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designing inhalable liposome carriers for the treatment of 
other lung diseases, including pulmonary cancers. The suc-
cessful development of anticancer liposomes for inhalation 
may depend on the future development of effective aero-
solisation devices and better targeted liposomes to maxi-
mise the benefit of therapy and reduce the potential for local 
and systemic adverse effects.  © 2016 S. Karger AG, Basel 

 Introduction  

 In 2015, the American Cancer Society estimated that 
in the United States 221,200 new cases of lung cancer 
were diagnosed, and that 158,040 individuals could die of 
the condition  [1] . Sihoe and Yim  [2]  reported that about 
85% of lung cancer patients had non-small cell lung can-
cer, while the remaining 15% had small cell lung cancer. 
The survival rate in lung cancer patients is dependent on 
early diagnosis of the cancer, and surgical resection of the 
tumorous tissue is often the preferred remedy. In the ma-
jority of lung cancer patients, chemotherapy is given in 
order to minimise the chance of metastases, which is one 
of the significant problems in lung cancer sufferers  [3] . 
The extensive distribution of lymphoid tissue in the lungs 
allows cancer cells to metastasise to organs distant from 
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 Abstract 

 This is a critical review on research conducted in the field of 
pulmonary delivery of liposomes. Issues relating to the 
mechanism of nebulisation and liposome composition were 
appraised and correlated with literature reports of liposome 
formulations used in clinical trials to understand the role of 
liposome size and composition on therapeutic outcome. A 
major highlight was liposome inhalation for the treatment 
of lung cancers. Many in vivo studies that explored the po-
tential of liposomes as anticancer carrier systems were eval-
uated, including animal studies and clinical trials. Liposomes 
can entrap anticancer drugs and localise their action in the 
lung following pulmonary delivery. The safety of inhaled li-
posomes incorporating anticancer drugs depends on the 
anticancer agent used and the amount of drug delivered to 
the target cancer in the lung. The difficulty of efficient target-
ing of liposomal anticancer aerosols to the cancerous tissues 
within the lung may result in low doses reaching the target 
site. Overall,   following the success of liposomes as inhalable 
carriers in the treatment of lung infections, it is expected that 
more focus from research and development will be given to 
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the pulmonary system  [2] . Approximately 70% of pa-
tients with non-small cell lung cancer suffer from ad-
vanced distant metastasis at the time of diagnosis, mean-
ing surgery is not curative at that stage of the disease  [4] . 
Therapeutic strategies for targeting lung cancer are of 
great importance not only because of possible remission, 
but also for reducing the potential of lung cancer metas-
tases, and thereby increasing the chance of success with 
surgical intervention or radiotherapy  [4] . 

  A serious limitation of pulmonary delivery of antican-
cer drugs is the poor water solubility of many chemothera-
peutic agents (e.g. paclitaxel; PTX)  [5] . In addition, the 
thinness of the pulmonary epithelium results in short resi-
dence of the inhaled drug in the lung and potential for sys-
temic adverse effects. Liposomes possess unique properties 
that make them suitable drug carriers in the treatment of 
cancer. Due to the enhanced permeability and retention 
effect resulting from their small size (100 nm), liposomes 
can pass through leaky tumour blood vessels and accumu-
late in the cancerous tissue to release the encapsulated drug 
at the target site  [6] . The pulmonary system offers unique 
targeting options due to the large surface area of the lung, 
evasion of first-pass metabolism, and high permeability of 
the pulmonary epithelium. Unlike parenteral delivery, in-
halation of controlled release systems may localise the drug 
action in the lung for prolonged periods; it is a non-inva-
sive route and may reduce systemic adverse effects. It is 
established that liposomes can localise the action of in-
haled drugs in the lung, improving the therapeutic out-
come of the medication and reducing systemic adverse ef-
fects  [7–9] . Dipalmitoylphosphatidylcholine liposomes 
given intratracheally in mice have been reported to be tak-
en up by pulmonary cells, and more than 50% of the phos-
pholipid administered remained in the lung after 24 h of 
administration  [10] . Arikace ®  (a liposomal formulation of 
amikacin) is a liposome formulation designed for the treat-
ment of lung infection in cystic fibrosis patients through 
inhalation  [9] ; this product is currently in phase III of de-
velopment  [9] . The success of this formulation is expected 
to motivate the pharmaceutical industry to invest further 
in the development of more inhalable liposome formula-
tions in other fields such as cancer. In the view of the au-
thors of this report, gene therapy in combination with li-
posomal antibiotics may constitute the future research di-
rections in the treatment of cystic fibrosis  [11–15] .

  In pulmonary drug delivery, there are three main bar-
riers against the deposition of the aerosol in the deep lung 
(i.e. respiratory bronchioles and the alveolar region), and 
these are: (a) the anatomic barrier – the tracheobronchial 
tree structure of the pulmonary system is the main pro-

tection mechanism against the deposition of deleterious 
particles and pollutants; (b) the pathological barrier – the 
disease status may affect the viscoelastic properties of the 
mucous covering the respiratory tract epithelium, hence 
affecting the clearance of deposited material and absorp-
tion profile, and (c) the immunological barrier – alveolar 
macrophages are involved in the defence mechanism and 
hence particles depositing in the alveolar region might be 
engulfed and transported to the upper respiratory tract 
where the mucociliary escalator can eradicate the parti-
cles because there is always competition between clear-
ance and absorption. 

  The above barriers are discussed further in this review; 
however, it is important to bear in mind that for inhaled 
drug particles to be regarded ‘therapeutically useful’ they 
should be in ‘fine particle fraction’ (FPF; i.e. capable of 
reaching the bronchioles and alveoli). For this to happen, 
the aerodynamic size of inhaled particles should be small-
er than 5 or 6 μm, with particles smaller than 2 μm being 
the most suitable for deposition in the alveolar region 
 [16] . Hence, the size of inhaled particles is the prime es-
sential factor to consider for overcoming the anatomical 
barrier of the lung. Accordingly, liposome formulations 
should be aerosolised into particles that have a high FPF, 
and these liposomes should encapsulate a therapeutically 
feasible concentration of the drug which can then exhibit 
prolonged release from the liposome vesicles to the de-
sired target within the lung  [9] . In this review, the studies 
of inhalable anticancer liposome formulations for treat-
ing cancers in the lung and those located in distant organs 
are described and evaluated. Furthermore, the future of 
this field of drug delivery was appraised in light of the re-
cent findings of Arikace ® , a nebulisable liposome formu-
lation which has passed phase II clinical trials  [9, 17] .

  Classification of Liposomes 

 Liposomes can be classified according to their size and 
morphology into multilamellar vesicles (MLVs; 0.1–20 
μm), large unilamellar vesicles (LUVs; 0.1–1 μm) and small 
unilamellar vesicles (SUVs; 25–100 nm). MLVs are tradi-
tionally made using a thin-film hydration technique by dis-
solving the phospholipid ingredients with or without cho-
lesterol in chloroform and methanol in a round-bottomed 
flask, followed by the removal of the organic solvents using 
a rotary evaporator, which results in the casting of a thin 
film of lipid on the inner walls of the flask. The addition of 
an aqueous phase above the phase transition temperature 
of the lipid mixture with shaking results in the formation 
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of the MLVs  [18, 19] . By contrast, LUVs are produced by 
extrusion of the MLVs through polycarbonate membrane 
filters (100-nm pore diameter)  [20] . Moreover, in some in-
vestigations oligolamellar vesicles (0.1–1 μm) have been 
described, which are liposomes made of two or three bilay-
ers that are generated using a reverse phase evaporation 
method  [21]  or ethanol-based proliposome technology 
 [22] . In most applications for the pulmonary delivery of 
liposomes, MLVs are prepared using the traditional thin-
film hydration method, as described above. This could be 
followed by either sonication to gain SUVs, or membrane 
extrusion to obtain smaller MLVs or LUVs.

  Safety of Liposome Formulations for Pulmonary 

Drug Delivery 

 Liposomes for pulmonary delivery have attracted a 
marked interest owing to the ability of liposome vesicles 
to entrap therapeutic molecules and, following inhala-
tion, localise the drug effect in the pulmonary system for 
a prolonged duration. This had been reported to enhance 
the therapeutic benefit of the drug and reduce the poten-
tial of systemic adverse effects  [7–9] . Liposomes are pre-
pared using phospholipids with or without cholesterol; 
these components are highly similar to pulmonary sur-
factants in mammals  [8, 9] . Many studies have established 
the high biocompatibility and biodegradability of lipo-
somes as drug carriers in inhaled formulations. Histori-
cally, liposomes in this field were suggested as surfactant 
replacement therapy in patients with respiratory distress 
syndrome. Recently, lung surfactants based on mixtures 
of phospholipids have been commercialised (e.g. Survan-
ta ® ) for prophylaxis against respiratory distress syn-
drome in neonates  [23] . 

  Many early studies have demonstrated the safety of li-
posomes for pulmonary administration. For example, 
Myers et al.  [24]  have shown using animal models that 
inhalation of HSPC (hydrogenated soy phosphatidylcho-
line) liposomes caused no pathological effects on alveolar 
macrophages  [24–37] . Prolonged nebulisation (e.g. for 30 
min) of SPC or HSPC liposome concentrations (up to 150 
mg/ml) has been reported not to cause any physiological 
abnormalities in the lungs of sheep  [25] . This dose, how-
ever, should be considered taking into account that dose-
related toxicity can be different for different phospholip-
ids. Many studies using human volunteers have estab-
lished the safety of liposomes for inhalation  [17, 25–27] . 
Arikace ®  is a novel anti-pseudomonal liposome formula-
tion that has shown safety and suitability for inhalation by 

human cystic fibrosis subjects in phase II clinical trials 
 [17] . In the context of pulmonary drug delivery, safety and 
controlled release are ideal for liposomes incorporating 
cytotoxic agents such as anticancer drugs. This is because 
no toxic effects will be elicited by the carrier (i.e. lipo-
somes) and the action is aimed to be confined to the lungs.

  Many studies have also shown that drugs entrapped in 
liposomes are safe for pulmonary delivery since liposomes 
can control the mode of drug release, hence reducing the 
drug amount available to exert adverse effects  [7–9] . The 
safety of drugs in liposome formulations given via inhala-
tion is not confined to anticancer agents. Genes, antimi-
crobial agents and antidiabetic drugs are also safe when 
administered in liposome formulations. For instance, no 
adverse effects on the histology or function of the lungs 
were reported when liposome-pDNA complexes were de-
livered to the respiratory tract  [26] . Steroids are common-
ly and widely used as anti-inflammatory agents in prophy-
laxis against asthma. Investigations have demonstrated 
that inhaled liposome-entrapped beclometasone was well 
tolerated when given in therapeutic doses to humans  [27] . 
Furthermore, nebulisation of dilauroylphosphatidylcho-
line-ciclosporin A (CA) did not produce tracheal irritation 
or abnormality in human lung functions  [28] . Studies have 
also shown that inhaled interleukin-2 (IL-2) liposomes 
were non-toxic to the pulmonary system of dogs  [29]  and 
humans  [30, 31] . In addition, phase II clinical trials have 
shown that the delivery of the anticancer 9-nitrocampto-
thecin (9-NC) via a medical nebuliser was safe in lung can-
cer patients  [32] . Using experimental animals, liposomal 
insulin formulations delivered to the lung via nebulisation 
have been reported to be safe, and no histological changes 
in the respiratory tract were observed  [33] . Furthermore, 
the nebulisation of all-trans-retinoic acid-liposomes re-
sulted in no toxicity in the lungs of mice  [34] . Also, anti-
microbial agents in liposomes given via inhalation have 
been shown to be safe in humans  [35] . For example, the 
inhalation of Abelcet (lipid complex amphotericin B) is 
safe and efficacious as prophylaxis against fungal infec-
tions that may occur after lung transplantation  [36, 37] .

  Devices Used for the Pulmonary Delivery of 

Liposomes 

 There are four types of inhalation device: pressurised 
metered-dose inhalers (pMDIs), dry powder inhalers 
(DPIs), soft mist inhalers (SMIs) and medical nebulisers. 
All these devices have been investigated for the delivery 
of liposomes.
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  Pressurised Metered-Dose Inhalers 
 pMDIs are robust canisters enclosing a drug dissolved 

or dispersed in liquefied propellants. Actuation of the de-
vice with co-ordinated inspiration results in the release of 
a precise dose  [11, 16] . The propellant rapidly evaporates 
owing to its high vapour pressure, leaving an accurate 
dose of the aerosolised drug particles to be inhaled by the 
patient. pMDI devices have traditionally been used in the 
treatment of asthma since the 1950s, but serious concerns 
have been raised about using them both clinically, because 
of the limited dose reaching the deep lung, and environ-
mentally, because propellants like chlorofluorocarbons 
(CFCs) have been reported to be depleting the ozone lay-
er  [11, 38] . An approach to delivering liposomes using 
pMDIs was reported by dissolving the phospholipid in 
CFC propellant in which drugs like salbutamol and cosol-
vents like ethanol are included. Actuation of the device in 
front of an impinger resulted in the deposition of a drug 
and lipid mixture and subsequent hydration and forma-
tion of liposomes within the impinger  [38, 39] . The ozone-
depleting effect of CFCs necessitated the introduction of 
the safe alternative propellant family, namely hydrofluo-
roalkanes, in which phospholipids have very limited solu-
bility. Thus, pMDI formulations were made by dispersing 
phospholipids in PEG-phospholipids followed by the de-
livery of the subsequent in situ formation of liposomes in 
the aqueous environment of the impinger  [40] . Issues of 
complicated formulation, poor FPF of the aerosolised 
dose and stability are all major limitations in the develop-
ment of liposomal formulations for delivery via pMDIs. 
The inclusion of cosolvents in phospholipid formulations 
may compromise deposition in FPF  [39, 40] .

  Dry Powder Inhalers 
 DPIs are breath actuated, thus the problem of co-ordi-

nated inspiration with actuation, as in the case of pMDIs, 
is avoided. The delivery of liposomes using DPIs has been 
investigated using a range of drying technologies such as 
spray drying, freeze drying, spray freeze drying or air jet 
micronisation. For example, the spray drying of drugs in 
liposome formulations has been shown to be appropriate 
for manufacturing particles with a small aerodynamic 
size (i.e. high FPF), and it was presumed that the rehydra-
tion of liposomes may take place following the deposition 
of the powder in the aqueous environment of the lung 
 [41–43] . An approach to gene therapy was introduced by 
spray drying a lactose solution incorporating lipid-poly-
cation-pDNA, resulting in an enhanced transfection 
compared to formulation prior to spray drying  [44] . More 
recently, proliposomes have been studied for delivery via 

DPIs. In this context, proliposomes are powdered phos-
pholipid formulations that can generate liposomes when 
they come into contact with an aqueous environment  [45, 
46] . Inhalable proliposome formulations have been made 
by spray drying an ethanolic solution of phospholipid 
 [47, 48] . The FPF was reported to reach up to 35% of the 
formulation and it is presumed that hydration of the pow-
dered lipid particles would happen in the aqueous milieu 
of the lung following inhalation of the proliposome pow-
der  [48] . 

  Soft Mist Inhalers 
 SMIs are hand-held propellant-free metered dose in-

halation devices that generate slow-moving aqueous 
aerosols for deep-lung deposition  [49–51] . An example is 
the AERx ®  (Aradigm Corp., Novo Nordisk, Hayward, 
Calif., USA), an SMI that is able to deliver liposome-DNA 
complexes in respirable aerosols  [52, 53] . Large doses are 
needed for the treatment of many diseases in the lung (e.g. 
cancers, infectious diseases, etc.); however, all the afore-
mentioned devices (i.e. pMDIs, DPIs and SMIs) can de-
liver only small amounts of aerosol, and thus are more 
appropriate for treating diseases that require small doses 
of the therapeutic agent (e.g. asthma).

  Medical Nebulisers 
 Compared to other inhalation devices, nebulisers can 

generate large volumes of ‘respirable’ aerosol, with no 
need to perform drying procedures, as in the case of DPIs, 
or involve propellants, as in case of pMDIs  [16, 50, 54] . 
Nebulisers are the most commonly used inhalation de-
vices for the delivery of liposomes  [7–9, 55, 56] . There are 
three types of nebuliser: air jet, ultrasonic and vibrating 
mesh. Using many types of formulations, the air jet type 
is the best established nebuliser for the delivery of lipo-
somes  [7, 8, 32, 57–60] . Whilst the ultrasonic nebuliser 
has generally been shown to be the least suitable for de-
livering liposomes  [58, 60, 61] , the vibrating mesh nebu-
liser demonstrated an excellent suitability of delivering 
vesicles in FPF  [58, 60, 62, 63] , including large liposomes 
and liposome aggregates (median size around 50 μm; 
 fig. 1 )  [58] . This suggests that the mesh nebuliser was ca-
pable of breaking the aggregates into discrete vesicles 
suitable for aerosolisation and subsequent inhalation. 

  The air jet nebuliser employs compressed gas passing 
through a narrow ‘venturi’ nozzle at the bottom of the 
device to convert the liquid medication into ‘respirable’ 
aerosol droplets  [16, 50] . By contrast, the ultrasonic neb-
uliser utilises ultrasound waves generated via a piezoelec-
tric crystal vibrating at a high frequency to convert the 
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liquid into aerosols  [50, 64] . However, the vibrating mesh 
nebuliser operates using a different principle, by utilising 
a vibrational element that transmits the vibrations to a 
perforated plate with multiple micro-sized apertures to 
push the medication fluid through and generate slow-
moving aerosol droplets with a narrow size distribution 
 [50, 63, 65] . 

  Stability of Liposomes during Nebulisation 

 A major issue in nebulising liposomes is the stability 
of vesicles during nebulisation. In principle, shearing 
provided by a nebuliser to convert liposome dispersions 
into fine aerosol droplets may result in vesicle fragmenta-
tion, with concomitant loss of the originally entrapped 
hydrophilic material. To minimise the instability of lipo-
somes and loss of the entrapped hydrophilic drug, a range 
of strategies have been used. It was shown that vibrating 
mesh nebulisers customised with large mesh apertures 
are less disruptive to liposomes than jet nebulisers, espe-
cially when the vesicle size was optimised to be small (e.g. 
around 1 μm) prior to nebulisation  [62] . Furthermore, 
the inclusion of cholesterol  [9, 62, 66]  or high-phase tran-
sition phospholipids  [9, 67]  in liposome formulations has 
improved the stability of vesicles during nebulisation. 

Arikace ®  is a liposomal amikacin currently at an ad-
vanced development stage for the treatment of  Pseudo-
monas aeruginosa  biofilms in the lung  [15] . This formula-
tion is made using cholesterol-enriched dipalmitoylphos-
phatidylcholine (high-phase transition phospholipid) 
liposomes with a size of around 300 nm for inhalation 
using a Pari e-Flow vibrating mesh nebuliser  [9] , agreeing 
with the aforementioned investigations relating to the 
formulation composition, vesicle size and aerosolisation 
mechanism for the provision of stable liposomes with 
controlled release properties in the lung. 

  Unlike hydrophilic drugs, many studies have demon-
strated that the issue of the physical stability of liposomes 
is less significant when the entrapped drug is hydropho-
bic  [8, 32, 68–71] . Liposome-entrapped beclomethasone 
dipropionate showed a prolonged residence in the lung of 
human volunteers, although vesicles underwent a marked 
size reduction during jet nebulisation  [8] , thereby sug-
gesting that no marked leakage of the drug had occurred. 
Pulmaquin ®  is a liposomal ciprofloxacin formulation 
that is currently in an advanced stage of development. 

  The success of PEGylated liposomes (e.g. Doxil ® ) at 
evading macrophages after parenteral injection leads to a 
prolonged circulation in the blood  [72, 73] , which opened 
a means of investigating the effect of liposome surface coat-
ing on vesicle retention by the lung following pulmonary 
administration. It has been reported that budesonide en-
capsulated in PEGylated liposomes has a prolonged thera-
peutic effect in the lung of experimental animals, meaning 
it can be equivalent to the standard daily dose of the con-
ventional budesonide formulation  [74, 75] . However, in a 
recent investigation it has been shown that the polymer 
coating of liposomes may reduce vesicle bilayer stability 
during nebulisation and promote drug leakage  [60] .

  The potential of liposomes for pulmonary inhalation 
has been explored in various therapeutic applications, 
such as the treatment of asthma, lung injuries, lung infec-
tions, cystic fibrosis, diabetes and cancers, etc. In this re-
view, focus is given to the potential of inhalable liposome 
formulations in the treatment of lung cancers, and we re-
port our critical views on the current status and possible 
future research directions in this field.

  Liposomal Drug Delivery Systems for the Treatment 

of Lung Cancers  

 More than 80% of lung cancers do not fully respond to 
chemotherapy  [76] . One of the limitations is tumour re-
sistance to cytotoxic agents currently used in the treat-
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  Fig. 1.  Nebulisation of liposomes in front of a two-stage impinger 
using Pari LC Plus (air jet), Liberty (ultrasonic) and Omron Mi-
croAir (vibrating mesh) nebulisers. The liposomes were generated 
in situ within nebulisers upon the hydration of particulate-based 
proliposomes made by coating sucrose particles with an equimolar 
ratio of SPC and cholesterol. The proportion of phospholipid de-
posited in the lower stage of the impinger was higher using the jet 
and mesh nebulisers compared to the ultrasonic device, which ac-
cumulated around 96% of the lipid into the nebuliser reservoir as 
part of the residual volume. Adapted from Elhissi and Taylor  [58] .  
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ment of lung cancer ( table 1 )  [77] . An approach to over-
come the acquired resistance is to give chemotherapeutic 
drugs in high doses, thus causing toxicity to healthy or-
gans. The limited clinical outcomes and high adverse ef-
fect profile of current lung cancer treatments made the 
development of alternative drug delivery systems of a 
high priority  [78] . 

  Liposomal systems may demonstrate a promising ap-
proach for the delivery of anticancer medication via inhala-
tion and could significantly improve the chemotherapy ef-
ficacy in lung cancer patients. Many studies have explored 
the potential of pulmonary delivery of anticancer drugs us-
ing liposomes; these studies are summarised in  table 2 . 

  For anticancer therapy to be regarded as beneficial, the 
drug concentration reaching the tumour in the lung 
should be high in order to elicit a therapeutic effect. Many 
studies have indicated that drug concentrations at the tu-
mour site have been found to be low after systemic che-
motherapy  [79–82] . This highlights the importance of lo-
cal drug delivery at the cancer site by directly delivering 
the drug to the lung in case of pulmonary cancers. Kosh-
kina et al.  [80]  evaluated the pharmacokinetics and thera-

peutic efficacy of liposomal PTX after intravenous and 
aerosol administration at comparative doses in mice  [80] . 
They reported that PTX had a slower clearance and high-
er concentrations in the lungs following pulmonary de-
livery compared to administration via the intravenous 
route ( fig. 2 ). The greater therapeutic effect shown with 
aerosol therapy can be attributed to the high concentra-
tions of the drug reaching the tumour site owing to the 
greater pulmonary depositing of the anticancer mole-
cules following aerosolisation  [80] .

  Garbuzenko et al.  [81]  investigated the effectiveness of 
the pulmonary liposomal delivery of doxorubicin (DOX) 
in mice after intratracheal administration compared to 
intravenous delivery. The intratracheal administration of 
DOX was much more efficient at limiting the growth of 
lung cancer and had limited side effects on healthy organs 
when compared to the systemic route. In terms of the 
comparison between aerosol and intratracheal delivery, 
Hitzman et al.  [82]  found that the release profiles of lipo-
somal 5-fluorouracil reaching the lower respiratory tract 
of hamsters were almost identical when the same lipo-
some formulation was used. 

 Table 1.  Treatment plan for lung cancer patients; adapted from NICE, 2011 [77]

Lung cancer Stage Treatment Type of chemotherapy Regimen 

NSCLC Stage 1 Lobectomy or pneumonectomy
Radiotherapy1

– –

Stage 2 Lobectomy or pneumonectomy
Radiotherapy1

Chemotherapy2

Cisplatin-based 
combination 
chemotherapy

Cisplatin plus single third-generation drug 
(DOX, gemcitabine, PTX or vinorelbine)

Stage 3 Pneumonectomy
Chemotherapy2, 3

Radiotherapy4

Platinum-based 
combination 
chemotherapy

Platinum drug (carboplatin or cisplatin) 
plus single third-generation drug (DOX, 
gemcitabine, PTX or vinorelbine)

Stage 4 Chemotherapy Platinum-based 
combination 
chemotherapy

Platinum drug (carboplatin or cisplatin) 
plus single third-generation drug (DOX, 
gemcitabine, PTX or vinorelbine)

SCLC Limited stage
disease

Lobectomy followed by radio-
therapy and chemotherapy

Cisplatin-based 
combination 
chemotherapy

Cisplatin plus single third-generation drug 
(DOX, gemcitabine, PTX or vinorelbine)

Extensive
stage disease

Chemotherapy
Radiotherapy to the brain5

Platinum-based 
combination 
chemotherapy

Platinum drug (carboplatin or cisplatin) 
plus single third-generation drug (DOX, 
gemcitabine, PTX or vinorelbine)

 NSCLC = Non-small cell lung cancer; SCLC = small cell lung cancer. 
1 Radiotherapy can be offered instead of surgery if any health problems exist. 
2 Cisplatin-based combination chemotherapy can be offered if cancer is completely removed in order to lower the risk of the cancer 

coming back. 
3 If any cancer cells are found in the lymph nodes during surgery, chemotherapy can be offered. 
4 Radiotherapy or combined radiotherapy and chemotherapy can be offered instead of surgery if any health problems exist. 
5 Cancer has usually spread to the brain and radiotherapy can be offered for people whose lung cancer shrinks with chemotherapy 

treatment.

D
ow

nl
oa

de
d 

by
: 

19
3.

61
.2

40
.6

1 
- 

8/
30

/2
01

7 
11

:2
6:

16
 A

M



 Rudokas/Najlah/Alhnan/Elhissi

 

Med Princ Pract 2016;25(suppl 2):60–72
DOI: 10.1159/000445116

66

Therapeutic
agent 

Delivery device Type of 
liposome 
used

Subject Study 
phase

Adverse effects Dose and regiment Monitoring of tumour Ref.

Cisplatin PARI LC Star jet 
nebuliser

DPPC Human Phase I Nausea, vomiting, 
dyspnoea, fatigue and 
hoarseness
No DLT reached

Escalation from
1.5 mg/m2 until
DLT for 1 – 4 consecutive 
days every 1 – 3 weeks

Clinical examination, standard 
blood and urinary tests, PFT, 
CXR and CT of the thorax

86

9-NC AeroMist nebuliser DLPC Human Phase I/
II

Nausea, vomiting, cough, 
bronchial irritation, fatigue, 
anaemia, neutropenia
DLT reversible grade 3 or 4 
haematological toxicity, 
grade 2 neurotoxicity and 
grade 3 
non-myelosuppressive 
toxicity

0.25 – 1 mg/m2/day, 5 days 
per week for 8 weeks

Pulse oximeter readings daily, 
weekly CBC, monthly blood 
chemistry tests, and urine 
analysis. Tumour markers and a 
computer-assisted tomography 
scan of the chest were obtained at 
baseline and before each course. 
Simple spirometry, DLCO and 
lung volumes before and after 
first aerosol exposure

32, 
108

IL-2 Puritan Bennett twin 
jet nebuliser

DMPC Human Phase I No significant adverse 
effects 

1.5, 3.0 and 6.0 × 106 IU of 
IL-2 three times a day for 
8 – 84 days 

Physical examination, CXR, CBC, 
electrolytes, BUN, creatinine, 
AST, ALP, bilirubin, LDH,
DLCO and PFT

31

IL-2 Puritan Bennet Twin 
Jet Nebuliser

DMPC Animal
(dogs)

– Mild cough immediately 
after aerosolisation 
treatments

1 × 106 IU of IL-2 twice 
daily for 15 days and then 
1 × 106 IU of IL-2 three 
times daily for 15 days or 
1 × 106 IU of IL-2 twice 
daily for 30 days

Physical examination, CBC, 
serum biochemistries (including 
concentration of albumin, total 
protein, ALT, ALP, AST, total 
bilirubin, BUN, creatinine, 
electrolytes) urinalyses, biopsy 

84

9-NC AeroTech II nebuliser 
flowing to mice in a 
nose-only exposure 
chamber 

DLPC Animal
(mice)

– Skin lesions, weight loss 0.1 – 1.0 mg/kg daily, 
5 days per week for 36 – 49 
days

Tumour size or volume measured 
by calipers

90

9-NC and 
polyethyleneimine-p53 
DNA (PEI-p53)

AeroTech II nebuliser DLPC Animal
(mice)

– Not recorded 0.5 mg/1 ml twice a week 
for 2 weeks and 2 mg 
plasmid/10 ml once a week 
for 2 weeks

Lung weight 76

9-NC AeroTech II nebuliser DLPC Animal
(mice)

– Not recorded 1- to 2-hour aerosol 
exposure 5 times weekly 
for 16 – 17 days
Total deposited dose 
2.3 – 3.7 mg/kg

Lung weight 89

9-NC AeroMist nebuliser DLPC Animal
(mice) 

– Not recorded 1- to 2-hour aerosol 
exposure 5 times weekly 
for 16 – 21 days
Total deposited dose
2.3 – 3.7 mg/kg

Lung weight 91

Vitamin E analogue 
(a-TEA) and 9-NC

AeroTech II nebuliser DLPC Animal
(mice) 

– Not recorded Treatment course was 7 
days per week for 3 weeks

Tumours were measured using 
calipers every other day

93

PTX AeroMist nebuliser DLPC Animal
(mice)

– Not recorded Total of 1.4 – 7.8 mg/kg of 
PTX were deposited in the 
lungs (dose regiment: 
3 times per week for 
3 weeks)

Lungs were resected and weighed 102

PTX together with 
cyclosporine A

AeroMist nebuliser DLPC Animal
(mice)

– Weight loss Total of 1.4 – 7.8 mg/kg of 
PTX and 1.1 – 6.1 mg/kg of 
CA were deposited in the 
lungs (dose regimen: 
3 times per week for 
3 weeks)

Lungs were resected and weighed 102

PTX AeroMist nebuliser DLPC Animal
(mice)

– Aggressiveness Total of 5 mg/kg during a 
30-min period were 
administered 

Lungs were resected and weighed 80, 
104

DOX Collison nebuliser 
connected to four-
port, nose-only 
exposure chambers

DLPC Animal
(mice)

– Alterations of normal 
pulmonary parenchyma 
characterised by alveolar 
haemorrhage

2.5 mg/kg for single 
inhalation every third day 
for 24 days

Tumour growth was monitored 
by bioluminescent IVIS 
(Xenogen) and ultrasound Vevo 
2100 (VisualSonics) imaging 
systems

104

 Table 2.  In vivo studies of aerosolised liposomal formulations and their parameters in animals and humans for treating lung cancer
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  IL-2 has demonstrated an antitumour activity and has 
been investigated as a potential future therapy of cancer 
 [83] . A few studies of IL-2 incorporation into liposomes 
have been performed, demonstrating promising results 
 [31, 84] . Liposomal inhalation of IL-2 resulted in a 5-fold 
increase in bronchoalveolar lavage leukocytes in the lungs 
compared to free IL-2 given in traditional solutions  [84] . 
This suggests significant activation of the immune system 
in the lungs with the potential for improving disease con-

trol. Pulmonary administration of liposomes has also 
been proven to be effective and safe in dogs with primary 
lung carcinomas  [29] . Phase I studies have shown that 
IL-2 liposomes are well tolerated and antitumour activity 
has been reported  [31] . No published reports about IL-2 
liposomes have progressed to phase II trials. Unlike many 
other diseases, cancer is treated with a combination of dif-
ferent strategies such as chemotherapy (systemic or oral), 
radiotherapy and surgical intervention. Thus, it is possi-
ble, in the view of the authors of this report, that the ef-
ficacy of IL-2 liposomes did not warrant further develop-
ment when compared to the benefit gained by other es-
tablished anticancer treatments. In a recent work, it has 
been reported that aerosolised IL-2 may offer prophylax-
is against cancer recurrence in patients who had pulmo-
nary melanoma metastasectomy  [85] . Thus, taking into 
account these positive findings, in addition to the advanc-
es in inhalation device technology which maximises drug 
retention in liposomes during aerosol generation, it is an-
ticipated that clinical trials of IL-2 may take new direc-
tions towards the use of liposome formulations of this 
drug in prophylaxis against the recurrence of cancer fol-
lowing surgical removal of the tumour. 

  Another chemotherapeutic agent, cisplatin, is one of 
the most commonly used drugs in current lung cancer 
treatments ( table 1 ). However, its dose-limiting toxicity 
(DLT) in systemic administration is associated with 
nephrotoxicity, peripheral neuropathy and ototoxicity. 

Therapeutic
agent 

Delivery device Type of 
liposome 
used

Subject Study 
phase

Adverse effects Dose and regiment Monitoring of tumour Ref.

DOX combined with 
antisense 
oligonucleotides

Collison nebuliser 
connected to 
four-port, nose-only 
exposure chambers

DLPC Animal
(mice)

– None 2.5 mg/kg for single 
inhalation of DOX with 
0.125 mg/kg antisense 
oligonucleotides every 
third day for 24 days 

Tumour growth was monitored 
by bioluminescent
IVIS (Xenogen) and ultrasound 
Vevo 2100 (VisualSonics) 
imaging systems

104

Camptothecin Aerotech II nebuliser DLPC Animal
(mice)

– Not recorded 81 μg/kg inhalation for 30 
min only

Lungs were resected and weighted 109

DOX-liposomes Collison jet nebuliser EPC-
Chol, 
DSPE-
PEG

Animal
(mice)

– Very limited compared to 
free drug formulation

14 μg/kg inhalation in 
combination with 2.5 mg/
kg i.v. injection. This was 
compared with 
intravenous injection alone  

Apoptosis induction in different 
organs (the lungs with tumour, 
liver, kidney, spleen, heart and 
brain) was measured using Cell
Death Plus ELISA kit

106

DOX encapsulation in 
transferrin conjugated 
PEG liposomes

Intracorporeal 
nebulising catheter

Animal
(athymic
Rowett
nude rat)

– Not recorded 0.2 – 0.4 mg/kg Animal survival rate 107

 5-FU = 5-Fluorouracil; CXR = chest X-ray; PFT = pulmonary function test; CBC = complete blood count; BUN = blood urea nitrogen; AST = aspartate transaminase; ALP = alka-
line phosphatase; ALT = alanine transaminase; LDH = lactate dehydrogenase; DLCO = diffusing capacity of the lung for carbon monoxide; LNP = lipid-coated nanoparticles; DPPC = 
dipalmitoylphosphatidylcholine; DLPC = dilauroylphosphatidylcholine; DMPC = dimyristoylphosphatidylcholine; EPC-Chol = egg phosphatidylcholine with cholesterol; DSPE-
PEG = pegylated distearoyl phosphatidylethanolamine.

Table 2 (continued)
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  Fig. 2.  Pulmonary pharmacokinetics of PTX administered by aero-
sol (⚪) or intravenously (⚫). Mice inhaled the drug for 30 min, 
starting at time 0 (total deposited dose 5 mg PTX/kg), or a bolus 
intravenous injection with 5 mg of PTX/kg was given into the tail 
vein at time 0  [80] . 
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Phase I studies using liposomes have shown that pharma-
cokinetics, safety and efficacy at the maximum tolerated 
dose of aerosolised liposomal cisplatin in primary or met-
astatic lung carcinoma were possible to achieve  [86] . The 
side effects were mild, and no DLT was observed. The 
maximum delivered dose and results showed the stability 
of the disease in 12 out of 16 patients. Treatment was con-
sidered to be feasible and safe compared to intravenous 
delivery of the drug. However, the main limitation of the 
study was the low deposition of the drug in the target area 
of the respiratory system. This might be attributed to the 
fact that aerosol delivery of cisplatin was not performed 
using a 5% concentration of CO 2  in the nebuliser as this 
was reported in another study to increase pulmonary de-
position  [87] . Liposomal cisplatin (SLIT Cisplatin) was 
developed by Transave Inc. (they also developed the lipo-
somal amikacin formulation known as Arikace). To the 
best knowledge of the authors of this report, when Trans-
ave Inc. was acquired by Insmed in 2010, Arikace was 
taken for further advanced stages of development while 
SLIT Cisplatin was ‘handed over’ to Eleison Pharmaceu-
ticals LLC for further clinical investigations. 

  Physiochemical properties of 9-NC and its analogue 
camptothecin indicate poor bioavailability, poor solubil-
ity and DLT, which all influence the formulation design 
 [88] . These limiting factors may affect the clinical use of 
9-NC via parenteral administration. Therefore, the use of 
aerosolised liposomal 9-NC formulations has been ex-
plored in a range of studies using animal models and clin-
ical trials, demonstrating improved efficacy with reduced 
toxicity. On the basis of previous studies in animal mod-
els with lung tumour xenografts, a number of publica-
tions have reported aerosolised liposomal 9-NC to be 
clinically effective in reducing tumour size, with de-
creased toxicity profiles  [89–91] . This offers beneficial ef-
fects of local aerosol administration with concentrations 
similar to parenteral dosing while decreasing the side ef-
fect profile compared to the systemic administration of 
9-NC. Phase I clinical trials of aerosolised liposomal 
9-NC was performed in 6 patients with primary lung can-
cer, where 1 patient had partial remission and 3 patients 
had stabilisation of their tumours  [32] . A starting dose of 
13.3 μg/kg/day was well tolerated by all patients and was 
recommended for phase II trials. The study also conclud-
ed rapid systemic absorption and a low side effect profile. 
DLT was reported to be relatively mild such as pharyngi-
tis with other side effects, including nausea, vomiting, fa-
tigue and cough. Additionally, no haematological toxicity 
was reported in contrast to systemic 9-NC delivery ac-
cording to the studies conducted by Tedesco et al.  [92] . 

Liposomal aerosols caused 9-NC to deposit in high con-
centrations which were found to be 4–10 times greater in 
bronchoalveolar lavage fluid than in plasma, suggesting a 
localised drug dose in the lung following pulmonary ad-
ministration. 

  Overall, the antitumour effect of liposomal 9-NC has 
demonstrated promising results. Additionally, other 
studies were performed by incorporating 9-NC with the 
vitamin E analogue in liposome formulations to inhibit 
lung cancer growth  [93] . This combination has increased 
drug bioavailability and inhibited the multidrug-resistant 
transporter P-glycoprotein  [93] . Vitamin E co-adminis-
tration reduced metastases in the sites that were not di-
rectly targeted by the aerosol. Thus, drug combinations 
in inhaled liposome formulations can significantly in-
crease tumour cell death by apoptosis, and may elicit few-
er side effects compared to single drug treatments. Stud-
ies have hypothesised that, in the context of the pulmo-
nary inhalation of liposomes, lower doses of agents given 
in combination therapy had fewer side effects, which 
might be attributed to different mechanisms of actions 
for different anticancer drugs  [76, 93] . Phase I studies of 
9-NC liposomes demonstrated promising findings  [92] ; 
however, further development depends on an interplay of 
factors, including formulation toxicity compared to other 
established treatment strategies. 

  Due to the unique anticancer mechanism of action of 
PTX, liposomal formulation has been studied in mice. 
One study proved that bioavailability (assessed by the 
area under the curve) in the aerosol group was 26-fold 
higher than that using the intravenous route while PTX 
clearance was slower  [80] . The increased deposition of 
the inhaled drug might be attributed to the addition of 5% 
CO 2  as a composition of the compressed gas used for jet 
nebulisation. However, studies have reported increased 
aggressiveness in mice behaviour as a result of therapy 
which can be explained by PTX-induced neurological 
toxicity  [94] . Although high drug concentrations in the 
lung were reached, complete tumour growth arrest was 
not achieved in animal models, possibly suggesting that 
treatment can be improved with combination therapy or 
designing aerosol-generating mechanisms that are more 
efficient in the future. Inhalation device customisation 
and formulation property manipulation to generate 
droplets with optimum size and aerodynamic properties 
can be the next step to deliver targeted aerosols to certain 
regions of the lung  [95, 96] . The pathological status of the 
lung can be an important barrier against the proper de-
position of liposomal aerosols in the human respiratory 
tract and may promote dose clearance. For example, it has 
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been reported that in severely asthmatic patients, lipo-
somes may have a limited deposition in the peripheral 
airways. Thus, inhalation of long-acting B2 agonists (e.g. 
formeterol) may enhance the deposition of subsequently 
inhaled liposomes  [97, 98] . Thus, deposition and clear-
ance profile between lung cancer patients and healthy hu-
mans might be different and it is worth to investigate 
whether the cancerous tissue in the lung may constitute a 
barrier towards the effective deposition of the inhaled an-
ticancer liposomes. Furthermore, during storage, many 
hydrophobic drugs (e.g. steroids) tend to leak and form 
crystals on the surface of the liposome, due to their poor 
steric fit into the bilayers  [99, 100] . We have found this to 
be the case also for PTX [unpubl. data]. Stress induced by 
freeze drying may promote the leakage of PTX from lipo-
somes  [101] . Thus, further studies should evaluate wheth-
er nebulisation-induced stress on PTX liposomes was re-
sponsible for leakage of the drug and subsequent adverse 
effects, and limited the therapeutic benefit of PTX follow-
ing pulmonary delivery to animals.

  Koshkina et al.  [102]  proposed the potential of co-
administered PTX and CA in one liposomal formula-
tion. CA has a high affinity for P-glycoprotein and can 
prevent the active elimination of other drugs from tu-
mour cells  [103] . Similar effects were seen earlier in 
studies with vitamin E analogues. The results proved 
that CA inhalation before PTX administration and con-
tinuous inhalation during PTX treatment significantly 
reduced the number and size of tumour lesions when 
compared to groups receiving CA and PTX simultane-
ously or PTX alone. Garbuzenko et al.  [104]  evaluated 
the liposomal incorporation of DOX and antisense oli-
gonucleotides targeting MRP1 and BCL2. MRP1 and 
BCL2 protein expression is related to the cellular resis-
tance of tumour cells  [105] . That study concluded that 
combination therapy induced apoptotic effect and sig-
nificantly suppressed the growth of lung cancer when 
compared to individual components applied separately. 
This can be attributed to the downregulation of proteins 
caused by antisense oligonucleotides. Recently, it has 
been concluded that lipid-based nanocarriers such as li-
posomes demonstrate a higher accumulation and longer 
retention time than non-lipid-based nanocarriers fol-
lowing inhalation using DOX as a model anticancer 
drug  [106] . Thus, liposomes given via inhalation in com-
bination with intravenous doses may offer an enhanced 
therapeutic outcome and reduced toxicity to non-can-
cerous cells, as demonstrated using animal models  [106] . 
Interestingly, it has been reported that even empty lipo-
somes may enhance the survival of animals following 

nebulisation therapy, which was attributed to a second-
ary cytotoxicity through the stimulation of lung macro-
phages  [107] .

  Conclusion  

 Liposomal drug delivery systems have been shown/re-
ported to improve the administration of chemotherapeu-
tic agents in the treatment of lung cancer and prevention 
of metastases when compared to parenteral administra-
tion. The major side effect profile and toxicity of cyto-
toxic agents were reduced by delivering therapeutic con-
centrations locally to the lung. Although further studies 
are required to improve the efficacy of liposomal aerosol 
chemotherapeutics, the unique targeting options to the 
lungs clearly shows potential for the combination of ac-
tive ingredients over the single drug treatment approach. 
In the opinion of the authors of this report the success of 
liposome inhalation for the treatment of cancer will be 
dependent on the successful design of aerosol delivery de-
vices and targeted formulations that can reach the affect-
ed lung areas efficiently to deposit therapeutic drug doses 
with minimal exposure of healthy tissues to the antican-
cer agent. Furthermore, the successful development of in-
halable anticancer formulations using liposome carriers 
will depend on the balance of benefit and risk compared 
to the other established treatment strategies. The formu-
lation stability, nebulisation mechanism, targetability of 
aerosol to the cancer cells and minimised deposition in 
the oropharyngeal region are all factors that should be 
considered in the development of inhalable anticancer li-
posomes.
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