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Protein kinase C and cardiac dysfunction: a review
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Abstract Heart failure (HF) is a physiological state in which
cardiac output is insufficient to meet the needs of the body. It
is a clinical syndrome characterized by impaired ability of the
left ventricle to either fill or eject blood efficiently. HF is a
disease of multiple aetiologies leading to progressive cardiac
dysfunction and it is the leading cause of deaths in both de-
veloped and developing countries. HF is responsible for about
73,000 deaths in the UK each year. In the USA, HF affects 5.8
million people and 550,000 new cases are diagnosed annually.
Cardiac remodelling (CD), which plays an important role in
pathogenesis of HF, is viewed as stress response to an index
event such as myocardial ischaemia or imposition of mechan-
ical load leading to a series of structural and functional chang-
es in the viable myocardium. Protein kinase C (PKC) iso-
zymes are a family of serine/threonine kinases. PKC is a cen-
tral enzyme in the regulation of growth, hypertrophy, and
mediators of signal transduction pathways. In response to cir-
culating hormones, activation of PKC triggers a multitude of
intracellular events influencing multiple physiological pro-
cesses in the heart, including heart rate, contraction, and re-
laxation. Recent research implicates PKC activation in the
pathophysiology of a number of cardiovascular disease states.
Few reports are available that examine PKC in normal and
diseased human hearts. This review describes the structure,

functions, and distribution of PKCs in the healthy and dis-
eased heart with emphasis on the human heart and, also im-
portantly, their regulation in heart failure.

Keywords Protein kinase C . Heart failure . Hypertrophy .

Fibrosis . Cardiac remodelling

Heart failure

Cardiovascular diseases (CVDs) are composed of several dif-
ferent pathologies, including coronary ischemic heart disease,
rheumatic heart disease, congenital cardiovascular defects, high
blood pressure, heart failure, stroke, arrhythmias, myocardial
infarction, and diseases of the arteries including endothelial
dysfunction and atherosclerosis. Despite significant progress
in the prevention and treatment of CVDs, statistics indicate that
CVDs are the leading cause of deaths throughout the world [1].
The World Health Organization (WHO) estimates that CVDs
are responsible for 17.5 million deaths in 2012, representing
31% of all global deaths. Of these, 7.4million died of ischaemic
heart disease and 6.7 million from stroke.

According to the American Heart Association [2], CVDs
accounted for 31.3% (786,641) of all deaths (total of
2,515,458) in 2011. On the basis of 2011 death rate data,
mortality owing to CVDs accounted an astounding 2150 peo-
ple dying daily with an average of 1 death every 40 s.

Heart failure (HF) is a clinical syndrome characterized by
impaired ability of the left ventricle to either fill or eject blood
[3]. American Heart Association (AHA) statistical update in
2015 reported that 1 in 9 deaths has HF mentioned on the death
certificate and data from 2011 revealed that HF any-mention
mortality was 284,388 (129,635 males and 154,753 females).
In 2012, total cost for HF was estimated to be $30.7 billion, of
which a total of 68% was attributed to direct medical cost.
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Projection shows that by 2030, the total cost of HFwill increase
almost to $69.7 billion from 2012 in the USA [4].

HF can no longer be considered a simple contractile disor-
der or a disease of the heart alone. It is now accepted that as
heart disease progresses into HF, heart size increases, cardiac
function deteriorates, and symptoms of HF become evident.
The aetiology of HF is diverse and it includes hypertension,
myocardial infarction, arrhythmias, bacterial endocarditis, is-
chaemia, idiopathic and diabetic cardiomyopathy, coronary
heart disease, and congenital cardiovascular defects. Of these
aetiologies, coronary artery disease and myocardial infarction
are the most common [5].

Protein kinase C

Discovery and structure Protein kinases C (PKC) were iden-
tified over three decades ago, as kinases that are activated by
proteolysis [6]. Initially identified as a nucleotide-indepen-
dent, Ca2+-dependent serine kinase, PKCs are a family of
serine/threonine kinases that are activated as a result of
receptor-dependent activation of phospholipase C and the hy-
drolysis of membrane phosphoinositides [7]. PKCs are now
known to be major mediators of signal transduction pathways
and have been shown to regulate sets of biological functions
as diverse as cell growth, differentiation, apoptosis, transfor-
mation, tumourigenicity, and others [8, 9].

According to differences in the binding capability of their
regulatory domain, the presently known 13 members of the
PKC family have been grouped into 3 classes: the classical
PKCs (α, β1, β2, γ), novel PKCs (δ, ε, η, θ), and atypical
PKCs (ζ, λ/ ι) [9, 10].

The first PKCs to be identified and cloned wereα,β, and γ
isozymes, initially isolated from brain complementary DNA
(cDNA) libraries [11]. Low-stringency screening of brain
cDNA libraries with probes derived from the α, β, and γ
isozymes yielded three additional PKCs, the PKC-δ, PKC-ε,
and PKC-ζ isozymes [12], and further low-stringency screens
of other tissue cDNA libraries led to identification of PKC-η
[13], PKC-θ [14], and PKC-ι (the mouse ortholog of λ in
humans) [15]. At present, there are over 450 protein kinases
in the human genome [16].

All PKCs have a common general structure composed of a
single polypeptide chain with two principal modules includ-
ing a NH2-terminal regulatory domain that contains the
membrane-targeting motifs and a COOH-terminal catalytic
domain that binds ATP and substrates (see Fig. 1). Initial re-
search in 1986 byCaussens et al. [11] revealed that throughout
the primary sequence of the enzymes, there are four conserved
(C1–C4) regions, with each region being a functioning mod-
ule, and are flanked by variable (V) regions.

cPKCs (α, β1, β2, γ) The classical PKC consists of five
variable and four conserved regions (C-regions). The catalytic
central part is found in the C4 region; the C3 region contains
the ATP binding site. The C2 region contains the recognition
site for acidic lipids and also, it is responsible for binding
(Ca2+), while the C1 region is responsible for diacylglycerol
or phorbolester (e.g. phorbol-12,13-myristate-acetate (PMA))
binding and consists primarily of two cysteine-rich ‘zinc-fin-
ger-like’ regions. The activity of this group depends on Ca2+

and on the presence of phospholipids (DAG) and
phosphatidylserine.

Fig. 1 Schematic representation of the primary structure of PKC gene
family. PKC isoenzymes are composed of single polypeptide chains that
consist of regulatory and catalytic domains. Indicated are a series of
conserved (C1–C4) regions and variable regions (V1–V5). The C1 region
(red) consist of a cys-rich motifs, C2 (green) is the calcium binding region,

C3 (purple) comprises the ATP binding lobe, and C4 (gold) is the substrate
binding lobe. Also indicated is the pseudosubstrate domain (blue) in the V1
region. The regulatory and catalytic domains are separated by V3 (hinge).
Structure (I) represents cPKC: α, β1, β11, γ, structure (II) represents nPKC:
δ, ε, η, θ, and structure (III) represents aPKC: ζ, λ/
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nPKCs (δ, ε, η, θ) For the novel PKCs, they are structurally
similar to the conventional cPKCs. However, the C2 region
does not have functional groups to mediate Ca2+ binding and
thus, it does not depend on Ca2+, but requires dioleoylglycerol
and phatidylserine for their activation.

aPKCs (ζ, λ/ι) The atypical PKCs are the third group of
isozymes and these differ significantly in structure from the
previous two groups. The C1 region contains only one of the
cysteine-rich motif and the C2 region is absent. These iso-
zymes, therefore, do not depend on Ca2+ for activation and
they also lack sensitivity to dioleolglycerol/phorbolesters.
Research has further shown that these isozymes are targets
of lipid-derived secondary messengers [17] and may be acti-
vated by lipids such as arachidonic acid and phos-
phatidylinositol 3,4,5-triphosphate. Initial studies by
Nishizuka [9] revealed that protein kinase C was involved in
lipid signalling for sustained cellular responses. The catalytic
and regulatory halves in PKCs are separated by a hinge region
that is proteolytic [18] which results in a constitutively active
kinase [6]. Further detailed works on PKC structure are de-
scribed in other studies [19–22].

Regulations PKCs are central enzymes in the regulation of
cell growth and hypertrophy and play a major role in signal
transduction in the heart. Initial work, mostly using phorbol
esters, showed that PKC is a critical enzyme in regulation of
cell growth and differentiation [23], in the phosphorylation of
substrates [24], in stimulation of other proteins such as kinases
[25], in the regulation of ion channel and receptors [26], and
altered gene expression [27]. It has been reported that PKC
activation plays a critical role in the development of delayed
preconditioning by translocating to the perinuclear region to
induce gene expression or by activating mitogen-activated
protein kinases (MAPK). Although these initial studies were
significant, phorbol esters are not izozyme-selective and there-
fore, it was not possible to identify which isozymes regulate a
given function.

Intracellular events, associated with response to circulating
hormones, trigger activation of PKC. These events can influ-
ence various physiological processes in cardiovascular sys-
tem, resulting in chronotropic and inotropic effects [28].
Numerous studies based on animal models have implicated
PKC activation with a number of cardiac diseases and heart
failure, with much of the initial focus being placed on cardiac
ischaemia [29–32]

PKC isozymes expression in the heart and various
tissues

PKC isozymes are ubiquitously expressed in all tissues at all
times of development. Extensive experimental research

indicates that different PKC isoforms serve distinct biological
functions [27, 33–35]. Interestingly, it has been observed that
PKC isoforms differ in their tissue distribution. Analysis,
using Northern blotting immune-blotting techniques, revealed
that many isozymes are widely expressed in a variety of tis-
sues, while others are only expressed in a few tissues. In ad-
dition to their tissue distribution, PKC isoforms have been
shown to differ with respect to substrate specificity [27,
36–40] and their susceptibility to downregulate upon phorbol
ester treatment [9]. Several studies have revealed that there
exist distinct individual functions in vitro studies among
PKC isoforms. Examples of such isoforms include PKC-α
and PKC-β phosphorylate histone IIIS strongly, while the
other isozymes do so weakly, if at all [27]. Johnson et al.
[34] investigated the spontaneous rate of contraction of neo-
natal rats and found that myocytes can be inhibited by activa-
tion of PKC-ε, but not by PKC-α, PKC-β, PKC-δ, or PKC-ζ.
Studies relating to in situ binding of individual PKCs to spe-
cific intercellular proteins have not been well investigated.

Knowledge of the expression of PKCs in tissues is an im-
portant factor to help in understanding which PKC isozymes
are involved in specific cardiovascular functions. PKCs have
demonstrated to have sometimes opposing roles in both nor-
mal and diseased states [41], and Basu et al. [42] have shown
that depending on stimulation, they can have opposing roles in
the same cell. The relative content of each isozyme in the heart
has been a controversial issue since it was found as different in
different species. Numerous studies have investigated PKC
expression pattern in cardiac tissues from various mammalian
species including rats [43–52], rabbits [53–55], guinea pig
[56], hamster [57], and dog [58].

Initial research by Hug et al. [59] showed that PKC-α,
PKC-β, PKC-δ, PKC-ε, PKC-λ, and PKC-ζ were found to
be widely distributed in many tissues, including the muscle,
brain, lung, skin, and heart. Studies indicate [14] that PKC-θ
is mainly expressed in the skeletal muscle, platelets,
haematopoietic cells, and endothelium. In one of the first re-
ports characterizing the expression of PKC isoenzymes in the
heart, PKC-ε was described as the principal, if not the only
PKC isoenzyme to be expressed in the rat heart [51]. Khalil
et al. [60] and Liou et al. [61] reported the presence of
PKC-(α, β, δ, ε, ζ) in vascular smooth muscle, while these
isoenzymes, in addition to PKC-η and PKC-θ, were found to
be expressed in endothelium platelets. Later, many studies
identified the presence of PKC-α, PKC-δ, PKC-ε, PKC-η,
and PKCs-ζ in rat-cultured cardiomyocytes [62–64], and even
PKC-γ that was considered to be present only in the nervous
system and adrenal tissues was found in the rabbit heart [32,
54]. Abundant expression of both βI and βIIPKC in human
cardiomyocytes has also been reported [38, 65–68]. However,
with the vast amount of studies on animal hearts, there exist
only few reports available that examined the expression of
PKCs in human hearts.
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Bowling et al. [66] identified expression of PKC-α, βI,
βII, and ε in human heart tissues using antibodies by
Western blot analysis. Work done by Shin et al. [68] repre-
sented the first comprehensive study of PKC isoform expres-
sion in human ventricle, utilizing antibodies directed against
all known PKC isoforms. The findings from their work, per-
formed by Western analysis and immune-histochemistry, re-
vealed that all isoforms, except PKC-ϒ and PKC-θ, were de-
tected, indicating that in human ventricular myocytes, PKC
expression is remarkably diverse. The findings of another
study carried out by Simonis et al. [67], using polyclonal
antibodies/monoclonal antibodies by Western blot analyses
technique, revealed that in the human heart, six isoforms of
PKC are expressed. These are PKC-α, PKC-β, PKC-δ,
PKC-ε, PKC-λ, and PKC-ζ. PKC-γ and PKC-θ were not
present in the human heart, consistent with previous finding.
This study also highlighted the importance in relative distri-
bution between atria and ventricles. PKC-ζ and PKC-δ are
primarily expressed in the atria, while PKC-α, PKC-βI, and
PKC-βII, which are all Ca2+-dependent, reside predominantly
in the ventricle. PKC-ε and PKC-λ are evenly distributed in
both atria and ventricles.

PKC isozymes in cardiac diseases and heart failure

In addition to roles in regulations, alterations in PKC levels are
associated with normal cardiac development. PKC-α, PKC-β,
PKC-ε, and PKC-ζ expressions are high in foetal and neonatal
hearts but decrease in expressions in adult hearts [69]. However,
it was shown [66] that during the process of heart failure in
humans, the levels of PKC-α, and PKC-β isozymes increase.

Mounting evidence suggests, and it has also been observed
that individual or multiple PKCs are involved in cardiac dis-
eases and heart failure [69]. These include, but not limited to,
atherosclerosis [70], myocardial infarction, acute ischaemic
[30, 55, 71–73], cardiac hypertrophy [29, 74], cardiac arrhyth-
mia [75], heart failure [76], and cardiac fibrosis [77].

Myocardial infarction and ischaemia preconditioning

Ischaemic heart disease continues to be the leading cause of
death in Western countries. Over the past two decades, signif-
icant effort, especially with preliminary work done by Ytrehus
et al. [78], has been devoted in understanding the role of spe-
cific PKCs in cardiac diseases. Preconditioning can be de-
scribed as a natural cardiac-protective mechanism, and it in-
volves subjecting the heart to brief periods of ischaemia and
reperfusion prior to a longer ischemic period. Preconditioning
protects the heart from ischaemia and reperfusion-induced
damage [79] by inducingmyocardial adaptation to the ensuing
prolonged ischemic event. In other words, a brief period of
ischaemia followed by reperfusion renders the heart more

resistant to injury from a subsequent longer ischaemic insult
instead of accentuating the injury. These results, using a ca-
nine heart, were some of the first to highlight the fact that
direct PKC activation prior to ischaemic event provides car-
diac protection. Based upon seminal observations from these
experiments, the term ischemic preconditioning (IPC) was
used to describe this phenomenon. IPC was subsequently
shown to be effective in other species including rats [80],
sheep [81], rabbits [82], and pigs [83].

The role of PKCs in ischemic preconditioning is now well
established in a variety of mammalian models including rats
[84–86], rabbits [78, 87], and canine [88] where different spe-
cific PKCs have been found in various animal species.
However, although the complex choreography of activation
or inhibition of various isoforms of PKC with ischaemia and
reperfusion has been worked out in animal models over the
past 30 years, there has been no success in translating this
knowledge into useful therapy in humans.

Research work by Yellon et al. [89] was one of the first
studies of IPC in humans where they examined whether a pre-
conditioning protocol protects the myocardium from prolonged
ischaemia. Their study showed that preconditioning ultimately
leads to a preservation of ATP levels in preconditioned human
hearts in contrast to non-preconditioned hearts. Subsequent
studies by Yellon et al. [90–93] and others [94–96] provided
further evidence for PKC involvement in human IPC.

The mechanism of preconditioning is still a subject of de-
bate. One of the earlier favoured hypotheses for precondition-
ing suggests that endogenous ligands such as adenosine initi-
ate an intracellular pathway by acting on G protein-linked
receptors leading to the activation of PKC via diacylglycerol
[78]. After which, activated PKC then phosphorylates a sec-
ondary effector protein, which is thought to induce protection.

There have been supportive [97] and conflicting reports [98,
99] with respect to the role of PKCs in ischaemic precondition-
ing. It was even suggested [100] that PKC might rather be a
‘spectator’ rather than a ‘player’, that is, it seems likely that
PKC activation is an epiphenomenon rather than a mandatory
or exclusive means of preconditioning the heart. Subsequent
studies suggest that cardiac preconditioning inhibits both apo-
ptosis and necrosis [101]. Earlier conflicting data were related
to the initial use of non-selective individual PKC activators/
inhibitors such as diacylglycerol (DAG), indolocarbazole, and
bisindolymaleimides [102, 103] that exhibited poor selectivity
for PKC isozyme. Subsequent studies, using selective isozyme-
specific inhibitors and activators (6–10 amino acids in length),
helped to explain earlier reported uncertainty.

Translating ischemic conditioning from animal models
to human

While on the topic of IPC, it is important to briefly discuss
challenges of translation of cardioprotection, its limitations in
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human studies, and need for PKC manipulation in ischaemia/
reperfusion. Translation of cardioprotection can be character-
ized as a four-step process from (1) reductionist animal studies
to (2) more clinically relevant animal studies, to (3) clinical
proof-of-concept studies with surrogate end points such as
infarct size, and to finally (4) clinical outcome trials [104].

Since the first clinical study conducted to test external ap-
plication of an IPC stimulus in patients undergoing coronary
artery bypass graft (CABG) surgery, more than 150 clinical
trials have been conducted and thousands of experimental
animal studies on mechanical and pharmacological condition-
ing and cardioprotective interventions. However, the concept
on the translation of cardioprotection strategies to clinical
practice continues to disappoint. There is yet no single ran-
domized clinical trial, which has explicitly demonstrated a
better clinical outcome for patients experiencing an acute
myocardial infarction or undergoing cardiovascular surgery
when receiving an adjunct cardioprotective.

In the field of cardioprotection, substantial gaps still
remain between experimental studies aiming at the iden-
tification of novel mechanisms and studies providing
robust preclinical data that are worth of being tested
in humans.

The critical time frame for adjunct cardioprotection that
depends on factors such as (1) species (2) heart rate, and (3)
residual blood flow still constitutes a major problem [105].
Systematic animal studies on the time frame for adjunct
cardioprotection, in interaction with the above listed variables,
are lacking while the exact time frame for adjunct
cardioprotection in humans is not really clear.

A very important fact when extrapolating from animal
models to humans is that it is vital to understand the differ-
ences between animal models and patients. Most animal ex-
periments, including larger mammals that are closer to
humans in their anatomy and physiology, are performed in
young and healthy animals that lack the risk factors.
Compare this to older individuals with cardiovascular disease
who participate in clinical trials, with comorbidities such as
diabetes, hypertension, kidney disease, and are taking medi-
cations [106]. Secondly, the effectiveness of ischemic-
conditioning strategies in humans seems to be less profound
than reported in the animal literature, with some randomized
clinical trials showing no significant benefit [107, 108]. These
disparities are keys to understanding why ischemic-
conditioning strategies fail to translate from animals to
humans.

The results of large, multi-centre, randomized, controlled
clinical trials of ischemic conditioning on clinical outcomes
after cardiac surgery have highlighted the challenges in trans-
lating cardioprotection into clinical practice. In future, it is
recommended that only results that have been proven robust
in multi-centre approaches be worth tested for translation to
patients.

With respect to PKCkinases and translation cardioprotection,
investigation of signalling pathways underlying ischemic condi-
tioning has identified molecular targets for pharmacological ma-
nipulation—a therapeutic strategy termed ‘pharmacological
cardioprotection’. The PKC family of kinases plays essential
roles in CVDs and has been linked as playing an important role
in the reperfusion injury salvage kinase (RISK) pathway in IPC
mechanism. Since this technique of pharmacological manipula-
tion was realized, there has been much excitement on the role of
kinases in PKC manipulations in IPC. However, over time, it
has been revealed that there does not appear to be any
translational-clinical science benefit on the horizon for manipu-
lation of PKC in ischaemia/reperfusion. This currently disap-
pointing situation has led many clinicians to prematurely give
up on attempts of PKC pharmacological cardioprotection be-
yond rapid reperfusion with more focus being placed on long-
term cardiovascular therapies.

PKC-δ and PKC-ε in myocardial infarction, ischemic
reperfusion, and preconditioning

Although they are members of the same subgroup (the so-
called novel group), PKC-δ (commonly referred to as pro-
death kinase) and PKC-ε (commonly referred to as pro-
survival kinase) mediate contrasting and even opposing ef-
fects. They are both activated in the ischaemic human heart
[109] where they play a key role in ischaemic preconditioning.
However, the mechanism and exact role of PKC in the surviv-
al of cardiac cells remain unknown and controversial with
research confirmed that these two related PKC isozymes have
both parallel and opposing effects in the heart, indicating the
danger in the use of therapeutics with non-selective isozyme
inhibitors and activators [110]. Studies by Hassouna et al.
[65], using various specific PKC inhibitors, investigated
which PKCs were involved in IPC of the human atrial myo-
cardium sections using the temporal relationship to the open-
ing of mitoKATP channels. The results, with reference to
PKC-δ and PKC-ε, showed that PKC-ε inhibitors blocked
IPC of the human myocardium and is upstream of mitoKATP

channels while PKC-δ inhibitors did not blocked IPC.
Ischaemia and reperfusion cardiac damages have shown

[111, 112] to be dependent on translocation of PKC-δ into
the mitochondria where cytochrome c is released resulting in
inhibition of mitochondrial functions. It has been suggested
that oxidative stress seems to trigger PKC-δ into the mito-
chondria [113]. PKC-δ activation results in phosphorylation
steps [114] and inhibition of ATP regeneration. Cardiac mito-
chondrial inhibition now triggers higher reactive oxygen spe-
cies (ROS) production and built up of reactive aldehydes (e.g.
4-hydroxynonenal (4-HNE), methylglyoxal (MGO), and
others), which can become toxic at accumulated levels
[115]. With a combination of diminished levels of ATP, accu-
mulated of ROS, and toxic aldehydes, this results in
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accumulation of aggregated proteins and an inactive 26S pro-
teasome, ultimately, leading to both apoptosis and necrosis
[41] followed by severe cardiac dysfunction. It is no surprise,
as numerous research studies have now shown, that PKC-δ
inhibition will result in opposite effects to that of its activation.
That is, PKC-δ inhibition at reperfusion is protective (refer to
schematic diagrams in Fig. 2a, b).

Additionally, it is now recognized that IPC consists of two
(2) chronologically and patho-physiologically distinct phases
comprised of an early phase and a late phase of protection.
Stein et al. [116] have reported that PKC-ε activation facili-
tates the protective effects of late preconditioning. That is,

precondition stimuli enhance the resistance of the heart to
ischaemia injury 12–72 h later.

Inagaki et al. [117] have shown that PKC-δ inhibition re-
duces reperfusion injury to the myocardium by inhibiting both
apoptosis and necrosis. Further work [110] using selective
peptide inhibitors (δV1–1) has demonstrated that inhibition
of PKC-δ protects the heart from ischaemic injury and further,
PKC-δ activation is cardioprotective provided that there is
sufficient time allowed for PKC-ε activation. These findings
are in accordance with a role for PKC-δ in apoptosis as pre-
viously demonstrated by overexpression of PKC-δ [118]. It
has been suggested also that inhibition of PKC-δ should be a

Fig. 2 The role of PKC isozymes in ischaemic heart disease. Schematic
diagram showing a how ischaemic preconditioning prior to prolonged
ischaemia and reperfusion provides cardioprotection by activating more
PKC-ε, which translocate into the mitochondria and prevents
mitochondrial dysfunction induced by prolonged ischaemia and

reperfusion. b In contrast, prolonged ischaemia and reperfusion
result in activation of PKC-δ more than PKC-ε, leading also to trans-
location of PKC-δ into the mitochondria. Mitochondrial dysfunction
and increase in ROS lead to both apoptosis and necrosis and severe
cardiac dysfunction
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target for drug development to prevent irreversible cardiac
injury during reperfusion in humans.

Interestingly, it has been reported [109] that activated
PKC-δ has two potential fates that, apparently, depend on
the metabolic rate of the cell. These include (1) if the integrity
of the 26S proteasome, mitochondrial function, and cellular
energy is maintained, PKC-δ is effectually degraded and (2)
conversely, if the aforementioned parameters are not main-
tained, the result is an accumulation of elevated levels of ac-
tivated PKC-δ (pro-death kinase) in the mitochondria.

PKC-ε isozyme is also translocated into the mitochondria
by stimuli; however, its activation has shown (in contrast to
PKC-δ) to be protective [110, 119, 120] when occurring just
before reperfusion. In addition, it also prevents mitochondrial
dysfunction induced by prolonged ischaemia events.
Mitochondrial protection is achieved by PKC-ε phosphoryla-
tion followed by activation of aldehyde dehydrogenase 2
[ALDH2]—which removes the harmful aldehyde (4HNE;
MGO) and peroxidation by-products [115]. Research work
by Chen et al. [121] showed that this mitochondrial enzyme
(ALDH2) correlated with reduced ischaemic heart damage in
rodent models, in some cases, reduced infract size by 60%.
The above steps now result in lower ROS concentration, pro-
mote faster recovery of ATP and faster removal of aggregated
proteins, promote an active 26S proteasome, and ultimately
result in reducing cellular damage—diminished apoptosis and
necrosis. In addition to the aforementioned factors and cardio
benefits from PKC-ε activation, upon translocation into the
mitochondria, PKC-ε isozyme is involved/initiated a number
of processes that help to contribute in overall cardioprotection.
These include, but not limited to, the following: firstly, open-
ing of KATP channels—this channel opens as ATP levels fall
and is inhibited when levels are high. The KATP channel,
which exists in both mitochondria and sarcolemmal mem-
brane has been recognized by Gross et al. [122] to be a likely
end effector of ischaemic preconditioning, and earlier work
[123] suggests that the sarcolemmal channel surface might
be an important effector of the cardioprotective effects of
ischemic/hypoxic preconditioning. Secondly, restrict mito-
chondria permeability transition pore (MPTP) from open-
ing—this pore has been identified by Bains et al. [124] and
others [125] as an effector of preconditioning. PKC-ε interacts
with and inhibits the MPTP and, thus, stabilizes mitochondria
in cardiac tissue during and following ischaemia. This pore,
which allows water and solutes to enter the mitochondria, is
closed during ischaemia and opens in the first few minutes of
reperfusion [126]. It ultimately inhibits the pathological func-
tion of the pore and contributes to PKC-ε induced
cardioprotection. Thirdly, increase in cytochrome c activi-
ty—PKC-ε co-immuno-precipitates with cytochrome oxidase
subunit IVand is associated with improved cytochrome c ox-
idase activity and cardioprotection [127]. Finally, it was re-
ported [109] that the active proteasome that results from

PKC-ε activation is capable of selectively degrading activated
PKC-δ, thereby altering the ratio between PKC-ε and PKC-δ,
increasing the favour of pro-survival kinase (PKC-ε), and ul-
timately regulating myocardial sustainability.

Cardiac hypertrophy and heart failure

Cardiac hypertrophy is a thickening of the interventricular
wall and/or septum in the cells and it involves complex mul-
tiple progressive alterations of the heart geometry in response
to either mechanical, electrical, or neuro-humoral stimuli such
as epinephrine, norepinephrine, aldosterone, and angiotensin
II. It may be further characterized with increase in cardiomyo-
cyte size, increased protein synthesis, and changes in the or-
ganization of the sarcomeric structure. Although short-term
subcellular changes (cardiomyocyte enlargement, formation
of new sarcomeres, etc.) associated with cardio hypertrophy
may be beneficial, however, when sustained for longer inter-
vals, the cardiac system becomes maladaptive. This eventual-
ly leads to decompensation resulting in fibrosis, apoptosis,
and cardiac remodelling among other cardiac diseases before
transitioning to heart failure. Hypertrophy is therefore an early
indication during clinical course of heart failure and plays an
important risk factor for subsequent cardiac death.

Cardiac hypertrophy can be placed into three categories—
(1) normal growth, (2) growth induced by physical condition,
and (3) growth induced buy pathological stimuli—and various
kinases have been identified as mediators in response to acti-
vation induced by neuro-hormone receptors [128].

Protein kinase C family have been identified as having
important roles in adaptive and maladaptive cardiac re-
sponses. In cultured myocytes, it has been found that PKCs
regulate contractibility and hypertrophy [128]. Studies have
identified the intercellular mechanism underlying cardiac hy-
pertrophy and PKC isozymes as potential mediators of hyper-
trophic stimuli [76, 129], and it has also been suggested that
induced stress associated with cardiac hypertrophy coupled
with PKC activation will increase PKC expression and activ-
ity [130]. As previously mentioned, PKC expression in cardi-
ac tissue differs with species, cell type, and developmental
stage. Importantly, the activity of PKCs is dependent upon
its localization within the cell, expression level, and phosphor-
ylation [131]. The following chapter focuses on the role of
PKC isoforms in the aetiology of cardiac hypertrophy and
heart failure.

PKC-δ and PKC-ε in cardiac hypertrophy and heart
failure

In contrast with preconditioning to ischaemia in which PKC-δ
and PKC-ε have opposite roles, both act in the same direction
during the development of hypertrophy [110]. The activation
of PKC-εmay be a factor that induces ventricular hypertrophy
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with its positive effect on cell growth. In this line, the relation
between PKC-ε and the cytoskeleton is a mechanism that
potentially initiates hypertrophy via phosphorylation of pro-
teins in the costameres, which then transmit signalling to the
Z-disk for parallel or series addition of thin filaments regulated
via actin capping [132].

The activation of PKC-ε was shown during stretch of
cardiomyocytes [133]. In isolated guinea pig hearts, stretch,
one of the principal activators of ventricular hypertrophy, has
been shown to induce a PKC-ε translocation to membranes
that was partially inhibited by losartan [56]. In vivo, an induc-
tion of concentric cardiac hypertrophy with an overexpression
of constitutively active PKC-ε [134] or with the expression of
cardiac specific PKC-ε activator [135] was shown. The effect
of PKC-ε is in general considered to lead to a concentric
hypertrophy. However, in mice overexpressing PKC-ε [136],
the evolution of hypertrophy was quite deleterious since it led
to a dilated cardiomyopathy. Thus, the effect of PKC-ε may
differ depending upon its level of expression.

PKC activity has been generally described as increased
with different behaviours of different isozymes. In general,
PKC-ε and PKC-δ increased content and translocation to-
wards the membrane fraction was found but this is not a uni-
versal finding in all types of hypertrophy. In aortic banding in
rats [137], guinea pigs [138], and in severe human aortic ste-
nosis [67], an increased concentration of PKC-ε was found in
membranes. In contrast, PKC-δ content was found as un-
changed in nuclear-cytoskeletal fraction in the model of rat
aortic banding [137]. Other researchers found the same trans-
location in a completely different type of hypertrophy, right
ventricular hypertrophy induced by pulmonary hypertension
due to chronic hypoxia in rats [139]. However, opposite re-
sults were described in hypertrophy or heart failure by others
[66, 32, 140–142]. In human failing hearts, left ventricular
PKC-ε content was decreased [67]. In rabbit left ventricular
hypertrophy, researchers have found a decreased cardiac con-
tent of PKC-ε and a similar downregulation was demonstrated
in a model of genetic hypertension while PKC-δwas unaffect-
ed [141]. In contrast, PKC-ε activity was found to be un-
changed in rat aorto-caval fistulas while PKC-δwas increased
[142]. Although PKC-ε is an actor in the development
of hypertrophy, its expression in the myocardium and its
translocation are not found as increased in all models.
More recently, it has been suggested that PKC-ε inhibi-
tion attenuates pathological remodelling in hypertension-
induced heart failure by preventing cardiac mast cell
degranulation [143].

PKC-ε has been shown to bind scaffold proteins. In the
heart, F-actin bound PKC-ε selectively over PKC-δ [144]
and it was shown that the binding interface between PKC-ε
and cardiac myofilaments was mainly on the V1 region of
PKC-ε and the interface between PKC-ε and F-actin was
mainly on the C1 region of PKC-ε [144].

PKC-β in cardiac hypertrophy and heart failure

PKC-β was chosen as the first isoenzyme [145] to be studied
using cardiac target expression and has been shown to play an
important role in cardiac hypertrophy. One of the main reasons
for this being is its reactivity and expression increases in hu-
man heart failure [67]. The result showed that the calcium
dependant PKC-β (stained as a triple band containing both
splice variants {PKC-β1 and PKC-β11}) resides predomi-
nantly in the ventricular myocardium. They also demonstrated
that in downregulation during ontogenesis in human hearts,
PKC-β expression was decreased by 90%—that is, this iso-
form is almost totally switched off in normal adult non-failing
cardiac heart. PKC-β is highly upregulated, leading to re-
expression in dilated cardiomyopathy originating from severe
heart failure.

Using explanted heart from patients in whom dilated car-
diomyopathy was diagnosed, Bowling et al. [66] examined
PKC isoforms present in these samples. Their results showed
a quantitative increase of >40% in PKC-β1 and PKC-β11
membrane expression in failed human hearts compared with
non-failed hearts. They also reported a reduction in membrane
activity from failed hearts of 209 pmol min−1 mg−1 when a
selective PKC-β inhibitor (LY333531-macrocyclic bis
maleimide) was used (compared with 45.2 pmol min−1 mg−1).
An important conclusion in the finding from their research is
that in failed human heart, PKC-β1 and PKC-β11 expression
and contribution to the total PKC activity are significantly
increased.

PKC-α in cardiac hypertrophy

With respect to the conventional isoforms, PKC-α is the pre-
dominant subtype expressed in the mouse, human, and rabbit
hearts, while PKC-β and PKC-γ are detectable but expressed
at substantially lower levels [138, 146, 147]. Although it is the
most highly expressed of the myocardial PKC isoforms,
PKC-α is the least studied because unlike PKC-δ and
PKC-ε, it is not regulated in acute myocardial ischaemia
[148] and in contrast to PKC-β, it is not regulated in diabetes
[145]. Reports have associated PKC-α activation or an in-
crease in PKC-α expression with hypertrophy, dilated cardio-
myopathy, ischaemic injury, or mitogen stimulation [128].
Increased expression of PKC-α was also observed following
myocardial infarction [67]. Human heart failure has also been
associated with increased activation of conventional PKC iso-
forms, including PKC-α [66, 67]. Thus, PKC-α fits an impor-
tant criterion as a therapeutic target; its expression and activity
are increased during heart disease. Initial comparative analysis
of PKC isoforms [149] using wild-type or dominant inhibitory
forms of PKC-α, PKC-β2, PKC-δ, and PKC-ε suggested that
only PKC-α was sufficient to stimulate cell hypertrophy and
only inhibition of PKC-α inhibited agonist-mediated

Heart Fail Rev



hypertrophy. The implication of this work [149] was that
PKC-α is a key regulator of cardiomyocyte hypertrophic
growth.

The concept that PKC-α is of a greater importance as a
regulator of myocardial contractility vs. cardiac hypertrophy
was highlighted by Hahn et al. [150] using RACK binding
and pseudo-RACK peptides derived from PKC-β. Previous
studies [151, 152] have demonstrated that chronic activation
of PKC-α diminished baseline ventricular ejection perfor-
mance and, in combination with Gq-mediated hypertrophy,
caused a lethal cardiomyopathy. In contrast to this, chronic
PKC-α inhibition improved myocardial contractility and
inhibited Gq-mediated cardiac hypertrophy [150]. The results
of these studies showed that PKC-α is a critical determinant of
myocardial systolic function but has minimal effects on cardi-
ac hypertrophy.

Cardiac fibrosis

Cardiac fibrosis is the accumulation of fibroblasts that result
from the expansion of the cardiac extracellular matrix proteins
such as collagen, by augmented release from fibroblasts or
reduced degradation of collagen. Cardiac fibrosis is crucial
for scar formation after acute myocardial infarction (AMI).
Ischemic injury results in increased levels of circulating cyto-
kines, growth factors, and hormones that stimulate cell surface
receptors on cardiac fibroblasts.

Fibrosis reduces the flexibility of myocardial tissue
resulting in diastolic dysfunction, leading to myocardial
malfunctioning (increased thickening of extracellular matrix,
decreased cardiac elasticity), and consequently posing detri-
mental effects to failing hearts. Additionally, increased colla-
gen content disrupts electrical connectivity between
cardiomyocytes resulting in arrhythmogenesis [153].

Role of PKC isozymes in cardiac fibroblast proliferation

PKC isozymes contribute to different stages of cardiac fibro-
blast proliferation [153–155]. Fibroblast adhesion to the ex-
tracellular matrix has shown to be regulated through PKC-ε
(via βI-integrin) while upregulation of cytokine and growth
factors are mediated by PKC-α, PKC-βII, PKC-δ, PKC-ε,
and PKC-ζ. In addition, PKC-δ, PKC-ε, and PKC-ζ have
been demonstrated to regulate fibroblast proliferation with
PKC-δ and PKC-ζ yielding opposing results in fibroblast
[156].

PKCs also regulate activity and concentrations of matrix
metalloproteinase (MMP), which facilitate the motility of car-
diac fibroblast [157, 158]. It has been demonstrated that
PKC-θ and PKC-ζ increase activities of both MMP-2 and
MMP-9 via ERK pathways in cardiac fibroblast [151].
However, in the JNK-dependent pathway, PKC-α and
PKC-βI increase activity of MMP-9 and not MMP-2 [159].

Additional research that focused specifically on the critical
role of PKC-ε in mediating cardiac fibrosis and the results has
yielded promising insight. Mechanistic studies have demon-
strated that PKC-ε forms a tight complex with β1-integrin to
regulate the interaction between the cell and extra cellular
matrix ECM [160, 161]. These findings help to validate a role
of PKC-ε in mediating cardiac fibroblast adhesion.

Atherosclerosis

The hallmark of coronary heart disease is characterized by the
development of endothelial dysfunction followed by athero-
sclerotic (thickening of artery wall as a result of invasion and
accumulation of white blood cells) lesions in the coronary
arteries leading to sustained ischaemic events and acute myo-
cardial infarction (AMI). Atherosclerosis progression begins
with low-density lipoprotein (LDL) accumulation followed by
monocyte- and endothelium-mediated oxidation of LDL,
monocyte extravasation, foam cell formation, and finally, for-
mation of atherosclerotic plaque.

The role of PKCs has been shown to be intimately involved
with various stages of atherosclerotic progression. Studies on
human hepatic G2 cells, U-931 (human histiocytic lympho-
ma), and human endothelium have demonstrated isozyme-
specific effects of PKC with different stages in atherosclerotic
progression [162–171]. The effects and roles of PKCs in ath-
erosclerosis and heart failure in human heart are summarized
in Table 1.

PKC—a target for drug development

The PKC family of kinases plays essential roles not only in
CVDs but also in other diseases. This makes them an attrac-
tive target for drug development. This section will discuss
areas for future investigation that may lead to drug develop-
ment and novel therapeutic approaches.

The idea of PKCs as target for drug development dates
back to the early 1980s, when they were first identified as
the receptors for the tumour-promoter phorbol ester [172].
The central role of PKCs as tempting target for drug develop-
ment is associated with the fact that these kinases are activated
in a variety of diseases as evidenced in animal models and
human tissue studies. In addition to heart failure and heart
diseases that were extensively covered in previous sections
of this review, evidence exist for the critical role of PKC in
cancer [173], diabetes [174], bipolar disease [175],
Parkinson’s disease [176], Alzheimer’s disease [177], psoria-
sis [178], kidney [179], and many other human diseases.

Researchers have been trying for years to develop PKC-
specific inhibitors that are isozyme selective. Various ap-
proaches have led to development of ATP-competitive small
molecules (targets the catalytic domain) [180], activators and
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inhibitors that mimic DG-binding (targets C1 domain) [181],
and protein–protein interactions between regulatory region
and RACK [182].

PKCmodulation in human diseases has shown great prom-
ise but sadly, clinical trials’ results have been disappointing.
Trials include transplantation clinical trial [183], bipolar dis-
order trials [184], oncology trials [185], diabetic trials [186],
and cardiovascular trials [187]. The major challenges in clin-
ical application of PKC modulators are due mainly to unfore-
seen adverse reactions, inadequate therapeutic effect,

insufficient preclinical studies, absence of blood biomarkers,
and lack of selectivity (PKC inhibitors also affect other ki-
nases). Table 2 provides a summary of clinical trials with
PKC regulators in human diseases.

With all the excitement around PKC as targets for drug
development, both academic and pharmaceutical efforts have
failed to produce a single new drug that specifically targets
PKC.

A future direction for drug development has been linked to
post-translational modification of PKC, based upon secondary

Table 1 Table showing the role
of isozyme-specific PKCs in hu-
man heart failure and
atherosclerosis

PKC Cardiac
aetiology

Model Features Ref.

PKC-βII Heart failure Human end-stage dilated
cardiac myopathy

Increase cardiac PKC-βII levels [67]

PKC-βII Heart failure Human end-stage dilated
cardiac myopathy

Increase cardiac PKC-βI levels [66]

PKC-α Atherosclerosis Human endothelium Increases superoxide production and
inactivation of PKC-α

[162]

PKC-α Atherosclerosis HepG2 LDL oxidation and decreased superoxide [163]

PKC-α Atherosclerosis U-937 cells PECAM1 expression and adhesion [164]

PKC-α Atherosclerosis Human endothelium Increased MMP-2 expression [165]

PKC-α Atherosclerosis HepG2 LDL upregulation [166]

PKC-β Atherosclerosis HepG2 Increased LDL activity [167]

PKC-β Atherosclerosis Human endothelium Induces expression of vascular cell
adhesion, translocation of PKC-β

[159]

PKC-β Atherosclerosis Human endothelium Increased MMP-1 and MMP-3 expres-
sion

[161]

PKC-β Atherosclerosis Human endothelium Increased MMP-2 expression [165]

PKC-ε Atherosclerosis HepG2 Increased/decreased LDL activity [170]

PKC-ε Atherosclerosis Human endothelium Induces expression of vascular cell
adhesion, translocation of PKC-β

[165]

PKC-ζ Atherosclerosis Human endothelium Regulates TNF-α-induced activation of
NADPH oxidase

[171]

Table 2 Table showing summary
of clinical trials of PKC regulators
in various human diseases

Disease Drug Mechanism Ref.

Transplant rejection Sotrastaurin ↓PKC [183]

Bipolar mania Tamoxifen ↓PKC (at high dose) [184]

Diabetic retinopathy Ruboxistaurin ↓PKC-β [186]

Oncology Aprinocarsen

Bryostatin

Enzastaurin

Midostaurin

Tamoxifen

↓PKC-α

↑PKC

↓PKC-β

↓PKC

↓PKC (at high dose)

[188]

[185, 189]

[190, 191]

[192]

[193, 194]

Congestive heart failure Flosequinan ↓PKC [187]

Coronary bypass grafting Volatile anaesthetics

Adenosine

Acadesine

↑PKC-ε

↑PKC-ε

↑PKC-ε

[195, 196]

[197, 198]

[199, 200]

Acute myocardial infarction Salvage Adenosine

Delcasertib

↑PKC-ε

↓PKC-δ

[201]

[202]

Heart Fail Rev



messenger-dependent activation. These modifications include
tyrosine ni t ra t ion, tyrosine phosphorylat ion, N-
acetylglucosamine O-linked (O-GlcNAc) to serines and thre-
onines of cytosolic and nuclear proteins, oxidation of cysteine
rich domainwithin the C1 domain, and proteolytic cleavage of
the enzyme at the hinge region between the catalytic and the
regulator halves [203].

Post-translational modification represents a ubiquitous and
essential device for control of protein activity, localization,
stability, and protein–protein interaction. The importance of
this is further emphasize by the fact that covalent post-
translational modification, namely serine/threonine phosphor-
ylation of PKC along with binding of PKC to the lipid second
messenger diacylglycerol, is recognized as two equally impor-
tant mechanisms that regulate

PKC activity [204]. About 100 mammalian proteins, in-
cluding signalling components, metabolic enzymes, and tran-
scription factors, have been identified that carries this modifi-
cation [205, 206]. However, while the modification has been
known for over 30 years, and provides an alternative means of
PKC activation which may play a role in disease states, no
pharmacological agents have been developed yet based on
second messenger-independent activation of PKC.

The PKC family still remains a desirable target for drug
development. Biomarkers for specific PKC activity will play
a major role for future success in developing drugs for PKC-
mediated disease. There is also the need for greater and effi-
cient drug development practices and adequate preclinical
studies.

Conclusion

In conclusion, this review provides a comprehensive descrip-
tion of the structure, functions, and distribution of PKCs in the
healthy and diseased heart with some emphasis on human
heart. The study further focuses mainly on their regulation
and roles in the normal healthy heart and, more so, their in-
volvement in the development of heart failure. The regulation
of the different isozymes of PKC by pharmaceutical agents
may have potential benefits in the treatment of heart failure,
thereby promoting a better quality of life for the patients.
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