

Development and Application of Real-time and

Interactive Software for Complex System

by

Hamidreza Soltani

A Thesis submitted in partial fulfilment for the requirements for the degree of Doctor of

Philosophy at the University of Central Lancashire

October 2016

I declare that while registered as a candidate for the research degree, I have not been a

registered candidate or enrolled student for another award of the University or other

academic or professional institution.

I declare that no material contained in the thesis has been used in any other submission

for an academic award and is solely my own work.

Signature of Candidate Hamidreza Soltani ______________________________________

Type of Award Doctor of Philosophy_____________________________________

School Physical Sciences and Computing___________________________

i

Abstract

Soft materials have attracted considerable interest in recent years for predicting the

characteristics of phase separation and self-assembly in nanoscale structures. A popular method

for demonstrating and simulating the dynamic behaviour of particles (e.g. particle tracking) and

to consider effects of simulation parameters is cell dynamic simulation (CDS). This is a cellular

computerisation technique that can be used to investigate different aspects of morphological

topographies of soft material systems. The acquisition of quantitative data from particles is a

critical requirement in order to obtain a better understanding and of characterising their dynamic

behaviour. To achieve this objective particle tracking methods considering quantitative data and

focusing on different properties and components of particles is essential.

 Despite the availability of various types of particle tracking used in experimental work, there

is no method available to consider uniform computational data. In order to achieve accurate and

efficient computational results for cell dynamic simulation method and particle tracking, two

factors are essential: computing/calculating time-scale and simulation system size.

Consequently, finding available computing algorithms and resources such as sequential

algorithm for implementing a complex technique and achieving precise results is critical and

rather expensive. Therefore, it is highly desirable to consider a parallel algorithm and

programming model to solve time-consuming and massive computational processing issues.

Hence, the gaps between the experimental and computational works and solving time

consuming for expensive computational calculations need to be filled in order to investigate a

uniform computational technique for particle tracking and significant enhancements in speed

and execution times.

 The work presented in this thesis details a new particle tracking method for integrating

diblock copolymers in the form of spheres with a shear flow and a novel designed GPU-based

parallel acceleration approach to cell dynamic simulation (CDS). In addition, the evaluation of

parallel models and architectures (CPUs and GPUs) utilising the mixtures of application

program interface, OpenMP and programming model, CUDA were developed. Finally, this

study presents the performance enhancements achieved with GPU-CUDA of approximately ~2

times faster than multi-threading implementation and 13~14 times quicker than optimised

sequential processing for the CDS computations/workloads respectively.

ii

Contents

Abstract ... i

List of Figures ...v

List of Tables .. ix

Acknowledgements .. xi

Research Output ... xii

Nomenclature ... xiii

Greek Letters .. xiv

CUDA Terminology ... xiv

Abbreviations ...xv

1 Introduction ..1

1.1 Motivation ..3

1.2 Original Contributions in this Thesis ...4

1.3 Overview of the Thesis ..6

2 Cell Dynamic Simulation ...7

2.1 Benchmark Description..8

2.2 Cell Dynamic Method ..10

2.3 Simulation Results ...13

2.4 Summary ..18

3 Multiple Particle Tracking ..19

3.1 Method and Design ..22

3.2 Computational Algorithm ..23

3.2.1 Particle Detection ...24

3.2.2 Calculation of Centre of Mass ...26

3.2.3 Tracking Next Particle ...31

3.3 Benchmark Results ..34

3.3.1 Segmentation Results ...34

3.3.2 Benchmark Results for Detecting and Calculating COMs...................................35

3.3.3 Results of Multiple Particle Tracking ..36

iii

3.4 Flowchart of Computational Algorithm for Detecting and Tracking40

3.5 Summary ..42

4 Performance Analysis and Computational Throughput ..43

4.1 Benchmarking ..43

4.2 Visual Profiling ..44

4.3 Code Optimisation ...45

4.4 Performance Tuning ...46

4.5 Summary ..49

5 Parallel Computing and Programming Model ..50

5.1 Parallel Terminology ...54

5.2 Flynn’s Taxonomy for Parallel Computing ...55

5.3 Parallel Programming Model ...57

5.3.1 SIMD/Vectorisation ...59

5.3.2 Multi-Core – Multithreading ..60

5.4 Parallel Computer Memory Architecture ...62

5.4.1 Shared Memory Architecture ...62

5.4.2 Distributed Memory Architecture ..64

5.4.3 Hybrid Distributed – Shared Memory Architecture ...65

5.5 Summary ..66

6 GPU Many-Core Accelerator ...67

6.1 GPU Architecture Evolution ..67

6.2 GPU Memory Architecture ..71

6.3 Compute Unified Device Architecture (CUDA) Programming73

6.3.1 CUDA Thread Hierarchy Model ..73

6.3.2 CUDA Synchronisation ...77

6.3.3 Efficient Implementation of GPU Code ...78

6.4 Benchmark Platforms ...80

6.5 Summary ..82

7 Cell Dynamic Simulation on CPU and GPU..83

7.1 Optimisation of CPU Baseline Cell Dynamic Simulation ...83

7.1.1 Experimental Setup and Performance Results ...85

7.2 Cell Dynamic Simulation Method on Multi-Core CPU ...91

7.2.1 Parallel Algorithm of CDS for Multi-Threaded Systems.....................................92

7.2.2 Simulation Results and Performance Tuning ...95

7.3 Cell Dynamic Simulation on GPU ...106

iv

7.3.1 CUDA Parallel Algorithm of the CDS from Domain Level View107

7.3.2 Memory Arrangement and Layout ...108

7.3.3 Communication and Data Transfer ..113

7.3.4 Threads and Thread Blocks Distribution ...114

7.3.5 Heterogeneous CUDA-Based CDS Pseudo-Code from Logical Level View115

7.3.6 Performance Metrics and Results ..116

7.3.7 Kernel Fusion and Results of Performance Comparison127

7.4 Architecture Comparison ...134

7.5 Summary ..136

8 Conclusions and Future Work ..138

8.1 Cell Dynamic Simulation Method ...138

8.2 Multiple Particle Detection and Tracking ..139

8.3 Optimisations and Multi-Core Implementation of CDS ..140

8.4 Many-Core GPU Implementation of CDS ...141

8.5 Limitations of the Study ...143

8.6 Future Work ...145

Bibliography ...148

Appendix A ...162

The source-code of the implementation of the cell dynamics simulation method in C162

Appendix B ...165

The Whole Pseudo-Code of Particle Tracking Computational Algorithm165

v

List of Figures

1.1: Particle tracking model based on experimental work ...2

1.2: CPU and GPU architectures..3

1.3: Schematic example of AB diblock copolymer. ..4

2.1: Immiscible blends of AB diblock copolymer. ..8

2.2: Relative volume of polymer B and polymer A in the immiscible blend.9

2.3: Morphological change from spheres into lamellar under an external field (shear flow).9

2.4: Phase diagram of diblock copolymer morphologies under different shear flow   and

evolution of time steps:) Perfect Spheres,) Spheres,) ellipsoid and Cylinder.15

2.5: Spherical morphology produces by cell dynamic simulation method from initial stage (left)

to last stage (right) without shear flow. ..16

2.6: Spherical phase of block copolymer under a shear flow from initial time-step (left) to last

time-step (right). ..16

2.7: Polygon structure of diblock copolymer in time-step 300 with 0.005 shear flow rate.17

2.8: Polygon and pentagonal structures of diblock copolymer in time-step 300 with 0.001 shear

rate. ..17

2.9: Pentagonal and hexagonal structures of diblock copolymer with 0.0003 shear rate.17

3.1: Growing interest in particle tracking and cell tracking rates (%) in different research fields

over three decades ..19

3.2: Conceptual model developed in this study for particle detecting and tracking.22

3.3: Periodic Boundary Conditions (PBCs) ...25

3.4: Example of neighbouring search. ...26

3.5: Perfect spherical phase of detected particles under shear flow. ..27

3.6: Bilayer spherical phase of detected particles. ...27

3.7: Different forms of mixed particle. ..28

3.8: Coordinates of the COM of the mixed ascending particle. ...29

3.9: Coordinates of the COM of the mixed descending particle. ...29

3.10: COM of mixed horizontal particle. ...30

3.11: Examples of periodic boundary conditions in different positions.31

3.12: Frequency of data occurrence and movement of random particles in sequence time steps

in X direction. ..32

3.13: Frequency of data occurrence and movement of random particles in frequent time steps in

Y direction. ..33

3.14: Illustration of movement of particle in time steps. ...34

vi

3.15: Segmented outputs of CDS in spherical system. ..35

3.16: Second quarter part of detected particles. ...36

3.17: Trajectory of particle number 9 in different rounds. ...37

3.18: Entire trajectory of particle number 9. ..38

3.19: Number of detected particles. ...38

3.20: Concurrent dynamic movements of multiple particles. ..39

3.21: Division of mixed particle 134. ..39

3.22: Flowchart of the program..41

5.1: Example of serial execution. ...50

5.2: Example of parallel execution. ...51

5.3: Concurrent execution. ...51

5.4: Concurrent and parallel execution. ...51

5.5: Relations between program, concurrent program and parallel program.52

5.6: Instruction and data stream. ..55

5.7: SISD model, where CU refers to Control Unit and ALU is Arithmetic Logic Unit.56

5.8: SIMD Computation model. ...57

5.9: Relations between parallelism, hardware and software. ...58

5.10: Fork - Join model. ...61

5.11: Sections work sharing construct. ..61

5.12: Do/ For work sharing construct. ...61

5.13: Shared Memory - UMA model. ..62

5.14: Shared Memory - NUMA model. ...63

5.15: Distributed memory architecture. ...64

5.16: Hybrid architecture. ..65

6.1: NVIDIA GeForce 6 series architecture ...68

6.2: CPU and GPU architectures..68

6.3: Hyper-Q model of Kepler microarchitecture ..70

6.4: Dynamic parallelism model of Kepler microarchitecture ...70

6.5: GPU memory model. ..71

6.6: Example of two dimensional of CUDA hierarchy model ...74

6.7: GPU memory hierarchy: Threads share local memory and each thread has own register.

Threads within block share shared memory. Grids may access global memory.75

6.8: A 5×4 grid of 16×16 blocks to compute a 76×62 system size ..76

6.9: An example of threads synchronisation. ...77

6.10: Transparent scalability example for CUDA run-time system. ..78

vii

7.1: An example of Laplacian, where NN presents nearest neighbours, NNN next nearest

neighbours, and NNNN next-next nearest neighbours ..84

7.2: Comparison of stride and indirect addressing of d by using index array.85

7.3: Execution times for the CDS non-optimised baseline code based on the C and FORTRAN

with different system sizes 128128128  (a) 646464  (b). ...88

7.4: Execution times for the CDS optimised and non-optimised baseline implementations in

different time-steps ..89

7.5: Executions times for SSE4.2 and AVX implementations. ..90

7.6: Cell linked spatial decomposition scheme. ...93

7.7: Schematic of the OpenMP cell dynamic algorithm. ...94

7.8: Multi-threaded execution times for two different system sizes based on the first scenario.

 ...96

7.9: Speedup (left) and efficiency (right) for 646464  and 128128128  system sizes

based on the first scenario. ...96

7.10: Histogram of OpenMP threads usage for the calculation of first discrete Laplacian based

on the first scenario. ...98

7.11: Multi-threaded execution times for two different system sizes based on the second

scenario. ...98

7.12: Speedup (left) and efficiency (right) for 646464  and 128128128  system sizes

based on the second scenario. ..98

7.13: Histogram of OpenMP threads usage for the calculation of first discrete Laplacian based

on the second scenario. ..99

7.14: Multi-threaded execution times for two different system sizes based on the third scenario.

 ...100

7.15: Speedup  PnSS , for the third scenario. ...100

7.16: Histogram of OpenMP threads usage for the calculation of first discrete Laplacian. ...101

7.17: Parallel scaling results with Hyper-Threading enabled and disabled.102

7.18: Execution times (left) and speedup (right) for the original and AVX multi-threaded. ..103

7.19: Speedup for the original and AVX implementations based on the third scenario.103

7.20: Multi-threaded execution times for two different system sizes based on the functional

decomposition. ...104

7.21: Speedup for four decomposition strategies. ..105

7.22: CUDA threads model of spatial decomposition scheme based on the block-cell link

model. ..108

7.23: Row-major layout for two-dimensional array flatted into one-dimensional array.110

7.24: Difference between AoS and SoA. ...111

7.25: Aligned cache loading. ...112

7.26: Misaligned cache loading. ..112

viii

7.27: Allocating an array on memory of GPU (left) and copying data from CPU to GPU (right).

 ...113

7.28: Heterogeneous pseudo-code of CUDA-based CDS simulation.115

7.29: Occupancy of kernel-8 based on 1024 threads (left) and 12 register count (right).122

7.30: Occupancy of kernel-14 based on 1024 threads (left) and 20 register count (right).122

7.31: Occupancy of kernel-14 based on 128 threads (left) and 20 register count (right).124

7.32: Amount of shared memory and the warp occupancy for 1024 threads (left) and 128

threads (right) per block. ..125

7.33: GPU elapsed times for 646464  and 128128128  system sizes.126

7.34: Illustration of kernel fusion. ..128

7.35: Kernel fusions of CUDA-based CDS scheme. ...129

7.36: Pseudo-code of CUDA-based CDS simulation based on the kernel fusions.130

7.37: GPU elapsed times for 646464  and 128128128  system sizes with and without

kernel fusions. ..131

7.38: Speed comparison of single-core vs multi-core vs many-core GPU in 128128128  ,

arrows indicate diblock copolymer in time evolution. ...132

7.39: CUDA simulation result of spherical morphology under shear.134

7.40: Comparisons between original, AVX optimised, CPU multi-core and GPU many-core

implementations with total 100,000 time-steps. ..135

8.1: Example of FDM discretisation. ...144

ix

List of Tables

2.1: System parameters used in cell dynamic method for spherical morphology.14

2.2: Summary of morphology results for diblock copolymer under different shear flows.16

3.1: Computational algorithm for detecting and tracking particles. ...24

5.1: Example of Gustafson’s law speed-up. ...53

5.2: Flynn’s taxonomy types. ...56

5.3: Advantages and disadvantages of shared memory architecture. ...63

5.4: Advantages and disadvantages of distributed memory architecture.64

6.1: Hardware specifications of the CPU and the Memory. ..81

6.2: Hardware specifications of NVIDIA GPU. ..81

7.1: Specification and configuration of CPU for the CDS optimisation and non-optimisation

results. ..86

7.2: Number of clock cycles for each CDS calculation based on the 128 and 256 bit SIMD

instruction and speedup over a scalar implementation. ...87

7.3: Number of operations for each CDS calculation. ...87

7.4: Execution times in different time-steps based on the AVX instruction set.90

7.5: Simulation parameters in multi-threads implementation. ...95

7.6: CUDA specifications and compiler configurations for the CDS simulation.119

7.7: Comparison of CUDA execution configurations and performance metrics for 646464 

system size. ..120

7.8: Comparison of CUDA execution configurations and performance metrics for

128128128  system size. ..121

7.9: Comparison of GPU occupancy data based on different threads number.123

7.10: Comparison of CUDA execution configurations and performance metrics.123

7.11: Comparison of CUDA execution configurations and performance metrics with total 1256

shared memory usage and 253 registers. ...125

7.12: Kernels 8 and 9 execution configurations for 646464  system size.126

7.13: Comparison of CUDA execution configurations and performance metrics based on the

kernel fusions with total number of 125 registers. ...130

7.14: Comparison of CUDA execution configurations and performance metrics based on the

kernel fusions and shared memory usage with total 125 registers. ..131

7.15: Comparison of execution times and speedups for CPU implementation with total 100,000

time-steps. ..133

x

7.16: Comparison of execution times and speedups for CPU and GPU implementations with

total 100,000 time-steps. ..133

xi

Acknowledgements

I am indebted and grateful to many people for the support, encouragement, advice and

friendship that they have offered during my studies at the University of Central Lancashire. It is

a great pleasure to acknowledge them here.

I would like to first express my sincere gratitude to my supervisors, Dr Dung Ly and Professor

Waqar Ahmed for their vital guidance, patience and encouragement over the past years. Many

thanks for your confidence in me and your enthusiasm.

Thanks go to all my colleagues and friends at University of Central Lancashire and Preston city

for their help, and for reminding me that is fine to have fun occasionally.

My heartfelt and special gratitude to my other dear friends for their precious support and

motivation, which drives me to give my best: Dr Maneea Eizadi, Dr Marjan Famili, Dr Sandeep

Kadam and Mr Mouayed Rushdi, thanks to one and all.

I would like to acknowledge and thank my examiners Professor Dermot Brabazon and Dr

Monika Gamza for being my thesis examiners, and also extend my sincere words of gratitude to

Dr Tim Cawthorne, Mrs Fiona Mair, Dr Marco Pinna and Professor Derek Ward-Thompson for

all their professional help, advice and consideration.

I also wish to acknowledge the University of Central Lancashire for partial financial assistance

and support during my studies.

Last but not the least, a huge and special thanks to my family who mean world to me: my

parents, grandmother and my brothers (Dr Mohammadreza Soltani and Dr Amirreza Soltani) for

their support and love. This journey would not have been possible without the support of them.

They kept me sane throughout this journey and inspired me to better myself. I consider myself

the luckiest in the world to have such a supportive family, standing behind me with their love

and support. I dedicate this thesis to my parents.

xii

Research Output

 H. Soltani, D. Ly and W. Ahmed, “Computational Technique of Particle Tracking”,

Fourth Annual Research Student Conference, UCLAN, Preston, December 2014.

 H. Soltani, D. Ly and W. Ahmed, “ Accelerating Cell Dynamic Simulation for 3D

Diblock copolymer Sphere Morphology using GPU ”, GPU Technology Conference,

San Jose, USA, March 2015.

 H. Soltani, D. Ly and W. Ahmed, “Accelerating Cell Dynamics Simulation of Soft

Materials using GPU - CUDA”, Journal of Materials today: proceeding 2016.

 H. Soltani, D. Ly and W. Ahmed, “Parallel Implementation for Cell Dynamics

Simulation of Diblock Copolymers based on Multi-core CPU and Many-core GPU”,

Journal of Computational Physics. (submitted)

xiii

Nomenclature

a Phenomenological constant

b Chain-length dependence to the free energy

D Positive constant for diffusion coefficient

F Free energy functional

f Global volume fraction of A monomers in the diblock

 f Map function

 F Free energy functional

 H Free energy function

M Phenomenological mobility constant

AN Number of A monomers

BN Number of B monomers

xN The length of the x dimension of a simulation system

yN The length of the y dimension of a simulation system

zN The length of the z dimension of a simulation system

PN Number of detected points on the grid

r Cell of lattice

t Time

TG Total size of lattice grid

u Phenomenological constant

v Phenomenological constant

ARY _ Y coordinate of particle A in reference time-step

ACY _ Y coordinate of particle A in current time-step

ARX _ X coordinate of particle A in reference time-step

ACX _ X coordinate of particle A in current time-step

xiv

Greek Letters

 Order parameter

 Local volume fraction

 Shear flow

 Temperature-like parameter

 t Time-step

 fs~ Empirical fitting function

CUDA Terminology

Block A collection of number of threads mapped to a streaming multi-processor.

Device GPU or device computes a large amount of data parallelism.

Global Memory Known as device RAM, it is the biggest memory on the GPU.

Grid A collection of several blocks.

Host CPU or host executes low volume or non-parallelised data.

Kernel The parallel portion of a program that executes on the device.

Latency It is the time needed to process an operation.

Occupancy The ratio of the number of active warps to the maximum active warps.

Shared Memory On chip memory with higher bandwidth and lower latency.

SMXs A group of Streaming Multi-processors of GPU.

Throughput How many operations can be processed per second in each SMX.

xv

Abbreviations

AoS Array of Structures

AVX Advanced Vector eXtensions

CDS Cell Dynamic Simulation

COM Centre of Mass

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DRAM Device Random Access Memory

FLOP/s Floating-Point Operations per second

GFLOP/s
910 FLOP/s

GPU Graphics Processing Unit

GPGPU General-Purpose computing on Graphics Processing Unit

HPC High Performance Computing

HT Hyper-Threading

MPI Message Passing Interface

NUMA Non-Uniform Memory Access

OpenMP Open Multi-Processing

PBCs Periodic Boundary Conditions

SDK Software Development Kit

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SMP Symmetric Multi-processor

SMT Simultaneous Multi-Threading

SoA Structure of Arrays

SSE Streaming SIMD Extensions

TFLOP/s
1210 FLOP/s

UMA Uniform Memory Access

1

CHAPTER ONE

1 Introduction

By modelling nano and macro-scale structures using computational methods relational gap

between the real world and the world of the laboratory can be bridged, providing useful insights

regarding the evolution and dynamic behaviour of molecular systems. Computational simulation

by modelling different experiments plays an important and essential role in today’s technical,

engineering and scientific research. This minimised the need for expensive, time consuming and

sometimes hazardous experiments in order to obtain scientific data. In addition, computer

simulation and modelling provides a corroboration and validation of theories into experimental

works. Therefore, it is desirable and economically prudent to execute simulations as quickly as

possible to investigate different properties of molecular systems.

 In the last few decades particle tracking has been used extensively as one of the most popular

ways for achieving the quantification of data and considering different properties of particles

[1], including in: (a) tracking bacterial motion [2]; (b) studying intracellular tracking of

pharmaceutical nano-carriers [3]; (c) genetic material tracking [4]; and (d) protein or lipid

tracking [5]. Various studies have used different computational techniques for particle tracking

for capturing the full benefits of quantitative data and understanding dynamic actions of

particles [6]. Existing particle tracking methods have focused on tracking of experimental

particles. The general approach involves the application image processing methods to detect

experimental particles in images and transfer them to a readable form input for programs and

track the detected particles. In 1995, Crocker and Grier developed an image processing

algorithm for extracting quantitative data from experimental images [7]. Their technique could

distinguish particles from the rest of the image. The computational technique of particle tracking

velocimetry can be categorised into two levels: image relaxation and nearest neighbour search

algorithm [8]. However, these two computational techniques follow the same model of particle

tracking. Particle tracking model involves two main phases: image acquisition and tracking of

the moving particles. Figure 1.1 shows a model of the particle tracking based on experimental

work [6].

2

Figure 1.1: Particle tracking model based on experimental work [6].

In most particle tracking models, the data travel in one direction, from the detection part to the

trajectory part, although in some particle tracking models the detection and trajectory parts are

complementary and coupled to each other [9, 10]. In both situations, the motion modelling part

aids the particle tracking phase by decreasing the vagueness and ambiguity of detected particles

and global trajectory construction between frames. Having considered different methods for

particle tracking in experimental work, it is essential to develop a method that can be used for

uniform computational data. Computational data coupled with quantitative analysis and

mathematical modelling helps to shed further light on a broad range of scientific issues [11].

 A major challenge for particle tracking based on the cell dynamic simulation is the expense

of computational works and long time frames involved, due to two fundamental constraints:

time steps and experimental scale size. These limitations impact directly on the simulation

results. To overcome these issues, a new parallel computational model is required. Interestingly,

parallel programming model is the only method that can really improve and enhance the

performance of applications and solve the problems identified. Graphics Processing Unit (GPU)

has become the popular in recent years due to its broad suitability in different research fields for

improving performance in various applications. Originally designed to process graphical data,

GPUs were, later developed further for general purpose computing on graphics processing unit

(GPGPU) allowing the operation of GPUs to process and compute non-graphical data. The

application was extended to different fields of parallel programming and computational physics

[12, 13], including calculations of long and short range order of nanostructure for diblock

copolymers using CDS method.

3

Parallel processing can be executed either on Central Processing Unit (CPU) or GPU, but

recently because of the performance improvements in the latter and the capability for processing

graphic and non-graphical data, there has been increasing demand for executing parallel

processing on GPUs [14]. GPUs produce a huge number of polygons at high speed to display

photos. In addition, GPUs’ floating point arithmetic is advanced and they can execute several

computations efficiently rather than simply generating polygons [15]. An example of the

combination between computational physics and parallel processing using GPUs involves

solving the time-dependent Schrödinger equation for coherent electron transport in quasi two-

dimensional electron gases. The numerical analysis of a Schrödinger equation is processed in

about 280 seconds on a CPU (Intel Xenon CPU E5420 @ 2.50GHz), in comparison to 10

seconds for the GPU version (NVIDIA Tesla C1060 GPU). This result illustrates the significant

time efficiency of GPUs [16]. As shown in Figure 1.2, GPU has more transistors than CPU [17],

which increases number of processing cores and therefore computational capacity.

Figure 1.2: CPU and GPU architectures [17].

1.1 Motivation

Block copolymers are widely used in soft matter research for predicting the characteristics of

phase separation and self-assembly into nanoscale structures. Different structures formed by

polymers involve: (i) diblock copolymer; (ii) triblock copolymer; (iii) star triblock copolymer;

and (iv) linear triblock copolymer [18]. Diblock copolymer is a nanoscale ordered structure

based on the natural aptitude of micro-phase separation and self-assembly entailing several

morphologies such as spheres, lamellar and cylinders. Diblock copolymer refers to chain

molecules joined covalently and linked to a single macromolecule [19, 20]. Soft matter has been

explored extensively theoretically and experimentally in many disciplines, such as chemistry

and electronics, in order to understand different topological morphologies, short-range, long-

range ordering of the microstructure, time evolution of ordered structures and the effects of

various parameters [21, 22]. Experimentally evaluations of these issues are very costly, time

consuming and problematic. Hence, a new computational technique is needed to model such a

4

system and improve understanding of the time evolution of ordered structures and the effects of

different system parameters on the properties of the diblock copolymer.

The main drawback to accurate results in computer simulation is the time-consuming and

expensive nature of the computations with ordinary hardware and sequential programming.

Indeed, the speed of scientific advances has not kept pace with the rapid developments in

computers (e.g. supercomputer), and the peak floating-point performance of superfast

computers. For instance, scientific advances approach only 5-20% of maximum computational

power and performance. This difference between peak performance of computer and scientific

programs leaves room for further study to enhancement of performance in different aspects

significantly [23, 24]. Such investigations directly influence the cost and accuracy.

Considerations of performance differences refer to the new idea of parallel computing model,

which can improve and enhance performance of applications and solve important problems in

various disciplines.

 Simulation methods developed so far raise a number of questions. The purposes of this study

are thus to obtain an improved understanding of the dynamic behaviour of particles with respect

to time evolution via the computational method of particle tracking, and to overcome resource

and performance limitations by proposing a novel GPU parallel algorithm and CPU

multithreading method.

Figure 1.3: Schematic example of AB diblock copolymer.

1.2 Original Contributions in this Thesis

The work presented in this thesis makes the following novel contributions:

 Cell Dynamic Simulation (CDS) technique has been studied as a computational method

to model phase separation of diblock copolymers, to investigate the effect of external

fields, such as shear flow, and to simulate spherical morphology of diblock copolymer

for comprehending the nontrivial behaviour of the spherical morphology of diblock

copolymers.

5

 A new computational technique was developed during this study for detecting and

tracking particles utilising results obtained from the cell dynamic simulation of a

spherical phase of diblock copolymer under a shear flow. This new technique follows

the same procedure for particle tracking including detection and tracking. However,

detection of particles in this study is original and is not similar to any previous work,

since the CDS output is numerical, and it would not be possible to utilise the same

procedure in order to detect the particles while in tracking section. Other techniques

have been combined such as nearest neighbour and linear assignment, with some novel

methods in a unique way. However, the new method is more comprehensive and

specifies not only the factors of the flow field, such as shear, but other properties such

as particle number (labelling), while simultaneously and concurrently allowing the

tracking of multiple particles.

 This study investigated different parallel computing architecture and programming

model in both CPUs and GPUs. It comprises different aspects such as Flynn’s

Taxonomy model (SISD, SIMD, MISD, MIMD), restrictions and cost of parallel

computing and different memory architecture of parallel computer such as distributed

memory, shared memory and hybrid shared-distributed memory.

 The CDS method was implemented and optimised in C programming language and

OpenMP multithreading shared memory architecture. Loop sharing method as one of

the work-sharing constructs has been used to prevent race conditions, and to satisfy data

dependencies different synchronisation constructs were used. In addition, the influence

of multithreading to overcome time-consumption and expensive computation problems

was investigated.

 A three-dimensional GPU-CUDA implementation of cell dynamic simulation for

diblock copolymer based on the spatial decomposition method and block-cell link

model was developed during this work. The spatial decomposition technique based on

the block-cell link model was shown to be a suitable and appropriate choice for GPU-

accelerated CDS simulation. By allocating enough resources for each data element, this

method enhances system performance and the communication costs are reduced

between each thread, ultimately decreasing the GPU’s memory access time.

 A combination of different test cases and metrics according to throughput and latency

of CPU and GPU for a given task to evaluate the performance and speed of parallel

program were used. The performance comparison is based on a commodity NVIDIA

Quadro K5000 graphics card and Intel Xeon E5-2420 CPU.

6

1.3 Overview of the Thesis

Following the introduction, the remainder of the thesis comprises of seven chapters.

Chapter 2 illustrates the cell dynamic simulation method, considerations of different

parameters effects on CDS for spherical morphology and the simulation results for diblock

copolymer sphere morphology under shear.

Chapter 3 explores the literature relevant to particle detection and tracking. It also presents a

novel computational technique for particle detection and tracking and demonstrates dynamic

movement and behaviour of one and more particles concurrently based on the novel method.

Chapter 4 reviews the concepts, performance analysis and computational throughput related to

the areas of high performance computing and performance engineering. It specifically considers

these techniques for evaluation between multi-core and many-core implementations in this

study.

Chapter 5 details and reviews the concepts of past and present state-of-the-art in parallel

software, hardware and computing, and addressed different parallel terminologies and

programming models for different parallel memory architectures.

Chapter 6 details the evolution of graphics processing unit and investigates the GPU as many-

core accelerator by considering different aspects of memory architecture and CUDA

programming model.

Chapter 7 presents optimisation studies such as utilisation of SIMD, vectorisation and memory

access patterns for performance improvement of the CDS baseline code. It proposes a new

hybrid decomposition algorithm for multi-threading implementation on CPU and the results

based on a new algorithm. The last section of chapter seven illustrates and details the algorithm,

optimisation, and validation of CDS simulation scheme on GPU many-core hardware.

Chapter 8 concludes and summarises the work presented in this study, elucidates the

limitations and provides scope for future research work.

7

CHAPTER TWO

2 Cell Dynamic Simulation

Over recent decades, numerous techniques have been used for modelling diblock copolymer,

and making closer relationships between the real world and the laboratory. Based on the specific

application, some of these techniques are flexible and scalable in terms of system parameters,

however they lack preciseness. Other techniques such as self-consistent field theory and

theoretically informed coarse-grained are more precise but not readily scalable [20]. Hence, a

method is required that takes into account both accuracy and speed and makes for a closer

relationship between the real world and the laboratory by modelling the behaviour of diblock

copolymer on a large scale and prevent the size effect problem. To this end, CDS was identified

as a suitable approach to compute and define mesoscopic self-assembled structure of diblock

copolymers [25, 26].

 CDS is a promising method and good example of a cellular automation in interface dynamics

in phase-separating domain [27, 28]. It has been used in other systems and applications to model

phase-separating dynamic, including micro-emulsions [29, 30]; cross linked polymer blends

[31]; and binary blends containing surfactants [32]. The CDS equations model suggests that the

CDS is a coarse-grained discretisation scheme. This scheme refers to the Ginzburg-Landau

(TDGL) equation and Cahn-Hilliard Cook (CHC) equation which define all the simulation

parameters for diblock copolymer and govern all differential equation for the time-evolution of

order parameters, as explained in the following section. The main advantage of CDS technique

compared to other molecular simulation methods is coarse-grained discretisation [33]. This

chapter focuses on the CDS theory, considers the concepts of immiscible blends, and

demonstrates simulation results for spherical morphology of diblock copolymer. An

investigation of the external effects such as shear flow for three-dimensional structure of sphere

forming is also presented.

8

2.1 Benchmark Description

This section describes the concepts of immiscible blend between two polymers and their

morphology. The idea of mixing two polymers to produce a material with improved properties

is well established, but it is nevertheless difficult to achieve practically with some polymers.

The difficulty of mixable polymers is illustrated by the chicken soup scenario where chicken is

one polymer and water is the other polymer. This situation, involves two phases: one phase is

water and the other is chicken which is insoluble in water. The resultant mixture is thus phase-

separated [34, 35]. When phase-separation of two blend polymers becomes beneficial and useful

material, it is known as an immiscible blend. However, considering immiscible blend is not

straight forward and needs a deep understanding of polymer structure. To address this issue, it is

necessary to consider and investigate the physical structure at the nanoscale size. Consequently,

physical systems that impulsively form different structures under various conditions are

essential. To this end, block copolymers due to their ability to self-assemble into various

nanostructures are one of the most valuable and popular materials.

Figure 2.1: Immiscible blends of AB diblock copolymer.

In Figure 2.1, polymers A and B are mixed together but did not form a blend. Instead, polymer

B split from polymer A and made spherical spots/forms as an immiscible blend. In real

applications, the mixture of two polymers (e.g. polystyrene and polybutadiene) can make the

spherical phase-separation of immiscible blends which can be seen by an electron microscope.

Although other types of immiscible blends exist, such as lamellar phase separation,

consideration of other types of phase separation is beyond the scope of this study as we only

investigate the dynamic behaviour of spherical morphology of diblock copolymers.

 The concept of morphology refers to the form and arrangement of two phases in immiscible

blend. The most important parameters affecting the morphology of an immiscible blend are: (i)

the volume of two polymers; (ii) temperature; and (iii) external fields, such as shear flow or

electric field. For instance, if the volume of polymer A is greater than polymer B, polymer B

will be divided into spheres. In this situation, polymer A is the major component with polymer

B being minor. Figure 2.2 illustrates the relative volume of polymer B and polymer A in the

immiscible blend with respect to time evolution.

9

Figure 2.2: Relative volume of polymer B and polymer A in the immiscible blend.

Another important factor that affects the morphology of an immiscible blend is the external

stress. Figure 2.3 shows changing morphology for two polymers A and B under flow in one

direction.

Figure 2.3: Morphological change from spheres into lamellar under an external field (shear

flow).

Time

10

2.2 Cell Dynamic Method

Cell dynamics simulation is a cellular automation method of ordered structure shaped in diblock

copolymer dissolves applied to consider the influences of simulation properties on the

morphological details and kinetics of ordering structures from the preliminary disordered level

[33]. The simulation properties are connected to the parameters in the Gingzburg-Landau free

energy in the Cahn-Hilliard-Cook equation [18, 33]. In fact, the CDS equations are a coarse-

grained discretisation offering a promising opportunity and capability to investigate the micro-phase

separation details in systems that are comparable with experimental domains in terms of size.

 An order parameter in cell dynamic simulation method is defined as),(rt . Order parameter

is discretised on a lattice by getting values of),(rt in cell r and time t [33, 36]. Order

parameter is the difference between the local volume fractions of A and B monomers. The

following equation defines the compound order parameter for AB diblock copolymer:





Here A and B are local volume fractions of monomer A and monomer B, and f refers to the

number fraction of monomer A in a diblock copolymer which can be calculated from the second

part of the equation. AN , BN are the total number of monomers respective to A and B blocks.

The evolution and progress of order parameter for each discrete cell can be calculated by

equation 2.2:

In equation 2.2,)(f refers to the map function, which mimics the tendency of the values of

order parameters not being zero during the order-disorder transition [27]. By considering

coarse-grained discretisation as a main benefit of cell dynamic simulation technique, the time

evolution of the order parameter can be shown by a Cahn-Hilliard-Cook (CHC) equation [18,

33]:

Where)(F is a free energy functional described by the Ginzburg-Landua (TDGL) equation.

This free energy is used for defining short-range and long-range contribution of the copolymer


)21(fBA   

)/(BAA NNNf  

)),((),1(rtfrt   

















)(2 F
M

t




11

[33, 37]. M is a phenomenological mobility constant which is assumed to be 1M for unity

throughout the simulation.

The following equations describe free energy functional, including short-range and long-range

interactions terms of the copolymer [25, 33, 37].

Where  SF is short-range interaction term and  LF is long-range interaction term. D

refers to the positive constant which acts as a diffusion coefficient. b is a value of chain-length

dependence to the free energy [27]. It should be noted the term   2
2

r
D

 in free energy

functional is necessary to make an interface for A and B monomers. Here Green’s function

 rrG  for the Laplace equation satisfies    rrrrG  2
, making approximations

  trtrt  /,),1( .  H refers to the free energy which is the same as Landau

free energy equation [25, 38, 39].

here is a temperature-like variable and a, v, and u refer to the phenomenological constants

[33], which can be related to molecular properties and characteristics. In fact, these are

multifaceted and complex functions, and since we are considering the general phenomenology

of diblock copolymer, we choose just approximate and estimated values for these constants [40,

41, 42]. According to Ohta and Kawasaki [40],  221 fa   and D can be written in

terms of degree of polymerisation N and the Flory-Huggins factor  . In fact,   is related to the

Flory-Huggins parameter which contrariwise depends on the temperature. Therefore, the

parameter   can be stated in terms of physical parameters:

       LS FFF  

       









2

2
r

D
HdrFS  

         rrrrGrddr
b

FL 
2



 F =      









2

2
r

D
Hdr  +

        rrrrGrddr
b


2





           4322

4
21

3
21

22
r

u
rf

v
rf

a
H 


 








 



12

 
  

















22 14

~

2

1

ff

fs
N

N
 .

Equation 2.6 presents the physical parameter of temperature, where  fs~ refers to the empirical

fitting function which is considered to be of the order of 1.  refers to the measurement of the

comparative strength of the repulsion between different types of segment to the attraction

between the same types of segment [40, 41]. N indicates the total degree of polymerisation, and

can be expressed as BA NNN  .

 According to the preceding equations the numerical solution of equation 2.3 for cell dynamic

simulation in a cubic lattice can be written as [27, 40, 43]:

         },,,{,,1 ntbntntntnt   

In addition, a shear flow term is added to consider the movements of diblock copolymer [27, 44]:

         

    },,,,1,,,1
2

1

,,,{,,1

tnnntnnny

ntbntntntnt

zyxzyx 









Where  refers to the discrete Laplacian for calculating the average in the neighbourhood

cells excluding for the centre cell = XX  . n is the total number of grid points

zyx nnnn  .  and y refer to shear flow rate and dimensionless coordinate. It should be

noted that we have applied shear flow just along X axis, therefore xv . The function  nt, is

defined by:

          ],,,[,,, ntntDntntfnt   

As mentioned earlier, XX  refers to isotropised discrete Laplacian with a number of X [27,

18]. Hence, for a three-dimensional grid (cubic) lattice can be calculated as [33, 45]:

        
NNNNNNNNN

rtrtrtrt ,
80

1
,

80

3
,

80

6
,  

Where NN refers to the nearest neighbours, NNN next-nearest neighbours and NNNN next-next-

nearest neighbours of a grid point (i, j, k).











13

Finally, the equations mentioned enable the identification of the map function [25, 33, 37] which

is related to the functional derivative of free energy in equation 2.5.

       322
21211  ufvfaf  

2.3 Simulation Results

This section presents the simulation results of spherical phase diblock copolymer under shear

flow based on the cell dynamic method. Cell dynamic method in this context is divided into five

main calculations: (i) calculations of periodic boundary conditions; (ii) calculations of first

isotropised discrete Laplacian; (iii) calculations of map function and free energy functional; (iv)

calculations of second isotropised discrete Laplacian of the free energy functional; and (v) the

time evolution of the order parameters calculations. In the first step, calculations of periodic

boundary conditions are divided into three sub-levels for calculating PBCs for each dimension

(x, y, z) of the system respectively. In the second step, calculation of first isotropised discrete

Laplacian is taken into account, which is  in free energy functional term. In the third

step, calculation of map function and free energy functional are considered:

       322
21211  ufvfaf  and

          ],,[,,, ntntDntntfnt   

 After calculating map function and free energy functional, calculation of second isotropic

Laplacian operator of the free energy functional is the fourth step considered, which is

   ntnt ,,  in time evolution of order parameters equation. The last step refers to the

calculations of time evolution of the order parameters based on the definition of the fields in a

cubic lattice/system, together with a precise and appropriate discretisation of the isotropic

Laplacian which is          },,,{,,1 ntbntntntnt   

Some parts of the implementation source-code of the cell dynamics simulation method is

presented in Appendix A.



14

The main practical barrier encountered in this process is the time-consuming and expensive

nature of such computations, as discussed in chapter seven. Table 2.1 presents the system

parameters used to generate spherical phase of diblock copolymer in cell dynamic method [18].

The simulations were executed on a 646464  lattice system size for up to 1000,000 time-

steps without a shear and 300,000 time-steps more after applying a shear to achieve stable and

perfect system. An initial random disordered  is between  9.0,9.0 . It should be noted that

there is a difference between an equilibrium and stable system: a system has equilibrium at

certain time-steps (no-more changes after that specific time-step), but it still has defects; while a

stable system is a perfect one without any defects.

CDS

system

parameters

D

a

b

u

v

f



Spherical

system

0.5 1.5 0.01 0.38 2.3 0.4 0.20

Table 2.1: System parameters used in cell dynamic method for spherical morphology.

 Figure 2.4 illustrates the phase diagram of diblock copolymer for spherical morphology with

different shear rate, and different time-step. It can be seen that at lower shear rate (0.0005) the

system is completely spherical, with a hexagonal order. At 0.001 shear rate the system is

spherical but not completely ordered, and at higher shear rate (0.005) the spheres are lengthened

to ellipsoids and cylinders (particles are mixing together). Additional increase in shear

transforms the entire system from spheres to cylinders. Increasing the shear rate has a direct

impact on the sphere to cylinder transition.

15

Figure 2.4: Phase diagram of diblock copolymer morphologies under different shear flow  

and evolution of time steps:) Perfect Spheres,) Spheres,) ellipsoid and Cylinder.

The following figures present the kinetics of transition of spherical diblock copolymer with the

same system parameters as shown in table 2.1 except the shear rate is 0.0003. By considering

the Figure 2.4 and the following figures we can comprehend that when the shear flow is

between 0.001 and 0.0001 the system obtains the spherical morphology with a hexagonal order

(stable and perfect system).

16

Figure 2.5: Spherical morphology produces by cell dynamic simulation method from initial

stage (left) to last stage (right) without shear flow.

Figure 2.6: Spherical phase of block copolymer under a shear flow from initial time-step (left)

to last time-step (right).

Shear  Morphology

0.0001 Spheres ()

0.0003 Spheres ()

0.0005 Spheres ()

0.001 Spheres ()

0.005 Spheres & Cylinders (+)

0.008 Cylinders

Table 2.2: Summary of morphology results for diblock copolymer system under different shear

flows.

17

Investigation of perfectly ordered structure of diblock copolymer system for spherical

morphology under different shear rates and time steps yielded the result shown in Figures 2.7 and

2.8, showing the polygon structure of diblock copolymer from right side view, and Figure 2.9,

which presents the transition from pentagonal to hexagonal structure in yz - {011} plane (right

side view).

Figure 2.7: Polygon structure of diblock

copolymer in time-step 300 with 0.005 shear

flow rate.

Figure 2.8: Polygon and pentagonal

structures of diblock copolymer in time-step

300 with 0.001 shear rate.

Figure 2.9: Pentagonal and hexagonal structures of diblock copolymer with 0.0003 shear rate.

 In Figure 2.9, the right image shows the pentagonal and hexagonal structures in time-step

100 and the image on the left illustrates the perfect hexagonal order structure in time-step 300.

The solid lines refer to the pentagonal order and the dash lines indicate perfect hexagonal order.

The dot arrow is the direction of shear.

Z

Y

X

18

2.4 Summary

The theory of cell dynamic simulation along with a consideration of the Ginzburg-Landau

(TDGL) and Cahn-Hilliard Cook (CHC) equations for free energy and time evolution have been

presented in this chapter. Examples of the use of cell dynamic simulation as a powerful scheme

in other applications and systems were included, such as micro-emulsions [30], cross-linked

polymer blends [31], and binary blends containing surfactants [32]. However, in this chapter the

main focus was on the application of the CDS scheme to model micro-phase separated structures

in diblock copolymer and to simulate the spherical phase diblock copolymer under shear flow. The

benefits of CDS compared to other molecular dynamics methods have been highlighted. The

concept of immiscible blend and morphology, and how CDS method as a cellular automation can

help to understand the dynamic behaviour of copolymers in immiscible blend situations, has been

discussed briefly. To this end, the spherical morphology of diblock copolymer under a shear flow

was studied in order to obtain a better understanding the effect of external fields and also to

comprehend the dynamic behaviour of the spherical morphology of diblock copolymers in

different time-steps. Dynamic density functional theory [38, 46], molecular dynamics simulation

method [47], or particle-based Langevin dynamics simulation method [48] have also been

mentioned in relation to the spherical morphology of diblock copolymer under shear flow.

However, these were limited to small domains or cubic system sizes and did not allow for a

greater insight into the kinetics of spherical morphology of diblock copolymer on the scale of

nanostructures and particle tracking. The results obtained for cell dynamics simulation for

diblock copolymers under a shear flow in large systems can provide a benchmark for subsequent

investigations.

19

CHAPTER THREE

3 Multiple Particle Tracking

Particle tracking methods have been studied to comprehend the mobile behaviour of particles.

During the last twenty years particle tracking has been used widely as one of the most well-

known ways for achieving the quantitative data and considering different properties of particles

[1], including: (i) tracking bacterial motion; (ii) studying intracellular tracking of

pharmaceutical nano-carriers; (iii) genetic material tracking; and (iv) protein or lipid tracking.

Various scientific contexts, according to their aims, have applied different computational

techniques of particle tracking to capture the full benefits of quantitative data and understanding

dynamic actions of particles [6].

 Existing particle tracking methods have considered tracking experimental particles. The

general approach to this point is to apply image processing methods to detect experimental

particles in images and transfer them into a readable form input for programs and track the

detected particles. In some image processing techniques, light points/pixels with high intensity

and dark points with low intensity are coded differently to distinguish between the particles and

background, and to reduce the number of irrelevant pixels to a minimum. Figure 3.1 presents the

percentage of expanding interest in particle and cell tracking between 1970- 2010. It should be

noted that the rate of percentage is measured based on the number of publications per year for

the indicated mixtures of words in the title and/or abstracts in the PubMed database [49],

(National Library of Medicine and National Institutes of Health, USA).

Figure 3.1: Growing interest in particle tracking and cell tracking rates (%) in different research

fields over three decades [49].

20

Particle imaging velocimetry and particle tracking velocimetry are the two most famous

computational techniques used for particle tracking [50]. Standard processes for particle

imaging velocimetry are divided into two levels: algorithms for detecting particles on images,

which is mainly related to standard cross-correlation method [51]; and techniques for tracking

the particles based on each frame of a time lapse sequence of images. Typically, the first part of

experimental particle tracking model refers to the image processing technique used to optimise

and distinguish between particles and background, and any acquisition failure of optimised

images will have a direct effect on particle tracking.

In 1995 Crocker and Grier developed an image processing algorithm for extracting quantitative

data from experimental images [7]. This algorithm distinguishes the particles from the rest of

the image. Particle tracking velocimetry as a computational technique can be categorised: image

relaxation and nearest neighbour search algorithm [52]. However, these two computational

techniques followed the same model of particle tracking. Particle tracking model involves two

main phases: the image acquisition and the tracking the moving particles.

 The main purpose of particle detection is to understand numerical representation of the

positions and different components of image features [10]. In image acquisition stage, all

images with their local intensity are considered with different neighbours who have different

intensity levels. In this part, cross-correlation technique performs well for different particle

intensities. According to Kean and Adrian (1995), it is necessary to consider the ratio between

image size and particle displacement. In fact, the versatility in choosing the image size and

location of successive particles (displacement) allows a better spatial resolution with more

efficient and effective matching/paring of particle images. Therefore, by the optimal

implementation of the cross-correlation method (considering appropriate ratio between image

size and particle displacement) no pair of particles will be lost and the spatial resolution can be

enhanced [51]. Alternatively, local nearest neighbour can be used for detecting particles when

the ratio between particle movement/displacement and mean nearest neighbour is less than a

specific number, which depends on the number of detected points from one frame to another of

images. Based on the local nearest method, Crocker and Grier developed a particle tracking tool

which is one of the most well-known and widespread tracking packages [53]. Local nearest

method executes well when the ratio between particle movement and mean nearest neighbour is

not large. If the numbers of candidate particle are high enough or insufficient then the local

nearest neighbour method will break down. Candidate particle refers to the concerned particle in

different time-lapse. To overcome of this issue, multiple hypotheses tracking (MHT) was

introduced [54]. In multiple hypothesis tracking, the locations of particles are specified in every

frame, and according to the velocity of particles the next position of particle is predicted. In this

method all particle routes as well as the whole expected particle behaviour are created using the

21

trajectories of all particles. Hence, by considering multiple hypothesis tracking, acceptable

tracking probabilities can be maintained for particle tracking in experimental works [54].

Recently the global nearest neighbour method has been used for particle tracking for cell

biology applications [50]. This method applies an accurate mathematical model, the linear

assignment problem [55], to deliver efficient and effective answers to the issues mentioned

previously. The algorithm first considers the detected particles through a time-lapse image

sequence and then makes the connection between all detected particles in each frame of images

consecutively by using the global nearest neighbour technique. In contrast to the local nearest

neighbour method, the global nearest neighbour obtains accurate solutions by decreasing the

complexity of computational achievements of particle tracking and solving the frame-to-frame

correspondence issues in the whole trajectory. The key point of global nearest neighbour

method is motion prediction under high density circumstances. In the model, motion level by

predicting particle position from primary frame to the target frame reduces the computational

complexity, which helps the trajectory construction between frames. Based on the global nearest

neighbour there are different types of possible ways to achieve particle motion between frames,

such as formulating unique motion model for each particle [56], or predicting general particle

motion between frames [57].

 The direct outcomes after applying particle tracking on different context of sciences refers to

the data in text files format which contains a sequence of coordinates showing the location of

tracked particle at each time-lapse [49]. Computational analyses help to acknowledge and

understand different aspects of these types of data. Motility analysis is one of the primary

computational analysis which helps to rebuild the trajectories of detected particles from a

sequence of coordinates, calculating the entire distance travelled by the considered particle, and

finding the distance from the start to end point of detected particle [58]. The other well-known

computational analysis for particle tracking is velocity analysis. Velocity (i.e. the speed of

particle) is the rate of displacement which can be calculated as the movement of particle from

one frame to the next frame, divided by the time interval. According to Qian and Bahnson,

velocity analysis is suitable for making speed histograms due to a focus on the statistics of the

dynamics [58]. The final analysis is morphology analysis, which is mainly concerned with

shape evolution of particle in different time steps. Based on the morphology analysis of

particles, different types of geometric information can be measured and calculated, such as

measurement of size (surface area) and orientation invariant (sphericity, ellipticity) [59].

 A consideration of the various methods for particle tracking in experimental works provided

the impetus to devise a new method which can consider uniform computational data.

Computational data is considered alongside quantitative analysis and mathematical models to

solve scientific issues [11]. Usually, computer simulation and other types of computation from

22

numerical analysis can be used to obtain the aims of computational data. This study considers

computational data whereby particle movement is simulated using cell dynamic simulation.

The new particle detection method is utilised in the output of the Cell Dynamic Simulation

program as computational data used to describe the morphology of diblock copolymer sphere

under shear [37, 33]. The method of particle detection is novel, since the CDS output is

numerical, and it would not be possible to do image processing in order to detect the particles

while in tracking section. It should be noted that the fundamental idea of the new particle

tracking is the same as shown in Figure 1.1, which is first detection and then tacking. Some

previous techniques have been combined, such as nearest neighbour and linear assignment, and

some new methods have been developed, as explained in the following chapter specifying not

only the factors of the flow field, such as shear, but other properties such as particle number,

simultaneously and concurrently allowing the tracking of multiple particles.

3.1 Method and Design

As mentioned earlier, in this study the cell dynamic simulation method was used to describe the

spherical morphology of diblock copolymer under a shear flow. The new particle detection and

tracking method will use the output of CDS calculation to achieve the aim of this study. The

conceptual model of the system is shown in Figure 3.2.

Figure 3.2: Conceptual model developed in this study for particle detecting and tracking.

23

The first step is the output of cell dynamic simulation of a block copolymer under shear, which

provides details of equilibrium spherical morphology of a diblock copolymer. The second step

refers to the uniformisation and segmentation of equilibrium morphology (AB diblock

copolymer) by converting them to one and zero. In a lattice system, all domains forming

particles will be distinguished by the value of one, and all grid points with the value of zero

show the surrounding polymer. In fact, due to the difference in the volume fraction between

components A and B in space, it is necessary to segment it in order to make the output usable for

the next step. This segmentation allows recognition of polymer domains of polymer with a

certain value. In order to undertake the segmentation, the value of all grid points/cells with

negative value is changed to zero, while the value of grid points in the positive range is replaced

by one.

 The third step is an important part of the model and contains two sub-levels: nearest

neighbour searching method for detecting the particles; and counting the number of detected

particles. After detecting the particles based on the neighbour searching, calculating centres of

mass for each particle is essential. In the fourth step all single and mixed particles are

distinguished and their centres of mass are calculated. It should be noted that mixed particles

can also have different shapes (oblique and horizontal). The final step of the investigation refers

to the time evolution of particles and tracking particles. This is achieved by considering the

centre of mass (COM) while tracking the trajectory of considered particles in different time

steps.

3.2 Computational Algorithm

In order to detect particles correctly, a sequence of coordinates referring to the position of each

particle is important, but this does not help the concept of detection. Therefore, it is necessary to

focus on the computation aspects of these coordinates. The computation aspects refer to the

quantitative measures from the coordinates, which involves neighbour searching and statistical

study. Table 3.1 presents the computational optimisation algorithm for detecting and tracking

particles. The whole of the pseudo-code of computational algorithm is presented in Appendix B.

Part I - Particle detection

1: Step A – applying the detection method and Periodic Boundary conditions (PBCs)

2: Find the first particle

3: Apply the boundary conditions

4: Start to search the nearest neighbours

5: If neighbours are equal “1” then

6: Change the current coordinates to the new coordinates

7: Step B – counting the number of particles

8: Count the number of particles

24

9: labelling particles

Part II - Calculating centre of mass

10: Step A – initializing the values

11: For particles which are in the left width boundary or

12: Right width boundary, or up length boundary, or down length boundary

13: Step B – finding the single particles

14: Single particles (if the number of grid points for detected particle are less than 55)

 (55 grid points is an average size of spherical detected particle

 and can be changed based on the lattice system size.)

15: Consider boundary conditions for them (left, right, up, down) and

16: If particle is not on any boundaries.

17: Step C – finding the mixed particles

18: Mixed particles (if the number of grid points for detected particle is more than 55)

19: Consider boundary conditions for them (left, right, up, down) and

20: If particle is not on any boundaries.

21: Step D – calculating and writing the centre of mass

22: For all particles (single and mixed)

Part III - Tracking the next particle

23: Step A – Find the nearest particle and name the new particle as an initial particle

24: Finding the nearest particle base on the finding the nearest centre of mass and statistical

study

25: Step B - Considering periodic boundary conditions (PBCs)

26: Periodic boundary conditions apply in five different situations.

27: 1 - PBC in width boundary

28: 2 - PBC in length boundary down -middle

29: 3 - PBC in length boundary up -middle

30: 4 - PBC in length and width boundary up

31: 5 - PBC in length and width boundary down

Table 3.1: Computational algorithm for detecting and tracking particles.

3.2.1 Particle Detection

Following the computational algorithm, the first part is detection of particles, which involves

two steps. Step A contains periodic boundary conditions (PBCs) and computational methods of

detecting particles. PBCs are a group of boundary conditions utilised to prevent of losing the

particles on the edges of the grid box, and to simulate a big system by considering a small part

of a system which will not be terminated when it will be close to the edges [6]. PBCs have been

applied in four directions, with consideration of two grid points (neighbours) in each direction.

For understanding the functionality of periodic boundary conditions, suppose it is a grid of the

size of 128128 , without PBCs, and the particles are moving in the X axis. In this case each

particle will be terminated on the last grid point (128) without having any reaction from the

other side of the grid box. Therefore, it is necessary to apply periodic boundary conditions to the

system to prevent such any issues. Figure 3.3 shows PBCs in 2D.

25

Figure 3.3: Periodic Boundary Conditions (PBCs) [60].

Since shear flow in periodic boundary conditions is very important, hence, equation 3.2 is used

in cell dynamic method to satisfy boundary conditions in simulation. The reader is reminded

that a shear flow is applied in the X direction. Therefore, shear expressed by:

yvx  0 zy vv .

Where  zyx vvvv ,, indicates the flow. The X-axis is the shear flow direction, Y-axis refers to the

velocity gradient and the Z-axis is the vorticity axis. The  is a dimensionless shear and y indicates

dimensionless coordinate.

    tTGNzTGNyTGNtTGNxtzyx zyxx ,,,,,,   

Here zyx NNN ,, are numbers of lattice points in X, Y, Z axes of coordinates and TG refers to

the total size of lattice grid. The first term on the right part of equation indicates the direction of

shear flow in X-axis   TGNtTGNx xx  

 As stated previously, a sequence of coordinates by itself is not helpful for detecting particles;

therefore, it is important to implement computational methods. A quantitative measure is one of

the computational methods [61] used in the new uniform computational program for detecting

and considering time-evolution of particles. Neighbour search method has been used as a

quantitative analysis/method for finding particles and reconstructing the time-lapse of the

detected particles from the measured coordinates [62]. Nearest neighbours search was applied in

eight directions, considering two neighbours in every check. The order of checking is: left,

south, right, north, south/east, south/west, north/east, and north/west. In step B of particle

detection, the number of detected particles will be counted, and each particle will be identified

and labelled with unique number.





26

Figure 3.4 presents the sample of neighbours searching in the grid. Red dots show the searching

points which start from central point (blue dot) in eight different directions. This part is based

on the outputs of segmentation step which divides the domains of polymer into two parts. All

particles will be distinguished by value of one and all grid points with value of zero show the

surrounding polymer.

Figure 3.4: Example of neighbouring search.

3.2.2 Calculation of Centre of Mass

When tracking particles, the COM of each particle is used to describe its position. Therefore,

finding the accurate COM of each particle is necessary. Current methods for finding the COM

of particles were developed according to the output of the detection step. In order to accurately

determine the position of each particle, particles are divided into two categories according to

their size (number of detected grid points in each particle). Smaller particles (round shapes) are

named as single particles and bigger particles (elongated) are mixed particles. Calculating COM

of each particle depends on the shape of the detected particle.

 It should be mentioned that calculating COM has two scenarios when the system is stabilised

and when is not stabilised. In first situation, the particles will be fixed and there is no difference

between the shapes of particles. In second situation, a more complex scenario, the numbers of

particles are altering and particles have different types of shapes. Figure 3.5 shows spherical

phase of diblock copolymer under a shear after system stabilisation (perfect system). The

simulations were run on a cubic 12826128  lattice for up to 1000,000 total time-steps, with

0.0003 shear rate to approach stable system.

27

(a)

(b)

(c)

Bilayer spherical system – (a) diagonal view;

(b) right side view in the x-direction; (c) back

side view in the z-direction

Bilayer spherical system – vorticity plane top

view

Figure 3.5: Perfect spherical phase of detected particles under shear flow.

Figure 3.6 illustrates an unstable system with different shapes of detected particles from top

view of the system. The complete simulations were executed on a cubic 12826128  lattice

for up to 100,000 time-steps with 0.0003 shear flow rate.

Figure 3.6: Bilayer spherical phase of detected particles.

28

A statistical study was undertaken on the output of the detection code, pertaining to the

frequency of the number of grid points for the detected particles, which resulted in 55 grid

points being chosen to distinguish between single and mixed particles. In total, 20 random

particles were considered and found out that the number of grid points for detected single

particles will not be more than 55 grid points. Therefore, 55 grid points was selected as a

distinguish value. Based on the chosen limit, particles with less than 55 grid points were

considered to be single and those with more than 55 grid points to be mixed particles. When the

particles are homogeneous, the fundamental idea to find the COM of a particle is to add up the

coordinates of all points in the X and Y directions separately and divide the sum by the whole

number of detected grid points that belongs to the particles. It should be noted that the new

particle detection and tracking method is based on the 2D results, thus there is no need to

consider Z-axis.

NP

X
X

NP

i

COM


 1 

NP

Y
Y

NP

j

COM


 1 

 In addition, to increase the accuracy of tracking, COM of single and mixed particles were

calculated in different ways. Single particles were considered to have one COM, while mixed

particles have more than one COM. This is because mixed particles are likely to split into two

smaller particles. Because of their bigger size and possible changes in their shapes, the

movement of their COM might be bigger. Mixed particles can also have different shapes. For

instance, they can be horizontal and oblique (in descending or ascending direction). These

shapes are recognised by comparing the width and the length of each particle. Figure 3.7

presents an example of different shapes of mixed particle: a) oblique-ascending; b) oblique-

descending; and c) horizontal.

Figure 3.7: Different forms of mixed particle.



29

Based on the length and width of the mixed particle, if the width of mixed particle is less than

the length, the shape of mixed particle will be horizontal; if the width is greater than the length,

the mixed particle will be in oblique form. It should be noted that the length and width of mixed

particles can be calculated by the following equation:

iLeastiGreatestLength __ 

jLeastjGreatestWidth __ 

Here Greatest_i and Least_i refer to the highest and lowest coordinate numbers of detected

mixed particle in the X axis, while Greaatest_j and Least_j are the highest and lowest coordinate

numbers of detected mixed particle in the Y axis, respectively. The following figures illustrate

examples of models of the coordinates of the COMs of the mixed particle in oblique form.

Figure 3.8: Coordinates of the COM of the mixed ascending particle.

Figure 3.9: Coordinates of the COM of the mixed descending particle.

By comparing the coordinates of yLeast_i and yGreatest_i the ascending and descending form

of mixed oblique particle can be recognised. In other words, if yLeast_i is bigger than

yGreatest_i then the oblique particle will be in ascending shape, otherwise it will be in

descending form.



30

After recognising different forms/shapes of the mixed particle, calculating the COMs of mixed

particles are taken into account. As mentioned earlier, due to the division of mixed particle into

two smaller particles in time, it is necessary to calculate two COMs for mixed particle. To

approach this goal, calculations of two COMs are separately considered based on the distance of

the lowest coordinate (least_i and least_j) of detected mixed particle to each COM with respect

to the length and width of particle. Figure 3.10 shows an example of length comparison for

mixed horizontal particle.

Figure 3.10: COM of mixed horizontal particle.

The following equations are used to calculate the COMs of mixed particles:

Mixed ascending particles:

jLeastWidthY

iLeastLengthX

COM

COM

_4/)3(

_4/)3(

1

1









jLeastWidthY

iLeastLengthX

COM

COM

_4/

_4/

2

2









Mixed descending particles:

jLeastWidthY

iLeastLengthX

COM

COM

_4/

_4/

1

1









jLeastWidthY

iLeastLengthX

COM

COM

_4/)3(

_4/)3(

2

2









Mixed horizontal particles:

jLeastWidthY

iLeastLengthX

iLeastLengthX

COM

COM

COM

_2/

_4/)3(

_4/

2

1

















31

For particles located on boundaries the coordinates are inconsistent. It means that grid points in

the same particle will have more than 120 number of grid points distance from each other (with

respect to grid size). In this case, by calculating the sum of grid points’ coordinates, the COM

can be calculated in the middle of the grid. In order to resolve this issue, PBCs were considered

when a particle is on any of the boundaries. Periodic boundary conditions have been applied in

eight situations. A particle can be on width boundaries, length boundaries or in all corners.

Figure 3.11 presents the boundary conditions in different situations: a) PBCs in length

boundaries (left, right); b) PBCs in width boundaries (top, bottom); c) PBCs in corners.

 (a) (b) (c)

Figure 3.11: Examples of periodic boundary conditions in different positions.

3.2.3 Tracking Next Particle

A new target tracking method is an enhanced technique based on COM which is used to track

the trajectory of particles. So far, all particles were detected in each time step (all grid points in

each particle was assigned a unique number) and the COM of each particle was calculated. In

this section the original idea is to use the COM and the expectation of particles movements in

order to track the particles in each time step. These movements are effected by the direction and

strength of a shear flow. Each particle cannot move more than a certain number of grid points

forward, up and down on a lattice system. The particles according to the shear’s direction also

cannot move backward. The reader is reminded that the most important parameters affecting the

morphology of diblock copolymers are the volume of the two polymers, temperature and

external fields [18, 37]. In fact, the control of long-range order in structures is essential and

important for any application in chemistry and material science. For example, the usage of

diblock copolymers in any applications needs production of exceedingly ordered and free of

defect structures. To achieve this goal, external fields such as electric field, surface fields or

shear flow are playing important roles. Therefore, shear flow is applied to achieve a stable

system with defect-free and highly ordered structures [18]. Although temperature is a very

important parameter to tailor certain morphology, to accomplish a stable system requires

considering an external field. According to section 2.3, when the shear flow is between 0.001

and 0.0001, the system obtains the spherical morphology with a hexagonal order (stable and

perfect system), therefore all simulations results were executed with 0.0003 and 0.20 rates of

shear flow and temperature respectively.

32

To identify the certain displacement of particle, frequency as a statistical method has been used

to specify the movements of all particles in each time. In fact, frequency as a statistical method

counts the total number of values which fall into specific samples or ranges. In order to

calculate the frequency of particle movements, displacements of 10 random particles in 100

time-steps were taken into account and in total 1000 COMs of particles movements have been

used. The following figures show how frequent the particles have travelled for certain

displacement. The horizontal axis represents displacement magnitude and the vertical axis is the

frequency of displacement happened. The square dots demonstrate frequency of certain

displacements happened with respect to the displacement magnitude (in number of grid point

terms) by random particles.

Figure 3.12: Frequency of data occurrence and movement of random particles in sequence time

steps in X direction.

As shown in Figure 3.12 the most frequent number of grid points for a particle movement in X

direction is around 5 grid points. Moreover, no movement has occurred in X direction exceeding

8 grid points. Based on this statistical result on particles’ movement in X direction, 9 grid points

is chosen as the limit of movements.

 The same study was conducted for movements in the Y direction and 4 grid points were

selected as the limit of travels in Y direction. According to Figure 3.9, the most numerous

number of grid points for a particle movement in Y direction is between 0-0.2 and no movement

occurred in the Y direction exceeding 4 grid points.

0

50

100

150

200

250

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

F
re

q
u

en
cy

Movement in X direction

33

Figure 3.13: Frequency of data occurrence and movement of random particles in frequent time

steps in Y direction.

In the current method, the initial time step is the reference time step, and the time step within

which the considered particle is tracked is the current time step. Consequently, to find the

considered particle in current time step, movement of COM from reference time step is

considered, and periodic boundary conditions are also taken into account in all calculations. For

instance, suppose particle A is in reference time step and the COM of particle A explains its

reference position. In the current time step, particle A has moved forward in the X direction and

might have variations in Y direction to up and down. This movement is estimated not to exceed

9 grid points in X direction and not more than 4 grid points up and down.

9___  AAA RXCXRX 

4__4_  AAA RYCYRY 

Here 𝑋_𝑅𝐴 explains the X coordinate of particle A in reference time step, 𝑋_𝐶𝐴 is its X

coordinate in current time step. 𝑌_𝑅𝐴 and 𝑌_𝐶𝐴 refers to the Y coordinate of particle A in

reference and current time step respectively.

 Figure 3.14 illustrates example of tracking particle between reference and current time steps.

the program searches inside the current time step for the particles with a COM from reference

time step and 9 grid points forward as well as 4 grid points in Y direction up and down.

0

50

100

150

200

250

300

350

400

450

500

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

F
re

q
u

en
cy

Movement in Y direction



34

Figure 3.14: Illustration of movement of particle in time steps.

3.3 Benchmark Results

3.3.1 Segmentation Results

This part demonstrates the benchmark results of segmented outputs of CDS simulation with

respect to a chosen value which differentiates between the two blocks (A, B), named distinguish

value. Distinguish value is a value which specifies the most suitable criterion of  for dividing

the particles into two groups of zero and one. In order to distinguish between two components

different scales can be used. Choosing different numbers to separate two components from each

other can allocate a bigger or smaller range to each polymer and change the size of the particles.

Although this allocation can change the size of particles, this makes scant difference to their

centre of mass (COM) coordinates. In fact, shrinking in size occurs in all directions it does not

have any noticeable effect on COMs coordinates. Accordingly, the distinguishing value is chosen

to be 0.0 with the intention of leaving enough space between the particles and making the outputs

more accurate for analysis. Therefore, according to the range of values between two components

() which was within [-0.9, 0.9], 0.0 is set as a distinguishing value for making the efficient

division in this interval and this value will give equivalent weight to both components.

 The following figure presents the segmented outputs between two components of a spherical

system into zero and one, in which grid points with the value of one refer to the parts with

originally positive values (particles). On the other hand, grid points with the value of zero are

the grid points with negative original values (polymers around the particles). The total

simulations were run on a 128128 lattice for up to 100,000 time-steps with 0.0003 shear flow

rate. It should be noted that Figure 3.15 shows the segmented output for the last time-step

without any specific scale.

35

Figure 3.15: Segmented outputs of CDS in spherical system.

3.3.2 Benchmark Results for Detecting and Calculating COMs

Having distinguished between two components and obtaining the morphology of the system by

assigning one and zero to related grid points, detecting particles becomes possible.

Subsequently, the detection program explained in the previous section is applied to the

segmented outputs. In total 154 particles were detected in the last time-step of simulations run

on a 128128 system size for up to 100,000 time-steps, each of which was assigned and

labelled with a unique number and separated from the rest of the system.

 It is also important to draw attention to the periodic boundary conditions effect. There are

some particles on the boundaries of the grid. The program successfully detected these particles

and labelled them in the two sides of the boundary identically.

36

Figure 3.16: Second quarter part of detected particles.

After segmenting and identifying the domains into two categories calculating the COMs of

detected particles becomes possible. As discussed previously, the COM of each particle is

calculated based on its size. There are two types of particle according to their size and shape:

single and mixed particles. The larger particles (mixed) can have three different directions:

horizontal, oblique in ascending and descending way. To increase the accuracy of tracking, it is

necessary to calculate two COMs for each of the mixed particles. For instance, particle 66 in

Figure 3.16 is calculated as a mixed particle.

3.3.3 Results of Multiple Particle Tracking

This section presents the results of tracking the next position and dynamic behaviour of particle

with respect to time evolution based on the new computational technique. In order to plot the

track of each particle, the COM of the detected particle in each time step is used. As explained

previously, the COM of each particle represents its position. The coordinates of particles are

plotted in an X-Y coordinate system to illustrate the track of particles. In Figures 3.17 and 3.18

the numbers on X and Y axes represent the position in the grid with respect to the grid cells and

do not have any specific unit. Each circle refers to the COM coordinate of the particle in one of

the time steps.

37

According to the periodic boundary conditions applied in the system, each particle travels in the

length of the grid more than one time. The current simulation was executed on a 128128 grid

points system for 100,000 total time-step with 1000 time interval. Therefore, each particle

moves approximately four times along the grid for a total of 100 time-steps. In each graph the

movement of particle is tracked from one side of the simulation lattice box to another side. In

the following figures, the whole journey of particle number 9 is illustrated and the movement of

particle is tracked with different colours for each travel from the beginning of the lattice to the

end.

(a)

(b)

(c)

(d)

Figure 3.17: Trajectory of particle number 9 in different rounds.

38

Figure 3.18: Entire trajectory of particle number 9.

From the above figures it can be seen clearly that the trajectory of particle 9 in each movement

is getting straighter. The main reason is the stability of the system according to the time-steps.

The trajectory line is linear and becomes a plateau in the last time-step of simulation. In fact, the

ratio between total time-steps and system stabilisation is positive. Figure 3.19 shows the number

of detected particles on 128128 system size based on the different time-steps. The differences

between numbers of detected particles in each time-step refer to the mixing or splitting of

particles in different time-steps.

Figure 3.19: Number of detected particles.

39

Finally, it is also possible to illustrate the dynamic movement and behaviour of one or more

particles concurrently based on the new method. The movement of each particle in the grid can

be seen during the time. The value of grid points being the same as assigned number to detected

particle and the colour of each particle is related to its number. Figure 3.20 presents the

concurrent movements of three particles (70, 134, and 145) in 128128 lattice system. The

particles in red and orange are considered to be in the mixed/merged particles category, while the

particles in green are single particles.

Time step-1 Time step-2 Time step-3 Time step-4

Figure 3.20: Concurrent dynamic movements of multiple particles.

Time step - 66 Time step - 67 Time step – 68

Figure 3.21: Division of mixed particle 134.

40

3.4 Flowchart of Computational Algorithm for Detecting and Tracking

41

Figure 3.22: Flowchart of the program.

42

3.5 Summary

A novel particle tracking technique
1
 for a spherical phase diblock copolymer under a shear flow

has been developed and presented. Two frameworks have been proposed to achieve the

computational technique of tracking particles. In detection framework, neighbouring search

technique is used for detecting particles and reconstructs the time-lapse of detected particles. In

tracking framework, the centres of mass of particles have been calculated and particles were

tracked based on their centres of mass and the movements in each time step. The proposed

method was examined with various test cases and satisfactory results in terms of accuracy and

concurrently tracking of particles were achieved, giving confidence in the technique developed

in this study. The numbers of detected particles also changed in time until the whole system

reached equilibrium (with no more changes after that specific time-step). Detected particles

mixed and divided in time evolution.

1
 H. Soltani, D. Ly and W. Ahmed, “Computational Technique of Particle Tracking”, Fourth Annual

Research Student Conference, UCLAN, Preston, December 2014.

43

CHAPTER FOUR

4 Performance Analysis and Computational Throughput

When introducing new hardware architectures, it necessary to adapt programing languages that

can support new hardware features. This fact raises a challenge and issue for scientific

programmers to obtain the best throughput, performance and functionality. In fact, different

scientific programs and applications which have existed for many years to solve specific

problems must be updated to reflect the newest architectural systems. Consequently, based on the

mixture of program size (number of code lines) and the cost of modification, it is important to

consider new features such as scalability and portability and identifying bottleneck regions of

code to answer the functionality challenges over the course of different platforms/architectures

and improve the throughput and performance of code.

 In this chapter we focus on computational throughput and performance analysis which

involves four different perspectives: code optimisation, performance modelling, visual profiling

and benchmarking.

4.1 Benchmarking

Different hardware architectures have different theoretical peak of performance and throughput

based on floating point operations per second (FLOP/S); in reality it is difficult to obtain this

peak of throughput. In effective (achievable) level, most current hardware architectures consider

a single precision for calculation an instruction stream in SIMD execution units, which

sometimes is less accurate compared to double precision [63]; less accuracy refers to the different

rounding strategies for the addition, subtraction, multiplication and division operations between

single and double floating point. In fact, the floating point calculations should be rounded in

order to match/fit into a finite number of bits in memory, which is 32 bits for single precision and

64 bits for double precision.

 On the other hand, use of double precision is not very straightforward due to the memory

limitation and differences between the number of operations such as multiplication and addition.

Therefore, there is extensive research on different metrics to decrease the gap between theoretical

and effective level, to improve the arithmetic performance and to demonstrate the real

performance obtained by program. To this end, benchmarks as pieces of code can help us to

gather different data such as effective throughput and effective memory bandwidth.

44

There are two types of benchmarks: kernel or micro benchmark, which refers to low-level

specifications and information of hardware; and application or macro benchmark, which

indicates high-level hardware architecture information. The most well-known micro for the first

type of benchmark is LINPACK [64], which can be used to specify a system’s sustained FLOP/s

rate or STREAM to assess the memory bandwidth [65]. However, it is complex and difficult to

determine the performance and throughput metrics produced by kernel/micro benchmarks for

multifaceted programs. Kernel benchmarks are mainly about general drifts and trends in

hardware [66]. In fact, the communication and interaction between different hardware sections is

more likely to be an outcome in lower throughput and performance than that produced by kernel

benchmarks, and also the behaviour of some low-level components such as data cache are

difficult to be measured by kernel benchmarks.

 The latter type is more popular in engineering and scientific research, and it can be utilised to

define information about the computational behaviour of specific programs. Well-known and

popular examples of macro benchmarks include the NAS Parallel benchmark developed by the

NASA Ames Research Centre [67]; and the ASC benchmark suite developed by the Los Alamos

and Lawrence Livermore National Laboratories [68]. These benchmarks mainly effect a

breakdown of the execution time, such that the performance and throughput bottlenecks of

different applications can be recognised. This type of benchmark can be used with other types of

performance analysis (visual profiling) to help identify performance bottlenecks in programs.

4.2 Visual Profiling

In many cases, considering the low-level and high-level benchmarks for identifying the

effective performance and throughput of program is not easy and even not all programs can be

split into enough low level to specify the bottleneck of program and to determine the effective

performance. Therefore, it is necessary to utilise a visual profiler as a tool to monitor the whole

program during time executions, enabling developers and programmers to evaluate high level

performance analysis in terms of: (i) execution time [69, 70]; (ii) time spent for copying,

synchronisation, reading and writing [71]; and (iii) memory usage [72, 73]. They must also

study low level metrics such as kernel performance and L1 cache or shared memory

consumption [74]. In addition, visual profiler provides this chance to profile and monitor the

whole program in both cases (low and high levels) without any changes in the source code.

 The visual profilers used in this study refer to the NVIDIA NSIGHT ECLIPSE which is part

of CUDA toolkit and Intel Vtune Amplifier which is visual performance analysis. Nsight

Eclipse visual profiler is a combined CPU and GPU integrated development environment (IDE)

for monitoring and implementing CUDA programs, to help programmers on all levels of

benchmark metrics (low and high) and to support developers on different steps of the program

45

development pipeline [75]. Some of the main functions of Nsight Eclipse visual profiler are as

follows [76]:

 Source code editor with support of CUDA C and C++

 Graphical user interface for debugging programs

 Visual profiler for source code

 Visual profiler for optimising program performance

 Program lifecycle management

 Compiler integration

 Occupancy profiler

 Memories profiler

Therefore, the method of profiling utilised in this research is to use source code directly. In fact,

by instrumenting the whole source code on profiler, different situations can still be addressed,

such as the performance of one specific kernel or the performance of a whole program in total

execution time.

4.3 Code Optimisation

After breaking down the source code into different levels and identifying the bottleneck regions

of a program, code optimisation can play significant role of performance and throughput

analysis. Code optimisation can be divided into four main forms: (i) sub-code transformations to

decrease the number of instructions (e.g. loop unrolling and tiling); (ii) rewriting code to be

compatible with new hardware architectures (e.g. SIMD and vectorisation) [77]; (iii) using L1

cache or sheared memory to improve throughput and cache behaviour [78, 79]; and (iv)

considering totally new algorithm with less computational complexity, more scalability and

portability (this form of code optimisation is more demanded in parallel computing) [80]. It

should be noted that in many cases analysing and measuring performance enhancements of code

optimisation can be done against the original or baseline code which execute in the same

specification and configuration system. In parallel computing, complex computation and

arithmetic intensive parts move to accelerator section (e.g. GPU) and measuring performance

improvements is performed based on the comparisons between parallel code using accelerator

(GPU) and optimised or un-optimised CPU code with consideration of same floating point and

same system scales [81, 82, 83].

 Following parallel computing, ‘directive’ based programming can be used as a flag (pragma)

to transfer the parts of complex computation code to an accelerator. Different application

programs interfaces (APIs), such OpenMP [84, 85] and OpenACC [86, 87], support this ability.

This approach helps developers to improve the throughput of application and to be compiled

46

with different compilers (cross-compiled) for an accelerator. For instance, OpenACC and

OpenMP programming standards are supported by different compilers from Intel, CAPS and

PGI [84, 88]. Although this approach enhances the throughput of program, it should be noted

that it still requires a code optimisation to achieve an efficient performance [89]. Another

method/approach is ‘active libraries’, which allow programmers to handle the optimisation issue

in a high level specific manner. In fact, this approach refers to leave the code optimisation and

implementation to smart compiler and libraries. Although some examples (such as OP2 [90] and

Liszt [91]) exist for this type of approach, to our knowledge the current generation of smart

compiler and libraries are not very accurate, precise and expressive to handle a complex

program into a binary optimised mode. In fact, the compiler does not have enough knowledge of

the data dependencies, the problem of domain or how the code will be executed, thus it cannot

make definite hypotheses and assumptions. Drawing on this background, in this thesis we

consider different optimisation approaches based on different situations such as code

transformation, vectorisation, SIMD intrinsic, memory access pattern, coalescing global

memory access, kernel fusion and a new algorithm with lower complexity, divergent paths and

synchronisation coordinates. Finally, we strive to obtain a reasonable comparison of CPU and

GPU as much as possible by using all available resources in both architectures.

4.4 Performance Tuning

Performance tuning contains a group of techniques that can help to estimate the effective

performance and throughput of program. In fact, performance modelling/tuning, by identifying

performance bottlenecks of program and evaluating the influence of code optimisations in the

development process, helps to predict the effective performance of application in new

architecture, and decreases the gap between maximum arithmetic performance and achievable

performance [92, 93, 94]. In this context, the main technique of performance tuning refers to the

‘analytical calculation and modelling’ where computational throughput, execution time and

memory bandwidth are presented mathematically as equations. The main benefit of analytical

calculation is fast evaluation and prediction of program performance and throughput. However,

the parametrisation of equations is not straightforward and needs a good understanding of code

behaviour and hardware architecture.

 The following equation shows analytical calculation of effective memory bandwidth for a

program based on GPU [95].

   910/  tWRBW BBEffective 



47

Where EffectiveBW indicates the effective bandwidth in units of GB/s, BR refers to the number of

bytes read per kernel, BW is the number of bytes write per kernel, and t refers to the execution

time given in seconds. In fact, in many cases a big percentage of programs are memory

bandwidth bound, therefore analytical calculation of effective memory bandwidth helps to

understand the bottlenecks and to improve performance of programs.

 The theoretical bandwidth can be identified by hardware specifications. For instance, the

Tesla M2050 NVIDIA GPU with double data rate RAM (DDR), 1,546 MHz memory clock rate

and 384 bit memory interface has 148 GB/s theoretical memory bandwidth [95].

  96 10/28/384101546 lTheoreticaBW .

In theoretical bandwidth calculation, memory clock rate convert to Hz, memory interface

converts to byte and multiply by 2 because of dual interface rate, and finally the whole result is

divided by
910 to convert the unit to GB/s.

 Equation 4.2 demonstrates the calculation of effective data throughput (memory bandwidth)

by knowing the process of accessing data in a program. Another essential analytical metric that

directly relates to the program’s algorithm and code optimisation is computational throughput.

As with theoretical peak bandwidth, maximum theoretical computational throughput depends on

hardware architectures. For instance, the maximum theoretical throughput for the same NVIDIA

TESLA M2050 GPU device for single precision floating point throughput is 1030 GFLP/s, and

for double precision floating point it is 515 GLOP/s. In the effective computational throughput

context, the following equation can be used to calculate computational throughput [95, 17]:

 910/  tEOPCT NNEffective .

Where OP refers to the number of operations, E indicates number of data elements in a program

and t is execution time in seconds. However, calculating effective computational throughput in

complex programs is very difficult and laborious. Accordingly, it is more beneficial and helpful

to utilise visual profiling and analyser to understand the effective computational throughput of

program and to identify bottlenecks issues in computational throughput, which can be useful to

optimise and improve performance.

Finally, analytical modelling of total execution time that can be used to evaluate and estimate

execution time of program is:

  OverheadationSynchronisOverlapionCommunicatnComputatioTotal TTTTTT  .





48

Here TotalT refers to the sum of elapsed time of arithmetic calculation and communication

(transferring data), minus the total time that arithmetic computation and communication

consumed concurrently, plus the last two terms which refer to the overheads of synchronisation

and communication for data transformation, which cannot be overlapped. This type of analytical

modelling can obtained high levels of precision on different types of program in numerous

scientific fields and applications [96, 97].

49

4.5 Summary

This chapter presented performance analysis and computational throughput from different

aspects. We adopted these techniques in this thesis, specifically code optimisation, to make a

comparison between baseline source code and optimised source code on CPU, using directive-

based programming (OpenMP) to consider parallel computing for optimised source code on

CPU and to develop a new algorithm with less computational complexity, more scalability and

portability for GPU. We used visual profiling to identify and evaluate different types of

bottlenecks in computational and data throughput for improvement the performance of cell

dynamic simulation program. Finally, we explored analytical calculation of performance

modelling with the concept of theoretical peak and achievable peak for data and computational

throughput and total elapsed time. Finally, because of the complexity, difficulty and size of

scientific programs, these techniques are becoming usual and common for analytical

computation and performance analysis [98].

50

CHAPTER FIVE

5 Parallel Computing and Programming Model

This chapter explores the concept of parallel computing and parallel architectures, and discusses

different terminology related to parallel computing. Traditionally, computer architectures were

based on serial executions and they did not support for feature parallelism. In serial processing a

problem/program divides into different series of commands by which instructions are performed

seriatim. Serial computing is mainly performed on a single processor, whereby only one

instruction can be executed at a time. Clearly this type of execution is not suitable for complex

and expensive computations, and it causes long time delay to solve problems. The following

figure shows an example of how a problem can be executed in serial computation.

Figure 5.1: Example of serial execution.

 Parallel computing is the obvious answer to solve expensive and complex problems with less

time consumption. In parallel computing a problem is divided into separate and distinct

sections, each of which is further split into a series of commands and instructions, which can be

executed concurrently and simultaneously on multiple processors. In other words, parallel

processing solves a problem by utilising multiple resources (processors) simultaneously.

Resources are mainly divided into two categories: (i) a computer with multiple processors, and

(ii) group of computers with multiple cores that are connected to each other on network. Figure

5.2 illustrates how a problem can be executed in parallel execution.

51

Figure 5.2: Example of parallel execution.

It should be noted that there is a difference between the concepts of concurrency and

parallelism; the former refers to the properties of a system when multiple tasks can be

progressed at the same time while the latter utilise the concurrency of a system to actually

execute tasks simultaneously. The following figures present examples of concurrent and parallel

execution.

Figure 5.3: Concurrent execution.

 In Figure 5.3 each colour indicates active tasks in a block being performed sequentially and

in mutual swapping, while their simulation execution is in parallel. Figure 5.4 demonstrates

concurrent and parallel executions, in which all tasks are executed at the same time in a block.

Figure 5.4: Concurrent and parallel execution.

52

In regard to the concurrent and parallelism concepts, applications or programs are classified into

two classes: (i) concurrent program, and (ii) parallel program. Concurrent program has

concurrency built in the problem definition. A good example of concurrent application refers to

web server designed to be concurrent from beginning to take concurrent inputs. In parallel

application, tasks are executed at the same time for faster processing or to handle a bigger

amount of problems. In fact, in concurrent application, there is no answer to identify the

problem without concurrency, because of the concept of a problem. Figure 5.5 shows the

relationship between program, concurrent program and parallel program [99].

Figure 5.5: Relations between program, concurrent program and parallel program.

 In 1960 Gene Amdahl introduced a formula to calculate the potential program speed-up by a

portion of code which can be parallelised [100]. In other words, Amdahl’s formula (known as

Amdahl’s Law) demonstrates that a fraction of a program that cannot be parallelised will impact

directly on the whole speed-up obtainable from parallelisation, and the expected speedup of the

parallel program over the serial program when using N processors is dictated by the proportion

of a program that can be made parallel. The following equation states the maximum speed that

can be calculated based on Amdahl’s Law [101]:

 
 

.

1

1

N
p

p

NS





Here p refers to the fraction of code that can be parallelised,  p1 indicates the portion of a

program that cannot be made parallel, S is the speed-up, and N is the number of processors.



53

Relative to Amdahl’s Law, Gustafson proposed a new law about the speed-up with N

processors. Gustafson’s Law states the whole amount of the work can be executed in parallel

while linearly different based on the number of processors [100, 101].

     1PPS .

Here P refers to the number of processors, S indicates the speed-up, and  is the serial part

(not parallelised) of a program. In fact, by introducing new hardware architectures, and more

resources becoming accessible, Amdahl’s Law, which was based on fixed size of problem (i.e. a

portion of code can be executed in parallel, separate and independent of the total number of

processors) is no longer realistic for the evaluation of parallel performance, while Gustafson’s

Law offers a more accurate evaluation of parallel performance. Table 5.1 presents an example

of the Gustafson’s law with 0.1 percentage of , and various numbers of processors.

Number of processors Non-parallelised

portion (percentage)

Speed-up

10 0.10 9.1

100 0.10 90.1

120 0.10 108.1

150 0.10 135.1

Table 5.1: Example of Gustafson’s law speed-up.



54

5.1 Parallel Terminology

Parallel computing comprises many terminologies which are important to explore for a better

understanding the context of parallel computing.

 Central Processing Unit (CPU): also known as the processor, core, and socket based

on singular execution or multiple executions. CPUs are mainly divided into two

categories: (i) scalar processor, and (ii) vector processor. A scalar CPU performs

computation on each single data packet separately, one at a time. On the other hand, a

vector or array processor performs computations on one dimensional array/vector

concurrently and simultaneously enhances the performance of a system [102]. Most

modern CPUs support vector processing.

 Task: a program which comprises group of instructions to be executed by a processor

or multiple processors. In fact, a task indicates a logically distinct portion of

computational job.

 Shared Memory: this divides into two aspects: (i) hardware aspect - physical memory

that all cores/processors can access; and (ii) programing aspect - defines a model that all

parallel tasks can read, write and access to the identical logical memory.

 Symmetric Multi-Processor (SMP): indicates shared memory parallel architecture by

which multiple processors have equivalent access to all resources.

 Distributed Memory: network parallel architecture whereby all computers (nodes) on

a network use communication to utilise resources on other devices.

 Communication: in parallel computing, communication generally means data

exchange between instructions of parallel tasks, which can be in shared or in distributed

memory architecture.

 Synchronisation: in parallel computing, synchronisation is the coordination of parallel

computations in real time, by which a parallel task cannot be started until another task

reaches the same level [103]. Usually, synchronisation increases the execution time of a

program by adding a wall-clock.

 Overhead: the amount of elapsed time which no useful and beneficial work has

processed. Parallel overhead involves many issues such as synchronisation,

communications and data reading and writing.

 Scalability: the capability of parallel system to adopt new resources features, such as

program algorithms and hardware features, specifically memory bandwidth (data

throughput) and computational throughput.

55

 Massively Parallel: utilisation of a big number of processors to execute a group of

computation tasks simultaneously and concurrently.

 Embarrassingly Parallel: also known as perfectly parallel, this is when a program is

small and there is no need to distinguish groups of parallel tasks. In this type of

situation, there is no communication between parallel tasks.

 Granularity: the ratio between computations to communications in parallel computing.

Granularity is classified into two classes: fine grained and coarse grained. Fine grained

refers to small volumes of computational task with less data volume (frequently)

transferring between processors. On the other hand, coarse grained parallelism indicates

the huge volume of computational task with infrequent communication between

processors [104]. Fine grained parallelism improves the performance and speed of

program, but also increases the overhead execution time. In order to achieve the best

performance, the system should have a balance in granularity.

5.2 Flynn’s Taxonomy for Parallel Computing

Flynn’s classification has been one of the most utilised taxonomies for parallel and sequential

computing since 1966. In Flynn’s classification, multiple processor computer architectures are

categorised based on the two parameters of instruction stream and data stream, each of which

can only use a single or multiple set of instructions and data streams [105, 106]. According to

the Flynn’s taxonomy there are four different classifications of parallel and sequential

computers: SISD, SIMD, MISD and MIMD. It should be noted that the term ‘stream’ indicates

a sequence of data or instructions process by the CPU in one complete cycle. Figure 5.6 presents

example of instruction and data stream. Therefore, the group of instructions processed by the

CPU are called the instruction stream and a dataset is needed for processing instructions, called

a data stream. Table 5.2 demonstrates different types of Flynn’s taxonomy.

Figure 5.6: Instruction and data stream.

Memory CPU

Data Stream

Instruction Stream

56

Flynn’s taxonomy Description

Single Instruction,

Single Data (SISD)

This class of Flynn’s taxonomy refers to the sequential computing by

which only single instruction can be performed on one CPU (single

processor) in one clock cycle, and just one data stream can be utilised

as input data in one clock cycle [107, 108]. Scalar processor is

categorised in the SISD classification of Flynn’s taxonomy. SISD

processing is shown in Figure 5.7.

Single Instruction,

Multiple Data

(SIMD)

SIMD is another type of parallel computer in Flynn’s taxonomy by

which multiple processors process a single instruction or the same

operation with multiple data streams simultaneously, in parallel. In

SIMD type, instructions have to be completed by assigned processers

before other instructions can be started for execution [109].

Consequently, synchronisations exist for the execution of operations in

SIMD. Vector/array processors and GPUs are classified in this type of

Flynn’s taxonomy. Figure 5.8 illustrates SIMD computation model.

Multiple Instruction,

Single Data (MISD)

In MISD model, each processing unit processes different instructions in

the same data stream. This type of Flynn’s taxonomy is not very

common compared to the other types of parallel techniques.

Multiple Instruction,

Multiple Data

(MIMD)

In this technique, each processing unit processes different instruction

streams on different data streams. Instruction executions in this type of

Flynn’s taxonomy can be synchronous or asynchronous. It should be

noted that MIMD technique comprises an SIMD class of parallel

computing.

Table 5.2: Flynn’s taxonomy types.

Figure 5.7: SISD model, where CU refers to Control Unit and ALU is Arithmetic Logic Unit.

CU ALU Memory

Instruction Stream Data Stream

57

Figure 5.8: SIMD Computation model.

5.3 Parallel Programming Model

New hardware architectures are highly parallel and they are not limited to any specific type of

parallelism or parallel memory architecture. This section explains different types of parallelism

and then details different parallel programming models utilised in this study based on the

different types of parallelism. In general, there are four main types of parallelism: (i) bit level

parallelism; (ii) instruction level parallelism; (iii) task level parallelism; and (iv) data level

parallelism.

1. Bit level parallelism: this is one of the earliest forms of parallel computing, based on

increasing processor word size. A word in computer science is a unit of data that can be

used by a processor to perform a single operation, and the total number of bits in a word

refers to the word size or word width. In bit level parallelism, by increasing the number

of word size, the number of instructions the processor should process decreases which

helps to process instructions that are bigger than word width [110]. For instance, if we

have an eight-bit processor and sixteen bits of instruction, then the processor needs to

perform two times to finish a single operation. Therefore, it has a direct impact on the

performance of system. Modern computer architectures are typically x86-64, which

refers to 64-bit processor.

2. Instruction level parallelism (ILP): this refers to how many instructions in a computer

can be processed concurrently and simultaneously. While new hardware architectures

handle ILP in different types, older processors can also support this level of parallelism

in a different format called speculative execution. In this type of execution, operations

or instructions are not following the same order of executions in a program, and as soon

as the instructions are available they can be executed, whether or not they are needed.

However, this type of execution in older processors helps to improve the performance

58

of systems compare to sequential execution. It should be noted that developing a

program to consider maximum level of ILP is a complex and difficult job that needs

good comprehension of the program and target hardware architecture. Other important

factors of instruction level parallelism indicate data dependency between

operations/instructions and how to map instructions to target hardware architecture

(scalability and portability) [111]. Moreover, different techniques (such as loop

unrolling and pipelining) of instruction level parallelism for enhancing performance and

throughput currently are supported by task and data levels parallelism [112].

3. Task level parallelism: different computations can be processed on the same or different

groups of data in task level parallelism, in contrasts to data level parallelism in which

same computations can be performed on the same or different groups of data [107]. In

this level of parallelism tasks are divided into smaller portions called sub-tasks, each of

which is assigned to a processor or thread for simultaneous execution. Cluster hardware

computer architectures and multi-core computers offer task level parallelism.

4. Data level parallelism: this is another type of parallel computing in which the same

types of instruction are performed on the same or different vectors of data. SIMD of

Flynn’s taxonomy is classified into this parallelism.

In addition to different levels of parallelism and programming models, Figure 5.9 presents

the concept of parallelism mapped to software and hardware aspects.

Figure 5.9: Relations between parallelism, hardware and software.

It can be seen in Figure 5.9 that cluster and multi-core computer offer task level parallelism,

which supports multiple threads or cores separate and simultaneous task execution. OpenMP as

a multi-threading application program interface is used in this research. SIMD refers to data

59

level parallelism in which each instruction is executed on the same or different vector of data,

and superscalar processors deliver Instruction Level Parallelism (ILP). However, any of these

parallelism levels are able to utilise the underlying parallelism level (hybrid model). For

instance, any node in a cluster can have multiple cores, each of which can execute multiple

threads, and each thread can process SIMD instructions. This study investigates SIMD and

multi-threading via data level and task level parallelism more deeply.

5.3.1 SIMD/Vectorisation

The model of SIMD execution in new hardware architecture theoretically is comparable to the

vector processors in the 1980s, which could perform the same computations on one dimensional

vector concurrently and simultaneously. In SIMD execution model the number of different data

that can be processed by each instruction (SIMD width) varies from architecture to architecture,

and usually is less than vector processors, but on the other hand, modern hardware architectures

have higher Streaming SIMD Extensions (SSE) or Advanced Vector Extensions (AVX). For

instance, GPUs normally support 1024 or 2048 bit SIMD. Instruction set refers to the computer

architecture which involves data types, memory architecture, addressing modes, mathematic

operators and Boolean operators. Streaming SIMD Extensions (SSE) indicates extended

instructions (70 new instructions) in the x86 computer architecture that can be improved the

performance of system (new processor architectures support SSE4). Advanced Vector

Extensions (AVX) is extensions to the x86 instruction set computer architecture which mainly

refers to the extension of SIMD width register capacity [113]. For example, SSE 128-bit can

store four 32-bit single precision floating points or two 64-bit double precision values of x86

computer architectures. AVX SIMD is increased to 256-bit, and AVX2 is augmented to 512 bit.

 Traditional procedural programming languages such as C and FORTRAN are scalar-based

languages that were not designed to use SIMD execution model. In order to utilise SIMD

execution structure, the execution model should provide either auto-vectorisation compliers

which convert/transfer scalar program into a vectorised program or intrinsic/built-in functions in

scalar program for specifying vectorisations explicitly. Most programmers prefer to use auto-

vectorisation compilers to automatically transfer scalar code into vectorised program by

fruitfully unrolling the loop to match the size of computer architecture’s SIMD width. However,

in case of complex programs auto-vectorisation cannot address efficient vectorisation for

obtaining maximum performance [114]. In fact, the auto-vectorisation compiler has no

knowledge about the dependency of operations, how the program will be executed, or the

domain problem [114]. On the other hand, finding vectorisation explicitly with intrinsic

functions programming provides the best way to use SIMD execution model to obtain high

performance. Intrinsic functions method assigns computer hardware instructions directly and

60

specifies vectorisation explicitly, helping achieve high parallelism. However, this technique

needs a good sympathetic SIMD execution model and computer hardware capability.

Another way to utilise SIMD execution units refers to the combination of mentioned methods

which leads to the Single Program Multiple Data (SPMD) programming. SPMD is a high-level

programming model in which different tasks are divided and executed on multiple processors

simultaneously with different data streams [115]. In SPMD programming the whole program is

developed from the perspective of separate and independent tasks to execute parallel and

concurrently, which also facilitates easier auto-vectorisation. The most frequently used SMPD

refers to high performance computing (HPC) for cluster computers, and multiple cores

computer [116], but also shows a significant achievement for GPU NVIDIA’s CUDA

programming model [117].

5.3.2 Multi-Core – Multithreading

Traditionally, computer scientists believed that performance comes from hardware, thus adding

more clock speed and frequency on a processor provides better performance. This idea led

computer scientists to design hardware based on performance optimisation architectures for

many years. However, this idea failed due to increased power and cooling needs in architectures

with increased clock speeds, consequently they designed new hardware architecture based on

power optimisation rather than performance optimisation by adding number of cores [118].

Modern computer hardware is designed based on the power optimisation by having multiple

numbers of cores with low clock speeds, and effective support for concurrent and parallel

execution on all multiple cores. New computer architectures also provide the concept of hyper-

threading or simultaneous multi-threading (SMT), which allows multiple threads to execute a

program or sub-program (task) separately and independently by utilising the resources of a

distinct core. For instance, NVIDIA Quadro k5000 supports 192 threads per core, and usually

CPUs with x86 architecture support 2 SMT. The most common model of parallel execution for

multi-threaded programs refers to the fork-join model. In this model, fork indicates a master

thread which makes a number of parallel threads for parallel execution in parallel regions, and

when the number of threads finishes the tasks in the parallel sections, they will be synchronised

(join) and just leave a master thread [84, 88]. It should be noted that the number of threads and

number of parallel sections are arbitrary. The most famous application interface program that

used this model was OpenMP. Figure 5.10 presents the fork-join model.

61

Figure 5.10: Fork - Join model.

In OpenMP, there are different techniques to execute parallel region and assigning tasks to

different threads. These techniques are called work sharing constructs, and they involve: (i) do/

for work sharing construct, this type of execution shares iterations of a loop between numbers of

threads; (ii) sections work sharing construct with individual and separate sections, each of which

is processed by a thread; and (iii) single work sharing construct which executes a program by

single thread in the team, which is beneficial when mixing with other types of work sharing

constructs. The following figures show models of do/for construct and sections construct.

Figure 5.11: Sections work sharing construct.

Figure 5.12: Do/ For work sharing construct.

 The SPMD programming model can also be implemented in multi-threading, by which all

tasks are separate and distinct at compiler time, and the compiler is able to allocate tasks

between threads/cores in addition to (or instead of) SIMD instruction units without impacting

accuracy and efficiency. In NVIDA CUDA GPU programming model also threads are

congregated together into blocks which provide some guarantees about memory access pattern

and synchronisation within-block. However, it is not possible to ensure that all threads will be

performed and executed by the same core. In fact, threads within the same block can share and

access data but they cannot synchronise it with other threads within different blocks.

62

5.4 Parallel Computer Memory Architecture

Another important concept in parallel computer refers to parallel memory architectures. Parallel

computer memory architectures are based on two memory organisations: physical memory

architecture and programmer perspective of the memory. Physical memory architecture

indicates the local physical shared memory (e.g. multiprocessors), distributed physical memory

such as multicomputer, and a combination of two models, called hybrid architectures. The

programmer perspective of the memory considers accessing memory in a shared address space

and in distributed address spaces [103]. Consequently, there are three types of parallel computer

memory architectures: (i) shared memory architecture, (ii) distributed memory architecture, and

(iii) hybrid distributed shared memory architecture.

5.4.1 Shared Memory Architecture

In this type of architecture multiple processors or cores share the physical memory address

space (also known as global memory) and data can be transferred across cores based on the

global memory by accessing, reading, and writing shared variables. In this architecture,

processors can be executed separately and individually, but all cores access and share the same

global memory resources, thus a change in a memory address by one processor will be

noticeable to other processors. The shared memory organisation can also be classified based on

the way of accessing memory data, namely uniform memory access (UMA) and non-uniform

access (NUMA). In UMA class, all processors are identical and have equal access time to

memory. Symmetric Multiprocessor (SMP) computers, in which multiple processors are

connected together and linked to the shared memory via a central bus [119], are the most

famous machines using UMA architecture of shared memory. In SMPs there is no private

memory, but each core/processor has its own cache hierarchy, known as cache coherent. The

cache coherency helps if one processor changes or updates an address in shared memory, which

causes other processors to distinguish that specific change or update. Each SMP computer has a

multicore processor and different numbers of cores. Figure 5.13 illustrates the UMA of shared

memory model.

Figure 5.13: Shared Memory - UMA model.

63

NUMA model refers to type of shared model wherein the memory access time is based on the

memory position comparative to the processor. In this model, a processor access to the own

memory faster than other local memory in other processor or shared memory between cores

(access time to memories is not equal among processors). In other words, when physically

connecting two or more SMP computers together, there is a NUMA model and in general access

to memories over link is slower than UMA model [120]. Figure 5.14 presents the NUMA model

of shared memory, and Table 5.3 demonstrates the main advantages and disadvantages of

shared memory architecture.

Figure 5.14: Shared Memory - NUMA model.

Advantages  Global access to memory and address space is easy.

 More user-friendly (for programmers).

 Relatively faster to access memory and share data.

Disadvantages  Scalability issue between processors and memory; by connecting

more cores, more collisions occur.

 More programmer accountability and responsibility for

synchronisation, and having accurate data sharing in global memory.

Table 5.3: Advantages and disadvantages of shared memory architecture.

64

5.4.2 Distributed Memory Architecture

This model includes varying numbers of computers (nodes) which are connected to each other

through network. All data sharing and data transferring between nodes are based on the network

connections. A node refers to an independent computer on the network that comprises processor

and local memory. Data can be saved in the local memory of one computer/node on the network

or different nodes. It should be noticed that local memory for each node is private, and only the

local node can access its own memory, therefore the concept of global address space between

processors does not exist, and changes or updates of local memory do not impact on the other

nodes’ memories (i.e. there is no cache coherency). When a node requires data from another

node’s local memory, it should send a request to that specific node via a network. This process

can be performed by a message passing programming model, which is based on communication

between computers. The most common interface for this model refers to Message Passing

Interface (MPI). Figure 5.15 shows distributed memory model, and Table 5.4 demonstrates its

main advantages and disadvantages.

Figure 5.15: Distributed memory architecture.

Advantages  Each node on the network can access self-data rapidly, without

any overhead.

 There is no scalability issue between memory and processors.

Disadvantages  From the programmer’s perspective, the developer is accountable

for the whole process of communication between nodes and data

transferring.

 Non-uniform memory access times take longer to access and

transfer data (also depends on the network bandwidth).

Table 5.4: Advantages and disadvantages of distributed memory architecture.

65

5.4.3 Hybrid Distributed – Shared Memory Architecture

This model is a combination of shared memory architecture and distributed memory

architecture, sharing the criteria of both models. In this architecture, shared memory section can

involve a SMP computer or a graphic processing unit (GPU) machine. On the other hand,

distributed memory refers to the networking of different number of SMP computers or GPUs,

each of which has a private memory. Consequently, network communications are needed for

data transferring (message passing). It should be noted that ‘shared’ in this regard refers to the

sharing of address space, not of the single main (centralised) memory [121]. This type of

architecture is highly demanded for high-performance computing, and it is prominent in the next

generation of parallel computing models. The main advantages of the hybrid model concern

scalability improvement, while its disadvantages are the difficulty and complexity of

programming. Figure 5.16 presents the hybrid distributed – shared memory model.

Figure 5.16: Hybrid architecture.

66

5.5 Summary

New hardware architectures support different types of parallelism relative to programming and

memory models. Several scientific programs (such as Lattice Boltzmann, Molecular Dynamics

and Pipelined Wavefront) used different parallelism models, but utilising them accurately and

effectively for complex programs (e.g. cell dynamics simulation) in lower levels remains

problematic due to compound data dependency and a lack of memory access. This chapter

presented the concept of concurrency and parallelism to understand the differences between

them and how identifying concurrency can help to define the algorithm strategy of parallel

program. Task and data level parallelism were explained to justify their use in this research,

along with the fork-join model in OpenMP for multi-threading implementation.

67

CHAPTER SIX

6 GPU Many-Core Accelerator

Utilising multi-core GPU accelerator technology in high performance computing has greatly

increased over the last few years [122]. Since the late 1980s companies such as Microsoft

started to create graphical operating systems based on 2D display accelerators that delivered

hardware-assisted bitmap operations to help in the display and usability of graphical operating

systems [123]. In 1992, Silicon Graphics released the programming interface OpenGL Library

for writing 3D graphics applications. Later, other companies such as NVIDIA and ATI started

releasing graphics accelerators that were good enough to attract different scientific users. In the

early 2000s, GPUs were designed to produce a colour for each pixel on the screen by utilizing

programmable arithmetic units known as pixel shaders, which use an (X, Y) coordinate on the

screen combined with some other additional information, such as texture coordinates and input

colours to compute a final colour. Because additional information is totally controlled by the

programmer and the arithmetic being performed on the input colours, it is possible to compute

any data rather than input colours [124], thereby enabling GPU processing for non-graphical

purposes which is called general purpose computing on graphic processing unit (GPGPU). By

supporting fully and effectively programmable pipelines, GPGPU allows high performance

computing developers to benefit from GPUs’ high parallelism in different scientific programs

and engineering applications [125]. This chapter mainly demonstrates the programming model

and architecture of the GPU used in this thesis.

6.1 GPU Architecture Evolution

The demand for real time, high quality graphics in computer systems has been the motivation

and inspiration of graphic processors. The evolution of GPU started from a fixed function

pipelines to micro coded processors, from micro coded processors to programmable processors,

and from programmable processors to scalable parallel processors [126]. Scalable parallel

processors have a large number of GPU transistors providing high parallelism and performance.

To understand the architecture evolution of GPU, it is important to consider the concept of GPU

in terms of the graphics pipeline which refers to several inputs (vertices of triangles) which can

be executed different vertex operations and instructions, such as lighting and spatial

transformations to generate scene. Scene indicates the creation of 2D image that can include

textures transformed into pixels to produce the final image [127]. This process is known as

graphics pipeline which can be programmed by different application program interfaces. Figure

68

6.1 illustrates NVIDIA GeForce 6 series architecture that involves different levels of graphics

pipeline process [128].

Figure 6.1: NVIDIA GeForce 6 series architecture [128].

The salient feature of this model is the inequity of weight in the process between vertex and

texture processors (load balancing issue). For instance, primitive shapes utilise small amounts of

the vertex processors’ throughput, but a huge amount of the texture and fragment processors,

which causes inefficient usage of resources and wastage of computing power. To solve this

problem, in 2006 NVIDIA GeForce introduced 8 series GPU, which includes a unified shader

model that provides set of cores that can be processed and which support any level of the

graphics pipeline [129]. To this end, unified architecture provides graphics programming and

enables programming for non-graphical purposes. The most famous APIs which took the

benefits of unified shader architecture/model are: (i) OpenCL [130], (ii) DirectX 11, and (iii)

NVIDIA CUDA GPU. Figure 6.2 presents CPU and GPU architectures [131, 17].

Figure 6.2: CPU and GPU architectures.

69

According to Figure 6.2, it is clear that GPUs with more processing threads/cores is more

suitable for high performance computing and appropriate to execute computations with huge

dataset.

Another important factor in the evolution of GPU is the development of microarchitectures with

different compute compatibility. In general, compute compatibility is currently classified into

four main classes, each of which has sub-versions [131]:

1. Tesla microarchitecture with compute compatibility 1.x: this was the first

microarchitecture introduced by NVidia GPUs, which supported only fundamental and

basic calculations. In this class of compatibility, there was no cache between cores and

memory, no support of 3D grid of thread blocks, and no support of dynamic parallelism.

Double precision floating point number was added in sub-version 1.3 of this

architecture.

2. Fermi microarchitecture with compute compatibility 2.x: the fermi model was the

foremost leap in computational GPU microarchitecture and improved many important

areas of compatibility compared to former architectures. In this microarchitecture, two

classes of cache memory are developed (between processing cores and memory), thus

double precision performance improved. It also enhanced atomic operations (read,

modify, write), supported high level programming languages, enabled error correcting

code facility and 64 bit unified addressing, and increased computational resources such

as registers and number of cores [132].

3. Kepler microarchitecture with compute compatibility 3.x: in mid-2010, NVIDIA

presented a new microarchitecture for GPU called Kepler that involved three important

new features: increased number of streaming multiprocessors (SMXs or SMs), Hyper-Q

and dynamic parallelism [133]. Hype-Q increased the performance of the GPU by

allowing several CPU cores to simultaneously use a single GPU core. Dynamic

parallelism enhances GPU performance by allowing it to schedule and execute jobs

without including CPU resources. In fact, NVIDIA in Kepler microarchitecture is more

targeted toward programmability and energy saving [134].

4. Maxwell microarchitecture with compute compatibility 5.x: Maxwell micromodel is the

newest development of NVIDIA GPU. This architecture generally is same as the Kepler

model, with more improvements in resources (number of registers per multiprocessors

and number of resident blocks per processors).

70

In this study a commodity NVidia Quadro K5000 with Kepler microarchitecture (compute

compatibility 3.0) is used. The Quadro K5000 GPU is based on the first version/generation

GK104GL of Kepler microarchitecture which does not support Hyper-Q and dynamic

parallelism. The CPU to GPU copy (memcopy) bandwidth and GPU to CPU copy (memcopy)

bandwidth were measured as 5868.3 MB/s and 6532.2 MB/s, by utilising a benchmarking

program provided in the CUDA SDK. Figures 6.3 and 6.4 show the model of two key features

of Kepler microarchitecture compared to Fermi microarchitecture [135].

Figure 6.3: Hyper-Q model of Kepler microarchitecture [135].

Figure 6.4: Dynamic parallelism model of Kepler microarchitecture [135].

71

6.2 GPU Memory Architecture

GPU architecture has different types of memory to support the requirements and needs of

programming. In general, GPU memories are classified into two groups, on and off chip

memories. On chip memory involves registers and shared memory/L1 cache while off chip

memory comprises local memory, constant memory, texture memory, and global memory.

Obviously it is fundamentally important to achieve high performance in applications using the

available memories [136]. Figure 6.5 illustrates the different types of memory in GUP and

relationship between them and CPU.

Figure 6.5: GPU memory model.

Kepler generation NVIDIA GPUs comprise six different types of memory that can be utilised in

programming. It should be noted that texture and constant memories are read-only memories for

GPU, but CPU can read and write on global, texture and constant memories.

1. Global memory (DRAM): also known as device RAM, it is the biggest memory on the

GPU, residing off it. The main features of this type memory are its comparatively slow

in latency (400 – 600 clock cycles) [131], it saves data in global memory accessible to

all threads, and both GPU and CPU can read and write in global memory. The other

important point of this memory is the L2 cache, which provides a buffer to global

memory to increase access time [124, 131].

2. Shared memory/L1 cache: it is on chip memory with higher bandwidth and lower

latency compared to global memory. Each streaming multiprocessor comprises a 64KB

shared memory/L1 cache accessible to all streaming processors or cores within a

72

processor. In the Fermi architecture of GPU, L1 cache was a consistent automatic cache

for global memory, but in Kepler architecture L1 cache is utilized for local memory

access such as registers on GPU. Shared memory capacity can be divided with L1

cache, 48KB shared memory / 16KB L1 cache or vice versa. Kepler model has added a

new feature to this division, 32KB shared memory and 32KB L1 cache, which can be

useful when L1 cache requires more than 16KB but less than 48KB capacity of shared

memory per core [137].

3. Constant memory: generally, it is used for saving data which will not modify and

change over the execution of a kernel. This memory is read only for GPU, but CPU can

read and write on constant memory. Utilizing constant memory in program rather than

global memory reduces the latency and decreases the need for memory bandwidth.

4. Texture memory: texture memory is the other type of cache to DRAM that is read only,

the same as constant memory for GPU. Texture memory is mainly used by the texture

processing for assigning 2D scene onto a 3D surface, and for rendering 3D images.

Utilizing texture memory decreases memory traffic and improves the performance.

5. Registers: it is another on chip and fast memory in which GPU can read and write.

Usually the register uses zero clock cycles per instruction, but sometimes more clock

cycles can happen because of race conditions and read/write dependencies [138].

6. Local memory: local memory is another off chip memory which can be used as an

abstraction of global memory to avoid high latency. Automatic variables with big

structures or arrays normally are assigned in local memory to improve the performance

of application.

73

6.3 Compute Unified Device Architecture (CUDA) Programming

CUDA as a programming architecture contributes to GPGPU technology by supporting

heterogeneous data parallel computing and solving time-consumption and expensive

computations issues. CUDA architecture hardware consists of a group of streaming

multiprocessors (SMs), each of which comprises a set of streaming processors (SPs), also

known as cores, register memory, shared memory, read-only texture and constant cache

memory [132]. In CUDA programming model, the computing system is divided into two

sections: the host section, which is CPU; and the device section, which is the GPU. The host

section calculates low volume or non-parallelised data, while the device section computes a

large amount of data parallelism. Device codes on GPU are executed in single instruction

multiple data (SIMD) model, while each stream multiprocessor accepts a set of single

instruction multiple thread (SIMT) to assign each thread block on one stream processor or core.

6.3.1 CUDA Thread Hierarchy Model

Threads in CUDA model are allocated into a hierarchy level, thread blocks and grid of blocks.

When CUDA kernel function is called, the execution process automatically moves from host-

CPU to a device-GPU, and based on the hardware specification of GPU architecture sufficient

resources such as number of threads in blocks and the size of grid (number of blocks in grids)

are allocated to execute tasks in parallel. In this model, entire threads in a block access the same

block index (blockIdx) in a grid, each of which thread has its own thread index (threadIdx) in a

block. Both blockIdx and threadIdx are built-in variables in a kernel function. Based on these

variables the coordinates of the thread can be identified. GridDim and blockDim are also

important pre-initialised variables; the former indicates the total number of blocks in a grid or

its dimensions, while the latter is the number of threads in a block or dimensions of a block.

Based on the compatibility and architecture of GPU, grid of blocks (gridDim) can be two

dimensions or three dimensions. For instance, GPUs with Tesla microarchitecture and 1.x

compatibility can have two dimensional grid of blocks, but Fermi and Kepler microarchitectures

support three dimensional. Also, blocks of threads according to the needs of programme can be

one, two or three dimensional arrays of threads. Therefore, to determine the index of threads in

3D grid and make sure all data in 3D array is covered by a unique and identical thread, the

following equations/patterns based on global index values can be used [139]:

...*.

,..*.

,..*.

zthreadIdxzblockDimzblockIdxz

ythreadIdxyblockDimyblockIdxy

xthreadIdxxblockDimxblockIdxx









74

In CUDA hierarchy model each thread block assigns to streaming multiprocessors and the

execution of each thread on core/SP is totally independent; when all the threads have finished

their execution, the following grid of the thread block will be terminated [140]. In fact, each

CUDA core performs integer instruction or a floating point per clock for a thread. Figure 6.6

shows an example of CUDA grid hierarchy model [141].

Figure 6.6: Example of two dimensional of CUDA hierarchy model [141].

 Threads in CUDA hierarchy model can access data from different types of memory available

on GPU, but also each thread has own registers memory that cannot be shared with other

threads. A group of threads in a same block can access shared memory which is fast but limited

in capacity. And blocks in a grid can share data through global memory. Figure 6.7 presents

GPU memory chart based on CUDA thread hierarchy model.

75

Figure 6.7: GPU memory hierarchy: Threads share local memory and each thread has own

register. Threads within block share shared memory. Grids may access global memory.

Based on the nature of a program, 1D, 2D, or 3D thread hierarchy model can be used. Usually it

is more useful and convenient to utilise the same dimensions for grid and block for processing

data elements, however it is possible to have a grid with higher dimensionality than its block

and vice versa. As mentioned earlier, threads are gathered into blocks, and a block based on the

computability of GPU can hold a maximum of 512 or 1024 threads. For instance, there is a

product matrix of size 76×62 (76 in x direction and 62 in y direction). In order to map threads

into this 2D product matrix, it can use 5×4 grid of thread blocks with 16×16 blocks to cover the

whole of the product matrix elements. Figure 6.8 illustrates the block utilised to process a

product matrix of size 76×62 [139].

76

Figure 6.8: A 5×4 grid of 16×16 blocks to compute a 76×62 system size [139].

In Figure 6.8, the heavy lines distinguish the block boundaries, and shaded zone presents

computed/processed area by threads. According to the kernel configuration parameters, in total

there are 256 threads per block and 20 blocks per grid. Therefore, 256×20 =5120 threads exist

to compute 76×62 = 4712 of product matrix. This number of threads is more than the number of

system size, consequently threads will assign themselves to the matrix and the rest of threads

that are outside the system will terminate. As can be seen clearly, there are four extra threads in

the x direction and two extra threads in the y direction.

 Another important benefit of CUDA programming model based on Fermi and Kepler GPU

architecture is warping, which is useful to optimise the performance of CUDA program. In

CUDA model, a block is divided into 32 threads called a warp and the execution of the thread

block is based on the warp execution. Warp plays an important role when parallel execution

(instruction processed by the threads in a warp) is waiting for the outcome of former calculation

with long latency; in this case another wrap (32 threads units) is automatically chosen for

execution which is no more waiting for results [140]. This process avoids long latency time by

choosing another warp which is called latency tolerance or latency hiding. In fact, by providing

enough warps, GPU can easily find a warp to execute at any time. In addition, it should be

noticed that latency hiding does not make any overhead time (idle time) into total execution time

of program, and provides better performance in application.

77

6.3.2 CUDA Synchronisation

As mentioned in chapter 5, synchronisation in parallel computing means the coordination of

different parallel tasks in real time. In CUDA programming model, threads within a block can

be coordinated or synchronised in the kernel by using synchronisation function syncthreads(). In

this situation, all threads within a block will be waited at the barrier location until all other

threads within a block arrive to barrier location. In fact, using synchronisation function ensures

that all threads in a block have finished a part of their task before they can start the next part of

the computation task. The other synchronisation function in CUDA programming refers to the

cudaDeviceSynchronisation() which can be used to make sure all kernels have finished and

completed their job. Mostly, syncthreads() synchronisation function is used when shared

memory is implemented [142]. Figure 6.9 shows an example of threads synchronisation.

Figure 6.9: An example of threads synchronisation.

 Another important factor in synchronisation is overhead time (not useful time). In CUDA run

time model, to prevent overhead time threads within a block should execute in close time with

each other. CUDA run time model does this by mapping enough resources to entire threads in a

block as a unit [139]. In this model, until the run time system has not employed enough

resources required for entire threads within a block, a block as a unit will not start to compute

the task. In fact, CUDA run time system assigns the same resources for all threads in a block

and avoids long overhead time during synchronisation, and makes the time execution of threads

closer to each other. This factor of CUDA run time provides transparent scalability between

blocks of kernels. Transparent scalability refers to the execution of blocks in any order which is

related to each other without waiting for each other [139], or in other words threads in different

78

blocks do not need to have barrier synchronisation. Figure 6.10 presents transparent

synchronisation between thread blocks.

Figure 6.10: Transparent scalability example for CUDA run-time system.

As shown in Figure 6.10, the execution process based on the needs and requirements can be

scalable. For instance, when few execution resources needed, a kernel with less blocks at the

same time can be used, similar to the left side grid of Figure 6.10 (two blocks simultaneously).

On the other hand, when large execution resources are required, a kernel with more blocks can

be utilised, similar to the right side grid of Figure 6.10 (four blocks simultaneously). To this

end, transparent scalability provides the capability to execute a program with different speeds,

and to develop different range of applications according to the usability, power, and

performance requirements.

6.3.3 Efficient Implementation of GPU Code

Based on the highly parallel nature of GPUs architecture and different types of memory on

GPU, there are different strategies to develop efficient GPU code, and to achieve high

performance application. One of the well-known method/strategy for implementing efficient

code has been recommended by Cohen & Molemaker [143], who stated that efficient results

necessitate implementation of as much of the code as possible on the GPU. Although this

method can be usable and valid, problematic issues are faced when trying to transfer the existing

CPU code to GPU. Transferring complex code is very difficult and even in the best situation

only a small portion of code can be transferred. Alternatively, Frigaard [144] introduced a

technique to accelerate and optimise existing CPU code by finding computationally expensive

and time consuming parts of program and transfer them to the accelerator (GPU). Both

strategies recommended first altering the algorithm of baseline code into a more efficient

algorithm by removing iteration paths (loops) and synchronisation points, then optimising the

79

performance of code. In general, performance optimisation comprises three strategies [131,

135]: (1) maximise parallel execution to approach high utilisation; (2) optimisation of memory

usage to achieve high memory throughput; and (3) optimisation of instruction usage to achieve

high instruction throughput, as described below.

1. Maximise parallel execution: this refers to the design of application that can be utilised

as much parallelism as possible and efficiently assigns this parallelism to different

sections of program to prevent idle time (overhead time). Maximise utilisation involves

three levels:

a. Application level: this is a high level utilisation of CUDA

programming model that refers to maximise parallel execution

between the host/CPU, the device/GPU, and the PCI bus connector

between host and device. This level of utilisation can be made by

assigning little or non-parallelised workload to the host and large

amount of data parallelism workload to the device.

b. Device level: this indicates to a lower level utilisation of programming

model. To achieve maximise utilisation at this level, it should

maximise parallel execution between the multiprocessors of a device

by keeping them busy most of the time.

c. Multiprocessors level: as with the previous level this is a lower level

that should be considered to maximise parallel execution between

different functional units in a multiprocessor. Different functional units

in multiprocessors refer to the threads level parallelism (SIMT model)

which is indicated to the number of warps within multiprocessor.

Indeed, this part has direct link to latency tolerance or latency hiding.

As discussed in section 6.3.2, the total number of clock cycles of warp

takes to be ready and to perform next portion of code is called latency.

Therefore, maximum utilisation between different functional units in a

multiprocessor will be achieved when latency is totally hidden.

2. Optimisation of memory usage to achieve high memory throughput: in general

maximising memory throughput refers to minimising data transfers between the host

and the device with low bandwidth, maximise usage of on chip memories, and

optimally memory access.

3. Optimisation of instruction usage to achieve high instruction throughput: to achieve full

instruction throughput should be considered the following key points:

80

a. Reduce the utilisation of arithmetic instruction with low throughput,

such as using mathematical intrinsic functions, and single precision

floating point instead of double precision floating point.

b. Minimising the number of instructions such as number of

synchronisation points. It should be noticed that here throughput refers

to the number of operations per clock cycle per multiprocessor. For

instance, a warp with 32 threads has one instruction to correspond to 32

operations. Thus, the instruction throughput for N operations per clock

cycle is equal to N/32 instructions per clock cycle. In addition, to

calculate the whole throughput for the GPU device should multiply

total number of multiprocessor to the throughput for each

multiprocessor.

By applying these techniques Simek et al. [145] achieved 8x-9x speedup for modelling and

simulating the atmospheric equations, and Bell & Garland presented a speedup of 1.5x

compared with baseline GPU code for matrix multiplications [146].

6.4 Benchmark Platforms

The study in this research makes use of different hardware architectures for CPU and GPU

based on the latest hardware available at the time of study. In fact, because of the fast

development of hardware devices, incompatibility between hardware platforms and

programming languages model, and limitation of access to high performance computers (large

scale computers), only two different hardware architectures are considered.

 In both hardware platforms, the maximum rate of data transfer for memory bandwidth is

mentioned in gigabytes per second (GB/s), power is calculated based on the thermal design

power (TDP) in Watts, and performance is reported based on the maximum GFLOP/s in single

precision for CPU and GPU. It should be noted that the maximum rates of performance and

memory bandwidth are theoretical peaks that cannot be achieved in reality. In addition, the total

number of compute units (cores) and processing elements with support of Simultaneous Multi-

Threading (SMT) or hyper-threading is reported. The following tables present the hardware

specification of the CPU and GPU used in this research.

81

CPU Intel Xeon Processor E5-2420

Number of cores 6

Number of threads (processing unit) per

core

2

Total number of threads/processing units 12

Peak GFLOP/s 91.2

Max. memory bandwidth (GB/s) 32

Instruction set x86 - 64 - bit

Instruction set extensions AVX

Processor base frequency 1.9 GHz

Processor Max. Turbo frequency 2.4 GHz

Thermal design power (TDP) Watts 95 W

Memory Types DDR3

Total capacity of Memory (RAM) 12 GB

Error Correcting Code (ECC) Memory Yes

Table 6.1: Hardware specifications of the CPU and the Memory.

GPU NVIDA QUADRO K5000

GPU capability 3.0

GPU micro-architecture Kepler GK104GL

Number of streaming multiprocessors

(SMs)

8

Number of processing units per SM 192

Total number of processing unit 1536

Peak GFLOP/s – Single precision 2150

Max. memory bandwidth (GB/s) 173

Memory bus width (bits) 256

Memory clock rate (MHz) 2700

GPU memory (GB) 4

GPU base frequency (GHz) 0.71

Warp size 32

Max. number of warps per multiprocessor 64

Max. number of blocks per multiprocessor 16

Max. number of threads per block 1024

Max. number of threads per

multiprocessor

2048

Max. dimension size of a thread block

(x, y, z)

(1024, 1024, 64)

Thermal design power (TDP) Watts 195 W

Table 6.2: Hardware specifications of NVIDIA GPU.

82

6.5 Summary

This chapter investigated GPU as many-core accelerator by considering different aspects of

memory architecture and CUDA programming model. In CUDA programming model, the

kernel execution specifies the dimensions of a grid and thread blocks. Once the kernel is called

by a host, a grid will be launched and the thread blocks within a grid will be mapped to

streaming multiprocessors (SMs) based on the transparent scalability of CUDA. In addition,

thread blocks execution is further divided into warp execution which helps to avoid long latency

by providing high occupancy for each streaming multiprocessor. The main strategies of

optimising performance of CUDA application are presented by focusing on optimisation of

memory usage, instruction usage and maximising parallel execution. Finally, GPUs as many-

core architectures are currently investigated and reviewed as one ideal choice based on the

evidenced by their prominence and importance in high ranking TOP500 supercomputers for

different scientific research fields.

83

CHAPTER SEVEN

7 Cell Dynamic Simulation on CPU and GPU

As discussed in chapter 2, cell dynamic simulation as a coarse-grained discretisation method can

be used to investigate mesoscopic structure formation and dynamic behaviour of diblock

copolymers [18, 43]. Although the CDS method compared to the other techniques such as self-

consistent field theory (SCFT) [147, 148] and theoretically informed coarse-grained (TICG)

simulation [149, 150] is more scalable and reasonably fast, however CDS is still a

computationally expensive scheme for traditional single processor computers. Hence, the main

drawback for cell dynamic simulation is that its computations are time-consuming and

expensive due to two fundamental constraints: the time steps and experimental scale size. These

limitations have direct effects on the simulation results. To overcome these problems and make

a connection between simulation results and experiments, a new parallel computational model is

needed that can be executed on a multi-core device. This chapter presents the implementation of

efficient CDS method on multi-core CPU and many-core GPU, demonstrates the results based

on the proposed parallel algorithm on CPU and GPU and evaluates the results in terms of

execution time and speed.

7.1 Optimisation of CPU Baseline Cell Dynamic Simulation

CDS time evolution of an order parameter is performed on a cellular system based on two

mechanisms: (i) short and long range interaction between particles; and (ii) cell connectivity for

diffusive dynamics due to order parameter differences in neighbouring cells [33]. Cell dynamic

simulation specifies the group of neighbouring points by dividing the whole domain into cells

and calculating them by isotropised discrete Laplacian excluding for the centre cell XX 

with respect to the time step. Therefore, according to chapter 2 the calculation of CDS

comprises of five main steps: (i) calculations of periodic boundary conditions (PBCs); (ii)

calculations of first isotropised discrete Laplacian; (iii) calculations of map function and free

energy functional; (iv) calculations of second isotropised discrete Laplacian of free energy

functional; and (v) calculation of time evolution of the order parameters  rt ,1 . Figure 7.1

illustrates an example of Laplacian nearest neighbours, with modification [18].

84

Figure 7.1: An example of Laplacian, where () NN presents nearest neighbours, () NNN next

nearest neighbours, and () NNNN next-next nearest neighbours [18].

As mentioned in chapter 5, the method of transferring an algorithm from scalar development

into a vector process which can be executed a single instruction on multiple data simultaneously

is called vectorisation. The optimisation of CDS sequential algorithm for x86 computer

architectures based on the vectorisation and AVX, SSE4 instruction set of SIMD has been

investigated in this section.

 The main optimisation challenges for the CDS scalar based implementation are: (i) difficulty

in vectorisation due to the dependency (data dependency, control dependency or loop-nest

dependency) in the CDS baseline code, which prevents vectorisations; and (ii) memory layout

and access pattern (non-contiguous memory access), which cause the usage of expensive gather

and scatter operations. To overcome the challenges mentioned, the following points need to be

considered:

1. Vectorisation: in the CDS method, time evolution of order parameter and map function

calculations can be auto-vectorised based on the Intel’s C compiler with some

additional support. Auto-vectorisation is achieved by unrolling a procedural’s innermost

loop a number of times to fit with the SIMD width of hardware to optimise the program.

In the CDS baseline code, auto-vectorisation is performed with external intervention by

considering compiler directives (#pragma ivdep and #pragma vector), to satisfy the

potential control dependency in array updates. Each of the calculation values is unique

and there is no overlapping in the same region of memory, thus the compiler directive

can ignore data dependency in array updates. Due to the data dependency exists in the

other CDS calculation (such as periodic boundary conditions), implicit vectorisation

cannot be performed. Consequently, it is necessary to consider explicit vectorisation

and parallelisation to solve the data dependency.

2. Access pattern and memory layout: the other issue of the CDS optimisation refers to

non-contiguous memory access due to the indirect addressing (non-unit stride) in loops.

85

Non-contiguous memory access by using multiple numbers of instructions to load data

increases the number of scalar gather and scatter operations, which obliquely transpose

between Array of Structure (AoS) and Structure of Array (SoA) layouts, and decrease

SIMD efficiencies (vector performance). The reader is reminded that the gather and

scatter operations in vector processors refer to the loading vector indexed and storing

vector indexed in non-contiguous way. Therefore, to reduce the overhead of gathers

and scatters and to improve performance, two alternative ways of hand-vectorised are

implemented: (i) considering SoA arrangement to reduce indirect addressing; and (ii)

considering data alignment based on the AVX instruction set. Changing array structure

to SoA helps to have arrangement of the unit-stride memory access which gives more

effective vectorisation, and have a high locality of reference (specifically sequential

locality). Locality of reference indicates memory locations which are regularly used and

accessed. Having a good locality reference improves the performance by decreasing the

number of data element access in memory. In addition, data alignment by aligning the

data at a memory address with the same size or multiple of the word width (unit of data

which can be handled by an instruction set) reduces the overhead of memory access,

improves the performance of the system and makes the vectorisation compiler easier. In

the CDS optimisation, 32 byte boundaries of data alignment based on AVX instruction

set (256 bit) is used. Figure 7.2 shows a comparison of direct/stride and indirect access

code for a simple loop in C language.

For (int i = 0; i < 200; i+=3)

 {

 b[i] += a[i] * d[i];

 }

a) Stride=3

For (int i = 0; i < 200; i+=3)

 {

 b[i] += a[i] * d[index [i]];

 }

b) Non-unit stride

Figure 7.2: Comparison of stride and indirect addressing of d by using index array.

7.1.1 Experimental Setup and Performance Results

One of the main techniques to obtain a high performance on computer architecture is to use a

single precision instead of double precision floating-point if possible. Since the SIMD

instruction units are 2x bigger/wider for single than for double precision, it is possible to

achieve normally 2x better performance. This study considers utilisation of single precision

floating-point to get maximum performance and to have a fair and reasonable comparison

between CPU and GPU. In addition, to ensure that the C implementation of baseline code is

strong enough for further optimisations, the comparison (based on the execution time) between

C and FORTRAN90 implementations was done without considering any optimisations.

86

Table 7.1 presents the system specification and configuration used for executing the

experiments in this study.

Specification Intel Xeon Processor E5-2420

Double Precision GFLOP/s

Single Precision GFLOP/s

L1 / L2 / L3 Cache (KB)

Clock (GHz)

91.2

182.4

32 / 256 / 15360

1.9

Configuration

Operating System

Linux Kernel Version

Hyper-Threading Supported

Compiler Version

Compiler Flags

Linux - OpenSUSE 12.3

3.7.10.-1.1

Yes

Intel (ICC - IFORT) 15.0.3

-O3 -ipo -fp-modelprecise -no-prec-div

Table 7.1: Specification and configuration of CPU for CDS optimisation and non-optimisation

results.

The theoretical peak performance or floating-point throughput for CPUs can be calculated by

the following equation:

cyclepernInstructioCoresspeedClockpeaklTheoretica CPUCPUCPUePerformanc  

Where speedClockCPU  indicates the multiprocessor frequency, CoresCPU is total number of

cores, and cycleperninstructioCPU  refers to the width of instruction set (SSE4-128 bit or AVX-256

bit) and the number of operations per instruction. The reader is reminded that the Intel Xeon

processor is based on the Sandy-Bridge architecture which can execute two operations

(addition, multiplication) per cycle, and each AVX SIMD instruction set extension can contain

eight single-precision or four double-precision floating points [151].

 Furthermore, to present the scalability and performance of the optimised implementation, the

results of experiments for non-optimised and optimised code based on the SSE4 (128 bit) and

AVX (256 bit) SIMD instruction set are demonstrated. The performance difference between

AVX and SSE4 is due to the wider SIMD width registers, a new Vector Extension (VEX) which

performs addition operations with greater ease and support of three operands which decrease

register pressure by not changing the main source operands (no-destructive source operands)

[151].

 Table 7.2 illustrates the loop cost of each calculation of CDS optimisation based on 128 bit

and 256 bit SIMD, and speedup versus scalar implementation on the same computer. Loop cost

indicates the number of clock cycles taken to execute an instruction of one loop iteration. The

amount of loop cost can be used to predict the likelihood of a performance improvement in the



87

speed and consequently in vectorised loop. Table 7.3 shows a breakdown of the number of

operations in the loop for each CDS calculation based on 128 and 256 bit SIMD. In case of 256

bit SIMD, the numbers of medium and heavy weights vector instructions are reduced due to the

data alignment with a 32 byte boundary. It should be noted that according to the Intel compiler

vectorisation report, vector operations do not have the same cost in terms of cycles; therefore,

they are divided into three different categories from the lowest cost (light) to the highest cost

(heavy) in terms of clock cycles.

CDS CPU

Calculation 128-bit SIMD Speedup 256-bit SIMD Speedup

PBCs

First Laplacian

Map Function

Second Laplacian

Time Evolution

200.25

410.25

39.74

362.500

56.00

2.44x

2.54x

2.92x

1.92x

2.03x

122.36

121.74

10.87

94.75

30.25

3.61x

3.85x

4.36x

3.68x

2.78x

Table 7.2: Number of clock cycles for each CDS calculation based on the 128 and 256 bit SIMD

instruction and speedup over a scalar implementation.

CDS 128-bit 256-bit

Calculation Light Medium Heavy Light Medium Heavy

PBCs

First Laplacian

Map Function

Second Laplacian

Time Evolution

102

157

21

118

39

8

2

1

2

2

7

5

3

2

2

110

158

24

121

41

4

3

0

0

1

3

3

1

1

1

Table 7.3: Number of operations for each CDS calculation.

To ensure the C implementation of baseline code is strong enough for optimisation and multi-

threading execution, the comparison between C and FORTRAN implementations are taken into

account without considering any implicit and explicit optimisations. Figure 7.3 presents the

execution times for the baseline (original) CDS code for both C and FORTRAN languages

without any optimisation in different time-steps and different domain size. As expected,

FORTRAN scalar implementation is faster then C scalar implementation due to the nature of

FORTRAN which is static, the size of data will be identified at compile time, and array model.

However, investigating the design of FORTRAN is out of the context of this thesis. It should be

noted that the comparison between non-optimised baseline codes are performed on the same

hardware architecture, compiler and floating point (single precision).

88

(a) 128128128 

(b) 646464 

Figure 7.3: Execution times for the CDS non-optimised baseline code based on the C and

FORTRAN with different system sizes 128128128  (a) 646464  (b).

Figure 7.4 compares the execution times of CDS optimised implementation with non-optimised

CDS. For the different time-steps shown the performance of CDS is almost constant and

consequently the computational cost per CDS calculation remains the same over time-steps.

89

(a) 128128128 

(b) 646464 

Figure 7.4: Execution times for the CDS optimised and non-optimised baseline implementations

in different time-steps

It can be seen in Figure 7.4 that SIMD optimisation of the CDS calculations increases the

performance substantially. For the AVX instruction set implementation, speedups of 3.74x and

90

4.44x are achieved for the system sizes of 646464  and 128128128  respectively. The

difference between the speedups of two different system sizes can be attributed to the original

non-optimised implementation and it is not related to the scalability of the CDS optimisation.

The performance ratio between the two system sizes is the same. Table 7.4 presents the

execution times based on the AVX SIMD acceleration for two domain sizes within each time-

step.

Time-steps Elapsed time (Seconds)

646464 

Elapsed time (Seconds)

128128128 

10000 260.87 1866.86

20000 529.72 3771.11

30000 786.27 5594.96

40000 1058.48 7457.51

50000 1313.80 9320.15

60000 1570.65 11164.71

70000 1836.41 13090.16

80000 2099.63 14916.98

90000 2370.48 16750.24

100000 2623.14 18610.78

Table 7.4: Execution times in different time-steps based on the AVX instruction set.

Figure 7.5 illustrates the execution times for the SSE4.2 and AVX instruction implementations

of the CDS for two different system sizes. Compared to the SSE4.2 (128-bit), the AVX (256-

bit) implementation achieves an additional speedup of 1.3x.

Figure 7.5: Executions times for SSE4.2 and AVX implementations.

91

By comparing the original (not optimised), SSE4.2 and AVX implementations of the CDS for

the system sizes 128128128  and 646464  , the SSE4.2 implementation achieves 3.71x

and 3.10x speedups, respectively; AVX implementation achieves 4.45x and 3.74x for the same

system sizes.

7.2 Cell Dynamic Simulation Method on Multi-Core CPU

The second step in the performance enhancement refers to the exploitation of methods for

parallelisation on the task level. According to the parallel architectures on the task level there

are two well-known APIs for shared memory and distributed memory models: the OpenMP and

MPI. The shared memory architecture OpenMP can be considered in terms of two types of

shared memory machines: symmetric multiprocessor (SMP) and non-uniform memory access

(NUMA). As mentioned in chapter 5, in SMP machine there is no special processor and the

operating system treats all the processing units equally. There is also no special memory and all

memories are equally accessible by different processors/cores. In NUMA, different memory

regions have different access time; the processor has fast access to own memory but slower

access to other memories. In the distributed memory architecture every processor has access to

own memory and communication (massage passing) needs for accessing and sharing data with

each other on the network. These two models of task level parallelism based on OpenMP and

MPI have been extensively utilised for parallelising different algorithms in scientific research

such as molecular dynamic (MD) [152]. However, this study investigates the implementation of

the CDS based on the OpenMP multi-threaded shared memory computers.

 OpenMP is the explicit programming model that can be used to accomplish parallelism based

on threads/cores. Memory hierarchy model in shared address space machine is classified into

shared memory (heap) and private memory (stack). Shared memory or heap can be shared and

accessed between all the threads. Private or stack refers to private memory of each thread and

cannot be shared with other threads. In shared address computer the shared data structure plays

an essential role for parallelisation and optimisation of application by realising synchronisation

and communication between threads and controlling data granularity for memory and

communication contentions.

 Although threads communicate by sharing variables in the heap memory address space, this

data sharing may not always be safe, such as when one thread tries to write on a variable that

other threads try to read from causing the results to change each time. This data conflict

situation is called race conditions, when results fluctuate due to different thread arrangements.

By organising and controlling access to shared variables, synchronisation can help to prevent

race conditions and other data conflicts. In OpenMP there are two types of synchronisation

constructs: barrier and mutual exclusion. Barrier synchronisation impacts all the threads in the

92

team by holding them at a barrier point until the other threads reach that point. Mutual exclusion

specifies a section of code that can be executed only by one thread at a time. It should be noted

that synchronisation is expensive and frequent synchronisation breaks performance down.

The other challenge in multi-thread parallelisation which undermines the performance (speedup)

is the load imbalance (the allocation of unequal amounts of workload to threads), which

increases threads’ idle time. For instance, when whole numbers of threads reach a

synchronisation point the thread with the most workload (i.e. the slowest thread) will control the

overall performance.

7.2.1 Parallel Algorithm of CDS for Multi-Threaded Systems

The first step to design a parallel algorithm refers to the decomposition of system into separate

parts that can be spread into different parallel tasks and executed simultaneously. There are

numerous methods for splitting the system between parallel tasks/threads. The most common of

which are data and spatial decompositions. Data decomposition method divides the data related

with a problem or computational work and assigns portions of data into different processing

units [153, 154]. The spatial decomposition method divides the whole domain into different

sub-domains, each of which is organised in a hierarchy data structure, which illustrates the

spatial relationship between domains [155, 156]. In fact, data structure plays a very important

role in spatial decomposition scheme. Based on the nature of the problem, spatial decomposition

method can utilise different types of data structure, comprising of kd-trees [157]; octrees; and

regular grids [158, 159].

 Octrees are axis-aligned tree-based hierarchies dividing the domain. In the octrees data

structure each sub-domain has eight children with three axis-aligned splitting dimensions. The

k-dimensional tree (k-d tree) is a generalisation scheme of octree, where k indicates the number

of dimensions. In the k-d tree each sub-domain has two children without considering the

number of dimensions of the system. Both octrees and k-d tree refer to the non-uniform

subdivision of the domain and are useful in non-homogenous systems. Regular grids refer to the

uniform system which involves number of equal size of cells or parts. The regular grids data

structure of spatial decomposition method overlays the whole system with a uniform grid.

 A well-known example for spatial decomposition refers to the MD simulation in the

distributed memory model, which is applied spatial decomposition method to partition the

whole MD system into 3D sub-domains and associate each sub-domain with different

processors on the distributed memory architecture [160]. In this model, processors communicate

with one another through the number of massage passing calls based on the MPI on the

network. Both data and spatial decomposition methods have advantages and disadvantages.

93

Data decomposition is better in terms of load balancing but not so good in scalability, while

spatial decomposition method is better in scalability but weak in load balancing.

It should be noted that based on the model of the shared memory there is no global

communication and communication cost between the threads is negligible, therefore

communication cost is not considered in both cases. However, to overcome the issues

mentioned and to obtain a better performance the appropriate mixture of both methods can be

deployed. Therefore, a hybrid decomposition algorithm based on the work-sharing constructs of

OpenMP and regular grids data structure according to the CDS simulation method on the shared

memory machine was developed. The original idea for the spatial decomposition as a first step

of hybrid algorithm for the CDS was based on the processor data structure, which splits the grid

into different sub-grids, each of which it assigns different processing units. Although this

scheme may be the answer for decomposing the whole system, the results cause a high number

of load imbalances and race conditions. Consequently, due to the nature of the CDS method (i.e.

cell based homogenous system), the data structure of regular grids is used for spatial

decomposition. Hence, the spatial partitioning in the new algorithm considers the whole system

as a grid divided into three-dimensional sub-grids. Each 3D sub-grid defines as an array of

linked cell model with the same size, which has a relationship with the neighbouring sub-grids.

This hierarchy arrangement delivers faster access to memory locations. Figure 7.6 shows the

spatial decomposition method based on the cell-linked uniform grid.

Figure 7.6: Cell linked spatial decomposition scheme.

 After partitioning the whole system into different sub-grids/cells, data decomposition as a

second step of hybrid decomposition algorithm starts to play a role. In data decomposition,

block based decomposition is used to partition a group of cells into different blocks and then

map each block to a core/thread in the shared memory machine. The main reason for block

based data decomposition is to prevent load imbalance. It should be noted that the size of the

block or number of cells per block can be determined according to the size of the system

zyx NNN ,, and the blocks are scheduled statically (at compiler-time) to assign to threads. In the

hybrid method the uniform cell linked data structure was considered to be a shared data

structure that can be divided into different blocks of data and split among different threads

94

(rather than mapping each part of the CDS method to a single thread in the multi-core machine).

Thus, the main differentiation of this method is the scheme of distributing sub-systems among

the cores/threads, and structure of the shared data. The following figure presents the flow chart

of the OpenMP CDS algorithm based on the hybrid method.

Figure 7.7: Schematic of the OpenMP cell dynamic algorithm.

As discussed earlier, one of the main challenges in multi-threaded programming and shared

memory model is race conditions, specifically when dealing with shared arrays. In OpenMP

implementation, the initial random disordered state is implemented as a critical section to

prevent race conditions. Due to the nature of the CDS method the whole simulation starts from

Data

Decomposition

Spatial

Decomposition

95

an initial random disordered state () and is discretised on a lattice. Therefore, it is necessary

to prevent race conditions and data conflict. It should be noted that other than the critical section

the implied barriers are considered at the end of each sub-system. The other sub-systems are

decomposed more based on the data decomposition method by considering loop work-sharing

constructs of OpenMP.

7.2.2 Simulation Results and Performance Tuning

This section presents the simulation results and performance tuning for the CDS multi-thread

development. The experimental results were executed on the same machine specifications which

mentioned in section 7.1.1, and the following table illustrates the simulation parameters which

have been used for the simulation results of the CDS method.

Simulation parameter Parameter value

Number of Cores

Hyper-Threading

6

2

System Size 364 ,
3128

Instruction Set AVX

Total Execution-time 100,000

Table 7.5: Simulation parameters in multi-threads implementation.

 To present the performance of the proposed hybrid algorithm, the simulation is executed

with a different number of cores and the execution or computing time of each core is

demonstrated. The execution time is based on the wall-clock time which involves the CPU and

system time. The CPU time indicates spending time for the computations and the system time

refers to the time that was spent for file input/output, transferring or waiting. In addition, two

other performance analyses are considered: parallel speedup and efficiency. Parallel speedup

refers to the execution time taken to process the computation on P processors against on single

processor. The parallel speedup can be defined by the following equation [161]:

 
 
 PNT

PNT
PNS

,

1,
,


 .

Where N refers to the total volume of computational work and P indicates to the number of

processors/ threads. T (N, P=1) and T (N, P) are execution time for 1 and P processors

respectively.

 To achieve a more accurate comparison between the parallel and serial execution the

efficiency of parallel execution should be taken into account. The parallel efficiency considers



96

the efficiency of fixed volume of computational work executing on P cores. This relates to how

efficiently processors are used in parallel execution. The efficiency of parallel execution can be

determined by [161]:

 
 

p

PNS
PNE

,
,  .

Here p is the number of processors, N indicates a computational work, and S (N, P) refers to the

parallel speedup with respect to the number of processors.

 To understand the impact of the block size of data decomposition in the hybrid algorithm,

three different scenarios were considered: (i) data partitioning based on the block size = 1000;

(ii) data partitioning based on the block size = 100; and (iii) data partitioning based on the

function of the number of threads. Note that the other numbers of block sizes were considered,

but the results turned out to be unacceptable and poor in terms of speedup, execution time and

load balancing, therefore they are not stated here. The following figure presents the execution

times as a function of the number of threads for two different system sizes based on the first

scenario of data decomposition in the hybrid algorithm.

(a) 646464 

(b) 128128128 

Figure 7.8: Multi-threaded execution times for two different system sizes based on the first

scenario.

Figure 7.9: Speedup (left) and efficiency (right) for 646464  and 128128128  system

sizes based on the first scenario.



97

Figure 7.9 illustrates the speedup and efficiency of multi-threading for two system sizes based

on the first scenario, which considers the block size =1000. It can be seen that the speedup in

646464  system varies from 1.96 to 5.77, with the number of threads increasing from 1 to

12, while the efficiency degrades from 1 to 0.48 (100.0% to 48.1%) except in the third core,

which exhibits super-linear speedup. One of the possible reasons for super-linear speedup in this

phenomenon refers to the cache effect resulting from various memory hierarchies of a computer.

In parallel computing, in addition to the numbers of processors/cores changing, the sizes of

accrued caches from different processors/cores also change. In fact, by having larger accrued

cache size, more computational work can be stored in the cache, thereby decreasing the memory

access time. This leads to extra speedup for the specific processor/core with larger accumulated

cache [162, 163]. In other words, super-linear speedup occurs in the third core because of more

efficient resources (such as RAM, cache and registers) in low-level computations available. In

the larger 128128128  system, the speedup differs from 1.60 to 2.98 with respect to the

number of threads, while the efficiency drops sharply from 1 to 0.24 (100.0% to 24.9%). By

considering the speedup between the two system sizes and with the help of the Intel Vtune

visual performance analysis [164], the inherent parallelism and the overhead of parallel libraries

are high in scenario one. Inherent parallelism refers to the load imbalance and parallel libraries

overhead indicates the scheduling overhead. Scheduling overhead refers to the thread

scheduling overhead when the workload is not adequate between threads, which consequently

increases idle or waiting time. It should be noted that in addition to thread scheduling overhead,

synchronisation also increases the idle time.

 Vtune performance analysis is used to monitor and gather all the statistical data and analysis

of the system involving the benchmark program and Linux kernel. The method for collecting

statistical data and analysis is based on the sampling technique. Sampling technique or statistical

sampling refers to the execution of the program in an environment where it is broken up into

some group of frequency (e.g. 100 times per second) and the position of the program counter

will be saved before the program is started again. When execution of program is finished these

positions/locations are decoded into the source code and then statistical data will be analysed to

find out the hotspots of the program [164].

 Figure 7.10 shows a percentage of the wall-clock time when the specific number of threads

were executing simultaneously in the OpenMp region of isotropised discrete Laplacian in the

CDS, based on the Vtune tool for 128128128  system size.

98

Figure 7.10: Histogram of OpenMP threads usage for the calculation of first discrete Laplacian

based on the first scenario.

It can be seen that there is a high amount of load imbalance between the threads; therefore there

is a need to consider other scenarios for partitioning data blocks. Figure 7.11 presents the

execution time as a function of the number of threads based on the second scenario of data

decomposition in the hybrid algorithm.

(a) 646464 

(b) 128128128 

Figure 7.11: Multi-threaded execution times for two different system sizes based on the second

scenario.

Figure 7.12: Speedup (left) and efficiency (right) for 646464  and 128128128  system

sizes based on the second scenario.

99

Figures 11 and 12 present the execution, speedup and efficiency of multi-threading for

646464  and 128128128  domain sizes based on the block size =100. It can be seen from

the figures that the speedup in 646464  system varies from 1.90 to 5.81, with the number of

threads increasing from 1 to 12, while the efficiency is reducing from 1 to 0.48 (100.0% to

48.4%) except in the third core, which is same as in the first scenario (super-linear speedup). In

128128128  domain size, the speedup differs from 1.67 to 3.71 with respect to the number of

threads, while the efficiency is decreasing from 1 to 0.3 (100.0% to 30.9%). By comparing the

speedup and efficiency between the two scenarios, it can be noted that in 646464  domain

size there is a very small difference in the speedup and efficiency, while in the larger

128128128  system size there is a big difference in terms of the speedup and efficiency

between two scenarios. Consequently, the second scenario is more sufficient and adequate for a

large system. The following figure displays a percentage of the wall-clock time when the

specific number of threads were executing simultaneously in the OpenMp region of first

isotropised discrete Laplacian based on the second scenario for 128128128  domain size.

Figure 7.13: Histogram of OpenMP threads usage for the calculation of first discrete Laplacian

based on the second scenario.

 From Figure 7.13 it can be seen that the load imbalance is slightly improved compared to the

histogram of OpenMp for the first scenario, but the volume of inherent parallelism remains

insufficient. In the last step, the third scenario based on the function of the number of threads is

considered. Figure 7.14 illustrates the execution time for two system sizes based on the third

scenario.

100

(a) 646464 

(b) 128128128 

Figure 7.14: Multi-threaded execution times for two different system sizes based on the third

scenario.

Figure 7.15: Speedup  PnSS , for the third scenario.

Figure 7.15 presents the algorithm speedup with respect to the function of the number of

threads. It can be seen the speedups from 4.27 to 7.26 and 4.00 to 6.81 with the number of cores

cumulative from 1 to 12 for 646464  and 128128128  system sizes respectively. As

expected, the speedup and efficiency in the third scenario are better than the other cases,

specifically when simulating a large CDS system with data decomposition based on the fraction

of the system size to the function of the number of threads. The following figure presents a

percentage of the wall-clock time the specific numbers of threads were executing concurrently

for the first isotropised discrete Laplacian calculation based on the third scenario for

128128128  system. Figure 7.15 clearly shows the improvement of load imbalance between

threads.

101

Figure 7.16: Histogram of OpenMP threads usage for the calculation of first discrete Laplacian.

Although in the third scenario the overall speedup and the load imbalance are improved, it can

be seen from Figure 7.15 that the speedup in both system sizes, specifically in the large system,

starts to decrease after the sixth thread. The main reason for this phenomenon is Intel’s Hyper-

Threading (HT) and the effects of HT technology on a system performance. In general, HT

technology indicates the enhancement of parallelisation of computations by considering a single

physical processor as two logical processors. The resources of physical processor such as cache

and control units are divided, and the architectural state, which includes control registers,

memory management unit, counter registers and addresses registers, is duplicated for two

logical processing units [165, 166]. By duplicating architectural state and sharing resources, HT

technology allows a single physical processor to processes instruction streams in parallel from

different threads improving the performance [166].

 In principle, there are different levels of parallelism (section 5.3) that can be utilised in the

modern processor to increase the performance. These parallelism levels can utilise the

underlying parallelism level (hybrid model) to obtain a better performance. Regarding the

hybrid levels of parallelism the HT technology provides exploitation of the hybrid model based

on the instruction and task levels parallelism. Although HT by exploiting hybrid model allows a

processor to dynamically allocate resources to threads and permits multiple threads to be

executed simultaneously on an SMT processor, threads must share the main physical processor

resources between each other. Therefore, this concurrent sharing of resources causes a potential

bottleneck and degrades the performance.

 Different studies have investigated the impact of HT technology on performance and

whether HT is beneficial or not. These studies and Intel company have exposed that the HT

technology can be enhanced the performance of application by 10-30%, depending on the

characteristics of the program [167, 168]. They also suggest that the workload plays an essential

role in the performance of multi-thread program. Therefore, the main reasons for the

degradation in the performance when HT is enabling in high amount of workload are: (i) greater

102

number of threads is directly related to increased synchronisation cost (increasing number of

threads means more spending time between threads for synchronisation); (ii) considering two

logical threads in single physical processors shares the processor resources, which has a direct

impact on the performance, especially when the volume of workloads is high; (iii)

supplementary memory contention; and (iv) competition between logical threads for access to

the caches cause additional cache-miss situations. However, to answer whether HT is beneficial

or not depends on the nature of the program and the algorithm of implementation. In the third

scenario of the CDS multi-threading program, it can be seen clearly that HT technology is not

very useful in 646464  system size and is considerably inferior when increasing the domain

size to 128128128  .

To comprehend the impact of HT on shared memory computer the third scenario is considered

with and without HT in two system sizes. Figure 7.17 displays the speedup with respect to the

number of physical cores with HT enabled and disabled for 646464  and 128128128 

domain sizes.

Figure 7.17: Parallel scaling results with Hyper-Threading enabled and disabled.

 The results displayed in Figure 7.17 show that when HT is enabled in 646464  system

size the performance improves by around 5%. On the other hand, in 128128128  domain size

there is no considerable difference when HT is enabled. In fact, the degree of difference when

HT is enabled compared to when it is disabled in the bigger system size is less than 2%.

Therefore, as mentioned earlier, HT is not very beneficial in 646464  domain size and is

considerably inferior when increasing the system size to 128128128  . The following figures

present the execution times and the speedup for the original CDS and multi-threads

103

implementation based on the first scenario for 128128128  system size, with a total of

100,000 time-steps.

Figure 7.18: Execution times (left) and speedup (right) for the original and AVX multi-threaded.

From the above figures it can be seen that for the original implementation the speedup improves

by a factor of 4x from 1 to 12 threads, while for AVX multi-threads implementation grows by

3x from 1 to 12 processing units. As a result the original code scaling to some extent is better;

the main reason for this is the much worse total execution time of original implementation.

Figure 7.19 shows the speedup for the original and AVX implementations as a function of the

number of physical cores based on the third scenario. To have a fair and reasonable comparison

between original and AVX codes, HT for both situations is considered as disabled. The original

implementation gains around 2.4% speedup on six physical cores without HT.

Figure 7.19: Speedup for the original and AVX implementations based on the third scenario.

104

In addition, to evaluate the hybrid algorithm and to show the accuracy, the CDS method was

also developed based on the functional partitioning in spatial decomposition scheme. In general,

functional partitioning focuses on the computational works which need to be processed rather

than data operated by the computational works. In functional decomposition the computational

work or problem is partitioned into different parts/tasks, each of which will be assigned to one

processing unit. A good example of functional partitioning is climate modelling. In climate

modelling the whole problem is decomposed into four components (atmosphere, ocean, land,

and hydrology), each of which can be considered as a separate task to assign to processing unit

[169]. In the spatial functional decomposition scheme the spatial decomposition is same as

previously discussed (Figure 7.7), but in the functional partitioning, rather than considering a

block of data for partitioning, each calculation of the CDS is considered as a separate task

mapped to the processing unit. Note that each direction (x, y, z) of periodic boundary condition

is also divided into a separate task. The following figure displays the execution times as a

function of the number of threads for 646464  and 128128128  system sizes based on the

spatial functional decomposition method.

(a) 646464 

(b) 128128128 

Figure 7.20: Multi-threaded execution times for two different system sizes based on the

functional decomposition.

 The scalability in functional partitioning scheme is poor as illustrated above. With the help of

the Intel Vtune performance analysis it is found that in functional partitioning the parallel

overhead between threads is high and false sharing occurs. False sharing refers to the situation

wherein different array elements try to share the same cache-line. It should be noted that if the

code is weak scaled perfectly, the number of threads will not change the execution time. Figure

7.21 illustrates the parallel speedup of hybrid decomposition from three scenarios and spatial

decomposition with functional partitioning algorithms for 128128128  system size in

100,000 time-steps.

105

Figure 7.21: Speedup for four decomposition strategies.

Figure 7.21 indicates that the new hybrid decomposition algorithm based on the third scenario

gains the best parallel speedup and performance for the CDS simulation system. Although the

spatial decomposition based on the functional partitioning to some extent achieves better

speedup compared to the first and second scenarios of hybrid algorithm the amount of the

inherent parallelism overhead and false sharing is high. It should be noted that all results are

executed with enabled HT.

106

7.3 Cell Dynamic Simulation on GPU

Over the last few years the highly parallel architecture of GPUs and the ability of GPGPU have

increased the usage of GPUs in the area of HPC and PCs [122]. This ability and parallel

architecture present considerable promise and different opportunities for scientific engineering

and computing (e.g. real-time applications and heavy simulation) to solve expensive and time-

consuming computational works more quickly and economically (e.g. less power consumption),

without considering CPU clusters [170]. In addition, load balancing, scalability and portability

issue of SIMD architectures are other rationales for the high utilisation of and demand for

GPUs. Different applications such as CFD [171], particle physics [172], molecular dynamic and

lattice Boltzmann method (LBM) [173, 174] are commonly used in HPC studies and widely

investigated and implemented on GPUs; in fact, due to parallelisable nature of these

applications, they are particularly suitable candidates to be implemented on the latter. CFD and

particle physics are considered by a specific data dependency pattern called wavefront

dependency, whose pattern according to Lampart [175] can be solved based on the hyperplane

algorithm, whereby the calculation and computation of the value of each cell in a grid (i, j, k)

depending on the values of three of its cell neighbours is computed by former calculations (i, j,

k-1), (i, j-1, k) and (i -1, j, k). Molecular dynamic is characterised by calculations of short-range

and long-range forces between pairs of atoms. The cell-based method is mainly used to

calculate short and long ranges forces between pair of atoms. This method specifies the group of

neighbouring atoms by splitting the whole computational work into cells and calculating the

forces between an atom and the contents of some group of surrounding cells [172]. LBM can be

used as a model of fluid flow by calculating linear advection and local relaxation operation

between neighbouring cells [176]. These applications by nature are parallelisable, and

implementing them on GPUs can achieve significant speedup of applications.

 Optimisation of CUDA programming model sometimes can however be very difficult due to

the different specifications of GPUs, including: (i) memory coalescence; (ii) number of threads;

(iii) number of register per thread; (iv) the amount of shared memory; and (v) number of thread

blocks. The efficient values of these parameters on one GPU’s architecture and compute

compatibility may not be efficient and optimal on other architectures with different compute

compatibility, raising the issue of portability. Hence, this section presents the implementation,

evaluation and the performance analysis of the CDS method on GPU with respect to the

multiple architectures/platforms.

107

7.3.1 CUDA Parallel Algorithm of the CDS from Domain Level View

As discussed in section 7.2.1, the common approach to design a parallel algorithm is

decomposition of the system into separate regions spread into different parallel tasks and

executed concurrently. The decomposition method used in the CUDA implementation of the

CDS on GPU is based on the fine-grained spatial decomposition. In the whole process, as

demonstrated in multi-threaded parallel algorithm, the entire system is conceptualised as a 3D

grid or cube, each box or sub-grid of which demonstrates a data cell of the system with the same

size. In the method described, the whole system as a cube is decomposed into 3D grids, and

according to the CUDA threads hierarchy architecture each cell or sub-grid of the system is

assigned to one thread with three respective dimensions (x, y, z) responsible for all calculation,

and groups of threads are clustered into blocks. According to the CUDA hierarchy architecture

[17, 124], each kernel function is performed in a grid of threads. Each grid is divided into blocks

(thread blocks) and each block is divided into a number of threads. From a parallelisation

perspective for NIVIDIA GPUs, computational task is parallelised at two levels; the

computation problem is divided into blocks involving groups of threads, with each thread block

assigned to a SMX, and threads within a block spilt further into sets of 32 threads called warps.

All the threads in a warp are executed in parallel and perform the same instruction.

 In the spatial decomposition method due to the CUDA hierarchy model, the uniform block-

cell linked data structure was used to be a shared data structure. This model of data structure by

partitioning the entire domain/system into cells and grouping them into different numbers of

blocks according to the CUDA architecture helps to implement the whole system on GPU

efficiently and competently. Therefore, the compelling reasons for choosing spatial

decomposition scheme based on the block-cell linked structure for CUDA parallel

implementation of the CDS are: (i) high compatibility with GPU architecture; (ii) less maintain

overhead or few numbers of memory accesses; and (iii) effective usability of thread and

instruction levels parallelism. Figure 7.22 presents 2D CUDA thread hierarchy architecture for

describing GPU computation of spatial decomposition method based on the block-cell link

structure in time. It should be noted that due to the architecture of GPU, which consists of many

threads each of which is responsible for each cell that must be computed, fine-grained

distribution was selected for spatial decomposition method, whereas in multi-thread parallel

algorithm on CPU coarse-grained spatial decomposition is used.

108

Figure 7.22: CUDA threads model of spatial decomposition scheme based on the block-cell link

model.

According to the results (sections 7.3.6 and 7.3.7) of the implementation of the spatial

decomposition method based on the block-cell link model, the following sections present this

method as a suitable and appropriate choice for GPU-accelerated CDS simulation, which is to

be expected to prevent workload imbalance by allocating enough resources for each data

element (cell), enhancing system performance and reducing communication overheads/costs,

ultimately decreasing the GPU’s memory access time.

7.3.2 Memory Arrangement and Layout

According to the CUDA parallel algorithm of the CDS, the simulation code is parallelised in

such a way that one thread is responsible to execute the CDS calculations at one spatial location

)(r in the 3D grid/domain. Each thread utilises a unique and distinctive coordinate (thread

index) to find the appropriate portion of the data to perform and process. Each thread accesses

the portion of the data within DRAM once initially loaded. However, to comprehend the

memory layout and the allocation of multi-dimensional arrays in DRAM, how C programming

language accesses data elements of dynamically assigned multi-dimensional arrays must first be

understood. It should be noted that CUDA C programming model was used in GPU

implementation, therefore C programming language was taken into account in this investigation.

109

Ideally, a data element at the row j and column i in two-dimensional array can be accessed, such

as d_pxi[j][i] array. However, on CUDA C programming language this type of access is not

possible due to the number of columns in d_pxi array not being known at compiler time. One of

the main reasons to consider dynamically allocated arrays is to permit changing the dimensions

and sizes of arrays based on data size at run time [139]. Consequently, due to the information

regarding the number of columns is unknown at compiler time; a dynamically allocated multi-

dimensional array is not possible on CUDA C programming model. Subsequently, it is

necessary to explicitly “flatten” or linearise a dynamically allocated multi-dimensional array

into a one-dimensional array within the DRAM. In principle, due to the utilisation of a flat

memory space in modern computer architectures, C programming language also linearises

multi-dimensional array into a single dimension. To a certain extent, in C programming

language the compiler has responsibility to convert or to flat multi-dimensional array into a

single dimension array. Note that the memory space indicates a simplified view of accessing a

memory by processor in modern computer architecture based on the address of each location

that accommodates a byte of data.

 There are two main techniques to flatten a multi-dimensional array into a single dimensional

array: row-major layout and column-major layout. In row-major layout all the same row data

elements are placed into consecutive and successive locations, then the rows are located serially

one after another into the memory space. Column-major layout considers all the same column

data elements to be located into consecutive locations and columns are placed serially into

memory. C and CUDA C programming languages use row-major layout and column-major

layout is mainly utilised by FORTRAN language, which is beyond the scope of this study. An

example of 2D array/matrix H[j][i] where j=4 and i=4, which is flatted into a 16 element one

dimensional array is presented in Figure 7.23.

110

Figure 7.23: Row-major layout for two-dimensional array flatted into one-dimensional array.

It is evident that two-dimensional array is flatted into single dimension array based on the row-

major layout technique. Thus, to access the corresponding index of the H element in row j and

column i of two-dimensional array the following formula can be used:

][]][[ColumnwidthRowHijH  .

The width refers to the width elements of array in each row, of which there are four in H[j][i]

array. For instance, the equivalent index for 2,3H is 14243  . In the literature the width of

array is sometimes called “stride” of array.

 Furthermore, the linearization of 2D arrays can be extended to 3D by considering another

dimension. The linearized access to the H three-dimensional array can be written by the

following formula:

][]][][[iNjNNkHijkH iij  .

 Therefore, with row-major layout, multi-dimensional arrays/matrixes can be allocated into

single dimensional array in global memory (DRAM) of GPU, which comprises the first row,

followed by the second row, followed by the third row, and so on.





111

An important point in memory layout refers to coalesced memory. Considering coalesced

memory is one of the important optimisation techniques that can be applied to efficient

implementation of the GPU code. Coalesced memory is a technique that combines and groups

non-sequential, small data transactions and global memory reads into larger and sequential data

transactions. This technique helps the GPU execution to be more efficient in terms of global

memory accessibility and allows consecutive threads within a warp to access contiguous

memory with larger data transactions and bigger memory reads. In this work, this technique is

considered to combining and linearizing three-dimensional arrays into one-dimensional arrays

by using thread ID with respect to x, y, z coordinates (section 6.3.1). In addition, this way of

storing data in global memory indicates SoA memory layout. As noted in section 7.1, the

memory access patterns are very important for achieving high performance in the program on

any parallel architecture and considering appropriate data layout for accessing memory has a

direct impact on performance. Better and effective vectorisation and parallelisation can be

provided when SoA memory layout maintains the unit-stride memory and consecutive memory

locations. In order to uphold coalesced access to global memory and to prevent misaligned

access to memory padding [177] is used in SoA layout. Figure 7.24 shows the difference

between AoS and SoA memory layouts with padding.

Figure 7.24: Difference between AoS and SoA.

 Another factor in memory access optimisation related to coalesced memory is the

combination and coalescing different requests of a warp into a single request to reduce DRAM

bandwidth. This indicates that access to DRAM will be most effective when a warp (32 threads)

load and access in the same 128-byte (in Kepler microarchitecture) segment or cache-line.

Hence, the global memory can be accessed more efficiently by coalescing and combining all 32

requests from each thread in a warp into one request or transaction. To meet this requirement,

alignment within streaming operations to a 128-byte boundary of cache-line is necessary. As

discussed in section 7.1, alignment refers to the property of memory address that align a data

stream to start at specific addresses, and can be determined as a numeric address to a power of 2

[178]. In alignment besides the address the data size is also important. When a datum address is

aligned to its size it is known as “naturally aligned”.

112

However, to comprehend how the data alignment can be helpful for coalescing requests into

single request, the investigation of loading operations from global memory is important. In

general, there are two types of loads from global memory based on the Kepler GK104

microarchitecture: caching (default) and non-caching. Caching is a default mode of GPU for

loading from memory with 128-byte line, by which it tries to use L1, then L2, and then global

memory. Non-caching is not the default mode of GPU and needs to be compiled with different

configuration for utilisation. Non-caching mode tries to use L2 and then global memory. In the

present study, only caching load is considered. To understand this behaviour two scenarios are

taken into account: cache loading with aligned requests and cache loading with misaligned

request. In the first scenario, all 32 requests from each thread in a warp are aligned with

consecutive 4-byte data size. The following figure presents cache loading with aligned requests.

Figure 7.25: Aligned cache loading.

 From the previous figure, all of the 32 requests from each thread in the warp are combined

and coalesced into a single 128-byte cache-line or segment and the whole thread addresses of a

warp are allocated within one segment. It is evident that in the first scenario addresses from a

warp can be allocated when permuted (not in consecutive format) in one cache-line. In contrast,

the second scenario illustrates all 32 requests from each thread in a warp when misaligned.

Figure 7.26: Misaligned cache loading.

113

Figure 7.26 shows all of the 32 requests in a warp when not coalesced into a single segment;

they are combined into two cache-lines and the all thread addresses of a warp are allocated

within two segments resulting in performance losses. Therefore, alignment and stride play very

important roles in optimisation of memory access pattern and memory coalescing. Even though,

these factors are essential features of optimisations of memory, striding through DRAM when

dealing with multi-dimensional arrays is difficult and problematic due to the large strides

between threads in a warp and between elements of array. For accessing multi-dimensional

matrix, it is essential for threads to index the higher dimensions of the matrix which causes large

strides between threads. To address this issue utilising on-chip shared memory is considered.

Additionally, matching the x direction of the system to the innermost block size can be helpful

for solving the problem of large stride. Another option ‘shuffle’ also exists, which will be

addressed in the future work. Therefore, this issue is solved based on the coalesced transpose

through shared memory. The implementation of the coalesced transpose through shared memory

follows: (i) loading contiguous data from global memory into the shared memory from each

thread within a warp; (ii) re-determining the array indices of shared memory; and (iii)

synchronising all the threads, in order to make sure all the threads within a warp of one block

complete calculations.

7.3.3 Communication and Data Transfer

Data transferring must be accomplished through PCI-Express interface (bus connectors) from

CPU to GPU and vice versa. In CUDA programming model [131] this can be done by using

cudaMalloc() and cudaMemcpy() functions. CudaMalloc() function is for allocating memory on

the device and cudaMemcpy() function is for copying data stream from the host to the device

and back again. The important point of data transferring or communication between CPU and

GPU refers to the performance. In fact, multiple unnecessary Memcpy functions have a direct

impact in reducing the performance. The following figure presents allocating memory in CUDA

and copying data from CPU to GPU.

 float* d_pxi;

 size_t size=Nz*Ny*Nx*sizeof(float);

cudaMalloc((void**)&d_pxi,size)

 float* h_pxi = malloc(size);

 // code to fill h_pxi

 cudaMemcpy(d_pxi,h_pxi,size,

 cudamemcpyHostToDevice);

Figure 7.27: Allocating an array on memory of GPU (left) and copying data from CPU to GPU

(right).

Where d_pxi refers to the array on the device and h_pxi is an array on the host. The last term of

cudaMemcpy function indicates the direction in which the data must be copied.

114

7.3.4 Threads and Thread Blocks Distribution

The number of threads that can be executed simultaneously in parallel varies according to GPU

architectures and compute compatibilities. A maximum of 1024 threads are possible in a block

in Kepler architecture with a minimum of 3.0 compute compatibility. In GPU devices there is a

high amount of obtainable parallelism, and this large number of threads can be used to hide

memory latency efficiently. On the other hand, on CPU devices this amount of parallelism is not

accessible due to architectures whereby only instructions of one or two threads (with respect to

HT) can be executed simultaneously in parallel. Therefore, to utilise this high volume of

parallelism on GPU fine-grained distribution scheme for distributing threads and thread blocks

based on the fine-grained spatial decomposition method must be considered. In fine-grained

distribution the total number of threads and thread blocks are launched based on the domain size

whereby each thread must be processed in each cell of the cube or grid-point of the system. It

should be noted that according to the NVIDIA CUDA programming guide [131] the number of

threads per block that can be used to achieve the best performance is recommended to be a

multiple of warp size (32). Otherwise the GPU would waste the SM resources on active warp

(e.g. registers) and increase the number of unusable and inactive threads in the last warp. In the

whole computation processes of the CDS the total number of cubes’ cell is determined by

xyzT NNNN  . yz NN , and xN are the numbers of cell/grid-point coordinates

considered by each kernel function on GPU. Thus, the appropriate number of grids (grid size) is

defined based on the following formulas in three dimensions:

   1:0?0%1/  DimblockNDimBlockNDimGrid zzz

   1:0?0%1/  DimblockNDimBlockNDimGrid yyy

   1:0?0%1/  DimblockNDimBlockNDimGrid xxx

 DimBlock refers to the number of threads in a block which depends on the GPU architecture,

simulation system size and available resources such as warps, shared memory and registers.

The last term of the formula is for adding an additional block to avoid a lack of resources and to

ensure that the DimGrid covers the entire system size. Percentage sign in the last part refers to

modulo operator which gives the remainder of a division. Conditional expression (?:) in the last

term is used for the evaluation of modulo operator, if the condition (remainder of modulo

operator) is true (zero) then returns zero, otherwise returns one. Therefore, by considering this

structure the kernels will perform for every grid cell of simulation domain from (1, 1, 1) to (

xyz NNN ,,), regardless of the system size.



115

7.3.5 Heterogeneous CUDA-Based CDS Pseudo-Code from Logical Level View

As discussed earlier, in a single computer node GPU and CPU are discrete and separate

processing components connected to each other through PCI-Express bus. This form refers to a

heterogeneous system. In heterogeneous system computational tasks are processed based on

heterogeneous computing, which divides the computational tasks between processing

components to yield high performance. In this model of computing, data is initialised by the

CPU/host and compute-intensive works are processed by GPU/device. As mentioned in chapter

6.3.3, due to the highly parallel nature of GPUs architecture and different types of memory on

GPU, optimal performance can be achieved by executing intensive parallel works on GPU and

fewer parallel or sequential works on CPU. Figure 7.28 illustrates CUDA-based CDS

simulation pseudo-code.

Begin

Host program on CPU

1: Define variables

2: Read values of parameters from input files

3: Allocate Host arrays

4: Initialise random values for order parameter

5: Allocate Device arrays

6: Define time function

7: Start to copy values from Host to Device

8: Calculate number of threads and number of blocks based on the system size

 (number of cell)

9: Discretised into three dimensions cube/grid and map each thread to one cell

Kernel program implemented on GPU/Device

10: Kernel 1 – Define and calculate boundary condition in x axis

11: Kernel 2 – Define and calculate boundary condition in y axis

12: Kernel 3 – Define and calculate boundary condition in z axis

13: For all time – steps --- (executes on the host)

14: Kernels 4 - 7 – Calculate first isotropised discrete Laplacian

15: Kernel 8 – Calculate Map function

16: Kernels 9 - 13 – Calculate second isotropised discrete Laplacian of the

17: Free energy functional and update boundary conditions

18: Kernel 14 – Calculate whole equation for  rt ,1  Eq. (2.8)

19: Copy back from Device to Host

20: Reconstruct the data cell according to the results

21: Write the outputs into files

22: End for

23: Free all Host and Device memory allocation

24: Write the elapsed time

End

Figure 7.28: Heterogeneous pseudo-code of CUDA-based CDS simulation.

116

Figure 7.28 shows that the complex CDS simulation method is divided into a group of

fundamental kernels to process the expensive computations and calculations. The major reasons

for having a group of kernels that transfer a set of function calls from the host into the device

are that it: (i) is easier to implement; (ii) is easier to maintain code accurateness; and (iii)

maximises system performance by allocating enough resources for each kernel. Therefore, to

obtain the maximum benefit of parallel computing of GPU, fourteen kernels were implemented

for the calculations. According to the pseudo-code of CUDA program, each kernel has a

responsibility to compute one part of the CDS simulation method in parallel. However, this

method has limitations, as discussed with regards to kernel optimisation (kernel fusion) in

section 7.3.7.

7.3.6 Performance Metrics and Results

This study used NVIDIA Quadro K5000 commodity based on the first generation of GK104GL

Kepler microarchitecture. It comprises of eight streaming multiprocessors, each of which

contains 192 cores. In total, there are two warp schedulers and two instruction dispatch units per

each streaming multiprocessor, which are capable of launching and executing two warps

concurrently and simultaneously [179]. Dual warp scheduler selects two warps and launches

one instruction stream per clock cycle from each warp. Since warps execute independently in

dual warp scheduler there is no dependency issue within the instruction stream and it can be

obtained high performance. The warp scheduler helps to have an efficient share access to 64KB

of configurable L1 cache/shared memory. Total numbers of multiprocessing streams have

shared access to 512KB of L2 cache and 4GB of global memory. The GPU commodity clock

rate is 706 MHz; a theoretical peak single precision performance refers to the 2.1 TFLOPS and

the maximum memory bandwidth is 173GB/s.

 There are two main metrics for specifying GPU performance: maximum computational

performance and memory bandwidth. Maximum computational/arithmetic performance refers to

the measurement of computational capability by calculating the number of floating points either

single or double can be processed per second. Memory bandwidth indicates the amount of data

that can be accessed in a specific time (seconds). It can be specified whether the program is

compute or memory bounds by considering the ratio between a maximum arithmetic

performance (single precision) and a peak memory bandwidth. In NVIDIA K5000 the ratio of

these factors is: FLOP bandwidth = 12.1. This value indicates that for increasing arithmetic

throughput and computer resources, at least 13 floating point operations per memory access

should be performed to achieve high FLOP performance. There are three main factors that must

be considered to obtain high performance on GPU application: (i) decreasing/hiding instruction

and memory latency; (ii) efficient utilisation of memory bandwidth; and (iii) efficient utilisation

117

of computer resources or arithmetic throughput. Not considering these factors will be caused

performance bound which are respectively: (i) latency bound; (ii) memory bound; and (iii)

compute resource bound. Latency bound refers to the situation when both memory and compute

utilisation are low. Memory bound is a situation when memory access/load and store speed is

high. This pertains to the time of execution of program depending on the memory loads.

Compute resource bound indicates that the resources are not used efficiently e.g. a high

proportion of disabled warps relative to the total number. To address the performance bound

issues the following points have been considered:

1. Memory bandwidth: to reduce memory bandwidth bound appropriate memory access

pattern, layout and alignment are considered. In addition, efficient usages/metrics of

GPU memory hierarchy for each kernel are investigated.

2. Arithmetic resources bound: to address this problem, warp execution efficiency should

be considered. Warp execution percentage refers to the average percentage of active

threads in every executed warp. In fact, improving warp execution efficiency can

increase the utilisation of the resources. According to the GPU CUDA, to fulfil this

requirement all threads in a warp should have the same branching behaviour, and reduce

divergent branches (e.g. if - then - else) as much as possible in each kernel.

3. Latency bound: to decrease the latency bound, the occupancy of each streaming

multiprocessor is important. Streaming multiprocessor occupancy refers to the ratio of

the number of active warps to the maximum number of possible active warps that can

be assigned on a GPU’s multiprocessor [180]. There are three main points which play

important for theoretical occupancy of the multiprocessor: (i) number of threads per

block; (ii) amount of shared memory usage per block; and (iii) number of register

utilisation per thread. However, the main reason for low achieved occupancy is that all

streaming multiprocessors on GPU have different execution time-line and they do not

remain equally busy during execution of kernels because of synchronisations and

existent dependencies.

Furthermore, the high levels of performance can be achieved at lower occupancy by increasing

instruction level parallelism (ILP) according to Vasily Volkov [181]. To hide or decrease the

latency it is necessary to have high occupancy (more concurrent warps) or high instruction level

parallelism (more independent instructions in a thread). In addition, different techniques (e.g.

loop unrolling) that can be applied in program to increase ILP are employed by optimising

compiler [112]. Hence, this study consider mainly the exploiting the thread level parallelism

which comprises of task and data parallelisms. The following formulas illustrate how to

calculate different metrics of performance [182]:

118

ThroughputLatencywarpsquired _Re .

The required-warps (amount of parallelism) refers to the required number of warps to achieve

high performance or hide latency. Latency is the time needed to process an operation and

throughput indicates number of operations that can be processed per second in each streaming

multiprocessor. Arithmetic latency takes approximately 10-20 clock cycles and memory latency

takes between 400-800 cycles. A warp performs one instruction that corresponds to 32

operations and Kepler architecture needs 3,840 (20192) operations per streaming

multiprocessor to obtain full arithmetic utilisation. By dividing 3840 by 32, 120 warps per

streaming multiprocessor are required to achieve full utilisation of compute resources. The

maximum memory bandwidth for Quadro K5000 commodity is 173GB/s and memory

frequency/clock rate is 2.7GHz, and 1 Hz is specified as one clock cycle per second, therefore it

is possible to calculate the memory bandwidth from gigabyte per second to gigabyte per cycle:

1732.7 = 64 Bytes/Cycle. By multiplying byte per cycle by Kepler memory latency, 64

800=51200 bytes or 52KB of memory I/O needed to obtain high memory utilisation. It should

be noted that this value is for the whole GPU device, not for each streaming multiprocessor.

Finally, a knowledge this value and amount of data that each thread uses, the number of threads

and warps to hide memory latency can be calculated. For instance, if each thread utilises 4 bytes

for computation, consequently the number of threads can be calculated by 52KB 4

bytes/thread = 13,000 threads or 13000 threads32 threads/warp = 407 warps required to hide

memory latency.

 In CUDA hierarchy model instructions are executed within each core of streaming

multiprocessor, when one warp becomes idle e.g. waiting for result, the streaming

multiprocessor switches to other active warp to continue execution. By having enough warps the

cores of the GPU/device can be kept busy or occupied all the time, hiding latency. The context

of each warp will remain on-chip of streaming multiprocessor during the whole lifetime of the

warp. Hence, the switching cost between warps is negligible.

warpsMaximume

warpsActive
occupancylTheoretica

_

_
_  ,

   SMperwarpsMaxcyclesActivewarpsActiveoccupancyAchieved ______  ,

 The other important metric to be considered for hiding arithmetic resource bound refers to

divergence or branch of the control flow. The GPU execution is based on the warp and each

thread within a warp executes same instruction. If however, some threads within a warp start to

execute different instructions or take different paths, warp divergence will happen and degrade

performance. Warp divergence or branch causes the serial execution of those threads which take





119

a path (condition is true) and the rest of threads will be disabled until the primary condition

becomes false. Thus, it is essential to reduce as much as possible the number of different

execution branches within the same warp. Branch efficiency formula can be used to calculate

the efficiency of warp divergence. Branch efficiency refers to the ratio of non-divergent of

branches to total number of branches.

100
_

_ 






 


branches

branchesdivergentbranches
efficiencyBranch .

It is also essential to achieve high memory metrics to avoid/hide memory bound and obtain high

performance. To calculate the memory load efficiency of the kernel should first consider global

memory throughput. Global memory load requested throughput refers to the number of data

requested by instructions from the GPUs’ global memory, and global throughput is a memory

read productivity of the kernel. Finding global memory load helps in calculating the global

memory efficiency, which refers to the percentage of coalesced access from global memory. A

value of 100% indicates that all accesses are perfectly coalesced, representing the maximum

utilisation of global memory bandwidth. Global memory load efficiency is the ratio of requested

global memory load throughput to the required global memory load throughput.

100
_

__
_ 










throughputglobal

throughputrequestedglobal
efficiencyGlobal .

 Table 7.6 Compiler configuration and CUDA specification used for executing the CDS

method used in this study.

GPU - CUDA Specifications

Device

Architecture

CUDA Compute Compatibility

CUDA Driver Version

NVIDIA Quadro K5000

Kepler GK104GL

3.0

6.5

Compiler Configurations

Operating System

Compiler

Compiler Version

Compiler Flags

Linux - OpenSUSE 12.3

NVIDIA - NVCC

6.0.1

-O3 -arch=”sm_20”

Table 7.6:CUDA specifications and compiler configurations for the CDS simulation.





120

Although it is more common to have the same value of the architecture flag (–arch=”sm_30”) of

compiler with compute compatibility (3.0) it was found that the architecture flag of compiler

with “sm=20” yields better performance for CUDA-based CDS implementation. This may be

due to the utilisation of 32-bit pointers for compiling, which needs less register, and faster

utilisation of mathematical functions with fewer precision points.

 Table 7.7 presents the reference result as a baseline for performance of the CDS simulation

for 646464  system size in 100,000 time-steps, without any shared memory. The following

results are calculated with the help of NVPROF (NVIDIA command-line profiler), which

enables gathering of the performance metrics for GPU kernels, memory transfers and CUDA

activities.

No.

threads

No.

blocks

Av.

branch

efficiency

%

Total

no.

registers

(kernels)

Av.

total global

load

throughput

GB/s

Av.

global

load

efficiency

%

Achieved

global

store

efficiency

%

Av.

achieved

occupancy

(kernels)

%

Elapsed

time

(Seconds)

16,4,16

5,17,5

(425)

99.71 250 71.21 94.54 90.28 77.54 250.945

16,16,4

5,5,17

(425)

99.71 250 71.90 94.54 90.28 76.62 248.644

32,2,16

3,33,5

(495)

99.57 250 73.09 95.18 90.28 77.79 244.583

32,16,2

3,5,33

(495)

99.57 250 75.09 95.18 90.28 76.97 241.452

64,2,8

2,33,9

(594)

99.54 250 68.36 95.08 90.28 64.28 265.637

64,8,2

2,9,33

(594)

99.54 250 68.66 95.18 90.28 64.28 257.616

128,2,4

1,33,17

(561)

99.53 250 65.09 95.08 90.28 65.18 277.083

128,4,2

1,17,33

(561)

99.53 250 65.22 95.18 90.28 64.94 275.347

Table 7.7: Comparison of CUDA execution configurations and performance metrics for

646464  system size.

Table 7.7 shows that different CUDA configurations have different impacts on the execution

time and performance. All the systems have run 1024 threads per block, but with different

numbers of blocks per grid. These differences in the number of blocks are caused by different

percentages of occupancy achieved and the other performance metrics. The fourth case obtains

the best execution time with a total of 495 thread blocks; this is higher than in the first case

(425), but less than for the fifth (594) and seventh (561) cases. This illustrates that having a high

number of thread blocks does not always give the best results in terms of occupancy achieved,

121

therefore the other criteria play an important role in performance. For instance, the achieved

occupancy for the first case is higher than for the fourth, however the global memory throughput

is less in the latter. The other important point found based on the results, relates to the value of

the innermost dimension of a thread block. In fact, choosing the lowest value/number for the

innermost dimension helps to improve the global memory throughput, which has a huge impact

on the performance. The main reason for this phenomenon could be the memory access pattern.

The logical layout of a three-dimensional thread block was flatted into one-dimensional physical

arrangement by utilising the x dimension as the innermost dimension, y as the second dimension

and the z as the outermost dimension. As mentioned in section 7.3.2, coalescing and stride are

important factors in memory arrangement and access pattern. Therefore, by choosing the lowest

number for the innermost dimension the DRAM bandwidth can be reduced, coalescing different

requests of a warp into single request and solving the large stride issue. As the execution of the

thread block is based on the warp execution and the dimension of thread block should always be

multiple of the warp size (32), thus, a thread block which is a multiple of the warp size can

prevent inactive threads in the last warp and enhance the occupancy. It should be noted that all

results of metrics are calculated based on the average of total number of kernels (14) for the

CDS simulation program and they do not represent any single kernel. The total numbers of

registers per thread for instance refers to the sum of all registers used in all kernels per thread.

 The following table shows different CUDA execution configurations for 128128128 

system size in 100,000 time-steps without any shared memory usage.

No.

threads

No.

blocks

Av.

branch

efficiency

%

Total

no.

registers

(kernels)

Av.

total global

load

throughput

GB/s

Av.

global

load

efficiency

%

Achieved

global

store

efficiency

%

Av.

achieved

occupancy

(kernels)

%

Elapsed

time

(Seconds)

16,16,4

9,9,33

(2673)

99.91 250 80.27 96.90 94.85 80.57 1672.49

32,16,2

5,9,65

(2925)

99.85 250 94.63 98.36 94.85 80.92 1422.35

64,8,2

3,17,65

(3315)

99.85 250 85.67 98.36 94.85 70.14 1641.62

128,4,2

2,33,65

(4290)

99.85 250 68.27 98.36 94.85 59.82 1881.55

Table 7.8: Comparison of CUDA execution configurations and performance metrics for

128128128  system size.

Table 7.8, shows that the second case with total number of 1024 threads and 2925 thread blocks

has gained the best results in terms of execution time, occupancy and global memory

throughput. As mentioned earlier, each streaming multiprocessor contains a group of 32-bits (in

122

total 64K for Kepler architecture) registers that can be distributed across threads and a fixed

volume of shared memory that can be spread amongst the blocks. Therefore, the available

number of registers and shared memory has direct impact on the number of thread block and

warps that can simultaneously and concurrently assign on a streaming multiprocessor for a

specific kernel. The resource availability (register and share memory) restricts the number of

occupant blocks per streaming multiprocessor. In other words, the occupancy is specified by the

number of registers and the volume of shared memory utilised by every block. For instance,

kernel 8 for 646464  system size uses 12 registers per thread and the total number of thread

blocks is 495, hence 595212496  registers used for each block. This leads to the number of

blocks per streaming multiprocessor 115952/102464  . With the benefit of CUDA

occupancy calculator, the occupancy of streaming multiprocessor can be calculated by a chosen

device kernel. The impact of different block sizes and different number of registers per thread

on GPU occupancy are shown in the figures. The red triangles on the following figures present

the achieved streaming multiprocessor occupancy based on the chosen number of threads per

block and register per thread.

Figure 7.29: Occupancy of kernel-8 based on 1024 threads (left) and 12 register count (right).

Figure 7.30: Occupancy of kernel-14 based on 1024 threads (left) and 20 register count (right).

123

It can be seen from the figures that by utilising 1024 threads per block and having the register

number between the ranges of 1 to 32 per thread the highest number of occupancy can be

obtained for each streaming multiprocessor. In this instance a high number of occupancy with

the mentioned specifications indicates that the total number of active threads per streaming

multiprocessor is 2048, the total number active warps per streaming multiprocessor is 64 and

the number of active blocks per streaming multiprocessor is 2. According to Figures 7.29 and

7.30, high occupancy can be obtained with different numbers of threads, such as 128, 256 and

512 per block rather than only 1024 threads per block. However, the other important features to

achieve high occupancy and hide latency include the number of active warps per streaming

multiprocessor and the number of active thread blocks per streaming multiprocessor. The

following table displays GPU occupancy data based on the different threads number. As

discussed previously, the maximum numbers of active threads per SM and active warps per SM

for commodity NVIDIA Quadro K5000 GPU are 2048 and 64, respectively.

GPU Occupancy

Data

128 - Threads 256 - Threads 512 - Threads 1024 - Threads

Number of active

Thread Blocks per

SM

16 8 4 2

Table 7.9: Comparison of GPU occupancy data based on different threads number.

Table 7.9 shows the numbers of active thread blocks that can execute concurrently on one

streaming multiprocessor and hide the latency for total threads number of 128 is higher than the

others. Consequently, 128 threads rather than another number of threads is chosen as a thread

block size for executing the performance metrics mentioned earlier for two system sizes of the

CDS simulation method.

No.

threads

No.

blocks

Av.

branch

efficiency

%

Total

no.

registers

(kernels)

Av.

total global

load

throughput

GB/s

Av.

global

load

efficiency

%

Achieved

global

store

efficiency

%

Av.

achieved

occupancy

(kernels)

Elapsed

time

(Seconds)

646464 

16,4,2

5,17,33

(2805)

99.72 250 90.29 94.54 90.28 84.43 222.34

128128128 

16,4,2

9,33,65

(19305)

99.91 250 96.54 96.91 94.85 85.58 1361.57

Table 7.10: Comparison of CUDA execution configurations and performance metrics.

124

Table 7.10 shows that better performance can be achieved with 128 threads and total numbers of

2805 and 19305 thread blocks for 646464  and 128128128  system sizes compared to

using 1024 threads or any others. The main reason for this is that the number of active thread

blocks per streaming multiprocessor helps to hide the latency. It should be noted that according

to the CUDA programming guide [131], the amount of required occupancy that can saturate the

latency depends on the computational problem and increasing occupancy does not always give

higher performance. In fact, sometimes increasing occupancy by adding more registers,

divergent branches and additional instructions reduces the performance and increases the wall-

clock time of the kernels executions. However, to appoint an accurate volume of occupancy it is

necessary to have a good balance between compute and memory utilisations. Figure 7.31

illustrates the occupancy of kernel 14 based on the 128 threads and 20 registers per thread.

Figure 7.31: Occupancy of kernel-14 based on 128 threads (left) and 20 register count (right).

It can be seen from Figure 7.31 and Table 7.9 that using 128 threads per block and considering

the register number between the ranges of 1 to 35 per thread the highest number of occupancy

and active thread blocks can be achieved for each streaming multiprocessor. The main

difference between Figure 7.31 and Figure 7.30 is number of registers that can be used to obtain

the high occupancy.

 The other important point for achieving high performance and occupancy for CUDA

application is utilisation of shared memory. As discussed earlier, shared memory is on-chip

memory, which is much quicker than the global memory. The maximum amount of shared

memory for the commodity used in this study and Kepler microarchitecture with compute

compatibility 3.0 is 49152 bytes that can be assigned per thread block, hence the whole threads

within the block can access the same shared memory. The threads within the same block can

share and access each other’s data through shared memory loaded from global memory. This

offers a promising opportunity and capability to obtain high performance in parallel algorithm

and solve coalescing of global memory and large strides issues. It should be noted that the

utilisation of shared memory is useful and beneficial for repeat data access within the same

125

thread or different threads in the same block. In addition, to avoid race conditions between

threads within the block a barrier synchronisation should be considered between them. The

following figure shows the impact of varying shared memory usage per block for 1024 and 128

threads and the amount of shared memory (1256 bytes) used in this work.

Figure 7.32: Amount of shared memory and the warp occupancy for 1024 threads (left) and 128

threads (right) per block.

When the block size is 1024 the amount of shared memory usage can be increased to 24576

bytes to achieve high occupancy without losing any occupancy. However, for 128 threads per

block the volume of optimum shared memory usage is dropped to 4563 bytes. Table 7.11

illustrates different performance metrics based on 128 threads per block and 1256 bytes shared

memory for 646464  and 128128128  system sizes and 100,000 total time-steps.

No.

threads

No.

blocks

Av.

branch

efficiency

%

Total

no.

shared

memory

Achieved

global

store

efficiency

%

Av.

total global

load

throughput

GB/s

Av.

global

load

efficiency

%

Av.

achieved

occupancy

(kernels)

%

Elapsed

time

(Seconds)

646464 

16,4,2

5,17,33

(2805)

99.72 1256 92.36 91.38 94.54 84.64 211.56

128128128 

16,4,2

9,33,65

(19305)

99.91 1256 95.95 97.56 96.91 86.37 1343.53

Table 7.11: Comparison of CUDA execution configurations and performance metrics with total

1256 shared memory usage and 253 registers.

 From the table above it can be seen that by utilising shared memory the execution times are

reduced, yielding better performance metrics. Although the shared memory usage improves the

performance by solving large stride issue, its effect on the performance and specifically on the

execution times is not significant. The main reason is that the implementation of CUDA-based

126

CDS simulation is not memory bound. If any program is limited by memory (memory bound)

then using shared memory will have a huge impact on performance. Since all these metrics are

reported based on the entire CUDA-based CDS executions, and there is no reported specific

kernel separately and individually, to understand the execution behaviour of kernels better, two

important kernels distinctly are taken into account with the help of NVIDIA NSIGHT visual

profiler [75] for 646464  domain size. The following table presents all the execution

configurations (block size, register usage, and shared memory usage) for kernels 8 and 9.

Occupancy per SM - Grid Size: [5,17,33] – Block Size: [16,4,2]

 Kernel-8 Kernel-9

Variable Achieved Achieved

Active Warps 51.95 54.25

Occupancy 82.21% 84..82%

Threads

Variable Used Used

Threads/Block 128 128

Registers

Variable Used Used

Registers/Thread 13 26

Registers/Block 2048 4096

Shared Memory

Variable Used Used

Shared Memory/Block 256 364

Table 7.12: Kernels 8 and 9 execution configurations for 646464  system size.

Figure 7.33 displays the execution time of GPU for two different system sizes in different time-

steps using shared memory. Noted that all executions are performed on the same GPU

architecture and floating point (single precision).

Figure 7.33: GPU elapsed times for 646464  and 128128128  system sizes.

127

7.3.7 Kernel Fusion and Results of Performance Comparison

As discussed in section 7.3.5, the original idea for the logical and hardware levels of parallel

implementation of the CDS simulation scheme on GPU was based on the decomposition of

computational problems into a set of fundamental kernels to process the expensive computations

and calculations of each equation in the CDS method. Although this idea has some advantages,

such as the ease of implementing and maintaining the code, it also has some limitations. One of

the main limitations for decomposition of computational problems into fundamental kernels is

the reusability and accessibility of data for shared and global memories usages. GPU memories

are classified into off-chip memory, which has larger size, lifetime of program, and higher

latency; and on-chip shared memory, which is quicker, and has lower latency, smaller size and

shorter kernel lifetime. On-chip memory should be used mainly when the frequent accessibility

of data is high during the computation, therefore shared memory as on-chip memory can be

utilised only for intermediate data during the kernel execution (lifetime of kernel) of the GPU,

and for passing data between kernels; data must be stored in off-chip (global) memory.

Consequently, to achieve high compute throughput of GPU and to exploit more parallelism, it is

necessary to reduce the number of access of off-chip memory (global memory bandwidth) and

to execute enough operations per data stream (stored or passed from the off-chip memory).

However, it should be noted that adding more computations into a single kernel is not always

useful and helpful [183]. Due to the finite available resources per streaming multiprocessor,

adding more computations increases the utilisation of resources thus limiting the amount of

occupancy and parallelism. Hence, determining the ideal distribution of computational problem

into kernels is not an easy task.

 To address the limitation of distributing computational works into a group of kernels, a

fusion method can be considered. In this scheme, first all the computational works developed as

standalone kernels are investigated and then those kernels that have more opportunity to

improve the performance with respect to data locality are fused into one kernel. Different

studies [183, 184] are also investigated the fusions of kernels in different fields. Wu et al. [185]

considered fusing kernels to decrease the amount of memory bound in the GPU application. In

[186], the authors alluded to the kernel fusions for improving the energy efficiency of GPU by

reducing power consumption. Furthermore, these studies are mainly considered kernel fusions

for memory bound GPU applications. However, the CUDA-based CDS method is not a memory

bound application and the fusing of kernels is considered to improve performance and increase

data reusability on on-chip memory. Thus, the following are the main advantages of kernel

fusions:

1. Reducing the number of kernels which has a direct relation with kernels overhead. In

fact, by fusing kernels, the amount of work that can be processed by fused kernel will

128

be increased, therefore reducing the total number of function/kernel calls and kernels

overheads.

2. Decreasing the number of off-chip memory access or data transfer from or to DRAM.

3. Improving performance by having more transactions in flight to hide latency.

4. The impact of implicit optimisations by compiler can be increased due to the higher

number of instruction in complex kernel.

The kernel fusion is sometimes not straightforward, and requires deep understanding of

function/kernel behaviours and their impact on the entire program, whose original functionality

should be maintained (as a primary specification). Therefore, the main challenges for kernel

fusions are:

1. Utilising more resources such as shared memory and registers can reduce occupancy.

2. Different kernels use different optimal numbers of threads, and consequently different

numbers of active warps to process data elements. Fusing kernels can cause suboptimal

numbers of warps and threads, which reduces the performance of the program.

3. Sometimes it is difficult to maintain and evaluate the correctness of code due to the

complexity of fused kernel.

4. Race condition can arise due to omitting the implicit global barrier between kernels in

kernel fusions.

 An example of kernel fusion is shown in Figure 7.34. Loads refer to the accessing data from

global memory and saving into shared memory. Compute is computational processing of data

within shared memory and store refers to the storing final results into global memory.

Figure 7.34: Illustration of kernel fusion.

129

Kernel fusion was based on the performance investigation of each kernel and consideration of

data dependency between kernels. Therefore, the first step with the help of NVIDIA profiler is

to analyse and profiler the performance of each kernel, identifying those that have more

opportunity to improve performance when combined into one kernel. In the second step data

dependencies between chosen kernels are considered. In this step only those kernels that can be

securely fused without changing the semantics of the entire program (data dependencies) are

selected. After investigating the mentioned steps in CUDA-based CDS method, it was found

that nine kernels have the opportunity to be fused without influencing the data dependencies of

the entire program. The following figures present the kernel fusions and the whole pseudo-code

of CUDA-based CDS simulation after combining kernels.

Kernels implemented on the Device

1: Kernel 1 – Define and calculate boundary condition in x axis

2: Kernel 2 – Define and calculate boundary condition in y axis

3: Kernel 3 – Define and calculate boundary condition in z axis

4: Kernels 4 - 7 – Calculate first isotropised discrete Laplacian

5: Kernel 8 – Calculate Map function

6: Kernel 9 – Calculate Free energy functional

7: Kernels 10 - 13 – Calculate second isotropised discrete

8: Laplacian and update boundary conditions

9: Kernel 14 – Calculate whole equation for  rt ,1  Eq. (2.8)

Figure 7.35: Kernel fusions of CUDA-based CDS scheme.

Begin

Host program on CPU

1: Define variables

2: Read values of parameters from input files

3: Allocate Host arrays

4: Initialise random values for order parameter

5: Allocate Device arrays

6: Define time function

7: Start to copy values from Host to Device

8: Calculate number of threads and number of blocks based on the system size (number of cell)

9: Discretised into three dimensions cube/grid and map each thread to one cell

Kernel program implemented on GPU/Device

10: Kernel 1 – Define and calculate boundary conditions in x, y, z axes

11: For all time – steps --- (executes on the host)

12: Kernel 2 – Calculate first isotropised discrete Laplacian

13: Kernel 3 – Calculates Map function and free energy functional

16: Kernel 4 – Update boundary conditions and calculate second isotropised

14: discrete Laplacian

15: Kernel 5 – Calculate whole equation for  rt ,1  Eq. (2.8)

Fused – kernel 1

Fused – kernel 2

Fused – kernel 3

Fused – kernel 4

130

16: Copy back from Device to Host

17: Reconstruct the data cell according to the results

18: Write the outputs into files

19: End for

20: Free all Host and Device memory allocation

21: Write the elapsed time

End

Figure 7.36: Pseudo-code of CUDA-based CDS simulation based on the kernel fusions.

Table 7.13 shows different performance metrics and the execution time for 646464  and

128128128  system sizes in 100,000 time-steps based on the kernel fusion pseudo-code and

without considering any shared memory usage.

No.

threads

No.

blocks

Av,

branch

efficiency

%

Av.

total global

load

throughput

GB/s

Av.

global

load

efficiency

%

Achieved

global

store

efficiency

%

Av.

achieved

occupancy

(kernels)

%

Elapsed

time

(Seconds)

646464 

16,4,2

5,17,33

(2805)

99.98 94.75 99.52 90.28 78.62 202.53

128128128 

16,4,2

9.33.65

(19305)

99.97 99.25 99.93 94.85 81.28 1288.31

Table 7.13: Comparison of CUDA execution configurations and performance metrics based on

the kernel fusions with total number of 125 registers.

 From the above table it can be seen that the occupancy percentage is decreased compared to

that shown in table 7.10, which is not based on the kernel fusion algorithm and shared memory.

The main reason for this is the increased number of register usage (35) per thread for the kernels

2 and 4. However, it is clear that the averages of branch efficiency, global throughput and load

efficiency are increased, which affects performance. In addition, fusing kernels decreases the

total numbers of kernel calls, thus kernel overheads are reduced. In fact, reducing the kernel

overhead has a significant impact on the execution time. The following table illustrates

performance metrics and the execution times for two system sizes based on the kernel fusion

algorithm by considering shared memory usage.

131

No.

threads

No.

blocks

Av,

branch

efficiency %

Total

no.

shared

memory

Av.

total global

load

throughput

GB/s

Av.

global

load

efficiency

%

Av.

achieved

occupancy

(kernels)

%

Elapsed

time

(Seconds)

646464 

16,4,2

(5,17,33)

5,17,33

(2805)

99.98 512 93.51 99.51 78.84 195.52

128128128 

16,4,2

9.33.65

(19305)

99.97 512 98.25 99.93 81.47 1257.59

Table 7.14: Comparison of CUDA execution configurations and performance metrics based on

the kernel fusions and shared memory usage with total 125 registers.

Table 7.14 illustrates that using shared memory helps to reduce slightly the execution time,

promoting better performance in different metrics. It should be noted that the percentage of

occupancy can be improved by decreasing the register number per thread. The reduction of the

register number to 27 per thread was considered, resulting in similar elapsed time for both

shared memory and non-shared memory usages, therefore the results are not reported here.

Figure 7.37 displays the execution time of GPU for two different system sizes in different time-

steps using shared memory based on the kernel fusion and not kernel fusion scheme. It is clear

that kernel fusion improves the performance of the system. It should be noted that all executions

were executed on the same GPU architecture and floating point.

Figure 7.37: GPU elapsed times for 646464  and 128128128  system sizes with and

without kernel fusions.

132

Figure 7.38 illustrates the execution time comparison of the single-core, multi-core (six cores

without hyper-threading), and many-core CDS implementation based on C and CUDA

programming languages on CPU and GPU for 128128128  system size. The main reason for

this comparison is to show the system stability for executing simulations in different

architectures (single, multi-core and many-core).

Figure 7.38: Speed comparison of single-core vs multi-core vs many-core GPU in

128128128  , arrows indicate diblock copolymer in time evolution.

 From Figure 7.38, it can be seen that many-core GPU performs better when the number of

time-steps and system sizes is increased. Table 7.15 compares the performance of the CDS

simulation development based on the original (not optimised), AVX optimisation, and

optimised multi-core implementations for two system sizes executed on an Intel Xeon E5-2420

processor.

133

Implementation/ System size

Elapsed time

(in seconds)

Speedup

AVX –

Orig.

Multi-core –

Orig.

Multi-core

– AVX

646464  (HT – on)

Original C (Sequential) 9810.55

3.74x

28.19x

7.54x AVX 2623.04

Multi-core 348.44

128128128  (HT – off)

Original C (Sequential) 83061.39

4.45x

30.89x

6.92x AVX 18610.58

Multi-core 2689.54

Table 7.15: Comparison of execution times and speedups for CPU implementation with total

100,000 time-steps.

Table 7.15 shows that the multi-core CPU implementation provides the fastest execution

time/speedup for the CDS simulation. In general, this shows that OpenMP as multi-threaded

programming model is a suitable and appropriate tool to develop multi-thread program using the

SIMD model of modern CPUs. However, according to the multi-core to AVX speedup volume

between two system sizes, the speedup volume for the smaller size is 1.1x higher than the bigger

domain size. This demonstrates that the GPU is more beneficial when dealing with large datum

size. Table 7.16 displays the performance of the CDS simulation scheme development based on

the original (not optimised), optimised multi-core, and GPU-CUDA kernel fusion

implementations for two system sizes. The reader is reminded the elapsed time for the original

(non-optimised), AVX optimisation and optimised multi-core implementations are the same as

shown in Table 7.15.

Implementation/ System size

Elapsed time

(in seconds)

Speedup

CUDA –

Orig.

CUDA –

AVX

CUDA –

Multi-core

646464 

GPU – CUDA

195.92

50.31x

13.45x

1.78x

128128128 

GPU – CUDA

1257.59

66.08x

14.80x

2.14x

Table 7.16: Comparison of execution times and speedups for CPU and GPU implementations

with total 100,000 time-steps.

134

From Table 7.16, it can be comprehended that GPU–CUDA parallel execution is approximately

50, 14 and 1.78 times quicker than non-optimised single core, optimised single core, and

multi-core executions on CPU for 646464  domain size; and 66, 15 and 2.14 times faster

than non-optimised single core, optimised single core and multi-core processing for

128128128  system size, respectively.

 In addition, the other simulation of diblock copolymer sphere morphology with thin films

(walls) under shear was performed to evaluate the accuracy of CUDA-based CDS method for

different simulation parameters.

CUDA simulation result initial stage t =1000 CUDA simulation result final stage t =500000

Figure 7.39: CUDA simulation result of spherical morphology under shear.

 The above figure shows the spherical morphology generated by CUDA-CDS implementation

for a system of size 12826128  . The whole simulation was executed for up to 500,000 time-

steps with 0.0003 shear rate and attractive wall to approach stable system (400,000 without

shear and 100,000 more with shear). On account of CUDA hierarchy model and with respect to

the system size, in total 910 blocks per grid in three dimensions (2, 7, 65), 1024 (128, 4, 2)

threads per block, and 1256 bytes shared memory based on the kernel fusion algorithm were

used to simulate the system.

7.4 Architecture Comparison

The graphs in Figure 7.40 illustrate the execution time of optimised implementations of the

CDS simulation, executing on single and multi-core Intel Xeon E5-2420 processor and on a

NVIDIA Quadro K5000 GPU, compared to the original implementation executing on a single

core of the Xeon E5-2420 processor. The following points can be inferred from the figure: (i)

the impact of optimisations of code on CPU; (ii) the performance impact between single and

multi-core execution; (iii) the difference between multi-core CPU and many-core GPU

performance for the CDS application; and (iv) the impact of system size between CPU and

GPU.

135

Figure 7.40: Comparisons between original, AVX optimised, CPU multi-core and GPU many-

core implementations with total 100,000 time-steps.

Results are presented in single precision for two classes of the system size
364 and

3128 .

Different system sizes for the CDS computational method were examined on CPU and GPU,

and it was found that the CPU can only support a maximum
3198 class of system size due to

limited memory and hardware restrictions. GPU K5000, on the other hand, can comfortably

execute
3324 class of system size. In addition, the results show that the GPU performs better

when domain size is increased. This indicates that the performance gap between the two

hardware architectures increases with the problem/system size. Due to the cumulative system

size the number of grid-cells in each direction will be increased and thus the volume of

exploitable parallelism.

 Due to the lightweight and lower-clocked cores of GPU compare to CPU, in the small class

of problem size the difference between CPU and GPU performance is not significant, and even

CPU can achieve better performance in a very small domain size (e.g.
316). However, the

numbers of cores on GPU are much higher than CPU and remarkably faster (few clock cycles to

execute a job); therefore, GPU can easily exploit the high amount of parallelism in big system

and obtains better performance. Finally, according to the specifications of CPU and GPU (tables

6.1 and 6.2), the architecture of GPU can handle a big volume of datum size with high amount

of parallelism. In addition, the introduction of different memories GPU hardware is a promising

approach to the improve performance and achieve high performance computing.

136

7.5 Summary

The implementation of the CDS method on multi-core and many-core devices has been

investigated. In the first section the optimisation of the CDS baseline code for CPUs was

presented. The optimisation of the baseline code was based on the vectorisation and memory

access pattern. Vectorisation was taken into account by considering data alignment based on the

AVX instruction set and implicit directives. The memory access pattern was considered by SoA

arrangement to reduce indirect accessing and to have a unit-stride memory access. It was shown

that the optimisations are beneficial for the CDS program, improving the performance of the

original and SSE4.2 implementations by up to 3.10x and 1.2x for the system size 646464  ,

and 4.44x and 1.2x for 128128128  domain size respectively. The second section

demonstrated the implementation of the CDS simulation method on multi-core (multi-threaded)

computer architecture. A hybrid decomposition algorithm based on the work-sharing constructs

of OpenMP and regular grids data structure according to the CDS simulation method on the

shared memory machine was presented. Three different scenarios were investigated to show the

impact of the block size of data decomposition in the hybrid algorithm. The first two scenarios,

based on the block size = 1000, and block size = 100, were not very efficient compared to the

third scenario. The third (last) scenario, based on the function of the number of threads

improved the speedups of the CDS scheme from 4.27 to 7.26 and 4.00 to 6.81 with the number

of cores cumulative from 2 to 12 for 646464  and 128128128  system sizes, respectively.

In addition, it demonstrated that when the system size and the volume of workloads increased,

hyper-threading was not beneficial; indeed, it decreased the speedup (Figure 7.15).

 The last section considered the implementation, validation, and performances benchmark of

the CDS method on GPU as a many-core accelerator. The spatial decomposition method based

on the block-cell link model as a domain level algorithm of CUDA-based CDS simulation is

presented. The proposed algorithm in domain level illustrates that the spatial decomposition

method based on the block-cell link model is a suitable and appropriate choice to decompose

tasks and to solve the computational problems correctly in a parallel environment (GPU).

Different optimisations for memory management such as coalescing and usage of shared

memory were taken into account to improve the performance and to solve a large stride issue.

Different metrics were used to determine the occupancy, branch efficiency and memory

throughput for each kernel and overall CUDA application and to specify the best CUDA

execution configurations. In addition, kernel fusion as an optimisation for the logical and

hardware levels of parallel implementation for the CDS simulation method on GPU was

proposed. It was shown that kernel fusion by reducing the kernels overheads decreasing the

number of off-chip memory access from or to DRAM and having more transactions in flight to

hide latency helps to improve the speedup and consequently the performance of the program.

137

Therefore, GPU implementation
2
 based on the kernel fusion heterogeneous algorithm is roughly

1.78 times quicker than multi-core executions on CPU for 646464  domain size; and

approximately2.14 times faster than multi-core processing for 128128128  system size,

respectively. Evidently, the domain and logical levels of algorithm presented in section 7.3.1

and the hybrid decomposition scheme demonstrated in section 7.2.1 are simple methods for

achieving adequate and acceptable levels of performance of the CDS method on different

computer architectures. In fact, these approaches are well matched to various parallel

workloads, specifically in the case of GPUs.

2
 H. Soltani, D. Ly and W. Ahmed, “ Accelerating Cell Dynamic Simulation for 3D Diblock copolymer

Sphere Morphology using GPU ”, GPU Technology Conference, San Jose, USA, March 2015.

138

CHAPTER EIGHT

8 Conclusions and Future Work

This study set out with five main objectives: to investigate the CDS simulation scheme as a

computational method to model the phase separation of diblock copolymers; to comprehend the

dynamic behaviour of particles in different time-steps based on the new computational

technique; to investigate different optimisation technique for the CDS baseline code; to consider

a parallel algorithm and programming model to solve time-consuming and massive

computational processing of the CDS; and to implement a new parallel algorithm on multi-core

and many-core devices. Therefore, these five objectives are located into four chief sets and their

results are summarised in this chapter, which draws conclusions from the findings of this work

and identifies the limitations of this study, and suggesting areas for future works.

8.1 Cell Dynamic Simulation Method

Chapter 2 explored the CDS method as a promising scheme and good example of a cellular

automation to present interface dynamic in phase-separating domain. The main equations of the

CDS (Ginzburg-Landau (TDGL) and Cahn-Hilliard Cook (CHC)) were considered and the

impacts of external fields, such as a shear flow, were taken into account to simulate spherical

morphology of diblock copolymer and to comprehend the nontrivial behaviour of the spherical

morphology of diblock copolymer. Hence, the following salient points present the summaries of

chapter 2 results:

 The main advantage of CDS technique compared to other simulation methods is coarse-

grained discretisation, which rendered a closer relationship between the real world and

laboratory conditions. In fact, this advantage of the CDS method allows exploration of

the phase-ordering and the micro-phase separation occurrences in systems which are

comparable with experimental works in terms of dimension and size [18, 33]. However,

the CDS calculations are expensive.

 To achieve a stable system, the simulation was executed for up to 1000,000 time-steps

without a shear and then 300,000 time-steps were run after applying shear flow. It was

noted that the system in 100,000 time-steps becomes stable with respect to the shear flow

and consideration of attractive wall.

139

 Systematically different values of the shear rate  were considered and it was found out

that when the shear flow was between the varieties of 0.001 and 0.0001 the domain

obtains the spherical morphology with hexagonal order (perfect system). On the other

hand, at 0.001 shear rate the system was spheres but not completely ordered, and at

higher shear rate 0.005 the spheres were lengthened to ellipsoids and cylinders.

Additional increase of shear transformed the entire system from spheres to cylinders.

Therefore, shear flow rate had a direct impact of system morphology.

8.2 Multiple Particle Detection and Tracking

In chapter 3 a novel particle tracking technique for a spherical phase diblock copolymers under

shear flow was implemented. The new particle detecting method was utilised in the output of

the CDS program as computational data, used to describe the morphology of diblock

copolymers sphere under shear. The main rationale for developing a new method for particle

tracking was explained (understanding numerical representation of the particle positions and to

comprehend the mobile behaviour of particles in different time-steps for uniform computational

data). The method, design, implementation and validation of a new particle tracking scheme

yielded the following major points:

 The new method proposed two frameworks with a total number of five steps to achieve

the computational technique of tracking particles. In the detection framework,

neighbouring search technique was used for detecting particles and reconstructs the time-

lapse of detected particles. In the tracking framework, the centres of mass of particles

were calculated and particles were tracked based on their centres of mass and the

movements in each time step.

 Two scenarios were considered for calculating centre of mass of particles: stabilised and

not stabilised. In first scenario, numbers of particles were fixed and there was no

difference between the shapes of particles. In second scenario, called difficult scenario,

the numbers of particles were altering and particles had different types of shapes and

sizes.

 Statistical study was undertaken into account to specify distinguish value (number of

grid point) for differentiating the shapes of particles in the difficult scenario.

Consequently, 55 grid points were chosen to distinguish between particles’ shapes.

Based on the chosen limit, particles with less than 55 grid points were considered to be

single and those with more than 55 grid points as mixed particles. When the particles

were homogeneous, the fundamental idea to find the COM of a particle was to add up

140

the coordinates of all points in the x and y directions separately and divide the sum by

the whole number of grid points.

 Frequency as a statistical method was used to specify the movements of all particles in

each time. Based on the frequency results on particles’ movement in x and y directions,

nine grid points were chosen as the limit of movements in x, and four grid points were

selected as the limit of travels in y direction.

 To plot the track of each particle, the centre of mass of detected particle in each time step

was used. The coordinates of particles were plotted in an x-y coordinate system to

illustrate the track of particles. In addition, the dynamic movement and behaviour of one

and more particles concurrently based on the new method was illustrated.

 The proposed method was examined with different particles and satisfactory results in

terms of accuracy and concurrently tracking of particles had been achieved.

8.3 Optimisations and Multi-Core Implementation of CDS

The first section of chapter 7 investigated the optimisation of CDS algorithm based on the

vectorisation, SSE4.2, AVX instruction set of SIMD and memory layout. The second section of

chapter 7 considered a new hybrid decomposition algorithm based on the work-sharing

constructs of OpenMP and regular grids data structure for implementation of CDS simulation

method on multi-core CPU devices. The following salient points illustrate the design,

implementation and performance analysis yielded by the first two sections of chapter 7:

 The main difficulties in optimisation of CDS baseline code were referred to data

dependencies and memory access patterns.

 AVX instruction set, implicit directives and SoA memory arrangement were taken into

account for the optimisations of CDS.

 It was presented that the optimisations were beneficial for the CDS program, improving

the performance of the original and SSE4.2 implementations by up to 3.10x and 1.2x for

the system size 646464  , and respectively 4.44x and 1.2x for 128128128 

domain size.

141

 A hybrid decomposition algorithm was proposed for implementation multi-threaded

CDS scheme. In hybrid decomposition algorithm, the spatial partitioning as a first step of

hybrid algorithm considered the whole system as a grid and divided the whole grid into

three-dimensional sub-grids. Then data decomposition as a second step of hybrid

decomposition algorithm started to play a role. In data decomposition, block based

decomposition was used to partition a group of cells into different blocks, and then

mapped each block to a core/thread in the shared memory machine.

 Three different scenarios ((i) data partitioning based on the block size = 1000; (ii) data

partitioning based on the block size = 100; and (iii) data partitioning based on the

function of the number of threads) were considered to show the impact of the block size

of data decomposition in the hybrid algorithm. The last scenario based on the function of

the number of threads obtained the most efficient results.

 The speedups based on the last scenario were improved from 4.27 to 7.26 and 4.00 to

6.81 with the number of cores cumulative from 1 to 12 for 646464  and

128128128  system sizes respectively.

 It was demonstrated that when the system size and the volume of workloads are

increased the hyper-threading was not very beneficial and useful.

 The optimisations and hybrid algorithm in the first two sections of chapter 7

demonstrated that the CDS application is not limited for any specific platform or

computer architecture and it is possible to execute on multiple platforms.

8.4 Many-Core GPU Implementation of CDS

The last section of chapter 7 explored the implementation of efficient CDS method on many-

core GPU. The spatial decomposition method based on the block-cell link model as a domain

level algorithm of CUDA-based CDS simulation was presented. It was shown that the spatial

decomposition method based on the block-cell link model was a suitable and appropriate choice

to decompose tasks and to solve the computational problems correctly on GPU. The following

facts summarise the main achievements of this section in terms of method, implementation,

performance analysis and validation:

 Fine-grained spatial decomposition was used as a decomposition method in CUDA

implementation of the CDS on GPU.

 In the spatial decomposition method according to the CUDA hierarchy model the

uniform block-cell linked data structure was used to be a shared data structure.

142

 Different optimisations for memory management, such as coalescing and usage of shared

memory, were considered to improve the performance and to solve a large stride issue.

 Different metrics were used to determine the occupancy, branch efficiency, and memory

throughput for each kernel and overall CUDA application and to specify the best CUDA

execution configurations.

 Kernel fusion as an optimisation for the logical and hardware levels of parallel

implementation for the CDS simulation method on GPU was illustrated. It was presented

that by reducing kernel overheads, kernel fusion decreases the number of off-chip

memory access from or to DRAM, and having more transactions in flight to hide latency

helps to improve the speedup and consequently performance of the program.

 In our experience, GPU - CUDA is better matched to exploiting parallelism compare to

other programming languages. In addition, there is no scalability issue in CUDA

programming model.

 It was found that GPU is also better suited for big datum size. GPU can easily exploit the

high amount of parallelism in big system and obtains better performance.

 The speedups based on the CUDA-based CDS simulation scheme are roughly 50x, 14x

and 1.78x quicker than non-optimised single core, AVX optimised single core, and

multi-core executions on CPU for 646464  domain size; and approximately 66x,

15x and 2.14x faster than non-optimised single core, optimised single core and multi-

core processing for 128128128  system size.

 These results demonstrated that it is possible to achieve a good performance by

optimising and developing an application with heavy and expensive computational

works on single-node computer.

 Validation and evaluation of CUDA program was investigated with different profilers

(nvprof and nsight), system parameters (such as shear flow and domain size) and

execution configurations (such as different grid and thread block size, registers and

shared memory).

Taking all the chapters together, the work demonstrated in this thesis details CDS method as

cellular computerisation technique for the consideration of dynamic behaviour of particles,

implementation and evaluation of engineering program/application performance on multi-core

and many-core parallel architecture. Therefore, the entire process entails: (i) implementation of

CDS method on C programming language; (ii) consideration of CDS scheme for the spherical

143

morphology of diblock copolymer with shear flow and without shear flow; (iii) development

and evaluation of novel computational method for particle detection and tracking; (iv) exploring

the concept of parallel computing and parallel execution; (v) investigating the concept of

emerging GPU parallel architecture; (vi) baseline code optimisation; (vii) many-core

implementation of optimised baseline code; (viii) optimisation and demonstration a clear

implementation path for the CDS method on GPU many-core architecture based on the CUDA

C; and (ix) evaluation and comparison between different parallel architectures in terms of

execution times and speedups. Finally, the proposed algorithms for both multi-core and many-

core architectures will improve code maintainability among varies generations of hardware

models and also ease the code portability and scalability across new architectures and platforms.

8.5 Limitations of the Study

A primary limitation is the investigation and concentration on only one specific scientific

application. Although this may limit the generality of proposed computational algorithms and

programming methods, it should be noted that the CDS method comprises intensive and

complex mathematical calculations with high exploitable parallelism. Furthermore, the parallel

computing model and behaviours of the CDS are deployed and mutual in other applications

such as computational fluid dynamics, for instance the numerical solution of mathematical

problems defined by partial differential equations (PDEs) for which there are three main

classical methods, but not limited to, for the numerical solution of PDEs [187]: (i) the finite

difference method (FDM); (ii) the finite volume method (FVM); and (iii) the finite element

method (FEM). All of these methods discretise a computational problem with infinite degrees of

freedom into a finite domain/system.

 The numerical solution of PDEs proposed in this work is based on the FDM of Taylor series

expansion, which transforms the PDEs into numerical equations that determine the derivatives

of a variable as the difference between variable values at different times and nodal points of

lattice [187]. In other words, the FDM is based on the discrete derivative approximation, which

has some approximation errors. The advantages of the FDM are that it is easier and faster to

implement while its disadvantages are that it is limited to structured and regular grids, with the

possibility of approximation errors (i.e. less accuracy) [187, 188]. The fundamental

methodology of the FDM contains four steps: (i) discretising the computational system into

series of the grid points (based on the structured lattice); (ii) the governing equations are

discretised and transformed to algebraic form; (iii) approximating the first and second orders

derivatives; and (iv) iteratively solving the group of linear algebraic equations.

 The FVM method on the other hand includes discretisation of the integral form of the PDEs.

This refers to the discretisation of the computational system into finite control volumes (cells).

144

The lattice/grid determines the boundaries of the cells and the computational node fits at the

center of the cell [189]. Figure 8.1 illustrates an example of FDM discretisation.

Figure 8.1: Example of FDM discretisation.

Disadvantages of this method include false diffusion when dealing with simple numeric. The

main advantages of the FVM are that it is more accurate, it is not limited to structured grids and

cell shapes and it achieves satisfaction of integral conservation over the cell/control volume

[188, 189].

 Generally, CFD refers to the usage of the numerical techniques to address and solve fluid

dynamical issues (e.g. pertaining to air, water, liquid and thermal fluid). Numerical techniques

with a broad range of methods can be used in CFD, such as those mentioned earlier, however

due to the advantages and features of the FVM, fluid mechanics and computational fluid

dynamics are traditionally using this method rather than FDM. For instance, the most well-

known package of CFD, ANSYS FLUENT, is based on the FVM technique [190]. In addition

to CDS based on FDM, Tang et al. [191] investigated and implemented phase separation

patterns for diblock copolymers based on the FVM on spherical surfaces. They investigated

phase separation on spherical geometry using FVM to solve CHC equation. In their method,

FVM was used to address the CHC equation on spherical surface with icosahedral triangulation

based on averaging Voronoi cells (made from triangular grid) to compute the Laplace operator

[191]. According to their results, the FVM compared to the traditional FDM improves the speed

and accuracy of the CDS calculations. However, to our knowledge, no work has been done

before to implement the CDS based on the FVM for solving CHC equation on Cartesian

surfaces. Therefore, considering the FVM as a numerical solution of PDEs for the CDS on

Cartesian surfaces offers scope for future research work.

A secondary limitation is that the algorithms, optimisations and code implementations in this

thesis are executed and evaluated only on two specific hardware architectures. With the

advancement of new hardware architecture with higher specifications, the impact of proposed

optimisations could be decreased. However, the proposed methods and algorithms as integral

parts of any system design are strong enough to be compatible with a range of hardware and

computer architectures to obtain good performance.

145

A third limitation refers to the use of the CUDA C programming model for the implementation

of CDS simulation method on GPU. The host code of the CDS simulation scheme was written

in C language and the device kernels were written in CUDA C. The main reasons for choosing

the CUDA C programming model for developing the CDS method on GPU were: (i) free

compiler of CUDA C; and (ii) compatibility between multi-core and many-core

implementations which both are developed based on the C language. At the time of writing,

NVIDIA supported the other programming languages such as FORTRAN, but only NVCC as a

NVIDIA compiler for compiling the CUDA C application was free of cost.

 Another potential limitation of this study is that the proposed optimisations and

implementations in this work are mainly considered to accelerate speedup and to reduce the

time execution of the CDS method by increasing arithmetic and memory throughputs (on many-

core GPU). Consequently, the metrics that are used to determine the system performances in

this work are the most direct metrics to measure performances. However, there are a number of

additional metrics that can be considered for different purposes (e.g. power consumption) which

are not considered in this work.

8.6 Future Work

Several avenues are left open for future work and research. Therefore, the main roads of future

work based on the study demonstrated in this thesis have been elucidated by the following

points:

 3D implementation of novel particle detection and tracking technique

The proposed computational method of particle detection and tracking for a spherical

phase diblock copolymer is based on the 2D results. Expanding a computational method

to 3D can be more useful and beneficial for understanding the dynamical and mobility

behaviours of particles in different time-steps.

 Implementation of a new mathematical model for the CDS based on the finite

volume method

The current mathematical model of the CDS is based on the finite different method. By

exploring and considering a new mathematical model based on the finite volume method

the limitations of structured/regular grids can be addressed and the accuracy of results

improved.

146

 Optimisations the baseline CPU code for future architectures

To consider the potential optimisations for proposed algorithm on future hardware

architectures with wider and bigger SIMD width and studying the impacts of

optimisations in performance of the CDS application.

 A multi-CPU implementation of the CDS

The current multi-core implementation is based on the shared memory architecture. By

implementing the CDS method on distributed memory architecture can solve the

scalability issue and also execute larger domain size of the CDS without any

consideration of memory limitations.

 Optimisations on memory management of CUDA

As mentioned in chapters 6 and 7, CUDA programming model often requires the

communication and sharing of data values between threads. This way was used in this

study to communicate between threads within a warp was the utilisation of shared

memory. However, NVIDIA introduced a new instruction to share data values between

threads within a warp which called the “shuffle” [192]. The use of shuffle instruction has

the following benefits: (i) the shuffle instruction is quicker than shared memory, because

of less requirements of instruction (only one) but shared memory requires three

instructions (read, synchronise, write); (ii) the shuffle instruction can utilise shared

memory for other data or different purposes; (iii) shuffle can remove synchronisation

between threads within a warp (__syncthreads()); and (iv) the potential occupancy

limiters of shuffle are much less than shared memory.

 Asynchronous streaming management

The other optimisation that can be investigated in future work refers to the asynchronous

behaviour of kernels in different streams. In current GPU implementation all the

GPU/device operations such as kernels and data transfers are in the default stream, which

is synchronised. This means no operations will start until all other previous operations

are completed. Noted that stream refers to a sequence operations that perform in order

arrangement on GPU [193]. In asynchronous streams, there is more than one stream

(non-default stream), thus operations can be executed concurrently. To consider

asynchronous streams, the GPU must be supported concurrent copy and kernel

execution; operations should be executed in different streams, efficient device resources

such as registers, blocks and shared memory should be available, and the last and most

important requirement of asynchronous streams is data dependency in concurrent

operations.

147

 Investigation of GPU – CUDA vector types

CUDA offers built-in vector and matrix data types such as int2, int4, float2, float4,

double2. Investigation of vector types can be useful to understand their relative

advantages and benefits in program performance. In addition, vector types may be

beneficial for data values to be stored contiguously in memory (DRAM) or to improve

memory bandwidth utilisation.

 A multi-GPU implementation of the CDS

Implementing the CDS method across multiple GPUs or hybrid distributed-shared

memory architecture will create an opportunity to execute very big system sizes and

solve the bottlenecks of application. By considering heterogeneous hybrid architecture

comprising a number of CPUs and GPUs, the issue of portability will be solved and

different numbers of domain sizes can be executed without any problems. In this model,

GPU+MPI should be used for accelerating and parallelising. However, memory access

patterns and memory footprints should be considered on multi-GPU model.

 Exploration of instruction level parallelism for better performance at inferior

occupancy

Considering ILP per thread is another way to hide/decrease memory and arithmetic

latencies and to improve program performance. In fact, by increasing parallelism

between instructions in one thread good performance can be achieved even if the volume

of occupancy is low.

148

Bibliography

[1] H. Suk and G. T. Yeh, “Development of Particle Tracking Algorithms for Various Types

of Finite Particles in Multi-Dimensions,” Computers and Geosciences , vol. 36, no. 2, pp.

564-568, 2010.

[2] G. Soni and B. M. Jaffar Ali, “Single Particle Tracking of Correlated Bacterial

Dynamics,” Biophysical Journal , vol. 84, pp. 2634-2637, 2003.

[3] F. Huang, E. Watson, C. Dempsey and J. Suh, “Real-Time Particle Tracking for Studying

Intercellular Trafficking of Pharmaceutical Nancarriiers,” Cellular and Subcellular

Nanotechnology, vol. 91, pp. 211-223, 2013.

[4] H. Babcock, C. Chen and X. Zhuang, “Using Single-Particle Tracking to Study Nuclear

Trafficking of Viral Genes,” Biophysical Journal , vol. 87, no. 3, pp. 2749-2758, 2004.

[5] M. Vrljic, S. Nishinura, S. Brasselet, W. Moerner and H. Mconnell, “Translational

Diffusion of Individual Class MHC Membrance Proteins in Cells,” Biophysical Journal,

vol. 83, pp. 2681-2692, 2002.

[6] K. Jaqaman and G. Danuser, “Computational Image Analysis of Cellular Dynamics: A

case Study Based on Particle Tracking,” Spring Harbor Protocols, vol. 4, no. 12, pp. 1-

11, 2009.

[7] J. C. Crocker and D. G. Grier , “Methods of Digital Video Microscopy for Colloidal

Studies,” Journal of Colloid and Interface Science , vol. 179, pp. 298-310, 1996.

[8] S. Baek and S. Lee, “A New Two-Frame Particle Tracking Algorithm Using Match

Probability,” Journal of Experiments in Fluids , vol. 22, pp. 23-32, 1996.

[9] A. Ponti, A. Matov, M. Adams, S. Gupton and G. Danuser, “Periodic Patterns of Actin

Turnover in Lamellipodia and Lamellae of Migrating Epithelial Cells Analysed by

Quantitative Fluorescent Speckle Microscopy,” Journal of Biophysics , vol. 89, pp. 3456-

3468, 2005.

[10] V. Racine , M. Saches, J. Salamero, A. Trumbuil and J. Sibarita, “Visualisation and

Quantification of Veside Trafficking on a Three-Dimensional Cytoskeleton Netwrok in

Living Cells,” Journal of Microscopy , vol. 225, no. 3, pp. 14-228, 2007.

[11] J. Dorn, G. Danuser and G. Yang, “Computational Processing and Analysis of Dynamic

Fluorescence Image Data,” Methods in Cell Biology , vol. 85, pp. 497-528, 2008.

[12] P. Matinsen, J. Blaschke, R. Knnemeyer and R. Jordani, “Accelerating Monte Carlo

Simulations with an NVIDIA Graphics Processor,” Journal of Computer Physics

Communications, vol. 180, no. 1, pp. 1983-1989, 2011.

[13] M. Januszewski and M. Koster, “Accelerating Numerical Solution of Stochastic

Differential Equations with CUDA,” Journal of Computer Physics Communications, vol.

149

181, no. 1, pp. 183-189, 2010.

[14] J. D. Owens, D. Luebke, N. Govindaraju and A. E. Lefohn, “A Survey of General-

Purpose Computation on Graphics Hardware,” Eurographics, State of the Art Reports,

vol. 12, 2005.

[15] J. Nickolls and W. J. Dally, “The GPU Computing Era,” IEEE Micro, vol. 30, no. 2, pp.

56-69, 2010.

[16] “Computational Physics and GPU Programming,” [Online]. Available:

http://quantumdynamics.wordpress.com/2012/03/28/computational-physics-gpu-

programming-solving-the-time-dependent-schrodinger-equation. [Accessed July 2015].

[17] NVIDIA, “CUDA Toolkit Documentation - Developer Zone,” [Online]. Available:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3zJMQTJ3E . [Accessed

July 2015].

[18] M. Pinna, Mesoscale Modelling of Block Copolymer Systems, Berlin: VDM Verlag

Dr.Muller Aktiengesellschaft & Co. KG, 2010.

[19] I. W. Hamley, J. A. Pople, J. P. A. Fairclough, N. J. Terrill, A. J. Ryan, C. Booth, G.-E.

Yu, O. Diat, K. Almdal, K. Mortensen and M. J. Vigild, J. Chem. Phys., vol. 108, pp.

6925-6929, 1998.

[20] A. V. Zvelindovsky and Ed., “Nanostructured Soft Matter,” Dordrecht, Springer, 2007, p.

630.

[21] S. Qi and Z. W. Wang, Phys. Rev. E, vol. 55, p. 1682, 1997.

[22] M. E. vigild, K. Almdal, K. Mortensen, I. W. Hamley, J. P. A. Fairclough and J. Ryan ,

Macromolecules , vol. 31, p. 5702, 1998.

[23] N. Arora, A. Shringarpure and R. W. Vuduc, “Direct N-body Kernels for Multicore

Platforms,” in Proceedings of the International Conference on Parallel Processing, ICPP

'09 - IEEE Computer Society, Vienna, Austria, September 2009.

[24] J. Chhugani, C. Kim, H. Shukla , J. Park , P. Dubey, J. Shalf and H. D. Simon, “Billion-

Particle SIMD Friendly Two-Point Correlation on LArgeScale HPC Cluster Systems,” in

Proceedings of the ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis , Salt Lake City, UT, November 2012.

[25] Y. Oono and S. Puri, Phys. Rev. A, vol. 38, p. 434, 1998.

[26] J. Feng and E. J. Ruckenstein, Chem. Phys., vol. 121, p. 1609, 2004.

[27] Y. Oono and S. Puri, Phys. Rev. Lett., vol. 58, p. 836, 1987.

[28] S. Puri and Y. Oono, Phys. Rev. A, vol. 38, p. 1542, 1988.

[29] H. Kodama and M. Doi, Macromolecules, vol. 29, p. 2652, 1996.

150

[30] S. Komura and H. Kodama, Phys. Rev. E, vol. 55, p. 1722, 1997.

[31] M. S. O. Massunaga, M. Paniconi and Y. Oono, Phys. Rev. E, vol. 56, p. 723, 1997.

[32] J.-R. Roan and E. I. Shaknovich , Phys. Rev. E, vol. 55, p. 2109, 1999.

[33] S. R. Ren and I. W. Hamley, “Cell Dynamic Simulation of Microphase Separation in

Block Copolymers,” Macromolecules, vol. 34, no. 1, pp. 116-126, 2001.

[34] T. U. o. S. Mississippi, “Immiscible Polymer Blends,” [Online]. Available:

http://pslc.ws/macrog/iblend.htm. [Accessed July 2015].

[35] R. Fayt, P. Hadjiandreou and P. Teyssie, J. Polym. Sci. Polym. Chem. Ed., vol. 23, p.

337, 1985.

[36] T. Obta and I. Aya, “Dynamic of Phase Separation in Copolymer-Homopolymer

Mixtures,” Phys. Rev. E, vol. 52, no. 5, pp. 5220-5229, 1995.

[37] M. Pinna, A. V. Zvelindovsky, X. Guo and C. L. Stokes, “Diblock Copolymer Sphere

Morphology in Ultra Thin Films Under Shear,” The Royal Society of Chemistry - Soft

Matter, vol. 7, no. 1, pp. 6991-6997, 2011.

[38] A. V. Zvelindovsky and G. L. A. Sevink, Euriphys. Lett., vol. 62, no. 1, pp. 370-376,

2003.

[39] I. W. Hamley, Macromol. Theory Simul , vol. 9, p. 363, 2000.

[40] T. Ohta and K. Kawasaki, Macromolecules, vol. 19, p. 2621, 1986.

[41] M. Pinna, X. Guo and A. V. Zvelindovsky, Polymer, vol. 49, pp. 2797-2800, 2008.

[42] L. Leibler, Macromolecules , vol. 13, p. 1602, 1980.

[43] M. Pinna, A. V. Zevlindovsky, S. Todd and G. Gold-Wood, “Cubic Phases of Block

Copolymers Under Shear and Electric Fields by Cell Dynamics Smulation. I. Spherical

Phase,” The Journal of Chemical Physics, vol. 125, no. 15, pp. 1-10, 2006.

[44] T. Ohta, Y. Enomoto, J. L. Harden and M. Doi, Macromulecules, vol. 29, p. 2652, 1993.

[45] A. Shinozaki and Y. Oono, Phys. Rev. E, vol. 48, p. 2622, 1993.

[46] I. Rychkov, Macromol. Theory Simul., vol. 207, no. 14, 2003.

[47] G. Arya, J. Rottler, A. Z. Panagiotopoulos, D. J. Srolovitz and P. M. Chaikin, Langmuir,

vol. 21, pp. 11518-11527, 2005.

[48] A. Chremos, K. Margaritis and A. Z. Panagiotopoulos, SoftMatter, vol. 6, pp. 3588-3595,

2010.

[49] E. Meijering, O. Dzyubachyk and I. Smal, “Methods for Cell and Particle Tracking,”

151

Imaginh and Spectrodcopic Analysis of Living Cells, vol. 54, pp. 183-200, 2012.

[50] K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. Schmid and G. Danuser,

“Robust Single-Particle Tracking in Live-Cell Time-Lapse Sequences,” Nature Methods ,

vol. 5, pp. 695-702, 2008.

[51] R. D. KEANE and R. J. Adrian, “Theory of Cross-Correlation Analysis of PIV Imagess,”

Applied Scientific Research , vol. 49, no. 3, pp. 191-212, 1992.

[52] S. Baek and S. Lee, “A NEW Two-Frame Particle Tracking Algorithm Using Match

Probability,” Experiments in Fluids, vol. 22, no. 2, pp. 23-32, 1996.

[53] J. Crocker and D. Grier, “Particle Tracking Using IDL,” [Online]. Available:

http://www.physics.emory.edu/faculty/weeks//idl/. [Accessed January 2014].

[54] D. Reid, “An Algorithm for Tracking Multiple Targets,” IEEE Transactions on

Automatic Control , vol. 24, no. 6, pp. 843-854, 1979.

[55] R. Burkard and E. Çela, “Combinatorial Optimisation, Linear Assignment Prolems and

Extensions,” Kluwer Academic, Dordrecht, vol. 23, pp. 75-112, 1999.

[56] A. Genovesio, T. Liedl, V. Emiliani and W. Parak, “Multiple Particle Tracking in 3-D+T

Microscopy: Method and Application to the Tracking of Endocytosed Quantum Dots,”

IEEE Trans Image Process, vol. 15, pp. 1062-1070, 2006.

[57] L. Ji and G. Danuser, “Tracking Quasi-Stationary Flow of Weak Fluorescent Singnals by

Adaptive Multi-Frame Correlation,” Journal Microscience , vol. 220, pp. 150-167, 2005.

[58] J. Beltman , A. Maree and R. De Boer, “Analysing Immune Cell migration,” Nature, vol.

9, pp. 789-798, 2009.

[59] C. Bakal, J. Aach, G. Church and N. Perrimon, “Quantitative Morphological Signatures

Define Local Signalling Networks Reulating Cell Morphology,” Science , vol. 316, pp.

1753-1756, 2007.

[60] T. Schlick, “Molecular Modeling and Simulation,” Interdisciplinary Aplied Mathematics

Series, vol. 21, pp. 272-276, 2002.

[61] B. Carter, G. Shubeita and S. Gross, “Tracking Single Particles: Quantitative Evolution,”

Physical Biology , vol. 28, no. 2, pp. 60-72, 2005.

[62] S. Arya, M. Mount and R. Silverman, “An Optimal Algorithm for Approximate Nearest

Neighbor Searching in Fixed Dimensions,” Journal of the ACM, vol. 45, no. 6, pp. 891-

908, 2000.

[63] V. W. Lee et al., “Debunking the 100X GPU vs. CPU Myth: An Evaluation of

Throughput Computing on CPU and GPU,” in In Processings of the ACM/IEEE

International Symposium on Computer Arcitecture, ISCA '10, Saint-Malo, France , 2010.

[64] J. J. Dongarra, P. Luszczek and A. Petitet, “The LINPACK Benchmark: Past, Present and

Future,” Concurrency and Computation: Practice and Experience, vol. 15, no. 9, pp.

152

803-820, 2003.

[65] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current High

Performance Computers,” IEEE Compter Society Technical Committee on Computer

Architeecture (TCCA) Newsletter, pp. 19-25, December 1995.

[66] P. M. Kogge and T. J. Dysart, “Using the TOP500 to Trace and Project Technology and

Architecture Trends.,” in In Proceedings of the ACM/IEEE International Conference for

High Performance Computing, Networking Storage and Analysis., Seattle, WA, 2011.

[67] D. Baily et al., “The NAS Parallel Benchmarks.,” Technical Report RNR-94-007, NASA

Ames Research Centre., 1994.

[68] T. Spelce, “ASC Sequoia Benchmarck Codes.,” 24 June 2013. [Online]. Available:

https://asc.llnl.gov/sequoia/benchmarks/. [Accessed July 2016].

[69] S. L. Graham, P. B. Kessler and M. K. Mckusick, “Gprof: A Call Graph Execution

Profiler,” in In Proceedings of the SIGPLAN Symposium on Compiler Construction,

Boston, MA, 1982.

[70] N. Nethercote and J. Seward, “A Framwork for Heavyweight Dynamic Binary

Instrumentation,” in In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, San Diego, CA, 2007.

[71] S. A. Wright, S. D. Hammond, S. J. Pennycook, R. F. Bird, J. A. Herdman, I. Miller, A.

Vadgama, A. Bhalergo and A. Jarvis, “Parallel File System Analysis Through

Application I/O Tracing,” The Computer Journal, 2012.

[72] O. Perks, S. D. Hammond, S. J. Pennycook and S. A. Jarvis, “WMTools - Accessing

Parallel Application Memory Utilisation at Scale,” in In Proceedings of the European

Conference on Computer Performance Engineering, EPEW ’11, Berlin, 2011.

[73] O. F. Perks, S. D. Hammond, S. J. Pennycook and S. A. Jarvis, “WMTrace - A

Lightweight Memory Allocation Tracker and Analysis Framework,” in In Proceedings of

the UK Performance Engineering Workshop, UKPEW ’11, Bradford, UK, 2011.

[74] P. J. Mucci, S. Browne, C. Deane and G. Ho, “A Portable Interface to Hardware

Performance Counters,” in In Proceedings of the Department of Defense HPCMP Users

Group Conference IEEE, Monterey, CA, 1999.

[75] NVIDIA Developer Zone, “Nsight-Eclipse-Edition-Getting-Started-Guide,” Graphics

Card , [Online]. Available: http://docs.nvidia.com/cuda/nsight-eclipse-edition-getting-

started-guide/#axzz3gSx3oG8a. [Accessed July 2015].

[76] NVIDIA, “Nsight-Eclipse,” [Online]. Available:

https://www.clear.rice.edu/comp422/resources/cuda/html/nsight-eclipse-edition-getting-

started-guide/index.html. [Accessed July 2015].

[77] C. Garcia, R. Lario, M. Prieto and F. Tirrado, “Vectorisation of Multigrid Codes Using

SIMD ISA Extensions,” in In Proceedings of the International Parallel and Distributed

153

Processing Symposium, IPDPS ’03, IEEE Computer Society, Nice, France, 2003.

[78] J. J. Dongarra and A. R. Hinds, “Unrolling Loops in FORTRAN,” Software - Practice

and Experience, vol. 9, pp. 219-226, 1979.

[79] K. S. MacKinley, S. Carr and C. -W. Tseng, “Improving Data Locality with Loop

Transformations,” ACM Transactions on Programming Languages and Systems, vol. 18,

no. 4, pp. 424-453, 1996.

[80] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar and

P. Dubey, “Can Traditional Programming Bridge the Ninja Performance Gap for Parallel

Computing Applications?,” in In Proceedings of the International Symposium on

Computer Architecture, ISCA ’12, IEEE, Portland. OR, 2012.

[81] M. Boyer, D. Tarjan, S. T. Acton and K. Skadron, “Accelerating Leukocyte Tracking

using CUDA: A Case Study in Leveraging Manycore Coprocessors,” in In Processings

of the IEEE International Parallel and Distributed Processing Symposium, Rome, Italy,

2009.

[82] D. A. Jacobsen, J. C. Thibault and I. Senocak, “An MPI-CUDA Implementation for

Massively Parallel Incompressible Flow Computations on Multi-GPU Clusters,” in In

Proceedings of the AIAA Aerospace Sciences Meeting, Orlando, FL, 2010.

[83] T. Shimokawabe and et al., “An 80-Fold Speedup, 15.0 TFlops Full GPU Acceleration of

Non-Hydrostatic Weather Model ASUCA Production Code,” in In Proceedings of the

ACM/IEEE International Conference for High Performance Computing, Networking,

Storage and Analysis, New Orleans, LA, 2010.

[84] OpenMP, “OpenMP Application Program Interface,” November 2012. [Online].

Available: http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf. [Accessed

April 2015].

[85] “Technical Report on Directives for Attached Accelerators,” Technical Report TR1,

OpenMP Architecture Review Board, Champaign, IL, 2012.

[86] R. Dolbeau, S. Bihan and F. Bodin, “HMPP: A Hybrid Multi-core Parallel Programming

Environment,” in In Proceedings of the Workshop on GeneralPurpose Processing on

Graphics Processing Units, GPGPU ’07, Boston, MA, 2007.

[87] OpenACC, “OpenACC 1.0 Specification,” OpenACC Directives for Accelerators,

November 2011. [Online]. Available: http://www.openacc.org/sites/default/

files/OpenACC.1.0_0.pdf. [Accessed August 2015].

[88] S. Lee, S. -J. Min and R. Eigenmann, “OpenMP to GPGPU: A Compiler Framework for

Automatic Translation and Optimisation,” in In Proceedings of the ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPOPP ’09, Raleigh,

NC, 2009.

[89] S. Lee and J. S. Vetter, “Early Evaluation of Directive-Based GPU Programming Models

for Productive Exascale Computing,” in In Proceedings of the ACM/IEEE International

154

Conference for High Performance Computing, Networking, Storage and Analysis, SC

'12, Salt Lake City, UT, 2012.

[90] M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall and P. H. Kelly, “Performance

Analysis of the OP2 Framework on Many-core Architectures.,” SIGMETRICS

Performance Evaluation Review, vol. 38, no. 4, pp. 9-15, 2011.

[91] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina , M. Barrientons, E. Elsen, F.

Ham, A. Aiken, K. Duraisamy, E. Darve and P. Hanrahan, “Liszt: A Domain Specific

Language for Building Portable Mesh-Based PDE Solvers.,” in In Proceedingd of the

International Conference for High Performance Computing, Networking, Storage and

Analysis , Seattle, WA, 2011.

[92] J. A. Davis, G. R. Mudalige, S. D. Hammond, J. A. Herdman, I. Miller and S. A. Jarvis,

“Analysis of a Hydrodynamics Application on Large-Scale CMP Clusters,” Computer

Science - Research and Development, vol. 26, no. 4, pp. 175-185, 2011.

[93] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath and T. D. Uram, “GROPHECY:

GPU Performance Projection from CPU Code Skeletons,” in In Proceedings of the

ACM/IEEE International Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’11, Seattle, WA, 2011.

[94] G. R. Mudalige, S. D. Hammond, J. A. Smith and S. A. Jarvis, “Predictive Analysis and

Optimisation of Pipelined Wavefront Computations,” in In Proceedings of theWorkshop

on Advances in Parallel and Distributed Computational Models, APDCM ’09, Rome,

Italy, 2009.

[95] “How to Implement Performance Metrics in CUDA C/C++,” Graphics Card, [Online].

Available: https://devblogs.nvidia.com/parallelforall/how-implement-performance-

metrics-cuda-cc/. [Accessed August 2015].

[96] V. S. Adve and M. K. Vernon, “Performance Analysis of Mesh Inteconnection Networks

with Deterministic Routing,” IEEE Transactions on Parallel and Distributed Systems,

vol. 5, no. 3, pp. 225-246, 1994.

[97] S.-H. Chiang and M. K. Vernon, “Characteristics of a Large Shared Memory Production

Workload.,” in Proceedings of the International Workshop on Job Scheduling Strategies

for Parallel Processing, JSSPP ’01, Cambridge, MA, 2001.

[98] M. A. Heroux and et al., “Improving Performance via Mini-applications,” Technical

Report SAND2009-5574, Sandia National Laboratories, Albuquerque, NM, 2009.

[99] T. Mattson, “A "Hands-on" Introduction to OpenMP,” [Online]. Available:

http://openmp.org/mp-documents/Intro_To_OpenMP_Mattson.pdf. [Accessed April

2015].

[100] M. McCool, J. Reinders and A. Robison, “Structured Prallel Programming: Patterns for

Efficient Computation,” Elsevier, vol. 22, p. 61, 2013.

[101] A. J. Bernstein, “Analysis of Programs for Parallel Processing,” IEEE Transactions on

155

Electronic Computers, vol. 15, no. 5, pp. 757-763, 1966.

[102] WiseGEEK, “Vector Processor,” Conjecture Corporation, [Online]. Available:

http://www.wisegeek.com/what-is-a-vector-processor.htm . [Accessed May 2015].

[103] B. Barney, “Introduction to Parallel Computing,” Lawrence Livermore National

Laboratory, [Online]. Available: https://computing.llnl.gov/tutorials/parallel_comp/.

[Accessed March 2015].

[104] S. Spacey, W. Luk, P. H. J. Kelly and D. Kuhn, “Improving Communication Latency

with the Write-Only Architecture,” Journal of Parallel and Distributed Computing, vol.

72, no. 12, pp. 1617-1627, 2012.

[105] L. Leslie, “How to make a Multiprocessor Computer that Correctly Executes

Multiprocessor Programs,” IEEE Transactions on Computers , vol. 28, no. 9, pp. 690-

692, 1979.

[106] J. L. Hennessy and D. A. Patterson, “Computer architecture / a quantitative approach,” in

3rd International Thomson, San Francisco, 2002.

[107] M. J. Quinn, Parallel Architectures, Parallel Programming in C with MPI and OpenMP,

Boston: McGraw Hill, 2004.

[108] D. Ibaroudene, Motivation and History, Parallel Processing, San Antonio, TX: St. Mary's

University , 2008.

[109] G. Conte, S. Tommesani and F. Zanichelli, “The long and winding road to high-

performance image processing with MMX/SSE,” in IEEE Int'l Workshop on Computer

Architectures for Machine Preception, 2000.

[110] D. E. Culler, J. P. Signh and A. Gupta, Parallel Computer Architecture - A

Hardware/Software Approach, Morgan Kaufmann Publishers, 1999.

[111] B. R. Rau and J. A. Fisher, “Instruction-level Parallel Processing: History, Overview, and

Perspective,” Journal of Supercomputing, vol. 7, no. 2, pp. 9-45, 1993.

[112] N. P. Jouppi and D. W. Wall, “Available Instruction-Level Parallelism for Superscalar

and Superpipelined Machines,” in In Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS-III,

Boston, MA, 1989.

[113] J. Reinders, “Intel Developer ZONE - AVX-512 Instructions,” Intel, July 2013. [Online].

Available: https://software.intel.com/en-us/blogs/2013/avx-512-instructions. [Accessed

June 2015].

[114] M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero and X. Martorell, “Extending

OpenMP* with Vectore Constructs for Modern Multicore SIMD Architectures,” in In

Proceedings of the International Workshop on OpenMP, IWOMP ’12, Rome, Italy, 2012.

[115] F. Darema, “SPMD model: past, present and future, Recent Advances in Parallel Virtual

156

Machine and Message Passing Interface,” in 8th European PVM/MPI Users' Group

Meeting, Santorini/Thera, Greece, 2001.

[116] M. Pharr and W. R. Mark, “A SPMD Compiler for High-Performance CPU

Programming,” in In Proceedings of Innovative Parallel Computing: Foundations &

Applications of GPU, Manycore and Heterogeneous Systems, InPar ’12, San Jose, 2012.

[117] J. Nickolls, I. Buck, M. Garland and K. Skadron, “Scalable Parallel Programming with

CUDA,” Queue, vol. 6, no. 2, pp. 40-53, 2008.

[118] D. Geer, “Chip Makers Turn to Multicore Processors,” Computer, vol. 38, no. 5, pp. 11-

13, 2005.

[119] H. El-Rewini and M. Abd-El-Barr, Advanced Computer Architecture and Parallel

Processing, Wiley-Interscience, 2005.

[120] N. Manchanda and K. Anand, “Non-Uniform Memory Access (NUMA),” May 2010.

[Online]. Available: http://cs.nyu.edu/~lerner/spring10/projects/NUMA.pdf. [Accessed

May 2015].

[121] D. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative Approach (4th

ed.), Burlington, Massachusetts: Morgan Kaufmann, 2006.

[122] J. D. Owens, M. Huston, D. Luebke, S. Green, J. E. Stone and J. C. Phillips, “GPU

Computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899, 2008.

[123] M. Harris, W. Baxter, T. Scheureman and A. Lastra, “Simulation and Computation:

Simulation of CLoud Dynamics on Graphics Hardware,” ACM

SIGRAPH/EURPGRAPHICS Workshop on Graphics Hardware, vol. 92, 2003.

[124] NVIDIA, “NVIDIA's CUDA Documentation,” [Online]. Available:

http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training

_NVISION08.pdf. [Accessed June 2015].

[125] J. Dongarra and P. Beckman, “International Exascale Software Project,” in In

Proceedings of the 2010 International Supercomputing Conference, Hamburg, 2010.

[126] W. Thomas and R. Daruwala, “Performance Comparison of CPU and GPU on a Discrete

Heterogeneous Architecture,” in International Conference on Circuits Systems,

Communication and Information Technology Application (CSCITA), 2014.

[127] M. Pharr and R. Fernando, GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation, Addison-Wesley, 2005.

[128] N. Corporation, “The GeForce 6 Series GPU Architecture,” [Online]. Available:

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter30.html . [Accessed

August 2015].

[129] D. Luebke, G. Humphreys and N. Res, “How GPUs Work,” Computer, vol. 40, no. 2, pp.

96-100, 2007.

157

[130] K. Group, “OpenCL,” 2010. [Online]. Available: http://www.khronos.org/opencl.

[Accessed September 2015].

[131] NVIDIA, “CUDA Programming Guide Version 6.0,” 2015. [Online]. Available:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3zhavvdyM . [Accessed

February 2015].

[132] “NVIDIA Unveils Next Generation CUDA GPU Architecture - Codenamed Fermi,”

October 2009. [Online]. Available:

http://www.cdrinfo.com/Sections/News/Details.aspx?NewsId=26054 . [Accessed August

2015].

[133] W. Thomas and R. D. Daruwala, “Performance Comparison of CPU and GPU on a

Discrete Heterogeneous Architecture,” in In IEEE - International Conference on

Circuits, Systems, Communications and Information Technology Applications, 2014.

[134] M. E. Garland, “Parallel Computing Experiences with CUDA,” IEEE Micro, vol. 28, no.

4, pp. 13-27, 2008.

[135] NVIDIA, “Kepler Architecture,” [Online]. Available:

http://www.nvidia.com/object/nvidia-kepler.html . [Accessed August 2015].

[136] NVIDIA, “Tuning CUDA Application for Kepler,” 2015. [Online]. Available:

http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html#axzz3zhavvdyM. [Accessed

September 2015].

[137] NVIDIA, “Kepler Tuning Guide,” Graphics Card, 2015. [Online]. Available:

http://docs.nvidia.com/cuda/kepler-tuning-guide/#axzz3kyVd6kvW. [Accessed

September 2015].

[138] J. McKennon, “GPU Memory Types - Performance Comparison,” August 2013.

[Online]. Available: https://www.microway.com/hpc-tech-tips/gpu-memory-types-

performance-comparison/. [Accessed September 2015].

[139] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors, Second

Edition: A Hands-on Approach, Morgan Kaufmann Elsevier , 2013.

[140] J. Liang, K. Li, L. Shi and Y. Liao, “Accelerating Dynamics Simulation of Solidification

Processess of Liquid Metals using GPU with CUDA,” in In IEEE 27th International

Symposium on Parallel & Distibuted Processing, 2013.

[141] N. Gupta, “CUDA Programming,” [Online]. Available: http://cuda-

programming.blogspot.in/2013/01/thread-and-block-heuristics-in-cuda.html. [Accessed

October 2015].

[142] R. Amorim, G. Haase, M. Liebmann and R. Weber dos Santos, “Comparing CUDA and

OpenGL implementations for a Jacobi Iteration,” in In 2009 International Conference on

High Performance Computing & Simulation, Technical Report SFB-Report, IEEE, 2009.

[143] J. Cohen and M. Molemaker, “A Fast Double Precision CFD Code Using CUDA,” In

158

Parallel Computational Fluid Dynamics, vol. 66, pp. 2-17, 2009.

[144] C. E. Figaard, “Introduction G2X: Porting GADGET2 to CUDA Carsten Eia Frigaard to

N-body Solvers,” [Online]. Available:

http://www.astro.lu.se/compugpu2010/resources/Frigaard.pdf. [Accessed October 2015].

[145] V. Simek, R. Dvorak, F. Zboril and J. Kunovsky, “Towards Accelerated Computation of

Atmospheric Equations Using CUDA,” in In Proceedings of the UKSim 2009: 11th

International Conference on Computer Modelling and Simulation, Washington, DC,

USA, 2009.

[146] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multiplication on CUDA,”

NVIDIA Technical Report, 2008.

[147] D. M. Trombly, V. Pryamitsyn and V. Ganesan , Journal of Chemical Physics , vol. 134,

no. 15, 2011.

[148] F. Drolet and G. H.Fredrickson, “Combinatorial Screening of Complex Block Copolymer

Assembly with Self-Consistent Field Theory,” Physical Review, vol. 83, no. 21, 1999.

[149] F. A. Detcheverry, D. Q. Pike, U. Nagpal, P. E. Nealey and J. J. De Pablo, Physical

Review Letters, vol. 102, no. 14, 2009.

[150] U. Nagpal, M. Muller, P. F. Nealey and J. J. de Pablo, “Directed Self-assembly of Block

Co-polymers for Nano-manufacturing,” ACS Macro Letters, 2012.

[151] Intel Corporation, “A Guide to Vectorization with Intel C++ Compilers,” 2012. [Online].

Available:

http://d3f8ykwhia686p.cloudfront.net/1live/intel/CompilerAutovectorizationGuide.pdf.

[Accessed October 2015].

[152] C. Lomont, “Introduction to Intel Advanced Vector Extensions,” June 2011. [Online].

Available: https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-

extensions. [Accessed October 2015].

[153] C. Ozdogan, G. Dereli and T. Gagin, Comput. Phys. Commun, vol. 148, p. 188, 2002.

[154] D. B. Wang, F. B. Hsiao, C. H. Chuang and Y. C. Lee, “Algorithm Optimisation in

Molecular Dynamics Simulation,” Comput. Phys. Commun, vol. 177, no. 7, pp. 551-559,

2007.

[155] Z. Yao, J. S. Wang, G. R. Liu and M. Cheng, “Improved Neighbor List Algorithm in

Molecular Simulations Using Cell Decomposition and Data Sorting Method,” Comput.

Phys. Commun, vol. 161, no. 2, pp. 27-35, 2004.

[156] R. Hayashi and S. Horiguchi, “A Parallel Molecular Dynamics Simulation by Dynamic

Load Balancing Based on Permanent Cells,” Transactions of Information Processing

Society of Japan, vol. 40, no. 5, pp. 2152-2162, 1999.

[157] L. Nyland, J. Prins and R. H. Yun, “Achieving Scalable Parallel Moleculaar Dynamics

159

Using Dynamic Spatial Domain Decomposition Techniques,” Journal of Parallel and

Distributed Computing, vol. 47, no. 2, pp. 125-138, 1997.

[158] Stanford Computer Graphics Laboratory, “The Stanford 3D Scanning Repository,” 2012.

[Online]. Available: http://graphics.stanford.. [Accessed October 2015].

[159] S. Guntury and P. J. Narayanan, “Raytracing Dynamic Scenes on the GPU Using Grids,”

IEEE Transactions on Visualisation and Computer Graphics, vol. 18, no. 1, pp. 5-16,

2012.

[160] J. Kalojanov, M. Billeter and P. Slusallek, “Two-level Grids for Ray Tracing on GPUs,”

Computer Graphics Forum, vol. 30, no. 2, pp. 307-314, 2011.

[161] D. M. Beazley and P. S. Lomdahal, “Message-Passing Multi-Cell Molecular Dynamics

on the Connection Machine 5,” Parall. Comp., vol. 20, no. 2, pp. 173-195, 1994.

[162] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon and A. White, Source-

book of Parallel Computing, San Francisco, 2003.

[163] J. Benzi and M. Damodaran, “Parallel Three Dimensional Direct Simulation Monte Carlo

for Simulating Micro Flows,” Parallel Computational Fluid Dynamics: Implementations

and Experiences on Large Scale and Grid Computing, p. 95, 2007.

[164] P. Agrawal, A. D. Agrawal, M. L. Bushnell and J. Sienicki , “Superlinear Speedup in

Multiprocessing Environment,” in First International Workship on Parallel Processing,

Bangalore, 1994.

[165] Intel, “Intel VTune Amplifire,” [Online]. Available: https://software.intel.com/en-

us/intel-vtune-amplifier-xe. [Accessed January 2015].

[166] D. T. Marr and et al., “Hyper-Threading Technology Architecture and Micro

architecture,” Intel Technology Journal, vol. 6, no. 1, 2002.

[167] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi and R. Rooholamini, “An Empirical Study of

Hyper-Threading in High Performance Computing Clusters,” [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.4841&rep=rep1&type=pdf

. [Accessed November 2015].

[168] S. Casey, “How to Determine the Effectiveness of Hyper-Threading Technology with an

Application,” Intel, April 2011. [Online]. Available: https://software.intel.com/en-

us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-

application/. [Accessed November 2015].

[169] A. Valles, “Performance Insights to Intel Hyper-Threading Technology,” Intel,

November 2009. [Online]. Available: https://software.intel.com/en-

us/articles/performance-insights-to-intel-hyper-threading-technology. [Accessed

November 2015].

[170] A. Grama, A. Gupta, G. Karypis and V. Kumar, “Principles of Parallel Algorithm Design

- Decomposition Techniques,” in Introduction to Parallel Computing, Addison-Wesley.

160

[171] S. Scott, “A System Prespective on Exascale,” in In Proceedings of the 2010

International Supercomputing Conference, Hamburg, Germany, 2010.

[172] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.

Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V.

Venkatakrishnan and S. K. Weeratunga, “The NAS Parallel Benchmarks,” International

Journal of High Performance Computing Applications, vol. 5, no. 3, pp. 63-73, 1991.

[173] J. A. Anderson, C. D. Lorenz and A. Travesset, “General Purpose Molecular Dynamics

Simulations Fully Implemented on Graphics Processing Units,” Journal of

Computational Physics, vol. 227, no. 10, pp. 5342-5359, 2008.

[174] J. T¨olke, “Implementation of a Lattice Boltzmann kernel using the Compute Unified

Device Architecture developed by nVIDIA,” Computing and Visualization in Science,

vol. 13, no. 1, pp. 29-39, 2008.

[175] W. Li, X. Wei and A. Kaufman, “Implementing Lattice Boltzmann Computation on

Graphics Hardware,” The Visual Computer, vol. 19, no. 7-8, pp. 444-456, 2003.

[176] L. Lamport, “The Parallel Execution of DO Loops.,” Communications of the ACM, vol.

17, no. 3, pp. 83-93, 1974.

[177] C. Obrecht, F. Kuznik, B. Tourancheau and J. Roux, “A New Approach to the Lattice

Boltzmann Method for Graphics Processing Units.,” Computers and Mathematics with

Applications., vol. 61, no. 12, pp. 3628-3638, 2010.

[178] D. Bacon, S. Graham and O. Sharp, “Compiler Transformations for High-Performance

Computing,” ACM Computing Surveys (CSUR), vol. 26, no. 4, pp. 345-420, 1994.

[179] NVIDIA, “NVIDIA - Quadro K5000, GPU leverages the new NVIDIA Kepler

architecture,” [Online]. Available:

http://www.pny.eu/data/products/brochures/nvidia%20quadro%20k5000%20by%20pny

%20datasheet.pdf. [Accessed December 2014].

[180] C. NVIDIA, “GPU Occupancy Calculator,” CUDA SDK, 2012. [Online].

[181] V. Volkov, “Better Performace at Lower Occupancy,” 2011. [Online]. Available:

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf. [Accessed November 2015].

[182] J. Cheng, M. Grossman and T. McKercher, Professional CUDA C Programming, John

Wiley & Sons, 2014.

[183] J. Fousek, J. Filivpovic and M. Madzin, “Automatic Fusions of CUDA-GPU Kernels for

Parallel Map,” in In Second International Workshop on Highly-Efficient Accelerators

and Reconfigurable Technologies (HEART), 2011.

[184] S. Sato and H. Iwasaki, “A Skeletal Parallel Framework with Fusion Optimizer for

GPGPU Programming,” In Programming Languages and Systems, vol. 59, 2009.

[185] H. Wu, G. Diamos, A. Lele, J. Wang, S. Cadambi, S. Yalamanchili and S. Chakradhar,

161

“Optimizing Data Warehousing Applicaations for GPUs Using Kernel Fusion/Fission,”

in In Proceedings of the Multicore and GPU Programming Models, Languages and

Compilers Workshop, Shanhai, China, 2012.

[186] G. Wang, Y. Lin and W. Yi, “Kernel Fusion: An Effective Method for better Power

Efficiency on Multithreaded GPU,” in In IEEE/ACM Int'l Conference on Green

Computing and Communications & Int'l Conference on Cyber, Physical and Social

Computing (GREENCOM-CPSCOM), 2010.

[187] S. Yip (ed.), “FINITE DIFFERENCE, FINITE ELEMENT AND FINITE VOLUME

METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,” in Handbook of

Materials Modeling., Netherlands, Springer, 2005, pp. 1-32.

[188] A. Bakker, “Applied Computational Fluid Dynamics,” 2006. [Online]. Available:

http://www.bakker.org/dartmouth06/engs150/05-solv.pdf. [Accessed September 2016].

[189] J. F. Wendt (ed.), “Introduction to Finite Volume Methods in Computational Fluid

Dynamics,” in Computational Fluid Dynamics , Berlin, Springer, 2009, pp. 275-278.

[190] “CFD Online,” CFD, [Online]. Available: http://www.cfd-online.com/Forums/main/287-

finite-difference-vs-finite-volume.html. [Accessed September 2016].

[191] P. Tang, F. Qiu, H. Zhang and Y. Yang, “Phase Separation Patterns for Diblock

Copolymers on Spherical Surfaces: A Finite Volume Method,” Physical Review, vol. 72,

no. 4, pp. 16710-16717, 2005.

[192] M. Hariss, “CUDA Pro Tip: Do the Kepler Shuffle,” NVIDIA - Graphics Card, February

2014. [Online]. Available: https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-kepler-

shuffle/.

[193] S. Rennich, “CUDA C/C++ Streams and Concurrency,” 2011. [Online]. Available:

http://on-demand.gputechconf.com/gtc-

express/2011/presentations/StreamsAndConcurrencyWebinar.pdf. [Accessed January

2016].

162

Appendix A

The source-code of the implementation of the cell dynamics simulation

method in C

Some parts of the CDS source-code

//**

// The following part is for calculating the

// first isotropised discrete Laplacian.

// apxi1 =),(),(ntnt  within

//           ],,[,,, ntntDntntfnt  

// with consideration of the boundary conditions.

//**

 for (k=1;k<=nz;++k) {

 for (j=1;j<=ny;++j) {

 for (i=1;i<=nx;++i) {

 pxi0[i][j][k]=pxi[i][j][k];

 aapxi1[i][j][k]=c1*(pxi[upx[i]][j][k] +

 pxi[downx[i]][j][k]

 + pxi[i][upy[j]][k] + pxi[i][downy[j]][k] +

 pxi[i][j][upz[k]]

 + pxi[i][j][downz[k]]);

//***

 bapxi1[i][j][k]= c2 * (pxi[downx[i]][upy[j]][k] +

 pxi[downx[i]][downy[j]][k]

 + pxi[upx[i]][upy[j]][k] + pxi[upx[i]][downy[j]][k]

 + pxi[i][downy[j]][upz[k]]

 + pxi[i][downy[j]][downz[k]]

 + pxi[i][upy[j]][upz[k]] + pxi[i][upy[j]][downz[k]]

 + pxi[downx[i]][j][upz[k]]

 + pxi[downx[i]][j][downz[k]]

 + pxi[upx[i]][j][upz[k]]

 + pxi[upx[i]][j][downz[k]]);

//***

 capxi1[i][j][k]= c3 *

 (pxi[downx[i]][downy[j]][upz[k]]

 + pxi[downx[i]][upy[j]][upz[k]]

 + pxi[downx[i]][downy[j]][downz[k]]

 + pxi[downx[i]][upy[j]][downz[k]]

 + pxi[upx[i]][downy[j]][upz[k]]

 + pxi[upx[i]][upy[j]][upz[k]]

 + pxi[upx[i]][downy[j]][downz[k]]

 + pxi[upx[i]][upy[j]][downz[k]]);

//***

163

 apxi1[i][j][k]=aapxi1[i][j][k]

 + bapxi1[i][j][k]

 + capxi1[i][j][k];

 }

 }

 }

//**

// This part is to calculate the Free energy functional:

//           ],,[,,, ntntDntntfnt  

// map1=  nt,

//**

 for (k=1;k<=nz;++k) {

 for (j=1;j<=ny;++j) {

 for (i=1;i<=nx;++i) {

 map1[i][j][k]= f[i][j][k] +d * (apxi1[i][j][k]

 - pxi[i][j][k])

 - hx[i] * ((pxi[i][j][k] + r * 2.0) / 2.0)

 - hy[j] * ((pxi[i][j][k] + r * 2.0) / 2.0)

 - hz[k] * ((pxi[i][j][k] + r * 2.0) / 2.0);

 }

 }

 }

//**

// The following part is for calculating the

// second isotropised discrete Laplacian of the

// free energy functional, apxi2=    ntnt ,,  within

//          },,,{,,1 ntbntntntnt   ,

// with consideration of the boundary conditions

//**

 for (k=1;k<=nz;++k) {

 for (j=1;j<=ny;++j) {

 for (i=1;i<=nx;++i) {

 aapxi2[i][j][k]=c1 * (map1[upx[i]][j][k] +

 + map1[downx[i]][j][k]

 + map1[i][upy[j]][k] + map1[i][downy[j]][k]

 + map1[i][j][upz[k]] + map1[i][j][downz[k]]);

//***

 bapxi2[i][j][k]=c2 * (map1[downx[i]][upy[j]][k]

 + map1[downx[i]][downy[j]][k]

 + map1[upx[i]][upy[j]][k]

 + map1[upx[i]][downy[j]][k]

 + map1[i][downy[j]][upz[k]]

 + map1[i][downy[j]][downz[k]]

 + map1[i][upy[j]][upz[k]]

 + map1[i][upy[j]][downz[k]]

164

 + map1[downx[i]][j][upz[k]]

 + map1[downx[i]][j][downz[k]]

 + map1[upx[i]][j][upz[k]]

 + map1[upx[i]][j][downz[k]]);

//***

 capxi2[i][j][k]=c3

 * (map1[downx[i]][downy[j]][upz[k]]

 + map1[downx[i]][upy[j]][upz[k]]

 + map1[downx[i]][downy[j]][downz[k]]

 + map1[downx[i]][upy[j]][downz[k]]

 + map1[upx[i]][downy[j]][upz[k]]

 + map1[upx[i]][upy[j]][upz[k]]

 + map1[upx[i]][downy[j]][downz[k]]

 + map1[upx[i]][upy[j]][downz[k]]);

//***

 apxi2[i][j][k] = aapxi2[i][j][k]

 + bapxi2[i][j][k]

 + capxi2[i][j][k];

 }

 }

 }

//**

// The following part is for the time evolution of

// the order parameters calculations (Pxi(t+1,n)) with

// consideration of shear and long-range interaction:

//

         

    },,,1,,,1
2

1

,,,{,,1

tnnntnnny

ntbntntntnt

zyxzyx 







//**

 for (k=1;k<=nz;++k) {

 for (j=1;j<=ny;++j) {

 for (i=1;i<=nx;++i) {

 pxi[i][j][k] = pxi0[i][j][k]+ deltat *

 (-0.5 * sh* (float) j * (pxi0[upx[i]][j][k] -

 pxi0[downx[i]][j][k]) + e * (pxi0[i][upy[j]][k]

 + pxi0[i][downy[j]][k] - 2.0 * pxi0[i][j][k]) -b

 * pxi[i][j][k] + map1[i][j][k] - apxi2[i][j][k]);

 }

 }

 }

165

Appendix B

The Whole Pseudo-Code of Particle Tracking Computational

Algorithm

Part I - Particle detection

Repeat – outer loop for all time steps

 Begin Inner loop-level 1

 Reading Pxi values

End Inner loop-level 1

Step A – applying the detection method and PBC

 Begin Inner loop-level 2

 Find the first particle if (Pxi (i, j, k) = 1)

 Modify the boundary conditions

 Start to search the nearest neighbours

 If neighbours are equal 1 then

 Change the current coordinates to the new coordinates and modify the Pxi values

Step B – counting the number of particles

 Count the number of particles

 Specify the number of particles

Step C - writing the results

 Final checking for detecting particles

 Writing the results into files

 End Inner loop – Level 2

 End Repeat – outer loop

Part II - Calculating centre of mass

 Reading detection output files

 Repeat for all time steps

 Read Pxi values

 Repeat for all particle numbers (C)

 Counting the number of grid points belong to the particle

 End repeat

 Repeat for all particle numbers

 Initialise A to 0

 Initialise B to 0

Step A – initialising the values

 If the particle has grid points in left width boundary then

 Set A=20

 End if

 If the particle has grid points in right width boundary then

 Set B=20

 End if

 If the particle has grid points in up length boundary then

166

 Set M=20

 End if

 If the particle has grid points in down length boundary then

 Set N=20

 End if

Step B – finding the single particles

 If it is a single particle (if the number of grid points is less than 55)then

 If A=20 and B=20 (If the particle has gird points in both width boundaries) then

 If the grid points are close to the right width boundary then

 Set comx = comx + grid point coordinate (i)

 Else if the grid points are close to the left width boundary then

 Set comx = comx + grid point coordinate (i) -127

 End if

 If M=20 and N=20 (If the particle has gird points in both length boundaries) then

 If the grid points are close to the up length boundary then

 Set comy = comy + grid point coordinate (j)

 Else if the grid points are close to the down length boundary then

 Set comy = comy + grid point coordinate (j) -127

 End if

 If A=20 and B=20 and M=20 and N=20 (If particle has grid points in all boundaries (it is in

the corners)) then

 If the grid points are close to the right width boundary then

 Set comx = comx + grid point coordinate (i)

 Else if the grid points are close to the left width boundary then

 Set comx = comx + grid point coordinate (i) -127

 Else if the grid points are close to the up length boundary then

 Set comy = comy + grid point coordinate (j)

 Else if the grid points are close to the down length boundary then

 Set comy = comy + grid point coordinate (j) -127

 End if

 Else if the particle is not in the boundaries then

 Set comx = comx + grid point coordinate (i)

 Set comy = comy + grid point coordinate (j)

 End if

Step C – finding the mixed particles

 If it is a mixed particle (if the number of grid points is more than 55) then

 If A=20 and B=20 (If the particle has gird points in both width boundaries) then

 Find the width and length of the mixed particle considering width boundary condition.

 If M=20 and N=20 (If the particle has gird points in both length boundaries) then

 Find the width and length of the mixed particle considering length boundary condition.

 End if

 If A=20 and B=20 and M=20 and N=20 (If particle has grid points in all boundaries (it is in

the corners)) then

 Find the width and length of the mixed particle considering both length and width boundary

condition.

 End if

Step D – calculating and writing the centre of mass

 If the particle is single then

 Calculate and write the centre of mass in to the files

167

End if

 If the particle is mixed then

 Calculate two centre of mass considering its direction (horizontal, oblique (ascending,

descending)) and write the outputs into the files

 End if

End Repeat

Part III - Tracking the next position

Reading the centre of masses output files

 Initialise detected particle (The specific particle which we want to detect- ji)

 Repeat for all time steps

 Repeat for all

 Read centre of mass of detected particles in first time -step

 End repeat

 Repeat for all

 Read centre of mass of detected particles in next time step

 End repeat

 Read Pxi values

 Repeat for all particle numbers (C)

 If the particle number in first time step is equal to the variable ji then

Step A – Find the nearest particle and name the new particle as an initial particle

 Finding the nearest particle base on the finding the nearest centre of mass

Step B - Considering periodic boundary condition (PBC)

Periodic boundary conditions apply in five different situations.

 1- PBC in width boundary

 2 - PBC in length boundary down -middle

 3 - PBC in length boundary up -middle

 4 - PBC in length and width boundary up

 5 - PBC in length and width boundary down

 End repeat

 Write the outputs in the files.

End repeat

168

