speed for approximately 48 h. Undissolved crude fibres 

were removed by filtering the solution through a sterile triple gauze filter to obtain a 

collagen solution free of non-dissolved fibres.  

 

This project had the relevant ethical clearance from the Annual Project Ethics 

Committee of UCLan.  
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4.2.2.2 Plating cell culture medium 

 
Cell culture medium with different compositions were prepared freshly and filtered 

through 0.22 μm pore size Millipore filter prior to use. 

 

Plating cell growth medium with puromycin: DMEM was supplemented with 10% v/v 

bovine plasma-derived serum, 100 U/ml penicillin and 100 μg/ml streptomycin, 2 mM 

L-glutamine, 125 μg/ml heparin and 45 μg/ml puromycin. 

 

Plating cell growth medium without puromycin: DMEM was supplemented with 10% 

v/v bovine plasma-derived serum, 100 U/ml penicillin and 100 μg/ml streptomycin, 2 

mM L-glutamine and 125 μg/ml heparin. 

 

Plating serum-free medium: DMEM was supplemented with 100 U/ml penicillin and 

100 μg/ml streptomycin, 2 mM L-glutamine, 125 μg/ml heparin and 550 nM 

hydrocortisone. 

 

4.2.2.3 Maintenance and optimisation of growth conditions 

 
PBECs (passage 1) were maintained in 75 cm3 (T75) flasks containing cell growth 

medium with or without puromycin at 37oC in an atmosphere of 5% CO2 and 95% 

relative humidity.  

 

4.2.2.4 Thawing cells 

 
Vial of PBECs stocks stored in a liquid nitrogen tank was retrieved and defrosted 

rapidly by immersing in a 37oC warm water bath for 1 – 2 min. Contents of the vials 

were quickly transferred to a universal tube containing 16 ml growth medium with 

puromycin and added into two T75 flasks ( 8 ml each). Cells were incubated at 37oC in 

an atmosphere of 5% CO2 and 95% relative humidity. The growth medium with 

puromycin was replaced by growth medium without puromycin on the third or fourth 
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day of cell growth until the cells achieved 70 – 80% confluency within 5 – 7 days for 

passaging.  

 

4.2.2.5 Coating with rat tail collagen and fibronectin 

 
Before passaging cells, 4 ml of BD type 1 rat tail collagen (dilution to 100 μg/ml with 

0.02 M acetic acid) or 4 ml of lab-made rat tail collagen with 1:10 dilution was added 

into a T75 flask for 2 h at room temperature to coat the cell growth surface. After 2 h, 

rat tail collagen was removed and the flask was washed twice with HBSS without 

phenol red. The cell growth surface was then coated with fibronectin by adding 4 ml of 

7.5 µg/ml fibronectin into the flask and left for another 2 h at room temperature. 

Fibronectin was removed from the flask and washed twice with HBSS without phenol 

red. The T75 flask coated with rat tail collagen and fibronectin was now ready for the 

use in cell passaging. When coating the 96-well plate and the Transwell® insert, the 

same coating procedures were applied by using 100 μl of rat tail and fibronectin for 

each well; and 0.5 ml for each insert.  

 

4.2.2.6 Passaging cells  

 
At 70 – 80% confluency, growth medium was removed and cells were washed twice 

with 8 ml HBSS without Ca2+ and Mg2+. After removing the HBSS, cells were 

detached by incubating with 2 ml trypsin-EDTA (1x) per flask at 37oC in an 

atmosphere of 5% CO2 and 95% relative humidity for 3-5 min. The flasks were 

continually observed under the microscope, gently tapped to recover any adherent cells. 

When the majority of the endothelial cells were observed to be detached, 8 ml of 

plating growth medium without puromycin was added to each flask to inactivate the 

trypsin solution. The cell suspension was transferred to a universal tube and 

centrifuged at 1500 rpm for 5 min. After removing the supernatant, the cell pellet was 

resuspended in 1 ml growth medium without puromycin. The number of viable cells 

was counted as described in section 3.2.2.4 and cells were seeded onto collagen/ 

fibronectin coated 96-welll plate or Transwell® inserts for further studies.  

 



 133

4.2.3 Examination of PBECs morphology  

 
The morphology of PBECs grown and maintained on collagen-coated and fibronectin 

treated T75 flask was examined using Leica DM IL Inverted light microscope (Bucks, 

United Kingdom). Photomicrographs of the cultures were taken using Cannon DS6041 

EOS Digital Rebel camera on different culture days to observe the changes of the cells 

morphology until 100% confluency was achieved.  

 

4.2.4 Measurement of in vitro cytotoxicity of G3 PAMAM dendrimer and 

paclitaxel conjugates using PBECs 

 
Cytotoxicity studies were performed using the LDH assay as described previously in 

section 3.2.3.1. 

 

4.2.4.1 Optimal cell concentration determination 

 
Prior to passaging of PBECs, 96-wells plates were coated with 100 μl/well of rat tail 

collagen following with 100 μl/well of fibronectin (section 4.2.2.5). After passaging 

cells (section 4.2.2.6), the cell pellet was resuspended in growth medium with 1% 

bovine plasma-derived serum and without puromycin (DMEM supplemented with 1% 

v/v bovine plasma-derived serum, 100 U/ml penicillin and 100 μg/ml streptomycin, 2 

mM L-glutamine and 125 μg/ml heparin). The cell suspension concentration was 

adjusted to 2 x 105 cells/ ml and followed by two-fold serial dilutions (up to 7 dilutions) 

with growth medium across the rat tail collagen/fibronectin coated-96-well plate. The 

cells were incubated overnight at 37oC in an atmosphere of 5% CO2 and 95% relative 

humidity to allow cells adherence. After 24 h, the growth medium was removed and 

the cells were washed with assay medium (HBSS with 25 mM HEPES). The removed 

growth medium was replaced with 200 μl of low control (i.e. spontaneous LDH release, 

assay medium HBSS with 25 mM HEPES) or 200 μl of the high control (i.e. maximum 

LDH release, 1% Triton X-100 in assay medium). A volume of 200 μl of assay 

medium was also added to triplicate wells without cells as background control. After 3 

h of incubation at 37oC and 5% CO2, a 100 μl sample of the supernatant medium was 
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removed from each well and placed into corresponding wells of another 96-well plate. 

A volume of 100 μl of freshly prepared reaction mixture was added to each sample and 

then incubated for 30 min at room temperature, protected from light. The sample 

absorbance was then measured at 492 nm (reference wavelength of 612 nm) on a 

multiplate reader. A curve of the absorbance vs. cell seeding density was plotted for 

both low and high controls. The seeding density that produced the greatest difference 

between low and high control absorbances with a value less than or equivalent to 1 was 

identified as the optimal cell concentration. 

 

4.2.4.2 Cytotoxicity studies 

 
PBECs (Passage 1) in 100 μl growth medium without puromycin (DMEM 

supplemented with 1% v/v bovine plasma-derived serum, 100 U/ml penicillin and 100 

μg/ml streptomycin, 2 mM L-glutamine and 125 μg/ml heparin) were seeded onto a 

96-well plate at the optimal cell density determined in section 4.2.4.1. The cells were 

then incubated overnight at 37oC in an atmosphere of 5% CO2 and 95% relative 

humidity to allow adherence of cells. After 24 h, the growth medium was removed and 

the cells were washed with assay medium (HBSS with 25mM HEPES). 200 μl of assay 

medium (HBSS with 25 mM HEPES) containing different concentrations of G3 

PAMAM dendrimer, surface modified-G3 PAMAM and drug conjugates was added to 

each well. The cells were also treated with low control (blank assay medium HBSS) 

and high control (1% Triton X-100 in assay medium). A volume of 200 μl of blank 

assay medium in the well without cells was used as background control. After 3 h of 

incubation, a 100 μl sample of the supernatant medium was removed from each well 

and placed into corresponding wells of another 96-well plate to react with 100 μl of 

freshly prepared reaction mixture for 30 min at room temperature, protected from light. 

The sample absorbance was then measured at 492 nm (reference wavelength of 612 nm) 

on a multiplate reader. The percentage of cytotoxicity was calculated using equation in 

section 3.2.3.3. 
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4.2.5 Transendothelial transport studies across PBEC monolayers 

 
The transport studies across the PBECs were carried out by a similar method used to 

investigate the transport of compound across monolayers of Caco-2 cells grown on a 

Transwell® insert described in section 3.2.4. The apical side represents the luminal 

side of the brain endothelium whilst the basolateral side represent the abluminal side 

(blood) of the endothelium. PBECs are grown on the insert semi-permeable membrane 

and the permeability across the cell monolayers was measured as apparent permeability 

(Papp). The Papp of the tested compound was determined across the cell monolayers in 

both A B and B A directions.  

 

4.2.5.1 Passaging cells onto a Transwell® insert 

 
Prior to passaging of PBECs onto the Transwell® inserts, inserts were coated with 0.5 

ml rat tail collagen and fibronectin. After the number of viable cells was assessed, 

PBECs (passage 1) with a density of 1.0 x 105 cells/ cm2 were seeded onto polyester 

12-well Transwell® insert (pore size 0.4 μm). Cells were grown and maintained in 

growth medium without puromycin (DMEM supplemented with 10% v/v bovine 

plasma-derived serum, 100 U/ml penicillin and 100 μg/ml streptomycin, 2 mM L-

glutamine and 125 μg/ml heparin) at 37oC in an atmosphere of 5% CO2 and 95% 

relative humidity.  

 

4.2.5.2 Treatment with cAMP and RO-20-1724 

 
PBECs became 100% confluent within 3 – 4 days and the growth medium was 

replaced by a serum-free medium (DMEM supplemented with 100 U/ml penicillin and 

100 μg/ml streptomycin, 2 mM L-glutamine, 125 μg/ml heparin and 550 nM 

hydrocortisone). Cells were then treated with 3′,5′-cyclic monophosphate sodium salt 

(cAMP) and 4-(3-Butoxy-4-methoxybenzyl)-2-imidazolidinone (the cAMP 

phosphodiesterase-4-specific inhibitor, RO-20-1724) for 24 h before permeability 

studies. A mixture solution of 250 μM of cAMP and 17.5 μM of RO-20-1724 in a 

proportion of 20:1 (cAMP: RO-20-1724) was freshly prepared. To the filter insert, 5.3 
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μl of the mixture solution was added; and 15.7 μl was added to the well. After a 24 h 

treatment, PBECs were ready for experiments. 

 

4.2.5.3 Transendothelial electrical resistance (TEER) measurement with 

PBECs 

 
Transepithelial electrical resistance (TEER) of cells grown on Transwell® insert was 

measured according to the procedures described in section 3.2.4.1 to assess the cell 

monolayer integrity. TEER values were measured and compared under various 

cultured conditions to ensure that cells with ideal tight junction formation were used in 

permeability studies. Monitoring of TEER values from day 2 to day 10 for PBECs 

culture was conducted.  

 

4.2.5.4 Permeability studies 

 
PBECs were seeded onto the Transwell® insert (pore size 0.4 μm) and treated with 

cAMP and RO-20-1724 for permeability studies as described in section 4.2.5.2. The 

integrity and the measure of tight junction formation of the PBEC monolayers were 

tested before and after experiments by conducting the TEER measurement using a 

Voltohmmeter. Before experiments, cells were washed twice with HBSS without Ca2+ 

and Mg2+, and subsequently equilibrated with transport medium (HBSS with 25 mM 

HEPES) for 20 min at 37oC in an atmosphere of 5% CO2 and 95% relative humidity, 

and the TEER was measured. Only confluent monolayers with TEER value corrected 

for the blank filter resistance above 200 Ω.cm2 were selected for use in transport 

studies. Transport of FITC-labelled PAMAM dendrimers and surface-modified 

dendrimers (Lx-G3, Lx-G3-glu-pac and G3-glu-pac), free pac and pac-glu was 

analysed in both A B and B A directions. Solutions containing dendrimers and 

conjugates (each equivalent to 50 nM of paclitaxel) in the transport medium were 

added to the donor compartment. The cells were placed on a speed and temperature 

controlled shaker at 200 rpm and incubated at 37oC for 3 h. During the experiment, 

TEER was recorded every 30 min. Samples (100 μl) were collected from the receiver 

compartment at 0, 60, 120, 180 min and from the donor compartment at 180 min. The 
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fluorescence of FITC labelled conjugates samples were determined by using a 

multiplate reader at excitation/ emission of 485 nm/535 nm. FITC and conjugates 

standard curves (Figure 6-9 to Figure 6-14, Appendix III) were constructed to quantify 

conjugate concentration. Free paclitaxel was analysed by HPLC. Permeation of G3 

PAMAM dendrimer and conjugates across the PBEC monolayers was calculated and 

expressed as an apparent permeability coefficient (Papp). 

 

Prior to the permeability studies, the stability of dendrimer conjugates across the PBEC 

monolayers was examined. Samples (100 μl) of dendrimer conjugates were collected 

from the apical site at 0 min, and basolateral site at 180 min. The samples were 

analysed by HPLC to observe the release of paclitaxel from the conjugates after 

transport across the monolayers. It was found that no significant release of paclitaxel 

was observed after the conjugates were transported across the cell monolayers with 3 h 

incubation at 37oC (Figure 6-6, Appendix I).  

 

4.2.6 Statistical analysis of data 

 
All data were expressed as mean values ± standard deviation (mean ± SD) with n = 3 – 

4 of triplicate experiments. Statistical analysis was carried out using the Student’s t-test. 

Probability values of p < 0.05 were considered to be statistically significant. 
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4.3 Results and discussion 

4.3.1 Morphology of the PBEC monolayer 

 
Porcine brain endothelial cells were grown on collagen-coated and fibronectin-treated 

T75 flask. The cells were observed to retain the characteristic morphology of capillary 

endothelial cells with elongated and spindle-shape, forming a continuous monolayer 

across the growth surface. (Figure 4-1). On day 1, cells were thawed and passaged on 

the collagen-coated and fibronectin-treated T75 flask. Adhesion of cells on the growth 

surface was within 24 h after passaging and cells preferentially grew in clusters. On 

day 3 in culture, the cells with cobblestone-shaped morphology growing in clusters 

were observed (Figure 4-1a1 and a2). PBECs reached 80-90% confluency on day 7 

with the morphology of typical differentiated capillary endothelial cells (139, 140) 

(Figure 4-1b1 and b2). 

 

4.3.2 Effect of cell culture conditions on PBECs growth 

4.3.2.1 Rat tail collagen and fibronectin 

 
Extracellular matrices are used in a wide range of applications in cell culture 

techniques. They enable cell attachment and promote cell differentiation in an 

environment that is close to that of in vivo. It has been reported that cell differentiation 

could be influenced by the nature of extracellular matrix on which the cells are grown 

(167). During the culture of PBECs, self-prepared and commercial rat tail collagens 

were used for coating the cell growth surface. Improvement of cell growth rate to 

confluency was observed when commercial rat tail collagen was used compared to 

self-prepared source. The cells were observed to achieve approximately 80-90% 

confluency in 7 days of culture with commercial rat tail collagen (data not shown). 

Conversely, less than 50% confluency of cells was observed after more than 14 days of 

culture using self-prepared rat tail collagen (data not shown). Cell growth surface was 

also coated with fibronectin which is a major adhesive glycoprotein that was found to 

involve in cell interaction with collagen (167). 



 139

 

Figure 4-1: Phase contract microscopy of primary cultured PBECs on culture day 
3 (a1 and a2) and day 7 (b1 and b2). Arrows indicating cells undergoing 
proliferation and differentiation (a1 and b1 original magnification 10x, a2 and b2 
original magnification 40x). 
 

 
a1 a2 

  
 
b1 b2 
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4.3.2.2 Growth medium 

 
Cultures of PBECs were grown and maintained in T75 flasks containing cell growth 

medium at 37oC in an atmosphere of 5% CO2 and 95% relative humidity. The main 

aim to generate primary culture of brain capillary endothelial cells was to achieve 

maximum yield and purity of the cells. Thus, methods were explored and applied to 

minimise or eliminate fast-growing contaminating cells, e.g. pericytes, fibroblasts and 

smooth muscle cells.  

 

Growth media with and without puromycin were used during the culture of PBECs. 

When cells were freshly thawed onto the T75 flask, growth medium with puromycin 

was used for the culture. Puromycin is a cytotoxic P-gp substrate. It was introduced 

into growth medium to eliminate contaminating cells from endothelial cell cultures. 

The principle is based on non-cytotoxic effect to brain endothelial cells which express 

P-gp efflux transporter; therefore the endothelial cells will survive. On the other hand, 

the application of puromycin will cause a cytotoxic effect to the contaminating cells 

which lack P-gp, thus eliminating the unwanted contaminating cells (139). Figure 4-2 

shows the PBECs on culture day 3. Dark spots indicated by the arrows are dead 

contaminating cells due to the application of puromycin.  

 

On culture day 4, the medium was replaced with growth medium without puromycin.  

On culture day 7 post-seeding, the cells were confluent and were observed with a 

characteristic elongated spindle-like morphology (Figure 4-3). No contaminant cells 

were observed in the culture. It was found that the volume of growth medium played 

an important role in cell growth. At the early stage of culture, 80% confluency of cells 

was only achieved after 12-14 days of culture when 8-10 ml of growth medium was 

used (data not shown). However, when the volume of medium was increased to 20-25 

ml/ T75 flask, 80-90% of cell confluency was able to be achieved in 7 days of culture 

as shown in Figure 4-1. 
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Figure 4-2: Phase contrast microscopy of primary cultured PBECs on culture day 
3. Arrows indicating dead contaminant cells (original magnification 10x). 
 

 

Figure 4-3: Phase contrast microscopy of primary cultured PBECs on culture day 
7 (original magnification 10x). 
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4.3.3 Cytotoxicity studies of G3 PAMAM dendrimer and drug conjugates 

on PBECs 

 
In this present study, optimal cell concentration of the PBECs was first determined to 

obtain the cell density for use in cytotoxicity studies. LDH assay was used to evaluate 

the influence of G3 PAMAM dendrimer and conjugates (possessing lauryl and/or pac-

glu moieties) on the viability of PBECs. The cytotoxicity studies were conducted to 

determine the non-cytotoxic concentration of dendrimer and conjugates to be used later 

in permeability studies across the PBEC monolayers.  

 

4.3.3.1 Optimal cell concentration 

 
The optimal seeding density for PBECs culture was determined by preliminary 

experiments. Figure 4-4 shows LDH absorbance measured at 492 nm with reference 

wavelength of 612 nm. High control was obtained by lysing the cells with Triton X-

100 1% which gives the maximum amount of releasable LDH enzyme activity, while 

low control was obtained by incubating the cells with assay medium which gives the 

spontaneous release of LDH activity. The seeding density that produced the greatest 

difference between the high and low control absorbances with a value less than or 

equivalent to 1, indicating the optimal cell concentration was 2 x 104 cells per well for 

PBECs. This optimal cell concentration was used as PBECs seeding density to conduct 

cytotoxicity studies for G3 PAMAM dendrimer and conjugates. 
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Figure 4-4: The absorbance of PBECs seeding densities incubated with assay 
medium (low control) or Triton X-100 1% (high control) for optimal 
concentration determination (mean ± SD, n = 3 of triplicate experiments). 
 

4.3.3.2 The effect of G3 PAMAM and drug conjugates on PBECs viability 

 
The cytotoxicity of G3 PAMAM dendrimer and drug conjugates towards the PBECs 

was determined using the LDH assay with the cell seeding density obtained from 

optimal cell concentration determination. The results from Figure 4-5 show that G3 

PAMAM dendrimer was relatively non-toxic to PBECs compared to all the conjugates 

at the test concentrations. A comparison of IC50 values of G3 PAMAM dendrimer and 

the other conjugates are illustrated in Table 4-1 shows that G3 PAMAM dendrimer 

with an IC50 value of 186.38 ± 7.95 μM is significantly (p<0.05) less toxic than the 

other conjugates. After addition of lauryl chains, G3L6 was found to be relatively more 

toxic than G3 PAMAM dendrimer, with a significantly (p<0.05) reduced IC50 value of 

1.21 ± 0.57 μM. These cytotoxicity results using PBECs were consistent with our 

previous finding when Caco-2 cells were used in chapter 3. PAMAM dendrimers 

conjugated with lauryl alcohol via a carbamate bond were found to increase the 

cytotoxicity of conjugates (157-160). On the other hand, dendrimers conjugated with 
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lauroyl chloride via an amide bond were reported to decrease the conjugate 

cytotoxicity toward Caco-2 cells (103, 106). These different cytotoxicity profiles are 

possibly due to the different linkages between the lauroyl/ lauryl moieties and the 

dendrimers. Carbamates are used in pesticides (168) and the carbamate linkage in the 

conjugates may contribute to the increased cytotoxicity in the present study. 

Anhydrovinblastine (AVLB) derivatives synthesised with carbamate group was 

reported with potent increased cytotoxicity. The IC50 of the carbamate derivative on 

A549 and HeLa cell lines at 38nM and 9nM was found to be significantly lower 

compared to the IC50 values of AVLB at 49nM and 26nM (169).  

  

 

Dendrimer IC50 (μM) 

G3 186.38 ± 7.95* 

G3L6 1.21 ± 0.57 

G3-glu-pac 9.98 ± 2.14 

L6-G3-glu-pac 6.55 ± 0.57 

 

Table 4-1: The cytotoxicity effect of G3 PAMAM dendrimer and conjugates on 
the PBECs as determined by IC50 (mean ± SD, n = 3 of triplicate experiments). * 
indicates a significant difference (p < 0.05) from other conjugates. 
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Figure 4-5: The cytotoxicity effect of G3 PAMAM dendrimer, free paclitaxel and 
conjugates on the PBECs (mean ± SD, n = 3 of triplicate experiments). * indicates 
a significant difference (p < 0.05) from other conjugates. 
 
 
 
After conjugation with a molecule of paclitaxel via a glutaric anhydride, the IC50 value 

of G3-glu-pac was decreased to 9.98 ± 2.14 μM compared to that of G3 PAMAM 

dendrimer. The IC50 value of G3L6-glu-pac was found to be 6.55 ± 0.57 μM. These 

results indicate that the addition of paclitaxel via glu linker to G3 PAMAM dendrimer 

caused significant (p<0.05) increase in cytotoxicity in PBECs. The enhanced 

cytotoxicity could be associated with increased solubility and cellular uptake of the 

conjugates. PAMAM dendrimers have been reported to enhance solubility of low 

water soluble drugs (85, 86). Najlah et al. (85, 86) reported increased solubility and 

permeability of naproxen and terfenadine when the drugs were covalently conjugated 

to PAMAM dendrimers via biodegradable linkers. Increased paclitaxel solubility by 

conjugation to polyglycerol was demonstrated by Ooya et al. (170, 171). Devarakonda 

et al. (117) investigated the influence of G4 PAMAM-OH dendrimer and PEG 
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polymer on the delivery and anticancer effect of paclitaxel. Significantly increased 

solubility and a 10-fold increase in the cytotoxicity of paclitaxel toward human ovarian 

carcinoma A2780 cells was reported when the drug was covalently conjugated to the 

dendrimer via a succinic acid linker compared to those of free drug. Conjugation of a 

low-solubility drug to high-solubility polymers form a prodrug with enhanced 

solubility, subsequently increasing the bioavailability that lead to increased 

cytotoxicity or anticancer activity. 

 

Comparison of the IC50 values between G3L6 and G3L6-glu-pac shows that the 

addition of paclitaxel molecule to lauryl modified G3 PAMAM dendrimer decreased 

the cytotoxicity of the conjugates towards PBECs, similar to the findings for Caco-2 

cells in chapter 3. As shown in Figure 4-5, free paclitaxel was relatively non-toxic at 

the test concentration of 0.2 – 1.0 μM after 3 h incubation time. As demonstrated by 

Saovaprakhiran et al. (157) studies on the cellular internalisation mechanism using 

surface modified PAMAM dendrimers, the surface properties of PAMAM dendrimer 

have significant influences on cell internalisation. The addition of pac-glu molecules to 

the lauryl modified G3 PAMAM dendrimers changes the surface properties of the 

conjugates, which is likely to modify the interaction and internalisation of the 

conjugates into cells, thus resulting in a different toxicity profile. 

 

4.3.4 Permeability studies of G3 and drug conjugates on PBECs 

4.3.4.1 TEER measurement of PBEC monolayers 

 
Transendothelial electrical resistance (TEER) values of PBEC monolayers were 

measured for the duration of culture. Figure 4-6 shows the changes of TEER from less 

than 50 Ω.cm2 on day 3 to approximately 300 Ω.cm2 on day 7 post-seeding on filter 

insert. The TEER values were observed to decrease pronouncedly after 9 days in 

culture. Various methods were developed and reported to improve the barrier 

properties for efficient drug permeability studies using in vitro blood-brain barrier cell 

models. TEER measurements of the cell monolayers was used to assess the integrity as 

well as the paracellular permeability (141). 
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Upon achieving 100% confluency on the day 4 post-seeding and culture of PBECs in 

Transwell® filter insert, growth medium without serum and with hydrocortisone 

(DMEM supplemented with 100 U/ml penicillin and 100 μg/ml streptomycin, 2 mM L-

glutamine, 125 μg/ml heparin and 550 nM hydrocortisone) was used. Replacement of 

serum-free medium with hydrocortisone shows a pronounced increase of TEER from 

day 4 post-seeding (Figure 4-6). Serum withdrawal has been reported to result in 

reinforcement of the blood-brain barrier properties of cultured endothelial cells. PBECs 

with low TEER (less than 200 Ω.cm2) were reported in the presence of serum. The 

absence of serum was found to strongly inhibit cells proliferation, promoting cell 

differentiation which forms tighter tight junctions, and significantly increase TEER 

values. Addition of hydrocortisone has also been reported to increase TEER values by 

150% (172) as well as significantly lower sucrose permeability (135).  

 

Cells were then treated with supplements of cAMP in combination with the cAMP-

specific phosphodiesterase inhibitor RO-20-1724 (cAMP/RO-20-1724). Elevated tight 

junctions resistance has been previously reported after treatment with supplements e.g. 

cAMP/RO-20-1724 (137, 138). However, the TEER values of the PBEC monolayers 

(Figure 4-6) were not elevated to the desired level (above 200 Ω.cm2) after 24 h of 

cAMP/RO-20-1724 treatment. Growth medium without serum and with hydrocortisone 

was changed daily for the culture. PBEC monolayers were treated with freshly 

prepared cAMP/RO-20-1724 mixture everyday until the TEER values were increased 

to approximately 300 Ω.cm2 on day 7 post-seeding where the monolayers were ready 

for permeability studies. Only PBEC monolayers with TEER value above 200 Ω.cm2 

were used for experiments. The TEER values were observed to gradually decrease 

after 9 days in culture. 
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Figure 4-6: Transendothelial electrical resistance values of PBEC monolayers on 
various days in culture (mean ± SD, n = 3 of triplicate experiments). 
 

 

4.3.4.2 Permeation of G3 PAMAM dendrimer and drug conjugates across 

PBEC monolayers 

 

The permeation of paclitaxel, G3 PAMAM dendrimer and conjugates across the 
PBEC monolayers was evaluated in both A B and B A direction at a non-toxic 
concentration as determined in the cytotoxicity studies using the LDH release 
assay. Results of the permeability studies were summarised in  
Figure 4-7. Paclitaxel, a known unambiguous P-gp efflux transporter substrate, was 

found to have a significant (p<0.05) higher B A Papp than the A B Papp. This finding 

is consistent with the previous results of paclitaxel transport profile across Caco-2 cell 

monolayers in chapter 3. The significant higher B A Papp indicated that functionally 

active P-gp efflux transporters existed on the PBEC monolayers. 

 

It was noted that the overall Papp values of G3 PAMAM dendrimer, paclitaxel and 

conjugates were higher for PBECs compared to Caco-2 cells. It might due to lower 
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TEER values (200-350 Ω.cm2) of PBEC monolayers compared to the TEER values (> 

500 Ω.cm2) of Caco-2 cells. Another possible factor may be due to the influence of 

stirred condition during permeability study using PBEC monolayers. The stirred 

condition minimised the effect of unstirred water layer (UWL) which better mimics the 

in vivo BBB environment. It has been reported that the UWL in Caco-2 under unstirred 

conditions presents an artificial and rate-limiting barrier to passive diffusion across the 

cell monolayers (132). 

 

The A B Papp of G3 PAMAM dendrimer was approximately 5.22 x 10-6 cm/s. 
The A B Papp of G3 was not significantly different from B A Papp, suggesting 
that G3 PAMAM dendrimer is not a substrate for the efflux transporter in the 
blood-brain barrier. Conjugating paclitaxel to G3 PAMAM dendrimer (G3-glu-
pac) increased the A B Papp by approximately 10 fold compare to that of free 
paclitaxel ( 
Figure 4-7). Permeability of L6-G3-glu-pac was further increased, with the A B Papp 

approximately 12 fold greater than that of free paclitaxel. By conjugating paclitaxel to 

G3 and surface-modified G3 PAMAM dendrimers with lauryl chains as permeation 

enhancer (28, 103), the permeation of paclitaxel across the PBEC monolayers was 

significantly improved. These findings were similar to the permeability profile using 

Caco-2 cells in Chapter 3. BBB-impermeable polypeptide, horseradish peroxidise 

(HRP) modified with stearoyl acid chloride was synthesised by Batrakova et al. (173). 

Addition of lipophilic (stearoyl) moieties demonstrated enhanced transport across the 

BBB and increased accumulation in the brain in vitro and in vivo. 

 

Limited transport of paclitaxel across cellular barriers is largely due to exclusion by the 

P-gp efflux transporter system. Enhanced permeation of paclitaxel across the blood-

brain barrier has been reported by inhibiting the P-gp efflux. Analogues of 

cyclosporine A (P-gp inhibitors) were found to enhance brain paclitaxel levels by 3-

fold in mice and rats (24, 174). However, long-term use of inhibitors is not advisable 

as down regulation of efflux transporter activity may occur; which allow free 

trafficking of potentially toxic substrates (5). Chemical modification of the drug 

offered an alternative approach to enhance permeation of drugs across the BBB. A 

specific binding site for taxoids on the P-gp efflux transporter was reported by Ojima 

et al. (175). It has been shown that selected chemical modification of paclitaxel 

molecules at the C-10 position can reduced the drug interaction with P-gp, thus 

enhance the permeability across the BBB (176-178). In the present study, paclitaxel 
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molecules were conjugated to G3 PAMAM dendrimer at the C’2 position and 

significantly enhanced permeability of the conjugates was observed. This suggests that 

C’2 may be an alternative site for chemical modification to improve drug permeability 

across the BBB.  

 

From the results of the present study, it is proposed that G3 PAMAM dendrimer and 

surface modified G3 with lauryl chains can act as carriers to enhance the permeability 

of paclitaxel and can bypass the P-gp efflux transporters which are functionally active 

in PBEC monolayers. These findings were in good agreement with the results of Caco-

2 cells (Chapter 3) as well as previous reports that showed PAMAM dendrimer as 

carriers to enhance permeability of drugs which are P-gp substrate (83, 86, 162).  

 

 
Figure 4-7: The A B (■) and B  A (■) permeability of G3 PAMAM dendrimer, 
free paclitaxel and conjugates across the PBEC monolayers after 3 h incubation 
at 37oC (mean ± SD, n = 3 of triplicate experiments). * indicates a significant 
difference (p < 0.05) from other conjugates. ** indicates a significant difference (p 
< 0.05) for B A compared to A B. 
 

** 
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4.3.4.3 The effect of G3 PAMAM dendrimer and drug conjugates on 

PBEC monolayers integrity 

 

Transepithelial electrical resistance (TEER) measurements were conducted during the 

3 h incubation with test substances at 37oC to examine the effect of G3 PAMAM 

dendrimer and conjugates on the monolayer integrity. Figure 4-8A shows the changes 

in TEER values of PBEC monolayers following apical incubation with G3 PAMAM 

dendrimer and drug conjugates. After incubation of PBECs with G3 PAMAM 

dendrimer, the TEER value was decreased by approximately 20% over 3 h. Apical 

incubation with G3-glu-pac and L6-G3-glu-pac showed a decrease in TEER (81.5 ± 

3.0% and 73.3 ± 1.4% respectively). PAMAM dendrimers have been reported to 

demonstrate transepithelial transport via both transcellular and paracellular pathways 

across Caco-2 cell monolayers (11, 103, 162, 163). The internalisation of G3 PAMAM 

dendrimer has been shown to occur via both caveolae-dependent endocytosis and 

macropinocytosis pathway, while the surface modified G3 PAMAM dendrimer with 

two lauryl chains was internalised via caveolae-dependent, clathrin-dependent, and 

macropinocytosis pathway into HT-29 cells. The internalisation mechanism was 

described to be influenced by the surface properties G3 PAMAM dendrimer (157). The 

significantly increased permeability, together with the decreased TEER value of G3-

glu-pac and G3L6-flu-pac therefore suggests that the transport is via both transcellular 

and paracellular pathway across the PBEC monolayers. 

 

The TEER measurement following 3 h incubation with pac showed a significant 

decrease of TEER by approximately 43% with PBECs. The permeability of pac was 

lowest among all compounds tested. The findings are similar to the TEER 

measurements of Caco-2 cell monolayers (chapter 3). It has been shown that PAMAM 

dendrimers can enhance paracellular permeation by modulating and opening tight 

junctions (84, 103, 162). D’Emanuele et al. (83) reported that the transport of 

propranolol was not enhanced by the presence of G3 PAMAM dendrimers, which 

suggests that the transport was mainly via transcellular pathway. Previous work 

reported by El-sayed et al. (162) indicated that paclitaxel transport was solely via the 

transcellular route and was not influenced by PAMAM dendrimer that modulates the 

tight junctions. TEER has been described as a measure of paracellular permeability 
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(164). This could explain the low permeability of paclitaxel even though pronounced 

decreases of TEER were observed with PBEC monolayers. In addition, anti-

microtubule drugs (vinblastine, colchicine and paclitaxel) have been reported to 

demonstrate disruptive effect on cell monolayers integrity and decreased TEER after 

exposure to the drugs (141). However, the permeability and transport profile were not 

reported.  

 

No significant difference in TEER values was observed when dendrimer and 

conjugates were incubated on the apical side compared with the basolateral side. The 

recovery of TEER to approximately 100% was observed following removal of G3 

PAMAM dendrimer and conjugates from the cells after experiments (data not shown). 
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Figure 4-8: The effect of free G3 PAMAM dendrimer, free paclitaxel and 
conjugates on the TEER of PBEC monolayers after (A) apical and (B) basolateral 
incubation (mean ± SD, n = 3 of triplicate experiments). 
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4.4 Conclusions 

 
In this present study, PBECs were successfully cultured with characteristic elongated 

spindle-like morphology observed under the microscope. 100% confluency was 

achieved within 7 days of culture with the growth medium volume increased to 20-25 

ml per T75 flask. TEER measurements were determined for PBEC monolayers that 

were grown and maintained on filter inserts. Only cell monolayers that achieved TEER 

values higher than 200 Ω.cm2 were used for permeability studies. The elevation of 

TEER values was observed with PBEC monolayers cultured in serum-free medium and 

treated with cAMP/RO-20-1724 mixture.  

 

Biological evaluation of G3 PAMAM dendrimer and conjugates using PBECs showed 

that the cytotoxicity was dependent on the surface properties of dendrimer and 

conjugates, supporting the findings in the cytotoxicity study of Caco-2 cells. G3 

PAMAM dendrimer was found to be relatively non-toxic compared to all other 

conjugates at all test concentrations. Conjugation of lauryl chains and paclitaxel 

molecules on G3 PAMAM dendrimer significantly increased the cytotoxicity in 

PBECs. Surface modification of G3 PAMAM dendrimers has also influenced the 

permeation and integrity of PBEC monolayers. The B A Papp of paclitaxel was found 

to be significantly higher than the A B Papp, indicating active function of P-gp efflux 

transporter system in the cell model. Covalent conjugation of paclitaxel to G3 

PAMAM dendrimer via a glutaric anhydride linker significantly increased its A B 

Papp through PBEC monolayers. The A B Papp of L6-G3-glu-pac was found to be 12 

fold greater than that of free paclitaxel across the PBEC monolayers, where lauryl 

chains were acting as permeability enhancer. The transport of G3-paclitaxel conjugates 

across the cells is thought to occur via both paracellular and transcellular routes.  

 

The cytotoxicity and permeability results using PBECs are found to be in good 

agreement with the findings when Caco-2 cells were used as the cellular barrier cell 

model. Thus, it can be concluded that G3 and surface modified G3 PAMAM 

dendrimers can act as potential nanocarriers for low solubility and P-gp substrate drug 

(e.g. paclitaxel) to enhance solubility and permeability, and to bypass the P-gp efflux 

transporter system in both intestinal and blood-brain barriers. 
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CHAPTER 5:  CONCLUSIONS AND FUTURE WORK 
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5.1 Conclusions 

 
The development of effective drug delivery systems to cross cellular barriers has 

always remained a major challenge in pharmaceutical research. In the recent years, 

dendrimers, a novel class of polymers with well-defined structure and amenable 

functional surface groups, have emerged as a candidate drug carrier. The potential use 

of dendrimer-based drug delivery system was explored and investigated to overcome 

cellular barriers (e.g. intestinal and blood-brain barriers). 

 

In this study, novel dendrimer based drug delivery systems consisting of G3 PAMAM 

dendrimer, the permeability enhancer moieties – lauryl chains, the linker – glutaric 

anhydride and the drug – paclitaxel were successfully synthesised and characterised. 

Chemical stability studies demonstrated that the dendrimer conjugates have good 

stability at all pHs (1.2, 7.4, and 8.5) after 48 h of incubation. Ester bonds of the 

conjugates are stable under physiological conditions with 10 days of incubation. 

 

Biological evaluation of G3 PAMAM dendrimer and conjugates was first conducted 

using Caco-2 cells as the intestinal barrier cell model. Free G3 PAMAM dendrimer 

was found to be relatively non-toxic while conjugation of lauryl chains and paclitaxel 

molecule on the surface of G3 PAMAM dendrimer significantly increased the 

cytotoxicity in Caco-2 cells. G3 PAMAM dendrimers conjugated with lauryl chains 

and pac-glu has also demonstrated significant enhanced permeation across the Caco-2 

cells monolayers. L6-G3-glu-pac was found with the highest permeability, with the 

A B Papp 12.4 fold greater than that of free paclitaxel. These results suggest that the 

dendrimer-based drug delivery systems can bypass the P-gp efflux transporter and 

overcome the intestinal barrier. 

 

Further biological evaluation of the dendrimer conjugates was carried out using PBECs 

as a cell model to assess the ability of the dendrimer-based drug delivery systems to 

overcome the blood-brain barrier. The cytotoxicity and permeability results for PBECs 

are found to be in good agreement with the findings for Caco-2 cells. G3 PAMAM 

dendrimer significantly increased the cytotoxicity in PBECs. Similar to the transport 

profile observed in Caco-2, L6-G3-glu-pac was found with the highest permeability 
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(approximately 12 fold greater than that of free paclitaxel) across the PBEC 

monolayers. These results showed that the conjugation of lauryl chains and pac-glu 

molecules to the dendrimer efficiently enhanced the permeability. This is possibly due 

to the permeation enhancing properties of lauryl chains, and the addition of 

hydrophobic moieties that aids the interaction with plasma membrane. 

 

The present results suggest that G3 and surface modified G3 PAMAM dendrimers are 

able to act as potential nanocarriers to enhance permeability of drugs (e.g. paclitaxel) 

that are poor water soluble and are P-gp efflux transporter substrate. It was concluded 

that the dendrimer-based drug delivery systems could bypass the P-gp efflux 

transporter and overcome both the intestinal and the blood-brain barriers. 

 

5.2 Future work 

 
The present study extends the potential of dendrimer-based drug delivery system to 

overcome the intestinal barrier and also the blood-brain barrier. However, numerous 

challenges still remain in drug delivery to the central nervous system. Future work in 

this area could involve surface modification of dendrimer with targeting moieties (e.g. 

transferrin, insulin or angiopeps for LRP-1 receptor) for drug delivery to the blood-

brain barrier. Given the complexity of blood-brain barrier functions, further studies 

could investigate the mechanism of the internalisation pathway of dendrimer and drug 

conjugates across the PBEC monolayers to provide a better understanding in designing 

the dendrimer-based drug delivery systems. In addition, in vivo and in situ studies 

could be conducted in order to provide quantitative correlation between the in vitro and 

in vivo/ in situ transports of the dendrimer-drug conjugates tested. With a more 

complete understanding of the therapeutic profile, dendrimer-based drug delivery 

systems are to be expected to have great potential in not only oral drug delivery, but 

also in CNS therapeutics delivery. 
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CHAPTER 6:  APPENDICES 
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Appendix I: HPLC chromatograms of paclitaxel, pac-glu, G3 

PAMAM dendrimers and conjugates  

 
Methods: The appearance of pac, pac-glu, G3 PAMAM dendrimer and conjugates was 

detected using Agilent 1100 Series HPLC system (UK) equipped with a Luna 5 μm, 

C18 column (250 mm x 4.6 mm) (Phenomenex, Cheshire, UK), with phenanthrene as 

an internal standard. Solvent system used: MeOH: TFA (0.05% w/v) (80:20). The flow 

rate was 1.0 ml/min and the UV detection wavelength was 230 nm. 

 

Figure 6-1: HPLC chromatogram of pac and internal standard. 
 
 

Figure 6-2: HPLC chromatogram of pac-glu and internal standard. 
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Figure 6-3: HPLC chromatogram of G3 PAMAM dendrimer and paclitaxel. 
 
 
 

Figure 6-4: HPLC chromatogram of FITC-G3 and paclitaxel. 
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Figure 6-5: HPLC chromatogram of FITC-G3L6-glu-pac. 
 
 
 
 

Figure 6-6: HPLC chromatogram of FITC-G3L6-glu-pac collected after crossing 
PBEC monolayers during permeability studies. 
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Appendix II: HPLC assay calibration curves of paclitaxel and pac-glu 

 
Methods: HPLC analyses were performed using Agilent 1100 Series HPLC system 

(UK) equipped with a Luna 5 μm, C18 column (250 mm x 4.6 mm) (Phenomenex, 

Cheshire, UK). The UV detection wavelength was 230 nm. 

 

Figure 6-7: Calibration curve of paclitaxel in methanol, R2 = 0.9974 (mean ± SD, n 
= 3). 
 

Figure 6-8: Calibration curve of pac-glu in methanol, R2 = 0.9991 (mean ± SD, n = 
3). 
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Appendix III: Spectrofluorometric assay calibration curves of FITC-

labelled G3 PAMAM dendrimers and conjugates 

 
Method: Measurements were carried out at excitation/ emission wavelength of 485 nm/ 

535 nm using TECAN GENios Pro multiplate reader (Grödig, Austria). 

 

Figure 6-9: Calibration curve of FITC-G3 in transport medium, R2 = 0.9974 
(mean ± SD, n = 3). 
 

Figure 6-10: Calibration curve of FITC-G3L3 in transport medium, R2 = 0.9824 
(mean ± SD, n = 3). 
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Figure 6-11: Calibration curve of FITC-G3L6 in transport medium, R2 = 0.9947 
(mean ± SD, n = 3). 
 
 

Figure 6-12: Calibration curve of FITC-G3-glu-pac in transport medium, R2 = 
0.9986 (mean ± SD, n = 3).  
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Figure 6-13: Calibration curve of FITC-G3L3-glu-pac in transport medium, R2 = 
0.9904 (mean ± SD, n = 3). 
 

Figure 6-14: Calibration curve of FITC-G3L6-glu-pac in transport medium, R2 = 
0.9969 (mean ± SD, n = 3).  
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Appendix IV: Publications, conference presentations and awards 

 

PUBLICATIONS 
 
H.M. Teow, Z. Zhou, M. Najlah and A. D’Emanuele. The use of a dendrimer carrier to 

enhance paclitaxel delivery and bypass the P-glycoprotein efflux transporter. 2009, J. 

Pharm. Pharmacol., 34 (Supplement 1), 75-76. 

 

CONFERENCES PRESENTATIONS 
 
The British Pharmaceutical Conference 2009, Manchester, UK (poster presentation). 

 

United Kingdom International Controlled Release Society Symposium 2008, London, 

UK (poster presentation). 

 

Science and Technology Annual Graduate School Conference in 2009, 2008 and 2007, 

UCLan, UK (poster and oral presentation). 

 

AWARDS 
 
Commendation for Poster Presentation, The British Pharmaceutical Conference 2009, 

Manchester. 
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