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Abstract  

 

Soft materials have attracted considerable interest in recent years for predicting the 

characteristics of phase separation and self-assembly in nanoscale structures. A popular method 

for demonstrating and simulating the dynamic behaviour of particles (e.g. particle tracking) and 

to consider effects of simulation parameters is cell dynamic simulation (CDS). This is a cellular 

computerisation technique that can be used to investigate different aspects of morphological 

topographies of soft material systems. The acquisition of quantitative data from particles is a 

critical requirement in order to obtain a better understanding and of characterising their dynamic 

behaviour. To achieve this objective particle tracking methods considering quantitative data and 

focusing on different properties and components of particles is essential.  

     Despite the availability of various types of particle tracking used in experimental work, there 

is no method available to consider uniform computational data. In order to achieve accurate and 

efficient computational results for cell dynamic simulation method and particle tracking, two 

factors are essential: computing/calculating time-scale and simulation system size. 

Consequently, finding available computing algorithms and resources such as sequential 

algorithm for implementing a complex technique and achieving precise results is critical and 

rather expensive. Therefore, it is highly desirable to consider a parallel algorithm and 

programming model to solve time-consuming and massive computational processing issues. 

Hence, the gaps between the experimental and computational works and solving time 

consuming for expensive computational calculations need to be filled in order to investigate a 

uniform computational technique for particle tracking and significant enhancements in speed 

and execution times. 

      The work presented in this thesis details a new particle tracking method for integrating 

diblock copolymers in the form of spheres with a shear flow and a novel designed GPU-based 

parallel acceleration approach to cell dynamic simulation (CDS). In addition, the evaluation of 

parallel models and architectures (CPUs and GPUs) utilising the mixtures of application 

program interface, OpenMP and programming model, CUDA were developed. Finally, this 

study presents the performance enhancements achieved with GPU-CUDA of approximately ~2 

times faster than multi-threading implementation and 13~14 times quicker than optimised 

sequential processing for the CDS computations/workloads respectively. 
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CHAPTER ONE 

1 Introduction  

 

By modelling nano and macro-scale structures using computational methods relational gap 

between the real world and the world of the laboratory can be bridged, providing useful insights 

regarding the evolution and dynamic behaviour of molecular systems. Computational simulation 

by modelling different experiments plays an important and essential role in today’s technical, 

engineering and scientific research. This minimised the need for expensive, time consuming and 

sometimes hazardous experiments in order to obtain scientific data. In addition, computer 

simulation and modelling provides a corroboration and validation of theories into experimental 

works. Therefore, it is desirable and economically prudent to execute simulations as quickly as 

possible to investigate different properties of molecular systems. 

     In the last few decades particle tracking has been used extensively as one of the most popular 

ways for achieving the quantification of data and considering different properties of particles 

[1], including in: (a) tracking bacterial motion [2]; (b) studying intracellular tracking of 

pharmaceutical nano-carriers [3]; (c) genetic material tracking [4]; and (d) protein or lipid 

tracking [5]. Various studies have used different computational techniques for particle tracking 

for capturing the full benefits of quantitative data and understanding dynamic actions of 

particles [6]. Existing particle tracking methods have focused on tracking of experimental 

particles. The general approach involves the application image processing methods to detect 

experimental particles in images and transfer them to a readable form input for programs and 

track the detected particles. In 1995, Crocker and Grier developed an image processing 

algorithm for extracting quantitative data from experimental images [7]. Their technique could 

distinguish particles from the rest of the image. The computational technique of particle tracking 

velocimetry can be categorised into two levels: image relaxation and nearest neighbour search 

algorithm [8]. However, these two computational techniques follow the same model of particle 

tracking. Particle tracking model involves two main phases: image acquisition and tracking of 

the moving particles. Figure 1.1 shows a model of the particle tracking based on experimental 

work [6]. 
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Figure 1.1: Particle tracking model based on experimental work [6]. 

 

In most particle tracking models, the data travel in one direction, from the detection part to the 

trajectory part, although in some particle tracking models the detection and trajectory parts are 

complementary and coupled to each other [9, 10]. In both situations, the motion modelling part 

aids the particle tracking phase by decreasing the vagueness and ambiguity of detected particles 

and global trajectory construction between frames. Having considered different methods for 

particle tracking in experimental work, it is essential to develop a method that can be used for 

uniform computational data. Computational data coupled with quantitative analysis and 

mathematical modelling helps to shed further light on a broad range of scientific issues [11].  

     A major challenge for particle tracking based on the cell dynamic simulation is the expense 

of computational works and long time frames involved, due to two fundamental constraints: 

time steps and experimental scale size. These limitations impact directly on the simulation 

results. To overcome these issues, a new parallel computational model is required. Interestingly, 

parallel programming model is the only method that can really improve and enhance the 

performance of applications and solve the problems identified. Graphics Processing Unit (GPU) 

has become the popular in recent years due to its broad suitability in different research fields for 

improving performance in various applications. Originally designed to process graphical data, 

GPUs were, later developed further for general purpose computing on graphics processing unit 

(GPGPU) allowing the operation of GPUs to process and compute non-graphical data. The 

application was extended to different fields of parallel programming and computational physics 

[12, 13], including calculations of long and short range order of nanostructure for diblock 

copolymers using CDS method. 
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Parallel processing can be executed either on Central Processing Unit (CPU) or GPU, but 

recently because of the performance improvements in the latter and the capability for processing 

graphic and non-graphical data, there has been increasing demand for executing parallel 

processing on GPUs [14]. GPUs produce a huge number of polygons at high speed to display 

photos. In addition, GPUs’ floating point arithmetic is advanced and they can execute several 

computations efficiently rather than simply generating polygons [15]. An example of the 

combination between computational physics and parallel processing using GPUs involves 

solving the time-dependent Schrödinger equation for coherent electron transport in quasi two-

dimensional electron gases. The numerical analysis of a Schrödinger equation is processed in 

about 280 seconds on a CPU (Intel Xenon CPU E5420 @ 2.50GHz), in comparison to 10 

seconds for the GPU version (NVIDIA Tesla C1060 GPU). This result illustrates the significant 

time efficiency of GPUs [16]. As shown in Figure 1.2, GPU has more transistors than CPU [17], 

which increases number of processing cores and therefore computational capacity.       

 

  

 

Figure 1.2: CPU and GPU architectures [17]. 

 

1.1 Motivation  
 

Block copolymers are widely used in soft matter research for predicting the characteristics of 

phase separation and self-assembly into nanoscale structures. Different structures formed by 

polymers involve: (i) diblock copolymer; (ii) triblock copolymer; (iii) star triblock copolymer; 

and (iv) linear triblock copolymer [18]. Diblock copolymer is a nanoscale ordered structure 

based on the natural aptitude of micro-phase separation and self-assembly entailing several 

morphologies such as spheres, lamellar and cylinders. Diblock copolymer refers to chain 

molecules joined covalently and linked to a single macromolecule [19, 20]. Soft matter has been 

explored extensively theoretically and experimentally in many disciplines, such as chemistry 

and electronics, in order to understand different topological morphologies, short-range, long-

range ordering of the microstructure, time evolution of ordered structures and the effects of 

various parameters [21, 22]. Experimentally evaluations of these issues are very costly, time 

consuming and problematic. Hence, a new computational technique is needed to model such a 
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system and improve understanding of the time evolution of ordered structures and the effects of 

different system parameters on the properties of the diblock copolymer. 

The main drawback to accurate results in computer simulation is the time-consuming and 

expensive nature of the computations with ordinary hardware and sequential programming. 

Indeed, the speed of scientific advances has not kept pace with the rapid developments in 

computers (e.g. supercomputer), and the peak floating-point performance of superfast 

computers. For instance, scientific advances approach only 5-20% of maximum computational 

power and performance. This difference between peak performance of computer and scientific 

programs leaves room for further study to enhancement of performance in different aspects 

significantly [23, 24]. Such investigations directly influence the cost and accuracy. 

Considerations of performance differences refer to the new idea of parallel computing model, 

which can improve and enhance performance of applications and solve important problems in 

various disciplines.  

     Simulation methods developed so far raise a number of questions. The purposes of this study 

are thus to obtain an improved understanding of the dynamic behaviour of particles with respect 

to time evolution via the computational method of particle tracking, and to overcome resource 

and performance limitations by proposing a novel GPU parallel algorithm and CPU 

multithreading method.  

 

Figure 1.3: Schematic example of AB diblock copolymer. 

 

1.2 Original Contributions in this Thesis   
 

The work presented in this thesis makes the following novel contributions: 

 Cell Dynamic Simulation (CDS) technique has been studied as a computational method 

to model phase separation of diblock copolymers, to investigate the effect of external 

fields, such as shear flow, and to simulate spherical morphology of diblock copolymer 

for comprehending the nontrivial behaviour of the spherical morphology of diblock 

copolymers.  
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 A new computational technique was developed during this study for detecting and 

tracking particles utilising results obtained from the cell dynamic simulation of a 

spherical phase of diblock copolymer under a shear flow. This new technique follows 

the same procedure for particle tracking including detection and tracking. However, 

detection of particles in this study is original and is not similar to any previous work, 

since the CDS output is numerical, and it would not be possible to utilise the same 

procedure in order to detect the particles while in tracking section. Other techniques 

have been combined such as nearest neighbour and linear assignment, with some novel 

methods in a unique way. However, the new method is more comprehensive and 

specifies not only the factors of the flow field, such as shear, but other properties such 

as particle number (labelling), while simultaneously and concurrently allowing the 

tracking of multiple particles. 

 

 This study investigated different parallel computing architecture and programming 

model in both CPUs and GPUs.  It comprises different aspects such as Flynn’s 

Taxonomy model (SISD, SIMD, MISD, MIMD), restrictions and cost of parallel 

computing and different memory architecture of parallel computer such as distributed 

memory, shared memory and hybrid shared-distributed memory. 
 

 

 The CDS method was implemented and optimised in C programming language and 

OpenMP multithreading shared memory architecture. Loop sharing method as one of 

the work-sharing constructs has been used to prevent race conditions, and to satisfy data 

dependencies different synchronisation constructs were used. In addition, the influence 

of multithreading to overcome time-consumption and expensive computation problems 

was investigated.  

 

 A three-dimensional GPU-CUDA implementation of cell dynamic simulation for 

diblock copolymer based on the spatial decomposition method and block-cell link 

model was developed during this work. The spatial decomposition technique based on 

the block-cell link model was shown to be a suitable and appropriate choice for GPU-

accelerated CDS simulation. By allocating enough resources for each data element, this 

method enhances system performance and the communication costs are reduced 

between each thread, ultimately decreasing the GPU’s memory access time. 

 

 A combination of different test cases and metrics according to throughput and latency 

of CPU and GPU for a given task to evaluate the performance and speed of parallel 

program were used. The performance comparison is based on a commodity NVIDIA 

Quadro K5000 graphics card and Intel Xeon E5-2420 CPU.  
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1.3 Overview of the Thesis  
 

Following the introduction, the remainder of the thesis comprises of seven chapters.  

Chapter 2 illustrates the cell dynamic simulation method, considerations of different 

parameters effects on CDS for spherical morphology and the simulation results for diblock 

copolymer sphere morphology under shear.  

Chapter 3 explores the literature relevant to particle detection and tracking. It also presents a 

novel computational technique for particle detection and tracking and demonstrates dynamic 

movement and behaviour of one and more particles concurrently based on the novel method.  

Chapter 4 reviews the concepts, performance analysis and computational throughput related to 

the areas of high performance computing and performance engineering. It specifically considers 

these techniques for evaluation between multi-core and many-core implementations in this 

study.  

Chapter 5 details and reviews the concepts of past and present state-of-the-art in parallel 

software, hardware and computing, and addressed different parallel terminologies and 

programming models for different parallel memory architectures.  

Chapter 6 details the evolution of graphics processing unit and investigates the GPU as many-

core accelerator by considering different aspects of memory architecture and CUDA 

programming model.  

Chapter 7 presents optimisation studies such as utilisation of SIMD, vectorisation and memory 

access patterns for performance improvement of the CDS baseline code. It proposes a new 

hybrid decomposition algorithm for multi-threading implementation on CPU and the results 

based on a new algorithm. The last section of chapter seven illustrates and details the algorithm, 

optimisation, and validation of CDS simulation scheme on GPU many-core hardware.  

Chapter 8 concludes and summarises the work presented in this study, elucidates the 

limitations and provides scope for future research work.  
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CHAPTER TWO 

2 Cell Dynamic Simulation 

 

Over recent decades, numerous techniques have been used for modelling diblock copolymer, 

and making closer relationships between the real world and the laboratory. Based on the specific 

application, some of these techniques are flexible and scalable in terms of system parameters, 

however they lack preciseness. Other techniques such as self-consistent field theory and 

theoretically informed coarse-grained are more precise but not readily scalable [20]. Hence, a 

method is required that takes into account both accuracy and speed and makes for a closer 

relationship between the real world and the laboratory by modelling the behaviour of diblock 

copolymer on a large scale and prevent the size effect problem. To this end, CDS was identified 

as a suitable approach to compute and define mesoscopic self-assembled structure of diblock 

copolymers [25, 26]. 

     CDS is a promising method and good example of a cellular automation in interface dynamics 

in phase-separating domain [27, 28]. It has been used in other systems and applications to model 

phase-separating dynamic, including micro-emulsions [29, 30]; cross linked polymer blends 

[31]; and binary blends containing surfactants [32]. The CDS equations model suggests that the 

CDS is a coarse-grained discretisation scheme. This scheme refers to the Ginzburg-Landau 

(TDGL) equation and Cahn-Hilliard Cook (CHC) equation which define all the simulation 

parameters for diblock copolymer and govern all differential equation for the time-evolution of 

order parameters, as explained in the following section. The main advantage of CDS technique 

compared to other molecular simulation methods is coarse-grained discretisation [33]. This 

chapter focuses on the CDS theory, considers the concepts of immiscible blends, and 

demonstrates simulation results for spherical morphology of diblock copolymer. An 

investigation of the external effects such as shear flow for three-dimensional structure of sphere 

forming is also presented. 
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2.1 Benchmark Description  
 

This section describes the concepts of immiscible blend between two polymers and their 

morphology. The idea of mixing two polymers to produce a material with improved properties 

is well established, but it is nevertheless difficult to achieve practically with some polymers. 

The difficulty of mixable polymers is illustrated by the chicken soup scenario where chicken is 

one polymer and water is the other polymer. This situation, involves two phases: one phase is 

water and the other is chicken which is insoluble in water. The resultant mixture is thus phase-

separated [34, 35]. When phase-separation of two blend polymers becomes beneficial and useful 

material, it is known as an immiscible blend. However, considering immiscible blend is not 

straight forward and needs a deep understanding of polymer structure. To address this issue, it is 

necessary to consider and investigate the physical structure at the nanoscale size. Consequently, 

physical systems that impulsively form different structures under various conditions are 

essential. To this end, block copolymers due to their ability to self-assemble into various 

nanostructures are one of the most valuable and popular materials.  

 

Figure 2.1: Immiscible blends of AB diblock copolymer. 

 

In Figure 2.1, polymers A and B are mixed together but did not form a blend. Instead, polymer 

B split from polymer A and made spherical spots/forms as an immiscible blend. In real 

applications, the mixture of two polymers (e.g. polystyrene and polybutadiene) can make the 

spherical phase-separation of immiscible blends which can be seen by an electron microscope. 

Although other types of immiscible blends exist, such as lamellar phase separation, 

consideration of other types of phase separation is beyond the scope of this study as we only 

investigate the dynamic behaviour of spherical morphology of diblock copolymers. 

     The concept of morphology refers to the form and arrangement of two phases in immiscible 

blend. The most important parameters affecting the morphology of an immiscible blend are: (i) 

the volume of two polymers; (ii) temperature; and (iii) external fields, such as shear flow or 

electric field. For instance, if the volume of polymer A is greater than polymer B, polymer B 

will be divided into spheres. In this situation, polymer A is the major component with polymer 

B being minor. Figure 2.2 illustrates the relative volume of polymer B and polymer A in the 

immiscible blend with respect to time evolution.  



9 
 

 

  

Figure 2.2: Relative volume of polymer B and polymer A in the immiscible blend. 

 

Another important factor that affects the morphology of an immiscible blend is the external 

stress. Figure 2.3 shows changing morphology for two polymers A and B under flow in one 

direction. 

 

 

  

 

Figure 2.3: Morphological change from spheres into lamellar under an external field (shear 

flow). 
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2.2 Cell Dynamic Method   
 

Cell dynamics simulation is a cellular automation method of ordered structure shaped in diblock 

copolymer dissolves applied to consider the influences of simulation properties on the 

morphological details and kinetics of ordering structures from the preliminary disordered level 

[33]. The simulation properties are connected to the parameters in the Gingzburg-Landau free 

energy in the Cahn-Hilliard-Cook equation [18, 33]. In fact, the CDS equations are a coarse-

grained discretisation offering a promising opportunity and capability to investigate the micro-phase 

separation details in systems that are comparable with experimental domains in terms of size.  

     An order parameter in cell dynamic simulation method is defined as ),( rt . Order parameter 

is discretised on a lattice by getting values of ),( rt in cell r  and time t  [33, 36]. Order 

parameter is the difference between the local volume fractions of A and B monomers. The 

following equation defines the compound order parameter for AB diblock copolymer: 

 

 

 

Here A and B are local volume fractions of monomer A and monomer B, and f refers to the 

number fraction of monomer A in a diblock copolymer which can be calculated from the second 

part of the equation. AN , BN  are the total number of monomers respective to A and B  blocks. 

The evolution and progress of order parameter for each discrete cell can be calculated by 

equation 2.2: 

 

 

In equation 2.2, )(f  refers to the map function, which mimics the tendency of the values of 

order parameters not being zero during the order-disorder transition [27]. By considering 

coarse-grained discretisation as a main benefit of cell dynamic simulation technique, the time 

evolution of the order parameter can be shown by a Cahn-Hilliard-Cook (CHC) equation [18, 

33]: 

 

                                                             

 

Where )(F  is a free energy functional described by the Ginzburg-Landua (TDGL) equation. 

This free energy is used for defining short-range and long-range contribution of the copolymer 


 )21( fBA   

)/( BAA NNNf   

)),((),1( rtfrt   

 





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










 )(2 F
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t


 


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[33, 37]. M is a phenomenological mobility constant which is assumed to be 1M  for unity 

throughout the simulation.  

The following equations describe free energy functional, including short-range and long-range 

interactions terms of the copolymer [25, 33, 37]. 

 

 

 

 

 

 

 

  

 

Where  SF  is short-range interaction term and  LF  is long-range interaction term. D 

refers to the positive constant which acts as a diffusion coefficient. b is a value of chain-length 

dependence to the free energy [27]. It should be noted the term   2
2

r
D

  in free energy 

functional is necessary to make an interface for A and B monomers. Here Green’s function 

 rrG   for the Laplace equation satisfies    rrrrG  2
, making approximations 

  trtrt  /,),1(  .  H  refers to the free energy which is the same as Landau 

free energy equation [25, 38, 39]. 

  

 

 

here is a temperature-like variable and a, v, and u refer to the phenomenological constants 

[33], which can be related to molecular properties and characteristics. In fact, these are 

multifaceted and complex functions, and since we are considering the general phenomenology 

of diblock copolymer, we choose just approximate and estimated values for these constants [40, 

41, 42]. According to Ohta and Kawasaki [40],   221 fa    and D can be written in 

terms of degree of polymerisation N and the Flory-Huggins factor  . In fact,   is related to the 

Flory-Huggins parameter which contrariwise depends on the temperature. Therefore, the 

parameter    can be stated in terms of physical parameters: 

       LS FFF  
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Equation 2.6 presents the physical parameter of temperature, where  fs~  refers to the empirical 

fitting function which is considered to be of the order of 1.   refers to the measurement of the 

comparative strength of the repulsion between different types of segment to the attraction 

between the same types of segment [40, 41]. N indicates the total degree of polymerisation, and 

can be expressed as BA NNN  . 

     According to the preceding equations the numerical solution of equation 2.3 for cell dynamic 

simulation in a cubic lattice can be written as [27, 40, 43]:  

 

         },,,{,,1 ntbntntntnt   

In addition, a shear flow term is added to consider the movements of diblock copolymer [27, 44]:   

 

         

    },,,,1,,,1
2

1

,,,{,,1

tnnntnnny

ntbntntntnt

zyxzyx 









Where  refers to the discrete Laplacian for calculating the average in the neighbourhood 

cells excluding for the centre cell = XX  . n  is the total number of grid points

zyx nnnn  .  and y refer to shear flow rate and dimensionless coordinate. It should be 

noted that we have applied shear flow just along X axis, therefore xv . The function  nt,  is 

defined by: 

          ],,,[,,, ntntDntntfnt   

 

As mentioned earlier, XX  refers to isotropised discrete Laplacian with a number of X [27, 

18]. Hence, for a three-dimensional grid (cubic) lattice can be calculated as [33, 45]: 

 

        
NNNNNNNNN

rtrtrtrt ,
80

1
,

80

3
,

80

6
,  

Where NN refers to the nearest neighbours, NNN next-nearest neighbours and NNNN next-next-

nearest neighbours of a grid point (i, j, k). 










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Finally, the equations mentioned enable the identification of the map function [25, 33, 37] which 

is related to the functional derivative of free energy in equation 2.5.   

 

       322
21211  ufvfaf   

 

2.3 Simulation Results  
 

This section presents the simulation results of spherical phase diblock copolymer under shear 

flow based on the cell dynamic method. Cell dynamic method in this context is divided into five 

main calculations: (i) calculations of periodic boundary conditions; (ii) calculations of first 

isotropised discrete Laplacian; (iii) calculations of map function and free energy functional; (iv) 

calculations of second isotropised discrete Laplacian of the free energy functional; and (v) the 

time evolution of the order parameters calculations. In the first step, calculations of periodic 

boundary conditions are divided into three sub-levels for calculating PBCs for each dimension 

(x, y, z) of the system respectively. In the second step, calculation of first isotropised discrete 

Laplacian is taken into account, which is   in free energy functional term. In the third 

step, calculation of map function and free energy functional are considered: 

       322
21211  ufvfaf  and 

          ],,[,,, ntntDntntfnt   

     After calculating map function and free energy functional, calculation of second isotropic 

Laplacian operator of the free energy functional is the fourth step considered, which is 

   ntnt ,,   in time evolution of order parameters equation. The last step refers to the 

calculations of time evolution of the order parameters based on the definition of the fields in a 

cubic lattice/system, together with a precise and appropriate discretisation of the isotropic 

Laplacian which is          },,,{,,1 ntbntntntnt   

Some parts of the implementation source-code of the cell dynamics simulation method is 

presented in Appendix A. 

 

 

 

 


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The main practical barrier encountered in this process is the time-consuming and expensive 

nature of such computations, as discussed in chapter seven. Table 2.1 presents the system 

parameters used to generate spherical phase of diblock copolymer in cell dynamic method [18]. 

The simulations were executed on a 646464   lattice system size for up to 1000,000 time-

steps without a shear and 300,000 time-steps more after applying a shear to achieve stable and 

perfect system. An initial random disordered   is between  9.0,9.0 . It should be noted that 

there is a difference between an equilibrium and stable system: a system has equilibrium at 

certain time-steps (no-more changes after that specific time-step), but it still has defects; while a 

stable system is a perfect one without any defects.  

 

CDS 

system 

parameters 

 

D 

 

a 

 

b 

 

u 

 

v 

 

f 

 

  

Spherical 

system  

0.5 1.5 0.01 0.38 2.3 0.4 0.20 

 

Table 2.1: System parameters used in cell dynamic method for spherical morphology. 

      

     Figure 2.4 illustrates the phase diagram of diblock copolymer for spherical morphology with 

different shear rate, and different time-step. It can be seen that at lower shear rate (0.0005) the 

system is completely spherical, with a hexagonal order. At 0.001 shear rate the system is 

spherical but not completely ordered, and at higher shear rate (0.005) the spheres are lengthened 

to ellipsoids and cylinders (particles are mixing together). Additional increase in shear 

transforms the entire system from spheres to cylinders. Increasing the shear rate has a direct 

impact on the sphere to cylinder transition. 
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Figure 2.4: Phase diagram of diblock copolymer morphologies under different shear flow    

and evolution of time steps: ) Perfect Spheres, ) Spheres, ) ellipsoid and Cylinder. 

 

The following figures present the kinetics of transition of spherical diblock copolymer with the 

same system parameters as shown in table 2.1 except the shear rate is 0.0003. By considering 

the Figure 2.4 and the following figures we can comprehend that when the shear flow is 

between 0.001 and 0.0001 the system obtains the spherical morphology with a hexagonal order 

(stable and perfect system).  
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Figure 2.5: Spherical morphology produces by cell dynamic simulation method from initial 

stage (left) to last stage (right) without shear flow. 

 

  

Figure 2.6: Spherical phase of block copolymer under a shear flow from initial time-step (left) 

to last time-step (right). 

 

Shear   Morphology  

0.0001 Spheres ( ) 

0.0003 Spheres ( ) 

0.0005 Spheres ( ) 

0.001 Spheres ( ) 

0.005 Spheres & Cylinders (+) 

0.008 Cylinders  

 

Table 2.2: Summary of morphology results for diblock copolymer system under different shear 

flows. 
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Investigation of perfectly ordered structure of diblock copolymer system for spherical 

morphology under different shear rates and time steps yielded the result shown in Figures 2.7 and 

2.8, showing the polygon structure of diblock copolymer from right side view, and Figure 2.9, 

which presents the transition from  pentagonal to hexagonal structure  in yz - {011} plane (right 

side view). 

  

Figure 2.7: Polygon structure of diblock 

copolymer in time-step 300 with 0.005 shear 

flow rate. 

 

Figure 2.8: Polygon and pentagonal 

structures of diblock copolymer in time-step 

300 with 0.001 shear rate. 

 
 

 

Figure 2.9: Pentagonal and hexagonal structures of diblock copolymer with 0.0003 shear rate. 

 

     In Figure 2.9, the right image shows the pentagonal and hexagonal structures in time-step 

100 and the image on the left illustrates the perfect hexagonal order structure in time-step 300. 

The solid lines refer to the pentagonal order and the dash lines indicate perfect hexagonal order. 

The dot arrow is the direction of shear.  

Z 

Y 

X 
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2.4 Summary  
 

The theory of cell dynamic simulation along with a consideration of the Ginzburg-Landau 

(TDGL) and Cahn-Hilliard Cook (CHC) equations for free energy and time evolution have been 

presented in this chapter. Examples of the use of cell dynamic simulation as a powerful scheme 

in other applications and systems were included, such as micro-emulsions [30], cross-linked 

polymer blends [31], and binary blends containing surfactants [32]. However, in this chapter the 

main focus was on the application of the CDS scheme to model micro-phase separated structures 

in diblock copolymer and to simulate the spherical phase diblock copolymer under shear flow. The 

benefits of CDS compared to other molecular dynamics methods have been highlighted. The 

concept of immiscible blend and morphology, and how CDS method as a cellular automation can 

help to understand the dynamic behaviour of copolymers in immiscible blend situations, has been 

discussed briefly. To this end, the spherical morphology of diblock copolymer under a shear flow 

was studied in order to obtain a better understanding the effect of external fields and also to 

comprehend the dynamic behaviour of the spherical morphology of diblock copolymers in 

different time-steps. Dynamic density functional theory [38, 46], molecular dynamics simulation 

method [47], or particle-based Langevin dynamics simulation method [48] have also been 

mentioned in relation to the spherical morphology of diblock copolymer under shear flow. 

However, these were limited to small domains or cubic system sizes and did not allow for a 

greater insight into the kinetics of spherical morphology of diblock copolymer on the scale of 

nanostructures and particle tracking. The results obtained for cell dynamics simulation for 

diblock copolymers under a shear flow in large systems can provide a benchmark for subsequent 

investigations.  
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CHAPTER THREE 

3 Multiple Particle Tracking  

 

Particle tracking methods have been studied to comprehend the mobile behaviour of particles. 

During the last twenty years particle tracking has been used widely as one of the most well-

known ways for achieving the quantitative data and considering different properties of particles 

[1], including: (i) tracking bacterial motion; (ii) studying intracellular tracking of 

pharmaceutical nano-carriers; (iii) genetic material tracking; and (iv) protein or lipid tracking. 

Various scientific contexts, according to their aims, have applied different computational 

techniques of particle tracking to capture the full benefits of quantitative data and understanding 

dynamic actions of particles [6]. 

     Existing particle tracking methods have considered tracking experimental particles. The 

general approach to this point is to apply image processing methods to detect experimental 

particles in images and transfer them into a readable form input for programs and track the 

detected particles. In some image processing techniques, light points/pixels with high intensity 

and dark points with low intensity are coded differently to distinguish between the particles and 

background, and to reduce the number of irrelevant pixels to a minimum. Figure 3.1 presents the 

percentage of expanding interest in particle and cell tracking between 1970- 2010. It should be 

noted that the rate of percentage is measured based on the number of publications per year for 

the indicated mixtures of words in the title and/or abstracts in the PubMed database [49], 

(National Library of Medicine and National Institutes of Health, USA). 

 

Figure 3.1: Growing interest in particle tracking and cell tracking rates (%) in different research 

fields over three decades [49]. 
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Particle imaging velocimetry and particle tracking velocimetry are the two most famous 

computational techniques used for particle tracking [50]. Standard processes for particle 

imaging velocimetry are divided into two levels: algorithms for detecting particles on images, 

which is mainly related to standard cross-correlation method [51]; and techniques for tracking 

the particles based on each frame of a time lapse sequence of images. Typically, the first part of 

experimental particle tracking model refers to the image processing technique used to optimise 

and distinguish between particles and background, and any acquisition failure of optimised 

images will have a direct effect on particle tracking. 

In 1995 Crocker and Grier developed an image processing algorithm for extracting quantitative 

data from experimental images [7]. This algorithm distinguishes the particles from the rest of 

the image. Particle tracking velocimetry as a computational technique can be categorised: image 

relaxation and nearest neighbour search algorithm [52]. However, these two computational 

techniques followed the same model of particle tracking. Particle tracking model involves two 

main phases: the image acquisition and the tracking the moving particles.  

     The main purpose of particle detection is to understand numerical representation of the 

positions and different components of image features [10]. In image acquisition stage, all 

images with their local intensity are considered with different neighbours who have different 

intensity levels. In this part, cross-correlation technique performs well for different particle 

intensities. According to Kean and Adrian (1995), it is necessary to consider the ratio between 

image size and particle displacement. In fact, the versatility in choosing the image size and 

location of successive particles (displacement) allows a better spatial resolution with more 

efficient and effective matching/paring of particle images. Therefore, by the optimal 

implementation of the cross-correlation method (considering appropriate ratio between image 

size and particle displacement) no pair of particles will be lost and the spatial resolution can be 

enhanced [51]. Alternatively, local nearest neighbour can be used for detecting particles when 

the ratio between particle movement/displacement and mean nearest neighbour is less than a 

specific number, which depends on the number of detected points from one frame to another of 

images. Based on the local nearest method, Crocker and Grier developed a particle tracking tool 

which is one of the most well-known and widespread tracking packages [53].  Local nearest 

method executes well when the ratio between particle movement and mean nearest neighbour is 

not large. If the numbers of candidate particle are high enough or insufficient then the local 

nearest neighbour method will break down. Candidate particle refers to the concerned particle in 

different time-lapse. To overcome of this issue, multiple hypotheses tracking (MHT) was 

introduced [54]. In multiple hypothesis tracking, the locations of particles are specified in every 

frame, and according to the velocity of particles the next position of particle is predicted.  In this 

method all particle routes as well as the whole expected particle behaviour are created using the 
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trajectories of all particles. Hence, by considering multiple hypothesis tracking, acceptable 

tracking probabilities can be maintained for particle tracking in experimental works [54]. 

Recently the global nearest neighbour method has been used for particle tracking for cell 

biology applications [50]. This method applies an accurate mathematical model, the linear 

assignment problem [55], to deliver efficient and effective answers to the issues mentioned 

previously. The algorithm first considers the detected particles through a time-lapse image 

sequence and then makes the connection between all detected particles in each frame of images 

consecutively by using the global nearest neighbour technique. In contrast to the local nearest 

neighbour method, the global nearest neighbour obtains accurate solutions by decreasing the 

complexity of computational achievements of particle tracking and solving the frame-to-frame 

correspondence issues in the whole trajectory. The key point of global nearest neighbour 

method is motion prediction under high density circumstances. In the model, motion level by 

predicting particle position from primary frame to the target frame reduces the computational 

complexity, which helps the trajectory construction between frames. Based on the global nearest 

neighbour there are different types of possible ways to achieve particle motion between frames, 

such as formulating unique motion model for each particle [56], or predicting general particle 

motion between frames [57]. 

     The direct outcomes after applying particle tracking on different context of sciences refers to 

the data in text files format which contains a sequence of coordinates showing the location of 

tracked particle at each time-lapse [49]. Computational analyses help to acknowledge and 

understand different aspects of these types of data. Motility analysis is one of the primary 

computational analysis which helps to rebuild the trajectories of detected particles from a 

sequence of coordinates, calculating the entire distance travelled by the considered particle, and 

finding the distance from the start to end point of detected particle [58]. The other well-known 

computational analysis for particle tracking is velocity analysis. Velocity (i.e. the speed of 

particle) is the rate of displacement which can be calculated as the movement of particle from 

one frame to the next frame, divided by the time interval. According to Qian and Bahnson, 

velocity analysis is suitable for making speed histograms due to a focus on the statistics of the 

dynamics [58]. The final analysis is morphology analysis, which is mainly concerned with 

shape evolution of particle in different time steps.  Based on the morphology analysis of 

particles, different types of geometric information can be measured and calculated, such as 

measurement of size (surface area) and orientation invariant (sphericity, ellipticity) [59]. 

     A consideration of the various methods for particle tracking in experimental works provided 

the impetus to devise a new method which can consider uniform computational data. 

Computational data is considered alongside quantitative analysis and mathematical models to 

solve scientific issues [11]. Usually, computer simulation and other types of computation from 
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numerical analysis can be used to obtain the aims of computational data. This study considers 

computational data whereby particle movement is simulated using cell dynamic simulation. 

The new particle detection method is utilised in the output of the Cell Dynamic Simulation 

program as computational data used to describe the morphology of diblock copolymer sphere 

under shear [37, 33]. The method of particle detection is novel, since the CDS output is 

numerical, and it would not be possible to do image processing in order to detect the particles 

while in tracking section. It should be noted that the fundamental idea of the new particle 

tracking is the same as shown in Figure 1.1, which is first detection and then tacking. Some 

previous techniques have been combined, such as nearest neighbour and linear assignment, and 

some new methods have been developed, as explained in the following chapter specifying not 

only the factors of the flow field, such as shear, but other properties such as particle number, 

simultaneously and concurrently allowing the tracking of multiple particles.  

 

3.1 Method and Design  
 

As mentioned earlier, in this study the cell dynamic simulation method was used to describe the 

spherical morphology of diblock copolymer under a shear flow. The new particle detection and 

tracking method will use the output of CDS calculation to achieve the aim of this study. The 

conceptual model of the system is shown in Figure 3.2. 

 

Figure 3.2: Conceptual model developed in this study for particle detecting and tracking. 
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The first step is the output of cell dynamic simulation of a block copolymer under shear, which 

provides details of equilibrium spherical morphology of a diblock copolymer. The second step 

refers to the uniformisation and segmentation of equilibrium morphology (AB diblock 

copolymer) by converting them to one and zero. In a lattice system, all domains forming 

particles will be distinguished by the value of one, and all grid points with the value of zero 

show the surrounding polymer. In fact, due to the difference in the volume fraction between 

components A and B in space, it is necessary to segment it in order to make the output usable for 

the next step. This segmentation allows recognition of polymer domains of polymer with a 

certain value.  In order to undertake the segmentation, the value of all grid points/cells with 

negative value is changed to zero, while the value of grid points in the positive range is replaced 

by one. 

 

     The third step is an important part of the model and contains two sub-levels: nearest 

neighbour searching method for detecting the particles; and counting the number of detected 

particles. After detecting the particles based on the neighbour searching, calculating centres of 

mass for each particle is essential. In the fourth step all single and mixed particles are 

distinguished and their centres of mass are calculated. It should be noted that mixed particles 

can also have different shapes (oblique and horizontal). The final step of the investigation refers 

to the time evolution of particles and tracking particles. This is achieved by considering the 

centre of mass (COM) while tracking the trajectory of considered particles in different time 

steps. 

 

3.2 Computational Algorithm  
 

In order to detect particles correctly, a sequence of coordinates referring to the position of each 

particle is important, but this does not help the concept of detection. Therefore, it is necessary to 

focus on the computation aspects of these coordinates. The computation aspects refer to the 

quantitative measures from the coordinates, which involves neighbour searching and statistical 

study. Table 3.1 presents the computational optimisation algorithm for detecting and tracking 

particles. The whole of the pseudo-code of computational algorithm is presented in Appendix B.  

 
Part I - Particle detection 

 

1:  Step A – applying the detection method and Periodic Boundary conditions (PBCs) 

2:    Find the first particle  

3:    Apply the boundary conditions  

4:    Start to search the nearest neighbours  

5:    If neighbours are equal “1” then  

6:    Change the current coordinates to the new coordinates  

7:  Step B – counting the number of particles 

8:    Count the number of particles   
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9:    labelling  particles  

 

Part II - Calculating centre of mass 

 

10:  Step A – initializing the values  

11:   For particles which are in the left width boundary or  

12:    Right width boundary, or up length boundary, or down length boundary 

13:  Step B – finding the single particles   

14:   Single particles (if the number of grid points for detected particle are less than 55) 

         (55 grid points is an average size of spherical detected particle 

         and can be changed based on the lattice system size.) 

15:    Consider boundary conditions for them (left, right, up, down) and  

16:    If particle is not on any boundaries.  

17:  Step C – finding the mixed particles 

18:   Mixed particles (if the number of grid points for detected particle is more than 55)  

19:   Consider boundary conditions for them (left, right, up, down) and  

20:   If particle is not on any boundaries.  

21:  Step D – calculating and writing the centre of mass 

22:   For all particles ( single and mixed )  

 

Part III - Tracking the next particle 

 

23:  Step A – Find the nearest particle and name the new particle as an initial particle  

24:   Finding the nearest particle base on the finding the nearest centre of mass and statistical 

study 

25:  Step B - Considering periodic boundary conditions (PBCs) 

26:   Periodic boundary conditions apply in five different situations.  

27:    1 - PBC in width boundary    

28:    2 - PBC in length boundary down -middle 

29:    3 - PBC in length boundary up -middle 

30:    4 - PBC in length and width boundary up 

31:    5 - PBC in length and width boundary down 

 
 

Table 3.1: Computational algorithm for detecting and tracking particles. 

 

3.2.1 Particle Detection  
 

Following the computational algorithm, the first part is detection of particles, which involves 

two steps. Step A contains periodic boundary conditions (PBCs) and computational methods of 

detecting particles. PBCs are a group of boundary conditions utilised to prevent of losing the 

particles on the edges of the grid box, and to simulate a big system by considering a small part 

of a system which will not be terminated when it will be close to the edges [6]. PBCs have been 

applied in four directions, with consideration of two grid points (neighbours) in each direction. 

For understanding the functionality of periodic boundary conditions, suppose it is a grid of the 

size of 128128 , without PBCs, and the particles are moving in the X axis. In this case each 

particle will be terminated on the last grid point (128) without having any reaction from the 

other side of the grid box. Therefore, it is necessary to apply periodic boundary conditions to the 

system to prevent such any issues. Figure 3.3 shows PBCs in 2D. 
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Figure 3.3: Periodic Boundary Conditions (PBCs) [60].  

 

Since shear flow in periodic boundary conditions is very important, hence, equation 3.2 is used 

in cell dynamic method to satisfy boundary conditions in simulation. The reader is reminded 

that a shear flow is applied in the X direction. Therefore, shear expressed by: 

yvx     0 zy vv .  

Where  zyx vvvv ,,  indicates the flow. The X-axis is the shear flow direction, Y-axis refers to the 

velocity gradient and the Z-axis is the vorticity axis. The   is a dimensionless shear and y  indicates 

dimensionless coordinate. 

 

    tTGNzTGNyTGNtTGNxtzyx zyxx ,,,,,,   

 

Here zyx NNN ,,  are numbers of lattice points in X, Y, Z axes of coordinates and TG refers to 

the total size of lattice grid. The first term on the right part of equation indicates the direction of 

shear flow in X-axis   TGNtTGNx xx  

     As stated previously, a sequence of coordinates by itself is not helpful for detecting particles; 

therefore, it is important to implement computational methods. A quantitative measure is one of 

the computational methods [61] used in the new uniform computational program for detecting 

and considering time-evolution of particles. Neighbour search method has been used as a 

quantitative analysis/method for finding particles and reconstructing the time-lapse of the 

detected particles from the measured coordinates [62]. Nearest neighbours search was applied in 

eight directions, considering two neighbours in every check. The order of checking is: left, 

south, right, north, south/east, south/west, north/east, and north/west. In step B of particle 

detection, the number of detected particles will be counted, and each particle will be identified 

and labelled with unique number.  




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Figure 3.4 presents the sample of neighbours searching in the grid. Red dots show the searching 

points which start from central point (blue dot) in eight different directions. This part is based 

on the outputs of segmentation step which divides the domains of polymer into two parts. All 

particles will be distinguished by value of one and all grid points with value of zero show the 

surrounding polymer. 

 

Figure 3.4: Example of neighbouring search. 

 

3.2.2 Calculation of Centre of Mass 
 

When tracking particles, the COM of each particle is used to describe its position. Therefore, 

finding the accurate COM of each particle is necessary. Current methods for finding the COM 

of particles were developed according to the output of the detection step. In order to accurately 

determine the position of each particle, particles are divided into two categories according to 

their size (number of detected grid points in each particle). Smaller particles (round shapes) are 

named as single particles and bigger particles (elongated) are mixed particles. Calculating COM 

of each particle depends on the shape of the detected particle.  

     It should be mentioned that calculating COM has two scenarios when the system is stabilised 

and when is not stabilised. In first situation, the particles will be fixed and there is no difference 

between the shapes of particles. In second situation, a more complex scenario, the numbers of 

particles are altering and particles have different types of shapes. Figure 3.5 shows spherical 

phase of diblock copolymer under a shear after system stabilisation (perfect system). The 

simulations were run on a cubic 12826128   lattice for up to 1000,000 total time-steps, with 

0.0003 shear rate to approach stable system. 
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(a) 

 
(b) 

 
(c) 

 

 

Bilayer spherical system – (a) diagonal view; 

(b) right side view in the x-direction; (c) back 

side view in the z-direction 

Bilayer spherical system – vorticity plane top 

view 

 

Figure 3.5: Perfect spherical phase of detected particles under shear flow. 

 

Figure 3.6 illustrates an unstable system with different shapes of detected particles from top 

view of the system. The complete simulations were executed on a cubic 12826128   lattice 

for up to 100,000 time-steps with 0.0003 shear flow rate. 

 

Figure 3.6: Bilayer spherical phase of detected particles. 
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A statistical study was undertaken on the output of the detection code, pertaining to the 

frequency of the number of grid points for the detected particles, which resulted in 55 grid 

points being chosen to distinguish between single and mixed particles. In total, 20 random 

particles were considered and found out that the number of grid points for detected single 

particles will not be more than 55 grid points. Therefore, 55 grid points was selected as a 

distinguish value. Based on the chosen limit, particles with less than 55 grid points were 

considered to be single and those with more than 55 grid points to be mixed particles. When the 

particles are homogeneous, the fundamental idea to find the COM of a particle is to add up the 

coordinates of all points in the X and Y directions separately and divide the sum by the whole 

number of detected grid points that belongs to the particles. It should be noted that the new 

particle detection and tracking method is based on the 2D results, thus there is no need to 

consider Z-axis. 

NP

X
X

NP

i

COM


 1 

NP

Y
Y

NP

j

COM


 1  

 

     In addition, to increase the accuracy of tracking, COM of single and mixed particles were 

calculated in different ways. Single particles were considered to have one COM, while mixed 

particles have more than one COM. This is because mixed particles are likely to split into two 

smaller particles. Because of their bigger size and possible changes in their shapes, the 

movement of their COM might be bigger. Mixed particles can also have different shapes. For 

instance, they can be horizontal and oblique (in descending or ascending direction). These 

shapes are recognised by comparing the width and the length of each particle. Figure 3.7 

presents an example of different shapes of mixed particle: a) oblique-ascending; b) oblique-

descending; and c) horizontal. 

 

 
 

Figure 3.7: Different forms of mixed particle. 


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Based on the length and width of the mixed particle, if the width of mixed particle is less than 

the length, the shape of mixed particle will be horizontal; if the width is greater than the length, 

the mixed particle will be in oblique form. It should be noted that the length and width of mixed 

particles can be calculated by the following equation: 

 

iLeastiGreatestLength __   

jLeastjGreatestWidth __   

 

Here Greatest_i and Least_i refer to the highest and lowest coordinate numbers of detected 

mixed particle in the X axis, while Greaatest_j and Least_j are the highest and lowest coordinate 

numbers of detected mixed particle in the Y axis, respectively. The following figures illustrate 

examples of models of the coordinates of the COMs of the mixed particle in oblique form.  
 

 
 

Figure 3.8: Coordinates of the COM of the mixed ascending particle. 

 

 

 

Figure 3.9: Coordinates of the COM of the mixed descending particle. 

 

By comparing the coordinates of yLeast_i and yGreatest_i the ascending and descending form 

of mixed oblique particle can be recognised. In other words, if yLeast_i is bigger than 

yGreatest_i then the oblique particle will be in ascending shape, otherwise it will be in 

descending form. 

 


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After recognising different forms/shapes of the mixed particle, calculating the COMs of mixed 

particles are taken into account. As mentioned earlier, due to the division of mixed particle into 

two smaller particles in time, it is necessary to calculate two COMs for mixed particle. To 

approach this goal, calculations of two COMs are separately considered based on the distance of 

the lowest coordinate (least_i and least_j) of detected mixed particle to each COM with respect 

to the length and width of particle. Figure 3.10 shows an example of length comparison for 

mixed horizontal particle. 
 

 
 

Figure 3.10: COM of mixed horizontal particle. 

 

The following equations are used to calculate the COMs of mixed particles: 

Mixed ascending particles: 
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Mixed descending particles: 
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Mixed horizontal particles: 
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




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For particles located on boundaries the coordinates are inconsistent. It means that grid points in 

the same particle will have more than 120 number of grid points distance from each other (with 

respect to grid size). In this case, by calculating the sum of grid points’ coordinates, the COM 

can be calculated in the middle of the grid. In order to resolve this issue, PBCs were considered 

when a particle is on any of the boundaries. Periodic boundary conditions have been applied in 

eight situations. A particle can be on width boundaries, length boundaries or in all corners. 

Figure 3.11 presents the boundary conditions in different situations: a) PBCs in length 

boundaries (left, right); b) PBCs in width boundaries (top, bottom); c) PBCs in corners. 

  
 

                         (a)                                                            (b)                                                            (c) 
 

Figure 3.11: Examples of periodic boundary conditions in different positions. 

 

3.2.3 Tracking Next Particle  
 

A new target tracking method is an enhanced technique based on COM which is used to track 

the trajectory of particles. So far, all particles were detected in each time step (all grid points in 

each particle was assigned a unique number) and the COM of each particle was calculated. In 

this section the original idea is to use the COM and the expectation of particles movements in 

order to track the particles in each time step. These movements are effected by the direction and 

strength of a shear flow. Each particle cannot move more than a certain number of grid points 

forward, up and down on a lattice system. The particles according to the shear’s direction also 

cannot move backward. The reader is reminded that the most important parameters affecting the 

morphology of diblock copolymers are the volume of the two polymers, temperature and 

external fields [18, 37]. In fact, the control of long-range order in structures is essential and 

important for any application in chemistry and material science. For example, the usage of 

diblock copolymers in any applications needs production of exceedingly ordered and free of 

defect structures. To achieve this goal, external fields such as electric field, surface fields or 

shear flow are playing important roles. Therefore, shear flow is applied to achieve a stable 

system with defect-free and highly ordered structures [18]. Although temperature is a very 

important parameter to tailor certain morphology, to accomplish a stable system requires 

considering an external field. According to section 2.3, when the shear flow is between 0.001 

and 0.0001, the system obtains the spherical morphology with a hexagonal order (stable and 

perfect system), therefore all simulations results were executed with 0.0003 and 0.20 rates of 

shear flow and temperature respectively.   
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To identify the certain displacement of particle, frequency as a statistical method has been used 

to specify the movements of all particles in each time. In fact, frequency as a statistical method 

counts the total number of values which fall into specific samples or ranges. In order to 

calculate the frequency of particle movements, displacements of 10 random particles in 100 

time-steps were taken into account and in total 1000 COMs of particles movements have been 

used. The following figures show how frequent the particles have travelled for certain 

displacement. The horizontal axis represents displacement magnitude and the vertical axis is the 

frequency of displacement happened. The square dots demonstrate frequency of certain 

displacements happened with respect to the displacement magnitude (in number of grid point 

terms) by random particles. 

 

Figure 3.12: Frequency of data occurrence and movement of random particles in sequence time 

steps in X direction. 

 

As shown in Figure 3.12 the most frequent number of grid points for a particle movement in X 

direction is around 5 grid points. Moreover, no movement has occurred in X direction exceeding 

8 grid points. Based on this statistical result on particles’ movement in X direction, 9 grid points 

is chosen as the limit of movements.  

     The same study was conducted for movements in the Y direction and 4 grid points were 

selected as the limit of travels in Y direction. According to Figure 3.9, the most numerous 

number of grid points for a particle movement in Y direction is between 0-0.2 and no movement 

occurred in the Y direction exceeding 4 grid points. 
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Figure 3.13: Frequency of data occurrence and movement of random particles in frequent time 

steps in Y direction. 

 

In the current method, the initial time step is the reference time step, and the time step within 

which the considered particle is tracked is the current time step. Consequently, to find the 

considered particle in current time step, movement of COM from reference time step is 

considered, and periodic boundary conditions are also taken into account in all calculations. For 

instance, suppose particle A is in reference time step and the COM of particle A explains its 

reference position. In the current time step, particle A has moved forward in the X direction and 

might have variations in Y direction to up and down.  This movement is estimated not to exceed 

9 grid points in X direction and not more than 4 grid points up and down. 

 

9___  AAA RXCXRX 

4__4_  AAA RYCYRY 

 

Here 𝑋_𝑅𝐴 explains the X coordinate of particle A in reference time step, 𝑋_𝐶𝐴 is its X 

coordinate in current time step. 𝑌_𝑅𝐴 and 𝑌_𝐶𝐴 refers to the Y coordinate of particle A in 

reference and current time step respectively.  

     Figure 3.14 illustrates example of tracking particle between reference and current time steps. 

the program searches inside the current time step for the particles with a COM from reference 

time step and 9 grid points forward as well as 4 grid points in Y direction up and down. 
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Figure 3.14: Illustration of movement of particle in time steps. 

 

3.3 Benchmark Results   
 

3.3.1 Segmentation Results  
 

This part demonstrates the benchmark results of segmented outputs of CDS simulation with 

respect to a chosen value which differentiates between the two blocks (A, B), named distinguish 

value. Distinguish value is a value which specifies the most suitable criterion of   for dividing 

the particles into two groups of zero and one. In order to distinguish between two components 

different scales can be used. Choosing different numbers to separate two components from each 

other can allocate a bigger or smaller range to each polymer and change the size of the particles. 

Although this allocation can change the size of particles, this makes scant difference to their 

centre of mass (COM) coordinates. In fact, shrinking in size occurs in all directions it does not 

have any noticeable effect on COMs coordinates. Accordingly, the distinguishing value is chosen 

to be 0.0 with the intention of leaving enough space between the particles and making the outputs 

more accurate for analysis. Therefore, according to the range of values between two components 

( ) which was within [-0.9, 0.9], 0.0 is set as a distinguishing value for making the efficient 

division in this interval and this value will give equivalent weight to both components.  

     The following figure presents the segmented outputs between two components of a spherical 

system into zero and one, in which grid points with the value of one refer to the parts with 

originally positive values (particles). On the other hand, grid points with the value of zero are 

the grid points with negative original values (polymers around the particles). The total 

simulations were run on a 128128  lattice for up to 100,000 time-steps with 0.0003 shear flow 

rate. It should be noted that Figure 3.15 shows the segmented output for the last time-step 

without any specific scale.  
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Figure 3.15: Segmented outputs of CDS in spherical system. 

 

3.3.2 Benchmark Results for Detecting and Calculating COMs  
 

Having distinguished between two components and obtaining the morphology of the system by 

assigning one and zero to related grid points, detecting particles becomes possible. 

Subsequently, the detection program explained in the previous section is applied to the 

segmented outputs. In total 154 particles were detected in the last time-step of simulations run 

on a 128128  system size for up to 100,000 time-steps, each of which was assigned and 

labelled with a unique number and separated from the rest of the system. 

     It is also important to draw attention to the periodic boundary conditions effect. There are 

some particles on the boundaries of the grid. The program successfully detected these particles 

and labelled them in the two sides of the boundary identically. 
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Figure 3.16: Second quarter part of detected particles. 

 

After segmenting and identifying the domains into two categories calculating the COMs of 

detected particles becomes possible. As discussed previously, the COM of each particle is 

calculated based on its size. There are two types of particle according to their size and shape: 

single and mixed particles. The larger particles (mixed) can have three different directions: 

horizontal, oblique in ascending and descending way. To increase the accuracy of tracking, it is 

necessary to calculate two COMs for each of the mixed particles. For instance, particle 66 in 

Figure 3.16 is calculated as a mixed particle. 

 

3.3.3 Results of Multiple Particle Tracking   
 

This section presents the results of tracking the next position and dynamic behaviour of particle 

with respect to time evolution based on the new computational technique. In order to plot the 

track of each particle, the COM of the detected particle in each time step is used. As explained 

previously, the COM of each particle represents its position. The coordinates of particles are 

plotted in an X-Y coordinate system to illustrate the track of particles. In Figures 3.17 and 3.18 

the numbers on X and Y axes represent the position in the grid with respect to the grid cells and 

do not have any specific unit. Each circle refers to the COM coordinate of the particle in one of 

the time steps.  
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According to the periodic boundary conditions applied in the system, each particle travels in the 

length of the grid more than one time. The current simulation was executed on a 128128  grid 

points system for 100,000 total time-step with 1000 time interval. Therefore, each particle 

moves approximately four times along the grid for a total of 100 time-steps. In each graph the 

movement of particle is tracked from one side of the simulation lattice box to another side. In 

the following figures, the whole journey of particle number 9 is illustrated and the movement of 

particle is tracked with different colours for each travel from the beginning of the lattice to the 

end. 

 
(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 3.17: Trajectory of particle number 9 in different rounds. 
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Figure 3.18: Entire trajectory of particle number 9. 

 

From the above figures it can be seen clearly that the trajectory of particle 9 in each movement 

is getting straighter. The main reason is the stability of the system according to the time-steps. 

The trajectory line is linear and becomes a plateau in the last time-step of simulation. In fact, the 

ratio between total time-steps and system stabilisation is positive. Figure 3.19 shows the number 

of detected particles on 128128  system size based on the different time-steps. The differences 

between numbers of detected particles in each time-step refer to the mixing or splitting of 

particles in different time-steps. 

 

 

Figure 3.19: Number of detected particles. 
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Finally, it is also possible to illustrate the dynamic movement and behaviour of one or more 

particles concurrently based on the new method. The movement of each particle in the grid can 

be seen during the time. The value of grid points being the same as assigned number to detected 

particle and the colour of each particle is related to its number. Figure 3.20 presents the 

concurrent movements of three particles (70, 134, and 145) in 128128  lattice system. The 

particles in red and orange are considered to be in the mixed/merged particles category, while the 

particles in green are single particles. 

 

    

Time step-1 Time step-2 Time step-3 Time step-4 

 

Figure 3.20: Concurrent dynamic movements of multiple particles. 

 

   
Time step - 66 Time step - 67 Time step – 68 

 

Figure 3.21: Division of mixed particle 134. 
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3.4 Flowchart of Computational Algorithm for Detecting and Tracking  
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Figure 3.22: Flowchart of the program. 
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3.5 Summary 
 

A novel particle tracking technique
1
 for a spherical phase diblock copolymer under a shear flow 

has been developed and presented. Two frameworks have been proposed to achieve the 

computational technique of tracking particles. In detection framework, neighbouring search 

technique is used for detecting particles and reconstructs the time-lapse of detected particles. In 

tracking framework, the centres of mass of particles have been calculated and particles were 

tracked based on their centres of mass and the movements in each time step. The proposed 

method was examined with various test cases and satisfactory results in terms of accuracy and 

concurrently tracking of particles were achieved, giving confidence in the technique developed 

in this study. The numbers of detected particles also changed in time until the whole system 

reached equilibrium (with no more changes after that specific time-step). Detected particles 

mixed and divided in time evolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1
 H. Soltani, D. Ly and W. Ahmed, “Computational Technique of Particle Tracking”, Fourth Annual 

Research Student Conference, UCLAN, Preston, December 2014. 
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CHAPTER FOUR 

4 Performance Analysis and Computational Throughput  

 

When introducing new hardware architectures, it necessary to adapt programing languages that 

can support new hardware features. This fact raises a challenge and issue for scientific 

programmers to obtain the best throughput, performance and functionality. In fact, different 

scientific programs and applications which have existed for many years to solve specific 

problems must be updated to reflect the newest architectural systems. Consequently, based on the 

mixture of program size (number of code lines) and the cost of modification, it is important to 

consider new features such as scalability and portability and identifying bottleneck regions of 

code to answer the functionality challenges over the course of different platforms/architectures 

and improve the throughput and performance of code. 

     In this chapter we focus on computational throughput and performance analysis which 

involves four different perspectives: code optimisation, performance modelling, visual profiling 

and benchmarking. 

 

4.1 Benchmarking  
 

Different hardware architectures have different theoretical peak of performance and throughput 

based on floating point operations per second (FLOP/S); in reality it is difficult to obtain this 

peak of throughput. In effective (achievable) level, most current hardware architectures consider 

a single precision for calculation an instruction stream in SIMD execution units, which 

sometimes is less accurate compared to double precision [63]; less accuracy refers to the different 

rounding strategies for the addition, subtraction, multiplication and division operations between 

single and double floating point. In fact, the floating point calculations should be rounded in 

order to match/fit into a finite number of bits in memory, which is 32 bits for single precision and 

64 bits for double precision.  

     On the other hand, use of double precision is not very straightforward due to the memory 

limitation and differences between the number of operations such as multiplication and addition. 

Therefore, there is extensive research on different metrics to decrease the gap between theoretical 

and effective level, to improve the arithmetic performance and to demonstrate the real 

performance obtained by program. To this end, benchmarks as pieces of code can help us to 

gather different data such as effective throughput and effective memory bandwidth.  
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There are two types of benchmarks: kernel or micro benchmark, which refers to low-level 

specifications and information of hardware; and application or macro benchmark, which 

indicates high-level hardware architecture information. The most well-known micro for the first 

type of benchmark is LINPACK [64], which can be used to specify a system’s sustained FLOP/s 

rate or STREAM to assess the memory bandwidth [65]. However, it is complex and difficult to 

determine the performance and throughput metrics produced by kernel/micro benchmarks for 

multifaceted programs. Kernel benchmarks are mainly about general drifts and trends in 

hardware [66]. In fact, the communication and interaction between different hardware sections is 

more likely to be an outcome in lower throughput and performance than that produced by kernel 

benchmarks, and also the behaviour of some low-level components such as data cache are 

difficult to be measured by kernel benchmarks.  

     The latter type is more popular in engineering and scientific research, and it can be utilised to 

define information about the computational behaviour of specific programs. Well-known and 

popular examples of macro benchmarks include the NAS Parallel benchmark developed by the 

NASA Ames Research Centre [67]; and the ASC benchmark suite developed by the Los Alamos 

and Lawrence Livermore National Laboratories [68]. These benchmarks mainly effect a 

breakdown of the execution time, such that the performance and throughput bottlenecks of 

different applications can be recognised. This type of benchmark can be used with other types of 

performance analysis (visual profiling) to help identify performance bottlenecks in programs. 

 

4.2 Visual Profiling  
 

In many cases, considering the low-level and high-level benchmarks for identifying the 

effective performance and throughput of program is not easy and even not all programs can be 

split into enough low level to specify the bottleneck of program and to determine the effective 

performance. Therefore, it is necessary to utilise a visual profiler as a tool to monitor the whole 

program during time executions, enabling developers and programmers to evaluate high level 

performance analysis in terms of: (i) execution time [69, 70]; (ii) time spent for copying, 

synchronisation, reading and writing [71]; and (iii) memory usage [72, 73]. They must also 

study low level metrics such as kernel performance and L1 cache or shared memory 

consumption [74]. In addition, visual profiler provides this chance to profile and monitor the 

whole program in both cases (low and high levels) without any changes in the source code.  

     The visual profilers used in this study refer to the NVIDIA NSIGHT ECLIPSE which is part 

of CUDA toolkit and Intel Vtune Amplifier which is visual performance analysis. Nsight 

Eclipse visual profiler is a combined CPU and GPU integrated development environment (IDE) 

for monitoring and implementing CUDA programs, to help programmers on all levels of 

benchmark metrics (low and high) and to support developers on different steps of the program 
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development pipeline [75]. Some of the main functions of Nsight Eclipse visual profiler are as 

follows [76]: 

 Source code editor with support of CUDA C and C++ 

 Graphical user interface for debugging programs 

 Visual profiler for source code  

 Visual profiler for optimising program performance  

 Program lifecycle management  

 Compiler integration  

 Occupancy profiler  

 Memories profiler   
 

Therefore, the method of profiling utilised in this research is to use source code directly. In fact, 

by instrumenting the whole source code on profiler, different situations can still be addressed, 

such as the performance of one specific kernel or the performance of a whole program in total 

execution time. 

 

4.3 Code Optimisation 
 

After breaking down the source code into different levels and identifying the bottleneck regions 

of a program, code optimisation can play significant role of performance and throughput 

analysis. Code optimisation can be divided into four main forms: (i) sub-code transformations to 

decrease the number of instructions (e.g. loop unrolling and tiling); (ii) rewriting code to be 

compatible with new hardware architectures (e.g. SIMD and vectorisation) [77]; (iii) using L1 

cache or sheared memory to improve throughput and cache behaviour [78, 79]; and (iv) 

considering totally new algorithm with less computational complexity, more scalability and 

portability (this form of code optimisation is more demanded in parallel computing) [80].  It 

should be noted that in many cases analysing and measuring performance enhancements of code 

optimisation can be done against the original or baseline code which execute in the same 

specification and configuration system. In parallel computing, complex computation and 

arithmetic intensive parts move to accelerator section (e.g. GPU) and measuring performance 

improvements is performed based on the comparisons between parallel code using accelerator 

(GPU) and optimised or un-optimised CPU code with consideration of same floating point and 

same system scales [81, 82, 83]. 

     Following parallel computing, ‘directive’ based programming can be used as a flag (pragma) 

to transfer the parts of complex computation code to an accelerator. Different application 

programs interfaces (APIs), such OpenMP [84, 85] and OpenACC [86, 87], support this ability. 

This approach helps developers to improve the throughput of application and to be compiled 
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with different compilers (cross-compiled) for an accelerator. For instance, OpenACC and 

OpenMP programming standards are supported by different compilers from Intel, CAPS and 

PGI [84, 88]. Although this approach enhances the throughput of program, it should be noted 

that it still requires a code optimisation to achieve an efficient performance [89]. Another 

method/approach is ‘active libraries’, which allow programmers to handle the optimisation issue 

in a high level specific manner. In fact, this approach refers to leave the code optimisation and 

implementation to smart compiler and libraries. Although some examples (such as OP2 [90] and 

Liszt [91]) exist for this type of approach,  to our knowledge the current generation of smart 

compiler and libraries are not very accurate, precise and expressive to handle a complex 

program into a binary optimised mode. In fact, the compiler does not have enough knowledge of 

the data dependencies, the problem of domain or how the code will be executed, thus it cannot 

make definite hypotheses and assumptions. Drawing on this background, in this thesis we 

consider different optimisation approaches based on different situations such as code 

transformation, vectorisation, SIMD intrinsic, memory access pattern, coalescing global 

memory access, kernel fusion and a new algorithm with lower complexity, divergent paths and 

synchronisation coordinates. Finally, we strive to obtain a reasonable comparison of CPU and 

GPU as much as possible by using all available resources in both architectures. 

 

4.4 Performance Tuning  
 

Performance tuning contains a group of techniques that can help to estimate the effective 

performance and throughput of program. In fact, performance modelling/tuning, by identifying 

performance bottlenecks of program and evaluating the influence of code optimisations in the 

development process, helps to predict the effective performance of application in new 

architecture, and decreases the gap between maximum arithmetic performance and achievable 

performance [92, 93, 94]. In this context, the main technique of performance tuning refers to the 

‘analytical calculation and modelling’ where computational throughput, execution time and 

memory bandwidth are presented mathematically as equations. The main benefit of analytical 

calculation is fast evaluation and prediction of program performance and throughput. However, 

the parametrisation of equations is not straightforward and needs a good understanding of code 

behaviour and hardware architecture. 

     The following equation shows analytical calculation of effective memory bandwidth for a 

program based on GPU [95].  

   910/  tWRBW BBEffective  

 





47 
 

Where EffectiveBW indicates the effective bandwidth in units of GB/s, BR refers to the number of 

bytes read per kernel, BW is the number of bytes write per kernel, and t refers to the execution 

time given in seconds. In fact, in many cases a big percentage of programs are memory 

bandwidth bound, therefore analytical calculation of effective memory bandwidth helps to 

understand the bottlenecks and to improve performance of programs. 

     The theoretical bandwidth can be identified by hardware specifications. For instance, the 

Tesla M2050 NVIDIA GPU with double data rate RAM (DDR), 1,546 MHz memory clock rate 

and 384 bit memory interface has 148 GB/s theoretical memory bandwidth [95]. 

  96 10/28/384101546 lTheoreticaBW . 

In theoretical bandwidth calculation, memory clock rate convert to Hz, memory interface 

converts to byte and multiply by 2 because of dual interface rate, and finally the whole result is 

divided by 
910 to convert the unit to GB/s. 

     Equation 4.2 demonstrates the calculation of effective data throughput (memory bandwidth) 

by knowing the process of accessing data in a program. Another essential analytical metric that 

directly relates to the program’s algorithm and code optimisation is computational throughput. 

As with theoretical peak bandwidth, maximum theoretical computational throughput depends on 

hardware architectures. For instance, the maximum theoretical throughput for the same NVIDIA 

TESLA M2050 GPU device for single precision floating point throughput is 1030 GFLP/s, and 

for double precision floating point it is 515 GLOP/s. In the effective computational throughput 

context, the following equation can be used to calculate computational throughput [95, 17]: 

 

 910/  tEOPCT NNEffective . 

Where OP refers to the number of operations, E indicates number of data elements in a program 

and t is execution time in seconds. However, calculating effective computational throughput in 

complex programs is very difficult and laborious. Accordingly, it is more beneficial and helpful 

to utilise visual profiling and analyser to understand the effective computational throughput of 

program and to identify bottlenecks issues in computational throughput, which can be useful to 

optimise and improve performance. 

Finally, analytical modelling of total execution time that can be used to evaluate and estimate 

execution time of program is: 

  OverheadationSynchronisOverlapionCommunicatnComputatioTotal TTTTTT  . 

 




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Here TotalT  refers to the sum of elapsed time of arithmetic calculation and communication 

(transferring data), minus the total time that arithmetic computation and communication 

consumed concurrently, plus the last two terms which refer to the overheads of synchronisation 

and communication for data transformation, which cannot be overlapped. This type of analytical 

modelling can obtained high levels of precision on different types of program in numerous 

scientific fields and applications [96, 97]. 
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4.5 Summary  
 

This chapter presented performance analysis and computational throughput from different 

aspects. We adopted these techniques in this thesis, specifically code optimisation, to make a 

comparison between baseline source code and optimised source code on CPU, using directive-

based programming (OpenMP) to consider parallel computing for optimised source code on 

CPU and to develop a new algorithm with less computational complexity, more scalability and 

portability for GPU. We used visual profiling to identify and evaluate different types of 

bottlenecks in computational and data throughput for improvement the performance of cell 

dynamic simulation program. Finally, we explored analytical calculation of performance 

modelling with the concept of theoretical peak and achievable peak for data and computational 

throughput and total elapsed time. Finally, because of the complexity, difficulty and size of 

scientific programs, these techniques are becoming usual and common for analytical 

computation and performance analysis [98]. 
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CHAPTER FIVE 

5 Parallel Computing and Programming Model 

 

This chapter explores the concept of parallel computing and parallel architectures, and discusses 

different terminology related to parallel computing. Traditionally, computer architectures were 

based on serial executions and they did not support for feature parallelism. In serial processing a 

problem/program divides into different series of commands by which instructions are performed 

seriatim. Serial computing is mainly performed on a single processor, whereby only one 

instruction can be executed at a time. Clearly this type of execution is not suitable for complex 

and expensive computations, and it causes long time delay to solve problems. The following 

figure shows an example of how a problem can be executed in serial computation. 

 

Figure 5.1: Example of serial execution. 

 

     Parallel computing is the obvious answer to solve expensive and complex problems with less 

time consumption. In parallel computing a problem is divided into separate and distinct 

sections, each of which is further split into a series of commands and instructions, which can be 

executed concurrently and simultaneously on multiple processors. In other words, parallel 

processing solves a problem by utilising multiple resources (processors) simultaneously. 

Resources are mainly divided into two categories: (i) a computer with multiple processors, and 

(ii) group of computers with multiple cores that are connected to each other on network. Figure 

5.2 illustrates how a problem can be executed in parallel execution. 
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Figure 5.2: Example of parallel execution. 

 

It should be noted that there is a difference between the concepts of concurrency and 

parallelism; the former refers to the properties of a system when multiple tasks can be 

progressed at the same time while the latter utilise the concurrency of a system to actually 

execute tasks simultaneously. The following figures present examples of concurrent and parallel 

execution.  

 

Figure 5.3: Concurrent execution. 

 

     In Figure 5.3 each colour indicates active tasks in a block being performed sequentially and 

in mutual swapping, while their simulation execution is in parallel. Figure 5.4 demonstrates 

concurrent and parallel executions, in which all tasks are executed at the same time in a block. 

 

Figure 5.4: Concurrent and parallel execution. 
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In regard to the concurrent and parallelism concepts, applications or programs are classified into 

two classes: (i) concurrent program, and (ii) parallel program. Concurrent program has 

concurrency built in the problem definition. A good example of concurrent application refers to 

web server designed to be concurrent from beginning to take concurrent inputs. In parallel 

application, tasks are executed at the same time for faster processing or to handle a bigger 

amount of problems. In fact, in concurrent application, there is no answer to identify the 

problem without concurrency, because of the concept of a problem. Figure 5.5 shows the 

relationship between program, concurrent program and parallel program [99].   

 

Figure 5.5: Relations between program, concurrent program and parallel program. 

 

     In 1960 Gene Amdahl introduced a formula to calculate the potential program speed-up by a 

portion of code which can be parallelised [100]. In other words, Amdahl’s formula (known as 

Amdahl’s Law) demonstrates that a fraction of a program that cannot be parallelised will impact 

directly on the whole speed-up obtainable from parallelisation, and the expected speedup of the 

parallel program over the serial program when using N processors is dictated by the proportion 

of a program that can be made parallel. The following equation states the maximum speed that 

can be calculated based on Amdahl’s Law [101]: 

 
 

.

1

1

N
p

p

NS



        

Here p refers to the fraction of code that can be parallelised,  p1  indicates the portion of a 

program that cannot be made parallel, S  is the speed-up, and N is the number of processors. 

 

 

 


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Relative to Amdahl’s Law, Gustafson proposed a new law about the speed-up with N 

processors. Gustafson’s Law states the whole amount of the work can be executed in parallel 

while linearly different based on the number of processors [100, 101]. 

 

     1PPS . 

Here P refers to the number of processors, S indicates the speed-up, and  is the serial part 

(not parallelised) of a program. In fact, by introducing new hardware architectures, and more 

resources becoming accessible, Amdahl’s Law, which was based on fixed size of problem (i.e. a 

portion of code can be executed in parallel, separate and independent of the total number of 

processors) is no longer realistic for the evaluation of parallel performance, while Gustafson’s 

Law offers a more accurate evaluation of parallel performance. Table 5.1 presents an example 

of the Gustafson’s law with 0.1 percentage of , and various numbers of processors.  

 

Number of processors Non-parallelised 

portion (percentage) 

Speed-up 

10 0.10 9.1 

100 0.10 90.1 

120 0.10 108.1 

150 0.10 135.1 

 

Table 5.1: Example of Gustafson’s law speed-up. 

  

 

 

 

 

 

 

 

 

 

 

 


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5.1 Parallel Terminology  
 

Parallel computing comprises many terminologies which are important to explore for a better 

understanding the context of parallel computing. 

 

 Central Processing Unit (CPU): also known as the processor, core, and socket based 

on singular execution or multiple executions. CPUs are mainly divided into two 

categories: (i) scalar processor, and (ii) vector processor. A scalar CPU performs 

computation on each single data packet separately, one at a time. On the other hand, a 

vector or array processor performs computations on one dimensional array/vector 

concurrently and simultaneously enhances the performance of a system [102]. Most 

modern CPUs support vector processing.  

 Task: a program which comprises group of instructions to be executed by a processor 

or multiple processors. In fact, a task indicates a logically distinct portion of 

computational job. 

 Shared Memory: this divides into two aspects: (i) hardware aspect - physical memory 

that all cores/processors can access; and (ii) programing aspect - defines a model that all 

parallel tasks can read, write and access to the identical logical memory.  

 Symmetric Multi-Processor (SMP): indicates shared memory parallel architecture by 

which multiple processors have equivalent access to all resources. 

 Distributed Memory: network parallel architecture whereby all computers (nodes) on 

a network use communication to utilise resources on other devices. 

 Communication: in parallel computing, communication generally means data 

exchange between instructions of parallel tasks, which can be in shared or in distributed 

memory architecture. 

 Synchronisation: in parallel computing, synchronisation is the coordination of parallel 

computations in real time, by which a parallel task cannot be started until another task 

reaches the same level [103]. Usually, synchronisation increases the execution time of a 

program by adding a wall-clock.  

 Overhead: the amount of elapsed time which no useful and beneficial work has 

processed. Parallel overhead involves many issues such as synchronisation, 

communications and data reading and writing. 

 Scalability: the capability of parallel system to adopt new resources features, such as 

program algorithms and hardware features, specifically memory bandwidth (data 

throughput) and computational throughput. 
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 Massively Parallel: utilisation of a big number of processors to execute a group of 

computation tasks simultaneously and concurrently. 

 Embarrassingly Parallel: also known as perfectly parallel, this is when a program is 

small and there is no need to distinguish groups of parallel tasks. In this type of 

situation, there is no communication between parallel tasks.  

 Granularity: the ratio between computations to communications in parallel computing. 

Granularity is classified into two classes: fine grained and coarse grained. Fine grained 

refers to small volumes of computational task with less data volume (frequently) 

transferring between processors. On the other hand, coarse grained parallelism indicates 

the huge volume of computational task with infrequent communication between 

processors [104]. Fine grained parallelism improves the performance and speed of 

program, but also increases the overhead execution time. In order to achieve the best 

performance, the system should have a balance in granularity. 

 

5.2 Flynn’s Taxonomy for Parallel Computing   
 

Flynn’s classification has been one of the most utilised taxonomies for parallel and sequential 

computing since 1966. In Flynn’s classification, multiple processor computer architectures are 

categorised based on the two parameters of instruction stream and data stream, each of which 

can only use a single or multiple set of instructions and data streams [105, 106]. According to 

the Flynn’s taxonomy there are four different classifications of parallel and sequential 

computers: SISD, SIMD, MISD and MIMD. It should be noted that the term ‘stream’ indicates 

a sequence of data or instructions process by the CPU in one complete cycle. Figure 5.6 presents 

example of instruction and data stream. Therefore, the group of instructions processed by the 

CPU are called the instruction stream and a dataset is needed for processing instructions, called 

a data stream. Table 5.2 demonstrates different types of Flynn’s taxonomy. 

 

 

 

 

Figure 5.6: Instruction and data stream. 
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Flynn’s taxonomy Description 

Single Instruction, 

Single Data (SISD) 

 

This class of Flynn’s taxonomy refers to the sequential computing by 

which only single instruction can be performed on one CPU (single 

processor) in one clock cycle, and just one data stream can be utilised 

as input data in one clock cycle [107, 108]. Scalar processor is 

categorised in the SISD classification of Flynn’s taxonomy. SISD 

processing is shown in Figure 5.7. 

 

Single Instruction, 

Multiple Data 

(SIMD) 

SIMD is another type of parallel computer in Flynn’s taxonomy by 

which multiple processors process a single instruction or the same 

operation with multiple data streams simultaneously, in parallel.  In 

SIMD type, instructions have to be completed by assigned processers 

before other instructions can be started for execution [109]. 

Consequently, synchronisations exist for the execution of operations in 

SIMD. Vector/array processors and GPUs are classified in this type of 

Flynn’s taxonomy. Figure 5.8 illustrates SIMD computation model. 

 

Multiple Instruction, 

Single Data (MISD) 

In MISD model, each processing unit processes different instructions in 

the same data stream. This type of Flynn’s taxonomy is not very 

common compared to the other types of parallel techniques. 

 

Multiple Instruction, 

Multiple Data 

(MIMD) 

In this technique, each processing unit processes different instruction 

streams on different data streams. Instruction executions in this type of 

Flynn’s taxonomy can be synchronous or asynchronous. It should be 

noted that MIMD technique comprises an SIMD class of parallel 

computing. 

 

 

Table 5.2: Flynn’s taxonomy types. 

 

 

 

 

 

 

Figure 5.7: SISD model, where CU refers to Control Unit and ALU is Arithmetic Logic Unit. 
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Figure 5.8: SIMD Computation model. 

 

5.3 Parallel Programming Model  
 

New hardware architectures are highly parallel and they are not limited to any specific type of 

parallelism or parallel memory architecture. This section explains different types of parallelism 

and then details different parallel programming models utilised in this study based on the 

different types of parallelism. In general, there are four main types of parallelism: (i) bit level 

parallelism; (ii) instruction level parallelism; (iii) task level parallelism; and (iv) data level 

parallelism.  

1. Bit level parallelism: this is one of the earliest forms of parallel computing, based on 

increasing processor word size. A word in computer science is a unit of data that can be 

used by a processor to perform a single operation, and the total number of bits in a word 

refers to the word size or word width.  In bit level parallelism, by increasing the number 

of word size, the number of instructions the processor should process decreases which 

helps to process instructions that are bigger than word width [110]. For instance, if we 

have an eight-bit processor and sixteen bits of instruction, then the processor needs to 

perform two times to finish a single operation. Therefore, it has a direct impact on the 

performance of system. Modern computer architectures are typically x86-64, which 

refers to 64-bit processor.  

 

2. Instruction level parallelism (ILP): this refers to how many instructions in a computer 

can be processed concurrently and simultaneously. While new hardware architectures 

handle ILP in different types, older processors can also support this level of parallelism 

in a different format called speculative execution. In this type of execution, operations 

or instructions are not following the same order of executions in a program, and as soon 

as the instructions are available they can be executed, whether or not they are needed. 

However, this type of execution in older processors helps to improve the performance 
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of systems compare to sequential execution. It should be noted that developing a 

program to consider maximum level of ILP is a complex and difficult job that needs 

good comprehension of the program and target hardware architecture. Other important 

factors of instruction level parallelism indicate data dependency between 

operations/instructions and how to map instructions to target hardware architecture 

(scalability and portability) [111]. Moreover, different techniques (such as loop 

unrolling and pipelining) of instruction level parallelism for enhancing performance and 

throughput currently are supported by task and data levels parallelism [112]. 

 

3. Task level parallelism: different computations can be processed on the same or different 

groups of data in task level parallelism, in contrasts to data level parallelism in which 

same computations can be performed on the same or different groups of data [107].  In 

this level of parallelism tasks are divided into smaller portions called sub-tasks, each of 

which is assigned to a processor or thread for simultaneous execution. Cluster hardware 

computer architectures and multi-core computers offer task level parallelism. 

 

4. Data level parallelism: this is another type of parallel computing in which the same 

types of instruction are performed on the same or different vectors of data. SIMD of 

Flynn’s taxonomy is classified into this parallelism. 

In addition to different levels of parallelism and programming models, Figure 5.9 presents 

the concept of parallelism mapped to software and hardware aspects. 

 

Figure 5.9: Relations between parallelism, hardware and software. 

 

It can be seen in Figure 5.9 that cluster and multi-core computer offer task level parallelism, 

which supports multiple threads or cores separate and simultaneous task execution. OpenMP as 

a multi-threading application program interface is used in this research. SIMD refers to data 
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level parallelism in which each instruction is executed on the same or different vector of data, 

and superscalar processors deliver Instruction Level Parallelism (ILP). However, any of these 

parallelism levels are able to utilise the underlying parallelism level (hybrid model). For 

instance, any node in a cluster can have multiple cores, each of which can execute multiple 

threads, and each thread can process SIMD instructions. This study investigates SIMD and 

multi-threading via data level and task level parallelism more deeply.  

 

5.3.1 SIMD/Vectorisation 
 

The model of SIMD execution in new hardware architecture theoretically is comparable to the 

vector processors in the 1980s, which could perform the same computations on one dimensional 

vector concurrently and simultaneously. In SIMD execution model the number of different data 

that can be processed by each instruction (SIMD width) varies from architecture to architecture, 

and usually is less than vector processors, but on the other hand, modern hardware architectures 

have higher Streaming SIMD Extensions (SSE) or Advanced Vector Extensions (AVX). For 

instance, GPUs normally support 1024 or 2048 bit SIMD. Instruction set refers to the computer 

architecture which involves data types, memory architecture, addressing modes, mathematic 

operators and Boolean operators. Streaming SIMD Extensions (SSE) indicates extended 

instructions (70 new instructions) in the x86 computer architecture that can be improved the 

performance of system (new processor architectures support SSE4). Advanced Vector 

Extensions (AVX) is extensions to the x86 instruction set computer architecture which mainly 

refers to the extension of SIMD width register capacity [113]. For example, SSE 128-bit can 

store four 32-bit single precision floating points or two 64-bit double precision values of x86 

computer architectures. AVX SIMD is increased to 256-bit, and AVX2 is augmented to 512 bit.  

     Traditional procedural programming languages such as C and FORTRAN are scalar-based 

languages that were not designed to use SIMD execution model. In order to utilise SIMD 

execution structure, the execution model should provide either auto-vectorisation compliers 

which convert/transfer scalar program into a vectorised program or intrinsic/built-in functions in 

scalar program for specifying vectorisations explicitly. Most programmers prefer to use auto-

vectorisation compilers to automatically transfer scalar code into vectorised program by 

fruitfully unrolling the loop to match the size of computer architecture’s SIMD width. However, 

in case of complex programs auto-vectorisation cannot address efficient vectorisation for 

obtaining maximum performance [114]. In fact, the auto-vectorisation compiler has no 

knowledge about the dependency of operations, how the program will be executed, or the 

domain problem [114]. On the other hand, finding vectorisation explicitly with intrinsic 

functions programming provides the best way to use SIMD execution model to obtain high 

performance. Intrinsic functions method assigns computer hardware instructions directly and 
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specifies vectorisation explicitly, helping achieve high parallelism. However, this technique 

needs a good sympathetic SIMD execution model and computer hardware capability.   

Another way to utilise SIMD execution units refers to the combination of mentioned methods 

which leads to the Single Program Multiple Data (SPMD) programming. SPMD is a high-level 

programming model in which different tasks are divided and executed on multiple processors 

simultaneously with different data streams [115]. In SPMD programming the whole program is 

developed from the perspective of separate and independent tasks to execute parallel and 

concurrently, which also facilitates easier auto-vectorisation. The most frequently used SMPD 

refers to high performance computing (HPC) for cluster computers, and multiple cores 

computer [116], but also shows a significant achievement for GPU NVIDIA’s CUDA 

programming model [117]. 

 

5.3.2 Multi-Core – Multithreading  
 

Traditionally, computer scientists believed that performance comes from hardware, thus adding 

more clock speed and frequency on a processor provides better performance. This idea led 

computer scientists to design hardware based on performance optimisation architectures for 

many years. However, this idea failed due to increased power and cooling needs in architectures 

with increased clock speeds, consequently they designed new hardware architecture based on 

power optimisation rather than performance optimisation by adding number of cores [118]. 

Modern computer hardware is designed based on the power optimisation by having multiple 

numbers of cores with low clock speeds, and effective support for concurrent and parallel 

execution on all multiple cores. New computer architectures also provide the concept of hyper-

threading or simultaneous multi-threading (SMT), which allows multiple threads to execute a 

program or sub-program (task) separately and independently by utilising the resources of a 

distinct core. For instance, NVIDIA Quadro k5000 supports 192 threads per core, and usually 

CPUs with x86 architecture support 2 SMT. The most common model of parallel execution for 

multi-threaded programs refers to the fork-join model. In this model, fork indicates a master 

thread which makes a number of parallel threads for parallel execution in parallel regions, and 

when the number of threads finishes the tasks in the parallel sections, they will be synchronised 

(join) and just leave a master thread [84, 88]. It should be noted that the number of threads and 

number of parallel sections are arbitrary. The most famous application interface program that 

used this model was OpenMP. Figure 5.10 presents the fork-join model.  
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Figure 5.10: Fork - Join model. 

 

In OpenMP, there are different techniques to execute parallel region and assigning tasks to 

different threads. These techniques are called work sharing constructs, and they involve: (i) do/ 

for work sharing construct, this type of execution shares iterations of a loop between numbers of 

threads; (ii) sections work sharing construct with individual and separate sections, each of which 

is processed by a thread; and (iii) single work sharing construct which executes a program by 

single thread in the team, which is beneficial when mixing with other types of work sharing 

constructs. The following figures show models of do/for construct and sections construct. 

  
 

Figure 5.11: Sections work sharing construct. 

 

Figure 5.12: Do/ For work sharing construct. 
 

 

     The SPMD programming model can also be implemented in multi-threading, by which all 

tasks are separate and distinct at compiler time, and the compiler is able to allocate tasks 

between threads/cores in addition to (or instead of) SIMD instruction units without impacting 

accuracy and efficiency. In NVIDA CUDA GPU programming model also threads are 

congregated together into blocks which provide some guarantees about memory access pattern 

and synchronisation within-block. However, it is not possible to ensure that all threads will be 

performed and executed by the same core. In fact, threads within the same block can share and 

access data but they cannot synchronise it with other threads within different blocks. 
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5.4 Parallel Computer Memory Architecture  
 

Another important concept in parallel computer refers to parallel memory architectures. Parallel 

computer memory architectures are based on two memory organisations: physical memory 

architecture and programmer perspective of the memory. Physical memory architecture 

indicates the local physical shared memory (e.g. multiprocessors), distributed physical memory 

such as multicomputer, and a combination of two models, called hybrid architectures. The 

programmer perspective of the memory considers accessing memory in a shared address space 

and in distributed address spaces [103]. Consequently, there are three types of parallel computer 

memory architectures: (i) shared memory architecture, (ii) distributed memory architecture, and 

(iii) hybrid distributed shared memory architecture. 

 

5.4.1 Shared Memory Architecture  
 

In this type of architecture multiple processors or cores share the physical memory address 

space (also known as global memory) and data can be transferred across cores based on the 

global memory by accessing, reading, and writing shared variables. In this architecture, 

processors can be executed separately and individually, but all cores access and share the same 

global memory resources, thus a change in a memory address by one processor will be 

noticeable to other processors. The shared memory organisation can also be classified based on 

the way of accessing memory data, namely uniform memory access (UMA) and non-uniform 

access (NUMA).  In UMA class, all processors are identical and have equal access time to 

memory. Symmetric Multiprocessor (SMP) computers, in which multiple processors are 

connected together and linked to the shared memory via a central bus [119], are the most 

famous machines using UMA architecture of shared memory. In SMPs there is no private 

memory, but each core/processor has its own cache hierarchy, known as cache coherent. The 

cache coherency helps if one processor changes or updates an address in shared memory, which 

causes other processors to distinguish that specific change or update. Each SMP computer has a 

multicore processor and different numbers of cores. Figure 5.13 illustrates the UMA of shared 

memory model.   

 

Figure 5.13: Shared Memory - UMA model. 
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NUMA model refers to type of shared model wherein the memory access time is based on the 

memory position comparative to the processor. In this model, a processor access to the own 

memory faster than other local memory in other processor or shared memory between cores 

(access time to memories is not equal among processors). In other words, when physically 

connecting two or more SMP computers together, there is a NUMA model and in general access 

to memories over link is slower than UMA model [120]. Figure 5.14 presents the NUMA model 

of shared memory, and Table 5.3 demonstrates the main advantages and disadvantages of 

shared memory architecture. 

 

Figure 5.14: Shared Memory - NUMA model. 

 

Advantages   Global access to memory and address space is easy. 

 More user-friendly (for programmers). 

 Relatively faster to access memory and share data. 

Disadvantages   Scalability issue between processors and memory; by connecting 

more cores, more collisions occur. 

 More programmer accountability and responsibility for 

synchronisation, and having accurate data sharing in global memory.                              

 

Table 5.3: Advantages and disadvantages of shared memory architecture. 
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5.4.2 Distributed Memory Architecture  
 

This model includes varying numbers of computers (nodes) which are connected to each other 

through network. All data sharing and data transferring between nodes are based on the network 

connections. A node refers to an independent computer on the network that comprises processor 

and local memory. Data can be saved in the local memory of one computer/node on the network 

or different nodes. It should be noticed that local memory for each node is private, and only the 

local node can access its own memory, therefore the concept of global address space between 

processors does not exist, and changes or updates of local memory do not impact on the other 

nodes’ memories (i.e. there is no cache coherency). When a node requires data from another 

node’s local memory, it should send a request to that specific node via a network. This process 

can be performed by a message passing programming model, which is based on communication 

between computers. The most common interface for this model refers to Message Passing 

Interface (MPI). Figure 5.15 shows distributed memory model, and Table 5.4 demonstrates its 

main advantages and disadvantages. 

 

Figure 5.15: Distributed memory architecture. 

 

Advantages  Each node on the network can access self-data rapidly, without 

any overhead. 

 There is no scalability issue between memory and processors. 

Disadvantages  From the programmer’s perspective, the developer is accountable 

for the whole process of communication between nodes and data 

transferring. 

 Non-uniform memory access times take longer to access and 

transfer data (also depends on the network bandwidth). 

 

Table 5.4: Advantages and disadvantages of distributed memory architecture. 
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5.4.3 Hybrid Distributed – Shared Memory Architecture  
 

This model is a combination of shared memory architecture and distributed memory 

architecture, sharing the criteria of both models. In this architecture, shared memory section can 

involve a SMP computer or a graphic processing unit (GPU) machine. On the other hand, 

distributed memory refers to the networking of different number of SMP computers or GPUs, 

each of which has a private memory. Consequently, network communications are needed for 

data transferring (message passing). It should be noted that ‘shared’ in this regard refers to the 

sharing of address space, not of the single main (centralised) memory [121]. This type of 

architecture is highly demanded for high-performance computing, and it is prominent in the next 

generation of parallel computing models. The main advantages of the hybrid model concern 

scalability improvement, while its disadvantages are the difficulty and complexity of 

programming. Figure 5.16 presents the hybrid distributed – shared memory model. 

  
  

Figure 5.16: Hybrid architecture. 
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5.5 Summary  
 

New hardware architectures support different types of parallelism relative to programming and 

memory models. Several scientific programs (such as Lattice Boltzmann, Molecular Dynamics 

and Pipelined Wavefront) used different parallelism models, but utilising them accurately and 

effectively for complex programs (e.g. cell dynamics simulation) in lower levels remains 

problematic due to compound data dependency and a lack of memory access. This chapter 

presented the concept of concurrency and parallelism to understand the differences between 

them and how identifying concurrency can help to define the algorithm strategy of parallel 

program. Task and data level parallelism were explained to justify their use in this research, 

along with the fork-join model in OpenMP for multi-threading implementation. 
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CHAPTER SIX 

6 GPU Many-Core Accelerator 

 

Utilising multi-core GPU accelerator technology in high performance computing has greatly 

increased over the last few years [122]. Since the late 1980s companies such as Microsoft 

started to create graphical operating systems based on 2D display accelerators that delivered 

hardware-assisted bitmap operations to help in the display and usability of graphical operating 

systems [123]. In 1992, Silicon Graphics released the programming interface OpenGL Library 

for writing 3D graphics applications. Later, other companies such as NVIDIA and ATI started 

releasing graphics accelerators that were good enough to attract different scientific users. In the 

early 2000s, GPUs were designed to produce a colour for each pixel on the screen by utilizing 

programmable arithmetic units known as pixel shaders, which use an (X, Y) coordinate on the 

screen combined with some other additional information, such as texture coordinates and input 

colours to compute a final colour. Because additional information is totally controlled by the 

programmer and the arithmetic being performed on the input colours, it is possible to compute 

any data rather than input colours [124], thereby enabling GPU processing for non-graphical 

purposes which is called general purpose computing on graphic processing unit (GPGPU). By 

supporting fully and effectively programmable pipelines, GPGPU allows high performance 

computing developers to benefit from GPUs’ high parallelism in different scientific programs 

and engineering applications [125]. This chapter mainly demonstrates the programming model 

and architecture of the GPU used in this thesis. 

 

6.1 GPU Architecture Evolution 

The demand for real time, high quality graphics in computer systems has been the motivation 

and inspiration of graphic processors. The evolution of GPU started from a fixed function 

pipelines to micro coded processors, from micro coded processors to programmable processors, 

and from programmable processors to scalable parallel processors [126]. Scalable parallel 

processors have a large number of GPU transistors providing high parallelism and performance. 

To understand the architecture evolution of GPU, it is important to consider the concept of GPU 

in terms of the graphics pipeline which refers to several inputs (vertices of triangles) which can 

be executed different vertex operations and instructions, such as lighting and spatial 

transformations to generate scene. Scene indicates the creation of 2D image that can include 

textures transformed into pixels to produce the final image [127]. This process is known as 

graphics pipeline which can be programmed by different application program interfaces. Figure 
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6.1 illustrates NVIDIA GeForce 6 series architecture that involves different levels of graphics 

pipeline process [128].   

 

Figure 6.1: NVIDIA GeForce 6 series architecture [128]. 

 

The salient feature of this model is the inequity of weight in the process between vertex and 

texture processors (load balancing issue). For instance, primitive shapes utilise small amounts of 

the vertex processors’ throughput, but a huge amount of the texture and fragment processors, 

which causes inefficient usage of resources and wastage of computing power. To solve this 

problem, in 2006 NVIDIA GeForce introduced 8 series GPU, which includes a unified shader 

model that provides set of cores that can be processed and which support any level of the 

graphics pipeline [129]. To this end, unified architecture provides graphics programming and 

enables programming for non-graphical purposes. The most famous APIs which took the 

benefits of unified shader architecture/model are: (i) OpenCL [130], (ii) DirectX 11, and (iii) 

NVIDIA CUDA GPU. Figure 6.2 presents CPU and GPU architectures [131, 17].  

  

Figure 6.2: CPU and GPU architectures. 
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According to Figure 6.2, it is clear that GPUs with more processing threads/cores is more 

suitable for high performance computing and appropriate to execute computations with huge 

dataset.  

Another important factor in the evolution of GPU is the development of microarchitectures with 

different compute compatibility. In general, compute compatibility is currently classified into 

four main classes, each of which has sub-versions [131]: 

1. Tesla microarchitecture with compute compatibility 1.x: this was the first 

microarchitecture introduced by NVidia GPUs, which supported only fundamental and 

basic calculations. In this class of compatibility, there was no cache between cores and 

memory, no support of 3D grid of thread blocks, and no support of dynamic parallelism. 

Double precision floating point number was added in sub-version 1.3 of this 

architecture. 

 

2. Fermi microarchitecture with compute compatibility 2.x: the fermi model was the 

foremost leap in computational GPU microarchitecture and improved many important 

areas of compatibility compared to former architectures. In this microarchitecture, two 

classes of cache memory are developed (between processing cores and memory), thus 

double precision performance improved. It also enhanced atomic operations (read, 

modify, write), supported high level programming languages, enabled error correcting 

code facility and 64 bit unified addressing, and increased computational resources such 

as registers and number of cores [132].  

 

3. Kepler microarchitecture with compute compatibility 3.x: in mid-2010, NVIDIA 

presented a new microarchitecture for GPU called Kepler that involved three important 

new features: increased number of streaming multiprocessors (SMXs or SMs), Hyper-Q 

and dynamic parallelism [133]. Hype-Q increased the performance of the GPU by 

allowing several CPU cores to simultaneously use a single GPU core. Dynamic 

parallelism enhances GPU performance by allowing it to schedule and execute jobs 

without including CPU resources. In fact, NVIDIA in Kepler microarchitecture is more 

targeted toward programmability and energy saving [134].  

 

4. Maxwell microarchitecture with compute compatibility 5.x: Maxwell micromodel is the 

newest development of NVIDIA GPU. This architecture generally is same as the Kepler 

model, with more improvements in resources (number of registers per multiprocessors 

and number of resident blocks per processors).   
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In this study a commodity NVidia Quadro K5000 with Kepler microarchitecture (compute 

compatibility 3.0) is used. The Quadro K5000 GPU is based on the first version/generation 

GK104GL of Kepler microarchitecture which does not support Hyper-Q and dynamic 

parallelism. The CPU to GPU copy (memcopy) bandwidth and GPU to CPU copy (memcopy) 

bandwidth were measured as 5868.3 MB/s and 6532.2 MB/s, by utilising a benchmarking 

program provided in the CUDA SDK. Figures 6.3 and 6.4 show the model of two key features 

of Kepler microarchitecture compared to Fermi microarchitecture [135].  

 

Figure 6.3: Hyper-Q model of Kepler microarchitecture [135]. 

 

 

Figure 6.4: Dynamic parallelism model of Kepler microarchitecture [135]. 
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6.2 GPU Memory Architecture  
 

GPU architecture has different types of memory to support the requirements and needs of 

programming. In general, GPU memories are classified into two groups, on and off chip 

memories. On chip memory involves registers and shared memory/L1 cache while off chip 

memory comprises local memory, constant memory, texture memory, and global memory. 

Obviously it is fundamentally important to achieve high performance in applications using the 

available memories [136].  Figure 6.5 illustrates the different types of memory in GUP and 

relationship between them and CPU. 

 

Figure 6.5: GPU memory model. 

 

Kepler generation NVIDIA GPUs comprise six different types of memory that can be utilised in 

programming. It should be noted that texture and constant memories are read-only memories for 

GPU, but CPU can read and write on global, texture and constant memories. 

1. Global memory (DRAM): also known as device RAM, it is the biggest memory on the 

GPU, residing off it. The main features of this type memory are its comparatively slow 

in latency (400 – 600 clock cycles) [131], it saves data in global memory accessible to 

all threads, and both GPU and CPU can read and write in global memory. The other 

important point of this memory is the L2 cache, which provides a buffer to global 

memory to increase access time [124, 131].  

 

2. Shared memory/L1 cache: it is on chip memory with higher bandwidth and lower 

latency compared to global memory. Each streaming multiprocessor comprises a 64KB 

shared memory/L1 cache accessible to all streaming processors or cores within a 
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processor. In the Fermi architecture of GPU, L1 cache was a consistent automatic cache 

for global memory, but in Kepler architecture L1 cache is utilized for local memory 

access such as registers on GPU. Shared memory capacity can be divided with L1 

cache, 48KB shared memory / 16KB L1 cache or vice versa. Kepler model has added a 

new feature to this division, 32KB shared memory and 32KB L1 cache, which can be 

useful when L1 cache requires more than 16KB but less than 48KB capacity of shared 

memory per core [137]. 

 
 

3. Constant memory: generally, it is used for saving data which will not modify and 

change over the execution of a kernel. This memory is read only for GPU, but CPU can 

read and write on constant memory. Utilizing constant memory in program rather than 

global memory reduces the latency and decreases the need for memory bandwidth.  

 

4. Texture memory: texture memory is the other type of cache to DRAM that is read only, 

the same as constant memory for GPU. Texture memory is mainly used by the texture 

processing for assigning 2D scene onto a 3D surface, and for rendering 3D images. 

Utilizing texture memory decreases memory traffic and improves the performance.  

 
 

5. Registers: it is another on chip and fast memory in which GPU can read and write. 

Usually the register uses zero clock cycles per instruction, but sometimes more clock 

cycles can happen because of race conditions and read/write dependencies [138].  

 

6. Local memory: local memory is another off chip memory which can be used as an 

abstraction of global memory to avoid high latency. Automatic variables with big 

structures or arrays normally are assigned in local memory to improve the performance 

of application.  
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6.3 Compute Unified Device Architecture (CUDA) Programming 
 

CUDA as a programming architecture contributes to GPGPU technology by supporting 

heterogeneous data parallel computing and solving time-consumption and expensive 

computations issues. CUDA architecture hardware consists of a group of streaming 

multiprocessors (SMs), each of which comprises a set of streaming processors (SPs), also 

known as cores, register memory, shared memory, read-only texture and constant cache 

memory [132]. In CUDA programming model, the computing system is divided into two 

sections: the host section, which is CPU; and the device section, which is the GPU. The host 

section calculates low volume or non-parallelised data, while the device section computes a 

large amount of data parallelism. Device codes on GPU are executed in single instruction 

multiple data (SIMD) model, while each stream multiprocessor accepts a set of single 

instruction multiple thread (SIMT) to assign each thread block on one stream processor or core. 

 

6.3.1 CUDA Thread Hierarchy Model 
 

Threads in CUDA model are allocated into a hierarchy level, thread blocks and grid of blocks. 

When CUDA kernel function is called, the execution process automatically moves from host-

CPU to a device-GPU, and based on the hardware specification of GPU architecture sufficient 

resources such as number of threads in blocks and the size of grid (number of blocks in grids) 

are allocated to execute tasks in parallel. In this model, entire threads in a block access the same 

block index (blockIdx) in a grid, each of which thread has its own thread index (threadIdx) in a 

block. Both blockIdx and threadIdx are built-in variables in a kernel function. Based on these 

variables the coordinates of the thread can be identified. GridDim and blockDim are also 

important pre-initialised variables; the former indicates the total number of blocks in a grid or 

its dimensions, while the latter is the number of threads in a block or dimensions of a block.  

Based on the compatibility and architecture of GPU, grid of blocks (gridDim) can be two 

dimensions or three dimensions. For instance, GPUs with Tesla microarchitecture and 1.x 

compatibility can have two dimensional grid of blocks, but Fermi and Kepler microarchitectures 

support three dimensional. Also, blocks of threads according to the needs of programme can be 

one, two or three dimensional arrays of threads. Therefore, to determine the index of threads in 

3D grid and make sure all data in 3D array is covered by a unique and identical thread, the 

following equations/patterns based on global index values can be used [139]:   

...*.

,..*.

,..*.

zthreadIdxzblockDimzblockIdxz

ythreadIdxyblockDimyblockIdxy

xthreadIdxxblockDimxblockIdxx







 

 


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In CUDA hierarchy model each thread block assigns to streaming multiprocessors and the 

execution of each thread on core/SP is totally independent; when all the threads have finished 

their execution, the following grid of the thread block will be terminated [140]. In fact, each 

CUDA core performs integer instruction or a floating point per clock for a thread. Figure 6.6 

shows an example of CUDA grid hierarchy model [141].  

 

 

Figure 6.6: Example of two dimensional of CUDA hierarchy model [141]. 

 

     Threads in CUDA hierarchy model can access data from different types of memory available 

on GPU, but also each thread has own registers memory that cannot be shared with other 

threads. A group of threads in a same block can access shared memory which is fast but limited 

in capacity. And blocks in a grid can share data through global memory. Figure 6.7 presents 

GPU memory chart based on CUDA thread hierarchy model.  
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Figure 6.7: GPU memory hierarchy: Threads share local memory and each thread has own 

register. Threads within block share shared memory. Grids may access global memory. 

 

Based on the nature of a program, 1D, 2D, or 3D thread hierarchy model can be used. Usually it 

is more useful and convenient to utilise the same dimensions for grid and block for processing 

data elements, however it is possible to have a grid with higher dimensionality than its block 

and vice versa. As mentioned earlier, threads are gathered into blocks, and a block based on the 

computability of GPU can hold a maximum of 512 or 1024 threads. For instance, there is a 

product matrix of size 76×62 (76 in x direction and 62 in y direction). In order to map threads 

into this 2D product matrix, it can use 5×4 grid of thread blocks with 16×16 blocks to cover the 

whole of the product matrix elements. Figure 6.8 illustrates the block utilised to process a 

product matrix of size 76×62 [139]. 
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Figure 6.8: A 5×4 grid of 16×16 blocks to compute a 76×62 system size [139]. 

 

In Figure 6.8, the heavy lines distinguish the block boundaries, and shaded zone presents 

computed/processed area by threads. According to the kernel configuration parameters, in total 

there are 256 threads per block and 20 blocks per grid. Therefore, 256×20 =5120 threads exist 

to compute 76×62 = 4712 of product matrix. This number of threads is more than the number of 

system size, consequently threads will assign themselves to the matrix and the rest of threads 

that are outside the system will terminate. As can be seen clearly, there are four extra threads in 

the x direction and two extra threads in the y direction.  

 

     Another important benefit of CUDA programming model based on Fermi and Kepler GPU 

architecture is warping, which is useful to optimise the performance of CUDA program. In 

CUDA model, a block is divided into 32 threads called a warp and the execution of the thread 

block is based on the warp execution. Warp plays an important role when parallel execution 

(instruction processed by the threads in a warp)  is waiting for the outcome of former calculation 

with long latency; in this case another wrap (32 threads units) is automatically chosen for 

execution which is no more waiting for results [140]. This process avoids long latency time by 

choosing another warp which is called latency tolerance or latency hiding. In fact, by providing 

enough warps, GPU can easily find a warp to execute at any time. In addition, it should be 

noticed that latency hiding does not make any overhead time (idle time) into total execution time 

of program, and provides better performance in application. 
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6.3.2 CUDA Synchronisation 
 

As mentioned in chapter 5, synchronisation in parallel computing means the coordination of 

different parallel tasks in real time. In CUDA programming model, threads within a block can 

be coordinated or synchronised in the kernel by using synchronisation function syncthreads(). In 

this situation, all threads within a block will be waited at the barrier location until all other 

threads within a block arrive to barrier location. In fact, using synchronisation function ensures 

that all threads in a block have finished a part of their task before they can start the next part of 

the computation task. The other synchronisation function in CUDA programming refers to the 

cudaDeviceSynchronisation() which can be used to make sure all kernels have finished and 

completed their job. Mostly, syncthreads() synchronisation function is used when shared 

memory is implemented [142]. Figure 6.9 shows an example of threads synchronisation.  

 

 
Figure 6.9: An example of threads synchronisation. 

 

     Another important factor in synchronisation is overhead time (not useful time). In CUDA run 

time model, to prevent overhead time threads within a block should execute in close time with 

each other.  CUDA run time model does this by mapping enough resources to entire threads in a 

block as a unit [139]. In this model, until the run time system has not employed enough 

resources required for entire threads within a block, a block as a unit will not start to compute 

the task. In fact, CUDA run time system assigns the same resources for all threads in a block 

and avoids long overhead time during synchronisation, and makes the time execution of threads 

closer to each other. This factor of CUDA run time provides transparent scalability between 

blocks of kernels. Transparent scalability refers to the execution of blocks in any order which is 

related to each other without waiting for each other [139], or in other words threads in different 
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blocks do not need to have barrier synchronisation. Figure 6.10 presents transparent 

synchronisation between thread blocks.  

 

Figure 6.10: Transparent scalability example for CUDA run-time system. 

 

As shown in Figure 6.10, the execution process based on the needs and requirements can be 

scalable. For instance, when few execution resources needed, a kernel with less blocks at the 

same time can be used, similar to the left side grid of Figure 6.10 (two blocks simultaneously). 

On the other hand, when large execution resources are required, a kernel with more blocks can 

be utilised, similar to the right side grid of Figure 6.10 (four blocks simultaneously). To this 

end, transparent scalability provides the capability to execute a program with different speeds, 

and to develop different range of applications according to the usability, power, and 

performance requirements.  

 

6.3.3 Efficient Implementation of GPU Code  
 

Based on the highly parallel nature of GPUs architecture and different types of memory on 

GPU, there are different strategies to develop efficient GPU code, and to achieve high 

performance application. One of the well-known method/strategy for implementing efficient 

code has been recommended by Cohen & Molemaker [143], who stated that efficient results 

necessitate implementation of as much of the code as possible on the GPU. Although this 

method can be usable and valid, problematic issues are faced when trying to transfer the existing 

CPU code to GPU. Transferring complex code is very difficult and even in the best situation 

only a small portion of code can be transferred. Alternatively, Frigaard [144] introduced a 

technique to accelerate and optimise existing CPU code by finding computationally expensive 

and time consuming parts of program and transfer them to the accelerator (GPU).  Both 

strategies recommended first altering the algorithm of baseline code into a more efficient 

algorithm by removing iteration paths (loops) and synchronisation points, then optimising the 
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performance of code. In general, performance optimisation comprises three strategies [131, 

135]: (1) maximise parallel execution to approach high utilisation; (2) optimisation of memory 

usage to achieve high memory throughput; and (3) optimisation of instruction usage to achieve 

high instruction throughput, as described below. 

1. Maximise parallel execution: this refers to the design of application that can be utilised 

as much parallelism as possible and efficiently assigns this parallelism to different 

sections of program to prevent idle time (overhead time). Maximise utilisation involves 

three levels: 

a. Application level: this is a high level utilisation of CUDA 

programming model that refers to maximise parallel execution 

between the host/CPU, the device/GPU, and the PCI bus connector 

between host and device. This level of utilisation can be made by 

assigning little or non-parallelised workload to the host and large 

amount of data parallelism workload to the device. 

b. Device level: this indicates to a lower level utilisation of programming 

model. To achieve maximise utilisation at this level, it should 

maximise parallel execution between the multiprocessors of a device 

by keeping them busy most of the time.  

c. Multiprocessors level: as with the previous level this is a lower level 

that should be considered to maximise parallel execution between 

different functional units in a multiprocessor. Different functional units 

in multiprocessors refer to the threads level parallelism (SIMT model) 

which is indicated to the number of warps within multiprocessor. 

Indeed, this part has direct link to latency tolerance or latency hiding. 

As discussed in section 6.3.2, the total number of clock cycles of warp 

takes to be ready and to perform next portion of code is called latency. 

Therefore, maximum utilisation between different functional units in a 

multiprocessor will be achieved when latency is totally hidden.  

 

2. Optimisation of memory usage to achieve high memory throughput: in general 

maximising memory throughput refers to minimising data transfers between the host 

and the device with low bandwidth, maximise usage of on chip memories, and 

optimally memory access.  

 

3. Optimisation of instruction usage to achieve high instruction throughput: to achieve full 

instruction throughput should be considered the following key points:  
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a. Reduce the utilisation of arithmetic instruction with low throughput, 

such as using mathematical intrinsic functions, and single precision 

floating point instead of double precision floating point. 

b. Minimising the number of instructions such as number of 

synchronisation points. It should be noticed that here throughput refers 

to the number of operations per clock cycle per multiprocessor. For 

instance, a warp with 32 threads has one instruction to correspond to 32 

operations. Thus, the instruction throughput for N operations per clock 

cycle is equal to N/32 instructions per clock cycle. In addition, to 

calculate the whole throughput for the GPU device should multiply 

total number of multiprocessor to the throughput for each 

multiprocessor.  
 

By applying these techniques Simek et al. [145] achieved 8x-9x speedup for modelling and 

simulating the atmospheric equations, and Bell & Garland presented a speedup of 1.5x 

compared with baseline GPU code for matrix multiplications [146]. 

 

6.4 Benchmark Platforms  
 

The study in this research makes use of different hardware architectures for CPU and GPU 

based on the latest hardware available at the time of study. In fact, because of the fast 

development of hardware devices, incompatibility between hardware platforms and 

programming languages model, and limitation of access to high performance computers (large 

scale computers), only two different hardware architectures are considered. 
 

     In both hardware platforms, the maximum rate of data transfer for memory bandwidth is 

mentioned in gigabytes per second (GB/s), power is calculated based on the thermal design 

power (TDP) in Watts, and performance is reported based on the maximum GFLOP/s in single 

precision for CPU and GPU. It should be noted that the maximum rates of performance and 

memory bandwidth are theoretical peaks that cannot be achieved in reality. In addition, the total 

number of compute units (cores) and processing elements with support of Simultaneous Multi-

Threading (SMT) or hyper-threading is reported. The following tables present the hardware 

specification of the CPU and GPU used in this research.  
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CPU Intel Xeon Processor E5-2420 

Number of cores  6 

Number of threads (processing unit) per 

core 

2 

Total number of threads/processing units 12 

Peak GFLOP/s 91.2 

Max. memory bandwidth (GB/s) 32 

Instruction set x86 - 64 - bit 

Instruction set extensions  AVX 

Processor base frequency  1.9 GHz 

Processor Max. Turbo frequency  2.4 GHz 

Thermal design power (TDP) Watts  95 W 

Memory Types  DDR3 

Total capacity of Memory (RAM) 12 GB 

Error Correcting Code (ECC) Memory  Yes 
 

Table 6.1: Hardware specifications of the CPU and the Memory. 

 

GPU NVIDA QUADRO K5000 

GPU capability  3.0 

GPU micro-architecture  Kepler GK104GL 

Number of streaming multiprocessors 

(SMs) 

8 

Number of processing units per SM 192 

Total number of processing unit  1536 

Peak GFLOP/s – Single precision  2150 

Max. memory bandwidth (GB/s) 173 

Memory bus width (bits) 256 

Memory clock rate (MHz) 2700 

GPU memory (GB) 4 

GPU base frequency (GHz) 0.71 

Warp size 32 

Max. number of warps  per multiprocessor 64 

Max. number of blocks per multiprocessor 16 

Max. number of threads per block 1024 

Max. number of threads per 

multiprocessor 

2048 

Max. dimension size of a thread block          

(x, y, z) 

(1024, 1024, 64) 

Thermal design power (TDP) Watts 195 W 
 

Table 6.2: Hardware specifications of NVIDIA GPU. 
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6.5 Summary  
 

This chapter investigated GPU as many-core accelerator by considering different aspects of 

memory architecture and CUDA programming model. In CUDA programming model, the 

kernel execution specifies the dimensions of a grid and thread blocks. Once the kernel is called 

by a host, a grid will be launched and the thread blocks within a grid will be mapped to 

streaming multiprocessors (SMs) based on the transparent scalability of CUDA. In addition, 

thread blocks execution is further divided into warp execution which helps to avoid long latency 

by providing high occupancy for each streaming multiprocessor. The main strategies of 

optimising performance of CUDA application are presented by focusing on optimisation of 

memory usage, instruction usage and maximising parallel execution. Finally, GPUs as many-

core architectures are currently investigated and reviewed as one ideal choice based on the 

evidenced by their prominence and importance in high ranking TOP500 supercomputers for 

different scientific research fields.  
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CHAPTER SEVEN 

7 Cell Dynamic Simulation on CPU and GPU 

 

As discussed in chapter 2, cell dynamic simulation as a coarse-grained discretisation method can 

be used to investigate mesoscopic structure formation and dynamic behaviour of diblock 

copolymers [18, 43]. Although the CDS method compared to the other techniques such as self-

consistent field theory (SCFT) [147, 148] and theoretically informed coarse-grained (TICG) 

simulation [149, 150] is more scalable and reasonably fast, however CDS is still a 

computationally expensive scheme for traditional single processor computers.  Hence, the main 

drawback for cell dynamic simulation is that its computations are time-consuming and 

expensive due to two fundamental constraints: the time steps and experimental scale size. These 

limitations have direct effects on the simulation results. To overcome these problems and make 

a connection between simulation results and experiments, a new parallel computational model is 

needed that can be executed on a multi-core device. This chapter presents the implementation of 

efficient CDS method on multi-core CPU and many-core GPU, demonstrates the results based 

on the proposed parallel algorithm on CPU and GPU and evaluates the results in terms of 

execution time and speed. 

 

7.1 Optimisation of CPU Baseline Cell Dynamic Simulation  
 

CDS time evolution of an order parameter is performed on a cellular system based on two 

mechanisms: (i) short and long range interaction between particles; and (ii) cell connectivity for 

diffusive dynamics due to order parameter differences in neighbouring cells [33]. Cell dynamic 

simulation specifies the group of neighbouring points by dividing the whole domain into cells 

and calculating them by isotropised discrete Laplacian excluding for the centre cell XX 

with respect to the time step. Therefore, according to chapter 2 the calculation of CDS 

comprises of five main steps: (i) calculations of periodic boundary conditions (PBCs); (ii) 

calculations of first isotropised discrete Laplacian; (iii) calculations of map function and free 

energy functional; (iv) calculations of second isotropised discrete Laplacian of free energy 

functional; and (v) calculation of time evolution of the order parameters  rt ,1 . Figure 7.1 

illustrates an example of Laplacian nearest neighbours, with modification [18].  
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Figure 7.1: An example of Laplacian, where ( ) NN presents nearest neighbours, ( ) NNN next 

nearest neighbours, and ( ) NNNN next-next nearest neighbours [18]. 

 

As mentioned in chapter 5, the method of transferring an algorithm from scalar development 

into a vector process which can be executed a single instruction on multiple data simultaneously 

is called vectorisation. The optimisation of CDS sequential algorithm for x86 computer 

architectures based on the vectorisation and AVX, SSE4 instruction set of SIMD has been 

investigated in this section.  

 

     The main optimisation challenges for the CDS scalar based implementation are: (i) difficulty 

in vectorisation due to the dependency (data dependency, control dependency or loop-nest 

dependency) in the CDS baseline code, which prevents vectorisations; and (ii) memory layout 

and access pattern (non-contiguous memory access), which cause the usage of expensive gather 

and scatter operations. To overcome the challenges mentioned, the following points need to be 

considered: 

 

1. Vectorisation: in the CDS method, time evolution of order parameter and map function 

calculations can be auto-vectorised based on the Intel’s C compiler with some 

additional support. Auto-vectorisation is achieved by unrolling a procedural’s innermost 

loop a number of times to fit with the SIMD width of hardware to optimise the program. 

In the CDS baseline code, auto-vectorisation is performed with external intervention by 

considering compiler directives (#pragma ivdep and #pragma vector), to satisfy the 

potential control dependency in array updates. Each of the calculation values is unique 

and there is no overlapping in the same region of memory, thus the compiler directive 

can ignore data dependency in array updates. Due to the data dependency exists in the 

other CDS calculation (such as periodic boundary conditions), implicit vectorisation 

cannot be performed. Consequently, it is necessary to consider explicit vectorisation 

and parallelisation to solve the data dependency.  

 

2. Access pattern and memory layout: the other issue of the CDS optimisation refers to 

non-contiguous memory access due to the indirect addressing (non-unit stride) in loops. 
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Non-contiguous memory access by using multiple numbers of instructions to load data 

increases the number of scalar gather and scatter operations, which obliquely transpose 

between Array of Structure (AoS) and Structure of Array (SoA) layouts, and decrease 

SIMD efficiencies (vector performance). The reader is reminded that the gather and 

scatter operations in vector processors refer to the loading vector indexed and storing 

vector indexed in non-contiguous way.  Therefore, to reduce the overhead of gathers 

and scatters and to improve performance, two alternative ways of hand-vectorised are 

implemented: (i) considering SoA arrangement to reduce indirect addressing; and (ii) 

considering data alignment based on the AVX instruction set. Changing array structure 

to SoA helps to have arrangement of the unit-stride memory access which gives more 

effective vectorisation, and have a high locality of reference (specifically sequential 

locality). Locality of reference indicates memory locations which are regularly used and 

accessed. Having a good locality reference improves the performance by decreasing the 

number of data element access in memory. In addition, data alignment by aligning the 

data at a memory address with the same size or multiple of the word width (unit of data 

which can be handled by an instruction set) reduces the overhead of memory access, 

improves the performance of the system and makes the vectorisation compiler easier. In 

the CDS optimisation, 32 byte boundaries of data alignment based on AVX instruction 

set (256 bit) is used. Figure 7.2 shows a comparison of direct/stride and indirect access 

code for a simple loop in C language. 

  

 

For ( int i = 0; i < 200; i+=3) 

                  { 

                    b[i] += a[i] * d[i]; 

                  } 

 

a) Stride=3 

 

For ( int i = 0; i < 200; i+=3) 

                  { 

                    b[i] += a[i] * d[index [i]]; 

                  } 

 

b) Non-unit stride 
 

Figure 7.2: Comparison of stride and indirect addressing of d by using index array. 

 

7.1.1 Experimental Setup and Performance Results  
 

One of the main techniques to obtain a high performance on computer architecture is to use a 

single precision instead of double precision floating-point if possible. Since the SIMD 

instruction units are 2x bigger/wider for single than for double precision, it is possible to 

achieve normally 2x better performance. This study considers utilisation of single precision 

floating-point to get maximum performance and to have a fair and reasonable comparison 

between CPU and GPU.  In addition, to ensure that the C implementation of baseline code is 

strong enough for further optimisations, the comparison (based on the execution time) between 

C and FORTRAN90 implementations was done without considering any optimisations.  
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Table 7.1 presents the system specification and configuration used for executing the 

experiments in this study. 

 

Specification Intel Xeon Processor E5-2420 

Double Precision GFLOP/s 

Single Precision GFLOP/s 

L1 / L2 / L3 Cache (KB) 

Clock (GHz) 

91.2 

182.4 

32 / 256 / 15360 

1.9 

Configuration 

Operating System   

Linux Kernel Version 

Hyper-Threading Supported  

Compiler Version 

Compiler Flags 

Linux - OpenSUSE 12.3  

3.7.10.-1.1 

Yes 

Intel (ICC - IFORT) 15.0.3 

-O3 -ipo -fp-modelprecise -no-prec-div 

 

Table 7.1: Specification and configuration of CPU for CDS optimisation and non-optimisation 

results. 

 

The theoretical peak performance or floating-point throughput for CPUs can be calculated by 

the following equation: 

 

cyclepernInstructioCoresspeedClockpeaklTheoretica CPUCPUCPUePerformanc    

 

Where speedClockCPU  indicates the multiprocessor frequency, CoresCPU is total number of 

cores, and cycleperninstructioCPU  refers to the width of instruction set (SSE4-128 bit or AVX-256 

bit) and the number of operations per instruction. The reader is reminded that the Intel Xeon 

processor is based on the Sandy-Bridge architecture which can execute two operations 

(addition, multiplication) per cycle, and each AVX SIMD instruction set extension can contain 

eight single-precision or four double-precision floating points [151].  

 

     Furthermore, to present the scalability and performance of the optimised implementation, the 

results of experiments for non-optimised and optimised code based on the SSE4 (128 bit) and 

AVX (256 bit) SIMD instruction set are demonstrated. The performance difference between 

AVX and SSE4 is due to the wider SIMD width registers, a new Vector Extension (VEX) which 

performs addition operations with greater ease and support of three operands which decrease 

register pressure by not changing the main source operands (no-destructive source operands) 

[151].   

 

     Table 7.2 illustrates the loop cost of each calculation of CDS optimisation based on 128 bit 

and 256 bit SIMD, and speedup versus scalar implementation on the same computer. Loop cost 

indicates the number of clock cycles taken to execute an instruction of one loop iteration. The 

amount of loop cost can be used to predict the likelihood of a performance improvement in the 


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speed and consequently in vectorised loop. Table 7.3 shows a breakdown of the number of 

operations in the loop for each CDS calculation based on 128 and 256 bit SIMD. In case of 256 

bit SIMD, the numbers of medium and heavy weights vector instructions are reduced due to the 

data alignment with a 32 byte boundary. It should be noted that according to the Intel compiler 

vectorisation report, vector operations do not have the same cost in terms of cycles; therefore, 

they are divided into three different categories from the lowest cost (light) to the highest cost 

(heavy) in terms of clock cycles. 

 

CDS CPU 

Calculation 128-bit SIMD Speedup 256-bit SIMD Speedup 

PBCs 

First Laplacian 

Map Function 

Second Laplacian 

Time Evolution 

200.25 

410.25 

39.74 

362.500 

56.00 

2.44x 

2.54x 

2.92x 

1.92x 

2.03x 

122.36 

121.74 

10.87 

94.75 

30.25 

3.61x 

3.85x 

4.36x 

3.68x 

2.78x 
 

Table 7.2: Number of clock cycles for each CDS calculation based on the 128 and 256 bit SIMD 

instruction and speedup over a scalar implementation. 

 

CDS 128-bit 256-bit 

Calculation Light Medium Heavy Light Medium Heavy 

PBCs 

First Laplacian 

Map Function 

Second Laplacian 

Time Evolution 

102 

157 

21 

118 

39 

8 

2 

1 

2 

2 

7 

5 

3 

2 

2 

110 

158 

24 

121 

41 

4 

3 

0 

0 

1 

3 

3 

1 

1 

1 
 

Table 7.3: Number of operations for each CDS calculation. 

 

To ensure the C implementation of baseline code is strong enough for optimisation and multi-

threading execution, the comparison between C and FORTRAN implementations are taken into 

account without considering any implicit and explicit optimisations. Figure 7.3 presents the 

execution times for the baseline (original) CDS code for both C and FORTRAN languages 

without any optimisation in different time-steps and different domain size. As expected, 

FORTRAN scalar implementation is faster then C scalar implementation due to the nature of 

FORTRAN which is static, the size of data will be identified at compile time, and array model. 

However, investigating the design of FORTRAN is out of the context of this thesis.  It should be 

noted that the comparison between non-optimised baseline codes are performed on the same 

hardware architecture, compiler and floating point (single precision). 
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(a) 128128128   

 

 

(b) 646464   

Figure 7.3: Execution times for the CDS non-optimised baseline code based on the C and 

FORTRAN with different system sizes  128128128   (a)  646464   (b). 

 

Figure 7.4 compares the execution times of CDS optimised implementation with non-optimised 

CDS. For the different time-steps shown the performance of CDS is almost constant and 

consequently the computational cost per CDS calculation remains the same over time-steps.  
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(a) 128128128   

 

 

 

(b) 646464   

Figure 7.4: Execution times for the CDS optimised and non-optimised baseline implementations 

in different time-steps 

 

It can be seen in Figure 7.4 that SIMD optimisation of the CDS calculations increases the 

performance substantially. For the AVX instruction set implementation, speedups of 3.74x and 
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4.44x are achieved for the system sizes of 646464   and 128128128   respectively. The 

difference between the speedups of two different system sizes can be attributed to the original 

non-optimised implementation and it is not related to the scalability of the CDS optimisation. 

The performance ratio between the two system sizes is the same. Table 7.4 presents the 

execution times based on the AVX SIMD acceleration for two domain sizes within each time-

step. 

Time-steps Elapsed time (Seconds) 

646464   

Elapsed time (Seconds)

128128128   

10000 260.87 1866.86 

20000 529.72 3771.11 

30000 786.27 5594.96 

40000 1058.48 7457.51 

50000 1313.80 9320.15 

60000 1570.65 11164.71 

70000 1836.41 13090.16 

80000 2099.63 14916.98 

90000 2370.48 16750.24 

100000 2623.14 18610.78 
 

Table 7.4: Execution times in different time-steps based on the AVX instruction set. 

 

Figure 7.5 illustrates the execution times for the SSE4.2 and AVX instruction implementations 

of the CDS for two different system sizes. Compared to the SSE4.2 (128-bit), the AVX (256-

bit) implementation achieves an additional speedup of 1.3x. 

 

Figure 7.5: Executions times for SSE4.2 and AVX implementations. 
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By comparing the original (not optimised), SSE4.2 and AVX implementations of the CDS for 

the system sizes 128128128   and 646464  , the SSE4.2 implementation achieves 3.71x 

and 3.10x speedups, respectively; AVX implementation achieves 4.45x and 3.74x for the same 

system sizes. 

 

7.2 Cell Dynamic Simulation Method on Multi-Core CPU  
 

The second step in the performance enhancement refers to the exploitation of methods for 

parallelisation on the task level. According to the parallel architectures on the task level there 

are two well-known APIs for shared memory and distributed memory models: the OpenMP and 

MPI. The shared memory architecture OpenMP can be considered in terms of two types of 

shared memory machines: symmetric multiprocessor (SMP) and non-uniform memory access 

(NUMA). As mentioned in chapter 5, in SMP machine there is no special processor and the 

operating system treats all the processing units equally. There is also no special memory and all 

memories are equally accessible by different processors/cores. In NUMA, different memory 

regions have different access time; the processor has fast access to own memory but slower 

access to other memories. In the distributed memory architecture every processor has access to 

own memory and communication (massage passing) needs for accessing and sharing data with 

each other on the network. These two models of task level parallelism based on OpenMP and 

MPI have been extensively utilised for parallelising different algorithms in scientific research 

such as molecular dynamic (MD) [152]. However, this study investigates the implementation of 

the CDS based on the OpenMP multi-threaded shared memory computers.  

 

     OpenMP is the explicit programming model that can be used to accomplish parallelism based 

on threads/cores. Memory hierarchy model in shared address space machine is classified into 

shared memory (heap) and private memory (stack). Shared memory or heap can be shared and 

accessed between all the threads. Private or stack refers to private memory of each thread and 

cannot be shared with other threads. In shared address computer the shared data structure plays 

an essential role for parallelisation and optimisation of application by realising synchronisation 

and communication between threads and controlling data granularity for memory and 

communication contentions.  

 

     Although threads communicate by sharing variables in the heap memory address space, this 

data sharing may not always be safe, such as when one thread tries to write on a variable that 

other threads try to read from causing the results to change each time. This data conflict 

situation is called race conditions, when results fluctuate due to different thread arrangements. 

By organising and controlling access to shared variables, synchronisation can help to prevent 

race conditions and other data conflicts. In OpenMP there are two types of synchronisation 

constructs: barrier and mutual exclusion. Barrier synchronisation impacts all the threads in the 
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team by holding them at a barrier point until the other threads reach that point. Mutual exclusion 

specifies a section of code that can be executed only by one thread at a time. It should be noted 

that synchronisation is expensive and frequent synchronisation breaks performance down.  

 

The other challenge in multi-thread parallelisation which undermines the performance (speedup) 

is the load imbalance (the allocation of unequal amounts of workload to threads), which 

increases threads’ idle time. For instance, when whole numbers of threads reach a 

synchronisation point the thread with the most workload (i.e. the slowest thread) will control the 

overall performance.  

 

7.2.1 Parallel Algorithm of CDS for Multi-Threaded Systems  
 

The first step to design a parallel algorithm refers to the decomposition of system into separate 

parts that can be spread into different parallel tasks and executed simultaneously. There are 

numerous methods for splitting the system between parallel tasks/threads. The most common of 

which are data and spatial decompositions. Data decomposition method divides the data related 

with a problem or computational work and assigns portions of data into different processing 

units [153, 154]. The spatial decomposition method divides the whole domain into different 

sub-domains, each of which is organised in a hierarchy data structure, which illustrates the 

spatial relationship between domains [155, 156]. In fact, data structure plays a very important 

role in spatial decomposition scheme. Based on the nature of the problem, spatial decomposition 

method can utilise different types of data structure, comprising of kd-trees [157]; octrees; and 

regular grids [158, 159].  

 

     Octrees are axis-aligned tree-based hierarchies dividing the domain. In the octrees data 

structure each sub-domain has eight children with three axis-aligned splitting dimensions. The 

k-dimensional tree (k-d tree) is a generalisation scheme of octree, where k indicates the number 

of dimensions. In the k-d tree each sub-domain has two children without considering the 

number of dimensions of the system. Both octrees and k-d tree refer to the non-uniform 

subdivision of the domain and are useful in non-homogenous systems. Regular grids refer to the 

uniform system which involves number of equal size of cells or parts. The regular grids data 

structure of spatial decomposition method overlays the whole system with a uniform grid.  

 

     A well-known example for spatial decomposition refers to the MD simulation in the 

distributed memory model, which is applied spatial decomposition method to partition the 

whole MD system into 3D sub-domains and associate each sub-domain with different 

processors on the distributed memory architecture [160]. In this model, processors communicate 

with one another through the number of massage passing calls based on the MPI on the 

network. Both data and spatial decomposition methods have advantages and disadvantages. 
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Data decomposition is better in terms of load balancing but not so good in scalability, while 

spatial decomposition method is better in scalability but weak in load balancing. 

 

It should be noted that based on the model of the shared memory there is no global 

communication and communication cost between the threads is negligible, therefore 

communication cost is not considered in both cases. However, to overcome the issues 

mentioned and to obtain a better performance the appropriate mixture of both methods can be 

deployed. Therefore, a hybrid decomposition algorithm based on the work-sharing constructs of 

OpenMP and regular grids data structure according to the CDS simulation method on the shared 

memory machine was developed. The original idea for the spatial decomposition as a first step 

of hybrid algorithm for the CDS was based on the processor data structure, which splits the grid 

into different sub-grids, each of which it assigns different processing units. Although this 

scheme may be the answer for decomposing the whole system, the results cause a high number 

of load imbalances and race conditions. Consequently, due to the nature of the CDS method (i.e. 

cell based homogenous system), the data structure of regular grids is used for spatial 

decomposition. Hence, the spatial partitioning in the new algorithm considers the whole system 

as a grid divided into three-dimensional sub-grids. Each 3D sub-grid defines as an array of 

linked cell model with the same size, which has a relationship with the neighbouring sub-grids. 

This hierarchy arrangement delivers faster access to memory locations. Figure 7.6 shows the 

spatial decomposition method based on the cell-linked uniform grid.  

 

 

Figure 7.6: Cell linked spatial decomposition scheme. 

 

     After partitioning the whole system into different sub-grids/cells, data decomposition as a 

second step of hybrid decomposition algorithm starts to play a role. In data decomposition, 

block based decomposition is used to partition a group of cells into different blocks and then 

map each block to a core/thread in the shared memory machine. The main reason for block 

based data decomposition is to prevent load imbalance. It should be noted that the size of the 

block or number of cells per block can be determined according to the size of the system

zyx NNN ,,  and the blocks are scheduled statically (at compiler-time) to assign to threads. In the 

hybrid method the uniform cell linked data structure was considered to be a shared data 

structure that can be divided into different blocks of data and split among different threads 
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(rather than mapping each part of the CDS method to a single thread in the multi-core machine). 

Thus, the main differentiation of this method is the scheme of distributing sub-systems among 

the cores/threads, and structure of the shared data. The following figure presents the flow chart 

of the OpenMP CDS algorithm based on the hybrid method. 

  

 
Figure 7.7: Schematic of the OpenMP cell dynamic algorithm. 

 

As discussed earlier, one of the main challenges in multi-threaded programming and shared 

memory model is race conditions, specifically when dealing with shared arrays. In OpenMP 

implementation, the initial random disordered state is implemented as a critical section to 

prevent race conditions. Due to the nature of the CDS method the whole simulation starts from 

Data 

Decomposition 

Spatial 

Decomposition 
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an initial random disordered state ( ) and is discretised on a lattice. Therefore, it is necessary 

to prevent race conditions and data conflict. It should be noted that other than the critical section 

the implied barriers are considered at the end of each sub-system. The other sub-systems are 

decomposed more based on the data decomposition method by considering loop work-sharing 

constructs of OpenMP.  

 

7.2.2 Simulation Results and Performance Tuning  
 

This section presents the simulation results and performance tuning for the CDS multi-thread 

development. The experimental results were executed on the same machine specifications which 

mentioned in section 7.1.1, and the following table illustrates the simulation parameters which 

have been used for the simulation results of the CDS method.  
 

Simulation parameter Parameter value 

Number of Cores 

Hyper-Threading 

6 

2 

System Size 364 , 
3128  

Instruction Set AVX 

Total Execution-time 100,000 
 

Table 7.5: Simulation parameters in multi-threads implementation. 

 

     To present the performance of the proposed hybrid algorithm, the simulation is executed 

with a different number of cores and the execution or computing time of each core is 

demonstrated. The execution time is based on the wall-clock time which involves the CPU and 

system time. The CPU time indicates spending time for the computations and the system time 

refers to the time that was spent for file input/output, transferring or waiting. In addition, two 

other performance analyses are considered: parallel speedup and efficiency. Parallel speedup 

refers to the execution time taken to process the computation on P processors against on single 

processor. The parallel speedup can be defined by the following equation [161]:  

 

 
 
 PNT

PNT
PNS

,

1,
,


 . 

 

Where N refers to the total volume of computational work and P indicates to the number of 

processors/ threads. T (N, P=1) and T (N, P) are execution time for 1 and P processors 

respectively.  

 

     To achieve a more accurate comparison between the parallel and serial execution the 

efficiency of parallel execution should be taken into account. The parallel efficiency considers 


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the efficiency of fixed volume of computational work executing on P cores. This relates to how 

efficiently processors are used in parallel execution. The efficiency of parallel execution can be 

determined by [161]:   

 
 

p

PNS
PNE

,
,  .  

 

Here p is the number of processors, N indicates a computational work, and S (N, P) refers to the 

parallel speedup with respect to the number of processors.       

 

     To understand the impact of the block size of data decomposition in the hybrid algorithm, 

three different scenarios were considered: (i) data partitioning based on the block size = 1000; 

(ii) data partitioning based on the block size = 100; and (iii) data partitioning based on the 

function of the number of threads. Note that the other numbers of block sizes were considered, 

but the results turned out to be unacceptable and poor in terms of speedup, execution time and 

load balancing, therefore they are not stated here. The following figure presents the execution 

times as a function of the number of threads for two different system sizes based on the first 

scenario of data decomposition in the hybrid algorithm.  

 

 
(a) 646464   

 
(b) 128128128   

 

Figure 7.8: Multi-threaded execution times for two different system sizes based on the first 

scenario. 

 
 

Figure 7.9: Speedup (left) and efficiency (right) for 646464   and 128128128   system 

sizes based on the first scenario. 


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Figure 7.9 illustrates the speedup and efficiency of multi-threading for two system sizes based 

on the first scenario, which considers the block size =1000. It can be seen that the speedup in 

646464   system varies from 1.96 to 5.77, with the number of threads increasing from 1 to 

12, while the efficiency degrades from 1 to 0.48 (100.0% to 48.1%) except in the third core, 

which exhibits super-linear speedup. One of the possible reasons for super-linear speedup in this 

phenomenon refers to the cache effect resulting from various memory hierarchies of a computer. 

In parallel computing, in addition to the numbers of processors/cores changing, the sizes of 

accrued caches from different processors/cores also change. In fact, by having larger accrued 

cache size, more computational work can be stored in the cache, thereby decreasing the memory 

access time. This leads to extra speedup for the specific processor/core with larger accumulated 

cache [162, 163]. In other words, super-linear speedup occurs in the third core because of more 

efficient resources (such as RAM, cache and registers) in low-level computations available. In 

the larger 128128128   system, the speedup differs from 1.60 to 2.98 with respect to the 

number of threads, while the efficiency drops sharply from 1 to 0.24 (100.0% to 24.9%). By 

considering the speedup between the two system sizes and with the help of the Intel Vtune 

visual performance analysis [164], the inherent parallelism and the overhead of parallel libraries 

are high in scenario one. Inherent parallelism refers to the load imbalance and parallel libraries 

overhead indicates the scheduling overhead. Scheduling overhead refers to the thread 

scheduling overhead when the workload is not adequate between threads, which consequently 

increases idle or waiting time. It should be noted that in addition to thread scheduling overhead, 

synchronisation also increases the idle time.  

 

     Vtune performance analysis is used to monitor and gather all the statistical data and analysis 

of the system involving the benchmark program and Linux kernel. The method for collecting 

statistical data and analysis is based on the sampling technique. Sampling technique or statistical 

sampling refers to the execution of the program in an environment where it is broken up into 

some group of frequency (e.g. 100 times per second) and the position of the program counter 

will be saved before the program is started again. When execution of program is finished these 

positions/locations are decoded into the source code and then statistical data will be analysed to 

find out the hotspots of the program [164]. 

 

     Figure 7.10 shows a percentage of the wall-clock time when the specific number of threads 

were executing simultaneously in the OpenMp region of isotropised discrete Laplacian in the 

CDS, based on the Vtune tool for 128128128   system size. 
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Figure 7.10: Histogram of OpenMP threads usage for the calculation of first discrete Laplacian 

based on the first scenario. 

 

It can be seen that there is a high amount of load imbalance between the threads; therefore there 

is a need to consider other scenarios for partitioning data blocks. Figure 7.11 presents the 

execution time as a function of the number of threads based on the second scenario of data 

decomposition in the hybrid algorithm.  

 

 
(a) 646464   

  
(b) 128128128   

 

Figure 7.11: Multi-threaded execution times for two different system sizes based on the second 

scenario. 

 

 
 

 

Figure 7.12: Speedup (left) and efficiency (right) for 646464    and 128128128   system 

sizes based on the second scenario. 
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Figures 11 and 12 present the execution, speedup and efficiency of multi-threading for 

646464   and 128128128   domain sizes based on the block size =100. It can be seen from 

the figures that the speedup in 646464   system varies from 1.90 to 5.81, with the number of 

threads increasing from 1 to 12, while the efficiency is reducing from 1 to 0.48 (100.0% to 

48.4%) except in the third core, which is same as in the first scenario (super-linear speedup). In 

128128128   domain size, the speedup differs from 1.67 to 3.71 with respect to the number of 

threads, while the efficiency is decreasing from 1 to 0.3 (100.0% to 30.9%). By comparing the 

speedup and efficiency between the two scenarios, it can be noted that in 646464   domain 

size there is a very small difference in the speedup and efficiency, while in the larger 

128128128   system size there is a big difference in terms of the speedup and efficiency 

between two scenarios. Consequently, the second scenario is more sufficient and adequate for a 

large system. The following figure displays a percentage of the wall-clock time when the 

specific number of threads were executing simultaneously in the OpenMp region of first 

isotropised discrete Laplacian based on the second scenario for 128128128   domain size.  

 

 

Figure 7.13: Histogram of OpenMP threads usage for the calculation of first discrete Laplacian 

based on the second scenario. 

 

     From Figure 7.13 it can be seen that the load imbalance is slightly improved compared to the 

histogram of OpenMp for the first scenario, but the volume of inherent parallelism remains 

insufficient. In the last step, the third scenario based on the function of the number of threads is 

considered. Figure 7.14 illustrates the execution time for two system sizes based on the third 

scenario.  
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(a) 646464   

  
 

(b) 128128128   

Figure 7.14: Multi-threaded execution times for two different system sizes based on the third 

scenario. 

 

 

Figure 7.15: Speedup  PnSS ,  for the third scenario. 

 
Figure 7.15 presents the algorithm speedup with respect to the function of the number of 

threads. It can be seen the speedups from 4.27 to 7.26 and 4.00 to 6.81 with the number of cores 

cumulative from 1 to 12 for 646464   and 128128128   system sizes respectively. As 

expected, the speedup and efficiency in the third scenario are better than the other cases, 

specifically when simulating a large CDS system with data decomposition based on the fraction 

of the system size to the function of the number of threads. The following figure presents a 

percentage of the wall-clock time the specific numbers of threads were executing concurrently 

for the first isotropised discrete Laplacian calculation based on the third scenario for 

128128128   system. Figure 7.15 clearly shows the improvement of load imbalance between 

threads.  
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Figure 7.16: Histogram of OpenMP threads usage for the calculation of first discrete Laplacian. 

 

Although in the third scenario the overall speedup and the load imbalance are improved, it can 

be seen from Figure 7.15 that the speedup in both system sizes, specifically in the large system, 

starts to decrease after the sixth thread. The main reason for this phenomenon is Intel’s Hyper-

Threading (HT) and the effects of HT technology on a system performance. In general, HT 

technology indicates the enhancement of parallelisation of computations by considering a single 

physical processor as two logical processors. The resources of physical processor such as cache 

and control units are divided, and the architectural state, which includes control registers, 

memory management unit, counter registers and addresses registers, is duplicated for two 

logical processing units [165, 166]. By duplicating architectural state and sharing resources, HT 

technology allows a single physical processor to processes instruction streams in parallel from 

different threads improving the performance [166]. 

 

     In principle, there are different levels of parallelism (section 5.3) that can be utilised in the 

modern processor to increase the performance. These parallelism levels can utilise the 

underlying parallelism level (hybrid model) to obtain a better performance. Regarding the 

hybrid levels of parallelism the HT technology provides exploitation of the hybrid model based 

on the instruction and task levels parallelism. Although HT by exploiting hybrid model allows a 

processor to dynamically allocate resources to threads and permits multiple threads to be 

executed simultaneously on an SMT processor, threads must share the main physical processor 

resources between each other. Therefore, this concurrent sharing of resources causes a potential 

bottleneck and degrades the performance.  

 

     Different studies have investigated the impact of HT technology on performance and 

whether HT is beneficial or not. These studies and Intel company have exposed that the HT 

technology can be enhanced the performance of application by 10-30%, depending on the 

characteristics of the program [167, 168]. They also suggest that the workload plays an essential 

role in the performance of multi-thread program. Therefore, the main reasons for the 

degradation in the performance when HT is enabling in high amount of workload are: (i) greater 
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number of threads is directly related to increased synchronisation cost (increasing number of 

threads means more spending time between threads for synchronisation); (ii) considering two 

logical threads in single physical processors shares the processor resources, which has a direct 

impact on the performance, especially when the volume of workloads is high; (iii) 

supplementary memory contention; and (iv) competition between logical threads for access to 

the caches cause additional cache-miss situations. However, to answer whether HT is beneficial 

or not depends on the nature of the program and the algorithm of implementation. In the third 

scenario of the CDS multi-threading program, it can be seen clearly that HT technology is not 

very useful in 646464   system size and is considerably inferior when increasing the domain 

size to 128128128  .  

 

To comprehend the impact of HT on shared memory computer the third scenario is considered 

with and without HT in two system sizes. Figure 7.17 displays the speedup with respect to the 

number of physical cores with HT enabled and disabled for 646464   and 128128128   

domain sizes.  

 

Figure 7.17: Parallel scaling results with Hyper-Threading enabled and disabled. 

 

     The results displayed in Figure 7.17 show that when HT is enabled in 646464   system 

size the performance improves by around 5%. On the other hand, in 128128128   domain size 

there is no considerable difference when HT is enabled. In fact, the degree of difference when 

HT is enabled compared to when it is disabled in the bigger system size is less than 2%. 

Therefore, as mentioned earlier, HT is not very beneficial in 646464   domain size and is 

considerably inferior when increasing the system size to 128128128  . The following figures 

present the execution times and the speedup for the original CDS and multi-threads 



103 
 

implementation based on the first scenario for 128128128   system size, with a total of 

100,000 time-steps. 

 

   
 

Figure 7.18: Execution times (left) and speedup (right) for the original and AVX multi-threaded. 

 

From the above figures it can be seen that for the original implementation the speedup improves 

by a factor of 4x from 1 to 12 threads, while for AVX multi-threads implementation grows by 

3x from 1 to 12 processing units. As a result the original code scaling to some extent is better; 

the main reason for this is the much worse total execution time of original implementation. 

Figure 7.19 shows the speedup for the original and AVX implementations as a function of the 

number of physical cores based on the third scenario. To have a fair and reasonable comparison 

between original and AVX codes, HT for both situations is considered as disabled. The original 

implementation gains around 2.4% speedup on six physical cores without HT.  
 

 

Figure 7.19: Speedup for the original and AVX implementations based on the third scenario. 
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In addition, to evaluate the hybrid algorithm and to show the accuracy, the CDS method was 

also developed based on the functional partitioning in spatial decomposition scheme. In general, 

functional partitioning focuses on the computational works which need to be processed rather 

than data operated by the computational works. In functional decomposition the computational 

work or problem is partitioned into different parts/tasks, each of which will be assigned to one 

processing unit. A good example of functional partitioning is climate modelling. In climate 

modelling the whole problem is decomposed into four components (atmosphere, ocean, land, 

and hydrology), each of which can be considered as a separate task to assign to processing unit 

[169]. In the spatial functional decomposition scheme the spatial decomposition is same as 

previously discussed (Figure 7.7), but in the functional partitioning, rather than considering a 

block of data for partitioning, each calculation of the CDS is considered as a separate task 

mapped to the processing unit. Note that each direction (x, y, z) of periodic boundary condition 

is also divided into a separate task. The following figure displays the execution times as a 

function of the number of threads for 646464   and 128128128   system sizes based on the 

spatial functional decomposition method.   

 

 
(a) 646464   

  
(b) 128128128   

Figure 7.20: Multi-threaded execution times for two different system sizes based on the 

functional decomposition. 

 

     The scalability in functional partitioning scheme is poor as illustrated above. With the help of 

the Intel Vtune performance analysis it is found that in functional partitioning the parallel 

overhead between threads is high and false sharing occurs. False sharing refers to the situation 

wherein different array elements try to share the same cache-line. It should be noted that if the 

code is weak scaled perfectly, the number of threads will not change the execution time. Figure 

7.21 illustrates the parallel speedup of hybrid decomposition from three scenarios and spatial 

decomposition with functional partitioning algorithms for 128128128   system size in 

100,000 time-steps.   
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Figure 7.21: Speedup for four decomposition strategies. 

 

Figure 7.21 indicates that the new hybrid decomposition algorithm based on the third scenario 

gains the best parallel speedup and performance for the CDS simulation system. Although the 

spatial decomposition based on the functional partitioning to some extent achieves better 

speedup compared to the first and second scenarios of hybrid algorithm the amount of the 

inherent parallelism overhead and false sharing is high. It should be noted that all results are 

executed with enabled HT. 
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7.3 Cell Dynamic Simulation on GPU  
 

Over the last few years the highly parallel architecture of GPUs and the ability of GPGPU have 

increased the usage of GPUs in the area of HPC and PCs [122]. This ability and parallel 

architecture present considerable promise and different opportunities for scientific engineering 

and computing (e.g. real-time applications and heavy simulation) to solve expensive and time-

consuming computational works more quickly and economically (e.g. less power consumption), 

without considering CPU clusters [170]. In addition, load balancing, scalability and portability 

issue of SIMD architectures are other rationales for the high utilisation of and demand for 

GPUs. Different applications such as CFD [171], particle physics [172], molecular dynamic and 

lattice Boltzmann method (LBM) [173, 174] are commonly used in HPC studies and widely 

investigated and implemented on GPUs; in fact, due to parallelisable nature of these 

applications, they are particularly suitable candidates to be implemented on the latter. CFD and 

particle physics are considered by a specific data dependency pattern called wavefront 

dependency, whose pattern according to Lampart [175] can be solved based on the hyperplane 

algorithm, whereby the calculation and computation of the value of each cell in a grid (i, j, k) 

depending on the values of three of its cell neighbours is computed by former calculations (i, j, 

k-1), (i, j-1, k) and (i -1, j, k). Molecular dynamic is characterised by calculations of short-range 

and long-range forces between pairs of atoms. The cell-based method is mainly used to 

calculate short and long ranges forces between pair of atoms. This method specifies the group of 

neighbouring atoms by splitting the whole computational work into cells and calculating the 

forces between an atom and the contents of some group of surrounding cells [172]. LBM can be 

used as a model of fluid flow by calculating linear advection and local relaxation operation 

between neighbouring cells [176]. These applications by nature are parallelisable, and 

implementing them on GPUs can achieve significant speedup of applications.   

 

     Optimisation of CUDA programming model sometimes can however be very difficult due to 

the different specifications of GPUs, including: (i) memory coalescence; (ii) number of threads; 

(iii) number of register per thread; (iv) the amount of shared memory; and (v) number of thread 

blocks. The efficient values of these parameters on one GPU’s architecture and compute 

compatibility may not be efficient and optimal on other architectures with different compute 

compatibility, raising the issue of portability. Hence, this section presents the implementation, 

evaluation and the performance analysis of the CDS method on GPU with respect to the 

multiple architectures/platforms. 
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7.3.1 CUDA Parallel Algorithm of the CDS from Domain Level View  
 

As discussed in section 7.2.1, the common approach to design a parallel algorithm is 

decomposition of the system into separate regions spread into different parallel tasks and 

executed concurrently. The decomposition method used in the CUDA implementation of the 

CDS on GPU is based on the fine-grained spatial decomposition. In the whole process, as 

demonstrated in multi-threaded parallel algorithm, the entire system is conceptualised as a 3D 

grid or cube, each box or sub-grid of which demonstrates a data cell of the system with the same 

size. In the method described, the whole system as a cube is decomposed into 3D grids, and 

according to the CUDA threads hierarchy architecture each cell or sub-grid of the system is 

assigned to one thread with three respective dimensions (x, y, z) responsible for all calculation, 

and groups of threads are clustered into blocks. According to the CUDA hierarchy architecture 

[17, 124], each kernel function is performed in a grid of threads. Each grid is divided into blocks 

(thread blocks) and each block is divided into a number of threads. From a parallelisation 

perspective for NIVIDIA GPUs, computational task is parallelised at two levels; the 

computation problem is divided into blocks involving groups of threads, with each thread block 

assigned to a SMX, and threads within a block spilt further into sets of 32 threads called warps. 

All the threads in a warp are executed in parallel and perform the same instruction.  

 

     In the spatial decomposition method due to the CUDA hierarchy model, the uniform block-

cell linked data structure was used to be a shared data structure. This model of data structure by 

partitioning the entire domain/system into cells and grouping them into different numbers of 

blocks according to the CUDA architecture helps to implement the whole system on GPU 

efficiently and competently. Therefore, the compelling reasons for choosing spatial 

decomposition scheme based on the block-cell linked structure for CUDA parallel 

implementation of the CDS are: (i) high compatibility with GPU architecture; (ii) less maintain 

overhead or few numbers of memory accesses; and (iii) effective usability of thread and 

instruction levels parallelism. Figure 7.22 presents 2D CUDA thread hierarchy architecture for 

describing GPU computation of spatial decomposition method based on the block-cell link 

structure in time. It should be noted that due to the architecture of GPU, which consists of many 

threads each of which is responsible for each cell that must be computed, fine-grained 

distribution was selected for spatial decomposition method, whereas in multi-thread parallel 

algorithm on CPU coarse-grained spatial decomposition is used.  
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Figure 7.22: CUDA threads model of spatial decomposition scheme based on the block-cell link 

model. 

 

According to the results (sections 7.3.6 and 7.3.7) of the implementation of the spatial 

decomposition method based on the block-cell link model, the following sections present this 

method as a suitable and appropriate choice for GPU-accelerated CDS simulation, which is to 

be expected to prevent workload imbalance by allocating enough resources for each data 

element (cell), enhancing system performance and reducing communication overheads/costs, 

ultimately decreasing the GPU’s memory access time.  

 

7.3.2 Memory Arrangement and Layout   
 

According to the CUDA parallel algorithm of the CDS, the simulation code is parallelised in 

such a way that one thread is responsible to execute the CDS calculations at one spatial location 

)(r in the 3D grid/domain. Each thread utilises a unique and distinctive coordinate (thread 

index) to find the appropriate portion of the data to perform and process. Each thread accesses 

the portion of the data within DRAM once initially loaded. However, to comprehend the 

memory layout and the allocation of multi-dimensional arrays in DRAM, how C programming 

language accesses data elements of dynamically assigned multi-dimensional arrays must first be 

understood. It should be noted that CUDA C programming model was used in GPU 

implementation, therefore C programming language was taken into account in this investigation.  
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Ideally, a data element at the row j and column i in two-dimensional array can be accessed, such 

as d_pxi[j][i] array. However, on CUDA C programming language this type of access is not 

possible due to the number of columns in d_pxi array not being known at compiler time. One of 

the main reasons to consider dynamically allocated arrays is to permit changing the dimensions 

and sizes of arrays based on data size at run time [139]. Consequently, due to the information 

regarding the number of columns is unknown at compiler time; a dynamically allocated multi-

dimensional array is not possible on CUDA C programming model. Subsequently, it is 

necessary to explicitly “flatten” or linearise a dynamically allocated multi-dimensional array 

into a one-dimensional array within the DRAM. In principle, due to the utilisation of a flat 

memory space in modern computer architectures, C programming language also linearises 

multi-dimensional array into a single dimension. To a certain extent, in C programming 

language the compiler has responsibility to convert or to flat multi-dimensional array into a 

single dimension array. Note that the memory space indicates a simplified view of accessing a 

memory by processor in modern computer architecture based on the address of each location 

that accommodates a byte of data.  

 

     There are two main techniques to flatten a multi-dimensional array into a single dimensional 

array: row-major layout and column-major layout. In row-major layout all the same row data 

elements are placed into consecutive and successive locations, then the rows are located serially 

one after another into the memory space. Column-major layout considers all the same column 

data elements to be located into consecutive locations and columns are placed serially into 

memory. C and CUDA C programming languages use row-major layout and column-major 

layout is mainly utilised by FORTRAN language, which is beyond the scope of this study. An 

example of 2D array/matrix H[j][i] where j=4 and i=4, which is flatted into a 16 element one 

dimensional array is presented in Figure 7.23.    
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Figure 7.23: Row-major layout for two-dimensional array flatted into one-dimensional array. 

 

It is evident that two-dimensional array is flatted into single dimension array based on the row-

major layout technique. Thus, to access the corresponding index of the H element in row j and 

column i of two-dimensional array the following formula can be used:  

 

][]][[ ColumnwidthRowHijH  . 

 

The width refers to the width elements of array in each row, of which there are four in H[j][i] 

array. For instance, the equivalent index for 2,3H  is 14243  . In the literature the width of 

array is sometimes called “stride” of array.  

 

     Furthermore, the linearization of 2D arrays can be extended to 3D by considering another 

dimension. The linearized access to the H three-dimensional array can be written by the 

following formula:  

 

][]][][[ iNjNNkHijkH iij  . 

 

     Therefore, with row-major layout, multi-dimensional arrays/matrixes can be allocated into 

single dimensional array in global memory (DRAM) of GPU, which comprises the first row, 

followed by the second row, followed by the third row, and so on.  

 

 

 




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An important point in memory layout refers to coalesced memory. Considering coalesced 

memory is one of the important optimisation techniques that can be applied to efficient 

implementation of the GPU code. Coalesced memory is a technique that combines and groups 

non-sequential, small data transactions and global memory reads into larger and sequential data 

transactions. This technique helps the GPU execution to be more efficient in terms of global 

memory accessibility and allows consecutive threads within a warp to access contiguous 

memory with larger data transactions and bigger memory reads. In this work, this technique is 

considered to combining and linearizing three-dimensional arrays into one-dimensional arrays 

by using thread ID with respect to x, y, z coordinates (section 6.3.1). In addition, this way of 

storing data in global memory indicates SoA memory layout. As noted in section 7.1, the 

memory access patterns are very important for achieving high performance in the program on 

any parallel architecture and considering appropriate data layout for accessing memory has a 

direct impact on performance. Better and effective vectorisation and parallelisation can be 

provided when SoA memory layout maintains the unit-stride memory and consecutive memory 

locations. In order to uphold coalesced access to global memory and to prevent misaligned 

access to memory padding [177] is used in SoA layout. Figure 7.24 shows the difference 

between AoS and SoA memory layouts with padding. 
 

 

Figure 7.24: Difference between AoS and SoA. 

 

     Another factor in memory access optimisation related to coalesced memory is the 

combination and coalescing different requests of a warp into a single request to reduce DRAM 

bandwidth. This indicates that access to DRAM will be most effective when a warp (32 threads) 

load and access in the same 128-byte (in Kepler microarchitecture) segment or cache-line. 

Hence, the global memory can be accessed more efficiently by coalescing and combining all 32 

requests from each thread in a warp into one request or transaction. To meet this requirement, 

alignment within streaming operations to a 128-byte boundary of cache-line is necessary. As 

discussed in section 7.1, alignment refers to the property of memory address that align a data 

stream to start at specific addresses, and can be determined as a numeric address to a power of 2 

[178]. In alignment besides the address the data size is also important. When a datum address is 

aligned to its size it is known as “naturally aligned”. 
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However, to comprehend how the data alignment can be helpful for coalescing requests into 

single request, the investigation of loading operations from global memory is important. In 

general, there are two types of loads from global memory based on the Kepler GK104 

microarchitecture: caching (default) and non-caching. Caching is a default mode of GPU for 

loading from memory with 128-byte line, by which it tries to use L1, then L2, and then global 

memory. Non-caching is not the default mode of GPU and needs to be compiled with different 

configuration for utilisation. Non-caching mode tries to use L2 and then global memory. In the 

present study, only caching load is considered. To understand this behaviour two scenarios are 

taken into account: cache loading with aligned requests and cache loading with misaligned 

request. In the first scenario, all 32 requests from each thread in a warp are aligned with 

consecutive 4-byte data size. The following figure presents cache loading with aligned requests.  
 

 

Figure 7.25: Aligned cache loading. 

 

     From the previous figure, all of the 32 requests from each thread in the warp are combined 

and coalesced into a single 128-byte cache-line or segment and the whole thread addresses of a 

warp are allocated within one segment. It is evident that in the first scenario addresses from a 

warp can be allocated when permuted (not in consecutive format) in one cache-line. In contrast, 

the second scenario illustrates all 32 requests from each thread in a warp when misaligned.  
 

 

Figure 7.26: Misaligned cache loading. 
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Figure 7.26 shows all of the 32 requests in a warp when not coalesced into a single segment; 

they are combined into two cache-lines and the all thread addresses of a warp are allocated 

within two segments resulting in performance losses. Therefore, alignment and stride play very 

important roles in optimisation of memory access pattern and memory coalescing. Even though, 

these factors are essential features of optimisations of memory, striding through DRAM when 

dealing with multi-dimensional arrays is difficult and problematic due to the large strides 

between threads in a warp and between elements of array. For accessing multi-dimensional 

matrix, it is essential for threads to index the higher dimensions of the matrix which causes large 

strides between threads. To address this issue utilising on-chip shared memory is considered. 

Additionally, matching the x direction of the system to the innermost block size can be helpful 

for solving the problem of large stride. Another option ‘shuffle’ also exists, which will be 

addressed in the future work. Therefore, this issue is solved based on the coalesced transpose 

through shared memory. The implementation of the coalesced transpose through shared memory 

follows: (i) loading contiguous data from global memory into the shared memory from each 

thread within a warp; (ii) re-determining the array indices of shared memory; and (iii) 

synchronising all the threads, in order to make sure all the threads within a warp of one block 

complete calculations. 

 

7.3.3 Communication and Data Transfer 
 

Data transferring must be accomplished through PCI-Express interface (bus connectors) from 

CPU to GPU and vice versa. In CUDA programming model [131] this can be done by using 

cudaMalloc() and cudaMemcpy() functions. CudaMalloc() function is for allocating memory on 

the device and cudaMemcpy() function is for copying data stream from the host to the device 

and back again. The important point of data transferring or communication between CPU and 

GPU refers to the performance. In fact, multiple unnecessary Memcpy functions have a direct 

impact in reducing the performance. The following figure presents allocating memory in CUDA 

and copying data from CPU to GPU. 

      

       float* d_pxi; 

          size_t size=Nz*Ny*Nx*sizeof(float); 

cudaMalloc((void**)&d_pxi,size) 

          

         float* h_pxi = malloc(size); 

             // code to fill h_pxi 

                cudaMemcpy(d_pxi,h_pxi,size, 

                   cudamemcpyHostToDevice); 

 
 

Figure 7.27: Allocating an array on memory of GPU (left) and copying data from CPU to GPU 

(right). 

Where d_pxi refers to the array on the device and h_pxi is an array on the host. The last term of 

cudaMemcpy function indicates the direction in which the data must be copied. 
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7.3.4 Threads and Thread Blocks Distribution 
 

The number of threads that can be executed simultaneously in parallel varies according to GPU 

architectures and compute compatibilities. A maximum of 1024 threads are possible in a block 

in Kepler architecture with a minimum of 3.0 compute compatibility. In GPU devices there is a 

high amount of obtainable parallelism, and this large number of threads can be used to hide 

memory latency efficiently. On the other hand, on CPU devices this amount of parallelism is not 

accessible due to architectures whereby only instructions of one or two threads (with respect to 

HT) can be executed simultaneously in parallel. Therefore, to utilise this high volume of 

parallelism on GPU fine-grained distribution scheme for distributing threads and thread blocks 

based on the fine-grained spatial decomposition method must be considered. In fine-grained 

distribution the total number of threads and thread blocks are launched based on the domain size 

whereby each thread must be processed in each cell of the cube or grid-point of the system. It 

should be noted that according to the NVIDIA CUDA programming guide [131] the number of 

threads per block that can be used to achieve the best performance is recommended to be a 

multiple of warp size (32). Otherwise the GPU would waste the SM resources on active warp 

(e.g. registers) and increase the number of unusable and inactive threads in the last warp. In the 

whole computation processes of the CDS the total number of cubes’ cell is determined by

xyzT NNNN  . yz NN ,  and xN  are the numbers of cell/grid-point coordinates 

considered by each kernel function on GPU. Thus, the appropriate number of grids (grid size) is 

defined based on the following formulas in three dimensions:  
 

   1:0?0%1/  DimblockNDimBlockNDimGrid zzz  

   1:0?0%1/  DimblockNDimBlockNDimGrid yyy  

   1:0?0%1/  DimblockNDimBlockNDimGrid xxx  

     DimBlock refers to the number of threads in a block which depends on the GPU architecture, 

simulation system size and available resources  such as warps, shared memory and registers. 

The last term of the formula is for adding an additional block to avoid a lack of resources and to 

ensure that the DimGrid covers the entire system size. Percentage sign in the last part refers to 

modulo operator which gives the remainder of a division. Conditional expression (?:) in the last 

term is used for the evaluation of modulo operator, if the condition (remainder of modulo 

operator) is true (zero) then returns zero, otherwise returns one. Therefore, by considering this 

structure the kernels will perform for every grid cell of simulation domain from (1, 1, 1) to (

xyz NNN ,, ), regardless of the system size. 

 


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7.3.5 Heterogeneous CUDA-Based CDS Pseudo-Code from Logical Level View 
 

As discussed earlier, in a single computer node GPU and CPU are discrete and separate 

processing components connected to each other through PCI-Express bus. This form refers to a 

heterogeneous system. In heterogeneous system computational tasks are processed based on 

heterogeneous computing, which divides the computational tasks between processing 

components to yield high performance. In this model of computing, data is initialised by the 

CPU/host and compute-intensive works are processed by GPU/device. As mentioned in chapter 

6.3.3, due to the highly parallel nature of GPUs architecture and different types of memory on 

GPU, optimal performance can be achieved by executing intensive parallel works on GPU and 

fewer parallel or sequential works on CPU. Figure 7.28 illustrates CUDA-based CDS 

simulation pseudo-code. 

Begin 

Host program on CPU 

1: Define variables  

2: Read values of parameters from input files 

3:  Allocate Host arrays  

4:   Initialise random values for order parameter 

5:   Allocate Device arrays 

6:    Define time function 

7:     Start to copy values from Host to Device   

8:      Calculate number of threads and number of blocks based on the system size                      

           (number of cell) 

9:        Discretised into three dimensions cube/grid and map each thread to one cell  
 

Kernel program implemented on GPU/Device 

10: Kernel 1 – Define and calculate boundary condition in x axis  

11:  Kernel 2 – Define and calculate boundary condition in y axis 

12:   Kernel 3 – Define and calculate boundary condition in z axis 

13:  For all time – steps --- (executes on the host)  

14:     Kernels 4 - 7 – Calculate first isotropised discrete Laplacian  

15:      Kernel 8 – Calculate Map function 

16:       Kernels 9 - 13 – Calculate second isotropised discrete Laplacian of the  

17:        Free energy functional and update boundary conditions 

18:      Kernel 14 – Calculate whole equation for  rt ,1   Eq. (2.8)  

19:       Copy back from Device to Host  

20:      Reconstruct the data cell according to the results 

21:     Write the outputs into files  

22:    End for 

23:   Free all Host and Device memory allocation  

24:  Write the elapsed time  

End 
 

Figure 7.28: Heterogeneous pseudo-code of CUDA-based CDS simulation. 
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Figure 7.28 shows that the complex CDS simulation method is divided into a group of 

fundamental kernels to process the expensive computations and calculations. The major reasons 

for having a group of kernels that transfer a set of function calls from the host into the device 

are that it: (i) is easier to implement; (ii) is easier to maintain code accurateness; and (iii) 

maximises system performance by allocating enough resources for each kernel. Therefore, to 

obtain the maximum benefit of parallel computing of GPU, fourteen kernels were implemented 

for the calculations. According to the pseudo-code of CUDA program, each kernel has a 

responsibility to compute one part of the CDS simulation method in parallel. However, this 

method has limitations, as discussed with regards to kernel optimisation (kernel fusion) in 

section 7.3.7. 

 

7.3.6 Performance Metrics and Results  
 

This study used NVIDIA Quadro K5000 commodity based on the first generation of GK104GL 

Kepler microarchitecture. It comprises of eight streaming multiprocessors, each of which 

contains 192 cores. In total, there are two warp schedulers and two instruction dispatch units per 

each streaming multiprocessor, which are capable of launching and executing two warps 

concurrently and simultaneously [179]. Dual warp scheduler selects two warps and launches 

one instruction stream per clock cycle from each warp. Since warps execute independently in 

dual warp scheduler there is no dependency issue within the instruction stream and it can be 

obtained high performance. The warp scheduler helps to have an efficient share access to 64KB 

of configurable L1 cache/shared memory. Total numbers of multiprocessing streams have 

shared access to 512KB of L2 cache and 4GB of global memory. The GPU commodity clock 

rate is 706 MHz; a theoretical peak single precision performance refers to the 2.1 TFLOPS and 

the maximum memory bandwidth is 173GB/s.  

     There are two main metrics for specifying GPU performance: maximum computational 

performance and memory bandwidth. Maximum computational/arithmetic performance refers to 

the measurement of computational capability by calculating the number of floating points either 

single or double can be processed per second. Memory bandwidth indicates the amount of data 

that can be accessed in a specific time (seconds). It can be specified whether the program is 

compute or memory bounds by considering the ratio between a maximum arithmetic 

performance (single precision) and a peak memory bandwidth. In NVIDIA K5000 the ratio of 

these factors is: FLOP  bandwidth = 12.1. This value indicates that for increasing arithmetic 

throughput and computer resources, at least 13 floating point operations per memory access 

should be performed to achieve high FLOP performance. There are three main factors that must 

be considered to obtain high performance on GPU application: (i) decreasing/hiding instruction 

and memory latency; (ii) efficient utilisation of memory bandwidth; and (iii) efficient utilisation 
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of computer resources or arithmetic throughput. Not considering these factors will be caused 

performance bound which are respectively: (i) latency bound; (ii) memory bound; and (iii) 

compute resource bound. Latency bound refers to the situation when both memory and compute 

utilisation are low. Memory bound is a situation when memory access/load and store speed is 

high. This pertains to the time of execution of program depending on the memory loads. 

Compute resource bound indicates that the resources are not used efficiently e.g. a high 

proportion of disabled warps relative to the total number. To address the performance bound 

issues the following points have been considered:  

1. Memory bandwidth: to reduce memory bandwidth bound appropriate memory access 

pattern, layout and alignment are considered. In addition, efficient usages/metrics of 

GPU memory hierarchy for each kernel are investigated.  

 

2. Arithmetic resources bound: to address this problem, warp execution efficiency should 

be considered. Warp execution percentage refers to the average percentage of active 

threads in every executed warp. In fact, improving warp execution efficiency can 

increase the utilisation of the resources. According to the GPU CUDA, to fulfil this 

requirement all threads in a warp should have the same branching behaviour, and reduce 

divergent branches (e.g. if - then - else) as much as possible in each kernel. 

 

3. Latency bound: to decrease the latency bound, the occupancy of each streaming 

multiprocessor is important. Streaming multiprocessor occupancy refers to the ratio of 

the number of active warps to the maximum number of possible active warps that can 

be assigned on a GPU’s multiprocessor [180]. There are three main points which play 

important for theoretical occupancy of the multiprocessor: (i) number of threads per 

block; (ii) amount of shared memory usage per block; and (iii) number of register 

utilisation per thread. However, the main reason for low achieved occupancy is that all 

streaming multiprocessors on GPU have different execution time-line and they do not 

remain equally busy during execution of kernels because of synchronisations and 

existent dependencies.   

Furthermore, the high levels of performance can be achieved at lower occupancy by increasing 

instruction level parallelism (ILP) according to Vasily Volkov [181]. To hide or decrease the 

latency it is necessary to have high occupancy (more concurrent warps) or high instruction level 

parallelism (more independent instructions in a thread). In addition, different techniques (e.g. 

loop unrolling) that can be applied in program to increase ILP are employed by optimising 

compiler [112]. Hence, this study consider mainly the exploiting the thread level parallelism 

which comprises of task and data parallelisms. The following formulas illustrate how to 

calculate different metrics of performance [182]: 
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ThroughputLatencywarpsquired _Re . 

The required-warps (amount of parallelism) refers to the required number of warps to achieve 

high performance or hide latency. Latency is the time needed to process an operation and 

throughput indicates number of operations that can be processed per second in each streaming 

multiprocessor. Arithmetic latency takes approximately 10-20 clock cycles and memory latency 

takes between 400-800 cycles. A warp performs one instruction that corresponds to 32 

operations and Kepler architecture needs 3,840 (20192) operations per streaming 

multiprocessor to obtain full arithmetic utilisation. By dividing 3840 by 32, 120 warps per 

streaming multiprocessor are required to achieve full utilisation of compute resources. The 

maximum memory bandwidth for Quadro K5000 commodity is 173GB/s and memory 

frequency/clock rate is 2.7GHz, and 1 Hz is specified as one clock cycle per second, therefore it 

is possible to calculate the memory bandwidth from gigabyte per second to gigabyte per cycle: 

1732.7 = 64 Bytes/Cycle. By multiplying byte per cycle by Kepler memory latency, 64

800=51200 bytes or 52KB of memory I/O needed to obtain high memory utilisation. It should 

be noted that this value is for the whole GPU device, not for each streaming multiprocessor. 

Finally, a knowledge this value and amount of data that each thread uses, the number of threads 

and warps to hide memory latency can be calculated. For instance, if each thread utilises 4 bytes 

for computation, consequently the number of threads can be calculated by 52KB 4 

bytes/thread = 13,000 threads or 13000 threads32 threads/warp = 407 warps required to hide 

memory latency.  

     In CUDA hierarchy model instructions are executed within each core of streaming 

multiprocessor, when one warp becomes idle e.g. waiting for result, the streaming 

multiprocessor switches to other active warp to continue execution. By having enough warps the 

cores of the GPU/device can be kept busy or occupied all the time, hiding latency.  The context 

of each warp will remain on-chip of streaming multiprocessor during the whole lifetime of the 

warp. Hence, the switching cost between warps is negligible.  

warpsMaximume

warpsActive
occupancylTheoretica

_

_
_  , 

 

   SMperwarpsMaxcyclesActivewarpsActiveoccupancyAchieved ______  , 

 

     The other important metric to be considered for hiding arithmetic resource bound refers to 

divergence or branch of the control flow. The GPU execution is based on the warp and each 

thread within a warp executes same instruction. If however, some threads within a warp start to 

execute different instructions or take different paths, warp divergence will happen and degrade 

performance. Warp divergence or branch causes the serial execution of those threads which take 




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a path (condition is true) and the rest of threads will be disabled until the primary condition 

becomes false. Thus, it is essential to reduce as much as possible the number of different 

execution branches within the same warp. Branch efficiency formula can be used to calculate 

the efficiency of warp divergence. Branch efficiency refers to the ratio of non-divergent of 

branches to total number of branches.  

 

100
_

_ 






 


branches

branchesdivergentbranches
efficiencyBranch . 

 

It is also essential to achieve high memory metrics to avoid/hide memory bound and obtain high 

performance. To calculate the memory load efficiency of the kernel should first consider global 

memory throughput. Global memory load requested throughput refers to the number of data 

requested by instructions from the GPUs’ global memory, and global throughput is a memory 

read productivity of the kernel. Finding global memory load helps in calculating the global 

memory efficiency, which refers to the percentage of coalesced access from global memory. A 

value of 100% indicates that all accesses are perfectly coalesced, representing the maximum 

utilisation of global memory bandwidth. Global memory load efficiency is the ratio of requested 

global memory load throughput to the required global memory load throughput.  

 

100
_

__
_ 










throughputglobal

throughputrequestedglobal
efficiencyGlobal . 

     

     Table 7.6 Compiler configuration and CUDA specification used for executing the CDS 

method used in this study.  

GPU - CUDA Specifications 

Device  

Architecture  

CUDA Compute Compatibility 

CUDA Driver Version 

NVIDIA Quadro K5000 

Kepler GK104GL 

3.0 

6.5 

Compiler Configurations 

Operating System   

Compiler  

Compiler Version 

Compiler Flags 

Linux - OpenSUSE 12.3  

NVIDIA - NVCC 

6.0.1 

-O3  -arch=”sm_20” 
 

Table 7.6:CUDA specifications and compiler configurations for the CDS simulation. 

 




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Although it is more common to have the same value of the architecture flag (–arch=”sm_30”) of 

compiler with compute compatibility (3.0) it was found that the architecture flag of compiler 

with “sm=20” yields better performance for CUDA-based CDS implementation. This may be 

due to the utilisation of 32-bit pointers for compiling, which needs less register, and faster 

utilisation of mathematical functions with fewer precision points.  

     Table 7.7 presents the reference result as a baseline for performance of the CDS simulation 

for 646464   system size in 100,000 time-steps, without any shared memory. The following 

results are calculated with the help of NVPROF (NVIDIA command-line profiler), which 

enables gathering of the performance metrics for GPU kernels, memory transfers and CUDA 

activities. 

No. 

threads 

 

No. 

blocks 

Av. 

branch 

efficiency 

% 

Total 

no. 

registers 

(kernels) 

Av.      

total global 

load 

throughput 

GB/s 

Av. 

global 

load 

efficiency 

% 

Achieved 

global 

store 

efficiency 

% 

Av. 

achieved 

occupancy 

(kernels) 

% 

Elapsed 

time 

(Seconds) 

16,4,16 

 

5,17,5 

(425) 

99.71 250 71.21 94.54 90.28 77.54 250.945 

16,16,4 

 

5,5,17 

(425) 

99.71 250 71.90 94.54 90.28 76.62 248.644 

32,2,16 

 

3,33,5 

(495) 

99.57 250 73.09 95.18 90.28 77.79 244.583 

32,16,2 

 

3,5,33 

(495) 

99.57 250 75.09 95.18 90.28 76.97 241.452 

64,2,8 

 

2,33,9 

(594) 

99.54 250 68.36 95.08 90.28 64.28 265.637 

64,8,2 

 

2,9,33 

(594) 

99.54 250 68.66 95.18 90.28 64.28 257.616 

128,2,4 

 

1,33,17 

(561) 

99.53 250 65.09 95.08 90.28 65.18 277.083 

128,4,2 

 

1,17,33 

(561) 

99.53 250 65.22 95.18 90.28 64.94 275.347 

 

Table 7.7: Comparison of CUDA execution configurations and performance metrics for 

646464   system size. 

 

Table 7.7 shows that different CUDA configurations have different impacts on the execution 

time and performance. All the systems have run 1024 threads per block, but with different 

numbers of blocks per grid. These differences in the number of blocks are caused by different 

percentages of occupancy achieved and the other performance metrics. The fourth case obtains 

the best execution time with a total of 495 thread blocks; this is higher than in the first case 

(425), but less than for the fifth (594) and seventh (561) cases. This illustrates that having a high 

number of thread blocks does not always give the best results in terms of occupancy achieved, 
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therefore the other criteria play an important role in performance. For instance, the achieved 

occupancy for the first case is higher than for the fourth, however the global memory throughput 

is less in the latter. The other important point found based on the results, relates to the value of 

the innermost dimension of a thread block. In fact, choosing the lowest value/number for the 

innermost dimension helps to improve the global memory throughput, which has a huge impact 

on the performance. The main reason for this phenomenon could be the memory access pattern. 

The logical layout of a three-dimensional thread block was flatted into one-dimensional physical 

arrangement by utilising the x dimension as the innermost dimension, y as the second dimension 

and the z as the outermost dimension. As mentioned in section 7.3.2, coalescing and stride are 

important factors in memory arrangement and access pattern. Therefore, by choosing the lowest 

number for the innermost dimension the DRAM bandwidth can be reduced, coalescing different 

requests of a warp into single request and solving the large stride issue. As the execution of the 

thread block is based on the warp execution and the dimension of thread block should always be 

multiple of the warp size (32), thus, a thread block which is a multiple of the warp size can 

prevent inactive threads in the last warp and enhance the occupancy. It should be noted that all 

results of metrics are calculated based on the average of total number of kernels (14) for the 

CDS simulation program and they do not represent any single kernel. The total numbers of 

registers per thread for instance refers to the sum of all registers used in all kernels per thread. 

     The following table shows different CUDA execution configurations for 128128128   

system size in 100,000 time-steps without any shared memory usage. 

No. 

threads 

 

No. 

blocks 

Av. 

branch 

efficiency 

% 

Total 

no. 

registers 

(kernels) 

Av.        

total global 

load 

throughput 

GB/s 

Av. 

global 

load 

efficiency 

% 

Achieved 

global 

store 

efficiency 

% 

Av. 

achieved 

occupancy 

(kernels) 

% 

Elapsed 

time 

(Seconds) 

16,16,4 

 

9,9,33 

(2673) 

99.91 250 80.27 96.90 94.85 80.57 1672.49 

32,16,2 

 

5,9,65 

(2925) 

99.85 250 94.63 98.36 94.85 80.92 1422.35 

64,8,2 

 

3,17,65 

(3315) 

99.85 250 85.67 98.36 94.85 70.14 1641.62 

128,4,2 

 

2,33,65 

(4290) 

99.85 250 68.27 98.36 94.85 59.82 1881.55 

 

Table 7.8: Comparison of CUDA execution configurations and performance metrics for 

128128128    system size. 

 

Table 7.8, shows that the second case with total number of 1024 threads and 2925 thread blocks 

has gained the best results in terms of execution time, occupancy and global memory 

throughput. As mentioned earlier, each streaming multiprocessor contains a group of 32-bits (in 
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total 64K for Kepler architecture) registers that can be distributed across threads and a fixed 

volume of shared memory that can be spread amongst the blocks. Therefore, the available 

number of registers and shared memory has direct impact on the number of thread block and 

warps that can simultaneously and concurrently assign on a streaming multiprocessor for a 

specific kernel. The resource availability (register and share memory) restricts the number of 

occupant blocks per streaming multiprocessor. In other words, the occupancy is specified by the 

number of registers and the volume of shared memory utilised by every block. For instance, 

kernel 8 for 646464   system size uses 12 registers per thread and the total number of thread 

blocks is 495, hence 595212496   registers used for each block. This leads to the number of 

blocks per streaming multiprocessor 115952/102464  . With the benefit of CUDA 

occupancy calculator, the occupancy of streaming multiprocessor can be calculated by a chosen 

device kernel. The impact of different block sizes and different number of registers per thread 

on GPU occupancy are shown in the figures. The red triangles on the following figures present 

the achieved streaming multiprocessor occupancy based on the chosen number of threads per 

block and register per thread.  

 
 

 
 

Figure 7.29: Occupancy of kernel-8 based on 1024 threads (left) and 12 register count (right). 

 

 
 

 
 

Figure 7.30: Occupancy of kernel-14 based on 1024 threads (left) and 20 register count (right). 
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It can be seen from the figures that by utilising 1024 threads per block and having the register 

number between the ranges of 1 to 32 per thread the highest number of occupancy can be 

obtained for each streaming multiprocessor. In this instance a high number of occupancy with 

the mentioned specifications indicates that the total number of active threads per streaming 

multiprocessor is 2048, the total number active warps per streaming multiprocessor is 64 and 

the number of active blocks per streaming multiprocessor is 2. According to Figures 7.29 and 

7.30, high occupancy can be obtained with different numbers of threads, such as 128, 256 and 

512 per block rather than only 1024 threads per block. However, the other important features to 

achieve high occupancy and hide latency include the number of active warps per streaming 

multiprocessor and the number of active thread blocks per streaming multiprocessor. The 

following table displays GPU occupancy data based on the different threads number. As 

discussed previously, the maximum numbers of active threads per SM and active warps per SM 

for commodity NVIDIA Quadro K5000 GPU are 2048 and 64, respectively. 

 

GPU Occupancy 

Data 

128 - Threads 256 - Threads 512 - Threads 1024 - Threads 

Number of active 

Thread Blocks per 

SM 

16 8 4 2 

 

Table 7.9: Comparison of GPU occupancy data based on different threads number. 

 

Table 7.9 shows the numbers of active thread blocks that can execute concurrently on one 

streaming multiprocessor and hide the latency for total threads number of 128 is higher than the 

others. Consequently, 128 threads rather than another number of threads is chosen as a thread 

block size for executing the performance metrics mentioned earlier for two system sizes of the 

CDS simulation method. 

No. 

threads 

 

No. 

blocks 

Av. 

branch 

efficiency 

% 

Total 

no. 

registers 

(kernels) 

Av.        

total global 

load 

throughput 

GB/s 

Av. 

global 

load 

efficiency 

% 

Achieved 

global 

store 

efficiency 

% 

Av. 

achieved 

occupancy 

(kernels) 

Elapsed 

time 

(Seconds) 

646464   

16,4,2 

 

5,17,33 

(2805) 

99.72 250 90.29 94.54 90.28 84.43 222.34 

128128128   

16,4,2 

 

9,33,65 

(19305) 

99.91 250 96.54 96.91 94.85 85.58 1361.57 

 

Table 7.10: Comparison of CUDA execution configurations and performance metrics. 
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Table 7.10 shows that better performance can be achieved with 128 threads and total numbers of 

2805 and 19305 thread blocks for 646464   and 128128128   system sizes compared to 

using 1024 threads or any others. The main reason for this is that the number of active thread 

blocks per streaming multiprocessor helps to hide the latency. It should be noted that according 

to the CUDA programming guide [131], the amount of required occupancy that can saturate the 

latency depends on the computational problem and increasing occupancy does not always give 

higher performance. In fact, sometimes increasing occupancy by adding more registers, 

divergent branches and additional instructions reduces the performance and increases the wall-

clock time of the kernels executions. However, to appoint an accurate volume of occupancy it is 

necessary to have a good balance between compute and memory utilisations. Figure 7.31 

illustrates the occupancy of kernel 14 based on the 128 threads and 20 registers per thread. 

  
 

Figure 7.31: Occupancy of kernel-14 based on 128 threads (left) and 20 register count (right). 

 

It can be seen from Figure 7.31 and Table 7.9 that using 128 threads per block and considering 

the register number between the ranges of 1 to 35 per thread the highest number of occupancy 

and active thread blocks can be achieved for each streaming multiprocessor. The main 

difference between Figure 7.31 and Figure 7.30 is number of registers that can be used to obtain 

the high occupancy.  

     The other important point for achieving high performance and occupancy for CUDA 

application is utilisation of shared memory. As discussed earlier, shared memory is on-chip 

memory, which is much quicker than the global memory. The maximum amount of shared 

memory for the commodity used in this study and Kepler microarchitecture with compute 

compatibility 3.0 is 49152 bytes that can be assigned per thread block, hence the whole threads 

within the block can access the same shared memory. The threads within the same block can 

share and access each other’s data through shared memory loaded from global memory. This 

offers a promising opportunity and capability to obtain high performance in parallel algorithm 

and solve coalescing of global memory and large strides issues. It should be noted that the 

utilisation of shared memory is useful and beneficial for repeat data access within the same 
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thread or different threads in the same block. In addition, to avoid race conditions between 

threads within the block a barrier synchronisation should be considered between them. The 

following figure shows the impact of varying shared memory usage per block for 1024 and 128 

threads and the amount of shared memory (1256 bytes) used in this work.  

 
 

 

Figure 7.32: Amount of shared memory and the warp occupancy for 1024 threads (left) and 128 

threads (right) per block. 

 

When the block size is 1024 the amount of shared memory usage can be increased to 24576 

bytes to achieve high occupancy without losing any occupancy. However, for 128 threads per 

block the volume of optimum shared memory usage is dropped to 4563 bytes. Table 7.11 

illustrates different performance metrics based on 128 threads per block and 1256 bytes shared 

memory for 646464   and 128128128   system sizes and 100,000 total time-steps. 

No. 

threads 

 

No. 

blocks 

Av. 

branch 

efficiency 

% 

Total 

no. 

shared 

memory 

Achieved 

global 

store 

efficiency 

% 

Av.        

total global 

load 

throughput 

GB/s 

Av. 

global 

load 

efficiency 

% 

Av. 

achieved 

occupancy 

(kernels) 

% 

Elapsed 

time 

(Seconds) 

646464   

16,4,2 

 

5,17,33 

(2805) 

99.72 1256 92.36 91.38 94.54 84.64 211.56 

128128128   

16,4,2 

 

9,33,65 

(19305) 

 

99.91 1256 95.95 97.56 96.91 86.37 1343.53 

 

Table 7.11: Comparison of CUDA execution configurations and performance metrics with total 

1256 shared memory usage and 253 registers. 

 

     From the table above it can be seen that by utilising shared memory the execution times are 

reduced, yielding better performance metrics. Although the shared memory usage improves the 

performance by solving large stride issue, its effect on the performance and specifically on the 

execution times is not significant. The main reason is that the implementation of CUDA-based 
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CDS simulation is not memory bound. If any program is limited by memory (memory bound) 

then using shared memory will have a huge impact on performance. Since all these metrics are 

reported based on the entire CUDA-based CDS executions, and there is no reported specific 

kernel separately and individually, to understand the execution behaviour of kernels better, two 

important kernels distinctly are taken into account with the help of NVIDIA NSIGHT visual 

profiler [75] for 646464   domain size. The following table presents all the execution 

configurations (block size, register usage, and shared memory usage) for kernels 8 and 9.  

Occupancy per SM - Grid Size: [5,17,33] – Block Size: [16,4,2] 

 Kernel-8 Kernel-9 

Variable Achieved Achieved 

Active Warps 51.95 54.25 

Occupancy 82.21% 84..82% 

Threads 

Variable Used Used 

Threads/Block 128 128 

Registers 

Variable  Used Used 

Registers/Thread  13 26 

Registers/Block 2048 4096 

Shared Memory 

Variable Used Used 

Shared Memory/Block 256 364 
 

Table 7.12: Kernels 8 and 9 execution configurations for 646464   system size. 

 

Figure 7.33 displays the execution time of GPU for two different system sizes in different time-

steps using shared memory. Noted that all executions are performed on the same GPU 

architecture and floating point (single precision). 

 

Figure 7.33: GPU elapsed times for 646464   and 128128128   system sizes. 
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7.3.7 Kernel Fusion and Results of Performance Comparison  
 

As discussed in section 7.3.5, the original idea for the logical and hardware levels of parallel 

implementation of the CDS simulation scheme on GPU was based on the decomposition of 

computational problems into a set of fundamental kernels to process the expensive computations 

and calculations of each equation in the CDS method. Although this idea has some advantages, 

such as the ease of implementing and maintaining the code, it also has some limitations. One of 

the main limitations for decomposition of computational problems into fundamental kernels is 

the reusability and accessibility of data for shared and global memories usages. GPU memories 

are classified into off-chip memory, which has larger size, lifetime of program, and higher 

latency; and on-chip shared memory, which is quicker, and has lower latency, smaller size and 

shorter kernel lifetime. On-chip memory should be used mainly when the frequent accessibility 

of data is high during the computation, therefore shared memory as on-chip memory can be 

utilised only for intermediate data during the kernel execution (lifetime of kernel) of the GPU, 

and for passing data between kernels; data must be stored in off-chip (global) memory. 

Consequently, to achieve high compute throughput of GPU and to exploit more parallelism, it is 

necessary to reduce the number of access of off-chip memory (global memory bandwidth) and 

to execute enough operations per data stream (stored or passed from the off-chip memory). 

However, it should be noted that adding more computations into a single kernel is not always 

useful and helpful [183]. Due to the finite available resources per streaming multiprocessor, 

adding more computations increases the utilisation of resources thus limiting the amount of 

occupancy and parallelism. Hence, determining the ideal distribution of computational problem 

into kernels is not an easy task.  

     To address the limitation of distributing computational works into a group of kernels, a 

fusion method can be considered. In this scheme, first all the computational works developed as 

standalone kernels are investigated and then those kernels that have more opportunity to 

improve the performance with respect to data locality are fused into one kernel. Different 

studies [183, 184] are also investigated the fusions of kernels in different fields. Wu et al. [185] 

considered fusing kernels to decrease the amount of memory bound in the GPU application. In 

[186], the authors alluded to the kernel fusions for improving the energy efficiency of GPU by 

reducing power consumption. Furthermore, these studies are mainly considered kernel fusions 

for memory bound GPU applications. However, the CUDA-based CDS method is not a memory 

bound application and the fusing of kernels is considered to improve performance and increase 

data reusability on on-chip memory. Thus, the following are the main advantages of kernel 

fusions: 

1. Reducing the number of kernels which has a direct relation with kernels overhead. In 

fact, by fusing kernels, the amount of work that can be processed by fused kernel will 
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be increased, therefore reducing the total number of function/kernel calls and kernels 

overheads.  

2. Decreasing the number of off-chip memory access or data transfer from or to DRAM. 

3. Improving performance by having more transactions in flight to hide latency.  

4. The impact of implicit optimisations by compiler can be increased due to the higher 

number of instruction in complex kernel.  

The kernel fusion is sometimes not straightforward, and requires deep understanding of 

function/kernel behaviours and their impact on the entire program, whose original functionality 

should be maintained (as a primary specification). Therefore, the main challenges for kernel 

fusions are:  

1. Utilising more resources such as shared memory and registers can reduce occupancy. 

2. Different kernels use different optimal numbers of threads, and consequently different 

numbers of active warps to process data elements. Fusing kernels can cause suboptimal 

numbers of warps and threads, which reduces the performance of the program.  

3. Sometimes it is difficult to maintain and evaluate the correctness of code due to the 

complexity of fused kernel.  

4. Race condition can arise due to omitting the implicit global barrier between kernels in 

kernel fusions.  

     An example of kernel fusion is shown in Figure 7.34. Loads refer to the accessing data from 

global memory and saving into shared memory. Compute is computational processing of data 

within shared memory and store refers to the storing final results into global memory.  

 

Figure 7.34: Illustration of kernel fusion. 
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Kernel fusion was based on the performance investigation of each kernel and consideration of 

data dependency between kernels. Therefore, the first step with the help of NVIDIA profiler is 

to analyse and profiler the performance of each kernel, identifying those that have more 

opportunity to improve performance when combined into one kernel. In the second step data 

dependencies between chosen kernels are considered. In this step only those kernels that can be 

securely fused without changing the semantics of the entire program (data dependencies) are 

selected. After investigating the mentioned steps in CUDA-based CDS method, it was found 

that nine kernels have the opportunity to be fused without influencing the data dependencies of 

the entire program. The following figures present the kernel fusions and the whole pseudo-code 

of CUDA-based CDS simulation after combining kernels. 

 

Kernels implemented on the Device 

1: Kernel 1 – Define and calculate boundary condition in x axis  

2:  Kernel 2 – Define and calculate boundary condition in y axis 

3:   Kernel 3 – Define and calculate boundary condition in z axis 

4:     Kernels 4 - 7 – Calculate first isotropised discrete Laplacian  

5:      Kernel 8 – Calculate Map function 

6:     Kernel 9 –  Calculate Free energy functional  

7:    Kernels 10 - 13 – Calculate second isotropised discrete 

8:   Laplacian and update boundary conditions  

9:  Kernel 14 – Calculate whole equation for  rt ,1   Eq. (2.8) 

 

Figure 7.35: Kernel fusions of CUDA-based CDS scheme. 

 

 

Begin 

Host program on CPU 

1: Define variables  

2: Read values of parameters from input files 

3:  Allocate Host arrays  

4:   Initialise random values for order parameter 

5:   Allocate Device arrays 

6:    Define time function 

7:     Start to copy values from Host to Device   

8:      Calculate number of threads and number of blocks based on the system size (number of cell) 

9:       Discretised into three dimensions cube/grid and map each thread to one cell  

Kernel program implemented on GPU/Device 

10: Kernel 1 – Define and calculate boundary conditions in x, y, z axes   

11: For all time – steps --- (executes on the host)  

12:     Kernel 2 – Calculate first isotropised discrete Laplacian  

13:      Kernel 3 – Calculates Map function and free energy functional  

16:       Kernel 4 – Update boundary conditions and calculate second isotropised  

14:       discrete Laplacian 

15:      Kernel 5 – Calculate whole equation for  rt ,1   Eq. (2.8)  

Fused – kernel 1 

Fused – kernel 2 

Fused – kernel 3 

Fused – kernel 4 
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16:       Copy back from Device to Host  

17:      Reconstruct the data cell according to the results 

18:     Write the outputs into files  

19:    End for 

20:   Free all Host and Device memory allocation  

21:  Write the elapsed time  

End 
 

Figure 7.36: Pseudo-code of CUDA-based CDS simulation based on the kernel fusions. 

 

Table 7.13 shows different performance metrics and the execution time for 646464   and 

128128128   system sizes in 100,000 time-steps based on the kernel fusion pseudo-code and 

without considering any shared memory usage.  

No. 

threads 

 

No.  

blocks 

Av,  

branch 

efficiency 

% 

Av.         

total global 

load 

throughput 

GB/s 

Av. 

global 

load 

efficiency 

% 

Achieved 

global 

store 

efficiency 

% 

Av. 

achieved 

occupancy 

(kernels) 

% 

Elapsed 

time 

(Seconds) 

646464   

16,4,2 

 

5,17,33 

(2805) 

99.98 94.75 99.52 90.28 78.62 202.53 

128128128   

16,4,2 

 

9.33.65 

(19305) 

99.97 99.25 99.93 94.85 81.28 1288.31 

 

Table 7.13: Comparison of CUDA execution configurations and performance metrics based on 

the kernel fusions with total number of 125 registers. 

 

     From the above table it can be seen that the occupancy percentage is decreased compared to 

that shown in table 7.10, which is not based on the kernel fusion algorithm and shared memory. 

The main reason for this is the increased number of register usage (35) per thread for the kernels 

2 and 4. However, it is clear that the averages of branch efficiency, global throughput and load 

efficiency are increased, which affects performance. In addition, fusing kernels decreases the 

total numbers of kernel calls, thus kernel overheads are reduced. In fact, reducing the kernel 

overhead has a significant impact on the execution time. The following table illustrates 

performance metrics and the execution times for two system sizes based on the kernel fusion 

algorithm by considering shared memory usage. 
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No. 

threads 

 

No.  

blocks 

Av,    

branch 

efficiency % 

Total 

no.  

shared 

memory 

Av.        

total global 

load 

throughput 

GB/s 

Av. 

global 

load 

efficiency 

% 

Av. 

achieved 

occupancy 

(kernels) 

% 

Elapsed 

time 

(Seconds) 

646464   

16,4,2 

(5,17,33) 

5,17,33 

(2805) 

99.98 512 93.51 99.51 78.84 195.52 

128128128   

16,4,2 

 

9.33.65 

(19305) 

99.97 512 98.25 99.93 81.47 1257.59 

 

Table 7.14: Comparison of CUDA execution configurations and performance metrics based on 

the kernel fusions and shared memory usage with total 125 registers. 

 

Table 7.14 illustrates that using shared memory helps to reduce slightly the execution time, 

promoting better performance in different metrics. It should be noted that the percentage of 

occupancy can be improved by decreasing the register number per thread. The reduction of the 

register number to 27 per thread was considered, resulting in similar elapsed time for both 

shared memory and non-shared memory usages, therefore the results are not reported here. 

Figure 7.37 displays the execution time of GPU for two different system sizes in different time-

steps using shared memory based on the kernel fusion and not kernel fusion scheme. It is clear 

that kernel fusion improves the performance of the system. It should be noted that all executions 

were executed on the same GPU architecture and floating point. 

 

Figure 7.37: GPU elapsed times for 646464   and 128128128     system sizes with and 

without kernel fusions. 



132 
 

Figure 7.38 illustrates the execution time comparison of the single-core, multi-core (six cores 

without hyper-threading), and many-core CDS implementation based on C and CUDA 

programming languages on CPU and GPU for 128128128   system size. The main reason for 

this comparison is to show the system stability for executing simulations in different 

architectures (single, multi-core and many-core). 

 

Figure 7.38: Speed comparison of single-core vs multi-core vs many-core GPU in 

128128128   , arrows indicate diblock copolymer in time evolution. 

 

     From Figure 7.38, it can be seen that many-core GPU performs better when the number of 

time-steps and system sizes is increased. Table 7.15 compares the performance of the CDS 

simulation development based on the original (not optimised), AVX optimisation, and 

optimised multi-core implementations for two system sizes executed on an Intel Xeon E5-2420 

processor.   
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Implementation/ System size 

 

Elapsed time 

(in seconds) 

Speedup 

AVX –  

Orig. 

Multi-core – 

Orig. 

Multi-core 

– AVX 

646464   (HT – on) 

Original C  (Sequential) 9810.55  

3.74x 

 

28.19x 

 

7.54x AVX 2623.04 

Multi-core 348.44 

128128128   (HT – off) 

Original C (Sequential) 83061.39  

4.45x 

 

30.89x 

 

6.92x AVX 18610.58 

Multi-core 2689.54 

 

Table 7.15: Comparison of execution times and speedups for CPU implementation with total 

100,000 time-steps. 

 

Table 7.15 shows that the multi-core CPU implementation provides the fastest execution 

time/speedup for the CDS simulation. In general, this shows that OpenMP as multi-threaded 

programming model is a suitable and appropriate tool to develop multi-thread program using the 

SIMD model of modern CPUs. However, according to the multi-core to AVX speedup volume 

between two system sizes, the speedup volume for the smaller size is 1.1x higher than the bigger 

domain size. This demonstrates that the GPU is more beneficial when dealing with large datum 

size. Table 7.16 displays the performance of the CDS simulation scheme development based on 

the original (not optimised), optimised multi-core, and GPU-CUDA kernel fusion 

implementations for two system sizes. The reader is reminded the elapsed time for the original 

(non-optimised), AVX optimisation and optimised multi-core implementations are the same as 

shown in Table 7.15. 

Implementation/ System size 

 

Elapsed time 

(in seconds) 

Speedup 

CUDA – 

Orig. 

CUDA – 

AVX 

CUDA – 

Multi-core 

646464   

 

GPU – CUDA 

 

195.92 

 

50.31x 

 

13.45x 

 

1.78x 

128128128   

 

GPU – CUDA 

 

1257.59 

 

66.08x 

 

14.80x 

 

2.14x 

 

Table 7.16: Comparison of execution times and speedups for CPU and GPU implementations 

with total 100,000 time-steps. 
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From Table 7.16, it can be comprehended that GPU–CUDA parallel execution is approximately 

50, 14 and 1.78 times quicker than non-optimised single core, optimised single core, and 

multi-core executions on CPU for 646464   domain size; and 66, 15 and 2.14 times faster 

than non-optimised single core, optimised single core and multi-core processing for 

128128128   system size, respectively. 

     In addition, the other simulation of diblock copolymer sphere morphology with thin films 

(walls) under shear was performed to evaluate the accuracy of CUDA-based CDS method for 

different simulation parameters.  

 

 

 

CUDA simulation result initial stage t =1000 CUDA simulation result final stage t =500000 
 

Figure 7.39: CUDA simulation result of spherical morphology under shear. 

 

     The above figure shows the spherical morphology generated by CUDA-CDS implementation 

for a system of size 12826128  . The whole simulation was executed for up to 500,000 time-

steps with 0.0003 shear rate and attractive wall to approach stable system (400,000 without 

shear and 100,000 more with shear). On account of CUDA hierarchy model and with respect to 

the system size, in total 910 blocks per grid in three dimensions (2, 7, 65), 1024 (128, 4, 2) 

threads per block, and 1256 bytes shared memory based on the kernel fusion algorithm were 

used to simulate the system.  

 

7.4 Architecture Comparison 
 

The graphs in Figure 7.40 illustrate the execution time of optimised implementations of the 

CDS simulation, executing on single and multi-core Intel Xeon E5-2420 processor and on a 

NVIDIA Quadro K5000 GPU, compared to the original implementation executing on a single 

core of the Xeon E5-2420 processor. The following points can be inferred from the figure: (i) 

the impact of optimisations of code on CPU; (ii) the performance impact between single and 

multi-core execution; (iii) the difference between multi-core CPU and many-core GPU 

performance for the CDS application; and (iv) the impact of system size between CPU and 

GPU. 
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Figure 7.40: Comparisons between original, AVX optimised, CPU multi-core and GPU many-

core implementations with total 100,000 time-steps. 

 

Results are presented in single precision for two classes of the system size 
364 and 

3128 . 

Different system sizes for the CDS computational method were examined on CPU and GPU, 

and it was found that the CPU can only support a maximum 
3198 class of system size due to 

limited memory and hardware restrictions. GPU K5000, on the other hand, can comfortably 

execute 
3324 class of system size. In addition, the results show that the GPU performs better 

when domain size is increased. This indicates that the performance gap between the two 

hardware architectures increases with the problem/system size. Due to the cumulative system 

size the number of grid-cells in each direction will be increased and thus the volume of 

exploitable parallelism. 

     Due to the lightweight and lower-clocked cores of GPU compare to CPU, in the small class 

of problem size the difference between CPU and GPU performance is not significant, and even 

CPU can achieve better performance in a very small domain size (e.g. 
316 ). However, the 

numbers of cores on GPU are much higher than CPU and remarkably faster (few clock cycles to 

execute a job); therefore, GPU can easily exploit the high amount of parallelism in big system 

and obtains better performance. Finally, according to the specifications of CPU and GPU (tables 

6.1 and 6.2), the architecture of GPU can handle a big volume of datum size with high amount 

of parallelism. In addition, the introduction of different memories GPU hardware is a promising 

approach to the improve performance and achieve high performance computing. 
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7.5 Summary 
 

The implementation of the CDS method on multi-core and many-core devices has been 

investigated. In the first section the optimisation of the CDS baseline code for CPUs was 

presented. The optimisation of the baseline code was based on the vectorisation and memory 

access pattern. Vectorisation was taken into account by considering data alignment based on the 

AVX instruction set and implicit directives. The memory access pattern was considered by SoA 

arrangement to reduce indirect accessing and to have a unit-stride memory access. It was shown 

that the optimisations are beneficial for the CDS program, improving the performance of the 

original and SSE4.2 implementations by up to 3.10x and 1.2x for the system size 646464  , 

and 4.44x and 1.2x for 128128128   domain size respectively. The second section 

demonstrated the implementation of the CDS simulation method on multi-core (multi-threaded) 

computer architecture. A hybrid decomposition algorithm based on the work-sharing constructs 

of OpenMP and regular grids data structure according to the CDS simulation method on the 

shared memory machine was presented. Three different scenarios were investigated to show the 

impact of the block size of data decomposition in the hybrid algorithm. The first two scenarios, 

based on the block size = 1000, and block size = 100, were not very efficient compared to the 

third scenario. The third (last) scenario, based on the function of the number of threads 

improved the speedups of the CDS scheme from 4.27 to 7.26 and 4.00 to 6.81 with the number 

of cores cumulative from 2 to 12 for 646464   and 128128128   system sizes, respectively. 

In addition, it demonstrated that when the system size and the volume of workloads increased, 

hyper-threading was not beneficial; indeed, it decreased the speedup (Figure 7.15).  

 

     The last section considered the implementation, validation, and performances benchmark of 

the CDS method on GPU as a many-core accelerator. The spatial decomposition method based 

on the block-cell link model as a domain level algorithm of CUDA-based CDS simulation is 

presented. The proposed algorithm in domain level illustrates that the spatial decomposition 

method based on the block-cell link model is a suitable and appropriate choice to decompose 

tasks and to solve the computational problems correctly in a parallel environment (GPU). 

Different optimisations for memory management such as coalescing and usage of shared 

memory were taken into account to improve the performance and to solve a large stride issue. 

Different metrics were used to determine the occupancy, branch efficiency and memory 

throughput for each kernel and overall CUDA application and to specify the best CUDA 

execution configurations. In addition, kernel fusion as an optimisation for the logical and 

hardware levels of parallel implementation for the CDS simulation method on GPU was 

proposed. It was shown that kernel fusion by reducing the kernels overheads decreasing the 

number of off-chip memory access from or to DRAM and having more transactions in flight to 

hide latency helps to improve the speedup and consequently the performance of the program.  
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Therefore, GPU implementation
2
 based on the kernel fusion heterogeneous algorithm is roughly 

1.78 times quicker than multi-core executions on CPU for 646464   domain size; and 

approximately2.14 times faster than multi-core processing for 128128128   system size, 

respectively. Evidently, the domain and logical levels of algorithm presented in section 7.3.1 

and the hybrid decomposition scheme demonstrated in section 7.2.1 are simple methods for 

achieving adequate and acceptable levels of performance of the CDS method on different 

computer architectures. In fact, these approaches are well matched to various parallel 

workloads, specifically in the case of GPUs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2
 H. Soltani, D. Ly and W. Ahmed, “ Accelerating Cell Dynamic Simulation for 3D Diblock copolymer 

Sphere Morphology using GPU ”, GPU Technology Conference, San Jose, USA, March 2015. 



138 
 

CHAPTER EIGHT 

8 Conclusions and Future Work 

 

This study set out with five main objectives: to investigate the CDS simulation scheme as a 

computational method to model the phase separation of diblock copolymers; to comprehend the 

dynamic behaviour of particles in different time-steps based on the new computational 

technique; to investigate different optimisation technique for the CDS baseline code; to consider 

a parallel algorithm and programming model to solve time-consuming and massive 

computational processing of the CDS; and to implement a new parallel algorithm on multi-core 

and many-core devices. Therefore, these five objectives are located into four chief sets and their 

results are summarised in this chapter, which draws conclusions from the findings of this work 

and identifies the limitations of this study, and suggesting areas for future works. 

 

8.1 Cell Dynamic Simulation Method  
 

Chapter 2 explored the CDS method as a promising scheme and good example of a cellular 

automation to present interface dynamic in phase-separating domain. The main equations of the 

CDS (Ginzburg-Landau (TDGL) and Cahn-Hilliard Cook (CHC)) were considered and the 

impacts of external fields, such as a shear flow, were taken into account to simulate spherical 

morphology of diblock copolymer and to comprehend the nontrivial behaviour of the spherical 

morphology of diblock copolymer. Hence, the following salient points present the summaries of 

chapter 2 results:   

 

 The main advantage of CDS technique compared to other simulation methods is coarse-

grained discretisation, which rendered a closer relationship between the real world and 

laboratory conditions. In fact, this advantage of the CDS method allows exploration of 

the phase-ordering and the micro-phase separation occurrences in systems which are 

comparable with experimental works in terms of dimension and size [18, 33]. However, 

the CDS calculations are expensive. 

 

 To achieve a stable system, the simulation was executed for up to 1000,000 time-steps 

without a shear and then 300,000 time-steps were run after applying shear flow. It was 

noted that the system in 100,000 time-steps becomes stable with respect to the shear flow 

and consideration of attractive wall.  
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 Systematically different values of the shear rate   were considered and it was found out 

that when the shear flow was between the varieties of 0.001 and 0.0001 the domain 

obtains the spherical morphology with hexagonal order (perfect system). On the other 

hand, at 0.001 shear rate the system was spheres but not completely ordered, and at 

higher shear rate 0.005 the spheres were lengthened to ellipsoids and cylinders. 

Additional increase of shear transformed the entire system from spheres to cylinders. 

Therefore, shear flow rate had a direct impact of system morphology.  

 

8.2 Multiple Particle Detection and Tracking 
 

In chapter 3 a novel particle tracking technique for a spherical phase diblock copolymers under 

shear flow was implemented. The new particle detecting method was utilised in the output of 

the CDS program as computational data, used to describe the morphology of diblock 

copolymers sphere under shear. The main rationale for developing a new method for particle 

tracking was explained (understanding numerical representation of the particle positions and to 

comprehend the mobile behaviour of particles in different time-steps for uniform computational 

data). The method, design, implementation and validation of a new particle tracking scheme 

yielded the following major points:  

 

 The new method proposed two frameworks with a total number of five steps to achieve 

the computational technique of tracking particles. In the detection framework, 

neighbouring search technique was used for detecting particles and reconstructs the time-

lapse of detected particles. In the tracking framework, the centres of mass of particles 

were calculated and particles were tracked based on their centres of mass and the 

movements in each time step. 

 

 Two scenarios were considered for calculating centre of mass of particles: stabilised and 

not stabilised.  In first scenario, numbers of particles were fixed and there was no 

difference between the shapes of particles. In second scenario, called difficult scenario, 

the numbers of particles were altering and particles had different types of shapes and 

sizes. 

 

 Statistical study was undertaken into account to specify distinguish value (number of 

grid point) for differentiating the shapes of particles in the difficult scenario. 

Consequently, 55 grid points were chosen to distinguish between particles’ shapes. 

Based on the chosen limit, particles with less than 55 grid points were considered to be 

single and those with more than 55 grid points as mixed particles. When the particles 

were homogeneous, the fundamental idea to find the COM of a particle was to add up 
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the coordinates of all points in the x and y directions separately and divide the sum by 

the whole number of grid points. 

 

 Frequency as a statistical method was used to specify the movements of all particles in 

each time. Based on the frequency results on particles’ movement in x and y directions, 

nine grid points were chosen as the limit of movements in x, and four grid points were 

selected as the limit of travels in y direction.  

 

 To plot the track of each particle, the centre of mass of detected particle in each time step 

was used. The coordinates of particles were plotted in an x-y coordinate system to 

illustrate the track of particles. In addition, the dynamic movement and behaviour of one 

and more particles concurrently based on the new method was illustrated.  

 

 The proposed method was examined with different particles and satisfactory results in 

terms of accuracy and concurrently tracking of particles had been achieved.   

 

8.3 Optimisations and Multi-Core Implementation of CDS 
 

The first section of chapter 7 investigated the optimisation of CDS algorithm based on the 

vectorisation, SSE4.2, AVX instruction set of SIMD and memory layout. The second section of 

chapter 7 considered a new hybrid decomposition algorithm based on the work-sharing 

constructs of OpenMP and regular grids data structure for implementation of CDS simulation 

method on multi-core CPU devices. The following salient points illustrate the design, 

implementation and performance analysis yielded by the first two sections of chapter 7: 

 

 The main difficulties in optimisation of CDS baseline code were referred to data 

dependencies and memory access patterns.  

 

 AVX instruction set, implicit directives and SoA memory arrangement were taken into 

account for the optimisations of CDS.  

 

 It was presented that the optimisations were beneficial for the CDS program, improving 

the performance of the original and SSE4.2 implementations by up to 3.10x and 1.2x for 

the system size 646464  , and respectively 4.44x and 1.2x for 128128128   

domain size. 
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 A hybrid decomposition algorithm was proposed for implementation multi-threaded 

CDS scheme. In hybrid decomposition algorithm, the spatial partitioning as a first step of 

hybrid algorithm considered the whole system as a grid and divided the whole grid into 

three-dimensional sub-grids. Then data decomposition as a second step of hybrid 

decomposition algorithm started to play a role. In data decomposition, block based 

decomposition was used to partition a group of cells into different blocks, and then 

mapped each block to a core/thread in the shared memory machine. 

 

 Three different scenarios ((i) data partitioning based on the block size = 1000; (ii) data 

partitioning based on the block size = 100; and (iii) data partitioning based on the 

function of the number of threads) were considered to show the impact of the block size 

of data decomposition in the hybrid algorithm. The last scenario based on the function of 

the number of threads obtained the most efficient results.  

 

 The speedups based on the last scenario were improved from 4.27 to 7.26 and 4.00 to 

6.81 with the number of cores cumulative from 1 to 12 for 646464   and 

128128128   system sizes respectively. 

 

 It was demonstrated that when the system size and the volume of workloads are 

increased the hyper-threading was not very beneficial and useful.  

 

 The optimisations and hybrid algorithm in the first two sections of chapter 7 

demonstrated that the CDS application is not limited for any specific platform or 

computer architecture and it is possible to execute on multiple platforms.  

 

8.4 Many-Core GPU Implementation of CDS  
 

The last section of chapter 7 explored the implementation of efficient CDS method on many-

core GPU. The spatial decomposition method based on the block-cell link model as a domain 

level algorithm of CUDA-based CDS simulation was presented. It was shown that the spatial 

decomposition method based on the block-cell link model was a suitable and appropriate choice 

to decompose tasks and to solve the computational problems correctly on GPU. The following 

facts summarise the main achievements of this section in terms of method, implementation, 

performance analysis and validation:  

 

 Fine-grained spatial decomposition was used as a decomposition method in CUDA 

implementation of the CDS on GPU.  

 

 In the spatial decomposition method according to the CUDA hierarchy model the 

uniform block-cell linked data structure was used to be a shared data structure. 
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 Different optimisations for memory management, such as coalescing and usage of shared 

memory, were considered to improve the performance and to solve a large stride issue. 

 

 Different metrics were used to determine the occupancy, branch efficiency, and memory 

throughput for each kernel and overall CUDA application and to specify the best CUDA 

execution configurations. 

 

 Kernel fusion as an optimisation for the logical and hardware levels of parallel 

implementation for the CDS simulation method on GPU was illustrated. It was presented 

that by reducing kernel overheads, kernel fusion decreases the number of off-chip 

memory access from or to DRAM, and having more transactions in flight to hide latency 

helps to improve the speedup and consequently performance of the program. 

 

 In our experience, GPU - CUDA is better matched to exploiting parallelism compare to 

other programming languages. In addition, there is no scalability issue in CUDA 

programming model.  

 

 It was found that GPU is also better suited for big datum size. GPU can easily exploit the 

high amount of parallelism in big system and obtains better performance. 

 

 The speedups based on the CUDA-based CDS simulation scheme are roughly 50x, 14x 

and 1.78x quicker than non-optimised single core, AVX optimised single core, and 

multi-core executions on CPU for 646464   domain size; and approximately 66x, 

15x and 2.14x faster than non-optimised single core, optimised single core and multi-

core processing for 128128128   system size.  

 

 These results demonstrated that it is possible to achieve a good performance by 

optimising and developing an application with heavy and expensive computational 

works on single-node computer.  

 

 Validation and evaluation of CUDA program was investigated with different profilers 

(nvprof and nsight), system parameters (such as shear flow and domain size) and 

execution configurations (such as different grid and thread block size, registers and 

shared memory).  

 

Taking all the chapters together, the work demonstrated in this thesis details CDS method as 

cellular computerisation technique for the consideration of dynamic behaviour of particles, 

implementation and evaluation of engineering program/application performance on multi-core 

and many-core parallel architecture. Therefore, the entire process entails: (i) implementation of 

CDS method on C programming language; (ii) consideration of CDS scheme for the spherical 
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morphology of diblock copolymer with shear flow and without shear flow; (iii) development 

and evaluation of novel computational method for particle detection and tracking; (iv) exploring 

the concept of parallel computing and parallel execution; (v) investigating the concept of 

emerging GPU parallel architecture; (vi) baseline code optimisation; (vii) many-core 

implementation of optimised baseline code; (viii) optimisation and demonstration a clear  

implementation path for the CDS method on GPU many-core architecture based on the CUDA 

C; and (ix) evaluation and comparison between different parallel architectures in terms of 

execution times and speedups. Finally, the proposed algorithms for both multi-core and many-

core architectures will improve code maintainability among varies generations of hardware 

models and also ease the code portability and scalability across new architectures and platforms. 

 

8.5 Limitations of the Study 
 

A primary limitation is the investigation and concentration on only one specific scientific 

application. Although this may limit the generality of proposed computational algorithms and 

programming methods, it should be noted that the CDS method comprises intensive and 

complex mathematical calculations with high exploitable parallelism. Furthermore, the parallel 

computing model and behaviours of the CDS are deployed and mutual in other applications 

such as computational fluid dynamics, for instance the numerical solution of mathematical 

problems defined by partial differential equations (PDEs) for which there are three main 

classical methods, but not limited to, for the numerical solution of PDEs [187]: (i) the finite 

difference method (FDM); (ii) the finite volume method (FVM); and (iii) the finite element 

method (FEM). All of these methods discretise a computational problem with infinite degrees of 

freedom into a finite domain/system.  

 

     The numerical solution of PDEs proposed in this work is based on the FDM of Taylor series 

expansion, which transforms the PDEs into numerical equations that determine the derivatives 

of a variable as the difference between variable values at different times and nodal points of 

lattice [187]. In other words, the FDM is based on the discrete derivative approximation, which 

has some approximation errors. The advantages of the FDM are that it is easier and faster to 

implement while its disadvantages are that it is limited to structured and regular grids, with the 

possibility of approximation errors (i.e. less accuracy) [187, 188]. The fundamental 

methodology of the FDM contains four steps: (i) discretising the computational system into 

series of the grid points (based on the structured lattice); (ii) the governing equations are 

discretised and transformed to algebraic form; (iii) approximating the first and second orders 

derivatives; and (iv) iteratively solving the group of linear algebraic equations.  

 

     The FVM method on the other hand includes discretisation of the integral form of the PDEs. 

This refers to the discretisation of the computational system into finite control volumes (cells). 
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The lattice/grid determines the boundaries of the cells and the computational node fits at the 

center of the cell [189]. Figure 8.1 illustrates an example of FDM discretisation. 

 

 
 

Figure 8.1: Example of FDM discretisation. 
 

Disadvantages of this method include false diffusion when dealing with simple numeric. The 

main advantages of the FVM are that it is more accurate, it is not limited to structured grids and 

cell shapes and it achieves satisfaction of integral conservation over the cell/control volume 

[188, 189].  

 

     Generally, CFD refers to the usage of the numerical techniques to address and solve fluid 

dynamical issues (e.g. pertaining to air, water, liquid and thermal fluid). Numerical techniques 

with a broad range of methods can be used in CFD, such as those mentioned earlier, however 

due to the advantages and features of the FVM, fluid mechanics and computational fluid 

dynamics are traditionally using this method rather than FDM. For instance, the most well-

known package of CFD, ANSYS FLUENT, is based on the FVM technique [190]. In addition 

to CDS based on FDM, Tang et al. [191] investigated and implemented phase separation 

patterns for diblock copolymers based on the FVM on spherical surfaces. They investigated 

phase separation on spherical geometry using FVM to solve CHC equation. In their method, 

FVM was used to address the CHC equation on spherical surface with icosahedral triangulation 

based on averaging Voronoi cells (made from triangular grid) to compute the Laplace operator 

[191]. According to their results, the FVM compared to the traditional FDM improves the speed 

and accuracy of the CDS calculations. However, to our knowledge, no work has been done 

before to implement the CDS based on the FVM for solving CHC equation on Cartesian 

surfaces. Therefore, considering the FVM as a numerical solution of PDEs for the CDS on 

Cartesian surfaces offers scope for future research work.  

 

A secondary limitation is that the algorithms, optimisations and code implementations in this 

thesis are executed and evaluated only on two specific hardware architectures. With the 

advancement of new hardware architecture with higher specifications, the impact of proposed 

optimisations could be decreased. However, the proposed methods and algorithms as integral 

parts of any system design are strong enough to be compatible with a range of hardware and 

computer architectures to obtain good performance.  
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A third limitation refers to the use of the CUDA C programming model for the implementation 

of CDS simulation method on GPU. The host code of the CDS simulation scheme was written 

in C language and the device kernels were written in CUDA C. The main reasons for choosing 

the CUDA C programming model for developing the CDS method on GPU were: (i) free 

compiler of CUDA C; and (ii) compatibility between multi-core and many-core 

implementations which both are developed based on the C language. At the time of writing, 

NVIDIA supported the other programming languages such as FORTRAN, but only NVCC as a 

NVIDIA compiler for compiling the CUDA C application was free of cost.  

 

     Another potential limitation of this study is that the proposed optimisations and 

implementations in this work are mainly considered to accelerate speedup and to reduce the 

time execution of the CDS method by increasing arithmetic and memory throughputs (on many-

core GPU). Consequently, the metrics that are used to determine the system performances in 

this work are the most direct metrics to measure performances. However, there are a number of 

additional metrics that can be considered for different purposes (e.g. power consumption) which 

are not considered in this work.  

 

8.6 Future Work 
 

Several avenues are left open for future work and research. Therefore, the main roads of future 

work based on the study demonstrated in this thesis have been elucidated by the following 

points:   

 3D implementation of novel particle detection and tracking technique  

 

The proposed computational method of particle detection and tracking for a spherical 

phase diblock copolymer is based on the 2D results. Expanding a computational method 

to 3D can be more useful and beneficial for understanding the dynamical and mobility 

behaviours of particles in different time-steps.  

 

 Implementation of a new mathematical model for the CDS based on the finite 

volume method   

 

The current mathematical model of the CDS is based on the finite different method. By 

exploring and considering a new mathematical model based on the finite volume method 

the limitations of structured/regular grids can be addressed and the accuracy of results 

improved.  
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 Optimisations the baseline CPU code for future architectures  

 

To consider the potential optimisations for proposed algorithm on future hardware 

architectures with wider and bigger SIMD width and studying the impacts of 

optimisations in performance of the CDS application.  

 

 A multi-CPU implementation of the CDS  
 

The current multi-core implementation is based on the shared memory architecture. By 

implementing the CDS method on distributed memory architecture can solve the 

scalability issue and also execute larger domain size of the CDS without any 

consideration of memory limitations. 

 

 Optimisations on memory management of CUDA  

 

As mentioned in chapters 6 and 7, CUDA programming model often requires the 

communication and sharing of data values between threads. This way was used in this 

study to communicate between threads within a warp was the utilisation of shared 

memory. However, NVIDIA introduced a new instruction to share data values between 

threads within a warp which called the “shuffle” [192]. The use of shuffle instruction has 

the following benefits: (i) the shuffle instruction is quicker than shared memory, because 

of less requirements of instruction (only one) but shared memory requires three 

instructions (read, synchronise, write); (ii) the shuffle instruction can utilise shared 

memory for other data or different purposes; (iii) shuffle can remove synchronisation 

between threads within a warp (__syncthreads()); and (iv) the potential occupancy 

limiters of shuffle are much less than shared memory. 

 

 Asynchronous streaming management 

 

The other optimisation that can be investigated in future work refers to the asynchronous 

behaviour of kernels in different streams. In current GPU implementation all the 

GPU/device operations such as kernels and data transfers are in the default stream, which 

is synchronised. This means no operations will start until all other previous operations 

are completed. Noted that stream refers to a sequence operations that perform in order 

arrangement on GPU [193]. In asynchronous streams, there is more than one stream 

(non-default stream), thus operations can be executed concurrently. To consider 

asynchronous streams, the GPU must be supported concurrent copy and kernel 

execution; operations should be executed in different streams, efficient device resources 

such as registers, blocks and shared memory should be available, and the last and most 

important requirement of asynchronous streams is data dependency in concurrent 

operations. 
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 Investigation of GPU – CUDA vector types  

 

CUDA offers built-in vector and matrix data types such as int2, int4, float2, float4, 

double2.  Investigation of vector types can be useful to understand their relative 

advantages and benefits in program performance. In addition, vector types may be 

beneficial for data values to be stored contiguously in memory (DRAM) or to improve 

memory bandwidth utilisation.  

 

 A multi-GPU implementation of the CDS  

 

Implementing the CDS method across multiple GPUs or hybrid distributed-shared 

memory architecture will create an opportunity to execute very big system sizes and 

solve the bottlenecks of application. By considering heterogeneous hybrid architecture 

comprising a number of CPUs and GPUs, the issue of portability will be solved and 

different numbers of domain sizes can be executed without any problems. In this model, 

GPU+MPI should be used for accelerating and parallelising. However, memory access 

patterns and memory footprints should be considered on multi-GPU model.  

 

 Exploration of instruction level parallelism for better performance at inferior 

occupancy 

 

Considering ILP per thread is another way to hide/decrease memory and arithmetic 

latencies and to improve program performance. In fact, by increasing parallelism 

between instructions in one thread good performance can be achieved even if the volume 

of occupancy is low. 
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Appendix A 

The source-code of the implementation of the cell dynamics simulation 

method in C 

 

Some parts of the CDS source-code  

 

//************************************************************** 

// The following part is for calculating the 

// first isotropised discrete Laplacian. 

// apxi1 = ),(),( ntnt   within 

//           ],,[,,, ntntDntntfnt    

// with consideration of the boundary conditions. 

//************************************************************** 

            for (k=1;k<=nz;++k) { 

             for (j=1;j<=ny;++j) { 

              for (i=1;i<=nx;++i) { 

               pxi0[i][j][k]=pxi[i][j][k]; 

                aapxi1[i][j][k]=c1*(pxi[upx[i]][j][k] +     

                 pxi[downx[i]][j][k] 

                 + pxi[i][upy[j]][k] + pxi[i][downy[j]][k] +   

                   pxi[i][j][upz[k]] 

                 + pxi[i][j][downz[k]]); 

//***************************************************  

               bapxi1[i][j][k]= c2 * (pxi[downx[i]][upy[j]][k] +   

                pxi[downx[i]][downy[j]][k] 

                + pxi[upx[i]][upy[j]][k] + pxi[upx[i]][downy[j]][k]  

                + pxi[i][downy[j]][upz[k]]   

                + pxi[i][downy[j]][downz[k]] 

                + pxi[i][upy[j]][upz[k]] + pxi[i][upy[j]][downz[k]]  

                + pxi[downx[i]][j][upz[k]]    

                + pxi[downx[i]][j][downz[k]] 

                + pxi[upx[i]][j][upz[k]]   

                + pxi[upx[i]][j][downz[k]]); 

//*************************************************** 

              capxi1[i][j][k]= c3 *  

              (pxi[downx[i]][downy[j]][upz[k]] 

              + pxi[downx[i]][upy[j]][upz[k]]  

              + pxi[downx[i]][downy[j]][downz[k]] 

              + pxi[downx[i]][upy[j]][downz[k]] 

              + pxi[upx[i]][downy[j]][upz[k]] 

              + pxi[upx[i]][upy[j]][upz[k]] 

              + pxi[upx[i]][downy[j]][downz[k]] 

              + pxi[upx[i]][upy[j]][downz[k]]); 

//*************************************************** 
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             apxi1[i][j][k]=aapxi1[i][j][k]  

              + bapxi1[i][j][k]   

              + capxi1[i][j][k];           

              } 

             } 

            } 

 

//************************************************************** 

// This part is to calculate the Free energy functional: 

//            ],,[,,, ntntDntntfnt    

// map1=  nt,  

//**************************************************************  

            for (k=1;k<=nz;++k) { 

             for (j=1;j<=ny;++j) { 

              for (i=1;i<=nx;++i) { 

               map1[i][j][k]= f[i][j][k] +d * (apxi1[i][j][k]   

               - pxi[i][j][k]) 

               - hx[i] * ((pxi[i][j][k] + r * 2.0) / 2.0)  

               - hy[j] * ((pxi[i][j][k] + r * 2.0) / 2.0)  

               - hz[k] * ((pxi[i][j][k] + r * 2.0) / 2.0); 

              } 

             } 

            } 

 

//************************************************************** 

// The following part is for calculating the 

// second isotropised discrete Laplacian of the  

// free energy functional, apxi2=    ntnt ,,   within 

//          },,,{,,1 ntbntntntnt   , 

// with consideration of the boundary conditions  

//************************************************************** 

            for (k=1;k<=nz;++k) { 

             for (j=1;j<=ny;++j) { 

              for (i=1;i<=nx;++i) { 

               aapxi2[i][j][k]=c1 * (map1[upx[i]][j][k] +  

               + map1[downx[i]][j][k] 

               + map1[i][upy[j]][k] + map1[i][downy[j]][k]  

               + map1[i][j][upz[k]] + map1[i][j][downz[k]]); 

//*************************************************** 

               bapxi2[i][j][k]=c2 * (map1[downx[i]][upy[j]][k] 

               + map1[downx[i]][downy[j]][k] 

               + map1[upx[i]][upy[j]][k]   

               + map1[upx[i]][downy[j]][k] 

               + map1[i][downy[j]][upz[k]]  

               + map1[i][downy[j]][downz[k]] 

               + map1[i][upy[j]][upz[k]]   

               + map1[i][upy[j]][downz[k]] 
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               + map1[downx[i]][j][upz[k]]    

               + map1[downx[i]][j][downz[k]] 

               + map1[upx[i]][j][upz[k]]   

               + map1[upx[i]][j][downz[k]]); 

//*************************************************** 

               capxi2[i][j][k]=c3   

               * (map1[downx[i]][downy[j]][upz[k]] 

               + map1[downx[i]][upy[j]][upz[k]]   

               + map1[downx[i]][downy[j]][downz[k]] 

               + map1[downx[i]][upy[j]][downz[k]]  

               + map1[upx[i]][downy[j]][upz[k]] 

               + map1[upx[i]][upy[j]][upz[k]]  

               + map1[upx[i]][downy[j]][downz[k]] 

               + map1[upx[i]][upy[j]][downz[k]]); 

//*************************************************** 

               apxi2[i][j][k] = aapxi2[i][j][k]  

               + bapxi2[i][j][k]  

               + capxi2[i][j][k]; 

              } 

             } 

            } 

 

//************************************************************** 

// The following part is for the time evolution of  

// the order parameters calculations (Pxi(t+1,n)) with 

// consideration of shear and long-range interaction: 

//

         

    },,,1,,,1
2

1

,,,{,,1

tnnntnnny

ntbntntntnt

zyxzyx 







 

//************************************************** 

            for (k=1;k<=nz;++k) { 

             for (j=1;j<=ny;++j) { 

              for (i=1;i<=nx;++i) { 

               pxi[i][j][k] = pxi0[i][j][k]+ deltat *  

               (-0.5 * sh* (float) j * (pxi0[upx[i]][j][k] -  

               pxi0[downx[i]][j][k]) + e * (pxi0[i][upy[j]][k] 

               + pxi0[i][downy[j]][k] - 2.0 * pxi0[i][j][k]) -b  

               * pxi[i][j][k] + map1[i][j][k] - apxi2[i][j][k]); 

              } 

             } 

            } 
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Appendix B 

The Whole Pseudo-Code of Particle Tracking Computational 

Algorithm 

 

Part I - Particle detection 

 

Repeat – outer loop for all time steps 

 Begin Inner loop-level 1 

  Reading Pxi values  

End Inner loop-level 1  

Step A – applying the detection method and PBC 

  Begin Inner loop-level 2 

  Find the first particle if (Pxi (i, j, k) = 1) 

   Modify the boundary conditions  

    Start to search the nearest neighbours  

    If neighbours are equal 1 then  

    Change the current coordinates to the new coordinates and modify the Pxi values  

Step B – counting the number of particles 

    Count the number of particles   

    Specify the number of particles  

Step C - writing the results  

    Final checking for detecting particles  

     Writing the results into files  

   End Inner loop – Level 2  

 End Repeat – outer loop  

 

Part II - Calculating centre of mass 

 

 Reading detection output files 

  Repeat   for all time steps 

     Read Pxi values  

     Repeat for all particle numbers (C) 

     Counting the number of grid points belong to the particle  

  End repeat  

 Repeat for all particle numbers  

    Initialise A to 0 

    Initialise B to 0  

Step A – initialising the values  

  If the particle has grid points in left width boundary then 

    Set A=20 

   End if 

 If the particle has grid points in right width boundary then 

    Set B=20 

 End if 

 If the particle has grid points in up length boundary then 
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    Set M=20 

 End if 

 If the particle has grid points in down length boundary then 

    Set N=20 

 End if 

Step B – finding the single particles  

 If it is a single particle (if the number of grid points is less than 55)then 

   If A=20 and B=20 (If the particle has gird points in both width boundaries) then 

    If the grid points are close to the right width boundary then  

     Set comx = comx + grid point coordinate (i) 

  Else if the grid points are close to the left width boundary then   

     Set comx = comx + grid point coordinate (i) -127 

 End if 

 If M=20 and N=20 (If the particle has gird points in both length boundaries) then 

   If the grid points are close to the up length boundary then  

     Set comy = comy + grid point coordinate (j) 

  Else if the grid points are close to the down length boundary then   

     Set comy = comy + grid point coordinate (j) -127 

 End if 

 If A=20 and B=20 and M=20 and N=20 (If particle has grid points in all boundaries (it is in 

the corners)) then 

 If the grid points are close to the right width boundary then 

     Set comx = comx + grid point coordinate (i) 

  Else if the grid points are close to the left width boundary then   

     Set comx = comx + grid point coordinate (i) -127 

  Else if the grid points are close to the up length boundary then  

     Set comy = comy + grid point coordinate (j) 

  Else if the grid points are close to the down length boundary then   

     Set comy = comy + grid point coordinate (j) -127 

 End if  

   Else if the particle is not in the boundaries then  

     Set comx = comx + grid point coordinate (i) 

     Set comy = comy + grid point coordinate (j) 

 End if 

Step C – finding the mixed particles 

 If it is a mixed particle (if the number of grid points is more than 55) then 

   If A=20 and B=20 (If the particle has gird points in both width boundaries) then 

     Find the width and length of the mixed particle considering width boundary condition. 

   If M=20 and N=20 (If the particle has gird points in both length boundaries) then 

     Find the width and length of the mixed particle considering length boundary condition. 

 End if 

   If A=20 and B=20 and M=20 and N=20 (If particle has grid points in all boundaries (it is in 

the corners)) then 

     Find the width and length of the mixed particle considering both length and width boundary 

condition. 

 End if  

Step D – calculating and writing the centre of mass 

    If the particle is single then   

    Calculate and write the centre of mass in to the files 
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End if  

     If the particle is mixed then   

    Calculate two centre of mass considering its direction (horizontal, oblique (ascending, 

descending)) and   write the outputs into the files  

    End if 

End Repeat  

 

Part III - Tracking the next position 

 

Reading the centre of masses output files 

   Initialise detected particle (The specific particle which we want to detect- ji)  

 Repeat for all time steps 

     Repeat for all  

      Read centre of mass of detected particles in first time -step 

 End repeat 

   Repeat for all 

    Read centre of mass of detected particles in next time step 

  End repeat 

 Read Pxi values 

  Repeat for all particle numbers (C) 

    If the particle number in first time step is equal to the variable ji then 

Step A – Find the nearest particle and name the new particle as an initial particle  

   Finding the nearest particle base on the finding the nearest centre of mass 

Step B - Considering periodic boundary condition (PBC) 

Periodic boundary conditions apply in five different situations.  

    1- PBC in width boundary    

    2 - PBC in length boundary down -middle 

    3 - PBC in length boundary up -middle 

    4 - PBC in length and width boundary up 

    5 - PBC in length and width boundary down 

  End repeat  

 Write the outputs in the files.    

End repeat 

 

 

 

 

 

 

 

 

 

 



168 
 

 


