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Abstract 

Atherosclerosis is an inflammatory vascular disease caused by a variety of environmental 

and genetic factors. Forming during the first decade of life, atherosclerosis develops over 

time to form complicated intimal lesions known as atherosclerotic plaque. The developing 

plaque affects the normal function of the vascular endothelium, inducing acute 

inflammatory responses which harden vessels leading to vascular stenosis. This study aims 

to examine the role infection plays in the pathogenesis of atherosclerosis through the 

molecular identification of latent bacterial species present in atherosclerotic plaque tissue 

from the carotid artery. Initial immunohistological examination of the atherosclerotic 

plaque tissue revealed widespread localisation of the bacterial cell wall constituent 

peptidoglycan (PGN). Anti-PGN was localised most prominently within regions of plaque 

tissue comprising foam cell-like cells, within elastin tissue and around lipid pools. 

Targeted PCR amplification of the 16S rRNA gene permitted identification of a diverse 

collection of 16S rDNA sequences within atherosclerotic plaque samples. Overall 13 out 

of 21 (61.9%) plaques contained bacterial 16S rDNA relating to periodontal (P. gingivalis 

and T. forsythia), oral (Streptococcus sanguinis and Streptococcus mitis), and respiratory 

(Klebsiella pneumoniae and Mycobacterium tuberculosis) and commensal 

(Propionibacterium acnes and Staphylococcus epidermidis) species. Viable growth of was 

established through culturing atherosclerotic plaque tissue in a developed bacterial culture 

medium. Of the 100 isolates recovered P acnes (91%) was most frequently detected, 

followed by Lactobacillus spp. (3%), S. epidermidis (3%), S. mitis (3%) and S. sanguinis 

(1%). Direct 16S rDNA screening and tissue culturing demonstrated a complete absence 

of bacteria in the healthy left internal thoracic artery (LITA) control tissue. Challenge of 

THP-1 cells with a P. acnes isolate recovered from atherosclerotic plaque, resulted in 

significant temporal up-regulation the major cholesterogenic transcriptions factor, 

SREBP2 and its two target transcripts, LDLR and HMGR. Similarly, the cholesterol 

transporter gene ABCA1 was highly expressed in P. acnes-infected THP-1 cells in 

addition to inflammatory cytokines/chemokines TNFα, IL-1β, CCL3 (MIP-1α), cell 

adhesion molecule ICAM-1. Anti-apoptotic gene BCL2A1 showed the greatest increase 

in mRNA compared to all tested genes. Expression of the same panel of genes direct in 

atherosclerotic plaque tissue resulted in similar expression patterns. Taken together, these 

studies indicate a potential role for infection in the development of atherosclerotic plaque, 

particularly through mediation of cholesterogenic genes, which may potentiate lipid-

loading and foam cell formation in macrophages. 
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1.1 Epidemiology of cardiovascular disease  

Cardiovascular disease (CVD) refers to any abnormal condition characterised by the 

dysfunction of the heart or blood vessels. It includes diseases such as coronary heart 

disease (CHD), hypertension and cerebrovascular disease. CVD is the primary cause of 

death in modern industrialised countries. According to the World Health Organisation 

(WHO) in 2012, an estimated 17.5 million people died worldwide from CVD, which 

represents 31% of all deaths; more than all communicable, maternal, neonatal and 

nutritional disorders combined and double the number of death caused by all cancer 

(Luengo-Fernández et al. 2006). CVD is still the leading cause of death in Europe today 

accounting for over 4 million deaths per year. A wide geographical variation in CVD 

mortality rates exists throughout Europe; Denmark and Norway have among the lowest 

rates of age-adjusted CVD mortality, which are similar to France, Portugal, the 

Netherlands and Spain (Nichols et al. 2013). The very highest rates of CVD mortality are 

found within the Eastern European countries, such as the Russian Federation and Belarus 

for men and Uzbekistan and Kyrgyzstan for women (Nichols et al. 2013). In Europe, CVD 

mortality caused 51% of deaths among women and 42% among men in the last year of 

data, compared with 19 and 23%, respectively, for all cancers combined (Nichols et al. 

2014). The situation does seem to be improving somewhat in the United Kingdom; where 

CVD was found to be the second greatest cause of death at 28% of all deaths after cancer 

at 29%. However CHD by itself is still the leading cause of death in the UK in 2012 

(Townsend et al. 2014). Nearly 41,000 deaths were the result of stroke in the UK, which 

resulted in a disproportionate mortality rate among females (9%) compared to males (6%) 

(Townsend et al. 2014). Though overall, men have a greater rate of CVD mortality 

compared to women, at 29% vs 28%, respectively.  

As well as the human cost, both CVD and CHD have major economic consequences for 

the UK. A study by the BHF established that £6.8 billion was spent on treating CVD within 

the NHS in England between 2012/13; with secondary care accounting for £4,373 million 

(67%) of these costs and primary care costs were £1,925 million (21%) (Townsend et al. 

2014). Though, when additional factors are considered, such as lost productivity, informal 

healthcare and welfare costs, the figure is more closer to £123 billion (Leal et al. 2006). 

When considering both the human and economic cost of CVD, any research that focus on 

understanding the etiological factors that initiate and/or progress CVD, would have great 

benefit from a clinical and economic perspective. 
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1.2 Anatomy of the artery 

The arterial system is a system of blood distribution that originates in the left ventricle and 

is designed to carry oxygenated blood from the heart to the tissues. Anatomically, it 

consists of contractile and elastic membranous ducts classified according to size into 

arteries, (larger diameter) and arterioles (smaller diameter), which will later give rise to 

blood capillaries (tiny vessels specialized in gaseous exchange between blood and tissues) 

(figure 1.01). Large arteries have very elastic walls to withstand high pressures. The artery 

proper is made up of a number of functional discrete layers. The innermost layer is the 

Tunica intima (commonly referred to as the intima), which is in direct contact with the 

flow of blood. The intima consists of the endothelium (a type of epithelium) made up of 

~60 trillion endothelial cells (EC) and is the largest organ in the body. The subendothelium 

layer of the intima consists of connective tissue. The middle layer of the artery is known 

as the Tunica media (or just media), which consists mainly of smooth muscle cells (SMC) 

and elastic tissue. Between the intima and media is the internal elastic lamina. The 

outermost layer of the artery is the Tunica adventitia, which mostly comprise collagen, 

however between the media and the adventitia, is the external elastic lamina. A network 

of tiny capillary-like vessels known as the vasa vasorum that originates in the adventitia 

(vasa vasorum externa). The vasa vasorum functions as a blood supply and nourishes the 

outer vessel layers. Arterioles are smaller vessels that distribute blood to all the organs and 

branch inside them. As the arterial wall contains a large amount of smooth muscle, 

arterioles are also known as “muscular arteries”; for identical reasons, larger arteries have 

been termed “elastic arteries”. Arterioles are also referred to as resistance vessels since, 

due to their small diameter; they are the primary site of peripheral resistance to blood flow. 

The last arteriole branching just before a capillary is known as precapillary arteriole.  
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Figure 1.0: The vasculature of the human body. The vascular system is divided into two main types of 

vessels: arteries, which carry blood from the heart to the tissues; and veins, which collect blood from 

peripheral tissues and return it to the heart. There are two large circuits of blood circulation: systemic 

circulation and pulmonary circulation. In systemic (greater) circulation oxygen-rich blood is distributed 

throughout the body and returns to the heart as desaturated blood. Conversely, in pulmonary (lesser) 

circulation, unoxygenated blood flows from the heart to the lungs, where it is oxygenated to return to the 

heart. Blood pumped by the left ventricle travels to peripheral tissues through the aorta. The aorta is 

responsible for supplying the head, the neck and the rest of the body. Thanks to a partial pressure 

gradient of gases, when the blood reaches the capillaries, it delivers oxygen to the tissues and picks up 

carbon dioxide. Desaturated blood from tissue capillaries is collected by the systemic veins that enter the 

right atrium via the superior vena cava and the inferior vena cava. 
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Figure 1.02: Layers of the artery. Includes the innermost layer, the tunica intima consisting of the 

endothelium connective tissue. The middle, fibrous muscular layer, the tunica media, is separated from 

the intima by the internal elastic membrane. The tunica media comprises smooth muscle cells and elastin 

and is separated from the outermost layer of connective tissue, the tunica adventitia by the external elastic 

membrane.  
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1.2.1 The common carotid artery and greater vasculature of the neck and head 

Blood is pumped from the heart to the ascending aorta. Blood then passes through the 

aortic arch and into the brachiocephalic trunk and into the left and right common carotid 

artery (CCA) that run laterally up either side of the neck (figure 1.03a). A bifurcation in 

the CCA provides blood flow into the external carotid artery that supplies the face through 

the mandibular, facial, temporal and occipital artery. The internal carotid artery 

commences at the bifurcation of the CCA and runs perpendicularly upwards, in front of 

the transverse processes of the three upper cervical vertebrae, to the carotid foramen in the 

petrous portion of the temporal bone. The internal carotid artery passes through the carotid 

canal, curves upwards by the anterior clinoid process, where it pierces the dura mater and 

divides into its terminal branches (Williams et al. 1995). The internal carotid artery that 

provides oxygenated blood directly to the vasculature of the brain. The internal carotid 

artery anastomoses with the middle and anterior cerebral artery and together with the 

vertebral artery form the cerebral circuit or rather, the circle of Willis.    

 

1.3 Atherosclerosis and the carotid artery 

Atherosclerosis is the pathology that underlies cardiovascular disease CVD. It is a major 

progressive form of CVD that produces a focal, inflammatory fibro-proliferative response 

within the artery wall. These factors can result in hyperlipidaemia and increased 

permeability of endothelial cells, which allows infiltration of lipoproteins and other plasma 

constituents into the intimal layer of arteries. This invokes an inflammatory response, 

resulting in hardening of the vessels caused mainly by the subendothelial accumulation of 

necrotic foam cells (monocyte derived macrophages) to form occlusive fibrolipidic 

lesions, known as atheroma. 

One of the main vessels affected by atherosclerosis is the common carotid artery and its 

two branches (external and internal). The most frequent locations for CCA atherosclerosis 

are the carotid bifurcation, the internal carotid artery and the external carotid artery (De 

Syo et al. 2005) (figure 1.03b). In the internal carotid arteries atheromatous plaques are 

characterized by being particularly fragile, ulcerated, with superimposed thrombosis 

(Golledge et al. 2000). Apparently, atheromatous plaques in these arteries present a thinner 

fibrous layer which facilitates ulceration, rupture and secondary thrombosis. A carotid 

bruit detected on systematic physical examination is a sign of atheromatosis. When 
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stenosis is greater, clinical signs may appear such as transient loss of sight (amaurosis 

fugax) or disorders related to sensitivity or muscle strength in the limbs or the face on the 

opposite side of the artery involved. 

 

 

 

Figure 1.03: The arterial circulation of the head and neck shows the carotid artery and the surrounding 

vasculature and the orientation to the skull (A).  Four general distributions of atherosclerotic plaque are 

typically observed in the carotid artery (B). The plaques that form across the carotid bifurcation are most 

frequently encountered.  

 

1.3.1 Complications of carotid atherosclerosis 

Atherosclerotic plaques that develop within the carotid artery can erode overtime resulting 

in a structural weakening of the lesion leading to plaque fragmentation or rupture at the 

plaque surface. The local breakdown of the plaque tissue produces emboli that travel in 

the bloodstream to narrow vessels within the brain where they can cause occlusive 

ischemic events, such as stroke (Takaya et al. 2005). Ischemia resulting from sudden 

changes in plaque stability can either be temporary, known as a transient ischemic attack 

(TIA) or present as permanent stenosis, caused by a focal plaque thrombus or large 

embolus, termed thromboembolic stroke. Further occlusive complications can arise 

following small plaque ruptures, such as thromboses at rupture sites caused by red blood 
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cells (RBC) responses. RBC form aggregates with platelets at the site of the rupture in an 

attempt to heal the plaque injury. In an already occluded vessel, thrombi can cause further 

localised vessel occlusion, or can break free, settling at a bifurcation or a narrow vessel of 

the brain resulting in thromboembolic stroke. 

1.3.2 Clinical symptoms arising from ruptured or thrombosed plaques in the carotid 

artery 

The clinical presentation of ischemic stroke is characterized by the sudden onset of 

neurological symptoms caused when a particular neurological vascular territory is 

affected. For example, lesions located within the lateral aspect of the cerebral hemisphere 

(territory of the middle cerebral artery) will present with the following signs and 

symptoms: hemiparesis, hemihypesthesia, motor aphasia, central aphasia, apraxia and 

hemianopia (Ferro & Fonseca 2014). If located in the midbrain (territory of the posterior 

cerebral artery) ipsilateral paralysis of the third cranial nerve and contralateral hemiplegia 

may result (Ferro & Fonseca 2014). If the medulla oblongata (vertebral and posterior 

inferior cerebellar artery) is affected, such an event is most commonly accompanied by 

hemiplegia, altered contralateral proprioceptive sensitivity, ipsilateral hypoglossal 

paralysis and a lateral syndrome that includes hypaesthesia, nystagmus, ataxia and 

ipsilateral paralysis of the 9th, 10th and 11th cranial nerves, with contralateral thermalgesia 

(Ferro & Fonseca 2014). 

1.3.3 Surgical intervention 

According to the National Institute for Health and Care Excellence (NICE) carotid arteries 

that present with 50 - 70% stenosis require surgical intervention to reduce the prognoses 

of further symptomatology. A surgical procedure known as carotid endarterectomy is 

frequently performed when patient satisfies the correct criteria (figure 1.04). Carotid 

endarterectomy involves dissecting through the tissues of the neck to expose the occluded 

vessel. The internal, external and CCA are clamped up and downstream of the occlusion, 

which temporarily stems the flow of blood to the brain, allowing clear access to the 

occluded site. Clamping the artery also minimises the risk of stray plaque fragments 

entering the brain during the procedure. The artery is then dissected longitudinally at the 

occluded site and the atheroma striped from the artery wall. 
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Figure 1.04: Carotid endarterectomy procedure involves dissecting through the tissues of the neck to 

expose the vasculature of the neck. The internal, external and CCA are clamped up and downstream of 

the occluded atherosclerotic vessel, which temporarily stems the flow of blood to the brain, allowing clear 

access to the occluded site. Occasional shunting of the blood flow provides a circulation during lengthy 

procedures. The artery is then dissected longitudinally at the occluded site and then the atheroma removed 

from the artery wall. A patch is sutured over the surgical incision widening the artery lumen to prevent 

re-stenosis. 
 

1.3.4 Atherogenesis 

Atherosclerotic plaque formation encompasses a series of highly specific cellular and 

molecular responses during a process of chronic inflammation. The theory supporting that 

this process occurs as a response to injury proposes that endothelial dysfunction (ED) is 

the first step in atherogenesis.  ED commonly arises at vascular regions where a disruption 

in blood flow dynamics occurs due to bifurcation or curvature of vessels, which produces 

an increase or reduction in sheer stress leading to a loss of endothelial ability to modulate 

normal cellular processes. At vascular sites affected by ED the initial phase of 

atherogenesis is characterized by a chain of events that starts with one or more of the 

following pathways: high levels of circulating low density lipoprotein (LDL) (Ross et al. 

1977), free radicals such as reactive oxygen species (ROS) (Szocs 2004), genetic 

variations (Bonetti 2002; Jones & Hingorani 2005) and shear stress in areas of turbulent 

blood flow (Chatzizisis et al. 2007) or inflammatory signals such as cytokines (Ait-Oufella 

et al. 2011).  

As a macromolecule, LDL can transmigrate through the permeable endothelium and 

accumulates in the intimal layer of the artery where it becomes oxidised by ROS. Oxidised 

(ox)LDL is highly toxic to the surrounding tissue and therefore promotes an inflammatory 

response in local vascular smooth muscle cells (VSMC) (Kiyan et al. 2014) and further 

promoted ED (Valente et al. 2014). Two of the pro-inflammatory cytokines stimulated by 
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oxLDL are interleukin (IL)-1β and tumour necrosis factor (TNF)α that both activate the 

endothelium to up-regulate cell adhesion molecules (CAMs), intracellular adhesion 

molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 as well as selectins 

P and E-selectin (Falk 2006). Both CAMs act by signalling for the recruitment of 

circulating leukocytes and lymphocytes. Monocyte recruitment to the vascular site of 

injury is facilitated by monocyte chemoattract protein (MCP)-1 also known as C-C motif 

ligand (CCL)2, which forms a concentration gradient that is strongest at its source. 

Monocytes sense CCL2 secretion by a receptor expressed on its plasma membrane called 

C-C motif receptor (CCR)2, which acts by guiding the monocyte toward CCL2, thereby 

bringing the monocyte in contact with the endothelium (Shi & Pamer 2011). Monocytes 

tether P- and E-selectin of the activated endothelium and commence a rolling motion 

across the surface of the endothelium due to the high velocity of the arterial blood 

circulation and the weak affinity between endothelial P- and E-selectin and their monocyte 

ligands, P-selectin Glycoprotein Ligand (PGSL)-1 and the sialylated Lewis X (sLex) 

antigen, respectively (Mestas & Ley 2008). Endothelial cells also express platelet 

activating factor (PAF) that when interacting with monocyte PAF receptor activates 

monocyte integrins such as Lymphocyte function-associated antigen (LFA)-1 which forms 

a strong interaction with its endothelial expressed ligand ICAM-1, which immobilises the 

rolling monocyte at the site of inflammation (Marlin & Springer 1987). Additional 

signalling events cause the profound reorganisation of the cytoskeletal structure of the 

monocyte, resulting in the spreading of one edge of the monocyte (Middleton et al. 2002). 

The leading edge of the monocyte inserts itself between endothelial cells in a process 

involving further CAM activation (PCAM-1) that function to aid monocyte extravasation 

and migration into the intimal space(Woodfin et al. 2007).  Figure 1.05 highlights the 

recruitment of monocytes to the activated endothelium and the  
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Figure 1.05: Leukocytes recruitment and extravasation of the endothelium. Shows the innate immune 

responses that progress the development of an atherosclerotic lesion. At vascular regions prone to 

atherosclerosis due changes in blood flow dynamics and shear stress, circulating monocyte subsets are 

activated in response to vascular inflammation, expressing PGSL-1 and L-selectin in response to the 

expression of endothelial P and E-selectin, respectively (A). The monocytes are tethered to the 

endothelium via selectin interaction which rapidly decelerates the monocytes as it exits the velocity of the 

blood flow (B). Because selectins only bond with weak affinity monocytes begin to roll on the surface of 

the endothelium (C). At the site of injury ICAM-1 is expressed which binds with high affinity to 

monocyte-expressed lymphocytes function-associated antigen (LFA)-1, attaching the monocyte to the 

endothelium surface (D). The cytoskeleton of the monocyte is reorganised in such a way that the monocyte 

spreads out over the endothelium surface permitting transmigration of the monocytes via the aid of platelet 

endothelial cell adhesion molecule (PECAM)-1 (a protein found at the endothelial cell intercellular 

junction) that assists leukocyte diapedesis into the sub-endothelium space (E). Once residing in the intima 

monocytes undergo differentiation to tissue macrophages mediated by macrophage colony stimulating 

factor (M-CSF), which simultaneously involves the release of pro-inflammatory cytokines (TNF-α, IL-

1β and CCL2) that act on the endothelium to elicit further leukocytes recruitment and chemotaxis (F).  

Monocyte-derived macrophages express scavenger receptors at the surface of their plasma membrane and 

undergo rapid proliferation (G). Macrophages avidly take up native and modified (for example, oxidized) 

low-density lipoprotein (LDL) via macropinocytosis or scavenger receptor-mediated pathways (including 

via scavenger receptor A1 (SR-A1) and CD36) (H), which results in the formation of the foam cells These 

foam cells secrete pro-inflammatory cytokines (including interleukin-1 (IL-1), IL-6, and tumour necrosis 

factor (TNF)) and chemokines (such as CC-chemokine ligand 2 (CCL2), CCL5 and CXC-chemokine 

ligand 1 (CXCL1)) (I). The accumulation of foam cells are a hallmark of the atherosclerotic plaque (J). 

Figure adapted from (Moore et al. 2013) 

 

When residing in the intimal space, monocyte differentiation to tissue macrophage 

development is mostly influenced by colony stimulating factor (CSF)-1 (also known as 

macrophage-colony stimulating factor M-CSF), produced by stromal cells within the 

blood and in tissues (Hamilton 2008). During differentiation monocyte-derived 
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macrophages up-regulate the expression of a host of membrane surface receptors known 

as scavenger receptors in response to a number of stimuli including CCL2 (Tabata et al. 

2003). Macrophages expressing scavenger receptors then seek out and phagocytise large 

amounts of oxLDL relentlessly. This excessive internalisation of oxLDL leads to the 

development of macrophage foam cells; grossly over-sized lipid-loaded macrophages that 

have an appearance of foam due to the lipid droplets that form in their cytosol. In addition, 

scavenger receptor binding of oxLDL and foam cell formation induces further macrophage 

expression of chemotactic M-CSF, MIF and up-regulation of proinflammatory cytokines, 

such as TNFα and IL-1β, IL-12 and IL-18 (Autieri 2012). Foam cell internalise vast 

amounts of oxLDL cholesterol they become immobile, unable to egress, thereby 

accumulating in the atherosclerotic lesion where they become necrotic. Foam cell 

apoptosis results in the release of stored reactive lipids and toxic debris, which collectively 

form the lipid core; a distinctive hallmark of atheroma formation (Hegyi et al. 1996). The 

deposition of increasing excess reactive lipoprotein and apoptotic cellular debris becomes 

completely overwhelming as efferocytosis and phagocytosis becomes defective (Thorp & 

Tabas 2009). As further inflammatory signalling is induced in an effort to clear the 

accumulating reactive lipid the entire process thereby continues in a perpetual negative 

cycle of LDL entry to the subendothelium, LDL oxidation, cell activation and leukocyte 

recruitment, monocyte differentiation, foam cell formation and necrosis until a large lipid 

core develops with extensive necrosis. These processes represent the central paradigm of 

atherogenesis. 

While the innate immune response is potent and plays the greater role, an adaptive 

response also exists within the atherosclerotic lesion. For example, IL-12 and IL-18 

stimulate T-cell differentiation from native to Th1- and Th2-cells, respectively (Nakanishi 

et al. 2001). While Th1 cells further potentiate the inflammatory response through 

secreting proinflammatory cytokines that promote leukocyte activation and proliferation 

in the lesion, Th2 cells work to inhibit the effects of these responses by promoting anti-

inflammatory factors (Packard et al. 2009). When plaques become advanced, cytokines 

(i.e. IL-1β, IL-6 and TNF-α), extracellular matrix components (e.g. collagen I, V and VIII) 

and growth factors (e.g. epidermal growth factor (EGF) vascular endothelial growth 

factor-β1 (VEGF-β1), basic fibroblast growth factor (bFGF) and platelet derived growth 

factor (PDGF), stimulate smooth muscle cells (SMC) proliferation and migration through 

the atherosclerotic lesion to the surface tunica intima (Rudijanto). This response is one of 

healing; in an attempt to cover the atherosclerotic plaque and highly thrombogenic 
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contents of the lipid core SMC act in paracrine manner to produce a layer of collagen and 

fibrin over the plaque. This feature is known as the fibrous cap and although it represents 

an attempt to protect the lesion it can result in plaque rupture. SMC also transdifferentiate 

to macrophage-like cells that actively scavenge and load themselves on modified LDL in 

the plaque and develop into foam cells. In a recent immunohistochemical study to identify 

macrophages and foam cells in atherosclerotic plaque, it was noted that as much as 40% 

of foam cells expression CD60 (a macrophage specific marker) originated as SMC 

(Allahverdian et al. 2014). As SMC can essentially transdifferentiate into macrophages-

like cells that lose many of their classic SMC markers, these cells facilitate multiple roles, 

each of which progress plaque development.  

1.4 Risk factors associated with the development of  atherosclerosis 

The term “risk factor” is widely used to describe any attribute, characteristic or exposure  

of an individual that have been shown in epidemiological studies, autopsy studies, 

metabolic studies, and genetic studies to increase the likelihood of developing a disease. 

Risk factors can be categorised as personal, lifestyle, biochemical or physiological 

characteristics that are either modifiable or not. The vast majority of risk factors involving 

the development of CVD are modifiable and are well advertised. In 1948 a critical study 

known as the Framingham Heart Study (FHS) was initiated in the USA and provided the 

first major open access data relating to >5000 participants. Prior to this study, little was 

known about the relative risk of genetic and environmental factors in the development and 

progression of CVD. Over 1000 studies have resulted from the FHS to identify major CVD 

risk factors, such as high blood pressure, high serum cholesterol, diabetes, smoking, 

obesity and physical inactivity (Kannel et al. 1961; Cornfield 1962; Kannel et al. 1965; 

Kannel & McGee 1979; Hubert et al. 1983; Freund et al. 1993; Sherman et al. 1994). 

1.4.1 Non-modifiable risk factors 

1.4.1.1 Age 

Age is one of the non-modifiable cardiovascular risk factors together with sex and genetic 

factors. Cardiovascular risk is directly related with age, partly due to “aging” of the 

cardiovascular system itself, but also due to increased prevalence of other risk factors such 

as hypertension, diabetes, obesity, sedentary lifestyle, etc. All the cardiovascular risk 
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scoring tables based on the prediction model of the Framingham Heart Study include age 

as one of the factors to take into account (Wilson et al. 1998).  

1.4.1.2 Genetic mutations – familial  

It is not completely clear whether the correlation between a family history of heart disease 

and increased cardiovascular risk is only attributable to genetic factors or is a consequence 

of habits and lifestyle inherited from parents. However, certain genetic defects have been 

linked with increased cardiovascular risk, e.g. polymorphism of the fibrinogen beta-chain 

gene (Iacoviello et al. 2001) or genotypes expressed as homozygous and heterozygous 

forms of familial hypercholesterolemia (Hobbs et al. 1992). Hypercholesterolemia results 

from mutation in the gene that encodes apolipoprotein (apo)B or (apoE) specific LDL 

receptor that is inherited as the heterozygous genotype or as the much rarer (1 in 1 million 

births) homozygous genotype; inherited in an autosomal dominant pattern (Rader et al. 

2003; Soutar & Naoumova 2007). Most primary disorders associated with atherogenic 

dyslipidemias have an unknown molecular base and are classified as “polygenic” 

(Kathiresan et al. 2009). 

1.4.1.3 Congenital defects  

The presence of congenital diseases of the homocysteine metabolism (with homozygous 

genotype) and very high serum homocysteine levels are positively correlated with 

premature atherosclerosis; these patients may have a myocardial infarction during the 

second decade of life. Homocysteine is toxic to endothelium: it has a prothrombotic effect, 

promotes collagen formation and reduces NO availability. In certain cases, patients suffer 

from moderate hyperhomocysteinemia; this disorder is positively correlated with risk for 

cardiovascular disease although not as closely as with the so-called major risk factors 

(Yang et al. 2005). 

1.4.2 Modifiable risk factors 

 

1.4.2.1 Affluent diet  

Epidemiological studies carried out all over the world and in large population groups have 

determined that consumption of the typical affluent cholesterol-rich diet of industrialized 

countries is closely related to the prevalence of atherosclerosis (Wilson et al. 1998). A 

cholesterol-rich diet is characterized by excess saturated fat and cholesterol; the two key 
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nutrients for developing dyslipidemia, as well as animal protein, refined sugars and sodium 

chloride, very low intake of vegetal fibres and a high total caloric value. This kind of diet 

is not only associated with atherosclerosis and its related conditions (coronary heart 

disease, cerebrovascular disease, peripheral vascular disease, among others) but also to 

other conditions which sometimes coexist thus increasing the cardiovascular risk; 

examples of these are hypertension, type 2 diabetes and obesity (Wilson et al. 1998). 

1.4.2.2 Plasma LDL cholesterol levels 

Prolonged intake of a cholesterol-rich diet increases plasma levels of LDL cholesterol. It 

is currently accepted that elevated plasma LDL concentrations are major risk factors for 

developing CHD. This correlation has been well identified in epidemiologic/observational 

studies of important cohorts that have been prospectively followed (Anon 2002; Grundy 

et al. 2004). Evidence shows a continuous positive relation between risk for CHD and 

plasma LDL-cholesterol levels, and there is no defined “threshold” below which lower 

concentrations are associated with lower risk (Siri-Tarino et al. 2010). These studies 

suggest that the cardiovascular risk increases by 2% every 1% increase in total cholesterol. 

In addition, the predictive value of HDL cholesterol levels as a risk factor inversely 

correlated with cardiovascular disease has been extensively confirmed (Castelli 1986; 

Assmann et al. 1996; Curb et al. 2004; Mahdy Ali et al. 2012; Nomikos et al. 2015). Recent 

data has evidenced that triglyceride values above 2 g/l entail a high risk for CHD and 

suggest that target values are below 1 g/l. Lipoprotein(a) is an independent risk factor for 

CHD. A relative risk for myocardial infarction 1.75 times higher if Lipoprotein(a) levels 

are over or equal to 300 mg/l has been reported (Schaefer 2002; Schmitz & Orsó 2015). 

Obese individuals have a three-fold higher risk to develop CHD as compared to subjects 

with a normal body mass index (BMI) (Poirier et al. 2006). 

1.4.2.3 Hypertension  

High blood pressure is directly related to the risk of cerebrovascular accident and 

myocardial infarction. Although hypertension is often associated to obesity and insulin 

resistance, the risk posed by hypertension enhances the risk presented by any of the other 

cardiovascular risk factors. The higher the blood pressure levels, the higher the risk of 

cardiovascular disease (Mann et al. 2011). A physiological and pathogenic observation 

reveals three hypertension-related disorders causing vascular damage: pulsatile blood 

flow, endothelial cell dysfunction, and vascular smooth muscle hypertrophy. High systolic 
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pressure is known to be the main causal agent for these disorders; it entails a greater risk 

than high diastolic pressure (Mann et al. 2011). 

1.4.2.4 Smoking tobacco  

Several studies have conclusively shown that smoking accelerates arteriosclerosis and 

atherosclerosis, increasing the risk for coronary artery disease, cerebrovascular disease and 

peripheral vascular disease (Howard et al. 1998). The smoking habit raises LDL and 

triglyceride levels and reduces HDL levels; also, it promotes endothelial hypoxia as it 

raises blood levels of carbon monoxide. Furthermore, nicotine and other tobacco 

derivatives are toxic to endothelium and may cause its dysfunction. In addition, it promotes 

arterial vasoconstriction. In addition, cigarette smoking increases platelet reactivity and 

aggregation, and plasma fibrinogen concentration, which results in higher blood viscosity. 

These negative effects of tobacco are directly related to the number of cigarettes smoked 

per day. Furthermore, passive smokers are at an increased risk for CHD (Benowitz & 

Gourlay 1997). 

1.4.2.5 Type 2 diabetes  

Coronary artery disease accounts for almost 75% of deaths in diabetic individuals (Sowers 

et al. 2001). Although hyperglycemia is associated with small vessel disorders, insulin 

resistance promotes by itself, the development of atherosclerosis even before it manifests 

clinically as diabetes (Aronson & Rayfield 2002). Diabetic patients show a marked 

impairment of the vascular smooth muscle and endothelial functions, as well as an 

increased leukocyte adhesion to the vascular endothelium, which plays a critical role in 

atherogenesis (Sowers et al. 2001). The triad hypertriglyceridemia plus HDL cholesterol 

reduction plus increase in small and dense LDL particles promotes the development of 

atherosclerosis; some authors term it “atherogenic dyslipidemia” (Manjunath et al. 2013). 

1.4.3 Infection as a risk factor for the development of atherosclerosis 

Further to the aforementioned “traditional risk factors”, such as plasma LDL level, 

smoking, cholesterol-rich diet and physical inactivity, other potential sources of risk are 

now associated with the initiation and progression of atherosclerosis. One such factor that 

has been demonstrated to be associated with the development of various forms of CVD is 

infection (Shah 2001). A link between infection and atherosclerosis was first proposed 

over a century ago by Sir William Osler (1908). Even though the association was mostly 
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rejected at the time, a renewed interesting in the role infection plays in the pathogenesis 

was revisited some 70 years later by germ free chickens developing atherosclerotic lesions 

following infection with avian herpes (Fabricant et al. 1978). Current opinion is that 

increased incidence of CVD is probably the result of a high prevalence of both traditional 

risk factors and infectious agents (Campbell & Rosenfeld 2015). A large number of 

infectious agents have been linked with an increased risk of CVD. These include, C. 

pneumoniae, Helicobacter pylori, influenza A virus, cytomegalovirus, and human 

immunodeficiency virus (Madjid et al. 2004; Simanek et al. 2011; Joshi et al. 2013; 

Sharma & Aggarwal 2015).  

1.4.3.1 Direct and indirect inflammation 

These infectious agents drive inflammation in two ways, either via direct infection of 

artery wall where they activate an innate immune response by the vessel cells and/or via 

systemic raising of inflammatory markers such as acute phase reactants and cytokines from 

distant sites of the body (Rosenfeld & Campbell 2011; Campbell & Rosenfeld 2015). In 

order to demonstrate a pathogenic response, the initial criteria for Koch’s postulate should 

be observed, in that there should be evidence of the presence of the agent within the 

atherosclerotic plaque but not within normal blood vessels. Better still, evidence that the 

pathogen has infected plaque/artery cells and isolation of the viable organism from cells 

suggesting active inflammation. The isolated strain must accelerate atherosclerosis when 

used to challenge in vivo models of atherosclerosis. The infectious agent may also induce 

inflammation from non-vascular sites such as the lungs (C. pneumoniae) and the oral 

cavity (P. gingivalis) (Rosenfeld 2013). Sites of infection can cause a systemic rise in 

inflammatory cytokines and other secreted factors, such as acute phase reactants that are 

secreted by the liver, circulate in the bloodstream and activate the endothelium at 

atheroprone regions of the vasculature (Ebersole 2003; Loos 2005). This can exacerbate 

the inflammatory milieu already active within the atherosclerotic plaque and further 

progress atherogenesis (Rosenfeld 2013). 

1.5 Periodontal disease 

Periodontitis is a highly destructive form of periodontal disease that affects the soft and 

hard tissues of the periodontium as opposed to gingivitis that only affects the gingival 

tissue. It is an chronic inflammatory disease caused by a multitude of factors, of which 
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specific oral pathogens and the host immune system play predominant roles. Endo and 

exotoxins produced by periodontal bacteria in subgingival dental plaque induce pathways 

that mediate a complex set of inflammatory reactions (Cekici et al. 2014). Periodontitis is 

characterised by inflamed bleeding gums, which recede from the tooth forming deep 

pockets at the gingival sulcus. Periodontal pockets become difficult to clean, forming 

reservoirs for food debris and periodontal bacteria driving infections deeper into the 

periodontium. Chronic periodontal infections result in progressive erosion of alveolar bone 

and subsequent detachment of periodontal ligaments that eventually leads to tooth loss 

(Cekici et al. 2014). One of the mediators of bone resorption is IL-12 that differentiates T-

cells to TH1-cells producing IFN-γ, the IL-12-IFN-γ pathway can induce bone resorption 

by production of proinflammatory cytokines, such as TNF-α and IL-1β, which leads to the 

activation of osteoclasts (Queiroz-Junior et al. 2010). Receptor activator of NF-κB ligand 

(RANKL) and osteoprogerin (OPG), a decoy receptor of RANKL are both implicated in 

osteoclast differentiation and activation, and therefore strong mediators of alveolar bone 

destruction (Queiroz-Junior et al. 2010). 

1.5.1 Periodontal bacteria 

There is estimated to be in excess of 600 prevalent taxa at the species level present within 

the average healthy human oral cavity, with distinct subsets predominating at different 

habitats (Aas et al. 2005). Many bacterial species co-exist in an aggregate, wherein bacteria 

adhere to other bacteria and to the pellicle surface of the tooth. This tight polymicrobial 

network is known as a dental biofilm, or more commonly as dental plaque (Jakubovics 

2010). While large numbers of different bacteria co-exist in dental plaque, it is recognised 

that many beneficial species in biofilms. It is not the entire bacterial load that attenuates 

progression from healthy gingivae to periodontal disease, but rather the presence of a 

minority of pathogenic strains that trigger pathology in susceptible individuals (Marsh 

2006). According to phylogenetic studies using the bacterial genetic marker 16S rRNA, 

only few Gram negative bacteria species were typically recognised as “periodontopathic” 

and therefore implicated in the initiation and progression of periodontitis, namely, 

Aggregatibacter actinomycetemecomitans, Porphyromonas gingivalis, Tannerella 

forsythia, Treponema dendicola, Prevotella intermedia, Prevotella nigrescenes, 

Campylobacter rectus, Fusobacterium nucleatum, Streptococcus mutans and Eikenella 

corrodens (Ashimoto et al. 1996; Paster et al. 2001; Haffajee et al. 2008; Heller et al. 

2012). Later, it was discovered that genera of Gram positive species were the most 
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predominant bacteria detected in subgingival plaque, including  Propionibacterium, 

Peptostreptococcus and Filifactor (Kumar et al. 2005). Amongst the eleven Gram negative 

putative periodontal bacteria, P. gingivalis, T. forsythia and T. denticola are more 

frequently detected in sub-gingival dental plaque (Heller et al. 2012). This occurrence is 

suggested to be a consequence of bacterial affinity to form complexes in subgingival 

plaque (Socransky et al. 1998). Known as ‘red complex bacteria’ (RCB), this triad of gram-

negative anaerobic bacteria is present in healthy individuals (Haffajee et al. 2008), 

although in much lower numbers compared with individuals with active moderate to 

severe forms of chronic periodontitis (Wara-Aswapati et al. 2009). 

However, these earlier studies did not provide a comprehensive view of bacterial 

communities associated with periodontitis. 16S rRNA gene amplification and next 

generation sequencing (NGS) has resulted in a major advance in our understanding of the 

polymicrobial composition of periodontal plaque and provides a much more complete 

picture of the structures of the microbiome in periodontitis and health (Griffen et al. 2012; 

Abusleme et al. 2013; Szafranski et al. 2015). Using 454 sequencing of 16S rRNA genes, 

Griffen et al. (2012) compared subgingival bacterial communities from 29 preiodontally 

healthy  controls and 29 subjects with chronic periodontitsis. The authors generated over 

1.3 million sequences that were identified through BLAST reference searches and were 

mapped to 16 phyla, 106 genera and 596 species (Griffen et al. 2012). By assessment at 

each phylogenetic level and genetic distance and principal coordinate analysis, Griffen et 

al. (2012) found that 123 species were more predominant in disease and 53 in health. 

Typically Spirochetes, Synergistetes and Bacteroidetes were frequently detected in 

disease, whereas Proteobacteria were in higher numbers in healthy subjects (Griffen et al. 

2012). Using the same experimental design Abusleme et al. (2013) found that presence of 

bleeding was not associated with microbial diversity in subgingival plaque, though 

bleeding sites were associated with greater total bacterial load. In contrast, there was a 

large difference in microbial diversity and load bacterial communities between health and 

periodontitis (Abusleme et al. 2013). Periodontitis communities showed higher 

proportions of Spirochetes, Firmicutes and Chloroflexi, whereas Actinobacteria, 

particularly Actinomyces spp. were more prevelant in healthy tissue.  However, 

Actinomyces spp. load were unchanged in both health and periodontitis (Abusleme et al. 

2013). Other researchers have investigated subgingival plaque tissue for potential 

biomarkers that may be present using NGS methods of the V1-V2 and V5-V6 

hypervariable regions of 16S rRNA gene (Szafranski et al. 2015). The authors generated 
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sequences for 523 operational taxonomic units (OTUs) for V1-V2 and 432 from the V5-

V6 regions. Of these 80 biomarkers of periodontitis and 17 of health were identified. The 

study demonstrated that these biomarkers could be used as a diagnostic tool when 10 

biomarkers for periodontitis were used, 15 of 17 samples were correctly diagnosed for the 

disease (Szafranski et al. 2015). 

1.5.2 Periodontitis and Atherosclerosis 

As previously noted, infection is proposed as a risk factor in the development 

atherosclerosis. A major hallmark of periodontitis is the presence of many of the 

aforementioned putative periodontal pathogens in dental biofilms (both supra- and sub-

gingival) that characterise the periodontal pathological process. Many of these putative 

strains have been associated CVD (Trevisan & Dorn 2010). However, even after nearly 

three decades of broad study in this filed there is extensive variability of the strength of 

associations, in part, due to the variation in markers used to investigate periodontitis 

(Beltrán-Aguilar et al. 2012). These include: oral bacteria or antibodies to oral bacteria, 

salivary flow, self-reported periodontal status, tooth loss, or one of many scoring indices 

that measure a variation of physical characteristics such as, probing depth, bleeding on 

probing and attachment loss. 

1.5.2.1 Presence of periodontal bacteria in carotid atherosclerotic plaque tissue 

Many studies have identified periodontal bacteria in atherosclerotic plaque from various 

affected arteries using immunohistochemistry (IHC) or PCR. These include P. gingivalis, 

T. forsythia, P. intimedia, A. actinomycetesmecomitans, F. nucleatum, C. rectus. To date 

thirteen previous studies have attempted to detect periodontal bacteria in carotid 

atherosclerotic plaque (CAP) samples (Chiu 1999; Haraszthy & Zambon 2000; Cairo et 

al. 2004; Fiehn & Larsen 2005; Ford et al. 2006; Padilla et al. 2006; Aimetti et al. 2007; 

Romano et al. 2007; Aquino et al. 2011; Figuero et al. 2011; Armingohar et al. 2014; S. 

Morita et al. 2014; Rangé et al. 2014). Of these, seven studies have managed to detect 

DNA from periodontal bacteria (Chiu 1999; Haraszthy & Zambon 2000; Fiehn & Larsen 

2005; Ford et al. 2006; Padilla et al. 2006; Figuero et al. 2011; Armingohar et al. 2014), 

but the remaining four did not (Cairo et al. 2004; Aimetti et al. 2007; Romano et al. 2007; 

Aquino et al. 2011). Studies that yielded positive results in CAP samples, T. denticola 

DNA was completely absent; whereas 5 out of 7 studies detected P. gingivalis and 2 out 
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of 7 were positive for T. forsythia. Interestingly, two of the studies that successfully 

identified periodontal bacterial DNA in CAP samples did not test the periodontal status of 

patients (Haraszthy & Zambon 2000; Fiehn & Larsen 2005). Though only Haraszthy & 

Zambon (2000) showed high detection rates for most of their targets including for P. 

gingivalis (13/50) and T. forsythia (30/50), Fiehn & Larsen (2005) did not. Thus, historical 

oral infection or possibly randomly selected patients with actve periodontal infection at 

the time of the may explain these high detection rate.  

Historical infection building over time may also account for findings by Kozarov et al. 

(2006), who showed the highest percentage detection of all studies for DNA from eight 

periodontal species in carotid plaque tissue. The author compared detection rates in two 

groups (young and elderly). Five of eight periodontitis-associated pathogens were detected 

in both groups. For the elderly group P. gingivalis was detected the most (88.8%); 

markedly higher than that reported for the younger group (18.3%), which may be due to 

historical buildup of pathogens over time. These findings were also in agreement with 

other studies testing age as a factor for the severity of infectious agents in atherosclerotic 

plaque (Haraszthy & Zambon 2000; Pucar et al. 2007). However Kozarov et al. (2006) 

examined plaque from a mix of affected arteries within the same study, making it difficult 

to specifically summerise these results for carotid. Percentage of P. gingivalis in the 

elderly group was  comparable to those reported by Figuero et al. (2011) (78.5%), although 

Figuero et al. (2011) reported detection of less species compared to Kazarov (2006), the 

overall percentages for each of the  species reported by Figuero (2011) were higher. 

Ford et al. (2006) investigated the presence of periodontal bacteria using specific 

antibodies for their detection in CAP tissue from individuals with periodontitis. Five 

different periodontal bacteria including P. gingivalis (52%) and T. forsythia (34%) were 

frequently detected in CAP tissue and 76% of samples contained more than one species. 

In contrast, Padilla et al. (2006) examined the presence of periodontal bacteria in both 

subgingival plaque and CAP samples using PCR. Although DNA from a number of species 

were detected in subgingival plaque tissue, including P. gingivalis, A. 

actinomycetemecomitans and P. intermedia, only A. actinomycetemecomitans was 

detected in CAP tissue. Similarly, Armingohar et al. 2014, reported a very high load 

and mean diversity of previously undetected bacterial 16S rDNA sequences in CAP 

tissue. Interestingly though, while 70% of subgingival plaque specimens from patients 

with chronic periodontitis showed presence of RCB DNA, only P. gingivalis was 
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detected in one vascular biopsy (Armingohar et al. 2014). Moreover, the authors 

showed a large number of oral and non-orally derived bacterial 16S rDNA sequences 

in CAP samples that were not detected in subgingival plaque tissue. Therefore, species 

that are typically considered to have a commensal relationship with the host, can 

potentially act as opportunistic pathogens by gaining entry to the blood stream and 

invading plaque tissue where they may contribute to inflammatory milieu. A recent 

study examining the presence of P. gingivalis in carotid (n 31) and coronary (n 32) 

artery plaques of patients with periodontal disease demonstrated that five times as 

many carotids plaques were positive for P. gingivalis (15 compared to 3); despite 

greater percentages of P. gingivalis in the periodontal pockets of coronary (87.5%) 

compared to carotid patients (61.3%). Because both arteries were processed in the 

same way, this study raises the question of whether certain periodontal bacteria have 

an affinity for particular vascular beds or if the perhaps their time in transit through 

the blood is determined by their size, morphology or motility.  

Typically then, there is massive variation in the detection rates between different 

studied of the carotid artery plaque samples. All bar one of these studies used PCR for 

detection so it is likely the variation is due to the different DNA extraction methods 

or PCR methods used between studies. DNA extraction is a critical part in the 

experimental design for bacterial DNA detection investigations, because, if the 

method is sub-optimal then many organisms may not be adequately lysed and 

subsequently discarded. When it is expected that bacterial DNA is likely to be present 

at low copy number quantities any loss could be devastating.  

1.5.2.2 Periodontal bacteria present in other arteries 

In studies with a similar experimental design where different atherosclerotic arteries 

have been investigated, such as coronary, aorta or femoral for the presence of 

periodontal bacterial DNA, the same degree of variation in detection rates are 

observed between studies (Kozarov et al. 2006; Mahendra et al. 2010; Nakano et al. 

2011). Both Gaetti-Jardim (2009) and Ishihara et al. (2004) reported detection of 5 of 8 

periodontitis-associated pathogens in coronary plaques, however percentages seen by 

Gaetti-Jardim (2009) for each species were mostly twice that observed by Ishihara (2004). 

Unlike the carotid artery, which has not yet been shown to yield T. denticola, 

atherosclerotic plaque from aorta and coronary samples have (Nakano et al. 2006; 
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Ohki et al. 2012). There are over 50 individual investigations assessing the dissemination 

of oral bacteria into the blood following various categories of endodontic treatment; 

however, there has not yet been data describing the dissemination of oral Spirochetes from 

the mouth in experimental human odontogenic bacteraemias (Parahitiyawa et al. 2009).  

Spirochetes are abundant in the oral cavity, in healthy and diseased oral tissue, the absence 

of T. denticola DNA in the carotid but not coronary or aorta may reflect is size compared 

to other coccobacillus species for the RCB. 

1.5.2.3 Viable bacteria present in carotid plaque tissue 

Previous attempts to isolate and identify bacterial species present in atherosclerotic plaque 

have generally been unsuccessful, possibly due to the presence of unculturable species or 

bacteria numbers too low to culture (Fiehn & Larsen 2005). Hence, bacteria have been 

isolated from carotid plaque in a viable form just to a much lesser extent. C. pneumoniae 

was among the first species to be isolated from the carotid artery in an early study (Jackson 

et al. 1997). However this study was only conducted on plaque from one carotid vessel. 

Kozarov et al. (2005) rightly proposed that 16S rDNA detection or in situ detection of 

bacteria in the walls of the artery or the atherosclerotic plaque does not prove the presence 

of live bacteria, which are able to invade cells and induce inflammation. Therefore they 

developed an assay to confirm the invasive capability of P. gingivalis and A. 

actinomycetemecomitans.Through co-incubation of homogenates of atherosclerotic 

plaque from the carotid artery with the endothelial cell line ECV-304, Kozarov et al. 

(2005) observed P. gingivalis and A. actinomycetemecomitans inside ECV-304 cells. This 

study provided the first evidence that periodontal bacteria present with atherosclerotic 

plaque tissue were viable, because only live cells would have the ability to invade 

endothelial cells.  

Rafferty et al. (2011) took a similar approach to the previous study by using the monocyte 

cell line THP-1 in the recovery of unculturable species present in carotid and femoral 

atherosclerotic plaques. Viability of isolated species was then confirmed through lysis of 

THP-1 cells and subsequent growth of bacteria on solid microbiological medium. To 

determine whether recoverd species were intracellular, medium was flooded with 

antibiotic so that only bacteria within THP-1 cells would survive. Along with P. gingivalis, 

872 isolates were recovered using this method, such as Propionibacterium acnes, 

Staphylococcus epidermidis and Streptococcus infantis. It was reported that the recovery 
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rate using THP-1 cells was 5.6-times greater than incubating plaque homogenates in just 

medium alone. Viability was confirmed by treating. This study not only highlights the 

presence of diverse viable species in carotid plaque tissue but also details one of the 

mechanisms hypothesised to contribute to bacteria entering the plaque tissue. The so called 

“Trojan horse” model. Bacteria are phagacytised by macrophages, which then respond to 

inflammatory signals frm the endothelium delivering their bacterial cargo once they 

become necrotic through lipid-loading. Interestingly, Rafferty et al. (2011) recovered a 

high frequency of viable P. acnes which has since been showed to be able to survive for 

up to two weeks inside THP-1, which may explain its high frequency (Fischer et al. 2013).  

1.5.2.4 In vitro evidence 

P. gingivalis is the most studied periodontal pathogen due its key role in the initiation and 

progression of periodontitis (Mysak et al. 2014). P. gingivalis virulence factors are well 

characterised, comprising fimbriae, Arg- and Lys-gingipain cysteine proteinases (Holt & 

Kesavalu 1999), proteolytic enzymes, lipopolysaccharides (LPS), hemagglutinins 

(Bélanger et al. 2012) and outer membrane vesicles (Veith et al. 2014). P. gingivalis and 

the cariogenic Streptococcus sanguis express virulence factors called collagen-like platelet 

aggregation associated proteins that induce platelet activation in vitro and in vivo 

(Herzberg et al. 1996; 1998; Lourbakos et al. 2001). Platelets bind to activated 

endothelium and hence considered atheroprogresive. Certain fimbriated stains of P. 

gingivalis such as 381 are able to adhere to and invade epithelial and endothelial cells 

(Lamont et al, 1995; Deshpande et al, 1998a; Dorn et al, 1999). Evidence which supports 

a role for fimbrae in host cell invasion shows that a P. gingivalis 381 mutant lacking the 

major fimbriae protein, cannot invade these cell types due to its inability to adhere 

(Enersen et al. 2013). In vitro adhesion experiments have shown that challenge of human 

umbilical vein endothelial cells (HUVEC) with P. gingivalis 381 induces endothelial cell 

surface expression of VCAM-1, ICAM-1 and P-selectin (Khlgatian et al. 2002). Roth et 

al. (2007), demonstrated expression of chemokines MCP-1, IL-6 and IL-8 in HUVEC 

challenged with P. gingivalis 381. These inflammatory modulators are implicated in the 

adhesion, chemotaxis and diapedesis of leukocytes to the vascular tissue that contributes 

to atherosclerotic lesions.  
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1.5.2.5 In vivo evidence 

Li et al. (2002) examined inflammatory responses in ApoE+/- mice following intravenous 

inoculation with P. gingivalis. Infected mice were fed either normal or high fat chow and 

compared with noninoculated littermates. The authors reported a 9-fold increase of 

atherosclerotic plaque in the aortic arch of mice fed on normal chow compared to 

noninoculated littermates. Infected mice fed on high fat diet showed a 2-fold increase in 

aortic plaque compared to noninoculated littermates fed on the same diet. These findings 

demonstrate that P. gingivalis bacteraemia exacerbates inflammatory responses in artery 

tissue that leads to an increase in plaque formation. Furthermore, plaque development was 

evident in both groups of infected mice fed on high fat or normal chow; demonstrating 

lesion development is not exclusively attributed to high blood cholesterol level but to a 

greater extent implicating P. gingivalis bacteraemia as a main factor in lesion 

development. Lalla et al. (2003) investigated inflammatory responses of mice homozygous 

for ApoE-/- following oral inoculations of P. gingivalis. Mice infected with P. gingivalis 

developed symptoms of periodontitis, such as alveolar bone loss as well as elevated serum 

IgG levels compared to non-infected mice. Development of early atherosclerotic lesions 

was also reported for mice that developed periodontal infections compared to non-infected 

mice. These results demonstrate the pathogenesis of P. gingivalis to initiate oral infection, 

its ability to invade epithelial cells and enter the blood stream causing an increase in 

circulating inflammatory proteins that could accelerate atherogenesis. In addition, Lalla et 

al. (2003) established the presence of P. gingivalis DNA and upregulation of VCAM-1 in 

aortic artery tissue of infected mice. These findings demonstrate the capability of P. 

gingivalis to upregulate endothelial adhesion molecules implicated in recruitment of 

circulating monocytes are known to advance lesion development. Björkbacka et al. (2004), 

demonstrated the significance of endothelial Toll-like receptors TLR-2 and TLR-4 in the 

development of atherosclerosis in double knockout mice MyD88/ApoE mice. MyD88 is 

termed the ‘universal adapter’ protein as it is utilised by all except one TLR. TLRs are 

membrane bound pattern recognition receptors that play a key role in the adaptive immune 

system by recognising molecules broadly shared by pathogens known as pathogen 

associated molecular pattern (PAMP), which are distinguishable from host cells. 

TLR/MyD88/PAMP complex results in intracellular cascade that results in activation of 

transcription factors such as nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κB) controlling the transcription of DNA for the production of cytokines. 

MyD88/ApoE mice challenged with P. gingivalis showed 64% decrease in atherosclerotic 
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plaque compared to hyperlipidemic ApoE mice. The reduced number of macrophage foam 

cells in the lesions of the MyD88/ApoE mice suggested that MyD88 has a crucial role in 

macrophage lipid uptake (Bjorkbacka et al. 2004). Building on this, Gibson et al. (2004) 

demonstrated that only fimbriated P. gingivalis accelerates atheroslcerosic plaque. The 

authors found that after oral inoculation, bacteraemia of both fimbriated and non-

fimbriated P. gingivalis ensued in ApoE mice, however only fimbriated P. gingivalis 

provoked up-regulation of innate immune receptors TLR-2 and 4 (Gibson et al, 2004). 

Observations by Gibson et al, (2004) supports earlier in vitro finding (Lamont et al. 1995; 

Deshpande et al. 1998) and demonstrates that due to its invasive ability, fimbriated P. 

gingivalis has the greatest pathogenic potential to cause infection at distant sites and 

accelerate lesion development. 

Some of the latest research shows us that P. gingivalis is able to manipulate the immune 

system by synergising with C5a (fragment of complement protein C5) to increase cyclic 

adenosine monophosphate (cAMP) concentrations, resulting in suppression of 

macrophage immune function and enhanced pathogen survival in vitro and in vivo; 

essentially turning the macrophage from a destroyer to a carrier (Wang et al. 2010). The 

microbe can then use the macrophages to transport it to other bodily niches. 

1.6 Genes expressed in atherosclerotic plaque tissue 

1.6.1 SREBP2 and transcripts LDLR and HMGR 

The American biochemists and 1985 Nobel Prize winners, Mike Brown and Joseph 

Goldstein, showed that cellular cholesterol content is regulated by two parallel 

mechanisms. When the content of unesterified cholesterol in cells increases the expression 

of the LDL-receptor (LDLR) protein decreases. In addition, the key enzymes of cholesterol 

biosynthesis (hydroxymethylglutaryl (HMG)-CoA synthase, HMG-CoA reductase, 

squalene synthase, farnesyl diphosphate synthase; are repressed. Thus, any further increase 

in cellular cholesterol is minimised. Alternatively, if intracellular levels of unesterified 

cholesterol are depleted, these pathways are activated (figure 1.06). The genes encoding 

for these proteins contain an upstream sequence known as the sterol regulatory element 

(SRE)-1 (Kim et al. 1995). The transcription factor responsible for binding to SRE-1 DNA 

sequence TCACNCCAC to activate expression of each gene, is part of a larger protein 

complex known as sterol regulatory binding protein (SREBP) (Eberlé et al. 2004). SREBP 

belong to the basic-helix-loop-helix leucine zipper class of membrane bound transcription 
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factors which is normally localised in the endoplasmic reticulum (ER) (Sakai 1995). 

SREBP precursors are maintained in the ER membrane and closely associated with 

(SREBP)-cleavage activating protein (SCAP) which contains a sterol sensing domain 

(SSD) to actively monitor sterol levels in the cytosol. SCAP itself interacts with insulin 

induced gene (Insig) which sequesters the SREBP/SCAP complex in the ER when SCAP 

senses that sterol levels are high. Sterols directly interact with the SSD of SCAP and 

modulate SCAP conformation.  

 

In cholesterol-depleted cells, SREBP binds to SCAP which senses the diminished 

cholesterol levels and disrupts its interaction with Insig allowing SCAP to be sorted into 

COPII-coated transport vesicles (Sun et al. 2005). SCAP then transports SREBP in the 

COPII vesicle from the ER to the Golgi apparatus where the N-terminal transcriptionally 

active domain, nuclear SREBP (nSREBP), is proteolytically cleaved from the 

SREBP/SCAP complex by site 1 (S1P) and site 2 (S2P) proteases, thus enabling its 

translocation through the nuclear envelope (Duncan 1997; Espenshade et al. 1999). In the 

nucleus nSREBP binds with the necessary SRE sequence in the promoter of the target gene 

(Horton et al. 2002). 

 

Three members of the SREBP family have been described in several mammalian species: 

SREBP1a and 1c produced from a single gene (SREBP1) located on human chromosome 

17p11.2 (Hua et al. 1995) and SREBP2 from a separate gene (SREBP2) located on human 

chromosome 22q13 (Miserez et al. 1997). SREBP2 is the isoform responsible for 

regulating cholesterol homeostatic genes transcription HMG-CoA reductase (HMGR) and 

LDLR, which mediate de novo cholesterol biosynthesis and also uptake of native low 

density lipoprotein, respectively.  
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Figure 1.06 : Regulation of SREBP transcription factor for the up-regulation of cholesterogenic genes. 

When sterol levels are depleted the SCAP Insig interaction is disrupted enabling SCAP mediated transport 

of SREBP/SCAP complex into a COPII vesicle (A). The protein complex translocates from the ER to the 

Golgi apparatus in the COPII vesicle where the transcriptionally active portion of SREBP (nSREBP) is 

cleaved from the protein complex by S1P and S2P proteases (A). nSREBP then translocates to the nucleus 

where it binds with the necessary SRE sequence in the promoter of the target gene for transcription (A). 

When intracellulat cytosolic sterol/cholesterol levels are high SCAP interacts with Insig which sequesters 

the SREBP/SCAP protein complex deeper within the ER membrane (B) 

1.6.2 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) 

HMGR is a transmembrane glycoprotein enzyme located on the ER. When activated 

HMGR catalyses the four-electron reduction of 3-hydroxy-3-methylglutaryl coenzyme A 

(HMG-CoA) to mevalonate, which undergoes many subsequent transformations to form 

sterol precursors and ultimately cholesterol (Burg & Espenshade 2011). As intracellular 

sterol levels fluctuate HMGR is tightly regulated at the transcriptional (SREBP/SCAP) 

and post-translational (phosphorylation and ubiquitination) levels (Burg & Espenshade 

2011).  

All cells require cholesterol, and lipoproteins normally function to package this insoluble 

molecule in a form readily transported in the blood. However, as previously discussed, 

factors such as unhealthy diet and genetic predisposition overload this essential lipid 

transport pathway and contribute to the dyslipidaemia that promotes atherosclerotic 

disease. The management of cholesterol begins in the liver where high LDL levels can 

result from excessive production of triglyceride-rich very low density lipoprotein (VLDL) 

as well as inadequate uptake of LDL by liver and peripheral cells due to low number of or 

genetic defects in LDLR. De novo synthesis of cholesterol takes place in the cytosol, where 
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three molecules of acetyl-coenzyme A interact to form hydroxylmethylglutaryl-coenzyme 

A (HMG-CoA). HMG-CoA then reacts with HMG-CoA reductase (HMGR), an enzyme 

that resides in the membrane of the smooth ER (Burg & Espenshade 2011). HMGR is a 

tetrameric macromolecule with binding pockets for HMG-CoA deep within each 

monomer, with neighbouring monomers contributing additional binding interactions. In 

total, the tetramer has four pockets, one within each monomer. HMGR uses one molecule 

of NADPH to catalyses the reduction of HMG-CoA to mevalonate (Burg & Espenshade 

2011). After leaving the enzyme, mevalonate undergoes many subsequent transformations 

to form other sterol precursors in the pathway to cholesterol. Statins competitively bind to 

the active site of HMGR blocking the binding site for HMG-CoA to inhibit its reduction 

to mevalonate and therefore the pathway to cholesterol.  

1.5.2.3.1 HMGR in atherosclerosis 

Lee et al. (2011), demonstrated significant localised expression of HMGR in macrophage-

rich areas of unstable plaque compared to plaques from patients with stable angina when 

using anti-HMGR and anti-CD31. These findings suggest that local HMGR is functionally 

active within the atherosclerotic plaque tissue, and lesion macrophages in praque from 

patients with unstable angina more actively produce HMGR than in patients with stable 

angina. Tuomisto et al. (2003) specifically isolated macrophage-rich shoulder regions of 

AP tissue using laser microdisection and reported a high up-regulation of HMGR 

compared to disease-free tissue of the same artery. It was proposed the relatively high 

expression of HMGR may in fact be due to proliferation and/or differentiation of 

macrophages because similar expression was observed with THP-1 cells when cultured 

with phorbol 12-myristate 13-acetate (PMA); a chemical used to differentiate THP-1 

monocytes to macrophages in vitro. Conversely when THP-1 cells were incubated with 

ox-LDL, which closer resembles atherogenic conditions, down-regulation of HMGR was 

observed, which suggests that lipid-loaded THP-1 macrophages may not be an accurate 

model of macrophages present in shoulder. Thus, HMGR may be expressed as a 

requirement of macrophage proliferation and/or differentiation rather than dysregulated by 

inflammatory/lipid stimuli. 
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1.5.3 ATP-binding cassette, sub-family A 1 (ABCA1) 

When intracellular cholesterol levels are too high, macrophages activate a compensatory 

pathway for cholesterol efflux, mediated by the transcription factor Liver-X-Receptor 

(LXR) and its target gene expression of ABCA1 transporter. However, in the face of 

systemic hypercholesterolemia the homeostatic mechanism is overwhelmed, causing 

abundant accumulation of intracytoplasmic cholesteryl esters (CE) that leads to cholesterol 

homeostatic dysregulation and subsequent endoplasmic reticulum (ER)-mediated 

apoptosis. 

Internalised CE undergoes hydrolysis by acid cholesterol ester hydrolase (ACEH) and is 

released from lysosomes as unesterified cholesterol (UC) or “free cholesterol” (FC). The 

fate of FC is determined by two enzymatic processes; first, the re-esterification of UC by 

the ER-resident enzyme, Acyl-CoA cholesterol acyltransferase 1 (ACAT1) for storage of 

CE in cytosolic lipid droplets. Some CE remains terminally stored in lipid droplets while 

others undergo re-hydrolysis to UC by neutral cholesterol ester hydrolase 1 (NCEH1), 

which provides cholesterol for cell membranes and permits efflux to plasma membrane 

transporters, such as ABCA1. Macrophages rely on oxysterol activation of LXR and its 

transcription of ABCA1 for the transport and presentation of cholesterol to extracellular 

acceptor, apo-A1, thereby initiating the preliminary step in reducing net cholesterol 

content via reverse cholesterol transport (RCT). However, RCT can be negatively affected 

by the presence of excess cholesterol, causing a dysregulation of the pathways controlling 

the fate of FC, which can remain in a ‘futile cycle’ of re-esterification-hydrolysis by ER-

resident hydrolases. Thus, imbalance in the pathway favouring cholesterol storage 

potentiates macrophage lipid-loading and the development of foam cell that collectively 

form the atherosclerotic lesion.  

1.5.4 Tumour necrosis factor (TNF)α 

TNFα is a major cytokine that leads to activation of multiple arms of the innate immune 

system with potent pro-inflammatory effects on vascular endothelium. TNF-α binds its 

ligand receptor TNFR1 causing a conformational change in the receptor leading to 

dissociation of the inhibitor protein SODD from the intracellular death domain (Locksley 

et al. 2001). The dissociation permits the first intracellular adapter protein (TRADD) to 

bind to the death domain enabling one of several intracellular protein cascades to occur 

that result in transcription factor translocation (NF-κB of AP-1) to the nucleus to mediate 
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the transcription of a vast array of proteins involved in cell survival and 

proliferation, inflammatory response, and anti-apoptotic factors.  The role of TNF death 

signalling through TNFR1 is only weak compared to it pro-inflammatory functions and 

often inhibited by anti-apoptotic effect of NF-κB. Nevertheless, TNFR1 death signalling 

is activated through the binding of TRADD with FADD in a protein cascade leading to 

recruitment of the cysteine protease, caspase-8, which can then activate Bid for the 

permeability of mitochondria membrane resulting in apoptosis through mitochondrial 

cytochrome C. 

TNF-α is predominantly expressed by macrophages, which perpetuates numerous 

inflammatory reactions associated with atherosclerosis, such as induction of vascular 

endothelium CAMs and recruitment and proliferation of monocyte/macrophages. In 

studies using TNF-deficient apoE-/- mice, the influence that TNF-α has on plaque 

development was illustrated by the significant reduction of atherosclerotic lesion size in 

the aortic sinus of TNF-/-/apoE-/- mice compared to that of the wild-type apoE-/- littermates 

(Ohta et al. 2005; Xiao et al. 2009). The reduction in plaque mass was significantly 

associated with the down-regulation of ICAM-1, VCAM-1 and CCL2  (Ohta et al. 2005; 

Xiao et al. 2009). Alternatively, ApoE-/- mice injected with TNF-α develop a 5-fold-higher 

mean aortic plaque area compared with control mice that received saline injection (Zhang 

et al. 2014). During ischemic stroke, TNF-α mediates both intraplaque and systemic 

inflammation (Montecucco et al. 2010). Plasma levels of TNF-α have been shown to be 

associated with plasma VLDL, LDL and LDL particle size in men with early carotid 

atherosclerotic lesions (Skoog & Dichtl 2002). These studies demonstrate that TNFα 

influences plaque development directly through endothelium activation resulting in cell 

adhesion during recruitment 

TNFα has been detected in AP since the early 90’s (Barath et al. 1990). Since then 

numerous investigators have provided further evidence in support of TNFα expression in 

human AP and arterial disease (Rus et al. 1991; P. Tipping & Hancock 1993; Kishikawa 

et al. 1993; Clausell et al. 1995; Tanaka & Swanson 1995; Kaartinen et al. 1996; DeGraba 

1997; Ridker et al. 2000). 
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1.5.5 Interleukin 1 (IL-1)β 

Inflammation plays a pivotal role in all phases of atherogenesis, from the initial endothelial 

recruitment of immune cells, to the more complex relationship with atherothrobotic events 

(Libby 2002). Pro-inflammatory cytokines and chemokines secreted from local immune 

cells facilitate the inflammatory response that functions to sustain the development of the 

atherosclerotic lesion (Ait-Oufella et al. 2011). Among those responsible, the interleukin-

1 family has received particular attention (Dinarello 2009). IL-1β acts on endothelial cells 

by up-regulating CAMs that mediate the recruitment and ensuing extravasation of immune 

cells, such as monocytes into the intimal space (Shrikant et al. 1994; Wang et al. 1995; 

Merhi-Soussi 2005).  In turn, macrophages induce EC and SMC secretion of chemokines 

and cytokines such as IL-6, IL-8 and CCL2, which further promote chemotaxis and sustain 

local inflammation (Blake & Ridker 2001). These effects are largely influenced by IL-1β, 

which is produced in high concentrations by lesion-dwelling macrophages through 

activation of the NOD-like receptor family, pyrin domain containing 3 NLRP3 

inflammasome.  NLRP3 is triggered in response to PAMPs and atherogenic stimuli, such 

as bacterial virulence factors and cholesterol crystals, respectively (Rajamäki et al. 2010; 

Duewell et al. 2010). When TLR activates transcription of pro-IL-1β via NF-κB, NLRP3 

is ultimately responsible for the maturation of pro-IL-1β to the active, secreted form of IL-

1β via a caspase-1-mediated cleavage (Franchi et al. 2009). IL-1β also impedes cholesterol 

trafficking through inhibiting ABCA1, thus encouraging foam cell formation by delaying 

RCT (Yin et al. 2010). Studies with animal models generally show reduced plaque burden 

in atherosclerosis-prone mice deficient in IL1β and increased plaque in mice when IL1β is 

over-expressed (Kirii et al. 2003; Isoda et al. 2004; Merhi-Soussi 2005; Chamberlain et al. 

2006). Transcriptomic assessment of surgically-induced carotid stenosis in wistar-kyoto 

rats by microarray, demonstrates that IL-1β expression induces MMP9 MMP12 and 

MMP13 mRNA (Forte et al. 2008); thereby potentiating, SMC migration, vascular 

remodelling, plaque instability and eventual rupture (Newby 2005). 

As already discussed, IL-1β mediates numerous pro-inflammatory roles, which potentiate 

atherosclerotic plaque development. IL-1β expression can promote apoptosis in 

endothelial cells and SMC; an effect shown to be impeded by overexpression of the 

interleukin 1 receptor agonist (IL1-ra) in vitro (Dewberry et al. 2000). In contrast, 

increased expression of anti-apoptotic proteins, such as BCL-XL and BCL-2, interact with 

NALP1, one of the central proteins in the inflammasome complex, by suppressing caspase-



Chapter 1: Main Introduction 

 

53 
 

1 activation and IL-1β production (Bruey et al. 2007; Escandell et al. 2010). In addition, 

caspase-1 activation and IL-1β production increase following prolonged inhibition of NF-

κB by chemical and genetic attenuation of IκB kinase-β (IKKβ); a protein responsible for 

NF-κB activation (Zong et al. 1999; Greten et al. 2007). Therefore, like BCL-2, NF-κB 

acts as a negative regulator of IL-1β, which emphasises the complex and intertwined 

relationship between apoptosis and inflammation (Greten et al. 2007; Escandell et al. 

2010).  

1.5.6 B Cell Lymphoma-2 protein A1 

The B Cell Lymphoma-2 proteins are a family of proteins that form as hetero- or 

homodimers to function as anti- and pro-apoptotic regulators that mediate an extensive 

variety of cellular activities including embryonic development, homeostasis and 

tumorigenesis. The B Cell Lymphoma-2 related protein A1 (BCL2A1) gene that encodes 

the protein of the same name functions as an anti-apoptotic member of the BCL-2 family 

through its role in reducing the release of pro-apoptotic cytochrome c from mitochondria 

and subsequent blockage of caspase activation (Vogler 2012). As a direct transcription 

target gene of NF-κB, BCL2A1 is expressed in response to pro-inflammatory mediators 

and thereby induced during a variety of extracellular signalling from GM-CSF, CD40, 

TNF-α and IL-1, which suggests a cytoprotective function that is essential for lymphocyte 

activation as well as cell survival. 

1.5.6.1 Apoptosis and BCL2A1 

Apoptosis is firmly associated as a hallmark of atherogenesis by promoting plaque 

instability, and thrombosis (Kockx 2000). Apoptosis occurs through a diverse combination 

of stimuli including inflammatory processes mediated through cell-cell interaction, 

cytokine secretion and oxidised lipid accumulation (Harada-Shiba 1998; Janes et al. 2005; 

Lu et al. 2014).  (Gerber et al. 1998). The efferocytic system for phagocytosis of apoptotic 

cell debris, becomes defective in advance lesions, leading to post apoptotic necrosis (Tabas 

2005). Two broad pathways regulate cell death, namely, “intrinsic” and “extrinsic” 

governed by intracellular and extracellular environmental conditions, respectively. Both 

intrinsic and extrinsic routes activate a caspase signalling leading to cellular destruction 

via cysteine proteolysis. Mitochondrial-stimulated apoptosis is a well-characterised 
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intrinsic signalling pathway, involving the BCL-2 family of protein family, which 

comprise pro- and anti-apoptotic regulators (Kutuk & Basaga 2006).  

Pro-apoptotic protein, BCL-2 homologous antagonist killer (Bak) and BCL-2-associated 

X protein (Bax) oligomerise to proteolytically disrupt the mitochondrial membrane, 

forming pores for the release of pro-apoptotic factors, cytochrome c and Smac, which 

induce caspase signalling (Westphal et al. 2014). This pathway is inhibited by BCL-2 

protein BCL2A1 (also known as BFL-1/A1), which blocks cell death signalling by 

preventing oligomerisation of Bak and Bax (Letai et al. 2002). BCL2A1 also binds pro-

apoptotic activator protein, BH3-interacting-domain death agonist (Bid), preventing its 

association with Bak and Bax, thereby preventing permeablisation of the mitochondria 

outer membrane (Werner et al. 2002). However, BCL2A1 can also promote apoptosis 

through proteolysis or deletion of its N-terminus (Ko et al. 2007). Also, endothelial cells 

apoptosis activated by TNFα, induces BCL2A1 as part of the activation process, which 

promotes endothelial cell survival by limiting activation through inhibition of the 

transcription factor NF-κB (Stroka et al. 1999). BCL2A1 is an NF-κB-target gene and 

would therefore down-regulate not only the expression of pro-inflammatory proteins, but 

also its own expression (Zong et al. 1999). This negative feedback loop is thought to bring 

the cells back to their original quiescent phenotype (Stroka et al. 1999).  

1.5.6.2 BCL2A1 and atherosclerosis 

One of the earliest investigations of pro and anti-apoptotic expression in advanced human 

carotid atherosclerotic plaque was performed using IHC (Konstadoulakis et al. 1998). The 

overall expression profile was one of pro-apoptosis comprising elevated Bax expression 

that correlated with macrophages by duel-staining, though no detectable expression of 

protective anti-apoptotic BCL-2-related genes for cellular survival (Konstadoulakis et al. 

1998). Woodside et al. (2003), assessed the differential expression of numerous apoptosis-

related genes in primary and re-stenotic (>70% stenosis) carotid plaques tissue using 

microarray cDNA hybridisation. BCL2A1, and other anti-apoptotic genes were decreased 

in the re-stenotic plaque tissue compared to a “transition zone” (immediately adjacent to 

the stenotic area) and a “proximal zone” (tissue furthest from stenotic region). However, 

Woodside et al. (2003) used only one re-stenotic lesion for comparative testing. While it 

is interesting to establish the extent to which apoptosis presents as an etiological factor in 
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vascular stenosis, the significance of these particular observations carry no statistical 

weight.  

Silbiger et al. (2013) identified potential candidate genes involved in atherosclerosis when 

investigation potential predictive markers in patients during the first 48 hours of acute 

coronary syndrome (ACS) using microarray techniques. ACS is often a result of coronary 

stenosis caused by atherosclerotic plaque, thus Silbiger et al. (2013) measured expression 

at the systemic level during symptomatic atherosclerotic disease. A complex network of 

549 genes, including anti-apoptotic BCL2A1 and BCL2L1 were found to be significantly 

expressed in whole blood cells of ACS patients. Expression was reported to be significant, 

but low, which was suggested to be due to the low expression of ALOX15, a gene 

previously shown to be active in atherosclerotic plaque and known to influence BCL-2 

expression, (Middleton et al. 2006). In addition, Silbiger et al. (2013) showed further 

significant up-regulation of pro-apoptotic pathway genes, including cytochrome c oxidase 

(COX)-7B and amphiregulin (AREG), presenting a complex picture of pro- and anti-

apoptotic expression during acutely active atherosclerotic disease. Other microarray 

studies have also demonstrated up-regulation of a whole host of “atherogenic” genes, 

including BCL2A1 in different vascular beds (Puig et al. 2011). These studies demonstrate 

the over-expression of BCL2A1 in carotid plaque tissue, which may prolong the life of 

foam cells within the lesion and thereby progressing the development of the atherosclerotic 

lesion. 

1.5.6.3 BCL2A1, infection and foam cell formation 

Both macrophages and SMC are prone to apoptosis in the atherosclerotic lesion and 

therefore operate this cell survival machinery (Kockx 2000). BCL2A1 expression can 

increase LDL uptake by human macrophages by inhibiting ox-LDL-induced cell death, a 

process shown to be greatly enhanced by another anti-apoptotic mediator, IL-10 

(Halvorsen et al. 2005). Because mitochondrial cytotoxicity is inhibited by BCL2A1, it is 

hypothesised to be able to promote cell survival during lipid-loading, thereby enabling 

lipid-laden macrophages to endure extreme levels of cholesterol retention. This has been 

shown preliminarily with in vitro studies where THP-1 macrophages were challenged with 

P. gingivalis LPS casing an increase in the rate of foam cell formation. The lipid loaded 

THP-1 cells were shown to significantly up-regulate BCL2A1 both during and after foam 

cells developed (Li et al. 2010). In a similar in vitro investigation, Lei et al. (2011) co-
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cultured THP-1 cells with ox-LDL and P. gingivalis LPS  or ox-LDL alone and reported 

up-regulation of BCL2A1 that was 2-fold greater when challenged with P. gingivalis and 

ox-LDL compared to ox-LDL alone. Similarly, P. gingivalis has also been shown to up-

regulate numerous anti-apoptotic genes including BCL2A1 in endothelial cell lines, which 

are also capable of lipid loading and foam cell development. These studies suggest that 

infection may exacerbate lipid loading in cells capable of developing into foam cells. 

Moreover, bacteria-mediate activation or exacerbation of BCL2A1 expression during and 

after foam cell formation may have a cytoprotective effect on these cells, prolonging their 

lifespan and allowing them to internalise additional cholesterol. This could potentially 

have negative implications for plaque development by increasing plaque mass and 

increasing stenosis. When considering this it is plausible to suggest the presence of bacteria 

and their virulence factors actively raise the pro-inflammatory milieu within the plaque 

tissue, which in turn directly affect anti-apoptotic expression in both the lesion and lipid-

loading macrophages (Zong et al. 1999).  

1.6 Inflammation and cholesterol homeostasis 

There is mounting evidence to suggest that inflammation may influence lipid retention in 

cells that are present in the atherosclerotic lesion. Early studies showing an association 

between inflammation and LDL retention indicate that by accelerating the effects of pro-

inflammatory cytokines on various peripheral cells such as human mesangial cells (HMC), 

SMC and macrophages in vitro, this leads to massive lipid retention and foam cell 

formation (Ruan et al. 2001; Ruan et al. 2006; Ye et al. 2009). Under normal conditions 

the monocyte cell line, THP-1 cells, show significant down-regulation of SREBP2 and 

subsequently LDLR when excess medium concentration of LDL is present in vitro (Ye et 

al. 2014). Interestingly, when THP-1 cells were incubated with bacterial LPS in the 

presence of elevated medium LDL, both SREBP2 and subsequently LDLR were over-

expressed despite increased cytosolic LDL levels. Moreover, translocation of 

SREBP2/SCAP suggests this is not just mRNA expression, but also protein activation in 

response to bacterial LPS stimulus (Ye et al. 2014). These data suggest that inflammatory 

stress induced bacterial endotoxin can disrupt LDL receptor negative feedback regulation 

mediated by intracellular cholesterol and infection. Recently, Zhou et al. (2013) 

demonstrated that pro-inflammatory cytokine increased the half-life of SCAP 

glycolysation in THP-1 cells. SCAP glycolysation is a critical post-translational protein 

regulation step in the activation of LDLR and HMGR by SREBP2 (Eberlé et al. 2004). 
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The study demonstrated that exposure to inflammatory cytokines increased lipid 

accumulation in THP-1 macrophages, in a process that directly impacting SCAP protein 

activation and recycling, even in the presence of a high concentration of LDL. Similarly, 

a degree of cross-talk has been shown to exist between the Toll-like receptor (TLR)-4-

MyD88-NF-κB pathway and SREBP2/SCAP, evidence by MyD88 siRNA silencing 

experiments (Li et al. 2013). MyD88 is an adapter protein required for most TLR pathway 

activation in a protein cascade leading to NF-κB transcription of pro-inflammatory 

cytokines (Bonnert et al. 1997). Through using small interfering RNA (siRNA) 

oligonucleotide probes that attenuate protein activation by binding active protein sites, Li 

et al. (2013) demonstrated that MyD88 knockdown significanlty attenuated 

SREBP2/SCAP translocation. This study suggests that Gram-negative LPS, which is the 

ligand for TLR4 can physically affect lipid loading via activation of this pathway. 

Macrophages infected with Chlamydia pneumoniae; a primary pathogen in the respiritory 

disease pneuminia, show large accumulation of cytosolic lipid droplets and foam cell 

formation when co-cultured with LDL and the secretion of IL-1β was significantly higher 

than when cultured with LDL alone (Tumurkhuu et al. 2013). Foam cell formation was 

found to be highly dependant on the inflammasome NLRP3, which is responsible for IL-

1β maturation in a pathway invloving caspase-1 clevage of pro-IL-1β to IL-1β. This would 

suggest that IL-1β is involved in the foam cell formation process by promoting lipid 

loading. Interestingly, these observations have also been demonstrated in athero-prone 

vessels where SREBP2 has been shown to be active due to disturbed blood flow dynamics 

and able to activate atherogenic factors in the vessels, such as NADPH oxidase 2, a major 

producer of ROS, and NLRP3, (Xiao et al. 2013). These findings demonstrate that in 

addition to inflammatory factors influencing sterol homeostatic pathways, the latter study 

suggests that the reverse is also possible, as SREBP2 mediates expression of inflammatory 

genes.  

Taken together, these studies demonstrate a degree of cross-talk between between 

cholesterol homeostatic pathways and inflammation. It may be particularly helpful that 

future studies examining these interactions would focus on inflammatory stimulus 

mediated by bacteria species that are known to frequent the atherosclerotic plaques tissue. 

In doing so a greater understanding of how bacterial infection may dysregulate cholesterol 

homeostasis in common cells of the atherosclerotic plaque may be more representative.  
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1.7 Propionibacterium  acnes  

P. acnes, (previously known as Bacillus acnes, Corynebacterium acnes and in studies 

describing its role as an adjuvant in tumour therapy, Corynebacterium parvum) is a non-

motile, Gram-positive, aerotolerant anaerobe that inhabits numerous bodily niches 

(Cummins & Johnson 1974). P. acnes resides in the pilosebaceous follicles of the human 

skin where it stimulates the secretion of a complex mix of lipids known as sebum 

(Zouboulis 2009). Two distinct phylotypes of P. acnes Type I and Type II were originally 

identified based on previous antibody testing and phylogenetic evaluation of the recA gene 

and hemolysin/cytotoxin gene (tly) (McDowell et al. 2005). A third phylotype was 

identified more recently (Type III) that shares ~99.8% similarity at the genomic level with 

Type I strains (McDowell et al. 2008). Type I strains are predominantly isolated from 

patients with acne or dental (periodontitis, pericoronitis, and endodontic) infections 

(McDowell et al. 2005).  

1.7.1 P. acnes virulence   

In recent years, 82 strains of P. acnes have been completely sequenced and extensive 

comparative and pan-genomic analyses performed for all known lineages; highlighting 

genetic elements specific to each lineage that illustrates the differences of P. acnes in 

functioning as a commensal of the skin and as a pathogen in the aetiology of diseases 

(Hunyadkürti et al. 2011; Horváth et al. 2012; Tomida et al. 2013). The pathogenic 

potential of P. acnes is recognised by the organism’s encoding of >2300 open reading 

frames (ORF) for production of several host degrading proteins, including; hemolysins 

(hemolysin III), cytotoxins (cAMP factor), adhesins (dermatan-sulphate adhesins) and 

host tissue degrading enzymes (GehA lipases, hyaluronidase, sialidases, 

endoglycoceramidase, etc) (Valanne et al. 2005; Falcocchio et al. 2006; Holland et al. 

2010; Mak et al. 2013). These putative virulence factors of P. acnes induce tissue damage 

though haemolysis, pore-formation, adhesion to multiple surfaces for biofilm formation 

and cell aggregation, as well as induction of chemotactic and inflammatory pathways 

(Brüggemann 2005; Tucker et al. 2005). 
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1.7.2 P. acnes role in disease and detection in atherosclerotic plaque 

P. acnes is most noted for being the primary pathogen in the pathogenesis of acne vulgaris 

where it plays an inflammatory role (Beylot et al. 2014). As an opportunistic pathogen, P. 

acnes is implicated in several inflammatory conditions through chronic and reoccurring 

infection, such as sarcoidosis, sciatica, arthritis, prostate cancer and infective and 

aggressive endocarditis, as well as a range of post-operative and clinical device related 

infections (Gunthard et al. 1994; Stirling et al. 2001; Hiramatsu et al. 2003; Cohen et al. 

2005; Berthelot et al. 2006). The detection and isolation of this opportunistic pathogen 

highlights its ability to systemically infect its host and cause serious infections at sites 

distant from the primary infection. 

P. acnes has also been detected in vascular tissue, mostly aortic aneurysm (Silva et al. 

2006; Armingohar et al. 2014), but also isolated in a viable state from carotid tissue 

(Rafferty, Jönsson, et al. 2011). Recently, it was shown that a P. acnes strain isolated from 

carotid atherosclerotic plaque could form a biofilm when cultured in vitro (Lanter & 

Davies 2015). Moreover, P. acnes biofilms were susceptible to induction of a biofilm 

dispersion response when challenged with therapeutic levels of the major stress hormone, 

norepinephrine (Lanter & Davies 2015). Sometimes when an individual has underlying 

CVD and experiences great stress an acute cardiovascular even may arise. This latter study 

potentially demonstrates how stress hormones may act on biofilms that have formed within 

the atherosclerotic lesion. If the biofilm was formed at a critically vulnerable region of the 

lesion such as a thin fibrous cap, a rise in serum norepinephrine may cause biofilm 

dispersion resulting in plaque rupture. 

P. acnes localises and preferentially proliferates in lipid-rich environments and is a TLR 

receptor ligand complicit in secretion of chemotactic factors, such as IL-6, IL-8, IL-12 and 

IL-18 and pro-inflammatory cytokines TNF-α and IL-1 in numerous cell lines in vitro 

(Kim et al. 2002; Jugeau et al. 2005; Nagy et al. 2005; Fathy et al. 2009; Shibata et al. 

2009). By evading digestion when phagocytised by macrophages, P. acnes has been shown 

to survive intracellularly for up to two weeks (Fischer et al. 2013). In addition P. 

acnes further contributes to the inflammatory response by triggering the activation of the 

NLRP3-inflammasome for the secretion of caspase-1 activation-dependent cytokines, 

particularly IL-1β, both in vitro and in vivo (Qin et al. 2014; Thiboutot 2014; Kistowska 

et al. 2014; Contassot & French 2014).  
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2.1 Human tissue procurement 

2.1.1 Ethical clearance & study cohort  

This study was ethically approved by the National Research Ethics Service (NRES) and 

the University of Central Lancashire Ethics Committee (NRES study number 

10/H1015/78). Patients agreed to donate their surplus tissue by giving informed consent. 

Human atherosclerotic plaque tissue was removed during routine carotid endarterectomy 

surgery and human left internal thoracic artery (LITA) tissue was recovered during 

coronary artery bypass graft or valve replacement surgery at the Lancashire Cardiac 

Centre, Blackpool, England. Forty tissue specimens were procured from 36 male and 4 

female patients with a combined mean age of 68.8 ± 9.4 years. Of the 40 tissue specimens, 

21 specimens were carotid atherosclerotic plaque (CAP) tissue (17 male, 4 female with 

mean age 69.9 ± 8.7 years) and 19 specimens were LITA tissue (19 male with mean age 

67.5 ± 10.2).  

 

2.1.2 Tissue collection & sample processing 

Prior to tissue collection, a reduced transport medium (RTM) comprising tryptone 

(1 %, w/v), yeast extract (0.5 %, w/v), glucose (0.1 %, w/v), cysteine hydrochloride (0.1 %, 

w/v), sodium hydroxide (50 mM) and horse serum (2 %, v/v), was sterilized using a 0.2 

μm filter, as previously described by (Hooper et al. 2007). For RNA analysis, samples 

were placed in vials containing RNAlater®. Specimens were aseptically transferred from 

patient to RTM or RNAlater® (Ambion, UK) by a member of the surgical team. Specimens 

were transported to the laboratory on ice. Once in the laboratory, specimens were handled 

under aseptic conditions inside a UV irradiated class II biosafety cabinet. CAP specimens 

were washed with sterile PBS by gentle vortexing, before transferring the tissue to fresh 

PBS. Washes were repeated until the solution appeared clear (figure 2.01). Because tissue 

was to be assessed for the presence of viable organisms, washing specimens with 

Povidone-Iodine solutions such as Betadine® was avoided. Thus, sterile PBS was 

sufficient to remove contaminating blood from the surface and microvasculature of the 

specimens. LITA specimens were carefully dissected from surrounding connective tissue 

to recover the vessel tissue proper. Recovered vessels were washed with sterile PBS as 
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described for CAP tissue (figure 2.01). Following wash steps, specimens were evenly 

divided by successions of transverse dissections for the following downstream analyses:- 

1. Histopathological examination. 

2. Bacterial culturing. 

3. DNA extraction for 16S rDNA PCR analysis. 

4. RNA extraction for gene expression analysis. 

 

 

 
 

Figure 2.01: CAP and LITA tissue processing. CAP tissue was examined (A – C), rinsed several times 

with a gentle vortex in sterile PBS until solution appeared clear (D – E) and transversely dissected for 

downstream analysis (F). LITA tissue comprising connective tissue (G) and surgical ligature clips was 

dissected to recover the vessel tissue proper (H). To surface decontaminate, LITA tissue was rinsed 

several times then dissected for downstream analysis.  
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2.2 Histological & immunological examination of atherosclerotic plaque & left 

internal thoracic artery tissue 

2.2.1 Tissue fixation, demineralisation and paraffin embedding 

CAP and LITA specimens were fixed in 10% formaldehyde solution (Sigma-Aldrich, UK) 

at a ratio of 20:1 (solution to tissue); at room temperature for 24 h. Occasionally, older, 

larger and more complex CAP lesions presented with extracellular calcium deposits 

(figure 2.01a and f); Calcified CAP specimens were demineralised in 5% formic acid 

solution at a ratio of 20:1 over 3 days. Formic acid solution was changed each day. 

Specimens were dehydrated in 3 changes of 50% EtOH for 15 min each. This process was 

repeated for solutions of 70%, 80%, and 90% EtOH. Samples were further dehydrated in 

2 changes of absolute EtOH (15 min each), followed by an overnight immersion in 

absolute EtOH. Dehydrated tissue specimens were cleared in 3 changes of xylene for 5 

min each. 

Specimens were placed into molten paraffin wax at 70˚C for 3 h. Samples were then 

incubated for 3 h in fresh molten paraffin (Thermo Scientific, UK), followed by a final 

incubation in fresh molten paraffin for 4 h. Tissues specimens were then ready to be 

mounted. Each specimen was transferred to the well of a pre-heated plastic mould 

positioned on a hot plate at 60˚C and orientated to a suitable position for setting. Molten 

paraffin was carefully poured into each mould and a microtome attachment guard placed 

over the well before adding more paraffin. Moulds containing molten paraffin and 

specimens were then incubated on ice until the paraffin set. Sections were cut at 5 µm 

thickness using a microtome and mounted onto gelatine coated slides (0.5% (w/v) gelatine 

0.05% (w/v) chromium potassium sulphate). 

2.2.2 Hematoxylin & eosin staining (HE) 

Prior to staining, mounted tissue sections were deparaffinised and rehydrated. Slides were 

twice submerged in xylene for 5 min each. Slides were then taken through decreasing 

concentrations of EtOH. Slides were submerged in 3 changes of 90% EtOH for 15 min 

each. This was repeated with 70% and 50% EtOH. Slides were washed in dH2O for 15 

min. Sections were submerged in Mayer’s haematoxylin (Fisher Scientific, UK) for 5 min, 

placed into cold running water for 5 min, then placed into hot water for 30 sec. Sections 

were stained in eosin (Fisher Scientific, UK) for 30 sec. Excess eosin was removed and 
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sections were submerged in 2 changes of absolute EtOH. Sections were then submerged 

in 2 changes of xylene for for 3 min. Excess xylene was removed and the sections were 

mounted with distyrene plasticiser xylene (DPX) mounting medium (Singma-Aldrich, 

UK). 

2.2.3 Masson’s Trichrome Staining (MTC) 

Sections were deparaffinised and rehydrated as already described. Sections were 

submerged in Weigert’s Hematoxylin (equal parts solution A: 1% (v/v) absolute EtOH; 

solution B: 30% (w/v) ferric chloride in 1% (v/v) hydrochloric acid) for 15 min. Sections 

were then covered with ponceau red (1% (w/v) ponceau red in 15% (v/v) acetic acid) for 

5 min then quickly rinsed with distilled water (dH2O) followed by a further 5 min stain 

with 1% (v/v) phosphomolybdic acid (PA). Excess PA was removed and slides were 

stainedwith light green stain (2% (w/v) light green in 2 % (v/v) acetic acid). Slides were 

immediately dehydrated through a series of increasing EtOH solutions and mounted in 

DPX.  

2.2.4 Bacterial peptidoglycan monoclonal antibody staining 

Tissue sections were deparaffinised and rehydrated as described previously. The procedure 

was carried out at room temperature. Sections were incubated for 15 min with 10% (w/v) 

sodium dodecyl sulphate to expose cellular epitopes then rinsed three times with wash 

buffer (PBS containing 0.5% Tween-20). Sections were then incubated for 10 min in 

hydrogen peroxide block solution (Abcam, UK) and rinsed twice with wash buffer. Protein 

block (Abcam, UK) was applied and sections were incubated for 10 min to block 

nonspecific background staining. Sections were rinsed with wash buffer then incubated 

with mouse anti-bacterial peptidoglycan (PGN) monoclonal antibody (Millipore, UK) at a 

1:500 dilution in protein block solution for 1 h. A negative control slide was included in 

each analysis by replacing the primary antibody with protein block solution.  Negative 

control tissue sections were taken in succession to antibody-treated tissue sections and 

therefore contain the same features. Following the primary antibody incubation step, 

sections were rinsed four times with wash buffer then incubated with a pre-diluted 

concentration of biotinylated goat anti-mouse secondary antibody (Abcam, UK) for 10 

min. Sections were rinsed four times with wash buffer and incubated for 10 min with a 

pre-diluted concentration of streptavidin peroxidase. Sections were then rinsed four times 

with wash buffer. Diaminobenzidine (DAB) chromogen (Abcam, UK) was mixed with 
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DAB substrate (Abcam, UK) at a ratio 1:50 and 10 µl applied to each section for 2 min. 

Sections were rinsed four times with wash buffer and counterstained with Mayer’s 

haematoxylin for 5 min. Sections were briefly immersed in absolute EtOH followed by 

xylene and mounted with DPX. 

2.2.5 Antibody and chromagen optimisation 

Slides containing P. gingivalis were used as a positive control to determine staining 

efficacy and to provide information regarding bacterial morphology in tissue sections. 

Briefly, a bacterial suspension was prepared using a fresh culture of P. gingivalis that had 

been grown for 72 h. The culture was centrifuged to form a pellet, spent media was 

discarded and the pellet was re-suspended in 1 ml sterile dH2O. A slide was prepared by 

applying 20 µl bacterial suspension to the surface and heat dried at 70˚C on a hot plate, 

heat killing and partially fixing the bacteria to the slide. A titration of primary antibody 

was performed using antibody dilutions of 1:100, 1:200, 1:300, 1:400, 1:500, 1:600, 1:700, 

1:800, 1:900 and 1:1000. Each dilution was prepared in triplicate and further optimised to 

determine the optimal exposure time to DAB chromogen. Exposure times to DAB 

chromogen were set at 2, 4, 6, 8 and 10 min. Each group included a negative control slides 

(protein block without antibody) stained with DAB chromogen for the maximum exposure 

time of 10 min. 

2.3 Anaerobic Bacterial cultures 

2.3.1 Maintenance of periodontal red complex bacteria 

Red complex bacteria (RCB), Porphyromonas gingivalis, Tannerella forsythia and 

Treponema denticola were ulitised as test species for the development of a bacteriologic 

growth medium to facilitate the isolation of viable bacteria present in CAP tissue. P. 

gingivalis (a kind gift from Dr Graham Stafford, University of Sheffield) was maintained 

in brain heart infusion (BHI) broth (Oxoid, UK) supplemented with 5 µg/ml hemin 

(Sigma-Aldrich, UK), 1µg/ml menadione (Sigma-Aldrich, UK), 1 µg/ml L-cysteine-HCL 

(Sigma-Aldrich, UK), 0.4% (w/v) yeast extract (Oxoid, UK) as detailed in appendix A. 

Solid agar medium for growth of P. gingivalis comprised fastidious anaerobic agar (FAA) 

(Lab M, UK) supplemented with 10% defibrinated horse blood (Becton Dickinson, UK) 

(Suwannakul et al. 2010). T. forsythia (a second kind gift from Dr Graham Stafford) was 
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maintained in tryptic soy broth (TSB) (Oxoid, UK) and was supplemented as for P. 

gingivalis with the addition of 10 µg/ml N-acetyl muramic acid (NAM) (Sigma-Aldrich, 

UK) (appendix B) (Roy et al. 2010). A solid medium for the growth of T. forsythia 

comprised the same agar and supplementation as P. gingivalis with the addition of 10 

µg/ml NAM supplementation (Roy et al. 2010). T. denticola (a kind gift from Dr David 

Dymock, University of Bristol) was maintained in Tryptone-Yeast extract-Gelatine-

Volatile fatty acid-Serum (TYGVS) medium (appendix C) (Ohta et al. 1986; J. C. Fenno 

2005). T. denticola colonies were grown within a semi-solid medium consisting of brain 

heart infusion broth; supplemented with all TYGVS medium reagents (appendix C) with 

the addition of 6.25 g/L agar and gelatin.  

Pre-reduced, pre-warmed complete growth media or agar equivalents, were inoculated 

then incubated in an anaerobic atmosphere of 5% H2, 5% CO2, 90% N2 at 37˚C inside a 

Bactron I anaerobic chamber (Shel Lab, USA) for 7 and 10 days, respectively. Cultures 

were archived using a Cryobank™ storage system (Copan Diagnostics Inc, USA) (section 

2.2.3) and revived when needed via the addition of a single Cryobank™ bead to liquid or 

solid media. These systems were used to stock and maintain healthy cultures prior to the 

development and optimisation of an experimental bacterial growth media for screening 

CAP specimens for viable isolates. 

Prior to experimentations with the RCB strains, 1 ml of 5-day-old culture from each was 

transferred to sterile microcentrifuge tube for DNA extraction and sequence identification. 

Molecular identification was performed as discribed in later sections, “DNA extraction 

from bacterial cultures” (section 2.4.2), “Polymerase Chain Reaction” (section 2.4.3) and 

“sequencing using BigDye termination” (section 2.4.8). The generated sequences were 

cross-referenced using BLAST reference database. All bacterial strains were confirmed as 

correct at the time of the study  

2.3.1.1 Growth characteristics of RCB in liquid media 

The identity of each target organism strains (P. gingivalis, T. forsythia and T. denticola) 

was confirmed prior to their use in testing. All strain sequences matched with 100% max 

identity when cross-referenced with National Center for Biotechnology Information 

(NCBI) Basic Local Alignment Search Tool (BLAST) database.  
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To maintain a consistent amount of inoculum of P. gingivalis, T. forsythia and T. denticola 

for each medium; bacteria from starter cultures were counted using a hemocytometer 

(Fisher Scientific, UK). Briefly, serial log dilutions were prepared from 500 µl fresh liquid 

cultures that had an OD600 ≤0.5. Twenty microliters of diluted bacterial solution was 

loaded onto a hemocytometer and discrete cells within the four corner grids and the center 

grid were counted using a Motic® AE2000 inverted microscope (Motic®, Germany) at x40 

magnification with partial phase-contrast optic setting. Counts were multiplied by the 

relevant dilution factors to establish the final total amount of bacteria within each liquid 

culture. Approximately 1 x 105 bacteria cells of each species/strain were used to inoculate 

20 ml of each respective medium. Inoculated cultures (T0) were then incubated for 8 days 

in an anaerobic environment as previously described (section 2.3.1).  

Liquid culture turbidity was measured daily by optical density at 600 nm wave length 

(OD600), over 8 days using a Biochrom WPA Lightwave II Spectrophotometer (Fisher 

Scientific, UK). Briefly, 1 ml of each fresh liquid media was used to “blank” the 

spectrophotometer (reference sample), against which, liquid culture samples were 

compared. Liquid cultures were gently agitated and 1 ml culture transferred to a sterile 

capped cuvette for OD600 measurement (VWR, UK). When OD600 readings were ≥0.5, 

cultures were diluted 1:4 and the OD600 values of diluted samples were then multiplied by 

the relevant dilution factors to establish a more accurate measure of culture turbidity. 

Spectrophotometry measurements were recorded to plot standard growth curves of ‘OD600 

vs time’ for each bacteria species as line graphs using Microsoft Office Excel. 

2.3.1.2 Growth characteristics of RCB on solid/semi-solid media 

For the purposes of counting bacterial colony forming units (cfu) numbers, cultures 

removed for optical density measurement within sterile capped cuvettes were further 

utilised to inoculate solid/semi-solid agar plates (media described previously in section 

2.3.1) Briefly, 7-fold serial log-dilutions were prepared daily from 1 ml liquid culture of 

each bacteria species/strain and repeated in technical replicates of three. Two hundred 

microliters of each diluted culture was spread on the respective solid media. Plates were 

then sealed and incubated for 10 days, as previously described (section 2.3.1). Solid media 

plates that yielded between 30 – 300 colonies were counted using a touch-sensitive bench-

top colony counter (Stuart, UK). The sum total of colonies counted was multiplied by the 

relevant dilution factors to establish the number of colony forming units (cfu)/ml. The 
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recorded cfu numbers were used to produce a linear regression line graphs ‘cfu/ml vs 

OD600’ using Microsoft Office Excel.  

2.3.2 Development and optimisation of a bacteriological liquid growth medium 

The development of a single liquid growth medium that could be used to culture any viable 

bacteria present in CAP and LITA tissue was investigated. While the ultimate aim was to 

isolate and identify any viable bacteria species present in atherosclerotic plaque tissue, 

particular emphasis was placed on developing a liquid medium with the ability to support 

the growth of RCB. Thus, P. gingivalis 11834/W50, T. forsythia & T. denticola were 

employed as test species to assess media development at every stage in the process. Firstly, 

media known to support the individual growth of each RCB test species (BHI, TSB and 

TYGVS) were assessed to establish whether each medium could support the growth of all 

or more than one RCB species. Testing how readily each RCB species was supported in 

each alternative medium provided a foundation “base medium” from which the most 

efficacious medium could be further developed to include the growth of all RCB test 

species/strains. Therefore, media development was performed in two distinct stages.  

Stage 1. Test the efficacy of BHI, TSB and TYGVS media (appendices A, B & C) 

to support the growth of all or more than one RCB species and establish a 

“base medium” that may be further developed.  

Stage 2. Further development of the “base medium” through a stepwise 

supplementation of specific growth reagents known to support the growth 

of any RCB species not satisfied in stage 1 assessment. 

2.3.2.1 Stage 1 - Establishment of a base medium that supports the growth of RCB  

P. gingivalis is typically grown in BHI broth (appendix A), while T. forsythia and T. 

denticola are commonly grown in TS broth (appendix B) and TYGVS (appendix C), 

respectively. To determine which media was most supportive, each medium was 

inoculated individually with a single RCB species per medium replicate for the growth of 

pure cultures only (table 2.01). Prior to inoculation, bacteria numbers present in a starter 

culture (OD600 0.4 – 0.6) were counted as described in section 2.3.1.1. Twenty milliliters 

of pre-reduced, pre-warmed media were each inoculated with ~1 x 105 bacteria. Cultures 

were incubated anaerobically for 8 days within a previously described anaerobic system 

(section 2.3.1). Cultures were repeated by performing three technical replicates for each 
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RCB species and alternative medium combination (table 2.01). Liquid culture turbidity 

was assessed by daily measurement of OD600 values, as previously detailed (section 

2.3.1.1). Finally, the recorded OD600 values were used to plot line graphs to show standard 

growth curves of each test species in each of the liquid media.  

The most supportive “base medium” was selected based on three general criteria:-  

1. The number of RCB species/strain supported by the medium. 

2. The consistency of growth in the medium based on three technical replicates. 

3. Final yield of each bacterium in each alternative medium, taken as a mean of three 

technical replicate OD600 values. 

 

 P. gingivalis   

Media W50 11834 T. forsythia T. denticola 

Alternative  
TSB TSB BHI BHI 

TYGVS TYGVS TYGVS TSB 

Typical  BHI BHI TSB TYGVS 

Table 2.01: Alternative growth media used in stage 1 to culture test bacteria species/strains. Each 

“alternative medium” was used to culture each bacteria species in technical replicates of three. Bottom 

row shows the “typical media” that have previously been shown support the growth of each test 

species/strain (Abaibou et al. 2001; Roy et al. 2010).    

 

2.3.2.2 Stage 2 - Supplementation of a base medium with specific growth reagents  

The second stage of medium development involved building upon the “base medium” 

established in stage 1, (TSB; appendix A). Since T. denticola failed to grow within the 

stage 1-established medium, particular emphasis was placed on incorporating growth 

reagent supplements known to support the growth of T. denticola (Fenno 2005). Such 

reagents were selected by considering several complex broth media formulations in 

common use for growth of T. denticola (Wyss 1992; J. Fenno 2005). These media share 

common features including sources of trace elements, peptides, amino acids, and trace 

nutrients, as well as reducing agent(s), volatile fatty acids (VFA), and heat-inactivated 

animal sera, typically rabbit.  
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All selected growth reagents except volatile fatty acid (VFA) solution were tested as single 

compounds. VFA solution comprised seven VFA’s and was tested in media as an overall 

percentage of the final medium volume (table 2.02). Briefly, a stock solution of VFA was 

prepared comprising, 1.42 % glacial acetic acid (v/v), 0.5% propionic acid (v/v), 0.34% 

butyric acid (v/v), 0.084% valeric acid (v/v), 0.084% isobutyric acid (v/v), 0.084% 

isovaleric acid (v/v) and 0.084% methylbutyric acid (v/v). Table 2.02 details the final 

volume (µl/ml, v/v) of each acid when used at 4, 6, 8 and 10% of the final medium volume. 

For the purpose of testing the impact on bacterial growth in the presence of different 

growth reagents, base media were prepared, each containing an increasing concentration 

of a single growth reagent supplement, which were compared to bacterial growth in a 

negative control media (without tested reagent) as detailed in table 2.03. Each varying test 

medium was inoculated with only pure cultures for separate growth of one RCB species 

or strain per medium at a density of ~1 x 105 bacteria cells and incubated for 8 days in a 

previously described anaerobic environment (section 2.3.1).  

The impact of each reagent concentration on bacterial growth was assessed daily by 

measuring OD600 values, as detailed earlier in section 2.3.1.1. When maximum OD600 

values were observed, approximately 108 – 120 h post inoculation, bacterial numbers were 

considered to be at their greatest density i.e. during late-log/early-plateau growth phase. 

These maximum OD600 values were compared between test reagent media and negative 

control media. A reagent concentration was considered to be optimum when the lowest 

possible reagent concentration provided the greatest increase in bacterial growth compared 

to control medium. When an optimum concentration was established for one reagent, that 

reagent was incorporated as part of the complete growth medium prior to the next round 

of reagent testing. Table 2.04 lists the reagents in order of assessment and shows the 

progressive development of each supplemented medium as the optimum concentration of 

each growth reagent was established.  
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Final volume of VFA in 1 L medium (v/v) based on percentage used 

Volatile fatty acids  4% mM 6% mM 8% mM 10% mM 

Glacial acetic acid  (µl/ml) 0.57 9.92 0.85 14.9 1.14 19.8 1.42 24.8 

Propionic acid (nl/ml) 200 2.67 300 4.00 400 5.33 500 6.67 

Butyric acid (nl/ml) 104 1.47 156 2.21 208 2.94 340 3.68 

Valeric acid (nl/ml) 33.6 0.31 50.4 0.46 67.2 0.61 84 0.76 

Isobutyric acid (nl/ml) 33.6 0.37 50.4 0.55 67.2 0.74 84 0.92 
Iisovaleric acid (nl/ml) 33.6 0.30 50.4 0.46 67.2 0.61 84 0.76 
Methylbutyric acid (nl/ml) 33.6 0.31 50.4 0.46 67.2 0.62 84 0.77 

Table 2.02: Individual VFA concentrations used as part of a solution to test bacteria growth in culture 

medium. Stock solutions used for media containing 7 VFAs. Table shows the volume and molarity of each 

VFA  in 100 ml medium (v/v) based on the percentage of the VFA stock solution in the final media volume.  

 

 Concentration gradient 

Media supplements #1 #2 #3 #4 #5 

(NH4)2SO4  (mg/ml) NC 0.25 0.5    0.75  1       

K2HPO4  (mg/ml) NC 1      1.25  1.5    1.75  

NaCl2 (mg/ml) NC 0.5    0.75  1       1.25  

VFA solution (%) NC 4  6  8  10  

Thiamine pyrophosphate 

(µg/ml) 
NC 12.5   13     13.5  14     

Sodium pyruvate (µg/ml) NC 275    300   325 350   

Rabbit serum (%) NC 5  10 15 - 

Table 2.03: Media supplements selected for stage 2 of bacterial growth medium development. Media 

supplements are listed in the left-hand column in order of assessment. A concentration gradient of each 

reagent was tested to establish the optimum concentration of each reagent required for bacterial growth 

(columns #2 – #5). Bacterial growth in media containing each reagent concentration was compared to 

bacterial growth in a negative control medium (NC; colum #1). Negative control medium comprised 

optimum concentrations of all previously tested reagents, minus the reagent being tested or subsequently 

untested reagents.  

 

Finally, data were presented by plotting bar graphs of OD600 values for each test species 

cultured in media containing concentration gradients of growth reagents. Statistical testing 

was conducted by performing ANOVA, Levene’s test and Student’s t-test and the 

significance of each test result was indicated on bar graphs as one, two or three asterisks 

dependent on test result probabilities of ≤0.05, ≤0.01 or ≤0.001, respectively (section 

2.7.1). Moreover, to present data for the growth of RCB species in media containing only 

established optimum reagent concentrations, OD600 values were plotted as line graphs to 

show standard growth curves of ‘OD600 vs time’ in each medium. 
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  Stage 2 medium reagents  

 A B C D E F G 

M
ed

iu
m
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o
m

p
o
si

ti
o
n
  (NH4)2SO4 (NH4)2SO4 (NH4)2SO4 (NH4)2SO4 (NH4)2SO4 (NH4)2SO4 (NH4)2SO4 

- K2HPO4 K2HPO4 K2HPO4 K2HPO4 K2HPO4 K2HPO4 

- - NaCl2 NaCl2 NaCl2 NaCl2 NaCl2 

- - - VFA VFA VFA VFA 

- - - - TPP TPP TPP 

- - - - - SP SP 

- - - - - - RS 

Table 2.04: Progressive development of bacterial growth medium. Lists of each individual growth reagent 

supplement in order of assessment. Each column shows the progressive development of the medium through 

the incorporation individual reagents (A – G). Reagents were tested individually as a concentration gradient 

by measuring their impact on bacterial growth to identify the optimum medium concentration required to 

support the growth of each red complex bacteria species. As an optimum concentration was established for 

one reagent, that reagent was then incorporated as part of the complete growth medium prior to the next 

round of reagent testing. (NH4)2SO4 (Ammonium Sulphate), K2HPO4 (Potassium Phosphate), NaCl 

(Sodium Chloride), VFA (volatile fatty acid), TPP (thiamine pyrophosphate), SP (sodium pyruvate) and RS 

(rabbit serum). 

 

2.3.3 Isolating viable anaerobic bacteria from human CAP tissue 

Fresh CAP and LITA tissue specimens were macerated on a sterile glass Petri dish with a 

sterile blade inside a Bactron® I Anaerobic Chamber with an anaerobic atmosphere of 5% 

H2, 5% CO2, and 90% N2. Macerated tissue samples were submerged in 20 ml pre-reduced, 

pre-warmed (37˚C) growth medium. The finalised medium for culture of bacteria present 

in CAP and LITA tissue specimens is described in appendix D. As discussed in section 

2.1.2, prior to tissue maceration, CAP and/or LITA specimens were rinsed with a series of 

sterile PBS washes and the final wash retained. In parallel with test tissue cultures, 1 ml 

of final tissue wash was added to growth medium to culture any contaminating microbes 

that may have remained on the surface of the tissue during procurement. In addition to the 

final wash control, an environmental control was prepared consisting of 10 ml growth 

medium inside an open-lid 50 ml falcon tube. Hence, each batch of tissue cultures 

consisted of 1 x test tissue (CAP or LITA), 1 x final tissue wash control and 1 x open-lid 

environmental control. Cultures were incubated for 7 days and bacterial growth was 

assessed by observation. If no visible growth had occurred after 7 days, specimens were 

incubated for a further 7 days. When positive cultures were observed in liquid medium 0.5 

ml of viable culture was spread across blood agar plates comprising fastidious anaerobic 

agar (FAA) (Lab M, UK) supplemented with 10% defibrinated horse blood (Becton 
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Dickinson, UK) and 10 µg/ml NAM. Spread plates were incubated for 7 days at 37˚C in 

an anaerobic atmosphere of 5% H2, 5% CO2, 90% N2. In an attempt to isolate pure bacterial 

strains, single colonies were picked from mixed colony plates and streaked over fresh FAA 

plates. Plates were incubated anaerobically for another 7 days or colonies formed. Ten 

individual colonies were picked from single colony plates and re-inoculated back into fresh 

liquid both (previously described) for 7 days to expand culture stocks.  

2.3.4 Archiving viable isolates 

Liquid cultures containing single bacterial species were gram stained then separated for 

Cryobank™ storage (Copan Diagnostics Inc, USA) and DNA extraction. Briefly, cultures 

were centrifuged at 200 x g for 5 min and the supernatant removed. Pelleted bacteria were 

gently re-suspended in sterile pre-reduced PBS and centrifuged a second time at 200 x g 

for 5 min. Supernatant was removed and 500 µl sterile pre-reduced PBS added to re-

suspend the bacterial pellet into a highly concentrated liquid culture. Four hundred 

microliters of the concentrated culture was aseptically transferred to a sterile anaerobically 

sealed Cryobank™ vial containing glycerol stock and ~20 individual plastic beads. 

Cultures were mixed with the glycerol by inverting followed by removal of excess 

glycerol. Cryobank™ vials were then stored at -20˚C until needed. The remaining 100 µl 

concentrated culture were heat-killed at 72˚C for 5 min and DNA extracted from this for 

PCR analysis. 

DNA extraction from anaerobic cultures was performed as in section 2.3.1 with an 

additional pre-incubation step for gram-positive bacteria. Bacterial cultures were 

centrifuged at 5,000 x g for 5 min and supernatant removed. Bacteria were suspended in 

180 µl enzymatic buffer (20 mg/ml lysozyme; 20 mM Tris-HCL, pH 8; 2 mM EDTA; 

1.2% (v/v) Triton®) and incubated at 37˚C for 5 h. Twenty microliters Proteinase K and 

200 µl AL buffer (QIAgen, UK) were added and mixed by vortexing. Samples were 

incubated overnight at 56˚C, followed by a further 15 min at 95˚C. DNA was isolated 

using equal volumes phenol chloroform isoamyl-alcohol (25:24:1). 
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2.4 Identification of bacterial DNA extracted directly from CAP tissue and cultured 

anaerobic bacteria 

2.4.1 DNA extraction from CAP and LITA tissue 

Tissue sections ~100 mg were snap-frozen in liquid nitrogen. Frozen specimens were 

ground to a fine powder in a pestle and mortar in the presence of liquid nitrogen. Ground 

specimens were then transferred to a microcentrifuge tube and lysed in animal tissue lysis 

(ATL) buffer (Qiagen, UK) containing 2 mg/ml proteinase K (Qiagen, UK) overnight at 

56˚C. Lysed tissues specimens were mixed with an equal volume of phenol chloroform 

isoamyl-alcohol (25:24:1) (Sigma-Aldrich, UK) by vortexing at high speed for 20 sec. 

Samples were then incubated at room temperature for 5 min to allow partial separation of 

aqueous and non-aqueous phases then centrifuged at 16,000 x g for 10 min. Approximately 

200 µl aqueous phase was transferred to a clean microcentrifuge tube and placed on ice. 

To encourage DNA precipitation, a final concentration of 0.1 µg/µl glycogen and 3.75 

mol/µl ammonium acetate were mixed with the aqueous phase, followed by ice-cold 

absolute EtOH (2.5 x sample volume). Samples were inverted 10 times then incubated at 

-80˚C for 2 h. Samples were centrifuged at 16,000 x g for 15 min at 4˚C to pellet DNA 

precipitate. Supernatant was removed, 200 µl 75% (v/v) ice-cold EtOH was added. 

Samples were vortexed at a medium speed for 10 sec to re-suspend the DNA pellet. 

Samples were centrifuged at 16,000 x g for 30 min at 4˚C. Supernatant was removed, 200 

µl 75% EtOH was added and samples were centrifuged at 16,000 x g for 10 min at 4˚C. 

Supernatant was removed and samples were centrifuged at 8,000 x g for 3 min to collect 

residual EtOH for removal. Clean DNA pellets were air dried for 15 min then re-hydrated 

100 µl AE Buffer. Finally, DNA absorbance was assessed at 260/280 nm ratio to measure 

concentration and purify of the DNA stocks. DNA stock with a 260/280 ratio of 1.8 – 2.0 

were considered pure. DNA stocks were stored at -20˚C until needed. 

2.4.2 DNA extraction from bacterial cultures 

DNA extraction from anaerobic cultures was performed with an additional pre-incubation 

step for gram-positive bacteria. Bacterial cultures were centrifuged at 5,000 x g for 5 min 

and supernatant removed. Bacteria were suspended in 180 µl enzymatic buffer (20 mg/ml 

lysozyme; 20 mM Tris-HCL, pH 8; 2 mM EDTA; 1.2% (v/v) Triton®) and incubated at 

37˚C for 5 h. Twenty microliters Proteinase K and 200 µl AL buffer (Qiagen, UK) were 

added and mixed by vortexing. Samples were incubated overnight at 56˚C, followed by a 
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further 15 min at 95˚C. DNA was isolated using equal volumes phenol chloroform 

isoamyl-alcohol (25:24:1). 

2.4.3 Polymerase Chain Reaction  

PCR was performed to assess the presence of bacterial DNA (bDNA) in CAP and LITA 

specimens. In the first phase of the bDNA investigation, specific oligonucleotide primers 

were used to identify the domain “Bacteria”, and also the Phyla “Bacteroidetes” and 

“Spirochaetes” (Paster et al. 2001). The PCR primers targeted the highly conserved 

16S rRNA (16S rDNA) gene. Primers were synthesised by Applied Biosystems at 25 nM 

concentration and desalted to purity. PCR detection of Bacteria, Bacteroidetes and 

Spirochaetes used the same forward primer D88 and a distinct reverse primer which was 

specific for the 3 bacterial groups (table 2.05). The specific reverse primers used were: 

C90, specific for Spirochaetes; F01, specific for Bacteroidetes; and E94, specific for the 

Bacteria (table 2.01). Each PCR reaction comprised 0.2 μM forward/reverse primer, 200 

μM each dNTP, 2.5 mM MgCl2, 1.25 U AmpliTaq Gold® DNA polymerase (Applied 

Biosystems, UK) and 0.5 μg DNA template. Reactions were brought to a final volume of 

50 µl with molecular grade dH2O. T. forsythia (Bacteroidetes) or T. denticola (Spirochete) 

DNA was used as a template for positive control reactions. Negative control reactions were 

prepared by replacing DNA template with molecular grade dH2O. An additional positive 

internal control was include though amplification of the human β-globin to assess the 

quality, integrity and successful amplification human genomic DNA in each sample. 

Thermal cycling conditions were as follows; 5 min initial denaturation at 96˚C, followed 

by 30 cycles of denaturation at 96˚C for 45 sec, annealing at 60˚C for 45  sec and extension 

at 72˚C 60 sec and a final extension step at 72˚C for 15 min. 

A second group of primers were utilised to identify specific oral bacterial species, 

including, P. gingivalis, T. forsythia, T. denticola, P. acnes  and oral Streptococci and 

Lactobacilli (Nakagawa et al. 1994; Slots et al. 1995; Asai et al. 2002; Eishi et al. 2002; 

Dubernet et al. 2002; Picard et al. 2004). Oligonucleotide primer sequences and product 

sizes are listed in table 2.01.  Reactions were prepared the same as previously described as 

50 µl. Stock DNA from each species was used as template for positive control reactions. 

Thermal cycler conditions for P. gingivalis and T. denticola were as follows: an initial 

denaturation 98˚C for 5 min, followed by 30 cycles of denaturation at 98˚C for 45 sec, 

annealing at 55˚C for 30 sec and extension at 72˚C for 30 sec and a final extension set at 
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72˚C for 15 min. For T. forsythia, P. acnes, Streptococci and Lactobacilli, thermal cycler 

conditions were the same except for increased annealing temperatures of 60˚C (table 2.06). 

2.4.4 Agarose gel electrophoresis 

To view amplified 16S rDNA, PCR product was mixed with loading dye (30% (v/v) 

glycerol, 0.25% (w/v) bromophenol blue and 0.25% (w/v) xylene cyanol FF 6:1 then 

placed in the wells of a 1.5% agarose gels close to the anode. Positive and negative control 

PCR products were loaded in agarose wells along with 10 µl exACTGene 10 kb or 1kb 

DNA ladder (Fisher Scientific, UK) depending on product size 1.5 kb or <1000 bp, 

respectively. A 100 V current was applied across the gel for ~ 40 min to encourage product 

migration through the agarose gel towards the cathode. Agarose gels were stained in a 

0.5µg/ml solution of ethidium bromide (EtBr) for 30 min then de-stained in dH2O for 15 

min. EtBr stained gels were visualised under UV light using a BioDoc-It imaging system 

(UVP, UK). 
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Species Primer sequence 
Size 

(bp) 
References 

Forward (D88) F: 5´-GAGAGTTTGATYMTGGCTCAG-3´*  

(Paster et al. 2001) 

Bacteria  (E94) R: 5´-GAAGGAGGTGWTCCARCCGCA-3´* 1,500 

Bacteroidetes (F01)   R: 5´-CCTTGTTACGACTTAGCCC-3´ 1,500 

Spirochete (C90)    R: 5´-GTTACGACTTCACCCTCCT-3´ 1,500 

P. gingivalis F: 5´-AGGCAGCTTGCCATACTGCG-3´ 

R: 5´-ACTGTTAGCAACTACCGATGT-3´ 

404 (Slots et al. 1995) 

T. forsythia F: 5´-GCGTATGTAACCTGCCCGCA-3´ 

R: 5´-TGCTTCAGTGTCAGTTATACCT-3´ 
641 (Slots et al. 1995) 

T. denticola F: 5´-TAATACCGAATGTGCTCATTTACAT-3´ 

R: 5´-CTGCCATATCTCTATGTCATTGCTCTT-3´ 
860 (Asai et al. 2002) 

P. acnes  F: 5´-GCGTGAGTGACGGTAATGGGTA-3´ 
R: 5´-TTCCGACGCGATCAACCA-3´ 

131 (Eishi et al. 2002) 

Strep spp. F: 5´-GTACAGTTGCTTCAGGACGTATC-3´ 

R: 5´-ACGTTCGATTTCATCACGTTG -3´ 
200 (Picard et al. 2004) 

Lacto spp. F: 5´-CTCAAAACTAAACAAAGTTTC-3´ 
R: 5´-CTTGTACACACCGCCCGTCA-3´ 

250 
(Dubernet et al. 

2002) 

M13 F: 5´-GTAAAACGACGGCCAG-3´ 

R: 5´-CAGGAAACAGCTATGAC-3´ 
1,700  

HBG F: 5´-GAAGAGCCAAGGACAGGTAC-3´ 

R: 5´-GGAAAATAGACCAATAGGCAG-3´ 
408  

Table 2.05 Primer sequences for 16S rDNA amplification. Species name, oligonucleotide sequence and 

product size are listed. D88 (shaded) was used as the forward primer for the three reverse primers, E94, F01 

and C90. (*) D88 and E94 are degenerate primer sequences. According to the International Union of Pure 

and Applied Chemistry (IUPAC) nomenclature, degenerate bases are classified as follows, Y (C or T), M (A 

or C), W (A or T) and R (A or G). Thus, D88 and E94 each have four alternative sequences, giving a total 

of 8 possible primer binding sites when used together. Alternatively, when D88 is incorporated with either 

F01 or C90, up to four potential primer binding sites are possible. 
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Bacteria  

Bacteroidetes  

Spirochetes  

Β-globin 
P. ginigivalis 

T. denticola 

T. forsythia 

P. acnes 

Streptococci spp. 

Lactobacilli spp. 

Cycle Stage 
Temp 

°C 

Time 

(min) 
Temp  Time  Temp  Time Temp Time 

 1 96 5:00 95 5:00 98 5:00 98 5:00 

X 30 

2 96 0:45 94 0:30 98 0:45 98 0:45 

3 60 0:45 55 0:30 55 0:30 60 0:30 

4 72 1:00 72 0:30 72 0:30 72 0:30 

 5 75 15:00 72 15:00 72 15:00 72 15:00 

Table 2.06 Thermo cycling conditions for 16S rDNA primer sets and β-globin internal control to amplify 0.5 

µg DNA template using 1.25U Amplitaq Gold® DNA polymerase, 2.5 mM MgCl, 200 µM each dNTPs and 

0.2 µM oligonucleotide. Each group of PCR reactions were subjected to specific temporal heating protocol 

over 5 general stages of rapid heating and cooling. Heating stages consisted of, Stage 1: Initial denaturation, 

Stage 2: Denaturation, Stage 3: Oligonucleotide annealing, Stage 4: DNA extension and Stage 5: Final 

extension.  

 

2.4.5 TOPO® 16S rDNA Cloning 

PCR samples yielding positive discrete bands of ~ 1.5 Kb on agarose gels were used for 

molecular cloning. Purification of the PCR product was achieved by performing EtOH 

precipitation of the PCR product. One microliter glycogen (20 mg/ml), 1 μl EDTA (125 

mM), 1 μl NaOAc (3 M) and 30 μl of ice-cold absolute EtOH were added to 40µl PCR 

product. Samples were inverted 5 times and placed at 4 ºC overnight. Samples were 

centrifuged at 16,000 x g, 4 ºC for 40 min to form a pellet. DNA pellets were washed twice 

with ice-cold 70% EtOH, centrifuging at 16,000 x g for 15 min between each wash step. 

After the final spin, open tubes were heated at 60 ºC for 15 min to dry DNA pellets. Pellets 

were rehydrated in a sterile AE buffer. Twenty nanograms of purified product was mixed 

with 1X ligation buffer, 50 ng/μl pCR2.1 vector, 1.0 U T4 DNA ligase and sterile water to 

a final volume 10 μl. Ligation reactions were incubated at 14 ºC overnight. Two microliters 

of ligation reaction was transformed into chemically compotent E. coli (DH5-α) and 

incubated on ice for 30 min. The reaction was then heat-shocked at 42 ºC for 30 sec. Two 

hundred and fifty microlitres of SOC medium was added to transformed cells and then 

incubated at 37 ºC in a shaker at 225 rpm for 1 h. Selective LB agar plates containing 

kanamycin (50 μg/ml) were spread with 40 μl (40 mg/ml) X-Gal and pre-heated at 37 ºC 

for 30 min. Two plates were spread with 50 μl and 100 μl of transformed DH5-α cells. LB 

agar plates containing transformed DH5-α cells were incubated at 37 ºC overnight for 

colony development. 
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2.4.6 Colony screening 

A colony screen was performed to isolate clones which had successfully taken up the PCR 

product. pCR2.1 TOPO vector contains a 115 bp polylinker that comprises a small 

segment of DNA containing the coding information for the first 146 amino acids of β-

galactosidase (LacZ). The polypeptide encoded by this region of LacZ is known as the α-

subunit of β-galactosidase and is the basis for determining whether a foreign DNA 

fragment has been inserted into the polylinker. When a DNA sequence is inserted into the 

polylinker the extra DNA causes a disruption of the plasmid-encoded α-subunit blocking 

β-galactosidase expression. Thus, in the presence of chromogen X-Gal (5-bromo-4-chloro-

3-indolyl β-D-galactopyranoside), bacterial colonies with inactivated β-galactosidase 

(inserted PCR product) are white, while colonies expressing β-galactosidase are blue (no 

inserted PCR product).  

Each cloning reaction produced ~ 200 colonies of which 10% of the white colonies were 

picked for screening. White colonies were mixed with 20 μl sterile water in separate 

microcentrifuge tubes. To determine the presence of the positive clones, with sequence 

insert, a PCR reaction was carried out. A PCR master mix was prepared; each reaction 

comprised 0.2 μM of each M13 forward primers (table 2.01) (Applied Biosystems, UK), 

200 μM of each dNTP, 2.5 mM MgCl2, 1.0 U Taq ploymease and 10 μl of crude suspension 

of the DH5α colonies. All reactions were performed with 10 min of denaturation at 94˚C, 

followed by 25 cycles of denaturation at 94˚C for 60 sec, annealing at 55 ºC for 60 sec and 

extension at 72˚C for 105 sec and a final 72˚C extension step for 7 min.  

Agarose gel electrophoresis was carried out as described in section 2.3.4. Bands that 

indicated product size of ~ 1.7 Kb were considered positive results. If the amplified 

products deviated from 1.7 Kb, they were assumed to be the result of the formation of 

chimeric molecules or unsuccessful insert ligation and were not analysis further. 

2.4.7 Mini-prep isolation of plasmid DNA 

Samples that contained inserts (1.7 Kb band) were cultured to generate a greater yields of 

bacterial clones for plasmid DNA isolation. Positive clones were used to inoculate 10 ml 

Luria-Bertani (LB) broth containing kanamycin (50 μg/ml). Cultures were incubated at 

37 ºC in a heated shaker at 200 rpm for 18 h. Cultures were then subjected to plasmid mini-

prep to isolate plasmid DNA using a QIAprep Kit (Qiagen, UK). Bacteria clone cultures 
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were centrifuged at 5,000 x g for 10 min at 4 ˚C. The spent LB broth was removed from 

the culture and DH5-α cells were re-suspended in 250 µl P1 buffer and transferred to a 

microcentrifuge tube. An equal volume of P2 buffer was added and samples were mixed 

by inverting the tube 6 times. Next, 350 µl N3 buffer was added and immediately mixed 

by inverting 6 times. Samples were then centrifuged at 16,000 x g for 10 min. Supernatant 

was decanted into a QIAmp spin column and samples were centrifuged at 16,000 x g for 

40 sec and flow through was discarded. The spin columns were washed with 0.5 ml PB 

buffer by centrifuging at 16,000 x g for 40 sec. Flow through was discarded and a second 

wash with 0.75 ml PE buffer was performed by centrifuging at 16,000 xg for 40 sec. Flow 

through was discarded and a second centrifugation step at 16,000 x g was performed to 

remove residual wash from the column. Plasmid DNA was eluted from the column with 

50 μl molecular grade water and stored at -20˚C until needed. Concentrations of plasmid 

DNA were measured using a Nanodrop spectrophotometer. Samples with a ratio of 

260/280 nm between 1.80 and 2.0 were considered pure.  

2.4.8 Sequencing of the vector insert 

The cloned DNA insert was fist amplified by PCR using M13 primers recognising flanking 

sequences within the plasmid (table 20.1). PCR reactions comprised 0.2 μM of either M13 

forward or M13 reverse, 200 μM of each dNTP (Fisher Scientific, UK), 2.5 mM MgCl2, 

1U Taq ploymease (Acros Organics, UK) and 200 ng plasmid DNA template. All reactions 

were performed with a 10 min denaturation step at 94˚C, followed by 25 cycles of 

denaturation at 94˚C for 60 sec, annealing at 55˚C for 15 sec, extension at 72˚C for 105 sec 

and a final 72˚C extension step for 15 min. The resulting ~ 1.7 bp products were purified 

with EtOH precipitation, as described in section 2.3.4. Pellets were rehydrated in sterile 

dH2O and the concentration and purity of the product was assessed as previously described 

(section 2.3.1) 

The sequence of the amplified plasmid DNA insert was analysed using a dye terminator 

sequencing PCR reaction. Using BigDye® Terminator v3.1 Cycle Sequencing kit 

(Lifetechnologies, UK ) a PCR master mix was prepared at reduced volumes comprising 

0.16 μM of each M13 forward and reverse primers (table 20.1), 0.4 μl sequencing premix, 

3.6 μl sequencing buffer and 40 ng amplified plasmid insert to a final volume of 10 μl. All 

sequencing reactions were performed with 1 minute denaturation at 96˚C, followed by 30 

cycles of denaturation at 96˚C for 10 sec, annealing at 50˚C for 5 sec and extension at 60˚C 



Chapter 2: Materials & Methods 

81 
 

for 4 min. Samples were purified by EtOH precipitation, as previously described (2.3.5). 

Purified samples were rehydrated with 13 μl HiDi (formamide solution). Sequence 

reactions were loaded onto a 96-well plate and analysed using an automated ABI 3500 

genetic analyser with 50 cm capillary array (Applied Biosystems, UK).  

Capillary electrophoresis was performed using run module stdseq50_POP7 with dye set Z 

(FAM, VIC, NED and size standard ROX) and POP7 sequencing polymer. Default run 

parameters were as follows: a sample injection voltage of 1.6kV for 8 sec, with a run 

voltage 8.5 kV at 60°C for 96 min. Sequence reads of >800 nucleotides were searched 

against GenBank DNA reference sequences using National Centre for Biotechnology 

Information-Basic Local Alignment Search Tool (NCBI-BLAST) to identify bacterial 

strains (see http://blast.ncbi.nlm.nih.gov/Blast.cgi).   

2.5 Gene expression analysis of atherosclerotic plaque tissue 

2.5.1 Oligonucleotide primer design & optimisation 

A total of 22 primer sets were designed to evaluate the expression of 19 target genes and 

3 endogenous control genes (table 2.04). Target sequences were chosen to measure the 

expression of genes involved in inflammation and cholesterol metabolism. Target genes 

were identified by searching within the NCBI database. Target gene accession numbers 

were used to generate specific oligonucleotide primer sequences with NCBI primer design 

software. Search parameters were set so that oligonucleotide primers had the following 

features:- 

• Cross an exon-exon boundary.  

• Be <25 bp long. 

• Amplify products ≤150 bp.  

• Have GC content between 40% - 60%.  

• Have <4 consecutive base repeats.  

• Have an annealing temperature ~ 60˚C (5˚C lower than melting temperature). 

• Where possible, have a GC-clamp located at the 3´ end of both sense and anti-sense 

primers.  

• Oligonucleotide sequences that met these criteria were only selected when self and 

intra-primer complementarity was low (NCBI score ≤3).  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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To establish primer specificity, oligonucleotide sequences were cross-referenced against 

the NCBI-BLAST ref_seq database. When multiple transcript variants existed for a single 

target gene, sequences were aligned using DNA sequence alignment tool Bioedit. This 

allowed primers to be designed across exon-exon boundaries, which were conserved 

across different transcript variants of a specific gene. Oligonucleotides were synthesised 

by Life Technologies, UK custom oligonucleotide synthesis service to a 25 nM scale and 

desalted to purity. All primers were received as lyophilised stocks and were reconstituted 

to a 100 µM stock solution and stored at -20˚C. Table 2.03 lists target genes, accession 

numbers, oligonucleotide primer sequences, and product sizes. Primers that resulted in 

successful target genes expression were sequenced using Bigdye® Terminator v3.1 as 

previously described (section 2.4.8) to confirm specificity of the expressed gene. Table 2 

lists genes, NCBI accession numbers, oligonucleotide primer sequences and product sizes. 

Amplification efficiency of each primer set was determined by generating triplicate CT 

values for a gradient of increasing cDNA template concentrations. Semi-log regression 

line charts were plotted as “Log cDNA input vs. CT value”. A standard curve slope of -

3.32 (s) indicated a PCR reaction with 100% efficiency (E) using the formula E = (10-1/s-

1) x 100. A reaction with 100% efficiency would yield a 10-fold increase in product every 

3.32 cycles during exponential amplification, i.e. log2 10 = 3.3219. For optimum results, 

SYBR® Select chemistry recommends that oligonucleotide primer concentration should 

be ≤0.2 µM per primer per reaction. Thus, primer concentrations, 0.2 µM, 0.1 µM or 0.05 

µM were tested to evaluate the most efficient amplification efficiency for each gene.  

2.5.2 RNA extraction from atherosclerotic plaque tissue 

A portion of human CAP and LITA tissue from the carotid artery were transferred directly 

from patient to RNAlater® to maximise RNA preservation. RNAlater® saturated 

specimens were stored at -20˚C until treated for total RNA extraction. Specimens in 

RNAlater® were incubated on ice until RNAlater® thawed. Prior to RNA extraction, 

RNAlater® was removed and specimens were immediately snap-frozen in liquid nitrogen. 

Frozen specimens were ground to a fine powder with a pestle and mortar in the presence 

of liquid nitrogen. Ground tissue was carefully transferred to a clean microcentrifuge tube 

containing 1 ml Tri Reagent® solution (Invitrogen, UK) (100 mg tissue to 1 ml Tri 

Reagent® solution). Samples were homogenised in Tri Reagent® solution and incubated at 

room temperature for 30 min in a 360˚ inverting mixer at 10 rpm. Samples were 
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centrifuged at 12,000 x g for 10 min to separate the high lipid content from the tissue 

homogenate. The top layer containing insoluble lipid was carefully bypassed and the clear 

supernatant was collected and transferred to a clean microcentrifuge tube.  

Total RNA was extracted by following the manufacturer’s guidelines. Briefly, 100 µl 1-

bromo-3-chloropropane (BCP) was added to the 1 ml lysate and samples were shaken 

vigorously for 15 sec. The lysate/BCP mix was then incubated at room temperature for 

15 min then centrifuged at 12,000 x g for 15 min at 4˚C. The aqueous BCP layer containing 

RNA was transferred to a clean microcentrifuge tube. Isolated RNA was purified by 

addition 1 µl glycogen solution (20 µg/µl) to the aqueous lysate followed by 500 µl ice-

cold absolute isopropanol. Samples were vortexed for 10 seconds and quickly transferred 

to -80˚C overnight. Samples were centrifuged at 12,000 x g for 10 min at 4˚C. The 

supernatant was discarded and the resulting RNA pellet was washed by addition of 1 ml 

ice cold 75% ethanol and centrifugation at 7,500 x g for 5 min at 4˚C. The ethanol 

supernatant was discarded and a second was performed with fresh ice cold 75% ethanol 

followed by centrifugation as previously described. Ethanol supernatant was discarded and 

microcentrifuge tubes were inverted over clean lab tissue and air dried at room temperature 

for 15 min. Dried samples were then rehydrated with 60 µl pre-warmed nuclease-free 

distilled H2O (dH2O) and incubated at 55˚C for 1 – 2 min or until the RNA pellet dispersed. 

Total RNA stock solutions were then immediately placed on ice and their purity and 

concentration were calculated with a nanodrop spectrophotometer. RNA samples that had 

a 260/280 ratio of 1.8 – 2.0 and a 230/280 ratio of 2.0 – 2.2 were considered pure and were 

stored at -80˚C until required. 

2.5.3 Optimisation of Reverse-transcription Polymerase Chain Reaction (RT-PCR) 

reagents 

Three concentrations of reverse transcriptase (0.5, 1, 1.5 U) and four MgCl2 (1.5, 2.5, 3.5 

and 4.5 mM) were tested to establish optimum reagent composition for RT-PCR reactions. 

Reagent mixes were prepared as triplicate and resulting cDNA templates were serial 

diluted 110 over 7 orders of magnitude. The gradients of increasing cDNA templates were 

real-time PCR amplified generating triplicate CT values. Semi-log regression line charts 

were plotted as “Log cDNA input vs. CT value”. The optimal ratio of enzyme and salt was 

chosen and used for all gene expression analysis. 
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2.5.4 RT-PCR of CAP and LITA specimens 

Prior to reverse transcription RNA samples were treated with DNase I (Sigma-Aldrich, 

UK). One unit of amplification grade DNase I, completely digests 1 µg DNA. Briefly, 1 µl 

DNase I (1 unit/µl in a buffer comprising 50% glycerol, 10 mM Tris-HCL, pH 7.5, 10 mM 

CaCl2, 10 mM MgCl2) and 1 µl reaction buffer (200 mM Tris-HCL, PH 8.3, 20 mM 

EDTA) were added to 10 µl RNA stock. Solution was mixed gently and incubated for 15 

min at room temperature.  One microliter of EDTA (50mM) was added to inactivate DNase 

I. The solution was then heated to 70˚C for 10 min to denature the DNase I, and the RNA 

was cooled on ice. 0.5 µg of DNase-treated RNA was used as a template to generate first-

strand complementary DNA (cDNA). The GoScript™ Reverse Transcription System 

(Promega, UK) was utilised for reverse transcription of RNA to cDNA. The protocol was 

performed in two phases: initial anchoring of a 15-mer poly-T tailed oligo(dt) primer 

followed by first-strand synthesis of the cDNA sequence complementary to the RNA 

template. Briefly, 0.5 µg Total RNA was mixed with 50 µg (10.1 µM) oligo(dt)15 primer, 

and brought to a total volume of 5 µl with nuclease-free dH2O. The reaction was incubated 

at 70˚C for 5 min and then reactions were placed on ice for 5 min. Samples were briefly 

centrifuged to collect the condensate. A master mix was prepared comprising GoScript™ 

reaction buffer, MgCl2 (3.5 mM), dNTP mix (0.5 mM each dNTP), 20 U recombinant 

RNasin® ribonuclease inhibitor, 1 U GoScript® reverse transcriptase. The reaction mix was 

brought to a final volume of 15 µl with nuclease-free dH2O. Fifteen microliters of master 

mix was gently mixed with 5 µl oligo(dt)-anchored template. A negative control reaction 

was prepared by omitting GoScript® transcriptase enzyme. Thermal cycling conditions for 

all reverse transcription reaction were as follows: one annealing cycle at 25˚C for 5 min, 

one extension cycle at 42˚C for 60 min followed by one transcriptase inactivation cycle at 

70˚C for 15 min. The synthesised cDNA was utilised as template for quantitative real-time 

PCR immediately or stored at -20˚C until required. 
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2.5.5 Quantitative real-time PCR (qPCR) 

SYBR® Select master mix (Lifetechnologies, UK) comprising SYBR®
 GreenER™ Dye, 

Ultra-purified AmpliTaq® DNA polymerase, ROX™ passive reference dye, dNTP mix 

(dUTP/dTTP), was mixed with either 0.2 µM, 0.1 µM or 0.05 µM oligonucleotide primer 

(table 2.07), dependant on optimal amplification efficiency of each primer set, and brought 

to a total final volume of 10 µl with nuclease-free dH2O. Fifty nanograms cDNA template 

was used for each reaction. Reactions were added to a 96-well optical PCR plate 

(Lifetechnologies, UK), each plate comprising test (treated) reactions, reference gene 

reactions (ACTB or RPL27A), a no-template control (PCR negative) and a no-reverse 

transcriptase control (RT-negative). The plate was sealed with optical adhesive film and 

centrifuged at 1000 x g for 1 min. Reactions were performed on an ABI 7500 Real-Time 

PCR Thermal Cycler (Applied Biosystems®). Thermal cycling conditions were as follows: 

1 cycle of 95˚C for 10 min, 40 cycles of 95˚C for 15 sec, 60˚C for 60 sec, followed by final 

1 cycle of 95˚C for 15 sec, 60˚C for 60 sec, 95˚C for 15 sec and 60˚C for 15 sec (table 

2.08). 
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HMGR NM_000859.2 
F: 5´-AATTACTCCTTGGTGATGGGAGC-3´ 

90 bp 
R: 5´-ATCTAAGCAAAGGGGTCCTGC-3´ 

SCAP NM_012235.2 
F: 5´-ACCCATCACAGCCCTGAAAG-3´ 

83 bp 
R: 5´-CCTCCAGACGGAACACTCTC-3´ 

SREBP2 NM_004599.2 
F: 5´-GCTGGCTTCTCTCCCTACTC-3´-3´ 

79 bp 
R: 5´-CTGGCTCATCTTTGACCTTTGC 

LDLR Gene ID: 3949 
F: 

R: 

5´-AGAGGAAATGAGAAGAAGCCCAG-3´ 

5´-AAGGAAGACGAGGAGCACGATG-3´ 
75 bp 

ABCA1 NM_005502.3 
F: 5´-GAGGCAACAAACGCAAGC-3´ 

72 bp 
R: 5´-GTTCATCCAGAAACACCACAGG-3´ 

CCL3 Gene ID:6348 
F: 5´-GGCTCTCTGCAACCAGTTCT-3´ 

151 bp 
R: 5´-TAGGAAGATGACACCGGGCT-3´ 

CCL2 NM_002982.3 
F: 5´-CAGCCAGATGCAATCAATGCC-3´ 

118 bp 
R: 5´-CTTCTTTGGGACACTTGCTGC-3´ 

ICAM1 NM_000201.2 
F: 5´-GGAGCTTCGTGTCCTGTATGG-3´ 

94 bp 
R: 5´-GCACATTGGAGTCTGCTGGG-3´ 

VCAM1 NM_001078.3 
F: 5´-TTGATGAAATGGATTCTGTGCCC-3´ 

74 bp 
R: 5´-ATTCTTGGGTGATATGTAGACTTGC-3´ 

CSF2 NM_000758.3 
F: 5´-CCTGGGAGCATGTGAATGCC-3´ 

86 bp 
R: 5´-TACTGTTTCATTCATCTCAGCAGC-3´ 

TLR-2 XM_005263194.2 
F: 5´-TCGGAGTTCTCCCAGTGTTTGG-3´ 

109 bp 
R: 5´-GCACAATGAGCCCCACAGGT-3  ́

TLR-4 NM_138554.4 
F: 5´-CCTGCGTGGAGGTGGTTCCTAA-3´ 

326 bp 
R: 5´-TGTCTCCACAGCCACCAGCTTC-3´ 

TNF-α NM_000594.3 
F: 5´-GTAGCCCATGTTGTAGCAAACC-3´ 

103 bp 
R: 5´-GGTTATCTCTCAGCTCCACGC-3´ 

IL1β NM_000576.2 
F: 5´-AGATGAAGTGCTCCTTCCAGG-3´ 

72 bp 
R: 5´-GGTCGGAGATTCGTAGCTGG-3´ 

IL6 NM_000600.3 
F: 5´-GTGTGAAAGCAGCAAAGAGGC-3´ 

105 bp 
R: 5´-AGGCAAGTCTCCTCATTGAATCC-3´ 

IL10 NM_000572.2 
F: 5´-TGGAGGACTTTAAGGGTTACCTGG-3´ 

115 bp 
R: 5´-ACATGCGCCTTGATGTCTGG-3´ 

NFΚΒ Gene ID: 4790 
F: 5´-TGGACAACTATGAGGTCTCTGG-3´ 

125 bp 
R: 5´-CTGAGAGGTGGTCTTCACTGG-3´ 

MyD88 NM_001172567.1 
F: 5´- GCTCATCGAAAAGAGGTTGGC -3´ 

139 bp 
R: 5´- ATGGGCACCTGGAGAGAGG -3´ 

BCL2A1 NM_004049.3 
F: 5´-AACGGAGGCTGGGAAAATGG-3´ 

137 bp 
R: 5´-TGGAGTGTCCTTTCTGGTCAA-3´ 

ACTB NM_001101.3 
F: 5´-TCCTTCCTGGGCATGGAGTC-3´ 

323 bp 
R: 5´-CGATCCACACGGAGTACTTG-3´ 

RPL27A NM_000990.4 
F: 

R: 

5´-GGAAGACCCGGAAACTTAGGG-3´ 

5´-TAGCCTGGGTGGTATTTGTCG-3´ 
139 bp 

GAPDH NM_002046.5 
R: 5´- TGGAGAAGGCTGGGGCTCAT-3´ 

308 bp 
F: 5´- CATGCCAGTGAGCTTCCCGT-3´ 

Table 2.07:  Oligonucleotide primers designed for real-time PCR assays are listed as follows. Cholesterol 

biosynthesis: HMG-CoA reductase (HMGR), sterol regulatory element-binding protein cleavage- 

activating protein (SCAP), sterol regulatory element-binding protein-2 (SREBP2) ATP-binding 

cassette transporter sub-family member-1 (ABCA1) and low density lipoprotein receptor (LDLR). 

Adhesion molecules: intercellular adhesion molecule-1 (ICAM1) and vascular cellular adhesion molecule-

1 (VCAM1). Cytokines and inflammatory: interleukin-1-beta, (IL1β), interleukin-6 (IL6), interleukin-10 

(IL10), tumour necrosis factor alpha (TNFα), chemokine (C-C motif) ligand-3 (CCL3), chemokine (C-C 

motif) ligand-2 (CCL2) and colony stimulating factor-2 (granulocyte-macrophage) (CSF2), nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFKB) myeloid differentiation primary response gene-88 

(MYD88). Apoptosis inhibitor: BCL-2-related protein A1 (BCL2A1). Endogenous control genes: 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-actin (ACTB) and 60S ribosomal protein L27a 

(RPL27A) were designed. Oligonucleotide sequences in bold were designed by second supervisor. 
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2.5.6 Gene expression data analysis for atherosclerotic plaque tissue - ΔΔCT 

Analysis of qPCR data were performed in accordance with the Livak and Schmittgen 

(2001) ΔΔCT method for relative gene expression. Real-time PCR was performed on 

cDNA from AP and LIMA specimens. The data were analysed using Eq (i), where 

ΔΔCT = ΔCT(SampleCAP – ReferenceCAP) - ΔCT(SampleLITA – ReferenceLITA). The 

endogenous reference gene, RPL27A, was utilised for tissue gene expression 

normalisation. A mean of endogenous control CT values for each reaction were calculated 

and utilised for calibrator (LITA) and target (CAP) normalisation. Calculating ΔCT for 

each tissue established the level of normalised gene expression of the gene of interest 

(GOI) by subtracting the mean CT values of the stable and constantly expressed 

endogenous control genes. The normalised ΔCT LITA tissue expression was subtracted 

from the normalised ΔCT CAP tissue expression, thus generating the final normalised 

ΔΔCT value for GOI expression in AP tissue. The ΔΔCT value was therefore the difference 

of GOI expression in AP tissue compared to LIMA tissue and relative to the geometric 

mean of two stably expressed reference genes. The ratio of target gene expression in AP 

tissue relative to LIMA tissue was determined by calculating the inverse log ΔΔCT, using 

Eq (i).  

Using this method, negative ΔΔCT values represented an up-regulated GOI, whereas 

positive ΔΔCT values represented down-regulation of the GOI. Positive ΔΔCT values 

generated fold changes that were less than one. For example, ΔΔCT = 1.23 generated a fold 

change of 0.426. Calculating the reciprocal of the fold change  gives 2.35 (e.g. 1/0.426 = 

2.35). Therefore, the expression level in the experimental condition would be 2.35fold less 

than the expression of the control gene.  

Final mean fold changes for a given GOI were plotted  as excel spreadsheet bar charts.  

Hot-Start Denaturation Data collection Dissociation 

1  Repeat 40 Cycles 1 Repeat 

95˚C 95˚C 60˚C      95˚C 60˚C 95˚C 60˚C 

10 min 0:15 min 1 min    15 sec 20 sec 15 sec 15 sec 

Table 2.08: Thermal-cycler parameters for gene expression assays using SYBR® Select. Table from left to 

right – Initial 95˚C denaturation step for AmpliTaq® polymerase activation and cDNA denaturation, data 

collection step (40 cycles 95˚C to 60˚C) and a final dissociation curves analysis step.  
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(i) 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 = 2−∆∆𝐶𝑇  

Standard deviation (SD) was determined from the level of variation in target gene 

expression ΔΔCT values. Initially SD was calculated for target and reference CT values 

using Eq (ii). The SD for ΔCT could then be calculated using Eq (iii).  

(ii) 𝜎 = √
∑(𝑥− 𝑥̅)2

𝑛
 

 

Where, the standard deviation (𝜎) is the square root of the sum of (Σ) each value in the 

data set (x) minus the mean of all values in the data set (x̄) divided by the sample size (𝑛). 

 

(iii) 𝜎 =  √(𝑠1
2 +  𝑠2

2) 

Where, the standard deviation is the square root of the squared standard deviation for the 

target (𝑠1
2) plus the squared standard deviation for the reference (𝑠2

2). SD was 

incorporated into bar charts as the level of variation between sample replicates. 

2.6 Infection of a human monocyte cell line with P. acnes, in-vitro  

2.6.1 THP-1 cell culture 

The human monocytic cell line ATCC THP-1 (a kind gift from Dr Jelena Gavrilovic, 

School of Biological Sciences, University of East Anglia), derived from acute monocytic 

leukaemia, was thawed at 37˚C with gentle agitation. Nine millilitres fresh pre-warmed 

complete growth medium comprising RPMI 1640 medium (Lonza, UK) supplemented 

with 10% heat-inactivated fetal bovine serum (FBS), 0.05 mM β-mercaptoethanol and 2 

mM L-glutamine was slowly added to the thawed cell suspension. Cells were gently 

dispersed then centrifuged at 100 x g for 5 min. Supernatant was discarded and cells were 

suspended in 10 ml pre-warmed complete growth medium. Cells were counted using a 

trypan blue stain and haemocytometer to determine percentage viability. Briefly, cells 

were mixed with medium 1:10 then further diluted 1:1 with trypan blue. Cells were applied 

to the haemocytometer and counted in the four large corner squares and the centre square. 

Following cell count, the entire cell suspension was transferred to a T25 flask and incubated 

in an upright position in an atmosphere comprising 5% CO2 and 95% air, for 72 h. 

Following this, 8 ml spent media was carefully removed and replaced with 8 ml fresh pre-
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warmed complete growth media. Cells were then incubated for a further 48 – 72 h, at 

which point, a second cell count was performed. Cells were subcultured and incubated for 

a final 72 h, harvested and counted. THP-1 cells were deemed fit for experimental use 

when counts showed ~100% viability. 

Cells were routinely seeded at a density of 2 - 4 x 105 cell/ml and subcultured every 72 h 

or when cells reached a density between 8 x 105 - 1 x 106 cell/ml. Prior to experimental 

use, cells at 72 h of culture were harvested and washed with PBS, then resuspended in 

serum-free medium (complete growth medium minus FBS) and seeded in 24-well plates 

at a density of 3 x 105 cell/well over night. All experimental assays involving THP-1 cells 

were performed in a class II biosafety cabinet employing aseptic handling and sterile 

techniques. 

2.6.2 Normal growth characteristics for THP-1 cell line  

Normal growth conditions were established for THP-1 cells cultured for 120 h using 

method previously described (section 2.5.2). Cells were counted every 12 h by 

haemocytometer to calculate growth characteristics using Eq (iv –vii). It is crucial to 

establish a record of growth characteristics any cell line before starting experimentation to 

be able to identify alterations in cell growth, which can signify potential problems with the 

cells or conditions adopted for growth. If undetected, these potential problems may have 

detrimental effect on experimental data. The results from these experiments were used to 

formulate excel charts relating to the aforementioned equations. 

 

(iv) 𝑁𝑑 =  
log(𝑞2 – 𝑞1)

log(2)
 

Nd  Number of doublings in time interval  

q1  Cell count at start of exponential phase 

q2  Cell count at the end of exponential phase 
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(v) 𝑟𝑔 =  
𝑁𝑑

(𝑡2− 𝑡1)
 

rg    Growth rate 

t1    Time when cell count commenced  

t2   Time when cell count ended 

 

 

(vi) 𝑇𝑑 = (𝑡2 − 𝑡1)
log(2)

log
𝑞2
𝑞1

≈  
1

𝑟𝑔
 

 

Td  Population doubling time 

t1    Time when cell count commenced  

t2   Time when cell count ended 

q1   Cell count at start of exponential phase 

q2   Cell count at the end of exponential phase 

r%    Growth rate 

 

 

(vii) 𝑟% =  
𝑞2− 𝑞1

𝑞1
 

 

r% Percentage cell growth 

q1  Cell count at start of exponential phase 

q2  Cell count at the end of exponential phase 
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2.6.3 THP-1 challenge with Escherichia coli LPS 

To assess whether THP-1 cells respond to bacterial stimuli, cells were incubated with 

different E. coli LPS concentrations (0.5 µg, 1 µg and 2.5 µg) over 20 h. All experiments 

were carried-out in triplicate. LPS-infected THP-1 cells were harvested at 0.5, 1, 1.5, 2 

and 20 h for RNA extraction. Briefly, infected cells were transferred to a microcentrifuge 

tube and centrifuged at 100 x g for 5 min. Supernatant was removed and cells were gently 

re-suspended in 1 ml Tri Reagent® Solution for isolation of total RNA. Cells were 

incubated in Tri Reagent® Solution at room temperature for 5 min then RNA extracted 

following manufacturer’s guidelines, as previously described (section 2.4.2). mRNA was 

reverse transcribed to cDNA (section 2.4.4) and utilised as template for qPCR analysis 

(section 2.4.5) to measure the expression of 10 target GOI. This developmental assay was 

necessary to evaluate the efficacy of THP-1 as a suitable model cell line for investigating 

bacterial infection/inflammation. In addition, mRNA derived from LPS-infected THP-1 

cells provided an activated tissue that enabled optimisation of the primer sets used in this 

study. 

2.6.4 THP-1 challenge with P. acnes 

Fresh cultures of P. acnes were harvested in log phase (OD 0.545) and centrifuged at 

1000 x g for 10 min. The bacterial pellet was re-suspended in 10 ml sterile PBS and 

centrifuged at 1000 x g for 10 min. Supernatant was discarded and bacteria were 

suspended in 10 ml sterile PBS. P. acnes cells were counted using a haemocytometer. 

THP-1 cell cultures were infected with P. acnes at a multiplicity of infection of 100 (i.e. 

100 bacteria for every 1 THP-1 cells). The duration of P. acnes infection of THP-1 cell 

cultures was investigated at three time points: 2 h, 6 h and 24 h. For negative controls, 30 

µl of the same PBS stock utilised to suspend P. acnes culture was applied to cells. All 

experiments were carried-out in triplicate. For analysis, infected cells were transferred to 

a microcentrifuge tube and centrifuged at 100 x g for 5 min. Supernatant was removed and 

cells were gently re-suspended in 1 ml Tri Reagent® Solution for isolation of total RNA. 

Briefly, cells were incubated in Tri Reagent® Solution at room temperature for 5 min then 

RNA extracted following manufacturer’s guidelines, as previously described in section 

2.4.2. Finally, P. acne-stimulated THP-1 mRNA was reverse transcribed (section 2.4.4) 

and relative gene expression was measured by qPCR (section 2.4.5). 
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2.6.5 Gene expression data analysis for P. acnes-infected THP-1 

The data were analysed as previously described (section 2.4.6) using equation (i), where 

ΔΔCT = ΔCT(Ct Target – Ct Actin)Time x – ΔCT(Ct Target – Ct Actin)Time 0. Time x is any time point 

and Time 0 represents the untreated calibrator expression of the target gene normalised to 

β-actin. The calibrator sample Ct values for target gene expression was subtracted from 

the calibrator Ct values for the reference gene, and a mean was calculated, giving a final 

normalised calibrator value (Time 0). Therefore, individual fold change values for each 

target gene (time x), normalised to a stable and constantly expressed reference gene and 

relative to a mean normalised calibrator value (time 0), was calculated for each gene using 

Eq (i). The mean fold change at time x was calculated and used to represent overall fold 

induction of target gene expression at time x. SD was calculated as previously described 

in section 2.4.5 using Eq (ii and iii). 

2.7  Statistical testing 

2.7.1 Power calculations for population sample size 

Statistical power is a fundamental consideration when designing experiments. Sample size 

is a key variable that greatly impacts the validity of the calculated significance. Too few 

subjects in a population study sample can result in committing type I or II errors. Prior to 

performing the investigation it was necessary to establish the minimum sample population 

number (n) required to provide acceptable statistical power when calculating the 

probability of outcomes.  

Power calculations for n were performed using the equation (iv) 

𝑀𝐸 = 𝑥 ̅ ± 𝑧𝛼/2
𝑆

√𝑛
     [viii] 

Where, 

ME = margin of error. 

𝑥 ̅   = Sample mean. 
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S     = standard deviation of sample set (“σ” when using population standard deviation). 

Zα/2  = boundary of internal probability (1-95%/2 = 1.96). 

√𝑛  = square root of n = 20  

Equation viii was algebraically rearranged to solve for n. 

𝑀𝐸 = 𝑍𝛼/2

𝑆

√𝑛
     →      √𝑛 =  

𝑍𝛼 2⁄  𝑆

𝑀𝐸
    →     𝑛 =  

(𝑍𝛼 2⁄ )2𝑆2

𝑀𝐸2
 

Therefore, equation iv can be used to establish the size of the sample population needed 

to provide acceptable margin of error rates. 

                      𝑛 =  (
𝑍𝛼 2⁄  𝑆

𝑀𝐸
)

2

                       [iv] 

 

2.7.2 Statistical analysis of bacterial growth in media supplemented with different 

concentrations of growth reagent supplements 

To establish the significance of the bacterial growth (OD600) for media containing different 

concentrations of growth reagent supplements compared to control medium, an analysis 

of variance (ANOVA) was performed. Data sets comprised OD600 values of bacterial 

cultures grown in media containing a concentration gradient of growth reagent compared 

with OD600 values of cultures grown in media without the growth reagent (table 2.02). 

Cultures were repeated with three technical replicates for each bacteria and reagent 

concentration. The OD600 data were assessed using Excel 2010 statistical toolpak by 

testing the hypothesis that there were no significant differences between OD600 values. The 

null hypothesis was rejected at the significance level p = 0.05 since the value of the 

ANOVA test was less than the critical value. If the ANOVA test indicated significant 

differences between OD600 values, data were tested further by performing a Levene’s test 

to assess the equality of sample variances between data sets with the hypothesis that the 

group variances are equal. We fail to reject the null hypothesis at the significance p = 0.05 

level, since the value of the Levene test statistic is less than the critical values. Finally, 

dependent on variance equality between OD600 data values a Student’s t-test was 
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performed to determine which reagent concentration groups provided OD600 values 

significantly greater than OD600 values for the control medium (without reagent). 

2.7.3 Statistical analysis of gene expression in atherosclerotic plaque tissue 

To establish whether target gene expression was significantly different between CAP and 

LITA tissue (section 2.4), significance testing was performed using statistical package R 

v3.1.0 [URL http://www.R-project.org/] and Excel Analysis Toolpak 2010. Fold change 

data were formatted in Excel spreadsheet columns and imported to R as text (tab delimited) 

files. Before any significance testing was performed a Shapiro-Wilk test was carried out 

to establish normal distribution of each data set. Data were considered normal if p >0.05. 

In the rare instance when data were did not fit a normal distribution, data were log-

transformed. Levene’s F-tests were performed on normal data to determine variance 

equality between the tested groups. Data that satisfied parametric conditions were tested 

with a two-tailed independent student’s t-test. Data that did not satisfy parametric 

conditions were tested with the non-parametric Mann-Whitney U test (MWU). The MWU 

test tested whether the values of the two sets of non-normal data were significantly 

different based upon their medians. Both analyses were carried out as two-tailed tests. 

2.7.4 Statistical analysis of P. acnes-infected THP-1 gene expression 

Fold change values for both LPS-induced and P. acnes-induced gene expression were 

tested by an analysis of variance (ANOVA) test. Data comprised triplicate fold change 

values for infected THP-1 target gene expression at a given time point compared to 

untreated THP-1 expression of the same gene and time point. Data were prepared in excel 

as stated above and normality was tested. ANOVA were performed on normal log 

transformed data and overall combined ANOVA scores among all tested conditions were 

reported. If overall combined ANOVA scores indicated a significant difference (p <0.05), 

the data were tested further to establish which pairs were significantly different by 

performing a Tukey’s post hoc test for pairwise comparisons. 

Where data did not fit the assumption of normal distribution required for ANOVA test a 

non-parametric alternative to ANOVA, the Kruskal-Wallis test was used. If a significant 

difference was observed indicated by p <.05, the Kruskal Wallis test was followed with a 

Wilcoxon pairwise comparison test to establish which pairs were significantly different.

http://www.r-project.org/
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3.1 Introduction 

The atherosclerotic plaque is a highly dynamic and complex mass of accumulating cells 

that undergoes constant remodelling within the intimal layer of large elastic arteries. As 

an atherosclerotic plaque progresses through several well-defined stages of development 

it may take several decades from initiation until plaque symptomatology becomes 

apparent. Figure 3.01, reconstructed from (George & Johnson 2010) shows the 

pathogenesis of atherosclerosis and details the common plaques phenotypes in the natural 

progression of the disease from normal artery through to symptomatic atherosclerotic 

artery; the figure is adapted to include an additional final ruptured plaque phenotype.  

During each stage of progression, the plaque develops common histopathological features 

typical of its developmental stage that provide information relating to the overall 

vulnerability and relative symptomatology of the lesion. At present the most detailed 

histological finding are presented retrospectively from autopsy specimens usually 

comprising thrombosed coronary arteries. Examination of these culprit lesions detailed in 

the American Heart Association (AHA) classification criteria of human atherosclerotic 

histological specimens, which is the most cited system (Stary et al. 1994). Reviewed in 

1995 and then 2000, the criteria were simplified and expanded to include a number of 

previously unconsidered characteristics of advanced plaques (Stary et al. 1995; Virmani et 

al. 2000). The AHA recommendations are often used to describe the natural evolution of 

atherosclerotic lesions begins with non-atherosclerotic lesions (1) intimal thickening; a 

normal accumulation of vascular smooth muscle cells (VSMC) in the absence of 

macrophage and foam cells. (2) xanthoma (fatty streak) shows accumulation of foam cells 

in the absence of a necrotic core and fibrous cap. Progressive lesions comprises: (3) 

pathological intimal thickening, containing a proteoglycan-rich matrix with areas of 

extracellular lipid accumulation, but lacking necrosis. (4) Same as 2 with addition of a 

rarely occlusive luminal thrombosis, mostly mural. (5) Fibrous cap atheroma containing a 

well formed necrotic core with overlaying fibrous cap. (6) Thin fibrous cap atheroma 

comprising a thin fibrous cap infiltrated by macrophages and leukocytes infiltration, rare 

SMC and a well-defined necrotic core; these lesions may also show signs of IPH  (IPH). 

(7) Rupturing, as 6 with fibrous cap disruption and liminal thrombosis communicating 

with necrotic core. (8) Calcified nodule, eruptive nodular calcification with underlying 

fibrocalific plaque. Finally, (9) fibrocalcific plaque is a collagen-rich plaque with 

significant stenosis and large areas of calcification and fewer inflammatory cells.  
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Figure 3.01: Atherosclerotic plaque formation. A: Normal artery is composed of the intima – a layer of 
endothelial cells seated on the internal elastic lamina – and the media, comprising vascular smooth muscle cells 

(VSMCs) are embedded in extracellular matrix and surrounded by the external elastic lamina. B Endothelial 

dysfunction. Damage to the endothelium results from exposure to risk factors and leads to presence of reactive 
oxygen species (ROS). Adhesion molecules are upregulated and vascular permeability increases. Consequently, 

leukocytes adhere to the artery wall and migrate to the intima. Low density lipoprotein (LDL) infiltrate the artery 

wall and are converted to oxidised LDL (oxLDL). Figure adapted and expanded from (George & Johnson 2010). 
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Figure 3.01: Continued C: Fatty streak formation. Platelets adhere to the surface of the endothelium and 

degranulate. ROS continues to convert LDL to oxLDL, which is readily targeted and taken up by 

macrophages. Macrophages develop into foam cells. Release chemokines and growth factors that lead to 

further recruitment of inflammatory cells. Activation of T cells and VSMC migration and proliferation. D: 

Stable atherosclerotic plaque formation. VSMCs migration and proliferation lead to the formation of a 

fibrous cap. Apoptosis of foam cells causes the formation of a necrotic core. Further accumulation of 

activated T cells and macrophages continues the cycle of influx. Figure adapted and expanded from 

(George & Johnson 2010). 
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Figure 3.01: Continued E: Unstable atherosclerotic plaque formation. Thinning of the fibrous cap occurs 

as a result of VSMC apoptosis and matrix degradation. IPH occurs. Both these factors render the plaque 

more unstable and likely to rupture. F: Atherosclerotic plaque rupture #1. Rupture of the fibrous cap or 

erosion of the luminal surface precipitates thrombus formation, which can be completely occlusive or G: 

Atherosclerotic plaque rupture #2. As with ruptured plaque #1, but Semi-occlusive throbmboembolism 

forms that may restrict blood flow locally or fragment as emboli and travel with the circulating blood to a 

vessel with smaller diameter, where it may occlude the flow of blood to the vital organ(s). Figure adapted 

and expanded from (George & Johnson 2010). 

Clinical outcomes caused by the most advanced atherosclerotic plaques are ultimately 

dictated by the presence of the aforementioned features of plaque vulnerability that 

collectively weaken the structures of plaque, most critically the thinning of the fibrous cap. 

Eventually, when the necrotic content of the core exceeds the capacity of the surrounding 

structure, the thin fibrous cap finally relents, suddenly rupturing its throbogenic material 

into the lumen, causing acute irreversible changes in plaque pathology. This catastrophic 

event results in varying degrees of vascular occlusion and associated ischemic pathologies, 

such as cerebral or myocardial infarction.  

Ischemic outcomes and the resulting tissue infarction in such events depend largely on the 

location of the affected vessel. Atherosclerosis affecting the carotid artery is beset with its 

own particular complication, specifically, acute occlusion of the carotid artery due to the 

propagation of a localised thrombus or occlusion of the cerebral vasculature distant from 

the atherosclerotic artery that results from embolization of plaque or the resulting thrombus 

(thromboembolism). Both are critically serious conditions that may be preceded by 



Chapter 3: Examination of CAP & LITA Tissue through Histopathological & IHC Analysis 

101 
 

transient ischemic attacks (TIA); a small occluding embolism that only temporarily 

impedes the flow of blood. However, plaque rupture may cause an immediate stroke, in 

which a permanently occluded vessel results in complete occlusion of circulating blood to 

the cerebra, causing lengthy ischemia and cerebral infarction. 

Many investigations have been conducted to examine the histopathological features of 

atherosclerotic plaque tissue from the carotid artery (Van Damme et al.; Persson 1983; 

Ammar et al. 1984; Lennihan et al. 1987; Aburahma et al. 1989; Leen et al. 1990; Avril et 

al. 1991; Seeger et al. 1995; Park et al. 1998). Other studies focus on the occurrence of 

features commonly encountered in carotid plaques harvested from asymptomatic and 

symptomatic patients (McCarthy et al. 1999; Dunmore et al. 2007; Xiong et al. 2009). In 

these experiments the frequency of histological features and their relative occurrence in 

symptomatic plaques could provide information relating to each feature and its 

involvement in plaque symptomatology and destabilisation. More recently, the efficacy of 

clinical techniques such as magnetic resonance imaging (MRI) (Hatsukami et al. 2000; 

Yuan et al. 2002; Kerwin 2003; Chu et al. 2004; Cai et al. 2005; Kerwin et al. 2008), 

computed tomographic (CT) scans (Feinstein 2006; Mofidi et al. 2008; Teng et al. 2014) 

and ultrasound scans (Feinstein 2006; Shah et al. 2007; Giannoni et al. 2009) have been 

investigated in identifying histological features of vulnerable plaques in vivo. The 

resulting images from these powerful techniques are then compared to the 

histopathological features found in gross atherosclerotic plaques harvested from surgical 

procedures to assess their suitability for detecting vulnerable plaque phenotypes. 

There are, in-effect, eight hypotheses proposed for the initiation and pathogenesis of 

atherosclerosis, each covering a particular major atherogenic pathway; though only two 

are universally acknowledged; namely, the “lipid or oxidative modification” hypothesis 

(Witztum 1994) and the “response to injury” hypothesis (Ross et al. 1977). The “lipid or 

oxidative modification hypothesis” proposes that a link between elevated oxidised and/or 

modified plasma lipoprotein and atherosclerosis, while the “response to injury” hypothesis 

suggests that endothelial dysfunction may be the initiation mechanism of plaque 

formation. Although theses hypotheses cover fundamentally different mechanisms they 

are in no way mutually exclusive as both play critical roles in the development of 

atherosclerotic plaque, which, to some extent work in unison to fulfil this goal. For 

example, when a vessel is injured, endothelial cells activate by enhancing vascular 

adhesiveness for leukocyte and platelet recruitment, increased procoagulant milieu and 
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permeability factors. Thus, vascular regions affected by endothelium dysfunction are 

highly permeable for the chemotaxis of leukocytes to the site of injury; this provides the 

perfect environment to aid transport of native and oxidised LDL (oxLDL) from the 

circulation to the intima, thereby further progressing plaque development.  

Although lipid modification and deposition are thought to be a major source of the 

continuous inflammatory stimulus, a large body of evidence suggests that infectious agents 

may contribute to atherosclerotic processes (Campbell & Rosenfeld 2015). This could 

occur by either local infection of vascular cells and/or through systemic effects by 

induction of cytokine and acute phase reactant proteins by infection at other sites (Pussinen 

et al. 2007; Loos 2005). Multiple viral and bacterial pathogens have been associated to 

atherosclerosis through serological, molecular detection of species within the 

atherosclerotic plaque and by demonstrating accelerated development of atherosclerosis 

following infection with putative strains in hyperlipidaemic animal model.  

Significant similarities in the pathogenesis of atherosclerosis and chronic infections such 

as periodontitis have suggested a common underlying biological mechanism for the two 

conditions. Based on this paradigm, numerous studies have examined the relationship 

between periodontitis and cardiovascular disease (Meurman et al. 2004; Tonetti & Dyke 

2013; Tabeta et al. 2014). Gingival inflammation may influence atherosclerosis in three 

distinct pathways. Periodontal pathogens cause the development of subgingival plaque 

which leads to inflammation of the periodontal tissues. Chronic gingival inflammation 

leads to receding gingival tissues and the formation of periodontal pockets, which act as 

reservoirs for accumulation of bacteria and food debris. The ensuing local inflammatory 

response produces micro-ulcerations through the pocket epithelium, promoting distant-site 

infection via transient bacteraemia (Brodala & Merricks 2005; Forner et al. 2006; Iwai 

2009; Raber-Durlacher et al. 2013). Moreover, bacteria release numerous biologically 

active surface membrane proteins including lipopolysaccharides (LPS), endotoxins, 

chemotactic peptides, proteins, and organic acids that may then enter the systemic 

circulation (Pussinen et al. 2007). These products can then initiate the host inflammatory 

response that can elevate serum concentrations of acute-phase proteins and 

proinflammatory cytokines (C-reactive protein, fibrinogen, IL-6 and IL-8) (Loos et al. 

2000; Ebersole 2003; Loos 2005). Increase of these inflammatory mediators is thought to 

a be major contributing factor in the pathogenesis of atherosclerosis (Lockhart et al. 2012; 

Lund Håheim 2014). 
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This first chapter of work involves two specific phases of investigation. The first of which 

will involve establishing the frequency and density of histopathological features within 

H&E and MTC stained sections of atherosclerotic plaque tissue from the carotid artery. 

Performing these examinations will provide an overall better understanding of the general 

cellular composition and structural architecture of the plaque tissue being studied, as well 

as provide an insight into the plaque vulnerability based on the observed features. 

One of the main areas of focus for this thesis will be the targeted detection and 

identification of specific species of bacteria present within atherosclerotic plaque tissue. 

However, as the opening chapter of work for this thesis, it seems more plausible to first 

establish the presence of a broad-reaching bacterial marker that can determine the 

frequency of most bacteria residing within atherosclerotic plaque tissue. Peptidoglycan 

(PGN) is perfectly suited to this task, as a highly conserved polymer that forms a large 

portion of the plasma membrane of most bacteria. In Gram-positive bacteria PGN accounts 

for 35 – 70% of the total bacterial cell wall mass, approximately 10 – 70 layers (Snowden 

& Perkins 1990), whereas, Gram-negative bacteria have only 1 or 2 layers of PGN, 

accounting for only 10% of bacterial cell wall mass (Labischinski et al. 1991). 

Nevertheless, its epitope is available at the cell surface of both Gram-cell types, which 

negates the need for digestion of tissue sections when performing immunohistochemistry 

(IHC). Thus, the second phase of work for this chapter will be carried out by using a single 

antibody for the IHC detection of PGN in FFPE tissue section of atherosclerotic plaque 

from the carotid artery 
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3.2  Chapter aims 

This chapter of work will involve the examination of sections of human atherosclerotic 

plaque tissue from the carotid artery for the purpose of  

A)  Examining FFPE sections of atherosclerotic plaque tissue from the carotid artery 

stained with H&E & MTC for identification of particular microscopic 

characteristic features that form the cellular composition and architecture of plaque 

tissue. 

i. Determine the frequency and/or percentage spread of observed features.  

ii. Establish any correlative relationships between histological features and 

between histological features and patients’ data. 

B) Examine FFPE section of atherosclerotic plaque tissue from the carotid artery for 

the frequency and density of anti-PGN localisation. 

i. Determine any tends of localisation and establish any correlative 

relationships between the frequency of PGN staining and any reoccurring 

histopathological features of atherosclerotic plaque. 

C) Compare findings from section A & B with finding observed with LITA healthy 

human artery tissue control tissue 

i. Compare histopathological findings from section A with H&E stained 

healthy LITA control tissue. 

ii. Compare histopathological findings from section B with the frequency and 

density of anti-PGN stained healthy LITA control tissue. 

3.3 Method overview 

Twenty CAP and LITA tissue samples were collected from theatre and transported to the 

laboratory in RTM and RNAlater® (section 2.1.2). Portions of the tissue were fixed, 

demineralised, dehydrated and paraffin embedded using standard histological methods 

(section 2.2.1). Tissue section from all CAP and LITA samples were stained with H&E 

(section 2.2.2) and MTC (section 2.2.3) to assess histological features and cellular 

architecture of the tissue. An avidin-biotin complex (ABC) method was adopted using 

primary antibody with secondary antibody anti-bacterial peptidoglycan (anti-PGN) in 

conjunction with a DAB chromagen (red/brown stain) to determine the localisation of 

bacterial cell wall components in CAP and/or LITA tissue (section 2.2.4).  



Chapter 3: Examination of CAP & LITA Tissue through Histopathological & IHC Analysis 

105 
 

3.4 Results 

3.4.1 Power calculations for population sample size 

Data generated here from a small sample population (n = 20) for observation of PGN 

localisation were used to establish the population sample number required to give a margin 

of error (ME) of 3 and below (table 3.01). The actual marginal error calculated with n = 

20 subjects was high (ME = 4.26) and therefore the sample mean (x̅ = 17.45) could have 

been in a range from 13.19 – 21.71. To reduce marginal error observed within this study 

to an acceptable level, a greater sample size would be needed. An n = 91 or n = 363 would 

have decreased the margin of error to 2 or 1, respectively (table 3.01). While it was 

important to establish the population sample size needed prior to this investigation, it was 

not possible to obtain more than 20. The selection of eligible candidates for tissue donation 

was considered by the cardiothoracic consultant and research nurse involved in this study. 

All patients that were eligible for the study and were scheduled for the necessary surgery 

during the study were recruited. 

n 20      

Mean (x̅) 17.45   17.45 17.45 17.45 

Standard error 2.17   2.17 2.17 2.17 

Confidence interval (CI) 95%   95% 95% 95% 

Zα/2 0.025   0.025 0.025 0.025 

z score 1.96   1.96 1.96 1.96 

Standard deviation  9.71   9.71 9.71 9.71 

Marginal error  4.26   3 2 1 

            

Actual (n) 20 Required (n) 41 91 363 

Table 3.01: Power calculations to establish require population number (n) to minimise margin of 

error. Left column shows the formulae calculated to determine the power of the sample size. Left 

two columns relate to the actual sample size tested in this study, while the remaining columns detail 

the necessary sample sizes needed to limit marginal error to 3, 2 and 1. 

Given the amount of error observed when testing hypotheses with a small population size 

(n = 20), it cannot be said with certainty that type I or type II errors were avoided. 

Therefore, any statistical testing performed in this chapter for correlation or association 

are tentative. 
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3.4.2 Histopathology of plaques from the carotid artery 

Several notable features were observed when CAP and LITA samples were assessed by 

hemotoxylin and eosin (HE) staining. One plaque specimen, taken from the left internal 

carotid artery of a 72-year-old-male, showed advanced atherosclerotic disease affecting 

the whole circumference of the artery (Figure 3.02). The plaque displayed a large necrotic 

core ~30% of the plaques mass and covered by a thick fibrous cap. The large mass of the 

atheroma and thick fibrous cap resulted in a marked luminal stenosis. The plaque also 

displayed regions of increased inflammation, evidenced by a density of dark blue/purple 

particularly situated around necrotic cores. It must be noted however, to determine the 

presence of leukocytes; one would need to use antibodies to establish the presence of 

leukocyte common antigen or an antibody specific to a particular leukocyte cell type. 

Seventy percent of plaque samples contained at least one lipid core each showing a varied 

extent of necrosis at their core. The necrotic core was characterised by cholesterol clefts 

(Figure 3.03), with areas containing necrotic cell debris that is highly eosinophilic tissue 

without the presence of nuclei and often surrounded by accumulating foam cell structures 

(Figure 3.04a-c) and the nuclei of infiltrating immune cells. Foam-cell structures were 

present in most lesion, the degree of accumulation varied dependant on the size of lipid 

lesions with large necrotic cores (30 – 50% of the lesion mass) were often protected from 

the lumen space by a dense layer of fibrous collagen/smooth muscle cell, characterised by 

a grey-green stain with Masson’s trichrome (MTC) stain (Figure 3.03b-d). 
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Figure 3.02: A six-piece stitched image of atherosclerotic plaque tissue from the internal carotid artery 

from a 72 year old male (A). Section stained with hematoxylin & eosin and six images captured at X4 

magnification then post-manually stitched together (A). The section displays common features of 

advanced atherosclerotic disease, such as, two lipid pools (LP), one of which covers ~30% of the lesion 

with a large necrotic core (N) within the lipid pool (A). A marked reduction in lumen space (~60 – 70%) 

is evident; made more apparent when compared to the lumen space of a similar sized elastic artery, the 

left internal thoracic artery (LITA) (B). The LITA control tissue had good structure and displayed three 

discrete layers of cells; 1 layers of endothelial cells and the internal elastic laminae (tunica intima) 

followed by 15 – 16 layers of smooth muscle cells (tunica media) and the external elastic laminae and18 

– 20 layers of collagen fibres (tunica adventitia). In the outer layers of collagen fibres vasa vasorum can 

be observed (top left box, A).  
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Figure 3.03: Cholesterol clefts formation in atherosclerotic plaque tissue stained with H&E. Images A show 

a region of cholesterol clefts surrounded by immune cell infiltration (purple nuclei) at X40 magnification.  

Cholesterol crystals form when cholesterol crystals dissolve away during the tissue processing, leaving 

distinctive needle like voids in the tissue. Clefts occur in and around the lipid core, an area associated with 

necrosis. Immune cells are often found close to cholesterol clefts though typically no nuclei are observed 

among clefts.  Image B shows a X100 magnification of the original tissue within the rectangle of B. 
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Collagen takes up Weigert’s haematoxylin to produce a vivid green colour of varying 

depth depending on exposure time, whereas smooth muscle tissue produced a grey-green 

due to dull red nuclei staining. All plaques showed extensive fibrous collagen 

composition, particularly throughout fibrous cap regions (Figure 3.04b-d). In combination 

with HE, MTC provided extra definition to tissue structure such as foam cell (figure 3.04d-

f) and IPH (Figure 3.05h-j).  IPH  tissue was evident in 30% of plaque specimens and was 

often localised to the fibrous cap, in close proximity to lipid pool regions or intraplaque 

vessels (IPV). Erythrocytes stained filled IPV and haemorrhagic regions appeared more 

indistinct in tissue stained with MTC. IPV (Figure 3.06a-e) were observed in 50% of 

plaque samples and formed at regions nearest the lumen; however, intraplaque vessles 

were also sporadically distributed throughout the plaque tissue and formed either regular 

or highly irregular shape (Figure 3.06a-e). 

 

 
Figure 3.04: Shows a large accumulation of foam cell-like structures within and around a sizable lipid 

pool. The top panel shows CAP tissue stained with H&E and captured at X10 (A), X40 (B) and X100 

(C). Accumulated foam cells form a highly distinctive structure that have the appearance of bubbles 

(foam).  Around the perimeter of the lipid pool is a wall of infiltrated immune cell (dark purple nuclei) 

(A). Dense groups of immune cells are visible within the lipid pool (A). The lower panel of images are 

of a consecutive section of CAP tissue stained with MTC captured at the same magnifications (D, E & 

F). Image D shows the larger accumulate of foam cells is encased in a thick wall of collagen (bottom 

left, D) and a thin fibrous cap (top right corner, D). Greater definition is achieved with MTC staining, 

giving finer detail to the foam cell-like structures (E & F). MTC stains cytoplasm, muscle and 

erythrocytes different shades of red and nuclei from grey to black; thus the cytoplasm of numerous cell 

types can be observed among the foam cell structures (F). The bottom panel shows textbook images of 

foam cells that are contained within coronary (G) carotid (H) and femoral (I) arteries sections when 

stained only with H&E (Sheppard 2011).  

G H I
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Figure 3.05: Large CAP tissue sections stained with MTC and captured at X4 magnification then manually 

stitched together (A). Abundant collagen composition located around the perimeter of the atheroma 

conceals a large necrotic core with sporadic haemorrhagic tissue (A). The centre of the plaque shows the 

formation of a large lipid pool/necrotic core. The boxes on image A relate to the image below with the same 

colour border. Black box within image A is magnified X20 (B), X40 (C) and X100 (D) revealing the thinnest 

section of fibrous cap comprising mostly collagen with the presence of elongated (dull red) smooth muscle 

cells. Middle panel (E, F & G) shows a section of collagen that appears more grey as a result of increasing 

smooth muscle cell content. The bottom pannel (H, I & J) show the formation of large intraplaque vessel 

with superimposed IPH . Intraplaque haemorrhaging is most prominent throughout the fibrous cap area (H). 

A mass of haemorrhagic blood with discrete erytherocytes are apparent.  
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Figure 3.06: Shows the varied formation of IPV. The left column (A, C & E) show normal oval vessel 

structure, whereas the remaining two columns show vessel walls that appear highly irregular (B, D, F & 

G). A vessel wall can be observed by the appearance of denser darker tissue compared to the lighter 

surrounding eosinophilic tissue (A, C, F and G). IPV provide a portal into the plaque for migratory 

leukocytes and other inflammatory mediators. The nuclei of infiltrating immune cells can be observed 

surrounding the vessels; particularly visible for A, E & G. Some vessels were easily identified when filled 

with erythrocytes (D & E). Image D shows the presence of both erythrocytes and the nuclei of migratory 

immune cells within the lumen space of the neovessel                        . 
 

Calcified nodules were rarely observed (15%) but were detected within very fibrous, 

complicated plaques specimens (Figure 3.07). However, no specific staining method was 

performed for the detection of calcium, (i.e. Von Kossa). All plaque specimens displayed 

localised immune cell infiltration that appeared more prevalent around IPV (Figure 3.06). 

Heavy immune cell infiltration was also observed at the shoulder regions of three plaque 

specimens (Figure 3.08). High concentrations of nuclei were present at regions around the 

perimeters of lipid cores where foam cells accumulated (Figure 3.03a), though a distinct 

lack of nuclei were observed within the necrotic cores or at regions occupied by cholesterol 

clefts (Figure 3.03a & b).  



Chapter 3: Examination of CAP & LITA Tissue through Histopathological & IHC Analysis 

112 
 

 
Figure 3.07: Large region is characteristic of calcium mineralisation. Typically calcification occurs in 

the area between the artery wall and the atherosclerotic plaque where the flow of calcium and other 

minerals is affected; as a result smooth muscle cells die and a long process of osteoblastogenesis and 

osteoclastogenesis dictate the ensuing mineralisation. Calcium can form where old cholesterol and 

necrotic cell debris has accumulated in the core of an atheroma. Characteristics of old cholesterol such 

as clefts remained in sections of the mineralised plaque that would indicate the calcified area may have 

formed form a lipid core. Thrombus tissue is visible to the bottom of the image (A). 
 

 
Figure 3.08: Shows the immune cell activity at the shoulders of the plaque tissue. Images were 

captured at X4 (A), X20 (B) and X40 (C) magnifications. A sharp contrast can be observed between 

the shoulder area highly active with immune cell infiltration and the inactive region of plaque adjacent 

(B). Image C clearly shows hundreds of active immune cells that have likely gained entry to the plaque 

near the shoulder region. The plaque shoulders are the farthest extremities of the lesion; at the point 

where the plaque is least dense. At the shoulder region there is a border where healthy endothelium 

becomes affected by disease. Leukocytes and other immune cells can therefore easily extravasate 

through the healthy endothelium and transmigrate to the sub-endothelial layers of the artery affected 

by atherosclerosis. The shoulder regions of plaque therefore have a dense traffic of migrating 

leukocytes and other inflammatory mediators as shown above 

A B
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A Spearman’s product-moment correlation coefficient for non-parametric testing of 

ordinal data was performed to assess the relationship between the frequencies of 

histological features. Relationships were observed between four of the histological 

features. The frequency of foam cells was correlated with the frequency of immune cell 

infiltrations [r = 0.494 n = 20, p = <0.05]. The relationship between the number of 

observed immune cell infiltrations and the presence of a lipid core(s) was analysed, though 

no correlation was established [r = 0.405, n = 20 p = <0.069]. The presence of a lipid 

core(s) did however correlate positively with the presence of foam cell structures [r = 

0.773, n = 20, p = <0.0001]. Finally, the presence of intra-plaque vessels was shown to be 

significantly correlated to the occurrence of intraplaque haemorrhages (IPH) [r = 0.6723, 

n = 20, p = <0.001]. Figure 3.09 displays the overall frequency of features in histogram 

form.. 

 

Histological  features Number observed Overall (%) 

Foam cells structures 20 100 

Inflammatory cells 20 100 

Lipid core 14 70 

IPH  6 30 

IPV 10 50 

Fibrous cap 13 65 

Table 3.02: Histological features observed within formalin fixed paraffin embedded CAP 

specimens. Left column lists the histological feature followed by the number of observations 

of that feature. The right column highlights the percentage of the observed feature relative to 

the total number of samples tested (n = 20). 
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Figure 3.09: Frequency of plaques (n = 20) that contained common histopathological features of 

atherosclerotic disease. Foam cell structures were the most commonly detected characteristic, with 13 

showing severe foam cell-like structures. Immune cell infiltration was also a commonly detected feature 

observed throughout the different plaques. Less commonly observed were IPH and IPV. Calcified plaque 

tissue was the least detected feature among plaques. 

3.4.3 Localisation of bacterial PGN  

PGN was detected in 18/20 (90%) CAP specimens. None of the LITA or negative control 

specimens showed PGN staining (Figure 3.10). The degree of positive staining was semi-

quantitatively measured by observing the amount of PGN localisation under a light 

microscope. Positive PGN staining was scored as absent (in no fields of view), light 

(sporadically observed on few fields of view), moderate (in most fields of view), heavy 

(diffuse staining throughout tissue) and expressed as a percentage of total number of 

samples. Heavy staining was most frequently observed in 45% of samples, followed by 

moderate (35%), light (10%) and no stain (10%) (Figure 3.1.1). Positive PGN staining 

appeared to localise to areas of foam cell accumulation (Figure 3.12) particularly in foam 

cells that accumulated round a necrotic core (image 2.13). Other areas of localisation 

observed were between folds of collagen (Figure 3.14) and around cholesterol clefts 

(Figure 3.15). 

A Spearman’s product-moment correlation coefficient for non-parametric testing of 

ordinal data was performed to assess the relationship between intensity of PGN staining 

and prevalence of foam cell-like structures. There was a significant correlation between 
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severity of PGN localisation and foam cell like structure presence within plaque tissue [r 

= 0.813, n = 20, p = <0.0001]. A similar correlation existed between the severity of PGN 

staining and immune cell infiltration [r =0.703, n = 20, p = <0.001]. When the relationship 

between intensity of PGN staining and presence of a lipid core was tested, no significant 

correlation was observed [r = 0.274, n = 20, p = 0.236]. No further correlations were 

observed between PGN staining or patient age and the remaining histological features. It 

must be noted that no antibody treatment was performed to assess foam cell or immune 

cell localisation. Furthermore, the sample population size tested for this investigation was 

small, so the possibility of committing type I or II errors is greater. Therefore, it is difficult 

to conclude true correlation of severity of PGN stain and any histological feature present 

in the plaque tissue tested here.   

  

 
Figure 3.10: Representative sections of LITA tissue stained with H&E (A – C), anti-PGN (D – F) and 

negative control sections (primary antibody omitted) (G – H). As the control tissue for atherosclerotic 

plaque samples used in this study, all LITA tissue sections were negative for PGN. 
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Figure 3.11: Bar graph to show the presence and degree of PGN localisation in CAP specimens was 

expressed as a percentage of total number of samples (n = 20). 
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Figure 3.12: Anti-PGN staining around a large lipid pool. Top row  shows carotid atherosclerotic plaque 

tissue stained with haematoxylin and eosin at x10 and x100 magnification, respectively (A & D). A large 

lipid pool was observed as an area of light pink with a necrotic core displaying several cholesterol cleft 

structures (red arrows) and foam cell structures (blue arrows). Heavy anti-PGN  loacalisation (red/brown 

stain) can clearly be seen around the perimeter of the lipid pool (B & D). Right  row (D, E and F) shows 

representitive tissue section inside black box.. Bottom row  (C & F) shows negative control tissue (protein 

block incubation without PGN IgG) for PGN. 
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Figure 3.13: Anti-PGN staining shows PGN localisation between fibrous tissue around a large lipid 

pool with necrotic core. Top panel (A & D) shows carotid atherosclerotic plaque tissue stained with 

haematoxylin and eosin at magnification X10 and X100 respectively. A large lipid pool was observed as 

an area of light pink with a necrotic core (N) displaying several cholesterol cleft structures (A). A layers 

of collogen was visible around the perimeter of the lipid pool (D). Middle row (E) shows representitive 

tissue section inside the black box of imabe B, which shows heavy anti-PGN localisation. Anti-PGN can 

clearly be seen within the collagen layers forming the perimeter of the lipid pool (E). The localisation of 

anti-PGN has revealed voids in the tissue that appear cirverical and have the characteristic shape and size 

of foam cells (FC) (E). Bottom panel (C &  I) shows negative control tissue (protein block incubation 

without PGN IgG) for PGN. 
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Figure 3.14: anti-PGN staining in fibrous collagen-like tissue. Highly fibrous plaque tissue stained 

with H&E had no lipid pool and few areas of accumulated foam cells observed sporadically throughout 

the tissue (A & B). Diffuse anti-PGN staining was observed, localised mostly within the folds of 

collagenous tissue layer (C & D). Negative control tissue was clear of any PGN localisation (E & F). 

 

 
Figure 2.15: anti-PGN staining within cholesterol region of plaque accompanied by cholesterol 

clefts. Atherosclerotic plaque tissue showing a partial section of a lipid pool, evidenced by numerous 

region cholesterol clefts (black arrows) (A, B & C). Representative sections show PGN localisation within 

the region of cholesterol (D, E & F). A small area of cholesterol mineralisation is apparent at the margin 

between collagen and cholesterol pool (H). At X100 PGN does not appear to be directly localised within 

cholesterol clefts, but resides within the tissue gaps between the clefts (F). The negative control sample 

prepared to assess the validity of the PGN staining method shows no sign of PGN localisation. 
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3.5 Discussion  

The aims of this chapter were two-fold. To first examine the morphological characteristics 

of carotid atherosclerotic plaque (CAP) tissue by employing routine histological methods. 

Features common to atherosclerotic plaque tissue provide information relating to the stage 

of plaque development, relative vulnerability and symptomatology. Second aim was to 

screen both CAP and LITA tissues for the presence and localisation of the bacterial cell 

wall component, PGN, using immunohistochemistry. Findings presented in this chapter 

identified key histopathological characteristics frequently observed in atherosclerotic 

plaque tissue from the carotid artery and highlighted some of the features synonymous 

with plaque destabilisation and possible symptomatology. Furthermore, the data obtained 

in this chapter provides evidence for the presence of bacterial PGN within CAP tissue; a 

potential indication of historical or recent bacteria/PGN infiltration from bodily sites 

distant from the carotid artery. Finally, relationships were observed between PGN 

localisation within CAP tissue and particular reoccurring histopathological features, (i.e. 

a necrotic core, ghost structures of foam cells and/or elevated infiltrating immune cells); 

though observations were only correlative and did not imply causality. 

In the present investigation, microscopic assessment of FFPE tissue sections were carried 

out using routine histology stains, haematoxylin and eosin and Masson’s trichrome to 

provide an initial observation of tissue composition and the representative structures of 

atherosclerotic plaque.    

3.5.1 Immune cell infiltration 

Immune cells such as T cells, dendritic cells, macrophages, and mast cells are recruited 

from the bloodstream into atherosclerotic lesions, and they are responsible for the 

progression and destabilisation of atherosclerotic plaques. Specific immune-staining for 

these cell types was not conducted when examining the CAP and LITA tissue sections for 

this chapter. However, collectively, immune cells infiltrates were easily identified as dark 

nuclei against the predominantly eosinophilic background of atherosclerotic plaque. 

Immune cell infiltrates were observed in all sections of CAP tissue specimens (40% high, 

55% moderate and 5% weak; figure 3.09). Small infiltrates were observed sporadically 

throughout the tissue, though as infiltrates became more organised they also appeared 

denser, particularly within the plaque shoulders, around lipid pools and within the fibrous 

cap. These observations are consistent with a number of investigations where IHC staining 
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for specific leukocytes show significant localisation within fibrous cap and plaque 

shoulder regions (Yilmaz et al. 2007; Ionita et al. 2010; de Jager et al. 2013a). Immune 

cell infiltrates, particularly containing macrophages that localise at the shoulders and cap, 

weaken the supportive structure of the fibrous plaque by secretion of metalloproteinase 

(Shah et al. 1995). These patterns of immune cell infiltrates are considered a feature of 

plaque vulnerability and a primary cause of intimal thickening and ultimately plaque 

rupture when associated with intra-plaque vessels endothelial chemokines (MCP-1) 

expression (Newby 2005; Yilmaz et al. 2007).  

3.5.2 Intra-plaque vessels 

Intra-plaque vessel formation was recorded within 50% of the atherosclerotic plaque 

samples studied for this chapter. Intra-plaque vessels (IPV) were dysmorphic, thin-walled 

vessels, often surrounded by dense infiltrates of nucleated cells and typically still 

containing red blood cells within the lumen space. Previous studies show positive anti-

intracellular adhesion molecule-1 (ICAM-1) localisation of IPV, which indicates active 

leukocyte recruitment signalling on the endothelium of these vessels (Mazzone et al. 

2006). This may explain the dense populations of nucleated cells observed in areas 

surrounding vessels; identified as T-lyphocytes and monocytes/macrophages by Mazzone 

et al. (2006).  

Based on the morphological appearance of observed IPV, vessels were classified into three 

distinct groups; namely “oval or regular”, “elongated” and “highly irregular” vessel. Oval 

and elongated vessels had varying vessel wall thickness and were frequently observed in 

clusters, whereas irregular vessels, while still retaining a vessel wall, had a jagged, 

“lightning bolt” morphology and were typically much larger but rarely formed in clusters. 

Neovascularisation within the fibrous cap was a common occurrence and a histological 

feature that has been proven to be a destabilising factor associated with acute 

thromboembolic events (McCarthy et al. 1999).  

The relationship between histological aspects of carotid plaque neovascularisation and 

cerebral symptoms has been previously described by McCarthy et al. (1999) who recorded 

neovessel morphologies synonymous with those presented in this chapter. McCarthy et al. 

(1999) established that 85% of symptomatic lesions contained vessels with an irregular 

morphology. These findings were in agreement with reports by Dunmore et al. (2007) who 

identified similar vessel morphologies when CAP tissue sections were immunostained for 
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endothelial cells, vascular smooth muscle cells macrophages and vascular endothelial 

growth factor. A significant correlative relationship between clinically-established 

ipsilateral cerebral symptoms and plaques comprising highly irregular vessel morphology; 

observed almost exclusively in symptomatic carotid plaques (Dunmore et al. 2007). Others 

have observed significantly higher neovessel densities in patients with clinical evidence of 

cerebral infarction (Faggioli et al. 2011). Furthermore, recent studies employing imaging 

systems such as optical coherence topography and contrast-enhanced ultrasound provide 

further weight to histological findings through direct comparison with IHC stains; 

confirming neovascularisation as a major vulnerability factor in plaques symptomology 

(Xiong, Y. Deng, et al. 2009; Tian et al. 2012) 

In light of this evidence, it is clear neovascularisation, in particular thin-walled irregular 

vessel morphology, is a prominent feature synonymous with plaque vulnerability and 

destabilisation. Presentation of such vessels within atherosclerotic plaques of the carotid 

artery can result in cerebral symptomatology, such as TIA and stroke (Park et al. 1998; 

Mofdi et al. 2001; Dunmore et al. 2007). Thus, when considering this feature alone, it 

could be proposed that 20% of the carotid plaques examined for this study were likely 

symptomatic. However, it must be noted, even though neovesels were easily identifiable; 

histopathological features identified in this chapter were only semi-quantitative. Without 

staining the CAP tissue for endothelial specific markers (e.g. CD31 or CD34), there is 

possibly a number of vessels within plaque specimens that may have escaped detection.  

3.5.3 Intraplaque haemorrhage 

As previously discussed intraplaque haemorrhage (IPV) are believed to facilitate entry of 

inflammatory and red blood cells (RBC) directly into the plaque, which can contribute to 

lipid deposition, plaque mass and inflammation (Jeney et al. 2014). Tissue matrix is limited 

within atherosclerotic plaque tissue and due to the lack of SMC structure within the walls 

of IPV, these vessels are inherently fragile (Dunmore et al. 2007). Subsequently, IPV are 

considered by some to be the cause of intra-plaque haemorrhaging (IPH) (Virmani et al. 

2005; Moreno et al. 2006; Herrmann et al. 2006; Teng et al. 2012). Recent studies 

strengthen this concept that intra-plaque neovascularisation and haemorrhaging are events 

that could play a major role in plaque progression and leucocyte infiltration, and may also 

serve as a prognostic marker of for the development of future thromboembolic events 
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(Kolodgie et al. 2003; Takaya et al. 2005; Michel et al. 2011; Teng et al. 2014; Kurata et 

al. 2014).  

In the present study, IPH was detected in 30% of plaque samples, particularly within the 

fibrous tissues of lipid-rich plaques. In addition, a significant positive correlation was 

observed between IPH and IPV (p <0.001). Mofdi et al. (2001) also established a strong 

correlation between IPV density, frequency of IPH and symptomatic carotid occlusive 

disease within 49% of advanced unstable plaques compared to 4.6% early plaques from 

the carotid artery. Moreno et al. (2004) used multiple antibodies to document increased 

neovessel density in lipid-rich and ruptured plaques when compared with fibro-calcific 

lesions. Multiple regression analysis identified microvessels at the base of the plaque as 

an independent correlate of plaque rupture, along with established variables such as a thin 

cap, inflammation, lipid area, and rupture of the internal elastic lamina (Moreno et al. 

2004). Other investigators have recently expanded on these findings showing a higher 

density of IPV located within particularly unstable features of haemorrhagic plaques 

compared to non-haemorrhagic plaques; typically, shoulder, fibrous cap, and necrotic core 

(Kurata et al. 2014). Furthermore, positive correlations between neovessel density and 

macrophages were established at each of the additional aforementioned sites (Kurata et al. 

2014). 

Although density of IPV positively correlated with IPH, the haemorrhagic tissue was 

rarely observed to be in close proximity to vessels (5%). This particular observation has 

been  seen previously by, Leen et al. (1990) who detected IPV in 87% of symptomatic 

plaques, yet only 18% of vessels were in close proximity to haemorrhages. Leen et al. 

(1990) established no difference in the frequency of haemorrhaging between symptomatic 

and asymptomatic plaques suggesting that haemorrhaging is not necessarily always a 

feature of plaque instability. This however, is in contrast with recent findings presented by 

other investigators who show clear physical interaction between IPV and haemorrhagic 

tissues (Le Dall et al. 2010; Michel et al. 2011).  

An important factor in establishing a correlative relationship between neovascularisation 

and IPHs would be to determine the relative age of the IPHs. Previous studies have been 

conducted, in which IPH are aged based on histological characteristics such as, 

fresh: (<1 week) intact erythrocytes, infiltrating polymorph nuclear and macrophage 

activity; recent: (1 – 6 weeks) haemorrhagic debris and macrophage engulfment of 

hemosiderin, and old: (>6 weeks)  amorphous material surrounded by fibrous tissue 
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(Lusby et al. 1982; Chu et al. 2004; Takaya et al. 2005). In the present investigation H&E 

staining allowed for the detection of intact erythrocytes and congealed haemorrhagic 

messes, while extra definition and fibrous collagen was observed by MTC stain. However, 

to fully elucidate the relationship between neovascularisation and IPH, a well-considered 

histological investigation for future analysis may employ additional stains specifically for 

hemosiderin, such as, Prussian-blue. One could also employ traditional vessel stain, van 

Gieson, or adopt a more specific IHC approach with antibodies CD105 (abundant in 

angiogenetic endothelial cells) and CD14 (macrophage LPS binding).  

3.5.4 Calcified plaques 

Calcified nodules were detected in 30% of plaques examined for this chapter. Of the 4 

plaques displaying calcified nodules, 50% comprised a large lipid core (>20% plaque 

mass) with fibrous caps. Only one of the calcified plaques displayed a weak density of IPV 

that were accompanied by IPH. All calcified plaques showed high density of foam cell 

ghost structures as well as moderate to high densities of infiltrating nucleated immune 

cells. These observations are consistent with the notion that calcification is a pathological 

features associated with advanced atherosclerotic lesions (Mody et al. 2003; Abedin et al. 

2004; Doherty et al. 2004). Due to the fact that calcified plaques were rarely detected, no 

correlative relationships were found between calcium and any other histological features; 

though, a near significant correlation was calculated with presence of fibrous cap (p = 

0.053).  

These observations are comparable with findings published by Vasuri et al. (2015) who 

observed a similar histopathology of calcified plaques. In contrast, calcified plaques 

examined by Vasuri et al. (2015) had less inflammatory infiltrate but the same incidence 

of IPH as non-calcified lesions; the opposite was observed here. In addition, the authors 

demonstrated that calcification, as a histological complication, was not correlated with 

clinical plaque instability; in fact, the incidence of TIA/stroke in patients with calcified 

plaques was lower than patients with non-calcified plaques, particularly for female 

patients, despite the same incidence of histological features. This latter observation is 

consistent with previously published findings that show patients with calcified plaques 

were 21 times less likely to be symptomatic than non-calcified plaques (Nandalur et al. 

2005).  
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These findings therefore, highlight a possible protective role for calcium deposition, even 

in the presence of multiple histological features of carotid plaque vulnerability. On the 

other hand, carotid artery calcification has also been shown to predict mortality and 

cardiovascular outcomes in certain older patients, independent of traditional CVD risk 

factors (T. Thompson et al. 2015). Moreover, calcium deposition in the coronary artery 

can also be used as a prognostic marker for the identification of those at an increased risk 

for death or MI in symptomatic patients with non-obstructive disease. Thus, calcium 

deposition is an ambivalent indicator of cardiovascular outcome that is highly dependent 

on the particular artery being assessed and patient age, while the severity of additional 

histological features seems to play less of a role.  

3.5.5 PGN localisation 

PGN was chosen as a marker for detection because it is a major component in the cell wall 

of most bacteria and therefore an abundant and easily targeted antigen. A chromogenic 

immunohistochemical (IHC) method was adopted for detection of PGN because it has 

several advantages over fluorescent reporters when examining atherosclerotic plaque. 

Most importantly, atherosclerotic plaque can be highly auto-fluorescent, which would 

require lengthy optimisation to establish optimal ‘antigen to auto-fluorescence’ signal 

ratio. The efficacy of any selected background quencher can only be assessed at the 

endpoint of an assay, which can make optimisation timely and costly. Fluorescent in-situ 

hybridisation (FISH) was considered, however aside from auto-fluorescence, FISH has 

additional challenges, such as long incubation times at elevated temperatures (>60˚C). At 

high temperature, specimens can detach from the slide causing loss of valuable sample or 

the buffer containing the probe can evaporate causing specimens to dry out. By adopting 

a chromogenic IHC procedure, minimal optimisation was required e.g. a simple limit of 

detection assay to establish optimal antibody concentration. The assay could then be 

performed at room temperature in <2 h and results could be observed with a readily 

available light microscope.  

PGN was detected in 90% of the CAP tissue specimens examined here. Dense localisation 

of PGN was predominantly observed in regions containing large accumulations of 

structures resembling foam cells. These findings are comparable with observations by 

Laman et al. (2002) who showed PGN localisation in 93.3%, 61.2% and 83.3% in carotid, 

coronary and femoral atherosclerotic plaque specimens, respectively. Laman et al. (2002) 
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examined atherosclerotic carotid and femoral arteries; from adventitia to intima using 

antibodies for PGN, collagen and macrophages. PGN was detected mainly intracellular 

and localised within the adventitia, media and atherosclerotic plaque tissue. Consistent 

with the finding of this chapter, Laman et al. (2002) reported frequent localisation of PGN 

in areas of plaque tissue occupied by macrophage foam cells (CD14). In the present 

investigation, the frequency of PGN localisation was positively correlated with the 

presences of the ghost structures of foam cells. PGN localised around the foam cell shape, 

but not within the void left by the cell, which often provided extra definition to the ghost 

structure of accumulated foam cells that would not ordinarily be seen.  

Frequent localisation with foam cell structures could possibly represent interaction 

between PGN and macrophages, possibly even clearance via PGN phagocytosis. However, 

this observation is beyond the limitations of the assay performed and the scope of this 

chapter. In order to establish the identification of cells frequently localised by PGN a more 

specific selection IHC markers would need to be incorporated. Though it must be noted, 

many of the features encountered in the plaques, including ghost structures of macrophage 

foam cells, have distinctive histopathology and were often identifiable. Many investigators 

have previously identified such features using routine H&E and MTC staining (Cai 2002; 

Salem et al. 2014). Moreover, where necessary and for clarity, textbook images were 

included alongside any results figures in this chapter to highlight similarities.  

Laman et al. (2002) also characterised the vulnerability of lesions in relation to the PGN 

presence and determined that lesions with significantly higher presence of PGN also 

displayed certain histological features of a vulnerable plaque phenotype. It was further 

established that the presence of a lipid core and patient age were positively correlated with 

intensity of PGN staining; though only deemed significant after the exclusion of two 

patients negative for PGN. These observations support the notion that atherosclerotic 

disease may be exacerbated by the presence of bacteria or their cell wall components. 

Through employing western blot analysis Laman et al. (2002) established upregulation of 

toll-like receptor-2 (TLR-2) in PGN positive coronary artery tissue suggesting PGN may 

represent an inflammatory stimulus causing intracellular signalling for the transcription of 

proinflammatory genes. Further to this, Nijhuis et al. (2007) demonstrated the ability of 

PGN to upregulate monocyte expression of L-selectin (CD62L) and β2-integrin-dependent 

binding to ICAM-1 under flow cytometry conditions. Monocyte L-selectin expression is a 

critical step for monocyte tethering and rolling on activated endothelial cells and is the 
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precursor to ICAM-1 attachment and chemotaxis. As upregulation of these membrane 

proteins can assist monocyte transmigration to the subendothelium, these findings further 

indicate that PGN localisation in the atherosclerotic lesion my stimulate proinflammatory 

cytokines for leukocyte recruitment and chemotaxis into the artery/lesion.  

Nijhuis et al. (2004) utilised enzyme linked immunosorbent assays (ELISA) to measure 

immunoglobulin levels against PGN in patients with atherosclerosis. The author 

established that patients hospitalised with atherosclerosis had lower IgM levels directed 

against PGN compared to control patients without clinically manifest cardiovascular 

disease. Interestingly, IgM levels against PGN decreased with increasing mean common 

carotid intimal thickening. The authors provide several explanations for this observation, 

most fitting of which proposes the decrease in IgM levels are the consequence of effective 

binding and removal of PGN from the lesion. This explanation does not seem plausible 

when considering the extensive localisation and frequency of PGN detection in the plaques 

examined for this chapter. In addition, PGN is located ubiquitously within all bodily 

mucosa, hence, it seems unlikely that a decrease in IgM level would be due to the effective 

clearance of PGN, even just from the lesion alone.  

Intimal-medial thickening (IMT) and pathological-IMT are features of early to 

intermediate atherosclerotic plaque development occurring via lipid deposition and 

associated inflammatory milieu within the intimal layer of the atherosclerotic vessel; as 

the plaque matures, IMT becomes more apparent (Finn et al. 2010). With this in mind, 

there is a possibility that as intimal thickening becomes more pronounced, access to the 

intimal layers becomes more restricted, thus, PGN located within the plaque becomes less 

accessible, therefore decreasing the overall IgM levels to PGN. However, this also fails to 

account for the ubiquitous nature of PGN, to which we are continuously exposed at all 

mucosa. 

3.6 Conclusion 

The aims of this chapter were two-fold. First, for identification of particular microscopic 

characteristic features that form the cellular composition and architecture of plaque tissue. 

The second aim of this chapter was to stain atherosclerotic plaque tissue sections with an 

antibody to detect the presence and localisation of PGN. With the exception of tissue 

thrombosis, all major histopathological features of atherosclerotic plaque were detected 

and presented in this chapter. Staining CAP tissue with H&E and MTC revealed a host of 
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plaque features such as cholesterol clefts that were typically observed in or around highly 

lipidous areas of the plaque. Areas of plaque not occupied by lipid features, were diffuse 

with fibrous collagen, which was most dense at regions of the plaque closest to the lumen. 

This region of the plaque is typically more fibrous due to a dynamic change in plaque 

structure to form a fibrous cap, especially when a large lipid pool was evident. Lesions 

became increasingly more saturated with lipid towards the inner core of lesions where lipid 

pools and cholesterol clefts formed.  

Although positive correlative relationships were established between frequencies of “foam 

cells and immune cell infiltrates”, “foam cells and lipid core” and “IPV and IPH”, these 

features were identified based only on their morphology within a simple H&E and MTC. 

Furthermore, power calculations for n revealed that at the very least, 41 samples would 

have needed to be tested to provide acceptable margin of error. It is therefore necessary to 

reserve judgement on the strength of these relationships until further studies have been 

conducted that target these features specifically. Nevertherless, Several features were 

consistently encountered that are consistent with plaque destabilisation and 

symptomatology, such as presence of IPV and occurrence of IPH and more infrequently, 

calcified nodules. The most variable plaque feature was IPV; observed either as typical 

oval shaped vessels or with a highly irregular jagged, lightning bolt-like morphology. Fifty 

percent of lesions displayed both forms of IPV.  When these findings are taken together, 

many of the plaques examined for this chapter comprised histological features commonly 

found in intermediate to advanced atherosclerotic lesion. 

The findings produced for the second part of this chapter demonstrate that the bacterial 

cell wall component, PGN, is present in atherosclerotic plaque of the carotid artery. Mostly 

moderate to high localisation of PGN was detected within almost all of the CAP tissue 

specimens examined here. Localisation was predominantly detected around structures that 

had the appearance of macrophage-derived foam cells, though additional plaque features 

were localised when staining was diffuse, such as between collagen fibrils, around lipid 

pools and around cholesterol clefts. The intensity PGN localisation was positively 

correlated with patient ages. This suggests either PGN clearance is less effective in elderly 

patients or that influx of PGN occurs temporally, possibly at a rate that cannot be 

efficiently cleared, consequently, PGN levels increase over time with increasing patient 

age. The latter hypothesis is consistent with the histopathological features observed within 

these plaques, which show features characteristic of intermediate to advanced 
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atherosclerotic plaque development. No localisation of PGN was observed in any of the 

healthy LITA control tissue specimens, which is consistent with the notion that only 

athero-prone vasculature is invaded by infective agents.
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4.1 Introduction 

There is currently a clear understanding that atherosclerosis is perpetuated by a chronic 

inflammatory response. However, the etiological factors of chronic inflammation within 

atherosclerotic plaque have not yet been fully elucidated. Bacterial and viral infections 

have been hypothesised to contribute to the inflammation of the vasculature, which leads 

to endothelial dysfunction, an early stage in the pathogenesis of atherosclerosis. Chronic 

infectious diseases, such as those affecting the oral cavity, are considered risk factors for 

the development of cardiovascular and cerebrovascular disease. Only a few species of 

pathogenic bacteria, predominantly Gram-negative bacteria, have an etiologic role in the 

pathogenesis of periodontitis. Three major pathogens mainly found in subgingival plaque 

that are responsible for the pathogenesis of periodontitis are the red complex bacteria 

(RCB), namely Porphyromonas gingivalis, Tannerella forsythia and Treponema 

denticola. This trio of “periodontopathogens” act synergistically to potentiate local and 

systemic host inflammatory mediators that lead to systematic breakdown of gingival tissue 

and alveolar bone resorption that characterises periodontitis (Kesavalu et al. 2007). 

There are two potential mechanisms that may explain the effect of periodontal disease on 

atherosclerosis. Firstly, in addition to a chronic localised immune response, periodontitis 

may actually raise inflammatory markers at a systemic level that could cause vascular 

inflammation. Secondly, oral infections may provide a major source of disseminating 

periodontal bacteria into the bloodstream that can initiate secondary infections within 

atherosclerosis-prone vessels (Elkaïm et al. 2008; Sonbol et al. 2009; Marcelino 2010; 

Mahendra & Mahendra 2013; Armingohar et al. 2014; S. Morita et al. 2014). The latter 

mechanism of hematogenous spreading of periodontal bacteria and their invasion of 

endothelial and smooth muscle cells is considered to be the primary model for the 

association between periodontal disease and cardiovascular disease (Giacona & 

Papapanou 2004; Chou et al. 2005; Roth et al. 2007; Sonbol et al. 2009). In order to provide 

evidence for this paradigm, it is first necessary to demonstrate the presence of periodontal 

bacteria within the atherosclerotic lesion. 

To establish identity of the taxa present in atherosclerotic plaques specimens it is 

necessary to utilise a phylogenetically informative marker that is able to differentiate 

between bacterial species at the genetic level (Paster et al. 2001). The 16S ribosomal 

RNA (rRNA) gene is one such marker employed to differentiate between inter and 

intraspecies variation at the genetic level. Containing nine “hypervariable regions”, 
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the 16S rRNA gene comprises considerable DNA sequence diversity between 

different species of bacteria (Van de Peer et al. 1996). The hypervariable regions are 

flanked by conserved sequences among most bacteria, permitting PCR amplification 

of target sequences using universal primers (Ghyselinck et al. 2013; Mori et al. 2014). 

A major advantage for using a phylogenetic marker for investigating plaque 

microbiota directly is the non-dependence on the targeted species to be of a viable 

status. Therefore, through targeting bacterial 16S rDNA directly in tissue, a broader 

and more sensitive detection and identification is achievable (Sarookhani et al. 2010). 

This is particularly advantageous for identification of uncultivatable species as the 

technique negates the need for culturing. Sequence analysis of the 16S rRNA gene has 

therefore been widely used as a tool for assessing bacterial diversity in a range of 

different tissues (Friedrich et al. 1999; Tunney & Patrick 1999; Hold & Pryde 2002; 

Kuklinsky‐Sobral 2004).  

In the previous chapter immunohistochemical staining was performed to demonstrate 

the localisation of bacterial wall component peptidoglycan within atherosclerotic 

plaque tissue. Many of the tissue sections showed diffuse staining for peptidoglycan 

with areas of dense co-localisation with sites of tissue inflammation. As a ubiquitous 

component of most bacteria the presence of peptidoglycan provides evidence that 

bacterial wall components are present within atherosclerotic tissue, though it cannot 

differentiate between particular species. Therefore, the main aim of the present 

investigation is to identify the microbial taxa present in CAP tissue using a 

combination of species-specific, genus-specific and universal DNA primer sets for 

amplification of the 16S rRNA gene.  

Many investigations to identify periodontal bacterial 16S rDNA in carotid plaque 

tissue have failed, despite demonstrating a high detection rate in periodontal pockets 

of the same patients (Cairo et al. 2004; Romano et al. 2007; Aimetti et al. 2007; 

Aquino et al. 2011). The probable cause for this is very likely experimental design, 

e.g. DNA extraction and/or detection method (i.e. nested or traditional PCR), as 

evidenced by multicentre trials (Apfalter et al. 2001). Nevertheless, despite numerous 

failures to detect periodontal bacteria in CAP tissue; many investigators that have 

successfully identified periodontal bacterial DNA in atherosclerotic plaque tissue 

(Farsak, Yildirir, Akyön, Pinar & Öç 2000; Ford et al. 2006; Kozarov et al. 2006; 

Armingohar et al. 2014; Fernandes et al. 2014; Morita et al. 2014). Aggregatibacter 
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actinomycetemcomitans is the most commonly detected periodontal 16S rDNA 

sequence in CAP tissue, with detection rate varying from 17 – 50% of carotid 

specimens (Ford et al. 2006; Kozarov et al. 2006; Morita et al. 2014) Similarly, when 

encountered, P. gingivalis and T. forsythia are often detected at a high percentage rate 

compared to other bacterial sequences; between 52 – 62.5% and 34 – 43.8%, 

respectively (Ford et al. 2006; Morita et al. 2014). In a recent study by Armingohar et 

al. 2014, a very high load and mean diversity of previously undetected bacterial 16S 

rDNA sequences were shown to be present in CAP tissue. Interestingly though, while 

70% of subgingival plaque specimens from patients with chronic periodontitis showed 

presence of red complex bacteria, only P. gingivalis was detected in one vascular 

biopsy (Armingohar et al. 2014). Moreover, the authors showed a large number of oral 

and non-orally derived bacterial 16S rDNA sequences in carotid atherosclerotic tissue 

that were not detected in subgingival plaque tissue. Therefore, species that are 

typically considered to have a commensal relationship with the host, can act as 

opportunistic pathogens by gaining entry to the blood stream and invading plaque 

tissue where they may contribute the induction of inflammatory milieu. The detection 

of commensal species in atherosclerotic tissue has become more frequent in recent 

years, possibly because previous investigators would dismiss their detection as 

contamination (Renko et al. 2008; Renko et al. 2013). 

When studying any inflammatory tissue for the purpose of identifying the latent bacterial 

species that may be present, it would be informative to understand the viability of the 

organisms present. Traditional nucleic acid methods such as standard endpoint PCR or 

qPCR are unable to provide such information. Conventional methods for detecting and 

isolating bacterial pathogens involve culturing the organism, which is then identified 

through microbiological metabolic testing or downstream molecular testing. The turnover 

of mRNA in living bacterial cells is rapid, with most of mRNA species having a half-life 

of only minutes. Studies measuring cell viability by calculating the number of copies of 

16S rRNA, as determined by reverse-transcription followed by qPCR during bacterial 

growth and antibiotic-induced cell death of Streptococcus spp. (Aellen et al. 2006). The 

authors demonstrated amplification of 16S rRNA that paralleled both bacterial growth and 

drug-induced killing compared with 16 rRNA gene amplification that showed an increase 

in product during cell growth but no decrease during drug-induced killing (Aellen et al. 

2006).  
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Another molecular method that can be employed to assess bacterial cell viability is to 

measure the expression bacterial housekeeping genes. Housekeeping genes encode for 

various constant cellular functions concerned with metabolism, enzyme activity and 

ribosomal trafficking, which are essential for cell viability and would not be regulated in 

dead cells. Previous studies using RT-PCR to measure the expression of housekeeping 

genes rpoH, rpoD, groEL, tufa, yjeE, yeaZ and ygiD (Sheridan et al. 1998; Handford et al. 

2009; Narusaka et al. 2011). The major shortfall in using mRNA copy number to assess 

cell viability is that it is not possible to determine the difference between dead vs viable 

bacteria present within the same tissue. This is even more important when tissue such as 

the atherosclerotic plaque or subgingival tissues are thought to contain bacteria in a viable 

but nonculturable (VBNC) state as well as dead. Propidium Mono Azide (PMA) is a 

photoreactive DNA-binding dye that preferentially binds to dsDNA and can be used to 

differentiate live from dead cells (Nocker et al. 2006). Dead cells lose their ability to 

maintain their plasma membranes; this provides an entry point for PMA to access to the 

“naked” dsDNA within the cytosol. When cells are then dosed with visible light inside a 

thermally stable environment, PMA covalently binds to the naked DNA rendering it 

unamplifiable. Live cells do not react to PMA due to having intact cell membranes, which 

prevents PMA-DNA contact. DNA is then extracted from the PMA-treated cells to provide 

template DNA for qPCR. The resulting qPCR signal from PMA-treated cell DNA shows 

a significant shift to a higher Ct value for dead cell DNA, thereby providing a clear 

distinction between live and dead cells (Nocker et al. 2006). 

Polonyi et al. (2013) assessed three molecular methods, qPCR, PMA-qPCR and RT-qPCR 

for detection of periodontal pathogens in the subgingival plaque from patients at different 

antibiotic treatment stages. The bacterial load was remarkably stable over prolonged 

periods when assessed by conventional qPCR, while both PMA intercalation as well as 

cDNA quantitation showed a decline according to decreasing numbers of viable bacteria 

after antibiotic treatment. PMA-qPCR has also be used to for selective detection of viable 

bacteria in periapical lesion necrotic pulp tissue (Kim et al. 2013). A significant difference 

in mean Ct  between the before and after dental tooth canal treatment tissue with 80% live 

cell and 20% dead cell of E. faecalis (Kim et al. 2013). The same molecular methodology 

was used to establish the viable bacterial populations involved in progression of dental 

caries by Klein et al. (2012), who infected the mouths of 20-day-old rat pups from 3 litters 

with actively growing in vitro biofilms of S. mutans and collected the in vivo subgingival 

plaque samples 3 weeks later. Biofilms were treated with PMA at the in vitro and in vivo 
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stages prior to DNA isolation/qPCR analysis and the same samples were analysed for 

CFU. The viable population of both S. mutans and total bacteria assessed by qPCR were 

positively correlated with the CFU data (p<0.001; r>0.8). However, the qPCR data showed 

higher bacterial cell counts, particularly for total bacteria (vs. CFU). Moreover, S. 

mutans proportion in the plaque-biofilm determined by qPCR analysis showed strong 

correlation with incidence of smooth-surface caries (p=0.0022, r=0.71). In parallel Klein 

et al. (2012) measure gene expression of S. mutans virulence genes, which demonstrates 

that measurements viable microbes and gene expression can be analysed simultaneously, 

providing a more inclusive assessment of the pathology of dental disease. Similar studies 

have been conducted pertaining to the cultivation and cocultivation of all inhabitant of 

subgingival biofilm (H. Thompson et al. 2015). 

Sánchez et al. (2014) used qPCR combined with PMA to selectively quantify the viable 

portion of P. gingivalis, A. actinomycetemcomitans, F. nucleatum and total bacteria in an 

in vitro biofilm model after antimicrobial treatment. Biofilms were exposed to isopropyl 

alcohol immersion over set time points to determine the optimal exposure time 

antimicrobial treatment. Bacterial cells were then treated with PMA prior to DNA isolation 

and qPCR analysis using specific primers and probes to target bacteria and determine cell 

viability. PMA-treated cells resulted in a significant total reduction of qPCR amplification 

of 4 log10. A. actinomycetemcomitans and F. nucleatum showed a viability reduction in the 

biofilm of 2 log10, while P. gingivalis viability reduced by 3 log10. No significant change 

in Ct values were observed for PMA-treated viable control cells (Sánchez et al. 2014). 

These results demonstrate the efficacy of PMA for differentiating viable and dead 

periodontal bacteria cells in an in vitro model post antimicrobial exposure.  

PMA treatment prior to DNA extraction for 16S rRNA gene analysis has previously been 

conducted on porcine heart valve replacement tissue expected of infective endocarditis 

(IE) (Bouchiat et al. 2015). The blood-culture-negative cardiac samples were suspected of 

IE with nonbuberculous mycobacteria (NTM). Bouchiat et al. (2015) found that Gram 

staining and conventional cultures remained negative, whereas Ziehl-Neelsen staining 

showed acid-fast bacilli in all samples. PCR using a pre-treatment with PMA 

provided evidence for the presence and viability of both Mycobacterium 

chelonae and Mycobacterium lentiflavum. While both species are rare infective agents of 

heart valve replacement tissue, this study highlights the advantage of using the highly 
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sensitive PMA PCR method for identification of viable strains in clinical tissue where 

traditional methodology has failed (Bouchiat et al. 2015). 

Given the diverse variety of bacterial 16S rDNA sequences previously detected in 

atherosclerotic plaque tissue, it is hypothesised here that additional previously 

undetected species will be identified in the CAP tissue samples examined for this 

investigation. Using direct PCR analysis of CAP tissue a unique profile of bacterial 16S 

rDNA sequences may be identified relating to pathogenic and commensal species. 

Through the identification of a unique profile of microbial inhabitants of carotid 

atherosclerotic tissue, a deeper understanding of how infection may contribute to the 

development of atherosclerosis may be acquire that can advance the field. Therefore, the 

present chapter of work is concerned with detection of bacterial 16S rDNA directly in CAP 

tissue samples. While oligonucleotide primers for universal amplification of most bacterial 

DNA were employed for detection, an emphasis was also placed on detecting RCB and 

other oral bacterial DNA, by using oligonucleotide primers for the detection of 

Bacteroidetes, Spirochetes, Streptococcus spp., Lactobacillus spp. and P. acnes. 

4.2 Aims 

A. To gain a better understanding of the wider bacterial taxa present in human 

atherosclerotic plaque tissue. 

B. Qualitatively determine the extent of latent 16S rDNA sequences of typically oral, 

periodontal and extra oral-dwelling bacteria species present in human carotid 

plaque and healthy LITA control tissue.  

i. Using universal, phylum specific and species specific primer sets to target 

amplification of the 16S rRNA gene. 

ii. To isolate the different DNA sequences amplified using the universal and 

phyla specific PCR by molecular cloning. 

iii. To establish the identity of cloned sequences using a BigDye Terminator 

Sanger’s sequencing technique. 
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4.3 Methods overview 

Portions of CAP and LITA tissue were lysed in ALT buffer in the presence of proteinase 

K. DNA was then extracted from the lysate using chloroform isoamyl-alcohol (25:24:1) 

and the crude extract was purified using a standard EtOH/acetate precipitation method 

(section 2.4.1).  To determine the presence of latent bacterial DNA in CAP tissue Purified 

nucleic acid was used as template for endpoint PCR (section 2.4.3). Oligonucleotide 

primers that target the 16S rRNA gene were utilised to amplify DNA from the domain 

“Bacteria”, (D88/E94), the phyla “Bacteroidetes” (D88/ F01) and “Spirochetes” 

(D88/C90) and the genera, Streptococcus spp. and Lactobacillus spp. (section 2.4.3).  

Species specific primer sets for P. gingivalis, T. forsythia, T. denticola and P. acnes were 

also used (section 2.4.3). Template DNA for positive PCR reactions consisted of pure 

stock DNA extracted from one or more of the target organisms. Negative PCR reactions 

contained all PCR reagents with template substituted for water (section 2.4.3). In separate 

PCR reactions HBG primers were used to amplify DNA from the human component of 

the tissue samples, which acted as an internal control sample for all samples (section 2.4.3). 

All PCR reactions were separated in 1.5% agarose gels and visualised following staining 

with EtBr (section 2.4.4). All PCR reactions for CAP and LITA were performed the same.  

Positive amplification using universal and phylum specific primers were further analysed 

using TOPO® TA cloning (section 2.4.5). Positive clones were confirmed by blue/white 

screening and PCR colony screens (section 2.4.6). Positive clones containing the correct 

insert were cultured overnight for miniprep vector DNA extraction the following day 

(section 2.4.7). The purified vector DNA was used as template for PCR using M13 primers 

that anneal up and downstream of the vector insert sequences. The resulting amplicon 

containing the 16S rDNA sequences were then purified and used as template for BigDye 

terminator sequencing PCR (section 2.4.8). Finally, the sequences were analysed using a 

genetic analyser and the resulting sequences were identified by comparing the sequence 

reads with sequences within the taxID:2 NCBI BLAST reference database (section 2.4.8). 
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Figure 4.01:  Flow diagram that details the materials & methods (including section numbers) used in this 

chapter of work to identify bacterial 16S rDNA sequences present in human internal atherosclerotic 

plaques. 

 

4.4 Results 

In the present study, human atherosclerotic plaque tissue from the carotid artery was 

investigated for the presence of bacterial 16S rDNA signatures using oligonucleotide 

primer sets that target the 16S rDNA gene. The following data relates to bacterial 16S 

rDNA amplified using species-specific, genus-specific primers or a universal degenerate 

primer set for amplification of most species in the domain bacteria. Overall, a total of 13 

of 21 (61.9%) CAP specimens contained bacterial 16S rDNA. No bacterial DNA (bDNA) 

was detected in any LITA control tissue samples for the primer sets used. Positive PCR 

controls consisted of 0.5 µg DNA of pure stock bDNA of the species or genus being 

detected (e.g. Bacteroidetes primer set = P. gingivalis or T. forsythia pure stock DNA for 

positive PCR control). Alongside routine positive and negative (template omitted for 

dH2O) PCR control reactions, an additional positive internal control was included, namely 

human β-globin gene (HBG). This enabled one to assess the quality and adequacy of the 

tissue and DNA extraction procedure, as well as the consistency of human genomic DNA 

amplification of each sample. HBG amplification was observed in all CAP (n = 21) tissue 

samples (figure 4.02). 
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4.4.1 Bacterial DNA amplification  using species-specific primer sets 

For this section of the study, DNA was extracted from 21 CAP specimens and 18 LITA 

control specimens and used to detect the presence of bacterial 16S rDNA by conventional 

PCR. Four sets of published species-specific primers, designed to target 16S rDNA 

permitted for amplification of P. gingivalis, T. forsythia T. denticola and P. acnes were 

used. Prior to DNA extraction tissue samples were divided into smaller manageable 

portions for more efficient tissue lysis. Therefore, a number of subsamples were generated 

that belong to one patient but were tested individually. When testing these subsamples, 

internal control gene HBG was consistently amplified in at least one or more of the sub-

samples from each patient, providing a strong PCR amplification band of approximately 

408 bp (Figure 4.02). Of the 21 plaque specimens examined, 9 (42.9%) showed positive 

amplification of bacterial 16S rDNA with species-specific primers. P. acnes DNA was the 

most frequently amplified DNA, appearing in 7 (33.3%) of 21 CAP samples (Figure 4.03). 

P. gingivalis was detected in 5 (23.8%) of 21 CAP samples (Figure 4.04). T. forsythia 

DNA was detected in 3 (14.3%) of plaque samples (Figure 4.05), whereas none of the 

plaques showed amplification of T. denticola DNA (Figure 4.06). Likewise, all LITA 

control tissue samples showed no presence of amplifiable bacterial 16S rDNA for any of 

the species-specific primers used in this study. It is notable that when species-specific 

primers were used, 5 (23.8%) of 21 CAP samples amplified DNA from more than one 

species and one of these samples contained three 16S rDNA signatures (Table 4.01). All 

CAP samples that showed 16S rDNA signatures also amplified HBG in separate reactions. 

 
Figure 4.02: Gel electropherogram shows amplification of the internal control, HBG. By inclusion of a 

positive internal control reaction that targets a ubiquitously present human component of the test tissue, 

one can control for the quality and adequacy of the test tissue, the efficiency of the DNA extraction and 

the reliability of the PCR assay. Left lane comprises a 1 Kb molecular weight marker showing increments 

of 100 bp. Samples 1 – 20 represent the 408 bp PCR product for human β-globin amplification. Included 

is a PCR positive THP-1 cell DNA (+) and negative PCR control (-). 
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Figure 4.03: Agarose gel electropherograms (2%) for the detection of P. acnes 16S rDNA in CAP tissue. 

Positive amplification of P. acnes 16S rDNA (~131 bp) was observed for samples 1, 3, 6, 9, 11, 13 & 16 

(A & B). The remaining CAP samples 2, 4, 5, 7, 8, 10, 12, 14, 15 & 17 – 21 (A & B) showed no positive 

amplification of bacterial DNA. None of the LITA control tissue samples 1 – 18 showed positive P. acnes 

16 rDNA (C & D). Farthest left lanes contain a 1Kb molecular weight marker. The farthest right lanes 

contain PCR positive (+) and PCR negative (-) reactions.  
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Figure 4.04: Agarose gel electropherograms (2%) for the detection of P. gingivalis 16S rDNA in CAP 

tissue and LITA tissue specimens (C & D). Positive amplification of P. gingivalis 16S rDNA (404 bp 

product size) was observed in CAP tissue samples 3, 7, 9, 12 & 13 (A & B). No bacterial DNA was 

detected in the remaining CAP samples 1, 2, 4 -7, 9, 10, 11 and 14-21 (A & B). LITA control tissue 

DNA samples 1 – 18 were negative for P. gingivalis 16S rDNA amplification. Lane 1 (left) of each gel 

contains a 1 Kb molecular weight marker with increments of 100 bp. Farthest right lanes contain PCR 

positive (+) comprising 0.5 µg P. gingivalis stock DNA and negative (-) reactions.  
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Figure 4.05: Agarose gel electropherograms (2%) for the detection of T. forsythia 16S rDNA in CAP 

tissue (A & B) and LITA tissue specimens (C & D). Positive amplification of T. forsythia 16S rDNA 

(~640 bp product size) in CAP samples 6, 9 and 12 (A & B). The remaining CAP samples 1 – 5, 7, 8, 10 

– 11, 13 – 21 showed no positive amplification of bacterial DNA (A & B). Left lanes contain a 1Kb 

molecular weight marker with increments of 100 bp. The farthest right lanes comprise PCR positive (+) 

and negative (-) reactions.  
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Figure 4.06: Agarose gel electropherograms (2%) for the detection of T. denticola 16S rDNA. T. 

denticola 16S rDNA was not amplified in any of the CAP samples 1 – 21 (A & B) or LITA samples 1 – 

18 (C & D). The left lanes of each gel contain a 1Kb molecular weight marker with increments of 100 bp. 

The farthest right lanes contain a PCR positive (+) and negative (-) reaction.  

 

4.4.2 Bacterial DNA amplification  using genus-specific primer sets 

To broaden the scope of analysis, a universal primer set for the detection of most bacteria 

was included in the investigation; along with two genus-specific and two phylum-specific 

primers sets, namely, Streptococcus spp., Lactobacillus spp., Bacteroidetes and 

Spirochetes. Streptococcus spp. DNA was detected in just one plaque sample and 

amplification was extremely weak (Figure 4.07). None of the plaque samples showed 

amplification of Lactobacillus DNA, yet the positive PCR control reaction was amplified 

(Figure 4.08). Likewise, there was no amplification of Spirochete 16S rDNA for any of 
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the CAP samples tested. The most frequently detected genus was Bacteroidetes, which 

was amplified in 5 (23.8%) out of 21 plaque samples (Figure 4.09). Bacterial 16S rDNA 

was successfully amplified using the universal primer set (D88/E94) for 4 (19%) of 21 

CAP samples (figure 4.10). Overall, bacterial 16S rDNA was detected in 9 (42.9%) of 

plaques samples using the universal and genus specific primer sets. Table 4.01 lists all 

CAP samples with positive bacterial 16S rDNA amplification for universal, genus-specific 

and species-specific primers sets. 

 

 

 
 

 
 

 
 
Figure 4.07: Agarose gel electropherograms (2%) for the detection of Streptococcus spp 16S rDNA in 

CAP samples (A & B) and LITA control samples (C & D). Each gel comprises a 1Kb molecular weight 

marker in the farthest left lane and a PCR positive (+) and negative (-) reaction to the farthest right of each 

gel. A very faint PCR band (white arrow) shows weak amplification of Streptococcus spp. for sample 3 

(A). The remaining CAP test samples (A & B) 1, & 4 -18 show no positive amplification of Streptococcus 

spp. 16S rDNA. All LITA control samples 1 – 18 (C & D) show no amplification of Streptococcus spp. 

16S rDNA.  
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Figure 4.08: Agarose gel electropherograms (2%) for the detection of Lactobacillus spp. 16S rDNA 

human CAP DNA samples 1 – 20 (A & B) and LITA control tissue 1 -18 (C & D). None of the test or 

control samples contained amplifiable Lactobacillus spp. 16S rDNA. Each gel comprises a 1Kb 

molecular weight marker in the farthest left lane. The farthest right lanes contain a PCR positive (+) and 

negative (-) reaction.  
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Figure 4.09: PCR amplification of Bacteroidetes 16S rDNA. Each gel represents one tissue sample from 

one patient. CAP specimen was divided into manageable sample sizes for DNA extraction (e.g. 8 sub-

samples for CAP sample #7 (B)).  Positive amplification of Bacteroidetes 16S rDNA was observed in 5 

separate CAP samples (A – E) (6, 7, 9, 12 and 13; table 4.01).  Positive bacterial DNA amplification 

occurred for more than one subsample (A - C & E) prior to pooling individual subsample reactions for 

molecular cloning. 
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Figure 4.10: PCR amplification of 16S rDNA using universal (d88/E94) primers for targeting most 

bacteria. Each gel represents on tissue sample from one patient. Therefore, positive amplification was 

observed for 4 separate CAP DNA samples 13 & 17 – 19 (Table 4.01).  Each CAP specimen was divided 

into manageable sample sizes for DNA extraction (e.g. 6 sub-samples for CAP sample #13 (A)). A 10Kb 

molecular weight marker was included in the first (left) lane. A PCR positive (+) and negative (-) reaction 

were ran in farthest right lanes. Positive bacterial DNA amplification was observed for more than one 

subsample. Subsamples were pooled for molecular cloning. 
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Table 4.01: A basic table plot showing the samples that exhibited amplifiable bacterial 16S rDNA. The 

table is split into four main columns, “patient”, “broad scope primers”, “specific primers” and “control” 

(Cont) groups. Patient column contains patient information i.e. age, sex and the loci of CAP tissue (LC/RC 

– left/right carotid artery). Ticked boxes represent positive amplification of bacterial 16S rDNA in relation 

to each primer set (listed across the second row) Uni: Universal primers; Bac - Bacteroidetes; Spiro - 

Spirochetes; Strep - Streptococcus; Lac - Lactobacillus; Pa - P. acne; Pg - P. gingivalis; Td - T. denticola 

Tf - T. forsythia, HBG – Human β-globin.  

 

 

 

4.4.2.1 Bacteria species identification using molecular cloning & DNA sequencing 

Ligation reactions for amplified bacterial 16S rDNA insertion produced hundreds of 

positive clones in all cases (figure 4.11). Internal positive control reactions consisted of a 

pure stock of bDNA extracted from species belonging to each genus, which were amplified 

as PCR positive reactions in the initial detection PCR. These initial positive reactions were 

carried through the entire cloning workflow in parallel with amplified test samples. 

Internal positive controls were recovered in all cases and were used as a final positive 

control to evaluate the colony screening PCR (figure 4.12). HBG was also amplified in all 

reactions (figure 4.01). The primer set for the phylum Spirochetes (D88/C90) showed no 

amplification of 16S rDNA in any of the CAP samples tested, though positive controls and 

HBG reactions were positive. Positive bacterial 16S rDNA sequences were identified 
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when universal, Bacteroidetes and Streptococcus primer sets were used, in 4 (19.0%), 5 

(23.8%) and 1 (4.7%) CAP samples, respectively. Of these 10 positive samples using 

broad scope detection primer, 213 clones were isolated and partial DNA sequences of 

between 700 – 800 bp were obtained in order to detect the predominant bacteria species 

present in CAP tissue. In all cases, the sequences reads generated were sufficiently large 

to establish species identity when compared with the NCBI nucleotide BLAST (BLASTn) 

reference library, when set to search against reference library bacteria, namely, “taxid:2”. 

Approximately 78.8% of the 160 clones had 100% sequence homology with NCBI 

reference strains. For the remaining clones, 30 (~18.8%)  and 4 (2.5%) clones showed 

99% and 97% sequence homology, respectively (table 4.02). Overall, eleven individual 

bacteria species were identified belonging to four phyla Actinobacteria, Bacteroidetes, 

Firmicutes and Proteobacteria. No cones relating to new species were detected in the CAP 

samples investigated here, however in the unlikely event that chimeric sequences were 

produced that lead to erroneous identification, sequences were analysed with chimera 

detection software Pintail v 1.1 (Ashelford et al. 2005). It is estimated that online 16S 

rDNA reference libraries contain between 1% - 15% chimeric sequences consisting of 

fused DNA copies generated as an artefact of PCR. In the present study, no chimeric 16S 

rDNA sequences were amplified. Figure 4.13 illustrates the data output for chimera 

detection software Pintail v 1.1, which compares evolutionary distances between a query 

and subject sequence over the length of the 16S rRNA gene. 
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Figure 4.11: Chemically competent E. coli (DH5α) transfected with TOPO® pCR®2.1 vector on selective 

LB agar in the presence of (X-gal). Approximately 150 colony clones transfected with a pCR®2.1 vector 

containing a ligated ~1.5 Kb 16S rDNA insert (white colony) or a pCR®2.1vector with no insert (blue 

colonies). Approximately, 15% of white colonies were picked for DNA sequencing. 

 

 

 

 
Figure 4.12: PCR colony screen analysis of a crude colony cell suspension using M13 primers to confirm 

the presence of a cloned DNA insert. M13 primers anneal to the vector 100 bp up and downstream of the 

1.5 Kb insert PCR insert; therefore observation of an amplified PCR product size of ~1.7 Kb provides 

confirmation of a successful ligation reaction and positive cloned reproduction of the 1.5 Kb 16S rDNA 

insert sequence. All 33 picked clones provide confirmation that the 16S rDNA was amplified from CAP 

tissue (sample #13), successfully ligated, cloned and amplified again. Positive (+) PCR reactions consisted 

of a pure stock bacterial DNA from each specific genus. These reactions acted as an internal positive 

control that were carried through the whole cloning workflow in parallel with positively amplified test 

samples, from the initial detection PCR through to sequence analysis.  
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Figure 4.13: Data output from chimera detection software Pintail v 1.1. Data relates to a sequence 

identified as P. acnes SK137 using universal primers compared to the reference sequence for the same 

strain in the NCBI-BLASTn taxID:2 database. The data output shows the mean of the observed % 

difference (A), which is 1.24%, and is roughly equivalent to evolutionary distance. The expected % 

differences (A) are calculated from this mean. The deviation from expected value (DE), summarises the 

degree of variation between observed and expected values, which is 0.89. Table (B) summarises the DE 

values obtained between type-strains for this level of difference. Therefore, based on previous type-strain 

comparisons, the probability of two non-anomalous sequences producing a DE of 0.89, when they differ 

by 1.24%, is estimated to be p >0.50. Thus, there was no sequence anomaly detected, suggesting a true 

match with neither sequence indicated as chimeric. 
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 16S rDNA sequence 

frequency 

 

 
 (n=213) 

 

Species ID Clones (n) % 
Identity 

(%) 
Samples (n) 

Propionibacterium acnes (RM20-2)† 51 23.9 100 4 

Tannerella forsythia  (RM26-7)‡ 42 19.7 100 4 

Staphylococcus epidermidis RM38#2-2)† 21 9.9 100 3 

Klebsiella pneumoniae  (RM20-5)† 13 11.5 99 2 

Mycobacterium tuberculosis (RM30-3)† 10 6.1 100 1 

Streptococcus sanguinis* (RM10-5)§ 8 3.8 99 1 

Streptococcus mitis* (RM10-7)§ 7 3.3 99 1 

Chryseobacterium haifense (RM38#1-8)† 4 1.9 97 1 

Lactobacillus spp  (RM37-8)† 2 0.5 100 1 

Flavobacterium bacterium (RM17-5)‡ 1 0.5 99 1 

Chryseobacterium hominis (RM34-1)† 1 0.5 99 1 

Uncultured clones     

Streptococcus spp. clone (RM10-1)§ 9 4.2 99 KP294771.1 

Staphylococcus spp. clone (RM38#1-3)† 11 5.2 99 KP294710.1 

Propionibacterium spp. clone (RM20-1)† 29 13.6 99 KT275137.1 

Bacterium clone ET_G_3g01(RM20-8)† 4 1.9 84 JF113471.1 

Table 4.02: List of the bacterial taxa identified using universal, phyla (Bacteroidetes) and genus 

(Streptococcus) specific primer sets. Bacterial taxa underlined are listed among the human oral microbial 

taxa in Human Oral Microbiome Database (HOMD). Species were identified as the closest match when cross 

referenced with the nucleotide BLAST NCBI database. If a searches returned more than one species of the 

same genus with similar identity scores, then only genus was listed (e.g. Lactobacillus spp.). Identified NCBI 

species strain designations are omitted and the identifying numbers designated in this study have been listed 

in parentheses. 

*Both S sanguinis and S. mitis were identified with a score of 100%, though similar scores were also given 

to uncultured clone sequences of Streptococcus spp. in the same search. 
† Universal primer set 
‡ Bacteroidetes primer set  
§ Streptococcus primer set 
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4.5 Discussion  

 

Here we provide further evidence that bDNA representing a unique profile of pathogenic 

oral and periodontal bacteria species can be detected in atherosclerotic plaque tissue from 

the carotid artery. Data presented here indicates the occurrence of bacterial 16S rDNA in 

57.14% of CAP samples studied. Previous studies show bDNA detection rates from as low 

as 13% up to 90% of atherosclerotic plaques from patients with periodontal disease 

(Gaetti-Jardim 2009; Aquino & Lima 2011). A possible reason for such a broad spread of 

detection, may be due, in part, to the methodology adopted for detection (Figuero et al. 

2011). Here we demonstrate the presence of oral bDNA in the CAP tissue of patients with 

unknown periodontal status. However, studies with similar design as the present 

investigation have shown that even atherosclerotic plaques taken from patients without 

periodontal disease; up to 95% of samples contain bacterial 16S rDNA sequences of oral 

and periodontal origin (Armingohar et al. 2014).  

Using species specific primers P. gingivalis was the predominant periodontal DNA 

amplified here (23.8%), followed by T. forsythia (14.3%), then 6 bacterial species were 

identified (table 4.02) that are listed among the human oral microbial taxa in the Human 

Oral Microbiome Database (HOMD) (Chen et al. 2010). The detection rates for P. 

gingivalis and T. forsythia are in agreement with those demonstrated by other 

investigators, (Figuero et al. 2011; S. Morita et al. 2014). Pucar & Milasin (2007) 

demonstrated the presence of 16S rDNA for P. gingivalis and T. forsythia in coronary 

atherosclerotic plaques. However, detected rates were over twice that observed here in the 

present investigation. As with the current investigation Pucar & Milasin (2007) also 

reported no amplification of periodontal DNA in human LITA control samples, although 

they did report positive amplification of C. pneumonia and CMV DNA in LITA samples. 

Given that the LITA is a vessel that is rarely affected by atherosclerosis, the presence of 

C. pneumoniae and CMV, but absence of periodontal bacterial DNA gives further weight 

to the hypothesis that periodontal bacteria are associated with the development and 

progression of atherosclerosis. Several studies performed using species-specific primer 

sets have reported the presence of C. pneumoniae in samples of atherosclerotic plaque 

(Ramirez 1996; Kuo et al. 1997). In the present study, detection of C. pneumonia would 

only have been possible with the universal primer set. Although the samples examined 

here were negative for C. pneumonia, or other more widely suspected atherogenic species 

by universal, this does not necessarily mean that the species observed here are more 
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common inhabitants of atherosclerotic plaque. However, the presence of both commensal 

and pathogenic bacteria in atherosclerotic plaques suggests that it is unlikely that a single 

microbe could act as the causative agent behind atherogenesis or plaque rupture. 

When evaluating the frequency of 10 periodontal bacteria species in carotid plaques of two 

groups using qPCR, Kozarov et al. (2006) demonstrated a significantly lower frequency 

of all 10 species in “young” compared to “elderly” patients. While study designs were 

different, it is interesting to note that mean age of patients included in the present 

investigation were ~3 years higher than the “elderly” group studied by Kozarov et al. 

(2006), yet the detection rates of P. gingivalis and T. forsythia DNA in the present 

investigation were closer to group “young” observed by Kozarov et al. (2006). This may 

be indicative of an overall better oral health of the older patients studied here, especially 

when considering only one out of nine of the “elderly” patients studied by Kozarov et al. 

(2006) had full dentition.  However, the periodontal status of the patients included in this 

study was unknown; therefore it is difficult to make this distinction. However, it must be 

noted that T. forsythia DNA was amplified in only one patients sample when using species 

specific primers, yet T. forsythia clones were detected in all four samples amplified with 

Bacteroidetes primers, which raised the overall detection of T. forsythia to 4/21 (19%). 

This was more comparable with Kozarov et al. (2006) “elderly” group, where T. forsythia 

was observed in 22.2% of samples. Furthermore, 42 out of 213 clones (19.7%) were T. 

forsythia clones (Table 4.02). Therefore, while inter-sample detection of T. forsythia was 

fairly low the frequency of T. forsythia within samples was high compared to the frequency 

of other species. 

These findings are in contrast to data presented in a recent study by Fernandes et al. (2014), 

who recorded high detection rates of putative periodontal bacterial16S rDNA in oral 

samples, even in edentulous patients, yet P. gingivalis and T. denticola were not detected 

in carotid plaques (Fernandes et al. 2014). These  findings are in agreement with a number 

of  previous investigation where patients displaying severe to extensive periodontal disease 

are completely free from the presence of periodontal bacteria DNA in carotid, coronary 

and femoral atherosclerotic plaques, despite high prevalence of periodontal bacterial DNA 

in subgingival plaque and/or periodontal pockets (Cairo et al. 2004; Aimetti et al. 2007; 

Romano et al. 2007; Aquino & Lima 2011). 

T. denticola was the only RCB not detected here, however, this observation does not 

appear to be uncommon. While T. denticola DNA has been shown to be present in aortic 
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and coronary plaque tissue and thrombi, often it is the least detected species in similar 

investigations (Okuda et al. 2001; Ishihara et al. 2004; Mahendra et al. 2010; Mahendra & 

Mahendra 2013). T. denticola  has been detected in carotid plaque using fluorescent in situ 

hybridization (FISH); however this was only shown for one case study specimen (Cavrini 

2005). Furthermore, efforts to amplify T. denticola DNA from carotid plaque tissue are 

often unsuccessful (Fernandes et al. 2014; S. Morita et al. 2014). There are over 50 

individual investigations assessing the dissemination of oral bacteria into the blood 

following various categories of endodontic treatment; however, there has not yet been data 

describing the dissemination of oral Spirochetes from the mouth in experimental human 

odontogenic bacteraemias (Parahitiyawa et al. 2009). As treponemes are abundant in the 

oral cavity (Sutter 1984; Aas et al. 2005), in healthy and diseased oral tissue (Paster et al. 

2001), the absence of T. denticola DNA in the carotid specimens examined here provides 

further credence to the notion that T. denticola may have poor invasive capability 

compared to other RCB. Coupled with the fact that no spirochete DNA was amplified at 

all in this study with specific or genus primers, the aforementioned notion may also be true 

for other treponemes. These findings would therefore suggest that with regards to the 

carotid artery, T. denticola does not pose the same risk as P. gingivalis and T. forsythia 

with regards to the potential inflammatory burden on carotid atherosclerosis.  

In the present investigation a universal primer set was used for detection of the domain 

Bacteria. Three distinct phyla were detected when using the universal primer set, namely, 

Actinobacteria, Firmicutes and Proteobacteria. In studies where equivalent methodologies 

were adopted, a high bacterial diversity of over >80 different species were recorded in 

atherosclerotic plaques from coronary and abdominal aortic aneurysm (Ott et al. 2006; 

Silva et al. 2006; Calandrini & Ribeiro 2014; Armingohar et al. 2014). In the present 

investigation a collection of bacterial 16S rDNA sequences previously undetected in 

carotid atherosclerotic plaque tissue, were amplified in the present study; namely S. mitis  

and S. sanguinis, which were detected in 7 (3.3%) and 8 (3.8%) out of 213 clones. 

However, while the Streptococcus primer set sequences showed 99% identity match with 

BLAST reference sequences for S. mitis and S. sanguinis, the same identity scores were 

observed for numerous unculturable Streptococcus clone sequences. As there is significant 

genetic homogeneity within the 16S rRNA gene of Mitis group bacteria (MGB) with only 

one base pair differentiating S. mitis and S. sanguinis; the 16S rRNA gene alone is not 

substantially discriminative to definitively confirm the presence of either species in the 

CAP samples examined here. To fully differentiate between MGB at the genetic level, a 
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selection of more discriminative markers are needed, typically enzyme or protein-

encoding housekeeping genes such as, manganese-dependent superoxide dismutase gene 

(sodA), β-subunit of RNA polymerase (rpoB), histone-like protein A (hlpA), glutamate 

dehydrogenase (gdh) or D-alanine:D-alanine ligases  (ddl) (Garnier et al. 1997; Drancourt 

et al. 2004; Hoshino et al. 2005; Ferrandiz et al. 2011). PCR-denaturing gradient gel 

electrophoresis (DGGE) is a common technique used in microbial ecology that can be used 

to different between DNA sequences of different species that have high genetic 

homogeneity. The technique is used for separating DNA PCR fragments according to their 

mobility through agarose gel of increasing denaturing concentration and can theoretically 

differentiate to a single nucleotide (Buchan et al. 2001).  

Ott et al. (2006) demonstrated that Streptococcus was predominant genus detected in 

coronary plaques tissue by excising selected bands from DGGE gels to be reamplified, 

cloned and sequenced. However, out of seven different Streptococcus species identified 

by the author, none were S. mitis or S. sanguinis. Armingohar (2014) examined biopsies 

of femoral and abdominal aortic aneurysms and identified S. sanguinis; however, because 

Armingohar (2014), combined all their vascular samples it is therefore difficult to 

determine whether S. sanguinis was identified in plaque tissue or aortic aneurysms. To the 

best of our knowledge, this is the first time S. mitis has been positively identified in carotid 

atherosclerotic plaque tissue. S. sanguinis has been detected in carotid plaque tissue, 

though this is the first time this species has been detected by PCR and not IHC. As Viridans 

Streprococci these species have been implicated in infectious complications including 

bacteraemia and infective endocarditis and have been shown to evade host detection 

through expression of surface proteins (C. Morita et al. 2014). More importantly, Viridans 

are able induce foam cell formation and cell death in macrophage in vitro through, 

production of reactive oxygen species (Okahashi et al. 2011) Therefore, the findings 

presented here give additional credence to the hypothesis that oral commensal bacteria can 

exploit opportunities to enter the blood stream and may contribute to the pathogenesis of 

atherosclerosis, through raising of inflammatory milieu in the affected vessel. 

 

Mycobacterium tuberculosis RM30-3 16S rDNA was detected in 10 (6.1%) of the 213 

clones from one of the carotid plaque samples amplified with the universal primer set. 

Although M. tuberculosis was only detected in one specimen, the presence of M. 

tuberculosis potentially has very serious implication, particularly for carotid 

atherosclerosis. In a three-year study, individuals with tuberculosis were found to be at an 
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elevated risk of having a thromboembolic stroke (Sheu et al. 2010). While M. tuberculosis 

is hitherto undetected in atherosclerotic plaque; this organism has been detected in 

pericardial fluid of patients with pericardial effusion as a result of pericarditis; thus 

highlighting the organism ability to invade and infect cardiac tissue (Levy et al. 2006). In 

addition, high levels of mycobacterial heat shock protein (HSP) 65 and the Mycobacterial 

cell wall phospholipid, phosphatidylinositol, have been detected in sera of atherosclerotic 

patients (Rota & Rota 2005). Moreover, Mycobacterial HSP65 and  phosphatidylinositol 

have been studied at length as major atherogenic factors in the progression of 

atherosclerosis (Rota & Rota 2005). The findings presented here in the present 

investigation provide the first evidence for the identification of M. tuberculosis (H37Rv) 

in atherosclerotic plaque tissue. These findings therefore highlight the notion that bacteria 

from other bodily niches, extra to the oral cavity, may also play an equally damaging role 

in the progression of vascular inflammation and plaque progression. Given the elevated 

risk of thromboembolic stroke in patients with tuberculosis infection, it would appear M. 

tuberculosis may have particular negative outcome when infecting the carotid artery. It 

would therefore be informative to establish the extent of to which M. tuberculosis may 

accelerate plaque formation in vivo or its ability to induce expression of genes known to 

play a role in atherogenesis or plaque rupture. 

T. forsythia was the most frequently detected clone when the Bacteroidetes-specific 

primers were used. Other bacteroidetes species detected here, included two species from 

the genus Chryseobacterium, namely, C. haifense and C. hominis. Little is known about 

these strains from a clinical perspective as they are relatively newly designated members 

of the genus Chryseobacterium (Hantsis-Zacharov & Halpern 2007; Vaneechoutte et al. 

2007). C. haifense is typically a non-human microbe that has been isolated from raw milk 

(Hantsis-Zacharov & Halpern 2007). Neither of these species have been identified in 

atherosclerotic plaque tissue previously. It is difficult to elucidate the origin and therefore 

the mode of entry for these species took to enter the blood stream and the plaque tissue. It 

is possible C. haifense and C. hominis were nosocomial infections, or they may have been 

present in the intestine or became systemic through the gut bacteraemias. Needless to say, 

the presence of DNA from these species and the other species identified in the 

atherosclerotic plaque samples here, demonstrates a diverse microbiota that may cooperate 

as a collective bacterial load to raise inflammatory milieu within the atherosclerotic lesion 

contributing to the pathogenesis of atherosclerosis. 
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Armingohar (2014) identified 16S rDNA sequences from a diverse group of 19 bacterial 

species in subgingival plaques of patients with chronic periodontitis (CP), including RCB. 

However, when examining the microbiota of vascular samples from patients with CP, only 

3/19 species were synonymous with subgingival plaque. Interestingly, the vascular 

microbiota identified in patients with CP was more comparable with the species identified 

in the present investigation and less like the taxa detected in vascular samples from patients 

without CP. The comparable species (in order of frequency) were P. acnes, S. epidermidis, 

K. pneumonia, P. gingivalis, S. sanguinis and Flavobacterium spp. This is particularly 

notable, because even though the species identified here were comparable with the CP 

group, Armingohar (2014) showed substantial difference between oral and vascular 

microbiota. This highlights one of two possibilities. First, the species in vascular tissue 

derive from previous inhabitants of the mouth (i.e. historical oral infections) and have 

therefore been in the vascular tissue for long periods. Secondly, the species present in 

vascular samples are derived from more than one niche, including the oral cavity. Both are 

equally as plausible scenarios for the species identified in the carotid tissue examines here. 

In order to investigate these paradigms, a study whereby oral microbiota is identified in 

the months/years leading up to vascular surgery may be helpful. Equally, more studies that 

include the identification of microbiota from other bodily niches, such as the gut, may 

provide additional information regarding the source of species identified in atherosclerotic 

plaque tissue (Koren et al. 2011). 

The most abundantly detected DNA was from phylum Actinobacteria, exclusively 

Propionibacterium acnes, which was the most frequently detectable 16S rDNA in CAP 

tissue when species-specific (33.3%) and universal (19.05%) primers were used. All 4 

universally amplified products contained P. acnes, which represented 51/160 (31.9%) 

clones. Unusually, P. acnes detection with both universal and species-specific primers sets 

was observed for the same patient sample only once. A possible cause of inconsistent P. 

acnes amplification between primer sets could be due a reduction in specificity that can be 

encountered with degenerate primer sets (Jabado et al. 2006). Degenerate primer will have 

few species that precisely match the template. In early rounds of PCR, the more 

homologous primers will likely be incorporated into products. The efficiency with which 

amplification proceeds in subsequent cycles is dependent on the similarity of the remaining 

primers left in the pool earlier rounds of target amplifications. Hence, primers with the 

least number of degenerate positions have the greatest likelihood of success (Jabado et al. 

2006). When the D88 and E94 primers are combined, they have a moderate degeneracy of 
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8, which may, in part, explain the disparity in amplifiable P. acnes between the degenerate 

primers compared to species specific primers. 

P. acnes was detected in all 4 universal amplified products using the universal (D88/E94) 

primers and was the most frequently detected clone; though, intra-sample detection of P. 

acnes varied from 10% to 80% of clones/plate, which highlights one of the limitations of 

conventional PCR with species-specific primers as a qualitative assay. P. acnes has been 

shown to be a capable opportunistic pathogen though its inflammatory role in chronic 

infection, including, orthopaedic and cardiac prostheses, endophthalmitis and infective 

endocarditis (Aubin et al. 2014). Genetic elements specific to each lineage of P. acnes 

have been established, which highlight the differences of P. acnes in functioning as a 

commensal of the skin and as a pathogen in the aetiology of diseases (Tomida et al. 2013). 

As a pathogen P. acnes has numerous putative virulence factors that can induce tissue 

damage though haemolysis, pore-formation, adhesion to multiple surfaces for biofilm 

formation and cell aggregation, as well as induction of chemotactic and inflammatory 

pathways (Valanne et al. 2005; Falcocchio et al. 2006; Holland et al. 2010; Mak et al. 

2013). It would therefore indicate that P. acnes is most pathogenic when in tissues distant 

from its typical commensal niche. Therefore, the predominant presence of P. acnes DNA 

in the carotid plaque samples examined here suggests that P. acnes may not simply just be 

a benign commensal inhabitant of atherosclerotic plaque but may actually be an extremely 

potent inducer of inflammation that could play a major role in the pathogenesis of 

atherosclerosis. As the most prevalent species detected here, it is critical to elucidate the 

potential etiological role P. acnes may play in atherogenesis.  

The P. acnes 16S rDNA sequence detected in the CAP samples examined here was most 

closely related to the NCBI reference strains SK137 (BLASTn max ID 100%), which 

based on previous antibody testing and phylogenetic evaluation of the recA gene and 

hemolysin/cytotoxin gene (tly), belongs to the lineage type IA (McDowell et al. 2005). 

Interestingly, this particular lineage of P. acnes falls into the subgroup most frequently 

isolated from dental infections, acne lesions and failed prosthetic implants (McDowell et 

al. 2005). Up to 9% of the healthy dental microbiome is represented by P. acnes strains 

and studies to identify obligate anaerobes in carious dentin indicated that ~20% of all 

isolates were P. acnes (Hoshino 1985; Ando & Hoshino 1990). Using anaerobic culturing 

techniques, Fujii et al. (2009) demonstrated that P. acnes was the predominant cultivatable 

species isolated from periapical lesions of patients with chronic periodontal infections 

following identification using checkerboard DNA-DNA hybridisation. Moreover, P. acnes 
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has been shown to be the major detectable species recovered from root canal and blood 

samples taken during and after endodontic treatment (Debelian et al. 1992). Heller et al. 

(2012) examined subgingival plaque of patients with chronic periodontitis (CP) and 

generalised aggressive periodontitis (GAgP) to assess microbial composition using 

checkerboard DNA-DNA hybridisation. The author found that while there were no 

significant differences in P. acnes frequency between the two groups, when periodontal 

sites with a probing depth of ≥4 mm were examined P. acnes was significantly more 

prevalent in subgingival plaques of patients with GAgP compared to CP. 

P. acnes has the ability to both systemically invade its host and play a major role as a 

primary pathogen in several pathologies (Perry & Lambert 2011; Tomida et al. 2013). In 

light of this evidence and the major presence of a predominantly oral strain of P. acnes the 

carotid atherosclerotic plaque samples examined here, the hypothesis for a potential 

relationship between oral pathogens and the development atherosclerosis is still 

maintained.  

 

4.6 Conclusion 

The aim of this chapter of work was to establish the presence of latent bDNA signatures 

present in CAP tissue by targeting the 16S rRNA gene. In this chapter of work a diverse 

collection of bacterial 16S rDNA sequences were identified in CAP tissue. The species 

identified here provide a unique profile of commensal and potential pathogenic inhabitants 

of atherosclerotic plaque tissue. While it was necessary to broaden the scope of this 

investigation by utilising both universal and phylum specific primer, the main aim was to 

establish the presence of RCB 16S rDNA in the CAP samples here so an oral origin or of 

the amplified signatures could be inferred. Both P. gingivalis and T. forsythia DNA were 

detected using specific primers and T. forsythia clones were detected in 3 further samples 

amplified using the Bacteroidetes primer set. After P. acnes, T. forsythia was the most 

frequently detected clone. However, T. denticola failed to amplify with both specific and 

Spirochetes primers. Although T. denticola DNA failed to amplify, it possible it was still 

present, either below the threshold of detectability or simply absent within the section of 

tissue that was processed for DNA analysis. Given the varied taxa detected in the plaque 

samples examined here, no particular source of the DNA signatures can be confirmed. 

Many of the genera detected, such as Staphylococcus spp., Klebisiella spp., Streptococcus 

spp., Lactobacillus spp. and Mycobacterium spp. can thrive in the oral cavity, though some 
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are also commonly detected in extra-oral niches. Thus, it is probable that the DNA detected 

in this study originated from multiple sources, such as the gut, lungs and oral cavity.  

P. acnes was by far the most abundantly detected species amplified with specific primers 

and also the most frequently detected clone amplified using the universal primers. P. acnes 

is a common skin-dwelling commensal so in previous studies it has often been dismissed 

as contamination; this notion that cannot absolutely be ignored here either. However, 

samples were handled with the topmost care to avoid contamination and clean PCR 

negative control reactions attest to the validity of these findings. While P. acnes is a 

recognised skin commensal, it is also the primary pathogen in numerous pathologies. In 

addition, particular genotypes of P. acnes may play a role in periodontal disease, which, 

along with the second most specific detected species, P. gingivalis cloned sequence and T. 

forsythia, may hint at a periodontal origin for some of the DNA detected in this chapter.  

These findings are not conclusive to propose a solid argument in support of a relationship 

between carotid atherosclerotic disease and periodontal disease. 
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5.1 Introduction 

In the preceding chapters, immunological and molecular techniques were implemented to 

demonstrate the presence of peptidoglycan and 16S rDNA signatures in carotid 

atherosclerotic plaque specimens. While 16S rDNA analysis is a valuable and rapid 

molecular tool for bacterial identification, this method tells us little about the viability of 

the detected organisms. In order to determine whether these previously observe signatures 

were generated by viable bacteria, it would be necessary to incubate tissue specimens 

within a bacteriological culture medium that can support the latent microorganisms 

contained within.  

Previous attempts to isolate and identify bacterial species present in atherosclerotic plaque 

have generally been unsuccessful, possibly due to the presence of unculturable species or 

through the adoption of a sub-optimal medium (Fiehn & Larsen 2005). To date, only a few 

viable periodontal bacteria species have been isolated from atherosclerotic plaque, 

typically P. gingivalis and A. actinomycetemcomitans (Kozarov et al. 2005; Padilla et al. 

2006; Rafferty, Jönsson, et al. 2011). Similarly, pathogenic bacteria originating from other 

bodily niches have been isolated from AP tissue. For examples, Chlamydia pneumonia, a 

respiratory gram-negative pathogen known to have a strong association with 

atherosclerotic disease, has frequently been isolated from atherosclerotic plaque tissue by 

a number of groups (Ramirez 1996; Jackson et al. 1997). Likewise, Gram-negative aerobic 

pathogens, such as Enterobacter hormaechei, found mainly in microbiome of the small 

and large intestine, have been cultured from AP tissue from the femoral artery (Rafferty et 

al. 2011). Other species that are generally considered to have a commensal relationship 

with its host, such as Propionibacterium acnes, can also operate as a capable pathogen, 

demonstrated by its etiological role as primary pathogen in multiple pathologies 

(Brüggemann 2005; Aubin et al. 2014). P. acnes is a member of the periodontal microbiota 

(Paster et al. 2001) and the most prevalent species detected in apical periodontal lesions 

and generalized aggressive periodontitis (Fujii et al. 2009; Heller et al. 2012). Moreover, 

P. acnes has been shown to be the most abundant species in both root canal and blood of 

patients undergoing root canal (Debelian et al. 1992). Furthermore, P. acnes, along with 

P. gingivalis and S. epidermidis, have each been isolated from CAP tissue taken from the 

same patient (Rafferty et al. 2011; Armingohar et al. 2014). 
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Given the variability of bacterial inhabitants of atherosclerotic plaque, it is becoming 

increasingly more unlikely that a single species will be implicated as the major 

“atherosclerosis bug”. In a recent review by Elkind 2010, it was suggested that if infection 

does play a primary role in the development of atherosclerosis, it is probably in a more 

cumulative and continuous fashion. The author proposed the concept that a collective 

“infectious burden” or “pathogen burden”, better explains the role that infections in 

aggregate may play in the development of atherosclerosis or clinical cardiovascular events. 

Thus, until we have identified all the species that may inhabit the atherosclerotic plaque 

tissue, we cannot truly understand the nature of “infection burden” and the impact it may 

have on the pathogenesis of atherosclerosis.  

When discussing the burden of proof regarding periodontal bacteria as a contributing 

factor in the development of atherosclerosis, Reyes & Herrera (2013) detailed the 7 

‘proofs’ that need to be met in order to provide a definitive answer for a causal relationship. 

To fulfil the third proof one must provide, “evidence of live periodontal bacteria in the 

affected site”. Commercially available culture media for broad species growth do not 

contain the correct components necessary to support the growth requirements of all 

species. This becomes problematic when the latent strains being targeted in the plaque 

tissue have vastly different growth requirements. It would not be good experimental 

practice to divide ones tissue specimens to culture in different media because there is no 

certainty one would culture each tissue segment with the correct culture medium. In light 

of this, the current study is initially concerned with the design of a simplified 

bacteriological culture medium that supports the growth of, but not limited to, periodontal 

red complex bacteria (RCB). Thus, the second and main aim of this chapter is to utilise the 

finalised medium to investigate the microbiota or “pathogen burden” of atherosclerotic 

plaque by isolating culturable strains for molecular identification. While a plethora of 

bacterial 16s rDNA signatures have been detected in atherosclerotic plaque tissue over the 

last 2 decades, only few species have been demonstrated to have the potential to multiply 

or invade the cells of the atherosclerotic lesion. Because the presence of viable bacteria 

increases the potential danger, the more we can identify the full range and extent of viable 

strains present, the greater our understanding of the impact of infection on the pathogenesis 

atherosclerosis. 
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5.2 Aims and method overview 

The development of a single liquid growth medium that could be used to culture viable 

bacteria present in CAP and LITA tissue was investigated. While the ultimate aim was to 

isolate and identify any viable bacteria species present in atherosclerotic plaque tissue, 

particular emphasis was placed on developing a liquid medium with the ability to support 

the growth of RCB (section 2.3.2). Three media known to support the growth of P. 

gingivalis 11834/W50, T. forsythia & T. denticola were used, namely BHI, TSB and 

TYGVS, respectively. Medium development was performed in two stages.  

Stage 1. Test the efficacy of BHI, TSB and TYGVS media (appendices A, B & C) 

to support the growth of all or more than one RCB species and establish a 

“base medium” that may be further developed (section 2.3.2.1).  

Stage 2. Further development of the “base medium” through a stepwise 

supplementation of specific growth reagents known to support the growth 

of any RCB species not satisfied in stage 1 assessment (section 2.3.2.2). 

To establish the significance of the bacterial growth (OD600) for media containing different 

concentrations of growth reagent supplements compared to control medium (stage 2), 

analysis of variance (ANOVA) was performed (section 2.7.2). If the ANOVA test 

indicated significant differences between OD600 values, data were tested further by 

performing a Levene’s test to assess the equality of sample variances between data (section 

2.7.2).  

The final medium was used for the culture and isolation of latent viable bacteria present 

in CAP and LITA tissue samples. Tissue was macerated and submerged in medium for 7 

– 10 days (section 2.3.3). When positive cultures were observed in liquid medium viable 

culture was spread across blood agar plates and incubated anaerobically (section 2.3.3). 

Colonies were picked and re-inoculated in fresh media to expand stock, then archived in 

Cryobank™ storage vials (section 2.3.4). DNA was extracted from the positive cultures 

(section 2.4.2) and PCR was performed using D88/E94 universal primer set (section 2.4.3). 

PCR product was then cloned (section 2.4.5) and sequenced (section 2.4.8) to determine 

its identity. 
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5.3 Results 

5.3.1 Growth characteristics of red complex bacteria 

Normal growth characteristics of each species in their relative medium were assessed to 

establish temporal growth patterns of liquid cultures using optical density at a wavelength 

of 600 nm (OD600) to measure liquid culture turbidity (Materials & Methods; section 

2.3.1.1). Bacteria were cultured over 192 h (9 days) and liquid cultures were transferred 

onto solid agar medium daily and incubated to calculate the quantity of colony forming 

unit (cfu)/ml (Materials & Methods; section 2.3.1.2). The occurrence and duration of each 

species lag, log, stationary and death phase were plotted on line graphs for OD600/ml and 

CFU/ml. Standard deviation was calculated and represented on line graphs as whiskers for 

each measurement. 

5.3.1.1 T. forsythia growth characteristics 

T. forsythia produced tiny off-white colonies that formed a circular and convex form. As 

colonies aged, they appeared to take on an orange-brown pigmentation from the blood agar 

and increased slightly in size, but never surpassed 1 mm (figure 5.01a). No haemolysis 

was observed. Staining showed that T. forsythia were gram-negative bacilli and were 

markedly pleomorphic, with size ranging from 0.5 µm to <5 µm long (figure 5.01b and c). 

When incubated in TSB, T. forsythia remained in lag phase for the longest time of all test 

species; taking approximately 3 days to generate exponential growth. T. forsythia showed 

the least, but fastest growth of all test species, with a doubling time (td) of 9.95 h and 

growth rate (rg) of 0.1 h-1.  The final maximum cell number for T. forsythia was 1.3 x 109
 

cells/ml which represented a maximum turbidity of OD600 1.381 (figure 5.02). OD600 

readings and cfu/ml calculations for T. forsythia proliferation were plotted as a semi-log 

regression plot and the equation for line of best fit showed good linear relationship (R2 = 

0.998). In doing so, a chart for the accurate conversion of OD600 readings to cell number 

(cells/ml) was generated (figure 5.03). From this chart it can be observed that the mean 

turbidity of a T. forsythia culture reaching an absorbance of 1 OD600 unit = ~9.6 x 108 

cells/ml. 
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Figure 5.01: T. forsythia colonies on blood agar.  Semi-translucent, dull-white T. forsythia colonies of 

~0.5 – 1 mm (A) diameter. Gram stain images shows that T. forsythia are gram-negative bacilli, which are 

highly pleomorphic throughout the X100 stain image (A) and  x 500 zoomed image (C). 

 

 

 

 

Figure 5.02: Growth curve representing the growth of T. forsythia in TSB liquid medium over 192 h (9 

days). Daily growth of T. forsythia was assessed by measuring the absorbance of TSB liquid medium 

and turbidity of T. forsythia cell suspension using OD600 (right y-axis). At the same time point aliquots 

of liquid culture were spread on agar medium and grown for the purposes of establishing the number of 

CFU/ml (left y-axis). The growth curve has a lag, log, stationary and cell death phase. Lag phase lasted 

approximately 72 h, at which point a rapid exponential growth occurred lasting 48 h. There was a sudden 

decline in CFU numbers after 132 h. OD600 measurement showed less decline. Whiskers at each time 

point represent the standard deviation calculated for three separate cultures per test species measured 

by OD600/ml (blue) and CFU/ml (black). 
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Figure 5.03: Shows the linear relationship between number (cfu/ml) vs OD600 during exponential growth of 

T. forsythia. Whiskers at each time point represent the standard deviation calculated for three separate 

cultures per test species measured by OD600/ml and CFU/ml. 

 

 

5.3.1.2 P. gingivalis (11834 & W50) growth characteristics 

Two strains of P. gingivalis (11834 and W50) were assessed. Both strains produced large 

shiny black pigmented colonies that were circular and convex in appearance (figure 5.04a). 

Colonies from both strains produced β-haemolysis on blood agar plates; however, the 

haemolysis produced by 11834 colonies was more diffuse compared to W50 colonies. 

Staining revealed that P. gingivalis were extremely small gram-negative coccobacilli 

(figure 5.04a and b). When inoculated into BHI broth, P. gingivalis 11834 showed a very 

brief lag phase, with exponential growth occurring after 48 h incubation. 11834 showed 

almost immediate exponential growth and a maximum cell number of 1.66 x 109 cells/ml 

with OD600 1.664 (figure 5.05). W50, provided very similar maximum cell numbers 1.58 

x 109 cells/ml and OD600 1.626 (figure 5.08). However, W50 remained in stationary phase 

for only ~48 h followed by a rapid death phase, whereas 11834 remained in stationary 

phase for ~ 12 h followed by moderate cell death. Doubling time for 11834 and W50 were 

td = 9.97 and td = 10.75, with rg = 0.100 and rg = 0.092, respectively. Again, good linear 

relationships were observed between OD600 measurements and cfu/ml calculations for both 

11834 (figure 5.06) and W50 (figure 5.09), giving lines of best fit equations of R2 0.992 

and R2 0.997, respectively. Semi-log regression plots for 11834 and W50 provided 
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excellent platforms for conversion of OD600 to cell/ml, where 1 OD600 unit = 9.5 x 108
 and 

9.0 x 108, respectively.  

 

 
Figure 5.04:  P. gingivalis 11834 grows on blood agar. P. gingivalis as black-pigmented colonies on blood 

agar that showed variation in colony size (A). P. gingivalis were Gram-negative small rods (coccobacillus) 

when viewed at x100 (B) and zoomed to x 500 (C). 

 

 

 
 

Figure 5.05: Growth curve representing the growth of P. gingivalis 11834 in BHI liquid medium over 192 

h (9 days). Daily growth of 11834 was assessed by measuring the turbidity of 11834 cell suspension using 

OD600 (right y-axis). Over the same time course, aliquots of liquid culture were spread on agar medium and 

grown for the purposes of establishing the number of CFU/ml (left y-axis). The growth curve shows lag, 

log, stationary and cell death phase for 11834. OD600 reading shows an almost immediate log growth for 

11834, whereas the presence of a lag is more prominent when cfu were counted. Log growth proper, occurs 

72 h post inoculation for both modes of measurement. Growth becomes stationary at approximately 96 h of 

incubation, at which point, cells 11834 begins to die. The maximum growth for 11834 was 2.9 x 109 cfu/ml. 

Whiskers represent standard deviation for OD600/ml (blue) and CFU/ml (black). Whiskers at each time point 

represent the standard deviation calculated for three separate cultures per test species measured by OD600/ml 

l (blue) and CFU/ml (black) 
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Figure 5.06: Shows the linear relationship between bacteria cell number (cfu/ml) vs OD600 during 

exponential growth of P. gingivalis 11834. Whiskers at each time point represent the standard deviation 

calculated for three separate cultures per test species measured by OD600/ml and CFU/ml. 

 

 

 
Figure 5.07: P. gingivalis W50 colonies on blood agar.W50 grows as black-pigmented colonies on blood 

agar that showed variation in colony size (A). Morphologically, analogous with P. gingivalis 11834. P. 

gingivalis W50 were Gram-negative small rods (coccobacillus) when viewed at x100 (B) and zoomed to x 

500 (C). 
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Figure 5.08: Growth curve representing the growth of P. gingivalis W50 in BHI liquid medium over 

192 h (9 days). Daily growth of W50 was assessed by measuring the absorbance of TSB liquid medium 

and turbidity of W50 cell suspension using OD600 (right y-axis). Over the same time course, aliquots of 

liquid culture were spread on agar medium and grown for the purposes of establishing the number of 

CFU/ml (left y-axis). The growth curve has a lag, log, stationary and cell death phase. Growth of W50 

lags for both OD600 and cfu/ml measurements, lasting 72 h. Exponential growth was short but rapid, 

lasting  24 h. Growth becomes stationary at approximately 120 h. W50 cells died soon after cell growth 

plateaued leading to a steep decline in cell numbers, from 5.8 x109 cfu/ml to 2.8 x 109 cfu/ml within 24 

h. Whiskers represent standard deviation for three separate cultures measured by OD600/ml (blue) and 

CFU/ml (black) 

 

 

 

 
Figure 5.09: Shows the linear relationship between number (cfu/ml) vs OD600 during exponential growth 

of P. gingivalis W50. Whiskers at each time point represent the standard deviation calculated for three 

separate cultures per test species measured by OD600/ml and CFU/ml. 
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5.3.1.3 T. denticola growth characteristics 

T. denticola produced cream-white hazy colonies, which due to is obligate anaerobic 

nature grew below the agar surface of semi-solid TYGVS medium (figure 5.10a). Gram-

staining revealed the distinctive spirochetes morphology T. denticola, which showed 

gram-negative staining. T. denticola cells were pleomorphic, ranging in size from 

approximately 2 µm to >6 µm (figure 5.10b and c). When incubated in TYGVS medium, 

growth of T. denticola lagged for 72 h before entering log growth, which lasted ~24 h. T. 

denticola had a growth rate of rg = 0.099 and doubled every td = 10.05 h, eventually 

reaching a maximum cell number of 1.5 x109 cells/ml (figure 5.11). T. denticola remained 

in stationary phase for ~36 h then slowly died over the remaining 48 h. A strong linear 

relationship between OD600 measurements and CFU/ml calculations was observed, 

showing a line of best fit with R2 0.99 (figure 5.11). 

 

 
 

Figure 5.10:  T. denticola colonies on semi-solid TYGVS medium (A). CFU grew below the medium 

surface rather than on the surface (A). T. denticola  is a member of the spirochetes phylum, which can be 

recognised by its helical coil shape (B). The physical length of T. denticola ranged from ~2 µm to >6 µm 

(C). 
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Figure 5.11:  Growth curve representing the growth of T. denticola in TYGVS medium over 192 h (9 

days). Daily growth of T. denticola was assessed by measuring the culture turbidity of cell suspensions 

using OD600 (right y-axis). Over the same time course, aliquots of liquid culture were spread on agar 

medium and grown for the purposes of establishing the number of CFU/ml (left y-axis). The growth 

curve for T. denticola shows a lag, log, stationary and cell death phase. A growth lag was observed for 

both OD600 and cfu/ml measurements, lasting ~72 h. Log growth was short but rapid, lasting 24 h. 

Growth became stationary at approximately 96 h post-inoculation. T. denticola cells died 36 h after cells 

became stationary (cfu/ml). Stationary phase lasted longer for OD600 measurements (~72 h), then began 

to deplete 168 h post-inoculation. Whiskers at each time point represent the standard deviation calculated 

for three separate cultures per test species measured by OD600/ml (blue) and CFU/ml (black) 

 

 

 
 

Figure 5.12: Shows the linear relationship between number (cfu/ml) vs OD600 during exponential growth 

of T. denticola. Whiskers represent standard deviation standard deviation for three separate cultures 

measured by OD600/ml and CFU/ml. 
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 P. gingivalis  

  T. forsythia 11834 W50 T. denticola 

# doublings 2.413 1.204 2.231 1.194 

Growth rate (h-1) 0.101 0.100 0.093 0.099 

Doubling time (h) 9.947 9.971 10.760 10.053 

1 OD600 unit  (cells/ml)  9.60 x 108 9.51 x 109 9.00 x 108 9.98 x 108 

Table 5.01: Shows the number of doublings occurring during the 192 h culture time, growth rate, 

population doubling time and the cells/ml conversion for 1 optical density unit for T. forsythia, P. 

gingivalis (W50 & 11834) and T. denticola. 

 

5.3.2 Growth of red complex bacteria in alternative media 

Medium development was performed in two stages (Materials & Methods; section 2.3.2).  

Stage 1. Test the efficacy three media each known to support only pure growth 

of each test species (P. gingivalis, T. forsythia and T. denticola) for their 

ability to support all or >1 RCB species; to establish an initial base for further 

development (Materials & Methods; section 2.3.2.1). 

Test species were incubated separately in each complete liquid media, TSB, BHI and 

TYGVS as three technical replicates cultures for each species in each alternative medium.  

TSB medium provided superior support by permitting exponential growth of 3 out of 4 

tested species/strains; hence, this medium was selected as the “base medium” for further 

development. T. forsythia showed the greatest growth in TSB (OD600 1.322; figure 5.13), 

followed by P. gingivalis W50 (OD600 1.199; figure 5.13) and 11834 (OD600 0.945; figure 

5.13). BHI broth provided support for only P. gingivalis 11834 and W50, giving a final 

maximum OD600 value of 1.604 and 1.627, respectively (figure 5.14). Finally, TYGVS, 

provided support for T. denticola, (OD600 1.461; figure 5.15) and P. gingivalis W50 (OD600 

0.892 figure 5.15).  
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Figure 5.13: Shows the mean OD600 values of RCB cultured in TSB medium for 8 days. Each line 

represents the mean OD600 values calculated from three technical replicate cultures of each species. 

Whiskers at each time point represent the standard deviation calculated for three separate cultures per test 

species measured by OD600/ml 

 

 
Figure 5.14: Shows the mean OD600 values of RCB cultured in BHI broth for 8 days. Each line 

represents the mean OD600 values calculated from three technical replicate cultures of each species. 

Whiskers at each time point represent the standard deviation calculated for three separate cultures per 

test species measured by OD600/ml 
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Figure 5.15: Shows the mean OD600 values of RCB cultured in TYGVS medium for 8 days. Each line 

represents the mean OD600 values calculated from three technical replicate cultures of each species. 

Whiskers at each time point represent the standard deviation calculated for three separate cultures per test 

species measured by OD600/ml. 

 

 

5.3.3 Development & optimisation of a Tryptic Soy base medium for the growth of 

periodontal bacteria 

The second stage of medium development involved building upon the most efficacious 

medium established in stage 1, through the stepwise incorporation of additional media 

supplements (Materials & Methods; section 2.3.2.2). TSB medium (comprising: 5 µg/ml 

hemin, 1µg/ml menadione, 1 µg/ml L-cysteine-HCL, 0.4% (w/v) yeast extract and 

10 µg/ml N-acetyl muramic acid (NAM)) was established as the most supportive medium 

in stage 1 (3 of 4 species) and was therefore used as a “base medium” for further 

development to establish a medium that can support the growth of all test species.  

Since, T. denticola was the only species that failed to culture in TSB (figure 5.13); 

emphasis was placed on incorporating growth supplements that are known to support the 

growth of T. denticola. Stage 2 medium design involved the following, 

1. Measure growth (OD600) of each RCB species in base media prepared with 

a concentration gradient of each medium supplement being assessed (table 

5.02). Presented as bar graphs. 
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2. Establish the lowest possible supplement concentration that supports 

significant bacterial growth compared to control medium by ANOVA, 

Levenes’s and Student’s t test (bar graphs). 

3. Incorporate optimal supplement concentration into medium and measure 

bacterial growth curves to assess growth as medium constituents increase 

(line graphs).  

In all cases OD600 values were recorded by calculating the mean of three (n=3) technical 

replicate cultures for each test species in each medium containing increasing supplement 

concentrations. Values were obtained during late-log, early-plateau growth phase, when 

bacterial numbers were at their greatest.  As an optimum supplement concentration was 

identified, that supplement was included as part of the main medium prior to the next round 

of supplement testing. Table 5.03 details the evolution of TSB medium, listing each 

optimum media supplement concentration established after each round of gradient testing. 

There was no particular advantage to testing the different supplements in the order they 

were tested here. 

 

 Concentration gradient  

Medium supplements #1 #2 #3 #4 #5 Prepared in Medium 

(NH4)2SO4  (mg/ml) NC 0.25 0.5    0.75  1       TSB base 

K2HPO4  (mg/ml) NC 1      1.25  1.5    1.75  A 

NaCl2 (mg/ml) NC 0.5    0.75  1       1.25   B 

VFA solution (%) NC 4  6  8  10  C 

Thiamine pyrophosphate (µg/ml) NC 12.5   13     13.5  14     D 

Sodium pyruvate (µg/ml) NC 225    250   275 300 E 

Rabbit serum (%) NC 5  10 15 - F 

 

Table 5.02: Taken from section 2.3.2 materials & method. Medium supplements for stage 2 of the medium 

development are listed in the left-hand column, in order of assessment. A concentration gradient of each 

medium supplement (columns #1 – #5) was tested to establish the optimum concentration for bacterial 

growth. Farthest right colum details the medium each concentration gradient was prepared in (A – F). 

Bacterial growth in media containing each supplement concentration was compared to bacterial growth in 

a negative control medium (NC; colum #1). Negative control medium comprised all preceding optimum 

supplement concentrations, minus the supplement being tested or subsequently untested supplements.  
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  Optimal media supplement concentrations   

 A B C D E F G 

M
ed

ia
 c

o
m

p
o

si
ti

o
n
 

(NH4)2SO4 

0.5 mg/ml 
(NH4)2SO4 

0.5 mg/ml 
(NH4)2SO4 

0.5 mg/ml 
(NH4)2SO4 

0.5 mg/ml 
(NH4)2SO4 

0.5 mg/ml 
(NH4)2SO4    

0.5 mg/ml 
(NH4)2SO4  

0.5 mg/ml 

- 
K2HPO4 

2.25 mg/ml 
K2HPO4 

2.25 mg/ml 

K2HPO4 

2.25 mg/ml 

K2HPO4 

2.25 mg/ml 

K2HPO4 

2.25 mg/ml 

K2HPO4 

2.25 mg/ml 

- - 
NaCl2  

1 mg/ml 
NaCl2  

1 mg/ml 
NaCl2  

1 mg/ml 
NaCl2  

1 mg/ml 
NaCl2  

1 mg/ml 

- - - 
VFA  

6% 

VFA  

6% 
VFA  

6% 
VFA  

6% 

- - - - 
TPP 

12.5 µg/ml 
TPP 

12.5 µg/ml 
TPP 

12.5 µg/ml 

- - - - - 
SP 

250 µg/ml 
SP 

250 µg/ml 

- - - - - - 
RS  

10% 

Table 5.03: Shows the sequential development of experimental TSB medium supplements (media A – G). 

Optimum supplement concentrations (italicised) were established from OD600 values calculated as the 

mean of three technical replicate cultures for each test species in each medium containing increasing 

supplement concentrations. The supplement concentration that provided the greatest mean bacterial growth 

at the lowest possible concentration was selected. The optimum concentration of each supplement was 

then included as part of the base medium prior to the next round of gradient testing. (NH4)2SO4 

(Ammonium Sulphate), K2HPO4 (Potassium Phosphate), NaCl (Sodium Chloride), VFA (volatile fatty 

acid), TPP (thiamine pyrophosphate), SP (sodium pyruvate) and RS (rabbit serum).  

 

5.3.3.1 Major inorganic salts for T. denticola growth 

Firstly, all major inorganic salts used in TYGVS medium that are known to support growth 

of T. denticola, were individually omitted from TYGVS in an effort to identify the salts 

critical for T. forsythia growth. The removal of (NH4)2SO4, K2HPO4 and NaCl had visible 

effect on the growth of T. denticola, whereas removal of MgSO4 did not affect the growth 

of T. denticola (figure 5.16). 
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Figure 5.16: Growth curves of T. denticola in TYGVS medium following the individual removal of each 

inorganic salt. The removal of (NH4)2SO4, K2HPO4 and NaCl had an effect on the growth of T. denticola, 

whereas removal of MgSO4 does not affect the growth of T. denticola. T. denticola was cultured in four 

individual media containing all supplements excluding the salt being assessed. Each line on the chart 

represents the mean values for three technical replicates which were compared to the normal growth of T. 

denticola (Td control) in TYGVS containing all salts. Whiskers at each time point represent the standard 

deviation calculated for three separate cultures per test species measured by OD600/ml. 

 

5.3.3.2  TSB base medium: concentration gradient of (NH4)2SO4  

Stage 2 began by measuring test species growth when cultured in base media containing a 

concentration gradient of (NH4)2SO4. OD600 values for T. denticola increased significantly 

in response to (NH4)2SO4 (p <0.05; figure 5.17).  P. gingivalis 11843 & W50 also showed 

a significantly increased OD600 values in TSB comprising ≥0.25 mg/ml (NH4)2SO4 

compared to control medium (p. <0.001; figure 5.17). Growth plateaued in media 

containing ≥0.75 mg/ml (NH4)2SO4 for all species except W50, which showed dose-

dependant growth (p <0.001; figure 5.17). Because there was only a difference of 0.080 

between T. denticola OD600 values in response to 0.5 and 1 mg/ml (NH4)2SO4, the lowest 

significant result was examined further by growth curve analysis (medium A; figure 5.18)  
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Figure 5.17:  Bar chart shows the mean (n = 3) culture turbidity readings (OD600) for T. forsythia (Tf), P. 

gingivalis (11843 & W50) and T. denticola (Td) growth incubated in a ‘base’ medium supplemented with 

0.25, 0.5, 0.75 or 1 mg/ml (NH4)2SO4. OD600 measurements were recorded during late-log, early-plateau 

growth phase when bacteria numbers were at their greatest. OD600 values for media containing (NH4)2SO4 

were compared to contol medium (without (NH4)2SO4). Significant, dose-dependent increases of OD600 

was observed for all species in media with elevated (NH4)2SO4 concentrations compared to a control 

medium (p <0.01). OD600 values  plateaued for media containing ≥0.75 mg/ml (NH4)2SO4. Each bar 

represents the mean OD600 value of three technical replicate cultures for each species in each medium of 

increasing supplement concentration 

 

 
Figure 5.18: Growth curve for all species in medium A. Healthy exponential growth was observed for all 

species, except T. denticola, which showed a negligible rise of OD600 <0.13. TSB containing 1.25 mg/ml 

(NH4)2SO4 supported maximum growth of T. forsythia (OD600 >1.5). Growth curves for P. gingivalis 

11834 & and W50 were comparable, with OD600 1.318 & 1.363, respectively. Each line represents OD600 

values taken as a mean of three technical replicate cultures of each test species incubated in medium A. 

Whiskers at each time point represent the standard deviation calculated for three separate cultures per test 

species measured by OD600/ml. 
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5.3.3.3 Medium A: concentration gradient of K2HPO4 

Medium A containing increasing concentrations of K2HPO4 was assessed. OD600 values 

increased significantly in response to ≥2.25 mg/ml K2HPO4 for T. forsythia (p <0.001), 

11834 (p <0.05), W50 (p <0.001) and T. denticola (p <0.05; figure 5.19) compared to 

control media. OD600 values for T. forsythia and 11834 or W50 did not show further 

increases when cultured in media containing >2.25 mg/ml K2HPO4. In actuality, T. 

forsythia showed significantly decreased OD600 values with K2HPO4 concentrations >2.25 

(p <0.01 figure 5.19). T. denticola showed a dose-dependent increase in OD600 values that 

plateaued at concentrations of K2HPO4 >2.5 mg/ml (figure 5.19). Therefore, the lowest 

possible significant increase was in media containing 2.25 mg/ml and therefore was 

assessed further by measuring growth curves (medium B; figure 5.20). 

 

 
Figure 5.19:  Bar graph shows the mean culture turbidity readings (OD600) for T. forsythia (Tf), P. 

gingivalis (11843 & W50) and T. denticola (Td) when incubated in base medium supplemented with 

conc. gradient of K2HPO4 compared to control medium (without K2HPO4).Significant, dose-dependent 

increase of OD600 for Td in medium A containing ≥2.25 mg/ml K2HPO4 compared to control medium (p 

<0.05). At ≥2.5 mg/ml K2HPO4, Td increased significantly, from OD600 0.198 to 0.333 (p <0.001). Tf 

increased significantly, when incubated with 2.25 mg/ml K2HPO4 (OD600 1.354 to 1.473; p <0.001). At 

doses >3 µg/ml K2HPO4, Tf suffered mild inhibitory effects (p <0.01). 11834 peaked at 2.25 mg/ml 

K2HPO4 (OD600 1.226; p <0.05), as did W50, which also showed the greatest increase (OD600 1.088 to 

1.196; p <0.001). Each bar represents the mean OD600 value of three technical replicate cultures for each 

species in each medium of increasing supplement concentration. 
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Figure 5.20:  Shows growth curves for each test species incubated in medium B (containing 0.5 mg/ml 

(NH4)2SO4 and including 2.25 mg/ml K2HPO4; table 5.03). Healthy exponential growth was observed for 

T. forsythia and P. gingivalis (11843 & W50), with maximum OD600 values 1.437, 1.226 and 1.348, 

respectively. Maximum OD600 values for T. denicola increased compared to medium A; increasing by 

OD600 0.207. The subtle outline of typical bacterial growth phases can be observed for T. denticola growth 

in medium B, though T. denticola. is only partially supported in medium B. Each line represents OD600 

values taken as a mean of three technical replicate cultures of each test species incubated in medium B. 

Whiskers at each time point represent the standard deviation calculated for three separate cultures per test 

species measured by OD600/ml. 

 

5.3.3.4 Medium B: concentration gradient of NaCl2  

When media containing a gradient of NaCl2 was assessed, all species showed a significant 

dose-dependent increase of OD600 values when supplemented with ≥0.75 NaCl2 (p <0.05; 

figure 5.21). When growth curvess were plotted for OD600 values of each species in 

medium C (table 5.03), good exponential growth was observed for T. forsythia and P. 

gingivalis (11834 & W50) (figure 5.22). Growth plateaued in media containing >1 mg/ml 

NaCl2, with just and OD600 of 0.008 between 1 and 1.25 mg/ml. Therefore, 1 mg/ml NaCl2 

was assessed further by performing growth curve analysis (medium C; figure 5.22) 
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Figure 5.21:  Bar chart shows the mean (n = 3) culture turbidity readings (OD600) for T. forsythia (Tf), 

P. gingivalis (11843 & W50) & T. denticola (Td) when incubated in medium B supplemented with a conc 

gradient of NaCl2 or without NaCl2 (control). Dose-dependent increases of OD600 values were observed 

for all species. OD600 values for Td, increased significantly compared to control medium when incubated 

in medium B supplemented with ≥1 mg/ml NaCl (OD600 0.279 to 0.441; p. <0.01). OD600 values for 11834 

&W50 were comparable &significantly higher in medium B with ≥0.5 mg/ml NaCl compared to control 

medium (p <0.05). Tf also had a significantly greater OD600 values in media containing ≥0.5 mg/ml NaCl 

compared to control media (p <0.001). Each bar represents the mean OD600 value of three technical 

replicate cultures for each species in each medium of increasing supplement concentration. 

 

 
Figure 5.22:  Shows growth curves for all test species incubated in TSB medium containing all preceding 

optimum supplement concentrations, including 1 mg/ml NaCl2, (medium B; table 5.03). Maximum OD600 

values for T. forsythia and P. gingivalis (11843 & W50), were increased compared to medium B; rising 

by 0.273, 0.121 and 0.158, respectively. T. denticola also showed an increase of maximum OD600 values 

compared to the medium B; from OD600 0.333 to 0.441. Each line represents OD600 values taken as a mean 

of three technical replicate cultures of each test species incubated in medium C. Whiskers at each time 

point represent the standard deviation calculated for three separate cultures per test species measured by 

OD600/ml. 
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5.3.3.5 Medium C: concentration gradient of volatile fatty acid solution 

VFA solution provided the greatest increase of T. denticola growth compared to all other 

supplements tested here. OD600 values for T. denticola increased significantly in response 

to all VFA concentrations (figure 5.23). The opposite was observed for T. forsythia, 11834 

and W50, showing significantly decreased OD600 values when incubated with ≥4% VFA 

solution (p <0.001; figure 5.23). Given the conflicting effects of VFA solution on the 

different species tested, the lowest possible significant increase of T. denticola OD600 (i.e. 

6% VFA) was selected for further assessment by growth curve analysis (Medium D; figure 

5.24). 

 

 
Figure 5.23:  Bar chart shows the mean (n = 3) culture turbidity readings (OD600 for T. forsythia (Tf), P. 

gingivalis (11843 & W50) and T. denticola (Td) ) in late-log, early-plateau growth phase when incubated 

in ‘medium C’ supplemented with 4, 6, 8 or 10% volatile fatty acid (VFA) solution or medium without 

VFA (control). A sharp increase of OD600 values was observed for Td when incubated in TSB 

supplemented with 4% VFA (0.432 to 580; p <0.01), 6% (0.849; p <0.001), 8% (0.901; p <0.001) and 

10% (0.911; p <0.001). Tf, 11834 and W50 OD600 values decreased significantly when incubated with 

≥4% VFA solution (p <0.001). Tf showed the greatest decrease of OD600 values from 1.583 (no VFA) to 

0.898 (10% VFA; p. <0.001). Tf, 11834 and W50 OD600 values decreased significantly when incubated 

with ≥4% VFA solution (p <0.001). Each bar represents the mean OD600 value of three technical replicate 

cultures for each species in each medium of increasing supplement concentration. 
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Figure 5.24:  Shows growth curves for all test species incubated in TSB medium containing all preceding 

optimum supplement concentrations, including 6% VFA solution, (medium D; table 5.03). A marked 

reduction of maximum OD600 values was observed for T. forsythia (1.583 to 1.201), 11834 (1.325 to 

1.198) and W50 (1.263 to 1.126) when compared to the previous growth curves in ‘medium C’. Maximum 

OD600 values doubled for T. denticola (OD600 0.441 to 0.911) when cultured in ‘medium D’ compared to 

medium C. Healthy exponential growth was observed for T. denticola when incubated in medium D, 

which showed double the maximum OD600 values (OD600 0.441 to 0.911) compared to medium C. Each 

line represents OD600 values taken as a mean of three technical replicate cultures of each test species 

incubated in medium D. Whiskers at each time point represent the standard deviation calculated for three 

separate cultures per test species measured by OD600/ml. 

  

5.3.3.6 Medium D: concentration gradient of thiamine pyrophosphate  

In medium D containing increasing concentrations of thiamine pyrophosphate (TPP), P. 

W50 OD600 values were significantly greater in in response to 12.5 (figure 5.25). T. 

denticola OD600 values also increased significantly when cultured in the medium 

supplemented with 12.5 µg/ml TPP compared to the negative control medium OD600 

values (p <0.05). T. denticola growth was similar across all concentrations; 12.5 µg/ml 

TPP was the only concentration to support a significant increase in T. denticola compared 

to control media and was therefore selected for further assessment by performing growth 

curve analysis (medium E; figure 5.26). 
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Figure 5.25:  Bar chart shows the culture turbidity readings (OD600) for T. forsythia (Tf), P. gingivalis 

(11843 & W50) and T. denticola (Td) during late-log, early-plateau growth phase when incubated in 

medium D supplemented with 12 12.5, 13 and 13.5 µg/ml thiamine pyrophosphate (TPP) or medium 

without TPP (control). P. gingivalis W50 OD600 values were significantly greater in response to 12.5 

µg/ml TPP (OD600 1.126 to 1.178; p. <0.05), 13 µg/ml (OD600 1.194; p. <0.01) and 13.5 µg/ml (OD600 

1.196; p. <0.001) compared to the control medium. T. denticola OD600 values were significantly increased 

in media containing 12.5 µg/ml (OD600 0.905) compared to negative control medium (OD600 0.840; p 

<0.05). The remaining species were unchanged for any of the TPP concentration. Each bar represents the 

mean OD600 value of three technical replicate cultures for each species in each medium of increasing 

supplement concentration. 

 

 
 
Figure 5.26: Growth curves for all test species incubated in TSB medium with all preceding optimum 

supplement concentrations, including 12.5 µg/ml TPP, (medium E; table 5.03). Line graph shows good 

exponential growth for all species cultured in medium E, though only a minimal increase in maximum 

OD600 values were observed compared to medium D. Each line represents OD600 values taken as a mean 

of three technical replicate cultures of each test species incubated in medium E. Whiskers at each time 

point represent the standard deviation calculated for three separate cultures per test species measured by 

OD600/ml. 
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5.3.3.7 Medium E: concentration gradient of sodium pyruvate 

When species were incubated in medium E containing a concentration gradient of sodium 

pyruvate (SP), there were no changes in T. forsythia, 11834 and W50 OD600 values for any 

SP concentration compared to control medium (figure 5.27). However, OD600 values did 

increase for T. denticola when incubated in medium E supplemented with 250 µg/ml (p 

<0.05) and 350 µg/ml, (p <0.01; figure 5.27) compared to control media without SP. Thus, 

250 µg/ml SP was the lowest possible concentration to induce a significant increase in T. 

denticola OD600 values and was therefore the only sensible choice to incorporate into the 

medium for further testing by growth curve analysis (medium F; figure 5.28).  

 
Figure 5.27:  Bar chart shows the mean (n = 3) culture turbidity readings (OD600) for T. forsythia (Tf), 

P. gingivalis (11843 & W50) and T. denticola (Td) ) in late-log, early-plateau growth phase when 

incubated in media E supplemented with 225, 250, 275 or 300 µg/ml sodium pyruvate (SP). Media 

supplemented with ≥225µg/ml SP were compared against media containing no SP (control). TSB 

supplemented with 250 µg/ml SP provided significantly higher OD600 values for Td compared to control 

medium. Tf, 11834 and W50 remained unaffected by any of the SP concentrations tested. Each bar 

represents the mean OD600 value of three technical replicate cultures for each species in each medium of 

increasing supplement concentration. 
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Figure 5.28: Growth curves for all test species incubated in TSB medium with all preceding optimum 

supplement concentrations, including 250 µg/ml SP, (medium F; table 5.03). While health growth was 

observed in medium F, only a minimal increase of OD600 was observed compared to media D and E. Each 

line represents OD600 values taken as a mean of three technical replicate cultures of each test species 

incubated in medium F. Whiskers at each time point represent the standard deviation calculated for three 

separate cultures per test species measured by OD600/ml. 

 

5.3.3.8 Medium F: concentration gradient of rabbit serum  

Finally, medium F comprising a concentration gradient of rabbit serum (RS) was assessed 

for its growth-supporting abilities. RS was one of the most influencial medium 

supplements tested, which supported significant increases of OD600 values for all test 

species in all media. OD600 values  increased significantly in medium F  with elevated 

concentrations of rabbit serum (RS) compared to values observed for control medium (RS 

absent) (p. <0.05; figure 5.29). T. denticola showed the greatest significant increase of 

OD600 values in response to RS when compared to negative control medim (p. <0.01; figure 

5.29). Likewise, values showed significant increases for T. forsythia, 11834 and W50 

when incubated in medium with elevated RS (p <0.05; figure 5.29). Because OD600 values 

showed only negligible further increase at 15% RS compared to 10% in all cases; 10 % 

RS was examine further by performing growth curve analysis (Medium G; figure 5.30)  
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Figure 5.29: Bar chart shows the mean (n = 3) culture turbidity readings (OD600) for T. forsythia (Tf), P. 

gingivalis (11843 & W50) and T. denticola (Td)) when incubated in medium F supplemented with 5, 10 

and 15% rabbit serum (RS). Compared to control medium (no RS), significant dose-dependent increases 

of OD600 values were observed. Td OD600 values increased significantly in TSB with 5% RS (0.882 to 

1.049; p < 0.01), 10% RS (0.882 to 1.149; p <0.001) and 15% RS (0.882 to 1.160; p. <0.001). In all cases 

OD600 values plateaued at ≥10% (p <0.01). Each bar represents the mean OD600 value of three technical 

replicate cultures for each species in each medium of increasing supplement concentration. 

  

 

5.3.3.9 Medium G: final fully supplemented and optimised culture medium 

The finalised culture medium showed good support for all species tested, including T. 

denticola, which fianally showed OD600 values that were comparable with the other RCB 

species (figure 5.30). The finalised culture medium (per liter) comprised 55g trypticase 

soy broth supplemented with, 5 µg/ml hemin, 1 µg/ml menadione, 1 µg/ml L-cystiene 

HCL, 0.4% yeast extract, 10 µg/ml N-acetylmuramic acid, 12.5 µg/ml thiamin 

pyrophosphate, 250 µg/ml sodium phosphate, 500 µg/ml (NH4)2SO4, 2.25 mg/ml K2HPO4, 

1 mg/ml NaCl2, 6% VFA (comprising 0.29 ml glacial acetic acid, 0.1 ml propionic acid, 

0.07 ml butyric acid, 0.0175 ml valeric acid, 0.0175 ml isobutyric acid, 0.0175 ml 

isovaleric and 0.0175 ml methybutyric acid) and 10 % heat inactivated rabbit serum (10%).  

Knowing the finalised liquid medium is capable of supporting adequate growth of RCB 

test species P. gingivalis (11834 & W50), T. forsythia and T. denticola it was further used 

as a liquid medium to culture any latent species potentially present in CAP and LITA tissue 

specimens. 
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Figure 5.30:  Line graphs for mean growth curve of all test species, T. forsythia, P. gingivalis (11843 & 

W50) and T. denticola in TSB medium G containing all optimum media supplements, including 10% RS. 

Good exponential growth can be observed for all test species, including T. denticola, which, although 

still the lowest growth of all species, is at a level comparable with P. gingivalis and T. forsythia. Each 

line represents OD600 values taken as a mean of three technical replicate cultures of each test species 

incubated in medium G. Whiskers at each time point represent the standard deviation calculated for three 

separate cultures per test species measured by OD600/ml. 

 

5.3.4 Isolation of viable bacteria species present in CAP tissue. 

The complete culture medium (designed and optimised in section 5.2.3 of this chapter and 

finally described in section 5.2.3.9) was employed to culture latent species present in CAP 

and LITA tissue samples (Materials & Methods; Section 2.3.3) for isolation and 

subsequent identification using molecular methods (Materials & Methods; Section 2.4).  

Viable cultures were detected in 4/21 (19%) CAP specimens. No bacterial strains were 

detected in LITA specimens or in environmental and final tissue wash control media 

(Materials & Methods; Section 2.3.3). The four atherosclerotic plaques that yielded viable 

cultures were from 2 male and 2 female patients with a mean age of 74.3±4.4 years. Seven-

day-old anaerobic liquid cultures grown from CAP tissue were transferred onto fresh blood 

agar plates and incubated to produce mixed colony plates 200 – 250 colonies/plate (section 

2.3.3) (figure 5.31). Ten percent of colonies were picked from each plate and re-inoculated 

on to fresh blood agar plates to acquire plate containing pure strains for archiving 

(Materials & Methods; section 2.3.4). 
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All isolated strains were gram-positive bacilli or cocci (figures 5.32 & 5.33). Isolates were 

identified using molecular methods (Materials & Methods; (Materials & Methods; Section 

2.3.3). Of the total 100 isolated colonies, four separate genera were identified, including 

Propionibacterium, Staphylococcus, Lactobacillus and Streptococcus. The most 

frequently detected species was Propionibacterium acnes (91%), with the most prominent 

strain being SK137, followed by TypeIA2 P.acn31. The second most encountered species 

were Lactobacillus spp. (3%), along with Staphylococcus epidermidis. Streptococcus mitis 

was identified in 2% of isolates and finally Streptococcus sanguinis was detected only 

once out of the 100 isolates. However, as previously described it was not possible to 

definitively determine the species of MGB using only 16S rRNA gene analysis as more 

discriminative markers are needed. Therefore, it must be noted that Streptococcus spp. 

were detected only. One plaque specimen contained all of the identified sequences, 

whereas the remaining three specimens contained only P. acnes. The identified sequences 

had >98% maximum identity when compared to reference sequence of the BLAST 

database. None of the target RCB species were culture using this method. 

 

 
Figure 5.31: Multiple colonies incubated on blood agar anaerobically (A, B, C & D) using liquid cultures 

derived from human CAP tissue homogenates. Each blood agar plate comprised ~200-250 mixed bacteria 

colonies (E, F, G & H). Each blood agar plate represented an atherosclertotic plaque specimen from four 

separate patients. 
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Figure 5.32: Fresh colonies of Propionibacterium acnes picked from mixed blood agar plates derived 

from atherosclerotic plaque. Top row (A, B, C & D) shows the different colony morphologies of P. acnes 

at different stages of maturity. P. acnes were gram-positive bacillus (E, F, G & H). Colonies were off-

white to orange colour, with a circular and convex shape and a shiny appearance. Colonies ranged in size 

(1-5 mm) dependant on age. Older colonies (C) developed umbonate elevation and had a much deeper 

colour.  
 

 
Figure 5.33: Fresh blood agar plates containing pure colonies picked and inoculated from mixed plates 

containing atherosclerotic cultures. Staphylococcus epidermidis colonies were white, circular, convex 

morphology, approximately 3-4 mm and had a mucoid texture (A). S. epidermidis were gram-positive 

chain-forming cocci (E). Streptococcus mitis were small (<1-1.5 mm) off-white colonies with a circular, 

convex shape and prominent α-hemolysis (B). S. mitis was gram-positive chains and bunches forming 

cocci (F). Streptococcus sanguinis were gram-positive cocci (G) that formed small (1-2 mm), 

transcleucent gray-white colonies that had a circular convex shape with some α-hemolysis evident around 

mature colonies (C). S. sanguinis. Lactobacillus casei were gram-positive bacilli (H) that formed punctate 

(<0.8 mm) transleuscent colonies (D). For illustrative purposes. gram-stain images were enlarged x5 and 

the original magnification x100 oil-immersion image and cropped.  
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5.4 Discussion 

The main concerns of this chapter were firstly; to develop a culture medium designed to 

encourage the proliferation of oral bacteria, with particular emphasis on supporting the 

growth of red complex bacteria. The simple and effective medium developed and 

optimised in this chapter of work has the versatility to cultivate a broad spectrum of 

bacterial species. Secondly, to implement the developed medium to culture and isolate 

viable strains present in atherosclerotic plaque specimens from the carotid artery. The 

evidence obtained in the present study demonstrates the presence of multiple viable 

bacterial species in human atherosclerotic plaque tissue.  

In the present investigation, it was established that TSB medium provided the greatest 

level of support for 2 of the 3 test species (T. forsythia, P. gingivalis 11834 and W50), but 

not T. denticola. This was likely due to the fastidious growth requirements of T. denticola, 

which requires a complex environment to support proliferation (J. Fenno 2005; Orth et al. 

2010). Because atheroma specimens were to be submerged in the finalised medium, it was 

essential that the medium would support, if present, all three target organisms.  Hence, the 

enumeration of T. denticola became the main focus of the medium development. The most 

direct way to achieve this was to supplement TSB medium, with the necessary medium 

supplements known to aid T. denticola proliferation. It was critical however, this be carried 

out in a stepwise fashion so not to sacrifice the support of P. gingivalis and T. forsythia.  

As part of assessing the normal growth conditions, regression line analyses revealed good 

linear relationships between OD600 vs cfu/ml for T. forsythia, P. gingivalis and T. denticola 

in their respective medium (R2 0.992, 0.996, 0.998 and 0.996, respectively). Thus, OD600 

values were considered sufficiently representative of cell number values during the 

exponential growth phase. However, using optical density has its limitation. This method, 

though not a true representation of viable bacterial cell number, has been widely adopted 

often without confirmation of cell densities by any other method (Grenier et al. 1990; 

Edwards et al. 2003; J. Fenno 2005; Roy et al. 2010). The rationale for selecting optical 

density as a method for enumerating bacterial growth was three-fold. Firstly, it is a rapid 

method for measuring bacterial growth. Secondly, it was not necessary to generate 

extremely accurate cell number values for the purposes of this analysis; hence, a method 

that provided visual confirmation of growth was satisfactory. Thirdly, numerous 

difficulties were encountered when growing T. denticola on semi-solid media. Preparation 

of the molten semi-solid TYGVS medium for T. forsythia inoculations gave inconsistent 
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results, which has also been highlighted by other investigators (Orth et al. 2010). Colonies 

that do grow from surface tended to grow down into the agar, making colony counts 

intricate and often inaccurate (J. Fenno 2005). 

Concentration gradients of inorganic salts were supplemented into TSB first, which 

provide a number of co-factors and energy sources derived from minerals such as 

ammonia, nitrogen and phosphorus. When determining which inorganic salts were 

absolutely necessary for proliferation of T. denticola, each salts (MgSO4•7H2O, 

(NH4)2SO4, K2HPO4 and NaCl) were systematically omitted from TYGVS medium before 

culturing T. denticola. The absence of MgSO4•7H2O had no visible impact on T. denticola 

OD600 values and was therefore omitted (figure 5.15). The exclusion of MgSO4•7H2O from 

the medium was in contrast to previous media development studies (Caldwell & Bryant 

1966; Laughon et al. 1982; Salvador et al. 1987; Wyss 1992). However, spirochete media 

exist that do not contain MgSO4•7H2O  such as oral treponeme isolation (OTI) medium 

(Moore et al. 1982) and  new oral spirochete (NOS) medium (Cheng & Chan 1983). Many 

studies developed media supplemented with excess salts that were not included here, 

particularly that designed by Wyss (1992), who developed a chemically defined medium 

with over 150 supplements. In contrast, when (NH4)2SO4, K2HPO4 and NaCl, were omitted 

from TYGVS medium a marked decline of OD600 values were observed, particularly when 

NaCl was removed, and therefore were included.  

The stepwise supplementation of (NH4)2SO4 into TSB prompted a significant increase in 

T. denticola OD600 values at concentrations between 0.75-1.25 mg/ml. The higher side of 

this concentration range was marginally higher than is found in spirochete media 

developed by other investigators (Laughon et al. 1982; Moore et al. 1982; Salvador et al. 

1987). The concentration requirement of T. denticola for (NH4)2SO4 established here, was 

comparable with previously designed chemically-defined medium OMIZ-W1, which has 

been used by several investigators (Wyss 1992). However, even though addition of 

(NH4)2SO4 potentiated significant growth of T. denticola compared to the control medium, 

actual physical growth compared to P. gingivalis and T. forsythia in TSB was negligible. 

Similar growth levels were observed following supplementation with K2HPO4 and NaCl, 

which stimulated significant increases of OD600 at concentrations of 1 mg/ml and 1.25 

mg/ml, respectively. Again, the most efficacious concentrations of K2HPO4 and NaCl were 

in line with previously developed spirochete media (J. Fenno 2005).  
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Only when TSB was supplemented with volatile fatty acids (VFA) solution did T. 

denticola OD600 values increase to a comparable level with P. gingivalis and T. forsythia. 

VFA’s are incorporated in a number of spirochete media, including M10 (Caldwell & 

Bryant 1966), GM-1 (Blakemore & Canale Parola 1976), New Oral Spirochete (NOS) 

medium (Cheng & Chan 1983) and TYGVS (Salvador et al. 1987). VFAs are used as the 

major energy source  by T. denticola, thus, recovery rates of T. denticola are typically 

denser and growth faster when media are supplemented with VFA (J. Fenno 2005). 

Unexpectedly, VFA caused a marked inhibition of T. forsythia and P. gingivalis, which 

was dose dependant. Studies have shown significantly more T. denticola compared to P. 

gingivalis in short-chain fatty acids-rich gingival cervical fluid of patients with generalized 

aggressive periodontitis (Lu et al. 2013). This could be reflective of the inhibitory effect 

observed here, although VFA’s, particularly butyric acid, are major by-products of 

periodontal pathogens, even in the absence of T. denticola (Kurita-Ochiai et al. 1995). 

Therefore, this reduction of T. forsythia and P. gingivalis is puzzling. At a concentration 

of 10% VFA the inhibitory effect on T. forsythia was too severe. Because OD600 values for 

T. denticola plateaued at VFA concentration >6%, the inhibitory effect on T. forsythia was 

limited. 

 

Supplementation with TPP made little observable difference to the overall growth of all 

test species. TPP is the biologically active form of thiamine (vitamin B1) which acts as an 

essential cofactor in all living systems. Surprisingly, there was little to no increase in in T. 

denticola OD600 values following TPP supplementation. Microorganisms can either 

synthesise TPP via de novo synthesis or uptake exogenous TPP via ATP-binding cassette 

transporters. (Begley et al. 1999) T. denticola lacks this de novo TPP synthesis pathway 

and so requires exogenous TPP supplementation (De Ciccio et al. 1999; Seshadri et al. 

2004). However, yeast extract is rich in B complex vitamins including TPP (vitamin B1), 

which may have provided the necessary requirement. Because TPP supplementation did 

not produce increased growth, it was not included. The absence of TPP is consistent with 

the developed media NOS and Laughon media (Laughon et al. 1982; Cheng & Chan 1983). 

 

In the present investigation, rabbit serum provided a significant dose-dependent increase 

in OD600 values for each test species, which plateaued at concentrations ≥10%. These 

finding are consistent with most media designed to support the growth of Treponemes, 

which supplement between 5-10% rabbit serum or rumen fluid (Laughon et al. 1982; 
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Moore et al. 1982; Cheng & Chan 1983; Salvador et al. 1987; J. Fenno 2005; Fiehn & 

Larsen 2005). After VFAs, animal sera provided the greatest support for bacterial 

proliferation by providing a complex source of growth factors, proteins, vitamins, 

minerals, hormones, carbohydrate, lipids amino acids and trace elements. T. denticola has 

a rabbit albumin-binding polypeptide and will therefore preferentially migrates toward 

rabbit serum in vitro (Umemoto et al. 2001). Rabbit serum is typically used in spirochete 

medium because some Treponemes will only grow in its presence, however for T. 

denticola the serum source is not critical (Fenno 2005).  

 

In the present investigation 19% of CAP specimens provided viable cultures, from which 

P. acnes was the most frequently isolated species (91%). The predominant isolation of P. 

acnes from carotid plaques is consistent with findings by other investigators (Rafferty et 

al. 2011; Kędzia et al. 2012). Applying plaque homogenates to blood agar plates, Kędzia 

et al. (2012) claimed to have isolated viable periodontal bacteria from 67% of CAP 

specimens, which included P. gingivalis (20%) and P. acnes (18%). However, unlike the 

present investigation where molecular methods were utilized to identify isolates, Kędzia 

et al. (2012) used Analytical Profile Index (API®) to identify the isolates, which has been 

documented to have between a 3 - 10% misidentification rate (Kidd et al. 2009). 

Furthermore, the adoption of blood agar plates as the sole medium for isolating viable 

strains from tissue was used in the initial phase of this investigation with no success. A 

possible reason for this was the suboptimal tissue to agar surface area contact compared to 

a planktonic growth system. This method would therefore have reduced the likelihood of 

isolating organisms from the tissue surfaces not in contact with the agar medium; hence 

the evolution to a planktonic growth system. Rafferty et al. (2011) expanded on an in vitro 

detection method first published by Kozarov et al. (2005), in which carotid plaque 

homogenates were co-incubated with human monocyte cell line, THP-1, prior to agar 

inoculation. The rationale for this distinct approach was based on the premise that 

pathogenic bacteria may remain unculturable by residing in the monocyte/macrophages of 

the atherosclerotic plaque. Through implementing this novel approach, Rafferty et al. 

(2011) recovered 872 isolates, including P. acnes, S. epidermidis and P. gingivalis at a 5.6-

fold greater recovery rate with the THP-1 cell co-incubation strategy than without THP-1. 

This is particularly noteworthy when considering the intracellular evasiveness of P. acnes 

in-vitro, which has been demonstrated to remain viable in macrophages for 2 weeks post 

infection (Fischer et al. 2013). A similar in-vitro methodology was  developed by Kozarov 
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et al. (2005), who utilised endothelial cell line ECV-304 to highlight the invasiveness and 

therefore viability of P. gingivalis and A. actinomycetemcomitans in a carotid plaque 

specimen (Kozarov et al. 2005).  However, as a case study analysing only one specimen, 

only weak associating between periodontal and vascular disease could be drawn.  A. 

actinomycetemcomitans has also been shown to be present in both the periodontal pockets 

and carotid atherosclerotic plaques of the same patients when isolated using solid agar 

medium (Padilla et al. 2006).  

 

In agreement with the present investigation da Silva et al. (2003) identified P. acnes as the 

most frequently isolated species from abdominal aortic plaques. Moreover, the authors 

reported that pure P. acnes cultures were isolated from two patients’ specimens, which is 

consistent with the 3 of the 4 specimens examined here. Interestingly, two of the plaques 

with pure P. acnes cultures were also showed to contain P. acnes when specimen tissue 

was assessed by direct PCR analysis; providing further confirmation of its presence. Early 

investigators who cultured P. acnes from abdominal plaques have dismissed its presence 

as a contaminate (Eriksson et al. 1983). While P. acnes is known to be indigenous to the 

skin, it can also act as a primary pathogen and should therefore not just simply be dismissed 

as contaminate. As previously discussed in the main introduction (Chapter 1), P. acnes has 

been isolated from and identified as an etiological agent in several pathologies, such as 

prostate cancer (Cohen et al. 2005), sciatica (Stirling et al. 2001) aortic valve endocarditis 

(Gunthard et al. 1994), sarcoidosis (Hiramatsu et al. 2003) and  arthritis (Berthelot et al. 

2006). P. acnes is a member of the periodontal microbiota (Paster et al. 2001) and is more 

prevalent in apical periodontal lesions and generalized aggressive periodontitis compared 

to chronic periodontitis (Fujii et al. 2009; Heller et al. 2012). Debelian et al. (1992) 

assessed transient bacteraemia in 26 patients undergoing root canal treatment and found 

P. acnes to be the most abundant species in both root canal and blood 10 minutes post 

dental treatment. The time frame used to assess bacteraemia may have been too short 

making it possible that P. acnes was eventually cleared, possibly even transported to the 

atherosclerotic vessel within phagocytic cells. It is therefore, biologically plausible that 

the high frequency of P. acnes in the carotid plaques examined here is a symptom of its 

etiological role in oral infection disease. It is also possible however, that P. acnes may 

have originated from other bodily sites, such as the lymph nodes or the lungs (Ishige et al. 

2005) 
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In addition to P. acnes, S. epidermidis, Lactobacillus spp. and Streptococcus spp. were 

isolated from the tissue examined here, though percentage detections rates were markedly 

less. S. epidermidis has been isolated from abdominal aortic plaque and carotid plaque 

tissue (da Silva et al. 2003; Rafferty et al. 2011).  As an opportunistic pathogen S. 

epidermidis is often co-isolated from periodontal infections with P. acnes (Niazi et al. 

2010). Similarly, infections distant from the oral cavity, such as those affecting prosthetic 

implants and intravenous catheters, implicate S. epidermidis and P. acnes as the primary 

pathogens (Martín-Rabadán et al. 2008; Portillo et al. 2013). Therefore, as nosocomial 

species, the possibility these strains originated from a hospital acquired infection cannot 

be dismissed. Nevertheless, whether the origin of P. acnes and/or S. epidermidis derives 

from oral infection or other, the potential for these organisms to potentiate inflammatory 

milieu at atherosclerosis-prone vascular sites remains the same. In order to elucidate the 

origin of bacteria isolated from atherosclerotic plaque it would be necessary to thoroughly 

screen the tissue of suspected sources e.g. periodontal tissue. Unfortunately, the 

periodontal status of the patients examined in the present investigation was not provided; 

hence, in the present investigation the potential source of the species isolated cannot fully 

elucidated.  

 

When trying to identify the specific Lactobacillus spp. isolated from atherosclerotic plaque 

tissue, it was not possible to differentiate between species L. casei, L. paracasei or L. 

rhamnosus. All provided a 100% maximum identity between the ~600 bp sequence and 

reference sequences of the NCBI database. These species form a closely related taxonomic 

group within the heterofermentative group II. In the present investigation, universal primer 

set D88/E94 was used to amplify 16S rDNA from the clinical isolates prior to sequencing 

PCR with the D88 primer. While this method can readily differentiate this group of 

Lactobacillus spp. from other members of the Lactobacillus genus, it is not possible to 

unequivocally distinguish between these three species on this basis. To differentiate these 

isolated species it would be necessary to design PCR primers that are specific for each of 

these species based on differences in the hypervariable regions of the 16S rRNA gene 

(Ward & Timmins 1999; Walter et al. 2000). However, even though the precise 

species/strain cannot be elucidated, to the best of our knowledge there are no data 

published hitherto that details the isolation of viable Lactobacillus spp. (L. casei, L. 

paracaei or L. rhamnosus) from atherosclerotic plaque tissue.  
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Lactobacillus spp. are primarily oral microbes that play a divisive role in oral health and 

disease (Badet & Thebaud 2008). Thus, a possible periodontal origin for the Lactobacilli 

spp. cannot be ruled out. L. casei, L. paracasei or L. rhamnosus are moderately cariogenic 

through their ability to convert lactose and other sugars to lactic acid, which demineralises 

the hard tissues of the teeth, (i.e. dentin, cementum and to a lesser extent enamel). The 

initial breakdown of the tooth barrier leaves the tooth open to infections that if left 

untreated may progress into the deeper tissues of the periodontium, which can eventually 

lead to systemic infection (Li et al. 2000). Transient bacteraemias resulting from chronic 

oral infection and the breakdown of periodontal and gingival tissue are a major factor 

contributing to secondary infections at sites distant from the oral cavity. Interestingly, 

Apoe-/- and Ldlr-/- mice injected with L. casei cell wall components, have been shown to 

develop atherosclerosis with abundant collagen, and both extracellular and intracellular 

lipid and foam cells, compared to lesions in control mice (Chen et al. 2012).  

In the present study, Streptococcus spp., most closely related species, S. mitis (2%) and S. 

sanguinis (1%) were isolated from the atherosclerotic plaque tissue. However, as with the 

three Lactobacillus spp. detected in this investigation, Mitis Group bacteria (MGB) are 

also difficult to differentiate between using only 16S rDNA PCR and thus, it is not possible 

to confirm their presence within the scope of this study. To the best of our understanding 

there have been no data published hitherto, which demonstrates the isolation of viable S. 

mitis or S. sanguinis from atherosclerotic plaque tissue. Both species are members of the 

viridans streptococcus group that inhabit the mouth and have an abundance of putative 

surface proteins that permit primary colonisation of dental plaque (Xu et al. 2007; 

Denapaite et al. 2010). Viridans group bacteria, including S. mitis and S. sanguinis have 

been shown to be opportunistic pathogens, evidenced by their isolation from blood and as 

the primary pathogens in osteomyelitis and native-valve infective endocarditis (Mylonakis 

& Calderwood 2001; Presterl et al. 2005; Choudhury et al. 2009; Nomura et al. 2011; 

Raber-Durlacher et al. 2013). To confirm the presence of viable S. mitis and S. sanguinis 

further investigation is required. As discussed in the previous chapter, molecular 

techniques such as, DGGE or to employ the use of more discriminative markers, typically 

enzyme or protein-encoding housekeeping genes such as, sodA, rpoB, hlpA, gdh and/or 

gdh in addition to the 16S rRNA gene. However, if the species detected in this chapter of 

work were a true representation of the viable microbiome, then isolation of S. mitis and S. 

sanguinis would provide further evidence for an association of oral bacteria and 
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atherosclerosis by confirming the presence of viable oral bacteria within atherosclerotic 

plaque. 

5.5 Conclusion 

While a case can be made that supports the hypothesis that opportunistic pathogens, such 

as the strains isolated here, originate from the oral cavity (periodontium), where they are 

the predominant strains; it must be done with caution. Although the predominant species 

detected here was P. acnes, also present were Streptococcus spp. and Lactobacillus spp. 

While it is not possible to confirm the species of Streptococcus or Lactobacillus, both 

genera are commonly found within the oral cavity. It is plausible to propose these strains 

may have gained entry to the blood stream via dental bacteraemia, however this cannot be 

proposed with certainty as other bodily niches exist that may also be the source e.g. 

trachea, gut or lungs (Salminen et al. 2004; Valdés et al. 2008; Dickson et al. 2015). The 

design and scope of this project cannot conclusively pinpoint the origin of the strains 

isolated. The large majority of genera isolated here were potentially nosocomial; however, 

at the time of surgery, no patients were being treated for nosocomial septicaemia. 

Nevertheless, any suggestion of their source must be done with caution. It is however clear 

from the literature and from the data presented here that P. acnes in particular, should not 

simply be dismissed as a contaminant, especially when considering its pathogenicity as a 

primary pathogen in numerous pathologies. 
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6.1 Introduction 

The initiation and progression of atherosclerotic plaque encompasses a series of highly 

specific cellular and molecular responses that are mediated at every stage by cytokines, 

chemokines and growth factors. The continual subendothelial accumulation of reactive 

lipoprotein and the responding influx of inflammatory cells, actively contribute to lesion 

growth. A critical set of processes that can radically affect the development of 

atherosclerotic plaque are those that regulate cholesterol homeostasis within cells.  

Cholesterol homeostasis is strictly regulated by a sterol sensing feedback pathway that is 

controlled by endoplasmic reticulum (ER)-residing transcription factor, namely sterol 

regulatory element binding protein (SREBP)2 and its chaperone protein, SREBP cleavage 

activating protein (SCAP) (Yang et al. 2002) (cholesterol biosynthesis; figure 6.01). The 

SREBP2/SCAP protein complex tightly regulates the transcription of genes controlling 

LDL uptake (e.g. low density lipoprotein receptor (LDLR)) and cholesterol biosynthesis, 

i.e. 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) which also 

controls the synthesises a multitude of isoprenoids and steroids necessary for healthy 

cellular functions (Burg & Espenshade 2011).  

In a lipid-rich environment, such as an atherosclerotic lesion, it would be anticipated that 

SREBP2/SCAP would remain down-regulated, anchored to INSIG sequestered in the ER 

(Yang et al. 2002). The uncontrolled uptake of ox-LDL mediated by scavenger receptors 

rather than native LDL uptake is considered the primary cause of macrophage foam cell 

formation. However, dysregulation of SCAP feedback in response to pro-inflammatory 

stimuli (IL-1β and TNF-α), has been observed in vitro; culminating in enhanced SREBP2 

translocation and redundant LDLR expression. The extent to which inflammatory 

mediators affect cholesterol biosynthesis is not yet fully elucidates, therefore 

understanding cholesterol homeostasis and how it may be affected by inflammation may 

provide information relating to the development of foam cells or plaque development. 
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Figure 6.01: Cholesterol Uptake/Efflux. Macrophage scavenger receptors expressed on the surface of 

the macrophage, such as LOX-1 (A), SR-A1 (B) and CD36 relentlessly target oxLDL for internalisation. 

Ox-LDL is rich in cholesteryl esters (CE), which upon internalisation, are hydrolysed by acid cholesterol 

ester hydrolase (ACEH) to unesterified cholesterol (UC) and subsequently released from lysosomes as 

free cholesterol (C). Two critical pathways control the fate of free cholesterol; firstly, the re-esterification 

of UC to CE by the ER-resident enzyme, Acyl-CoA cholesterol acyltransferase 1 (ACAT1) (E) for its 

storage in intracellular CE lipid droplets (F). The second pathway, which is critical for macrophage 

survival, relies on cleavage of CE back to cholesterol by neutral cholesterol ester hydrolase 1 (NCEH1) 

(G). The latter hydrolysis reaction permits efflux of UC to the plasma membrane by transporters such as 

ABCA1 (H) for lipidation of lipid-poor ApoA1 (I). However, UC targeted for efflux can undergo a ‘futile 

cycle’ of esterification hydrolysis by ER-resident hydrolases (J). When an imbalance in these pathways 

favours cholesterol storage, macrophages become laden with CE and oxysterols and develop into foam 

cell. Cholesterol Biosynthesis. When intracellular cholesterol is abundant, the SREBP2/SCAP protein 

complex is sequestered in the ER through SCAP sterol sensing domain (SSD)-induced binding of insulin 

induced gene (INSIG) (A). Alternatively, when cellular cholesterol is deplete, SREBP2/SCAP complex 

dissociates from INSIG (B) and buds off from the ER as a COPII vesicle (C), which translocates to the 

Golgi Apparatus (D). A transcriptionally active portion of SREBP is then protolytically cleaved from the 

protein complex and translocates to the nucleus (E) where it finally binds the promoter sequences for up-

regulation of cholesterogenic genes such as HMGR and LDLR (F) for de novo synthesis of cholesterol or 

uptake of LDL, respectively (G). Adapted and expanded from (Moore et al. 2013). 

 

A widely accepted paradigm for much of the last two decades has been the oxidative 

modification hypothesis proposed by Steinberg and colleagues, in which elevated 

oxidative stress in the vascular wall gives rise to oxidised LDL (oxLDL) that is 

preferentially targeted over native LDL and taken up by macrophages. Macrophage 

internalisation of atherogenic lipoproteins is presumed to be the over-riding cause of 
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macrophage foam cell formation, a major hallmark of atherosclerotic plaque (cholesterol 

uptake/efflux; figure 6.01). Present on the surface of ox-LDL are biologically active 

oxidation epitopes that bind with high affinity to pattern recognition receptors, such as 

macrophage scavenger receptors (CD36, SR-A1 and LOX-1) (Peiser et al. 2002). Ox-LDL 

is rich in cholesteryl esters (CE), which upon internalisation can undergo numerous cycles 

of hydrolysis and re-esterification before it is stored as CE lipid droplets in the cytosol of 

the macrophage (figure 6.01) (Brown et al. 1980). Unlike the LDL receptor, scavenger 

receptors are not down-regulated in response elevated cholesterol levels and so massive 

amounts of CE can be internalised resulting in the development of macrophage foam cells, 

a classic hallmark of the atheroma (Maxfield & Tabas 2005).  

In addition to lipoprotein uptake pathways, macrophages are also modulated by pathways 

that promote the removal of excess cellular cholesterol. The transport mechanisms that 

promote efflux of excess cholesterol from macrophages to extracellular acceptors (the first 

step in reverse cholesterol transport (RCT)) are of critical importance in protecting against 

lipid accumulation and ultimately, foam cell formation (Rosenson et al. 2012). HDL and 

lipid-poor apolipoprotein play a central role in the RCT pathway by serving as the primary 

acceptors for macrophage cholesterol efflux. A major advance in our understanding of 

macrophage cholesterol efflux pathways has come with the identification of ABC 

transporters that facilitate the transport of unesterified FC to extracellular acceptors. ATP-

binding cassette transporter A1 (ABCA1) (figure 6.01) plays a critical role in preventing 

the excess cholesterol accumulation in macrophages (Schmitz et al. 1999) (figure 6.01). 

However, UC targeted for efflux can undergo a ‘futile cycle’ of esterification hydrolysis 

by ER-resident hydrolases (Ouimet & Marcel 2012). When an imbalance in these 

pathways favours cholesterol storage, macrophages become laden with CE and oxysterols 

and develop into foam cell. In becoming loaded with lipid, foam cells appear trapped in 

the vessel wall, where they readily secrete pro-inflammatory cytokines (i.e. IL-1β, TNF-

α), chemokines (CCL2) and ROS, recruiting additional inflammatory cell and ultimately 

leading to the demise of the surrounding healthy tissue (Figure 1.05 main introduction 

section 1.2.4 ) (McLaren et al. 2011). 

Apoptosis of foam cells contributes to necrotic core formation, a hallmark of plaque 

severity (Thorp & Tabas 2009). Several cysteine proteases have been described to 

participate in the apoptotic process (Miller 1997). There are many routes that result in 

activation of apoptosis though all are broadly categorised under the two main pathways of 
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action, either intrinsic or extrinsic. A major pathway in foam cells is activated by 

prolonged stimulation of the ER with excess FC that triggers ER stress resulting in the 

induction of an ER-activated protein cascade beginning with protein kinase RNA-like ER 

kinase (PERK) and the release of ROS. PERK activates CCAAT-enhancer-binding protein 

homologous protein (CHOP), a transcription factor that down-regulates anti-apoptotic 

members of the BCL-2 family, such as BCL2A1, thereby promoting apoptosis (Feng et al. 

2003; Colgan et al. 2011; Scull & Tabas 2011). Apoptosis is activated by Bak/Bim and 

pro-apoptotic BCL-2 family member proteins that translocate to the mitochondrial outer 

membrane where they induce the release of apoptotic factors such as, cytochrome C and 

other proteins involved in the cleavage of caspases (Czabotar et al. 2013; Westphal et al. 

2014). The up-regulation of BCL2A1 can interact with and inhibit other pro-apoptotic 

BCL2 proteins and several BH3-only protein at the mitochondria which is suggested to 

play a role in survival of foam cells, permitting massive lipid loading (Vogler 2012). 

3-hydroxy-3-methyl-glutaryl reductase (HMGR) is a transmembrane glycoprotein 

enzyme located on the ER. When activated HMGR catalyses the four-electron reduction 

of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate, which undergoes 

many subsequent transformations to form sterol precursors and ultimately cholesterol 

(figure 6.02; recreated from (Buhaescu & Izzedine 2007)). As intracellular sterol levels 

fluctuate HMGR is tightly regulated at the transcriptional (SREBP/SCAP) and post-

translational (phosphorylation and ubiquitination) levels (Burg & Espenshade 2011). An 

environment abundant with cholesterol, such as atherosclerotic plaque, should inhibit 

expression of SREBP2/SCAP, thereby preventing transport of the SREPB/SCAP complex 

from ER to Golgi apparatus, which would in turn limit end-product expression of genes 

such as HMGR (Eberlé et al. 2004; Xiaoping & Fajun 2012).  

This pathway may be somewhat complicated by the possibility of HMGR inhibitor 

therapy, namely, statins, which are competitive antagonists of HMGR that occupy a 

portion of the binding site of HMG-CoA, thus blocking access of this substrate to 

the active site (Istvan & Deisenhofer 2001). However, one of the main design objectives 

of statins design is the selective inhibition of hepatic HMGR, while the same mechanism 

of action should not affect non-hepatic cells; thus, de novo cholesterol synthesis in non-

hepatic cells should remain uninhibited by statin therapy (Hamelin 1998). Blocking 

hepatic HMGR reduces the production of mevalonate, which inhibits cholesterol synthesis 

in the liver (figure 6.02; (Buhaescu & Izzedine 2007)). Reduced hepatocyte cholesterol 
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production triggers SREBP2 activation, leading to transcription of hepatic-LDLR, 

increasing LDL clearance from the circulation, thus, improving the lipid profile (Vaughan 

& Gotto 2004; Dong et al. 2010).  

 
Figure 6.02: Mevalonate pathway and isopredoid synthesis. Shows the rate limiting step in the reduction 

of HMG CoA to Mevalonic acid (bold). Enzymes (red italics), intervention therapies (blue). PP = 

pyrophosphate; FTIs = farnesyl transferase inhibitors; GGTI = geranylgeranyl transferase inhibitors; 

IPP = isopentenyl pyrophosphate. (Buhaescu & Izzedine 2007) 

 

There are also many pleotropic effects of statin therapy that have a direct effect not just on 

cholesterol homeostasis but also improving endothelial function, enhancing the stability 

of atherosclerotic plaques, decreasing oxidative stress and inflammation, and inhibiting 

the thrombogenic response (Liao & Laufs 2005). Thus, statin therapy has been shown to 

inhibit expression of numerous facets of the innate immune response such as pro-

inflammatory cytokines, TNF-α and IL-1β, adhesion molecules ICAM-1 and VCAM-1 as 

well as chemokines CCL2, IL-8 and RANTES (Schönbeck & Libby 2004). However, 

significant up-regulation of  IL-1β in simvastatin-treated T cells has also been reported, so 

the issue becomes complicated further (Jameel et al. 2013). In the present study it was not 
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known whether patients who donated their plaque tissue were receiving statin therapy. 

Therefore any attempt at interpreting the results must be done with caution. 

The theory supporting that this process occurs as a ‘response to injury’ proposes that 

endothelial denudation (ED) is the earliest stage of atherogenesis. ED occurs at arterial 

sites where vascular bifurcation or curvature disrupts blood flow dynamics, creating sheer 

stress that affects homeostatic properties of the endothelium. At regions susceptible to ED, 

circulating LDL permeates the damaged endothelium and accumulates within the intima 

where they become oxidised by reactive oxygen species (ROS) (Singh et al. 2002). ox-

LDL is pro-inflammatory and chemotactic for leukocytes by stimulating secretion of IL-

1β and TNF-α; both potent stimulators of endothelial selectins (P and E) and cell adhesion 

molecules (CAMs), ICAM-1 and VCAM-1 . Leukocyte P-selectin glycoprotein ligand 1 

(PGSL-1) and E-selectin ligand 1 (ESL-1), which are constitutively expressed by 

circulating monocytes, tethers their respective endothelium selectin (P- and E-selectin, 

respectively) with low affinity, initiating monocyte “rolling” through detachment and 

reattachment of selectin interactions (Figure 1.05 main introduction section 1.3.4 ) (Steidl 

et al. 2000; Ley 2003). Simultaneously, ox-LDL-induced chemokines such as, monocyte 

chemoattractant protein-1 (CCL2), binds to the extracellular domain of G-protein coupled 

membrane receptor CCR2 (Dzenko et al. 2005). Binding causes a conformational change 

in the cytosolic portion of CCR2 triggering a cascade of intracellular protein activation 

leading to the up-regulation of monocyte integrin, LFA-1. Selectin interations decrease 

monocyte velocity, enabling LFA-1 to bind its ligand, ICAM-1; immobilising the 

monocyte at the site of ox-LDL-induced inflammation (Marlin & Springer 1987). The 

monocyte then undergoes complete reorganisation of its cytoskeleton and extravasates to 

the subendothelial space (Middleton et al. 2002).   

Up to now the focus of this thesis has been to establish the presence of bacteria or their 

cell wall components in atherosclerotic plaque tissue either through 

immunohistochemical, 16S rDNA or a viable presence via culturing tissue specimens. In 

the following chapter the focus is shifted to investigate some of the aforementioned 

pathways that play prominent roles in the initiation and progression of atherosclerotic 

plaque tissue. Specifically, this chapter investigates the real-time quantitative real time 

PCR (RT-qPCR gene expression of 10 genes.   The genes are broadly categorised as 

cholesterol homeostatic genes (SREBP2, SCAP, HMGR, LDLR and ABCA1), 

inflammation (TNFα, IL1β, CCL2 and CCL3) and apoptotic (BCL2A1).  
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6.2  Chapter aims 

The aims of this chapter were two-fold.  

1. To measure the expression of a panel of genes that are thought to play a role in 

the development of atherosclerosis such as. 

a. Inflammation (TNFα, IL1β, CCL2 and CCL3). 

b. Cholesterol mediation (SREBP2, SCAP, HMGR, LDLR and ABCA1). 

c. Apoptosis (BCL2A1). 

2. To generate a unique profile of gene expression from atherosclerotic plaque 

tissue that can be used to compare with the expression of the same genes 

regulated in monocytes when challenged with one of the most frequently 

detected bacteria species present in the plaque tissues examined in earlier 

chapters, namely Propionibacterium acnes. 

6.3 Method overview 

A panel of oligonucleotide primers were designed to target the expression of 19 genes 

(section 2.5.1). Primers were optimised to ensure they met requirements of amplification 

efficiency and were sequenced to establish gene specificity (section 2.5.1). CAP (n = 15) 

and LITA (n = 7) tissue specimens for RNA analysis had been preserved in RNAlater® 

since collection from theatre. Specimens were ground in liquid nitrogen and RNA 

extracted using Tri Reagent® (section 2.5.2). mRNA was reverse transcribed using a RT-

PCR protocol that was performed in two phases: initial anchoring of a 15-mer poly-T tailed 

oligo(dt) primer followed by first-strand synthesis of the cDNA sequence complementary 

to the RNA template (section 2.5.4). A negative control reaction was prepared by omitting 

GoScript® transcriptase enzyme. The cDNA generated was used as template for qPCR 

using SYBR® Select mastermix protocol (section 2.5.5). Each plate of qPCR reactions 

comprised test reactions (CAP cDNA), calibrator reactions (LITA cDNA) a RT-negative 

and a PCR negative (omitted template for dH2O) (section 2.5.5). Analysis of qPCR data 

were performed in accordance with the Livak and Schmittgen (2001) ΔΔCT method for 

relative gene expression (section 2.5.6). 

6.4  Results 

All reverse-transcription quantitative PCR results were generated to provide technical 

replicates Ct values for CAP (n = 15_ and LITA (n = 7). However, not all plaques provided 
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a qPCR signal and therefore n numbers for both tissues are detailed in table 6.01. All C t 

values were normalised to a stably expressed reference gene RPL27A  

HMGR was highly expressed in plaque tissue (23.52±4.4) compared to LITA (1.0±3.8). 

Both fold change data sets were normally distributed and so fit the criteria for parametric 

significance testing with a Student’s t-test. A two-tailed t-test revealed that HMGR 

expression in AP tissue was significantly different to HMGR expression observed in the 

healthy control tissue LITA [t(19) = 2.196, p  0.02].  

Similarly, SCAP showed a comparable up-regulation in AP tissue (18.64±4.4) compared 

to the level of SCAP expression observed in LITA tissue (1.07±4.5). Fold change values 

for plaque tissue were not normally distributed and could not be made normal by 

transforming the data. A Shapiro-Wilk test for normal distribution was performed with a 

null hypothesis, “the population from which the sample set originates are normally 

distributed” and rejected when p <0.00001. The data set remained non-normal following 

data transformation giving p <0.05. Hence, data were analysed using a non-parametric 

Mann-Whitney U (MWU) test. A two-tailed MWU test revealed that SCAP expression in 

AP tissue was significantly different compared to LITA tissue expression of SCAP [MWU 

= 18, n1 =15, n2 = 6, p 0.04]. Had a student’s t-test been performed, the test would have 

revealed that expression of SCAP in AP tissue was not different relative to SCAP 

expression in LITA tissue [t(19) = 1.64, p  0.117]. 

SREBP2 was up-regulated in AP (11.42±4.17) compared to LITA (1.03±4.7). However, 

the expression of SREBP2 in AP was not significantly different to that of the control tissue 

expression [t(18) = 0.76, p  0.457]. Likewise, LDLR expression in AP tissue (-1.45±4.44) 

was not different to the expression observed in LITA control tissue (1.64±4.8) and so was 

not statistically significant [t(9) = -0.27, p  0.796]. There was a noticeable reduction in 

samples showing detectable expression of LDLR; only one third of the specimens produced 

a qPCR signal. Because of this, mean expression fold change was skewed.  

In contrast to SREBP2 and LDLR, up-regulated ABCA1 expression was markedly greater 

in plaque tissue (285.59±4.5) than it was LITA tissue (1.61±4.9). Indeed, a two-tailed 

Student’s t-test confirmed that fold change difference of ABCA1 in AP tissue relative to 

LITA control tissue was highly significant [t(18) = 2.76, p  0.013]. In fact plaque tissue 

expression of ABCA1 was by far the most highly expressed gene of all target genes 

examined here. 
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Both CCL3 and CCL2 were similarly expressed in AP tissue (13.43±4.2 and 9.89±4.7, 

respectively) relative to LITA (1.02±4.2 and 1.13±3.7, respectively). After performing a 

two-tailed Student’s t-tests both AP tissue expression CCL3 and CCL2 showed fold 

changes that were significantly different when compared to LITA control tissue, [t(12) = 

3.23, p  0.032] and [t(18) = 3.50, p  0.003], respectively. 

ICAM1 (2.563±4.4) showed remarkably low expression in AP tissue compared to the fold 

change levels of other target genes. Yet, ICAM1 expression was shown to have changed 

significantly in AP relative to LITA control expression [t(15) = 2.37, p  0.032]. 

Surprisingly, the mean expression values for TNFα (4.327±4.4), IL1β (6.05±4.6) and 

NFκB (1.35±4.8), were also low in AP tissue. Subsequently, their expression in AP tissue 

did not differ significantly from the level of expression observed in the LITA control tissue 

TNFα [t(11) = 1.85, p  0.091], IL1β [t(14) = 0.79, p 0.439] and NFκB [t(18) = 0.093, p 

0.927]. In contrast, BCL2A1 expression was the second most highly expressed gene, after 

ABCA1.  The level of BCL2A1 expression in plaque tissue (50.59±4.8) was shown to be 

significantly different to the expression of BCL2A1 in LITA tissue (1.12±4.3) giving a 

probability [t(17) = 5.79, p  <.0001]. 
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Plaque LITA 

Gene p t -stat DF Mean fold n Mean fold n 

HMGR  0.041 2.196 19 23.516±4.45 15 1.003±3.85 6 

SREBP2 0.457 0.761 18 11.424±4.17 14 1.033±4.67 6 

LDLR 0.796 -0.266 9 -1.449±4.18 6 1.642±4.82 5 

ABCA1 0.013 2.758 18 285.593±4.44 15 1.611±4.90 5 

CCL3 0.032 3.229 12 13.430±4.49 9 1.021±4.21 5 

CCL2 0.003 3.498 18 9.887±4.66 14 1.132±3.73 6 

ICAM1 0.032 2.368 15 2.563±4.44 12 1.043±4.33 5 

TNFα 0.091 1.854 11 4.327±4.45 8 1.103±5.10 5 

IL1β 0.439 0.797 14 6.058±4.61 12 1.182±5.13 4 

BCL2A1 0.00002 5.792 17 50.586±4.80 14 1.115±4.39 5 

  Utest/Ucrit      

SCAP* 0.036 18/19 19 18.643±4.44 15 1.072±4.50 6 

Table 6.01: Gene expression results for CAP expression relative to LITA and normalised to RPL27A. 

Statistical results for two-tailed, independent Student’s t-test of gene expression CT values in plaque tissue 

vs healthy LITA control tissue and normalised to reference gene RPL27A. Significance testing was 

performed with the statistical package R v 3.0.3 and probability (p), t-stat score, degrees of freedom (DF), 

mean fold change and number of observations for AP and LITA are presented. 

* Non-parametric testing for SCAP: AP fold change expression data were not normally distributed and 

therefore tested using a MWU test. The column Utest/Ucrit denotes the lowest computed U (Utest) value for 

AP vs LITA, 18. From a table of two-tailed critical U (Ucrit) values, comparing sample sizes n1 15 vs n2 

6, Ucrit = 19 for a p < 0.05. As Utest< Ucrit (18<19) MWU = 18, n1 =15, n2 = 6, p 0.036 (two-tailed) 

 

 

 

 

 



Chapter 6: A study of gene expression in human internal carotid atherosclerotic plaques 

 

212 
 

 
Figure 6.03: Shows boxplot graphs for fold change expression of HMGR (A), SCAP (B), SREBP2 (C), ABCA1 

(D) and CCL3 (E) in plaque (n = 15) vs LITA (n = 7) tissue. Gene expression data was calculated using CT 

values for each target gene that were normalised to a stably expressed reference gene RPL27A.  Boxplots show 

data for  25%-75%;  * <0.05; ** <0.01; ***<0.001 
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Figure 6.03: Continued. Shows boxplot graphs for the gene expression fold change of CCL2 (G), ICAM1 (H), 

TNFα (I), IL1β (J) and BCL2A1 (K) in plaque (n = 15) vs LITA (n = 7) tissue. Gene expression data was 

calculated using CT values for each target gene that were normalised to a stably expressed reference gene 

RPL27A.  Boxplots show data for  25%-75%; * <0.05; ** <0.01; ***<0.001 
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6.5  Discussion 

6.5.1 Sterol Regulatory Binding Protein 

In the present investigation expression of SREBP2 was mostly the result of a significantly 

large expression (>144-fold) from just one CAP sample, whereas the remaining plaque 

samples showed only small increases (<5-fold) or downregulation. Hence, collective 

expression of SREBP2 was not significantly elevated. These observations suggest the CAP 

samples examined here were possibly at drastically different stages in their development. 

These data contrast findings presented by Fan et al. (2008), who performed whole genome 

sequencing to investigate the expression of SREBP2 and SCAP in human atherosclerotic 

tissues (type IV – V) and compared them in different arterial beds, i.e. the carotid, aorta 

and femoral region and normal artery tissue. A significant down-regulation of SREBP2 in 

atherosclerotic carotid plaques but not in the aorta or femoral arteries compared with non-

atherosclerotic tissues. SCAP showed a similar pattern of expression, though levels were 

not statistically significant. The pattern of expression demonstrated by Fan et al. (2008) 

completely contrast the findings presented in this chapter, in which both SREBP2 (>11-

fold) and SCAP (>18-fold) showed marked upregulation, though only SCAP was 

significantly expressed in CAP samples compared to healthy LITA controls. 

Shchelkunova et al. (2013) measured mRNA levels at different stages of aortic 

atherosclerosis using qPCR and recorded a progressive upregulation of SREBP2 in fatty 

streaks and fibro-lipid plaques. Interestingly, although different atrial beds were examined 

data presented by Shchelkunova et al. (2013) are more comparable with finding presented 

here, which may indicate a certain amount of uniformity between expression of plaques 

from different bodily sits.  

Interestingly, the findings presented here, particularly for expression of SREBP2 in CAP 

specimens are more aligned with those representing aortic expression. For example, 

Shchelkunova et al. (2013) measured mRNA levels at different stages of aortic 

atherosclerosis using qPCR and recorded a progressive upregulation of SREBP2 in fatty 

streaks and fibro-lipid plaques. Given that genetic mutations of SREBP2 1784G>C and 

the SCAP 2386A>G have been shown to put men at an increased risk of sudden cardiac 

death it is likely different genotypes affect the development of atherosclerosis differently, 

which may partially account the different patterns of expression observed between these 

studies (Fan et al. 2008). 
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In simple terms, the role of SCAP as a cholesterol sensing protein activates SREBP2 when 

intracellular cholesterol levels are depleted. Through a succession of proteolytic cleavages 

to release SREBP2/SCAP from the ER, SREBP2/SCAP translocate to the Golgi apparatus. 

From there, the transcriptionally active potion of the SREBP2 is proeolytically cleaved 

and translocates to the nucleus where it functions as a transcription factor in the 

transcription of gene needed for uptake and synthesis of cholesterol genes including 

HMGR and LDLR.  One can make certain inferences based on the pattern of expression 

observed here. Firstly, the pattern of expression indicates the cells within the plaque tissue 

are in a cholesterol-depleted state, evidenced by SCAP up-regulation. Secondly, given the 

lack of significant SREBP2 expression, but significant up-regulation of SCAP, the process 

was captured at the earliest point in the pathway. Given the high lipid cholesterol 

composition of an atherosclerotic plaque, it would be more intuitive to expect to see down-

regulation or no regulation of SREB2 and SCAP, particularly for macrophages that have 

access to or are loaded with cholesterol in excess.  

Interestingly, expression of SREBP2 in plaque have been partially reproduced in cultured 

macrophages upon lipid loading, which suggests the involvement of macrophage foam 

cells in the expression profiles observed here (Shchelkunova et al. 2013). However, both 

SCAP and SREBP2 are upregulated in foam cells in response to pro-inflammatory 

cytokines, such as TNF-α and IL-1β, which suggests more complex mechanisms are at 

play, other than just sterol sensing (Ruan et al. 2001).  Although, while mRNA levels for 

both TNFα and IL1β were raised in the CAP samples examine here, mRNA levels were 

not significantly greater than those observed for the LITA control tissue. Nevertheless, 

monitoring the expression of these genes is a good way of gauging cholesterol mediation 

in atherosclerotic plaque tissue and it would be informative to replicate these findings in 

an in vitro model of infection. 

6.5.2 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) 

As previously mentioned HMGR is another SREBP2/SCAP transcript coding for the 

enzyme HMG-coA reductase that controls the rate limiting step in the mevalonate pathway 

for de novo synthesis of cholesterol. In the present study, despite no change in the levels 

of SREBP2 mRNA, significant up-regulation of HMGR was observed. Given that the 

expression of HMGR controlled by SREBP2, this would suggest a very recent up-

regulation of SREBP2 in response to low cellular cholesterol cues. The significant 

expression of SCAP would certainly indicate this. HMGR expression observed in this 
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study supports earlier findings by Lee et al. (2011), who demonstrated significant localised 

expression of HMGR in macrophage-rich areas of unstable plaque compared to plaques 

from patients with stable angina when using anti-HMGR and anti-CD31. These findings 

suggest that local HMG-CoA reductase is functionally active, and lesion macrophages in 

unstable angina more actively produce HMG-CoA reductase than in stable angina. 

Tuomisto et al. (2003) specifically isolated macrophage-rich shoulder regions of AP tissue 

using laser microdisection and reported a high up-regulation of HMGR compared to 

disease-free tissue of the same artery. It was proposed by that the relatively high expression 

of HMGR may be due to proliferation and/or differentiation of macrophages because 

similar expression was observed with THP-1 cells cultured with phorbol 12-myristate 13-

acetate (PMA). Conversely when THP-1 cells were incubated with ox-LDL, which closer 

resembles atherogenic conditions, down-regulation of HMGR was observed, which 

suggests that and lipid-loaded THP-1 macrophages may not be an accurate model of 

macrophages present in shoulder. Thus, HMGR may be expressed as a requirement of 

macrophage proliferation and/or differentiation rather than dysregulated by 

inflammatory/lipid stimuli.  

In the present study no specific region of AP tissue or accumulation of particular cell types 

was isolated for analysis, yet notably, HMGR expresion fold change was 30% greater than 

observed by Tuomisto et al. (2003). This may be the result of large accumulations of lipid-

loaded macrophages as observed by Tuomisto et al. (2003); however all other cell types 

present within the atherosclerotic plaque tissue have the capacity for de novo cholesterol 

synthesis and therefore could be equally as responsible. To elucide the specific cells 

responsible for the overexpression of HMGR within the atherosclerotic plaques examined 

here, it would be necessary to perform IHC by targeting HMGR expression as well as 

specific cell types present atherosclerotic plaque tissue section. Alternatively, regions of 

tissue containing accumulations of individual cell types can be microdissected and 

analysed for expression of HMGR via qPCR. Nevertheless, HMGR has been shown here 

to be highly expressed in atherosclerotic plaque tissue, which if expressed by tissue 

macrophages has the potential to influence lipid loading.   
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6.5.3 ATP-binding cassette, sub-family A (ABC1), member 1  

In the present study, expression of ABCA1 mRNA was by far the most highly expressed 

gene of all genes tested, showing a fold increase in CAP tissue that was >285 times higher 

than ABCA1 expression in healthy LITA control. A previous report of ABCA1 

localization in human atherosclerotic tissue using in situ hybridization demonstrated that 

ABCA1 mRNA was predominantly localized to macrophages in both early fatty streaks 

and in the shoulders regions of advanced aortic atheromas, but not in LITA (Lawn et al. 

2001). Since then, a number of related studies have also recorded increased expression of 

ABCA1 in various vessels affected by atherosclerosis (Albrecht et al. 2004; Forcheron et 

al. 2005; Soumian et al. 2005; Isoviita et al. 2010; Liu et al. 2012).  

Albrecht et al. (2004) reported significantly increased ABCA1 mRNA in advanced plaque 

specimens compared to inferior mesenteric arteries (IMA) using qPCR standard curve 

method. In addition, Albrecht et al. (2004) revealed that ABCA1 activity was localised, 

rather than systemic up-regulation of ABCA1, evidenced by a lack elevated ABCA1 

expression in circulating leukocytes. Interestingly, ABCA1 mRNA and protein expression 

were comparable for IMAs; whereas protein expression was significantly reduced in 

atheroma, less than IMA, despite significant up-regulation of ABCA1 mRNA. Liu et al. 

(2012) showed similar divergence between ABCA1 mRNA and protein levels when 

investigating expression of carotid endarterectomy specimens at various stages of 

development (AHA histological features of type I to III) compared to IMA healthy 

controls. Type II and III ABCA1 mRNA levels were significantly higher than that of type 

I. Though, in contrast to mRNA levels, protein levels for type II and III were significantly 

lower than type I. The same disparity between ABCA1 mRNA and protein levels were 

observed by Forcheron et al. (2005) who recorded no change of ABCA1 mRNA 

expression in carotid plaques vs microscopically intact tissue (MIT), though a significantly 

decreased ABCA1 protein levels was observed. 

Taken together these findings provide evidence that ABCA1 mRNA expression levels are 

up-regulated throughout early to advanced lesion development, which is consistent with 

the expression of ABCA1 observed here. Eventually though, expression in advanced 

lesions leads to a loss of function characterised by a decrease of protein, despite significant 

up-regulation of mRNA. Clearly, mRNA levels do not always accurately reflect protein 

expression, particularly it appears for ABCA1, where relative mRNA distribution in tissue 

show marked discordance with protein expression patterns signifying that post-
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translational regulation of ABCA1 is critical cholesterol homeostasis (Wellington et al. 

2002) 

Consequently, when considering these findings, it becomes difficult to elucidate the true 

meaning of the ABCA1 expression observed here without evidence of protein induction. 

However, to our knowledge, the level of ABCA1 mRNA expression presented in this study 

far exceeds any ABCA1 mRNA levels in atherosclerotic plaque published so far. 

Ordinarily, this may indicate elevated ABCA1 protein; however, protein levels cannot be 

hypothesised given the large discourse between mRNA and protein levels observed by 

other investigators. It can however be suggested, that the population of carotid 

endarterectomy specimens analysed here produced a pattern of ABCA1 expression more 

typically encountered with moderate to advanced lesions.  

6.5.4 Low density Lipoprotein Receptor  

A non-significant down-regulation of LDLR was noted in the present investigation. As a 

transcript of SREBP2, LDLR is expressed when intracellular levels are depleted. The 

LDLR is responsible for receptor-mediate endocytosis of extracellular cholesterol in the 

form of circulating LDL that can be used by the cell for various intracellular requirements; 

e.g. for incorporation into the lipid bilayer. Alternatively, hepatic LDLR plays a major role 

in RCT responsible by uptake LDL into the liver, which is the organ responsible for 

removing most excess cholesterol from the body. The number of expressed LDLRs on the 

surface of the liver determines how quick LDL is removed from the bloodstream. Given 

the susceptibility for development of atherosclerosis in patients with certain genotypes of 

the LDLR known to be the cause of hypercholesterolemia, the LDLR is a well studies 

receptor. Surprisingly though, there have been no reports that demonstrate direct 

expression of LDLR in human atherosclerotic plaque tissue. Unfortunately, this remains 

the case with the data obtained here. 

6.5.5 Chemokine (C-C motif) Ligand 3 (CCL3) 

In the present study significant upregulation of CCL3 was demonstrated in CAP specimens 

compared to expression levels in a healthy LITA control tissue. Levula et al. (2012) 

evaluated 256 genes in femoral, aortic and carotid vessels. Numerous significantly up-

regulated genes were recorded in carotid specimens, including CCL3, which showed a fold 

change value comparable with the present investigation. Earlier IHC investigations report 
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similar expression patterns for CCL3 & CCL2, which were often found associated with 

macrophages and/or T cells within inflammatory zones of human atherosclerotic plaques, 

e.g. plaque shoulders (Wilcox et al. 1993). Similarly, Hayes et al. (1998) reported qPCR 

expression of CCL3 and CCL2 in human CAP tissue. In a second experiment, Hayes et al. 

(1998) characterize the expression of known chemokine receptors by treating primary 

human VSMC vascular smooth muscle cells with CCL3 and CCL2. With the addition of 

the finding presented in the current investigation that confirms earlier reports of CCL3 

expression in various forms of atherosclerotic disease, it is clear both CCL3 and CCL2 are 

potently expressed in plaque tissue along with their receptor ligands. This chapter was 

prepared as a work to establish a gene expression profile that can be compared with the 

following chapter of work to investigate an in vitro model of infection. Based on the 

significance of CCL3 expression observed here, it would be interesting to compare the 

expression of CCL3 within a simple model of bacterial infection to better understand the 

role infection plays in one of the major cells present in atherosclerotic plaque tissue, 

monocyte/macrophage. 

6.5.6 Chemokine (C-C motif) Ligand 2 (CCL2) 

In the present investigation, CCL2 was found to be significantly up-regulated in AP tissue 

from the carotid artery relative to expression level observed in a healthy LITA control 

tissue. Findings presented here are in agreement with Kusano et al. (2004) who showed 

expression of CCL2 in the carotid arteries of patients chronic haemodialysis (HD) (a group 

with ~30% increased risk of cardiovascular mortality). In addition, Kusano et al. (2004) 

demonstrated that serum concentration of CCL2 was an independent factor influencing 

intimal-medial thickening (IMT). Moreover, tissue immunostaining showed that CCL2 

was expressed in both endothelial and smooth muscle cells and that its level of expression 

correlates with the serum concentration of CCL2. These findings suggest CCL2 is involved 

in the very earliest intimal thickening stages of atherosclerosis. When taken together with 

the expression of CCL2 shown here, in more complicated lesion, this indicates CCL2 is 

involved at many stages of plaque development.  

Earlier investigations have also reported CCL2 expression in CAP tissue that is most 

predominantly expressed in macrophage-rich shoulder tissue bordering the lipid core of 

CAP and atherosclerotic aorta speciemns, though less so in fibrous cap or the lipid core 

itself (Ylä-Herttuala 1991; Nelken et al. 1991). These findings  suggest a  predominat pro-

inflammatory role of tissue macrophages within plaque tissue, and highlight particular 
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regions of plaque as more chemotactic than others. Others have reported the 

immunohistochemical expression of CCL2 in different stages of atherosclerotic disease 

revealing CCL2 was most expressed by endothelial cells and macrophages of the early 

fatty streaks, rather than advanced plaques (Takeya et al. 1993). Data presented by Takeya 

et al. (1993) contrasts the findings presented here, in which we show CCL2 expression 

ocurring in more advanced plaque specimens. Again, this highlights the consistent role of 

CCL2 throughout many stages of plaque development. However, this publication pre-dates 

the AHA classification system used to grade atherosclerotic plaque tissue by histological 

features, hence, there may be some inconsistency regarding the tissue classification system 

used.  

The findings presented here therefore support findings from early investigations where 

northern blotting, in-situ hybridisation and immunocytochemistry evidence was presented. 

It would be interesting to see the level of CCL2 in an in vitro model of atherosclerosis with 

particular emphasis on infection.  

6.5.7 Intracellular Adhesion Molecule 1 (ICAM-1) 

In the current investigation a small but significant upregulation of ICAM-1 was observed 

in CAP tissue compared to healthy LITA control expression. Over the last 20 years there 

have been numerous investigations to evaluate the expression of adhesion molecules in 

different atherosclerotic diseased tissues. These are consistent with many investigations 

that have been performed over the last 20 years evaluating femoral arteries (Poston et al. 

1992; Jones et al. 1998) aortic arteries (van der Wal et al. 1992; Poston et al. 1992; 

Printseva OYu et al. 1992; Parums 1995; Jones et al. 1998; de Vries et al. 2000) and 

coronary arteries (van der Wal et al. 1992; O’Brien et al. 1993; Davies et al. 1993; O’Brien 

et al. 1996). Similarly, carotid arteries with various forms of atherosclerotic disease has 

been investigated and shown to express ICAM-1 (Hwang et al. 1997; Jones et al. 1998) 

Hwang et al. (1997) performed ELIZA to determine the extent of soluble circulating 

adhesion molecules, including selectin, VCAM-1 & ICAM-1 in the blood of patients with 

CHD and carotid artery atherosclerosis (CAA) compared with control subjects. Levels of 

VCAM-1 were not significantly different among all groups; however, significantly higher 

levels of E-selectin and ICAM-1 were observed for the patients with CHD and those with 

CAA compared with the control subjects. Nevertheless, plasma ICAM-1 levels have been 

shown to not be predictive of symptomatic disease and there is no correlative relationship 

between risk of stroke and endothelial ICAM-1 expression (DeGraba 1997; DeGraba et al. 
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1998) In contrast, ICAM-1 expression on the endothelium of the carotid artery is 

predominantly associated with symptomatic atherosclerotic disease (DeGraba 1997; 

DeGraba et al. 1998). This elevation in ICAM-1 expression in symptomatic plaque 

suggests that ICAM-1 is involved in the conversion of carotid plaque to a symptomatic 

state.  

In the present investigation carotid endarterectomy tissue was examined that consists 

predominantly of plaque, though the endothelium of the carotid artery is removed with the 

plaque in the process. It is therefore highly likely the large layer of endothelium removed 

during the surgical procedure is responsible for the ICAM-1 expression observed here 

(Jones et al. 1998). However, neovessel channels develop in atherosclerotic plaque tissue 

as it develops more advanced features. Approximately 50% of the plaques examined in 

this investigation comprised neovessels, which, although immature in structure have been 

shown to be in an almost permanent state of activation, which may account for expression 

of ICAM-1 observed here (Mazzone et al. 2006). 

Hitherto, investigations targeting adhesion molecules in atherosclerotic plaque tissue have 

involved IHC or hybridisation techniques. This is the first report showing ICAM-1 

expression in CAP tissue specimens using qPCR analysis. While PCR target is mRNA as 

opposed to the protein target of immunohistochemical testing, PCR is more sensitive and 

non-subjective. Therefore, the data presented here provided solid conclusive evidence that 

cell adhesion molecule ICAM-1 is expressed in human CAP tissue. As such, suggests that 

leukocyte recruitment, an important process central to the development of atherosclerotic 

plaque, was induced in tissue specimens examined here. However, these results do not tell 

us what is happening at the protein level. To elucidate protein expression, a future 

experiment may include both qPCR with IHC or western blotting. 

6.5.8 Tumor Necrosis Factor-alpha (TNF-α) 

In the present investigation TNFα was not shown to be expressed significantly in CAP 

samples compared to LITA. This contrasts earlier observations by other investigators 

examining carotid tissue (P. Tipping & Hancock 1993; DeGraba 1997; Skoog & Dichtl 

2002). Expression of TNFα has been detected in plaque tissue mostly by IHC (Barath et 

al. 1990; Rus et al. 1991; Kishikawa et al. 1993) and expression is associated with 

symptomatology (DeGraba 1997). In a study by Tipping & Hancock (1993) carotid, aortic 

and femoral atherosclerotic plaque tissue were analysed by isolating atheromatous 

macrophages for primary in vitro culture as well as performing IHC directly on sections 
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of tissue to determine the expression of TNFα and IL1β in both techniques. The authors 

reveal TNFα was secreted by isolated macrophages to a greater extent than monocytes 

extracted from the blood of the same patients. Furthermore, TNFα expression was shown 

to be more prominent in carotid tissue than in aortic or femoral lesions when IHC was 

performed, whereas, IL1β was only expressed infrequently and at low intensity. While no 

significant change was observed for TNFα in the CAP samples examined here, expression 

was up-regulated 4-fold compared to LITA healthy control expression. However, a small 

sample set was examined in this study, which may, in part, explain the lack of a significant 

result. To evaluate the expression of TNFα in the future a greater population of plaque 

samples should be investigated. 

6.5.9 Interleukin 1-beta (IL-1β) 

A detectable, but not significant change of IL1β mRNA was observed in the carotid AP 

tissue compared to control tissue expression. These findings are in agreement with Tipping 

& Hancock (1993), who reported a distinct lack of IL1β expression both within whole-

blood monocytes and within plaque macrophages (Tipping & Hancock 1993). Similarly, 

Frostegård et al. (1999), using immunohisochemical staining, reported limited IL1β 

expression (3/10 carotid plaques), whereas IL-1α expression was significantly expressed. 

Unlike IL-1β, IL-1α is constitutively active in its precursor form and cleaved to maturity 

by calpain proteases rather than caspase-1. IL-1, α and β facilitate recruitment of diverse 

endothelial-activated myeloid subsets, thereby sustaining the inflammatory response 

through discrete activation pathways (Rider et al. 2011). Furthermore, IL-1α is reported to 

be a damage-associated molecular pattern (DAMP), released in excess from necrotic cells 

as a signal to the innate immune system during tissue injury (Kono & Rock 2008). In 

contrast, earlier studies using IHC staining have reported significant up-regulation of IL1β 

in human AP tissue. For example, Galea & Armstrong (1996) reported increased IL1β 

mRNA levels in ischemic atherosclerotic vessels compared to non-ischemic 

cardiomyopathic vessels. IL1β expression correlated with disease severity and was 

predominantly expressed by endothelial cells and macrophages of the adventitia (Galea & 

Armstrong 1996). Similarly Dewberry & Holden (2000), also reported overall localised 

expression of IL1β associated with endothelial cells and macrophages of coronary 

atherosclerotic tissue, but absent in cardiomyopathic vessel tissue. However, expression 

of IL1β has previously been reported in cardiomyopathic coronary vessels have previously 

(Wilkinson et al. 1999; Dewberry et al. 2000).  
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As already discussed, IL-1β mediates numerous pro-inflammatory roles, which potentiate 

atherosclerotic plaque development. Yet surprisingly, the level of IL1β mRNA observed 

in the present study was not significant. IL1β expression can promote apoptosis in EC and 

SMC; an effect shown to be impeded by overexpression of the interleukin 1 receptor 

agonist (IL1-ra) in vitro (Dewberry et al. 2000). In contrast, increased expression of anti-

apoptotic proteins, such as BCL-XL and BCL-2,  interact with NALP1, one of the central 

proteins in the inflammasome complex, by suppressing caspase-1 activation and IL-1β 

production (Bruey et al. 2007; Escandell et al. 2010). In addition, caspase-1 activation and 

IL-1β production increase following prolonged inhibition of NF-κB by chemical and 

genetic attenuation of IκB kinase-β (IKKβ); a protein responsible for NF-κB activation 

(Zong et al. 1999; Greten et al. 2007). Therefore, like BCL-2, NF-κB acts as a negative 

regulator of IL-1β, which emphasises the complex and intertwined relationship between 

apoptosis and inflammation (Greten et al. 2007; Escandell et al. 2010). When considering 

the inhibitory action anti-apoptotic genes have on IL1β expression; it is plausible to 

suggest the lack of IL1β expression observed in the present investigation may partially be 

due to the inhibitory influence of BCL2A1, which showed significant expression in the AP 

specimens examined here. However, this cannot be confirmed using relative gene 

expression alone but rather a more focused analysis of BCL2A1 expression either by 

silencing BCL2A1 or gene knockout experiments. 

6.5.9.1 BCL2-related protein A1 (BCL2A1) 

One of the earliest investigations of pro and anti-apoptotic expression in advanced human 

carotid atherosclerotic plaque was performed using IHC (Konstadoulakis et al. 1998). The 

overall expression profile was one of pro-apoptosis comprising elevated Bax expression 

that correlated with macrophages by duel-staining, though no detectable expression of 

protective anti-apoptotic BCL-2-related genes for cellular survival (Konstadoulakis et al. 

1998). In agreement, Woodside et al. (2003), assessed the differential expression of 

numerous apoptosis-related genes in primary and re-stenotic (>70% stenosis) carotid 

plaques tissue using microarray cDNA hybridisation. BCL2A1, and other anti-apoptotic 

genes were decreased in the restenotic plaque tissue compared to a “transition zone” 

(immediately adjacent to the stenotic area) and a “proximal zone” (tissue furthest from 

stenotic region). Microarray technology can be extremely powerful on account of the 

number of genes that can be examined in a single analysis, yet Woodside et al. (2003) used 

only one re-stenotic lesion for comparative testing. While it is interesting to establish the 
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extent to which apoptosis presents as an etiological factor in vascular stenosis, the 

significance of these particular observations carry no statistical weight. Moreover, these 

findings greatly contrast our observations, where the up-regulation of BCL2A1 mRNA 

(50-fold) highly significant in 20 carotid AP specimens compared to health LITA control 

tissue. The data presented here is comparable with Martinet et al. (2002), who used qPCR 

to measure the expression of 205 apoptosis-related genes in human carotid endarterectomy 

specimens. BCL2A1 was up-regulated in plaque tissue compared to LITA control 

specimens, however, while a significant  up-regulation was observed, the fold-change 

reported by  Martinet et al. (2002) was markedly lower than that observed here. Also in 

agreements with the present study was Silbiger et al. (2013) who identified potential 

candidate genes as predictive markers in patients during the first 48 hours of acute 

coronary syndrome (ACS) using microarray techniques. ACS is often a result of coronary 

stenosis caused by atherosclerotic plaque, thus Silbiger et al. (2013) measured expression 

at the systemic level during symptomatic atherosclerotic disease. A complex network of 

549 genes, including anti-apoptotic BCL2A1 and BCL2L1 were found to be significantly 

expressed in whole blood cells of ACS patients. Again, although significant, gene 

expression fold change was a fraction of the level presented here. The authors suggested 

the low expression could be due to the low expression of ALOX15, a pro and anti-

atherosclerotic gene shown to influence BCL-2 gene family expression, (Middleton et al. 

2006). In contrast, Silbiger et al. (2013) showed significant up-regulation of pro-apoptotic 

pathway genes, including cytochrome c oxidase (COX)-7B and amphiregulin (AREG), 

presenting a complex picture of pro- and anti-apoptotic expression during acutely active 

atherosclerotic disease. 

In the present study it is not possible to determine the exact cell types responsible for 

BCL2A1 expression. Both macrophages and SMC are controlled by apoptosis in the 

atherosclerotic lesion and therefore operate this cell survival machinery during active 

stages of disease (Kockx 2000). Therefore, as a follow up to the expression observed here 

and in keeping with the focus of this thesis, it would be informative to understand the 

expression status of macrophage BCL2A1 cells in response to bacterial infection. 

6.6 Conclusion 

The aims of this chapter of work were two-fold. To present a unique gene expression 

profile of CAP tissue. The generation of said expression profile could then be used to 

compare with an in vitro model of infection in the following chapter. The genes expressed 
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here highlight pathways that demonstrate the cholesterol homeostatic and inflammatory 

processes within the plaque tissue. There was a somewhat complicated picture regarding 

Cholesterol homeostasis. Although SREBP2 was not upregulated in the plaque tissue 

examined here, the significant expression of HMGR would suggest recent upregulation of 

SREBP2. HMGR is fundamental for de novo synthesis of cholesterol and as a SREBP2 

transcript gene, is activated only when SCAP senses depleted levels of intercellular 

cholesterol by initiating cleavage of SREBP2 to release it from the ER. This profile is 

somewhat confused by the significant upregulation of SCAP and HMGR but not SREBP. 

This is confused further by the lack of LDLR expression because it would be expected that 

in lipid-depleted environment the LDL receptor would be upregulated to bolster LDL 

levels within the cell. These observations do not paint a very clear picture of the hyper 

lipidous environment of the atherosclerotic plaque. As discussed through this chapter, it is 

possible that this cholesterol homeostasis machinery is defective in the atherosclerotic 

vessels. However there are other possible explanations. For example, it has been shown 

that cholesterol levels are bolstered in reaction to bacterial infection; an antimicrobial 

measure by activation of HMGR to protect the cell wall from pore forming microbes 

(Kistowska et al. 2008). The latter scenario would go some way to explain why only de 

novo synthesis gene HMGR was observed rather than receptor mediated-cholesterol 

uptake but does not explain the expression of SCAP without SREBP2. It is noteworthy to 

highlight the fact that the lesion is a multicellular dynamic mass of tissue that would be in 

multiple phases of development and cellular activity. Thus, a slightly different region of 

plaque tissue may provide a completely different profile of expression. Furthermore, it 

must be noted that although a significant increase in HMGR mRNA was observed, this 

does not suggest an increase in HMGR protein, as there is a potential for post-

transcriptional regulation.  

The significant expression of ABCA1 observed here goes counter to HMGR expression 

by suggesting a cholesterol rich environment within the cells of the atherosclerotic plaque 

tissue examined here. Monocyte –derived macrophages and SMC make up a large 

proportion of an atherosclerotic lesion, both of which are incapable of regulating scavenger 

receptor mediate internalisation of modified or oxidised LDL. Because these cells are in a 

constant “futile cycle” of cholesterol storage and efflux, it is not surprising to observe the 

extremely high expression of ABCA1 measured in this investigation.  
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While preservation of the vessel is important during the surgical removal of the plaque, it 

is likely that endothelial cells and SMC were recovered with the CAP lesion during the 

endarterectomy procedure. An increase in chemokine genes CCL2 and CCL3 mRNA was 

observed, which would suggest active leukocyte recruitment by endothelial cells that are 

present in the atherosclerotic plaque. Leukocyte recruitment to endothelium is one of the 

initial processes that perpetuate the growth of an atherosclerotic plaque. The expression of 

ICAM-1 adds further credence to the activation of endothelial cells in the process of 

capturing rolling leukocytes for transmigration into the intimal layer of the artery. 

Interestingly, both TNFα and IL-1β were not expressed in the plaque tissue analysed here. 

As a major inflammatory cytokines TNFα initiates monocyte differentiation to 

macrophage and is also involved in signalling and activating the endothelium for leukocyte 

recruitment. IL1β also plays a major role in inflammation including cell proliferation, 

differentiation and apoptosis.  

BCL2A1 was significantly expressed in the plaques examined here. BCL2A1 is activated 

as a pathway to cell survival by attenuating the release of pro-apoptotic cytochrome c from 

mitochondria and thereby blocks caspase activation (Vogler 2012). A primary source of 

BCL2A1 expression in atherosclerotic plaque is as a cell survival strategy in lipid-loaded 

macrophages that switch to a protective anti-apoptotic profile of gene expression (Martinet 

et al. 2002; Kutuk & Basaga 2006).  

This chapter of work presents a unique gene expression profile that could be investigated 

further by generating protein expression profiles. Within the scope of this investigation it 

would be informative to measure the same panel of genes within a model of bacterial 

infection using a strain isolated from atherosclerotic plaque tissue. 
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7.1 Introduction 

The predominant and foremost identifiable hallmark of atherosclerotic disease is the 

formation and retention of monocyte-derived macrophage foam cells in the intimal layer 

of the artery wall, particularly within early ‘fatty streak’ lesions. Foam cells are lipid-

loaded macrophages that are generated through massive uptake of modified low density 

lipoprotein (McLaren et al. 2011). Lipoprotein deposition and retention in the artery wall 

is susceptible to oxidation and enzymatic modification, which is believed to potentiate 

endothelial dysfunction, triggering monocyte/macrophages recruitment to the site of 

inflammation through pro-inflammatory cytokine/chemokine signalling (Valente et al. 

2014). Recruited monocytes extravasate the endothelium and undergo phenotypic 

differentiation to macrophages within the intimal layer, finally targeting modified 

lipoprotein for endocytosis via scavenger receptor-mediated recognition. Unlike the LDL 

receptor, which is regulated depending on cellular lipid requirement, scavenger receptor 

LDL uptake is unregulated; hence a large internalisation of oxLDL is permitted. In 

response to lipid-loading, macrophages activate a compensatory pathway for cholesterol 

efflux, mediated by transcription factor Liver-X-Receptor (LXR) and its target gene 

expression of transporter ABCA1. However, when systemic hypercholesterolemia is 

manifest, the homeostatic mechanism can be overwhelmed, causing an abundant 

accumulation of intracytoplasmic cholesteryl esters (CE) that leads to dysregulation of 

cholesterol homeostatic mechanisms and subsequent endoplasmic reticulum (ER)-

mediated apoptosis. 

Internalised CE undergoes hydrolysis and is released from lysosomes as unesterified 

cholesterol (UC) or “free cholesterol” (FC). The fate of FC is determined by enzymatic 

pathways where FC can undergo numerous cycles of esterification and hydrolysis by ER-

resident hydrolases before reaching its final destination. When esterified, cholesterol is 

either terminally stored in lipid droplets or undergoes re-hydrolysis (UC) to provide 

cholesterol for cell membranes or to be effluxed to plasma membrane transporters, such 

as ABCA1. Oxysterol-mediated LXR for the transcription of ABCA1, provides transport 

and presentation of cholesterol to extracellular acceptor, apo-A1, thereby initiating the 

preliminary step in reverse cholesterol transport (RCT). Expression of ABCA1 therefore 

indicates the presence of excess intracellular cholesterol. However, RCT can be negatively 

affected by the presence of excess cholesterol, causing a dysregulation of the pathways 

controlling the fate of FC, which can remain in a ‘futile cycle’ of re-esterification-
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hydrolysis. Thus, any imbalance in the pathways favouring cholesterol storage potentiates 

macrophage lipid-loading and the development of foam cell that collectively form the 

atherosclerotic lesion. 

An increase in systemic LDL can be observed during infection as an immune defence 

mechanism facilitated by lipoproteins that bind endotoxin, rendering them inactive 

(Cavaillon et al. 1990). In previous in vitro investigations, numerous bacterial species that 

are frequently detected in human atherosclerotic plaque have demonstrated an ability to 

promote lipid retention in human and murine macrophage cell lines following co-culture 

with LDL (Kalayoglu & Byrne 1998; Qi et al. 2003; Giacona & Papapanou 2004; Lei et 

al. 2011; Okahashi et al. 2011; Nicolaou et al. 2012). Microbial-induced dysregulation of 

cholesterol homeostasis is believed to result through toll-like receptor (TLR) ligand 

activation of the IRF3 pathway, which in turn has been shown to have an inhibitory effect 

on LXR target gene expression (ABCA1) in cultured macrophages and in vivo (Castrillo 

et al. 2003; Cao et al. 2007; Chen et al. 2008; Higashimori & Tatro 2011). Consequently, 

macrophage pathogen recognition can attenuate cholesterol efflux from infected 

macrophages in addition to initiating an inflammatory response.  

In chapters 4 and 5 of this thesis, P. acnes was the most frequently detected bacterial 

species in human carotid atherosclerotic plaque tissue. P. acnes, (previously known as 

Corynebacterium parvum (Cummins & Johnson 1974)) is a non-motile, gram-positive, 

aerotolerant anaerobe that inhabits numerous bodily niches. The strain SK137 is 

commonly isolated from the oral cavity and detected in failed prosthetic implants, among 

other bodily sites. The detection and isolation of this opportunistic pathogen highlights its 

ability to systemically infect its host and survive within its host for long periods of time. 

As an opportunistic pathogen, P. acnes is implicated in serveral inflammatory conditions 

through chronic and reoccurring infection, such as sarcoidosis, sciatica, arthritis, prostate 

cancer and infective and aggressive endocarditis, as well as a range of post-operative and 

clinical device related infections (Gunthard et al. 1994; Stirling et al. 2001; Hiramatsu et 

al. 2003; Cohen et al. 2005; Berthelot et al. 2006). In recent years, 82 strains of P. acnes 

have been completely sequenced and extensive comparative and pan-genomic analyses 

performed for all known lineages; highlighting genetic elements specific to each lineage 

that illustrates the differences of P. acnes in functioning as a commensal of the skin and 

as a pathogen in the aetiology of diseases (Hunyadkürti et al. 2011; Horváth et al. 2012; 

Tomida et al. 2013). The pathogenic potential of P. acnes is recognised by the organism’s 
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encoding of >2300 open reading frames (ORF) for production of several host degrading 

proteins, including; hemolysins, cytotoxins, adhesins and host tissue degrading enzymes 

(Valanne et al. 2005; Falcocchio et al. 2006; Holland et al. 2010; Mak et al. 2013). These 

putative virulence factors of P. acnes can induce tissue damage though haemolysis, pore-

formation, adhesion to multiple surfaces for biofilm formation and cell aggregation, as 

well as induction of chemotactic and inflammatory pathways (Brüggemann 2005; Tucker 

et al. 2005).  

In the current chapter, we investigate the pro-inflammatory and cholesterol regulatory 

potential of the isolated P. acnes strain. P. acnes  localises and preferentially proliferates 

in lipid-rich environments and  is a TLR receptor ligand complicit in secretion of 

chemotactic factors, such as IL6, IL8, IL12 and IL18 and pro-inflammatory cytokines 

TNF-α and IL1 in numerous cell lines in vitro (Kim et al. 2002; Jugeau et al. 2005; Nagy 

et al. 2005; Fathy et al. 2009; Shibata et al. 2009). In addition P. acnes further contributes 

to the inflammatory response by triggering the activation of the NLRP3-inflammasome 

for the secretion of caspase-1 activation-dependent cytokines, particularly IL1β, both in 

vitro and in vivo (Qin et al. 2014; Thiboutot 2014; Kistowska et al. 2014; Contassot & 

French 2014).  

Here we investigate the potential pro-inflammatory and cholesterol regulatory 

characteristics of P. acnes strain SK137 isolated from human atherosclerotic plaque. The 

quantitative and temporal expression of cytokine genes, IL1Β, TNFα, and CCL2 CCL3 and 

cellular adhesion molecule ICAM1 were measured during following in vitro challenge of 

THP-1 monocytes with SK137. Also, evidence is mounting that demonstrates cross-talk 

between pro-inflammatory and cholesterol homeostasis pathways such as SCAP-SREBP-

regulated transcription of HMG-CoA reductase (HMGR) and low density lipoprotein 

receptor (LDLR) (Castrillo et al. 2003; Li et al. 2013; Zhang et al. 2014). It has been 

suggested that bacterial infections dysregulate the mevalonate pathway, through inducing 

HMGR up-regulation. This mechanism of immediate antimicrobial immunity serves to 

meet the demand for increased cholesterol, which is directed to the plasma membrane to 

bolster the defence against bacterial pore-forming toxins (Kistowska et al. 2008). 

Moreover, increased HMGR causes a reduction of LDLR expression and therefore an 

increase in serum LDL, which are known to bind and inactivate bacterial 

lipopolysaccharide (Cavaillon et al. 1990; Weinstock et al. 1992) This mechanism in 

response to bacterial infection, may potentiate foam cell formation (Qi et al. 2003; Giacona 
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& Papapanou 2004; Okahashi et al. 2011). In relation to this we provide novel evidence 

that P. acnes-infection mediates the expression of genes involved with cholesterol 

biosynthesis (SREBP2, LDLR and HMGR) and efflux (ABCA1).  

7.2 Aims 

The aims of this chapter of work were to, 

1. Design a selection 21 oligonucleotide primer sets for genes involved in three broad 

areas of cellular functions that may contribute to the pathogenesis of 

atherosclerosis 

a. Cholesterol mediation (HMGR, SCAP, SREBP2, LDLR & ABCA1). 

b. Inflammation (CCL2 CCL3, ICAM1, TNFα, IL1β & NFκB). 

c. Apoptosis (BCL2A1). 

2. Optimise primer sets by measuring relative mRNA levels in the human monocytic 

cell line; THP-1 cells challenged with E. coli LPS. 

a. Establish optimum amplification efficiency of primer sets. 

b. Test the THP-1 cell line as a medium for suitable in vito model of infection 

using clinical isolated strain P. acnes. 

3. Challenge THP-1 cells with isolated strain P. acnes for the purpose of measuring 

relative expression of optimised genes (aim 1a-c) using quantitative real-time PCR. 

a. Investigate the extent to which P. acnes may regulate genes known to be 

involved in the pathogenesis of atherosclerosis. 

7.3 Method 

To assess whether human monocyte cell line THP-1 responds to bacterial stimulus, cells 

were incubated with E. coli LPS (section 2.6.3) and RNA was extracted from the cell at 

30 min, 1 h, 1.5 h, 2 h and 20 h, following manufacturer’s guidelines, as previously 

described (section 2.4.2). The mRNA was reverse transcribed to cDNA (section 2.4.4) and 

utilised as template for qPCR analysis (section 2.4.5) to measure the expression of 21 

target GOI relative to endogenous control gene ACTB. THP-1 cell incubation with E. coli 

LPS provided a platform for establishing primer specificity/amplification efficiency and 

to test the efficacy of THP-1 cells was a suitable cell line for a model of inflammation, 

cholesterol metabolism/transport and apoptosis. Serial dilutions of cDNA for 6 orders of 

magnitude were utilised as qPCR template. CT values were used to plot a chart for CT value 

vs. log cDNA input to generate a standard curve with regression line of best fit. The slope 
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of the regression line of best fit was optimal at -3.32±0.332 (E=2.00±0.14). Any primer 

sets that fell below the optimal amplification efficiency were omitted (section 2.5.4). THP-

1 cells were then challenged with whole heat-killed P. acnes (section 2.6.4) isolated from 

CAP tissue in chapter 5, (section 5.2.4). mRNA was extracted from P. acnes-stimulated 

THP-1 cells at 2 h, 6 h and 24 h along with THP-1 negative vehicle control cells treated 

with a PBS (section 2.4.2). P. acne-stimulated THP-1 mRNA was reverse transcribed 

(section 2.4.4) and relative gene expression was measured by qPCR using the final optimal 

primer sets (section 2.4.5). Analysis of qPCR data were performed in accordance with the 

Livak and Schmittgen (2001) ΔΔCT method to calculate gene expression fold change 

relative to PCS control cells and normalised by endogenous control gene ACTB (section 

2.5.6). The significance of observed fold change values for both LPS-induced and P. 

acnes-induced gene expression were calculated by analysis of variance (ANOVA) test. 

The difference in expression fold change between test and control gene expression was 

deemed significant when p = <0.05. 

7.2 Results 

7.2.1 THP-1 growth characteristics 

Normal growth conditions were measured for THP-1 by determining growth 

characteristics such as, number of population doublings (𝑛𝑑), growth rate (𝑟𝑔), population 

doubling time (𝑡𝑑) and percentage growth (𝑟%), thus providing an optimal baseline growth 

profile of unchallenged cells. A clear lag, log and stationary phase were recorded. The 

exponential growth occurring between 48 – 72 h, during which time THP-1 cell doubled 

once with a population doubling time of approximately 24.5±3.4 hand showed a growth 

rate of 0.04 𝑇𝑑/h. The percentage growth during this time was 98.86% (𝑟% ). When cells 

reached stationary growth phase at ~72 h, cell viability decreased; as determined by 

manual counting the ratio of cells that did or didn’t stain with trypan blue dye. At 120 h 

after T0, mean percentage cell viability decreased 34.62%. Figure 7.01 shows the normal 

growth characteristics for THP-1 cells over 120 h. 

THP-1 cells challenged with three separate concentrations of Escherichia coli 

lipopolysaccharide (LPS) (0.5 µg, 1 µg and 2.5 µg) were assessed during exponential 

growth (24 – 72 h) to measure cell number, population doubling time, percentage growth. 

All cells treated with LPS showed an apparent decrease in doubling time during 

exponential growth phase compared to control cells (PBS vehicle control). THP-1 cells 
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inoculated with 2.5 µg LPS doubled every 18.1±2.7 h and had a growth rate of 0.06 𝑇𝑑/h 

compared to control cells, which doubled every 26.5 h with a growth rate of 0.03 (figure 

7.02). Cells stimulated with 0.5 µg and 1 µg LPS had similar doubling times of 19.6±3.4 

h and 19.9±2.3 h, respectively.  

To assess whether a significant proliferative response had occurred in cells challenged 

with LPS; cells challenged with LPS for each concentration group and time point were 

counted and compared to control cells. 

A one-way ANOVA with Tukey’s post hoc pairwise comparison test revealed a significant 

increase of THP-1 cell proliferation at 72 h following challenge with 2.5 µg LPS compared 

to PBS vehicle control cell numbers for the same time point (p <0.001; figure 7.03). Also 

at 72 h, a significant increase of THP-1 cell numbers was observed in response to 0.5 and 

1 µg LPS, (p <0.01 and p <0.05, respectively). No significant increases in cell numbers 

were observed prior to 72 h (figure 7.02). 

 

Figure 7.01: Basal growth curve and population doubling calculations for THP-1 cells. Mean 

growth curve (blue line) displays proliferation of THP-1 cells over 120 h. Lag (blue shade), log (grey 

shade) and stationary phase (red back) can be observed. The number of population doublings (nd), 

growth rate (rg), and population doubling times (td) were calculated during log growth 48 and 72 

hours (black lines). THP-1 cells took ~24 hours to double under normal conditions. Green line 

indicates THP-1 cell viability over 120 h. At T0 2 x 105 cells/ml were seeded and cells counts were 

performed, measuring cell numbers and percentage viability at each 12 h count. Viability remained 

at 100% until cells reached the stationary growth phase (~72 h), then percentage viability rapidly 

decreased. 
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Figure 7.02: Line graph of mean THP-1 cell exponential growth (24-72 h). Population doubling times 

for THP-1 cells infected with E. coli LPS (0.5, 1 & 2.5 µg) compared with control cells (PBS treatment). 

Decreased doubling times were observed for all cells challenged with LPS compared to cells treated with 

PBS alone. Cells were maintained in exponential growth over three 72 h subcultures. Data represents 

three biological replicates that each comprised three technical replicates for each LPS group and control. 

7.2.2 Oligonucleotide optimisation 

Twenty one primer sets were designed to measure gene expression of 21 target genes and 

were optimised with 3 commercially sourced endogenous control genes to confirm 

optimum amplification efficiency with THP-1 cells.  CT values generated from five-fold 

log serial dilutions of cDNA from LPS infected THP-1 cells were plotted to evaluate PCR 

efficiencies (CT values vs. log template input). Fourteen of 21 primer sets amplified their 

target genes within 10% of the optimum amplification efficiency (slope -3.32±0.332 ≈ E 

= 2.00±0.14; table 7.01). Two of the three endogenous control genes (ACTB and RPL27A) 

provided highly accurate amplification efficiencies (E = 2.0; 100%; table 7.03). 

Amplification efficiency and dynamic range for endogenous control gene GAPDH was 

poor across all primer concentrations and was therefore omitted from the study. Similarly, 

primers for MYD88 provided poor amplification and so were also omitted.  A further six 

genes were omitted from the study due to being consistently undetected (complete lack of 

PCR signal). These genes failed to amplify when genomic DNA extracted from THP-1 

cell was used as template; therefore the sub-optimal design of the oligonucleotide 

sequences is the likely cause for failure (table 7.01). Thirteen of the 14 successfully 

amplified genes had amplification efficiencies within 5% of the optimum amplification 

efficiency (i.e. slope -3.32±0.166 ≈ E = 2.0±0.07; table 7.01).  
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PCR efficiencies were tested further by calculating the difference between CT values for 

target and reference genes amplification of cDNA serial log dilutions. The difference 

between target and reference genes CT values was plotted vs the logarithm of the template 

cDNA amount as regression line graphs. All amplification efficiencies between target and 

reference genes were highly comparable, providing almost horizontal regression lines (r2 

= <0.1). Figure 7.04 demonstrates a regression line graph of the difference in CT values of 

HMGR and ACTB vs log cDNA input; amplification efficiencies were highly comparable 

(r2 = 0.0089). 

When designing primer sequences for LDLR, CCL3 and NFKB, multiple transcript 

variants were available that showed little variation of DNA sequence when aligned using 

BioEdit v 7.2.5. Because the correct transcript variant was unknown, oligonucleotides 

were designed to target a single conserved region across multiple transcript variants. 

Because of this, there was a possibility for amplification of more than one transcript variant 

during PCR. To assess this possibility, melt-curve curve analysis was performed to 

monitor the specificity of each PCR reaction and revealed no indication of secondary 

amplification for these three genes (figure 7.05a-c). Secondary products or primer artefacts 

were easily differentiated from specific target gene amplification using melt-curve analysis 

(figure 7.06). Primers targeting MYD88 displayed poor amplification efficiencies (E = 2.20 

– 2.70 ≈ 120.02% – 169.79%) and poor target specificity (figure 7.06d). When MYD88 

PCR product was run on 2.5% agarose gel, two discrete PCR products were found to be 

amplified (figure 7.06) 

cDNA PCR products of successfully amplified target genes were sequenced and target 

gene amplification confirmed by comparing DNA sequences with NCBI nucleotide 

reference database. DNA sequences for each of the target genes investigated here matched 

the correct reference sequences with 100% identity. 
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 PCR Efficiencies Primer conc. 

Genes 
Slope 

(E =10-1/s) 

Percentage efficiency 

% E = (E – 1) x 100 
(µM) 

HMGR -3.35  (1.99) 98.84 0.05 

SCAP -3.27  (2.02) 102.21 0.2 

SREBP2 -3.35  (1.99) 98.84 0.2 

LDLR -3.23  (2.04) 103.98 0.2 

ABCA1 -3.16  (2.07) 107.23 0.1 

CCL2 -3.49  (1.93) 93.43 0.05 

CCL3 -3.47  (1.94) 94.17 0.1 

ICAM1 -3.19  (2.06) 105.81 0.05 

TLR2 -3.17  (2.07) 106.76 0.1 

TLR4 -3.41  (1.96) 96.45 0.2 

IL-β -3.39  (1.97) 97.23 0.05 

TNFα -3.42  (1.96) 96.06 0.05 

NF-κB -3.17  (2.07) 106.75 0.05 

BCL2A1 -3.38  (1.98) 97.63 0.2 

ACTB -3.30  (2.00) 100.92 0.2 

RPL27A -3.31  (2.00) 100.50 0.05 

Failed genes 

VCAM1

 

n/a 

n/a - - 

GM-CSF n/a - - 

IL6 n/a - - 

IL8 n/a - - 

IL10 n/a - - 

TLR4 n/a - - 

Poor efficiency   

MYD88 

-2.32 (2.70) 169.79 0.2 

-2.76 (2.30) 130.31 0.1 

-2.92 (2.20) 120.02 0.05 

GAPDH 

-3.72 (1.85) 85.70 0.2 

-3.76 (1.84) 84.48 0.1 

-4.59 (1.65) 65.11 0.05 

Table 7.01: Primer optimisation to amplification efficiency of primer over three 

primer concentrations 0.2 µM, 0.1 µM and 0.05 µM. Serial dilutions of cDNA for 

6 orders of magnitude were utilised as qPCR template. CT values were used to 

plot a chart for CT value vs. log cDNA input to generate a standard curve with 

regression line of best fit. The slope of the regression line of best fit was optimal 

at -3.32±0.332 (E=2.00±0.14). Efficiencies are listed with the optimal primer 

concentration for each score. Reference genes ACTB and RPL27A provided good 

PCR efficiency (light grey) compared to GAPDH (dark grey).  

- n/a no amplification 
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Figure 7.03: Optimum amplification efficiency for the endogenous control gene RPL27A. Top left panel 

shows sharp overlaid peaks at ~86˚C suggesting high annealing specificity for amplification of a discrete 

product. A flat line before melting peak indicating no self-complementarity between the primer pair. The 

top left panel shows nine evenly spaced amplification curves indicating consistent amplification with a 

good dynamic range of detection. Bottom panel shows a semi-log regression line plot (CT value vs. log 

cDNA input) method used to assess amplification efficiencies of all genes. The regression line slope -3.31 

is equal to an amplification efficiency of E = 2.01 (~100%) determined using the formula E = 10-1/slope-1. 

An amplification efficiency of 2.01 provides assurance that PCR product is doubling every 3.31 cycles 

during the exponential amplification phase.  
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Figure 7.04: Efficiency comparison example. CT values were determined for HMGR and housekeeping 

gene ACTB (A) and RPL27A (B) using cDNA extracted and reverse transcribed from LPS infected THP-

1 cells. The difference in CT values was plotted against log template input. The difference in PCR 

efficiency was determined by calculating the slope of the line. The slope of the resulting straight line was 

<0.1; amplification efficiencies are therefore highly comparable for HMGR and ACTB (A) and RPL27A 

(B). 
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Figure 7.05: Dissociation curves from melt curve analysis. This diagnostic tool was utilised 

to establish primer specificity during the amplification reaction. Panel A, B and C (LDLR, 

CCL3 and NF-κB, respectively) represent primer pairs that have potential to amplify more 

than one transcript variant. A, B and C all have sharp single melting peaks at 80 – 85˚C 

indicating high specificity for a single target amplicon. Panel D shows a dissociation curve 

for MYD88 with poor amplification efficiency (E = 2.20 – 2.70 ≈ 120.02% – 169.79%) and 

target specificity. Multiple peaks are observed for MYD88; an indication that more than one 

product was primed and successfully amplified during the reaction. 
 

200 bp 

– 

 

 
100 bp 

– 

 1 Kb 1    2          3           4   -  
Figure 7.06: Agarose gel electropherogram for PCR amplification of MYD88 cDNA shows the 

amplification of two discrete PCR products (~140 bp) in the same reaction with MYD88 primers. LPS 

infected THP-1 cell cDNA was amplified and migrated through a 2.5% agarose gene. A 1Kb DNA ladder 

was loaded in the left lane. Lanes 1 – 4 represent individual PCR amplifications of four biological 

replicates.  
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7.2.3 RT-PCR reagent optimisation 

Optimisation of the reverse-transcription (RT) step in RT-PCR is critical to assure the 

assay is performed with the highest of accuracy and efficiency. It is vital that the RNA 

template is reverse-transcribed efficiently to limit the introduction of error in this initial 

stage, which would affect downstream calculations. The two most adjustable components 

in the kit that can impact RT efficiency are reverse transcriptase and MgCl2. To optimise 

the RT reaction three concentrations of reverse transcriptase (0.5, 1, 1.5 U) and four MgCl2 

(1.5, 2.5, 3.5 and 4.5 mM) were tested. CT values were generated from five-fold log serial 

dilutions of cDNA from LPS infected THP-1 cells. Reactions containing 0.5 U reverse 

transcriptase enzyme combined with 1.5 mM MgCl2 concentrations showed low efficiency 

and dynamic range (table 7.02; figure). Whereas amplification efficiencies for 1.5 U 

reverse transcriptase and 3.5 mM MgCl2 had the greatest dynamic range to the 8th dilution; 

i.e down 4 orders of magnitude to ~60 pg concentrations. All MgCl2 dilutions combined 

with 1.5 U reverse transcriptase were within an optimal range (-3.32±-0.332). Reactions 

using 1 U reverse transcriptase and a MgCl2 concentration of 2.5 mM or 3.5 mM showed 

the best amplification efficiency and ample detection range (table 7.02). Table 7.02 lists 

observations from reverse transcriptase and MgCl2 combinations showing regression line 

slopes, efficiencies and dynamic ranges for all combinations. Altering oligo(dt) primer 

concentration or increasing RT-PCR annealing or extension times had no beneficial effect 

on the resulting PCR efficiency of subsequent qPCR assays. No great advantage was 

observed by increasing reverse transcriptase input to 1.5 U; thus, the optimum and chosen 

reagent composition for RT-PCR was 1 U reverse transcriptase with 3.5 mM MgCl (table 

7.02). 

  MgCl2 conc. (mM) 

  1.5  2.5  3.5  4.5  

R
ev

er
se

 t
ra

n
sc

ri
p

ta
se

 

(U
n

it
s)

 

    0.5 

Slope -4.44 -3.81 - - 

Efficiencies 67.96% 83.00% - - 

Range  4  5 - - 

1  

Slope - -3.32 -3.27 -3.81 

Efficiencies - 100.08% 102.21% 83.00% 

Range - 6 7 6 

1.5  

Slope -3.56 -3.35 -3.44 -3.20 

Efficiencies 90.94% 98.84 95.29% 105.35% 

Range 4 7 8 6 

Table 7.02: Amplification efficiencies and dynamic ranges for different combinations of reverse 

transcriptase and MgCl2. Grey shaded area indicates the reagents composition chosen for reverse 

transcription that provided the optimum reaction efficiency and range. 
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7.2.4 THP-1 gene expression response to Escherichia coli lipopolysaccharide 

To assess whether THP-1 cells respond to bacterial stimuli, THP-1 cells were incubated 

with different E. coli LPS concentrations (0.5 µg, 1 µg and 2.5 µg). This developmental 

assay was necessary to investigate whether THP-1 cells are responsive to bacterial 

stimulation. In addition, mRNA derived from LPS-challenged THP-1 cells provided a 

positive control, thus helping to optimise PCR primer set used in this study. Box plot charts 

displaying target gene fold changes at each time point are displayed in figures 7.09– 7.20. 

Table 6.03 shows all gene expression fold changes for each LPS-infected THP-1 cells for 

each concentration and each time point compared to PBS vehicle control cell expression 

at the same time point. 

7.2.4.1 Cholesterol mediating genes 

HMGR was mainly unaffected by LPS, as evidenced by few significant changes in HMGR 

target gene expression compared to the vehicle control.  A significant down-regulation of 

HMGR was observed at 1 h (1 µg LPS, p <0.05; figure 7.07). A sharp shift to an up-

regulated response of THP-1 cell HMGR mRNA expression occurred at 20 hours 

following exposure to 0.5 µg LPS (p <0.01; figure 7.07). Overall, HMGR expression 

remained unregulated in response to LPS across the 20 h time course; however a subtle 

tread from down to up-regulation was observed. 

SCAP was sporadically down-regulated during the 20 h LPS-exposure time. Significant 

down regulation of SCAP mRNA was observed following 30 min and 2 h exposure to 2.5 

µg LPS, (p <0.05). A final significant down-regulation of SCAP was observed following 

20 h exposure to 0.5 µg LPS (p <0.01; figure 7.08) Overall, SCAP was mostly unregulated, 

though did showed significant down-regulation, both early and late in the time course and 

mainly in response to 2.5 µg LPS. 
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Figure 7.07: Temporal expression of THP-1 gene HMGR in response to E. coli LPS. Target gene 

expression was measured by calculating the fold difference (blue) relative to the expression of a PBS 

vehicle control (red) and Ct values were normalised by stably expressing housekeeping gene ACTB. 

Expression was evaluated for three discrete LPS concentrations at different time points from 30 min to 20 

h. Data represents n = 3 biological replicate samples for each concentration at each time point. 

 

 
Figure 7.08: Temporal expression of THP-1 gene SCAP in response to E. coli LPS. Target gene 

expression was measured by calculating the fold difference (blue) relative to the expression of a PBS 

vehicle control (red) and Ct values were normalised by stably expressing housekeeping gene ACTB. 

Expression was evaluated for three discrete LPS concentrations at different time points from 30 min to 20 

h. Data represents n = 3 biological replicate samples for each concentration at each time point. 
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SREBP2 mRNA was mainly down-regulated over 20 h, with significant down-regulated 

responses observed at 30 min (1 and 2.5 µg LPS, p <0.01), 1.5 h (2.5 µg LPS, p <0.05) 

and 2 h (0.5 and 2.5 µg LPS, p <0.001 and p <0.01, respectively). Finally, at 20 h up-

regulated expression of SREBP2 was observed for THP-1 cells exposed to 0.5 µg LPS 

compared to vehicle control cell expression (p < 0.001; figure 7.19). SREBP2 mRNA was 

predominantly down-regulated over the 20 h time course, though a temporal shift from 

down to up-regulation was observed.  

LDLR mRNA was predominantly up-regulated over the 20 h time course. Up-regulated 

responses were observed at 1 h (0.5 µg LPS, p <0.01), 2 h (0.5 µg LPS, p <0.0001) and 20 

h (1 µg LPS, p <0.05; figure 7.10) time points. However, a shift to down-regulation of 

LDLR was observed at 1.5 h (0.5 µg LPS; p <0.01). Overall, LDLR was regulated in 

response to 0.5 µg LPS.  

 

 
Figure 7.09: Temporal expression of THP-1 gene SREBP2 in response to E. coli LPS. Target gene 

expression was measured by calculating the fold difference (blue) relative to the expression of a PBS 

vehicle control (red) and Ct values were normalised by stably expressing housekeeping gene ACTB. 

Expression was evaluated for three discrete LPS concentrations at different time points from 30 min to 20 

h. Data represents n = 3 biological replicate samples for each concentration at each time point. 
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Figure 7.10: Temporal expression of THP-1 gene LDLR in response to E. coli LPS. Target gene 

expression was measured by calculating the fold difference (blue) relative to the expression of a PBS 

vehicle control (red) and Ct values were normalised by stably expressing housekeeping gene ACTB. 

Expression was evaluated for three discrete LPS concentrations at different time points from 30 min to 20 

h. Data represents n = 3 biological replicate samples for each concentration at each time point. 

 

7.2.4.2 Pro-Inflammatory cytokines genes 

CCL3 expression was significantly up-regulated and showed a temporal increase over the 

20 h period. CCL3 mRNA expression was induced between 1 h (2.5 µg LPS, p <0.05) and 

1.5 h (2.5 µg LPS, p <0.001; figure 7.11). CCL3 expression remained significantly 

regulated at 2 h for THP-1 cells challenged with 0.5 µg (p <0.01), 1 µg (p <0.001) and 2.5 

µg LPS (p <0.00001). Up-regulated CCL3 mRNA expression continued to increase 

following 20 h exposure to each of the LPS concentrations, 0.5 µg LPS (p <0.005), 1 µg 

LPS (p <0.002) and 2.5 µg LPS (p <0.002; figure 7.11). In summary, significant CCL3 up-

regulation was observed that showed temporal increase over the 20 hours exposure time.    

Similarly, CCL2 showed a temporal increase in expression over the 20 h exposure time 

course. The initial significant up-regulation of CCL2 compared to PBS control cells was 

observed at 1 h (0.5 µg LPS, p <0.01; figure 7.12). At 1.5 h and 2 h exposure time CCL2 

expression remained significantly up-regulated when challenged with 1 and 2.5 µg LPS (p 

<0.01 and p <0.001, respectively). Finally, a significant increase in CCL2 mRNA 

expression was observed following  20 h exposure to each of the LPS concentrations 

relative to the PBS vehicle control cell expression (p <0.000001; figure 7.12). Overall, 

while CCL2 expression remained up-regulated over the 20 hours LPS-exposure time, a 

very sharp increase in CCL2 expression was observed later in the time course. The 
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temporal increase in CCL2 expression may indicate an increase in inflammatory response 

to LPS. It is also possible the increasing expression is a result of a proliferative response. 

 

Figure 7.11: Temporal expression of THP-1 gene CCL3 in response to E. coli LPS. Target gene 

expression was measured by calculating the fold difference (blue) relative to the expression of a PBS 

vehicle control (red) and Ct values were normalised by stably expressing housekeeping gene ACTB. 

Expression was evaluated for three discrete LPS concentrations at different time points from 30 min to 20 

h. Data represents n = 3 biological replicate samples for each concentration at each time point. 

 

 

Figure 7.12: Temporal expression of THP-1 gene CCL2 in response to E. coli LPS. Target gene 

expression was measured by calculating the fold difference (blue) relative to the expression of a PBS 

vehicle control (red) and Ct values were normalised by stably expressing housekeeping gene ACTB. 

Expression was evaluated for three discrete LPS concentrations at different time points from 30 min to 20 

h. Data represents n = 3 biological replicate samples for each concentration at each time point. 
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ICAM1 was consistently up-regulated in response to all LPS concentrations starting at 1.5 

h when cells were challenged with 0.5 µg LPS (p <0.01), 1 µg LPS (p <0.01) and 2.5 µg 

LPS (p <0.001). ICAM1 expression increased further at 2 h showing highly significant up-

regulation of ICAM1 for cells infected with 0.5 µg LPS (p <0.001), 1 µg LPS (p 

<0.000001) and 2.5 µg LPS (<0.000001). A final significant up-regulation of ICAM1 was 

observed at 20 h in response to 1 µg and 2.5 µg LPS, both at p <0.05. For LPS 

concentrations 0.5 µg and 1 µg expression fold change levels were similar between 1.5 h, 

2 h and 20 h time points. However, fold change levels for samples exposed to 2.5 µg LPS 

fell by almost two thirds for 2h and 20 h. Expression prior to 1.5 h were not statistically 

significant; 30 min [F(3,8) = 1.805,  p 0.224] and 1 h [F(3,8) = 3.328, p .0772] (figure 

7.13). 

 

Figure 7.13: Temporal expression of THP-1 gene ICAM-1 in response to E. coli LPS. Target gene 

expression was measured by calculating the fold difference (blue) relative to the expression of a PBS 

vehicle control (red) and Ct values were normalised by stably expressing housekeeping gene ACTB. 

Expression was evaluated for three discrete LPS concentrations at different time points from 30 min to 20 

h. Data represents n = 3 biological replicate samples for each concentration at each time point. 

 

TNFα mRNA was up-regulated early, within the first 30 minutes in response to 2.5 µg 

LPS (p <0.01). At 1 h there was a significant shift to down-regulated TNFα expression that 

was due to the addition of 1 µg (p <0.01; figure 7.14). All LPS concentrations induced 

significant up-regulation of TNFα from 1.5 h to 20 h with prominent up-regulation 

observed at 1.5 h [F(3,8) = 19.4, p = 0.0001], 2 h [F(3,8) = 27.33, p = 0.0001] and 20 h 

[F(3,8) = 14.51, p = 0.001].  
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IL-1β showed the greatest increase in in gene expression relative to a PBS vehicle control 

compared with other genes analysed. Up-regulated expression of IL-1β peaked (p 

<0.00001), followed by a second highly significant up-regulation at 20 h (p <0.0001). Prior 

to the first major IL-1β up-regulation at 1.5 h IL-1β was unregulated excluding one 

significant down-regulated response at 30 min for cells infected with 0.5 µg LPS (P <0.05; 

figure 7.15).  

 

Figure 7.14: Temporal expression of THP-1 gene TNFα in response to E. coli LPS. Target gene 

expression was measured by calculating the fold difference (blue) relative to the expression of a PBS 

vehicle control (red) and Ct values were normalised by stably expressing housekeeping gene ACTB. 

Expression was evaluated for three discrete LPS concentrations at different time points from 30 min to 20 

h. Data represents n = 3 biological replicate samples for each concentration at each time point. 
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Figure 7.15: Temporal expression of THP-1 gene IL-1β in response to E. coli LPS. Target gene expression 

was measured by calculating the fold difference (blue) relative to the expression of a PBS vehicle control 

(red) and Ct values were normalised by stably expressing housekeeping gene ACTB. Expression was 

evaluated for three discrete LPS concentrations at different time points from 30 min to 20 h. Data 

represents n = 3 biological replicate samples for each concentration at each time point. 

 

 

7.2.4.3 Toll-like receptor (TLR)-2 

TLR-2 remained down-regulated until 1.5 h exposure, at which point TLR-2 was 

consistently up-regulated, though at no point was expression of TLR2 significantly 

different in LPS infected THP-1 cells compared to PBS vehicle control cells; 30 min 

[F(3,8) = 4.324, p 0.434], 1 h [F(3,8) = 2.155, p  0.171], 1.5 h [F(3,8) = 1.734, p 0.237], 2 

h [F(3,8) = 1.625, p 0.259].  ANOVA revealed a significant difference in between TLR-2 

expression at 20 h [F(3,8) = 4.37, p = 0. 0423] however, these data were due to significant 

differences between LPS concentration groups and not difference between LPS-

challenged cells vs PBS control cells. There were sizable variances between CT values for 

PBS control replicates at each time point for TLR-2, which affected the ΔΔCT values and 

ultimately impacted statistical analyses (figure 7.16). 
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Figure 7.16: Temporal expression of THP-1 gene TLR2 in response to E. coli LPS. Target gene 

expression was measured by calculating the fold difference (blue) relative to the expression of a PBS 

vehicle control (red) and Ct values were normalised by stably expressing housekeeping gene ACTB. 

Expression was evaluated for three discrete LPS concentrations at different time points from 30 min to 

20 h. Data represents n = 3 biological replicate samples for each concentration at each time point. 

 

7.2.4.4 Transcription factors 

Expression of NF-κB remained evenly down-regulated after the first 30 min for all LPS 

concentrations compared to the untreated control (p <0.05) There was no significant 

changes in NF-κB expression at 1 h for any of the LPS concentrations compared to 

control cells [F(3,8) = 2.737, p = 0.113]. Expression shifted to an up-regulation of NF-

κB at 1.5 h for all LPS concentrations relative to PBS control cells (p <0.01). A final up-

regulation of NF-κB at 2 h for cell treated with 2.5 µg LPS (p <0.05; figure 7.17). 

7.2.4.5 Pro-apoptosis inhibitors 

BCL2A1 was initially down-regulated at 30 min across all LPS concentrations 0.5 µg (p 

<0.05) 1µg LPS (p <0.05) and 2.5 µg LPS (p <0.01). BCL2A1 remained down-regulated 

at 1 h with cells infected with 0.5 µg LPS showing the strongest down-regulation (p 

<0.001). At 1.5 h a shift to up-regulation was observed but expression was not 

significant, which continued until 20 h exposure. BCL2A1 was up-regulated at 20 h for 

all LPS concentrations resulting in highly significant changes in BCL2A1 expression for 

cells infected with 0.5 µg LPS (p <0.05), 1 µg LPS (p <0.001) and 2.5 µg LPS (p 

<0.0001) compared to P BS control cells (figure 7.18). 
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Figure 7.17: Temporal expression of THP-1 gene NF-κB in response to E. coli LPS. Target gene 

expression was measured by calculating the fold difference (blue) relative to the expression of a PBS 

vehicle control (red) and Ct values were normalised by stably expressing housekeeping gene ACTB. 

Expression was evaluated for three discrete LPS concentrations at different time points from 30 min to 20 

h. Data represents n = 3 biological replicate samples for each concentration at each time point. 

 

 

 

 

Figure 7.18: Temporal expression of THP-1 gene BCL2A1 in response to E. coli LPS. Target gene 

expression was measured by calculating the fold difference (blue) relative to the expression of a PBS 

vehicle control (red) and Ct values were normalised by stably expressing housekeeping gene ACTB. 

Expression was evaluated for three discrete LPS concentrations at different time points from 30 min to 20 

h. Data represents n = 3 biological replicate samples for each concentration at each time point. 
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  Concentrations (µg)     Concentrations (µg) 

 Time  

(h) 
0.5 1 2.5  Time 

(h) 
0.5 1 2.5 

H
M

G
R

 
0.5 1.15±0.61 4.21±0.19 2.36±0.25 

S
C

A
P

 

0.5 1.17±0.38 1.71±0.31 2.29±0.16 

1 1.36±0.27 2.29±0.53 1.82±0.52 1 1.26±0.13 1.17±0.12 1.33±0.13 

1.5 2.09±0.36 1.66±0.75 1.94±0.43 1.5 1.01±0.32 1.26±0.41 1.15±0.27 

2 1.92±0.41 1.49±0.31 1.63±0.20 2 1.17±0.05 1.04±0.21 1.35±0.13 

20 7.14±0.73 1.18±0.30 2.17±0.55 20 1.68±0.31 1.13±0.06 1.34±0.12 

S
R

E
B

P
2
 

0.5 1.22±0.40 3.24±0.15 3.39±0.32 

L
D

L
R

 

0.5 1.67±0.39 1.85±0.22 1.25±0.19 

1 1.16±0.23 1.10±0.14 1.22±0.12 1 1.91±0.23 1.33±0.28 1.18±0.14 

1.5 1.03±0.31 1.19±0.31 1.71±0.30 1.5 2.27±0.25 1.48±0.36 1.44±0.30 

2 1.46±0.16 1.10±0.12 1.27±0.15 2 2.36±0.16 1.17±0.19 1.00±0.11 

20 2.44±0.38 1.18±0.07 1.23±0.23 20 1.34±0.36 1.34±0.08 1.23±0.14 

C
C

L
3
 

0.5 1.30±0.45 1.02±0.30 1.02±0.21 

C
C

L
2
 

0.5 1.15±0.59 1.18±1.34 1.09±0.52 

1 1.20±0.23 1.23±0.67 1.69±0.12 1 1.65±0.44 1.28±0.52 1.21±1.09 

1.5 1.19±0.36 1.54±0.37 2.67±0.28 1.5 1.15±0.72 1.81±0.36 2.53±0.65 

2 1.68±0.13 1.49±0.22 2.29±0.14 2 1.25±0.80 1.50±0.32 1.80±0.32 

20 5.09±0.96 4.48±0.32 4.31±0.15 20 19.14±0.31 8.72±0.32 5.53±0.56 

IC
A

M
1
 

0.5 1.05±0.39 1.13±0.11 1.47±0.22 

T
L

R
-2

 
0.5 2.81±0.36 1.72±0.11 1.49±0.24 

1 1.90±0.29 1.17±0.17 1.43±0.16 1 1.05±0.41 1.36±0.14 1.95±0.50 

1.5 3.19±0.27 2.63±0.25 4.71±0.31 1.5 1.88±0.25 1.55±0.31 2.80±0.28 

2 2.29±0.16 3.46±0.16 6.04±0.25 2 1.52±0.15 1.73±0.07 1.36±0.08 

20 2.57±0.52 2.68±0.06 2.37±0.28 20 4.70±0.42 1.55±0.26 1.60±0.13 

T
N

F
-α

 

0.5 2.03±0.37 2.28±0.11 3.80±0.20 

IL
-1

β
 

0.5 2.26±0.36 1.13±0.12 1.40±0.18 

1 1.21±0.21 1.75±0.24 1.26±0.10 1 1.28±0.15 1.18±0.12 1.06±0.31 

1.5 8.74±0.28 7.15±0.30 9.98±0.59 1.5 11.32±0.35 13.40±0.28 19.67±0.29 

2 1.81±0.17 2.50±0.08 2.92±0.32 2 2.32±0.24 5.08±0.12 5.90±0.09 

20 3.17±0.32 3.70±0.26 2.73±0.19 20 27.94±0.42 12.04±0.26 4.10±0.13 

N
F

-K
B

 

0.5 1.74±0.37 1.83±0.11 1.75±0.20 

B
C

L
2

A
1
 

0.5 1.86±0.36 2.056±0.12 2.74±0.18 

1 1.38±0.21 1.23±0.24 1.23±0.10 1 2.55±0.15 1.16±0.12 1.37±0.31 

1.5 3.14±0.28 2.62±0.30 2.55±0.59 1.5 1.69±0.35 1.88±0.28 1.57±0.29 

2 1.16±0.17 1.41±0.08 1.77±0.32 2 1.05±0.24 1.05±0.12 1.11±0.09 

20 1.12±0.32 1.61±0.26 1.13±0.19 20 1.57±0.42 2.7±0.09 3.19±0.22 

 

Table 7.03: Gene expression fold change values for THP-1 cells exposed to three concentrations of E.  coli 

LPS over 20 hours.  

 

 Up-regulation of target gene expression relative to calibrator expression. 

 Down-regulation of target gene expression relative to calibrator expression. 
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7.2.5 Measuring optimal multiplicity of infection (MOI) for monocyte cell line infection 

with Propionibacterium acnes 

To establish the lowest possible bacterial load needed to stimulate gene expression in THP-

1 cells, a panel of 6 genes were challenged with a series of 3 P. acnes MOI (100, 50 and 

25). Genes were chosen to represent a spread of both cholesterol biosynthesis and 

inflammatory actions to gauge how bacterial load may affect THP-1 gene expression. 

mRNA was extracted from P. acnes-infected THP-1 cells after 2 h of exposure and qPCR 

performed. All of the six genes tested were regulated in response to the different MOI of 

P. acnes. IL-1β was the most potently expressed gene followed by HMGR and TNF-α. 

Both SREBP2 and LDLR showed down-regulation for each MOI group; the down-

regulation became more noticeable as the MOI increased. Figure 7.21a – c displays the 

fold changes of the six THP-1 genes when exposed to P. acnes MOI 25, 50 and 100. A 

one-way ANOVA with Tukey’s pairwise comparison showed there was no significant 

difference in the expression of these six genes between groups of THP-1 cells exposed to 

different MOI (MOI 25 vs MOI 50 p = 0.956; MOI 50 vs MOI 100 p = 0.972 and MOI 25 

vs MOI 100 p = 0.998). A boxplot of ANOVA test results are presented in figure 7.21d. 

Based on these results it was established that MOI 25 was sufficient enough ratio of 

bacteria to THP-1 cell, hence an MOI of 25 was used for all further THP-1 infections with 

P. acnes. 
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Figure 7.19: Fold change gene expression of 6 THP-1 cell target genes when exposed to three different 

MOI of P. acnes (MOI 25, 50 & 100; figures A-C, respectively). Expression was calculated by 

normalisation to reference gene ACTB and relative to a PBS treatment control for each gene in each MOI 

concentration group. Significance of expression was tested using ΔCT values for target gene expression 

vs. PBS control and fold values plotted. There were no significant differences in combined mean 

expression of the six genes for each MOI concentration group (D). 

 

7.2.6 THP-1 cells challenged with Propionibacterium acnes: an in vitro model of 

infection 

While the following finding of P. acnes-induced gene expression in THP-1 cells provides 

potentially interesting evidence that P. acnes may activate key genes in the atherosclerotic 

process, no LPS control was used directly within the P. acnes model of infection. It 

therefore cannot be said with absolute certainty that the profile of expression observed 

with P. acnes-challenged THP-1 cells could not be similar or the same as the expression 

observed if THP-1 cells were challenged with other bacteria. Four out of five lipid 

regulatory genes were up-regulated in response to P. acnes. HMGR was not regulated at 2 

and 6 hour time points when challenged with P. acnes; however, after 24 h infection, a 

significant up-regulation of HMGR was observed in challenged cells relative to PBS-

treatment control cells (p <0.05; figure 7.20). In contrast, SCAP was not regulated when 

exposed to P. acnes at any of the time points examined here, though a slight increase in 

fold change from 1.4 at 2 h to 4.4 at 24 h was observed for infected cells compared to PBS 

control cell expression [F(3,8) = 2.159 , p  0.181; figure 7.21]. P. acnes-infected THP-1 
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cells showed a significant up-regulation of SREBP2 mRNA compared to control cell 

expression at each of the time points tested here [F(3,8) = 33.19, p = <0.001]. Expression 

increased steadily at 2 and 6 hour time points (p <0.05) followed by a marked increase 

from 4.12±0.85-fold at 6 h to 40.03±1.13-fold at 24 h  compared to the PBS control cell 

expression of SREBP2 (p <0.001; figure 7.22). SREBP2 mRNA levels did not change after 

2 h exposure to P. acnes relative to the control cell expression (p 0.289). Similarly, LDLR 

remained unregulated over earlier time points until a significant LDLR up-regulation in 

response to 24 h exposure to P. acnes (p <0.05; figure 7.23). The same pattern of 

expression was observed for ABCA1, which remained unregulated at 2 and 6 hours; only 

after THP-1 cells were challenged with P. acnes for 24 h did a significant increase in 

ABCA1 (121-fold) occur relative to the PBS-treated control cell expression (p <0.001; 

figure 7.24) 

Four out of six THP-1 inflammatory genes were up-regulated in response to P. acnes 

challenge. THP-1 cells showed a pattern of increasing CCL3 expression over the 24 h time 

course when infected with P. acnes. A significant up-regulation of CCL3 was observed 

after 6 h exposure (p <0.05), followed by a further significant increase of CCL3 at 24 h (p 

<0.001) relative to the PBS control cell expression (figure 7.25). In contrast, THP-1 CCL2 

was not regulated by P. acnes infection, despite a 5.8±2.92-fold increase of CCL2 

expression over the 24 h time course; however, the changes relative to the PBS control 

expression were deemed not significant [F(3,8) = 0.886, p 0.441; figure 7.26]. This was 

likely due to the particularly high variance of CT value for P. acnes-infected and PBS 

control cell expression. 

ICAM-1 also remained unregulated at 2 h and 6 h time points when exposed to P. acnes, 

whereas a significantly high up-regulation of ICAM-1 was observed following 24 h 

challenge with P. acnes (p <0.05; figure 7.27). Similarly, TNFα was  not regulated at the 

earlier time points examined here, followed by a significant up-regulation of TNF-α in 

cells exposed to P. acnes at 24 h (p <0.01; figure 7.28). The same pattern of expression 

was also observed for THP-1 expression of IL-1β; whereby only after 24 h P. acnes 

challenge was a significant increase in IL-1β expression observed relative to PBS-treated 

cell expression (p <0.05; figure 7.29). There were no significant changes in P. acnes-

infected THP-1 cell expression of NF-κB relative to the expression of NF-κB in the PBS-

treated control cells [F(3,8) = 0.871, p = 0.495; figure 7.30]. In contrast, BCL2A1 was the 

most potently expressed of all genes tested in response to P. acnes [F(3,8) = 76.85, p 

<0.0001]. Expression of BCL2A1 was up-regulated at each time point and showed an 
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extremely sharp increase in fold change between 6 h (23.08±1.13, p <0.001) and 24 h 

(560.08±1.14, p <0.00001) relative to control cell expression. The up-regulation of 

BCL2A1 after 2 h exposure to P. acnes did not change relative to the expression of BCL2A1 

in the PBS control reaction (figure 7.31). 

 

 

Figure 7.20: Gene expression fold change for HMGr following challenge of THP-1 monocyte cell line 

with P. acnes at an MOI OF 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h 

intervals. Expression was normalised by ACTB and calculated relative to HMGr expression for THP-1 

cells treated with a PBS vehicle (red box). Data reprepresents the mean target gene expression fold change 

from three technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the 

mean of 9 technical replicates PBS treated cells (3 technical replicate samples at each time point). 

 

Figure 7.21: Gene expression fold change for SCAP following challenge of THP-1 monocyte cell line 

with P. acnes at an MOI of 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h 

intervals. Expression was normalised by ACTB and calculated relative to SCAP expression for THP-1 

cells treated with a PBS vehicle (red box). Data reprepresents the mean target gene expression fold change 

from three technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the 

mean of 9 technical replicates PBS treated cells (3 technical replicate samples at each time point). 
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Figure 7.22: Gene expression fold change for SREBP2 following challenge of THP-1 monocyte cell line 

with P. acnes at an MOI of 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h 

intervals. Expression was normalised by ACTB and calculated relative to SREBP2 expression for THP-1 

cells treated with a PBS vehicle (red box). Data reprepresents the mean target gene expression fold change 

from three technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the 

mean of 9 technical replicates PBS treated cells (3 technical replicate samples at each time point). 

 

Figure 7.23: Gene expression fold change for LDLr following challenge of THP-1 monocyte cell line 

with P. acnes at an MOI of 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h 

intervals. Expression was normalised by ACTB and calculated relative to LDLr expression for THP-1 cells 

treated with a PBS vehicle (red box). Data reprepresents the mean target gene expression fold change 

from three technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the 

mean of 9 technical replicates PBS treated cells (3 technical replicate samples at each time point). 

 

Figure 7.24: Gene expression fold change for ABCA1 following challenge of THP-1 monocyte cell line 

with P. acnes at an MOI of 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h 

intervals. Expression was normalised by ACTB and calculated relative to ABCA1 expression for THP-1 

cells treated with a PBS vehicle (red box). Data reprepresents the mean target gene expression fold change 

from three technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the 

mean of 9 technical replicates PBS treated cells (3 technical replicate samples at each time point). 
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Figure 7.25: Gene expression fold change for CCL3 following challenge of THP-1 monocyte cell line 

with P. acnes at an MOI of 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h 

intervals. Expression was normalised by ACTB and calculated relative to CCL3 expression for THP-1 

cells treated with aPBS vehicle (red box). Data reprepresents the mean target gene expression fold change 

from three technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the 

mean of 9 technical replicates PBS treated cells (3 technical replicate samples at each time point). 

 

Figure 7.26: Gene expression fold change for CCL2 following challenge of THP-1 monocyte cell line 

with P. acnes at an MOI of 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h 

intervals. Expression was normalised by ACTB and calculated relative to CCL2 expression for THP-1 

cells treated with a PBS vehicle (red box). Data reprepresents the mean target gene expression fold change 

from three technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the 

mean of 9 technical replicates PBS treated cells (3 technical replicate samples at each time point). 

 

Figure 7.27: Gene expression fold change for ICAM-1 following challenge of THP-1 monocyte cell line 

with P. acnes at an MOI of 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h 

intervals. Expression was normalised by ACTB and calculated relative to ICAM-1 expression for THP-1 

cells treated with a PBS vehicle (red box). Data reprepresents the mean target gene expression fold change 

from three technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the 

mean of 9 technical replicates PBS treated cells (3 technical replicate samples at each time point). 



Chapter 7: The effect of Propionibacterium acnes on a human monocytic cell line in vitro 

258 
 

 

Figure 7.28: Gene expression fold change for TNFα following challenge of THP-1 monocyte cell line 

with P. acnes at an MOI of 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h 

intervals. Expression was normalised by ACTB and calculated relative to TNFα expression for THP-1 

cells treated with a PBS vehicle (red box). Data reprepresents the mean target gene expression fold change 

from three technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the 

mean of 9 technical replicates PBS treated cells (3 technical replicate samples at each time point). 

 

Figure 7.29: Gene expression fold change for IL1β following challenge of THP-1 monocyte cell line with 

P. acnes at an MOI of 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h intervals. 

Expression was normalised by ACTB and calculated relative to IL1β expression for THP-1 cells treated 

with a PBS vehicle (red box). Data reprepresents the mean target gene expression fold change from three 

technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the mean of 9 

technical replicates PBS treated cells (3 technical replicate samples at each time point). 

 

Figure 7.30: Gene expression fold change for NF-κB following challenge of THP-1 monocyte cell line 

with P. acnes at an MOI of 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h 

intervals. Expression was normalised by ACTB and calculated relative to NF-κB expression for THP-1 

cells treated with a PBS vehicle (red box). Data reprepresents the mean target gene expression fold change 

from three technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the 

mean of 9 technical replicates PBS treated cells (3 technical replicate samples at each time point). 
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Figure 7.31: THP-1 monocyte expression fold change of BCL2A1 following challenge with P. acnes at 

an MOI of 25 (blue boxes). Target gene expression was calculated at 2, 6 and 24 h intervals. Expression 

was normalised by ACTB and calculated relative to BCL2A1 expression for THP-1 cells treated with a 

PBS vehicle (red box). Data reprepresents the mean target gene expression fold change from three 

technical replicates of P. acnes-challended THP-1 cells. PBS control expression represents the mean of 9 

technical replicates PBS treated cells (3 technical replicate samples at each time point). 

 

Gene 
Time 

(hours) 
Fold Change Gene 

Time 

(hours) 
Fold Change 

HMGR 

2 0.75±0.74 

SCAP 

2 1.43±0.34 

6 1.37±0.42 6 1.65±0.53 

24 9.46±0.56** 24 4.40±0.94 

SREBP2 

2 2.29±0.29 

LDLR 

2 1.32±0.24 

6 4.12±0.73* 6 1.62±0.54 

24 40.03±0.66*** 24 10.03±0.81* 

ABCA1 

2 3.44±0.75 

CCL3 

2 7.56±0.45 

6 4.45±0.70 6 13.46±0.79* 

24 120.76±0.17*** 24 205.63±0.38*** 

CCL2 

2 1.57±0.87 

ICAM1 

2 1.02±0.51 

6 3.35±1.79 6 2.701±0.76 

24 5.76±2.77 24 13.84±1.63* 

TNF-α 

2 6.26±0.25 

IL-1β 

2 2.81±0.67 

6 10.83±0.95 6 4.83±0.27 

24 15.87±1.1* 24 20.87±0.61* 

NF-KB 

2 1.39±1.40 

BCL2A1 

2 3.74±0.51 

6 1.21±0.52 6 23.09±1.32*** 

24 2.17±2.28 24 560.08±1.03*** 

Table 7.04: Gene expression fold change values for THP-1 cells challenged with a P. acnes MOI of 

20. Fold change was calculated using the comparative CT (ΔΔCT) method.  Target gene expression 

fold change values were calculated for P. acnes-infected cells relative, normalised to ACTB and 

relative to target gene expression of cells treated with a vehicle control (PBS) at 2 h, 6 h and 24 h 

exposure to P. acnes. Target gene expression in P. acnes-infected cells was significantly different to 

control cell expression when p values were p <0.05; *,  p <0.01; **, or p <0.001; ***. 
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7.3 Discussion 

The aim of this chapter was to investigate P. acnes infection and evaluate host cell 

inflammatory and metabolic responses by analysing relative mRNA levels within P. 

acnes-infected THP-1 cells. The data above provides novel information regarding real-

time mRNA expression of pro-inflammatory cytokines, cholesterol biosynthesis and 

efflux, and host cell survival responses to P. acnes infection, which hitherto has received 

little attention. 

qPCR was employed to detect transcript expression levels from THP-1 cells infected with 

a P. acnes strain isolated from human atherosclerotic plaque tissue. qPCR is a powerful 

analytical tool that allows the detection of minute changes in gene expression from trace 

amounts of template mRNA/cDNA. Using qPCR has distinct advantages over endpoint 

PCR because the kinetics of transcript amplification are examined in the early stages of 

the PCR reaction, opposed to monitoring relative transcript levels at the end of the PCR 

reaction.  The accuracy of qPCR is a consequence of measuring reaction kinetics during 

the exponential amplification phase, where, assuming 100% amplification efficiency (E = 

2), an exact doubling of transcription product occurs at each cycle, resulting in a more 

precise assessment of the initial transcript copy number. 

THP-1 cells were employed in this investigation to evaluate a basic in vitro model of 

inflammation arising from bacteria and host interaction. Some investigators believe the 

differentiated THP-1 phenotype provides a more activated response to infective challenge, 

and as such, can be more informative (Takashiba et al. 1999; Park et al. 2007). 

Differentiation occurs when THP-1 monocytes are exposed to phorbol esters, such as 

phorbol-12-myristate-13-acetate (PMA), resulting in a phenotypic shift from monocyte to 

cells that closely mimic native monocyte-derived macrophages. PMA exposure also 

promotes phagocyte activation, characterised by alterations in cellular metabolism and 

plasma membrane composition (Todd and Liu 1986). Therefore, THP-1 macrophages 

provide an extremely useful in vitro model cell line for investigating phagocytosis and 

destruction or evasion mechanisms of host/pathogen interactions. Crucially however, both 

THP-1 phenotypes can potentiate powerful inflammatory responses to bacterial stimulus 

through the release of hundreds of cytokines via a NF-κB-dependant or independent 

pathways (Cohen 2000; Pollard et al. 2004; Carayol et al. 2006; Nahid et al. 2011). It was 

never the aim of this investigation to establish the fate of phagacytosed P. acnes, so no 

clear advantages would have been gained from differentiating cells to THP-1 macrophages 
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prior to infection. Hence, undifferentiated THP-1 monocytes were employed for 

measuring target gene expression of a host cell line in response to P. acnes infection. Until 

now, previous investigations involving P. acnes-infected THP-1 cells have concentrated 

on the responses from the differentiated phenotype. Unconventionally, the findings 

presented here provide information on how the undifferentiated THP-1 monocyte responds 

to P. acnes infection, giving insight into one of the first immune responses to infection at 

the transcription level.  

This study shows that human monocytic cell line, THP-1, can induce an inflammatory 

response when exposed to clinical isolates of P. acnes. A total of twelve genes were 

investigated by measuring their regulation in response to P. ances infection. All target 

genes showed a temporal increase of mRNA over the 24 h time course. Only one down-

regulated response was observed for HMGr at 2 h; though the down-regulation of HMGr 

in response to P. acnes was not significantly different from the control condition. Nine of 

the tested genes were significantly up-regulated in response to P. acnes infection. SCAP, 

CCL2 and NF-κB all showed a steady increase in expression over 24 h but the regulated 

response was not significantly different to that of the PBS treated control cells. The 

aforementioned genes had a particularly high level of variation of CT value for replicate 

samples compared to the highly analogous CT values of other tested genes. In certain 

instances, mean fold change of P. acnes-challenged cells was nearly 5 times that of the 

PBS-treated control cells (CCL2, table 6.04), however, the level of deviation in expression 

between technical replicate for these genes was excessive, and thus, the mean fold change 

values are unreliable. 

The genes significantly up-regulated in response P. acnes can be broadly categorised into 

three main groups; inflammation (TNF-α, IL-1β, CCL3 and ICAM-1), cholesterol 

biosynthesis and efflux (HMGr, SREBP2, LDLr and ABCA1), and anti-apoptosis 

(BCL2A1). The P. acnes strain employed in this study was isolated from atherosclerotic 

tissue specimens that were surgically removed from the carotid artery. Because 

atherosclerosis is an inflammatory condition, when selecting genes for this study, 

emphasis was placed on genes that have known involvement in the pathogenesis of 

atherosclerosis. During the initial phases of atherogenesis, circulating monocytes adhere 

to and transmigrate activated endothelium, extravasate to the sub-intimal space then finally 

differentiate into monocyte-derived macrophage. The release of pro-inflammatory 

cytokines by monocytes and monocyte-derived macrophages is the dominant force that 
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drives leukocyte recruitment, trans-endothelial migration and monocyte differentiation. 

Here it is shown that some of the pro-inflammatory cytokines, TNF-α, IL-1β, CCL3 and 

cell adhesion molecule ICAM1, which are fundamental to these inflammatory processes, 

are similarly up-regulated by THP-1 monocytes in response to P. acnes infection.  

P. acnes stimulation of pro-inflammatory cytokines TNF-α and IL-1β in THP-1 cells has 

been reported by other investigators. Vowels et al. (1995) demonstrated abundant dose 

dependant release of IL-8, IL-1β and TNF-α from THP-1 cells infected with various 

concentrations of whole, heat killed (HK) P. acnes. Similarly, but to a lesser extent, the 

authors demonstrated that different concentrations of 3-day P. acnes culture supernatants 

(CS) were found to stimulate release of the same three cytokines, indicating that P. acnes 

also releases factors capable of stimulating production of pro-inflammatory cytokines in 

THP-1 cells. By separating the active factor present in the P. acnes supernatant by 

fractionation, the authors sequentially inhibited potential active factors by heat and enzyme 

treatments, followed by incubating THP-1 cells with the modified CS. Vowels et al. (1995) 

identified that factors between 3 – 30 kDa, a molecular weight range fitting that of 

peptidoglycan-polysaccharide, lipoteichoic acid (LTA), were the most potent inducers of 

cytokine release. Finally, through selective blockage of the major LPS/LTA and 

peptidoglycan receptor, CD14, resulted in a significant reduction in the cytokine secretion 

in THP-1 cells exposed to supernatant; suggesting a major virulence factors of P. acnes 

was a form of peptidoglycan-polysaccharide.  

Here, whole HK P. acnes was utilised as the stimulating component, and as such, it cannot 

be suggested that P. acnes LTA was the sole virulence factor responsible for mediating 

the observed inflammatory response. Vowels et al. (1995) reported that whole HK P. acnes 

infection resulted in the most abundant release of IL-1β and TNF-α; even when infection 

with whole P. acnes was reduced 10 and 100-fold, cytokines release was greater than the 

most potent response from the most concentrated supernatant infection. These findings 

suggest a possible synergistic action between more than one P. acnes virulent factor could 

be responsible for pro-inflammatory cytokine activation in THP-1 cells infected with 

whole P. acnes. 

CCL3, also known as macrophage inflammatory protein-1 alpha (MIP-1α) is a cytokine 

of the C-C chemokine family secreted by monocytes, macrophages and lymphocytes 

during acute inflammation (Wolpe et al. 1988). CCL3 protein, which acts via G-protein-

coupled cell surface receptors, is a potent mediator of leukocyte chemotaxis and 
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proliferation during inflammation. Thus, CCL3 plays a prominent role in the pathogenesis 

of many inflammatory conditions, including periodontal disease and atherosclerosis. MIP-

1 proteins have also been shown to promote homeostasis. In the study carried out here, a 

temporal expression of CCL3 in response to P. acnes was observed. Expression of CCL3 

began at 2 h; but did not change significantly compared to the control until 6 h (13.5-fold, 

<.05) followed by a large increase in expression at 24 h (205-fold, <.001; figure 6.25a and 

b). To our knowledge, no previous investigations have shown CCL3 expression in THP-1 

or human monocytes in response to P. acnes. However, in vitro studies have shown that 

human peripheral blood monocytes infected with LTA from other gram-positive bacteria 

result in both time- and dose-dependent expression of CCL3 mRNA and protein after 24 

h co-culture (Danforth et al. 1995; Yam et al. 2008). Interestingly, Yam et al. (2008) 

showed that even at MOI 10,000, E. coli and Lactococcus lactis evoked expression of 

CCL3 in macrophages that was nealy 200-fold lower than the expression observed here 

with an MOI 25 of P. acnes. 

In the study carried out here, E. coli LPS was utilised to evaluate THP-1 gene expression. 

Significant expression of CCL3 in THP-1 was induced by E. coli LPS from as early as 1 

h, yet expression induced by E. coli was markedly weaker than the expression induced by 

P. ances infection (figure 6.10). As a mediator of acute and chronic inflammation, CCL3 

interacts with chemokine reseptors CCR4, CCR1 and CCR5, of which the latter two have 

been implicated in atherogenesis (Kuziel et al. 2003; Potteaux et al. 2005; Potteaux et al. 

2006; Braunersreuther et al. 2007). CCL3 is able to augment neutrophil chemotaxis 

induced by the proinflammatory cytokine TNFα in a CCR5-dependent manner (de Jager 

et al. 2013a). Moreover, CCL3 itself  significantly up-regulated during atherosclerotic 

lesion formation (Moos et al. 2005; de Jager et al. 2010). P. acnes was shown here to 

induce strong up-regulation of CCL3. Given the origin of the P. acnes isolate utilised here, 

and its capacity for prompting potent chemotactic activity, it could be proposed that 

atherosclerotic vessels infected with P. acnes expose the vessel to increased inflammatory 

burden. To our knowledge a comprehensive analysis of monocytic cell chemokines, 

including CCL3 gene and protein expression deriving from P. acnes-infection has not been 

undertaken. Therefore, studies investigtaing chemotactic activity in vascular inflammation 

with particular emphasis on P. acnes-infection may provide information on  the extent to 

which P. acnes sustains chronic inflammation. 
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Recognition of microbial pathogens by the cells of the immune system triggers host 

defence mechanisms to combat infection and prevent disease. A group of highly conserved 

transmembrane pattern recognition receptors (PRRs), known as Toll-like reseptors (TLRs) 

are fundamental in the coordinated innate and adaptive immune responses to invading 

mocrobes. TLRs recognise conserved membrane bound proteins known as ‘pathogen 

associated molecular patterns’ (PAMPS)  that are critical to the pathogen function. P. 

acnes produce bioactive exocellular products that interact with the host immune system. 

Several genes in the P. acnes genome have been identified that encode different virulence 

factors such as, hemolysins, proteases and lipases, CAMP factors, surface associated 

proteins with immunoreactivity, such as peptidoglycan and LTA (Holland et al. 2010; 

Horváth et al. 2012; Tomida et al. 2013). LTA is a major ligand of TLR-2, which activate 

intercellular signalling pathways leading to the transcription of numerous cytokine genes 

via ranscription factors NF-κB and AP-1. TLR-2 activation to P. acnes was demonstrated 

by Kim et al. (2002) who transfected TLR-2 into a naturally LPS and LTA-unresponsive 

cell line. In transfectants with functional TLR-2 and CD14, P. acnes induced IL-12, IL-6  

IL-18 and TNF-α via TLR-2/NF-κB dependant pathway. In contrast, P. acnes could not 

activate NF-κB in cells expression TLR-4. In addition P. acnes-infected primary human 

monocytes secrete IL-8 and IL-18, which are successfully atenuated via anti-TLR-2 

blocking antibodies (Kim et al. 2002). Likewise, Chen et al. (2002) reported the same 

TLR-2 activation pathway resulting in the secretion of IL-8 and IL-18 in response to P. 

acnes via NF-κB activation in THP-1 cells. Moreover, in animal studies peritoneal 

macrophages from Tlr2 knockout mice fail to produce IL-6 in response to P. acnes, 

whereas IL-6 production was not diminished in wild-type, Tlr6 knockout, 

and Tlr1 knockout mice (Kim et al. 2002).  

P. acnes-induced activation of TLR-2 and subsequent intercellular signalling leading to 

transcription of pro-inflammatory cytokines demonstrates a highly effective and targeted 

host immune response mechanism. Recognition of microbial pathogens by the cells of the 

immune system triggers host defence mechanisms to combat infection and prevent disease. 

However, the same activated pathways can also de destructive exacerbating inflammation 

at the site of disease resulting in tissue injury. Chen et al. (2002) investigated IL-8 and IL 

-18 , which were not considered in the study carried out here. However, when taken 

together with findings by Kim et al. (2002) and reports of the same TLR-2 response to P. 

acnes in keratinocytes (Nagy et al. 2005; Jugeau et al. 2005; Lee et al. 2008; Shibata et al. 

2009), sebocytes (Nagy et al. 2006) and prostate epithelial cells (Fassi Fehri et al. 2011) 
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strong evidence for P. acnes-induced activation of TLR-2/ NF-κB-dependant pathway 

exists. TLR-2 consistantly failed in this investigation and so was not investigated further. 

However, based on the aformetioned studies it could be hypothesised that the genes 

activated here in response to P. acnes-infection did so via TLR2 in an NF-κB, CD14 and 

MYD88 dependant manner.  

The innate response activation of pro-inflammatory cytokines such as IL-1β is not solely 

controlled through TLR signalling pathways. NOD-like receptors (NLRs) initiate 

signalling through recognition of microbial PAMPs as well as host-mediated Danger 

Associated Molecular Patterns, (DAMPs). As previously discussed, TLR-2 has been 

proposed as a key receptor in response to P. acnes through recognition of bacteria wall 

components such as muramyl dipeptide or LTA and lipoprotein. Unlike TLRs, NLRs are 

entirely cytoplasmic, and as such provide intercellular sensing of microbial agents. Upon 

ligand sensing, NLRs form caspase-1-activating multi-protein complex known as an 

inlfammasome. Most characterised is NLR family pyrin domain-containing 3 (NLRP3) 

inflammasome. Pro-IL-1β is not constitutively expressed and requires transcriptional 

induction via TLR stimulus. P. acnes is a potent trigger of THP-1 cell NLRP3-

inflammasome activation, IL-β processing and secretion (Sahdo et al. 2013; Kistowska et 

al. 2014; Qin et al. 2014; Thiboutot 2014). The mechanism of P. acnes induced-NLRP3 

activation is dependent on lysosomal destabilisation, reactive oxygen species and cellular 

potassioum ion (K+) efflux (Kistowska et al. 2014). As well as IL-1β, P. acnes induced 

secretion of IL-6, TNF-α, and IL-8 by at an MOI 25. Qin et al. (2014) and subsequent IL-

1β secretion involved K+ efflux. Also, caspase-1 and caspase-2 gene expression is up-

regulated in monocytes when stimulated with live P. acnes, however, IL-1β requires only 

caspase-1 activity (Franchi et al. 2009; Sahdo et al. 2013; Qin et al. 2014; Contassot & 

French 2014). What is more, inhibition of NLRP3 is sufficient to result in attenuated IL-

1β expression, preventing inflammation; the same inhibitory action on NLRP1 does not 

have the same effect (Qin et al. 2014).  

In the study carried out here IL-1β was significantly up-regulated by THP-1 cells in 

response to both LPS and P. acnes. For LPS-infected THP-1, there was a significantly 

greater expression in the early stages of the time course (figure 6.15; 1.5 h) that was 

comparable to later expression levels observed with P. acnes exposure (figure 6.29; 24 h), 

however IL-1β was expressed to a similar final maximum level. 
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Phagocytosis of P. acnes is necessary for NLRP3-inflammasome activation and 

subsequent IL-1β production in THP-1, (Sahoo et al. 2011). Interestingly, Fischer et al. 

(2013) describes a study into the intracellular fate of P. acnes in macrophages. In this 

important study, P. acne was observed to have an ability to survive in prostate 

macrophages of mice at 2 weeks after P. acnes inoculation, and not just survive but persist 

in THP-1. This has great implications because the ability to persist in macrophages and 

other cell types as an intracellular pathogen may be important in the context of P. acnes-

related diseases and chronic infection. More importantly, this intercellular survival may 

go some way to explain how the isolate of P. acnes used in this in vitro model of infection 

came to be isolated so frequently in the atherosclerotic plaques examined in earlier 

chapters.  

Seven of the genes analysed in this study activate via NF-κB-dependant signalling, i.e. 

ABCA1 (Gerbod-Giannone et al. 2006), CCL3 (Grove & Plumb 1993), CCL2  (Ueda et 

al. 1997), ICAM-1 (van de Stolpe et al. 1994), TNF-α (Shakhov et al. 1990), IL-1β (Hiscott 

et al. 1993) and BCL2A1 (Zong et al. 1999). TLR-2 activation and the intercellular 

signalling involve many protein interactions before NF-κB is free to translocate through 

the nuclear membrane to initiate gene transcription. While the entire signal cascade is 

expansive, including transcription of the NF-κB-target gene, expression completes within 

40 min. This was apparent when using E. coli LPS to stimulate THP-1 cells, as significant 

expression of TNF-α was observed at the first 30 minute time point. Unfortunately, NF-

κB did not show significant regulation by P. acnes infected THP-1 cells, nor was there any 

NF-κB signalling observed. As NF-κB regulation is necessary for transcription of all the 

genes investigated here except HMGR, SCAP, SREBP2 and LDLR; NF-κB signalling 

must have occurred. When explaining this lack of NF-κB induction, one must consider the 

length of time between RNA isolations; it is entirely plausible expression of NF-κB 

occurred within the 24 hour incubation. When considering this and the rapid signalling 

response from stimulation to transcription (30 minutes for TNF-α expression) it’s is 

entirely possible that NF-κB was induced several times prior to mRNA isolation. 

In addition to the pro-inflammatory cytokine response induced in THP-1, ICAM-1 was 

also significantly up-regulated in response to P. acnes at 24 h (figure 6.04; p <.05). To the 

best of our knowledge, there have been no previous studies that show up-regulated THP-

1 ICAM-1 in response to P. acnes. Expression occurred steadily over the 24 h time course 

with the greatest and only significant change occurring at 24 h. Expression of ICAM-1 in 
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P. acnes-infected THP-1 was greater than LPS-induced ICAM-1. ICAM-1 is a cellular 

adhesion molecule member of the immunoglobulin superfamily that plays a key role in 

regulating the recruitment and trans-endothelial migration of leukocytes into the vessel 

wall. Activated by cytokines, leukocytes express L-selectin, ligands for P- and E-selectins 

expressed on the endothelium membrane (Tedder et al. 1999). A sequence of receptor-

ligand interactions commences by initial tethering of L-selectin and P-selectin (PSGL-1). 

Selectins poses low affinity and therefore the circulating leukocyte tethers the endothelium 

and begins to roll, breaking selectin ligands and re-ligating while in motion (Ley 2003). 

Macrophages residing in the tissue release chemokines such as IL-8 and MCP-1 that 

activate chemokine receptors MAC-1 and LFA-1 on the leukocytes (Mukaida 1998). LFA-

1 and MAC-1 are β2-integrins with high affinity for ICAM-1 and ICAM-2, respectively 

(Sanchez-Madrid et al. 1983). Due to the high affinity of integrins, leukocyte adhesion to 

the endothelium is a highly stable. Cytokines such as vascular permeability factor/vascular 

growth factor, induce vascular dilation and endothelium permeability enabling monocyte 

diapedesis, aided by platelet endothelial cell adhesion molecule 1 (PCAM-1).   

However, this process is only part facilitated by endothelial activation of ICAM-1. It has 

been shown that monocyte ICAM-1 also plays an equally important role in this process, 

verified by oligodeoxyribonucleotide (ODN) blocking of monocyte ICAM-1 expression 

in monocyte-endothelium migration assays (Steidl et al. 2000). Inhibition of monocyte 

ICAM-1 via transfection of an antisense ODN sequence resulted in a significant reduction 

(38%) of monocyte adhesion to a HUVEC endothelial monolayer. Furthermore, inhibiting 

monocyte ICAM-1 also significantly reduces monocyte trans-endothelial migration by 

40% compared to a random ODN sequence control (Steidl et al. 2000). This suggests the 

expression of ICAM-1 on monocytes is a key inflammatory response, controlling in part, 

adhesion and migration independent of other critical monocyte cell adhesion molecules, P 

and L-selectin.  

This has particular relevance when translating P. acnes infection and its observed ability 

to up-regulate ICAM-1 in vitro. The viable P. acnes used in this study was isolated from 

atherosclerotic tissue surgically removed from the carotid artery. Although it cannot be 

stated that the particular P. acnes isolate utilised as an in vitro stimulus was responsible 

for the ex vivo ICAM-1 expression observed here; it does provide some insight into P. 

acnes host interaction at a simple innate response level. Steidl et al. (2000) findings 

suggests that effective leukocyte recruitment and trans-endothelial migration is 
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determined, in part, by induction of monocytic ICAM-1. Given the origin of P. acnes 

isolation and its ability to significantly up-regulate monocytic ICAM-1, it could be 

proposed that atherosclerotic lesions comprising P. acnes are subjected to additional 

inflammatory burden through enhanced leukocyte recruitment. Consequently, an increase 

in leukocytes to the artery wall could lead to an increase in foam cell numbers and a 

physical increase in lesion mass. 

It is not confirmed from the in vitro model of infection carried out here whether monocytic 

ICAM-1 was directly up-regulated in response to P. acnes or indirectly through cytokine 

signalling. From these data TNF-α or IL-1β cannot be discounted as mediators of ICAM-

1 up-regulation as all three genes were up-regulated at 24 h but not at 2 or 6 h. It has long 

been understood that endothelial ICAM-1 is mediated in response to pro-inflammatory 

cytokine signalling from TNF-α and IL-1β (Bevilacqua et al. 1985; Pober et al. 1986). This 

mediating action has been confirmed in several studies in which inhibitory factors 

targeting TNF-α and IL-1β signalling pathways show marked reductions in endothelial 

ICAM-1 expression (Zhang et al. 2002; Zhou et al. 2005). TNF-α is a potent stimulator of 

the cell adhesion molecules ICAM-1 and VCAM-1 which occurs through ligation of TNF 

receptor 1 subtype and mediated by the NF-KB pathway (Zhou et al. 2007). It is worth 

noting that although the majority of studies primarily investigate the role of TNF-α and 

IL-1 as facilitators of endothelial ICAM-1 expression and protein activation, the same 

effector pathways are responsible for monocytic ICAM-1 induction (Xie & Gu 2008). In 

addition, endotoxin-stimulated THP-1 expression of ICAM-1 has been reported to induce 

TNF-α in adjacent naїve cells, a response observed when blocking ICAM-1 on endotoxin-

stimulated THP-1 cells resulted in a reduced THP-1 production of TNF-α of approximately 

30% (Xie & Gu 2008). 

Here we show that P. acnes was capable of up-regulating genes involved with cholesterol 

biosynthesis, trafficking and efflux (HMGR, SREBP2, LDLR and ABCA1) in THP-1 

cells. Sterols and fatty acids are common intermediary metabolites that play key roles in 

many biological pathways involved in inflammatory diseases such as atherosclerosis and 

chronic heart disease (Lusis, 2000; Makowski & Hotamisligil, 2005; Wood et al., 1984). 

Significantly, mounting evidence shows a connection between innate immune signaling 

processes and the regulation of sterol and fatty acid metabolism (Castrillo et al. 2003; 

Ogawa et al. 2005; Zelcer & Tontonoz 2006; Wang et al. 2009; Li et al. 2013). However 

it cannot be determined whether P. acnes is directly or indirectly responsible for activation 
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of cholesterol mediating genes. Specifically, cholesterol and its metabolites have been 

shown to alter inflammatory mediator behavior (Zhu et al. 2008; Bauman et al. 2009; 

Yvan-Charvet et al. 2010), and conversely, innate immune signalling has been shown to 

modulate the dynamics of cholesterol transport, storage, and excretion (Eguchi et al. 2008; 

Maitra et al. 2009; Haas & Mooradian 2010). Here, significant expression was observed 

in all but one (SCAP) lipid mediating gene. Like NF-κB, SCAP expression showed high 

deviation between biological replicate expression values, and so was deemed an unreliable 

target gene. HMGR, although down-regulated in the first two hours showed an increase in 

expression over the 24 h exposure time, rising to a significant expression at the 24 h. HMG-

CoA reductase is the rate-determining enzyme of the cholesterol biosynthetic pathway and, 

like HMG-CoA synthase, is highly regulated by the availability of free cellular cholesterol 

(Burg & Espenshade 2011). Hence, up-regulation indicates depletion in free cellular 

cholesterol or a dysregulation in the mevalonate pathway brought on by P. acnes presence. 

Kistowska et al. (2008) found that both E. coli and Streptococcus aureus-infected THP-1 

cells promoted increased expression of HMGR. The authors suggest this to be an evolved 

ability to readily respond to bacterial infection by sensing the dysregulation of the 

mevalonate pathway, thus acting as a mechanism of immediate antimicrobial immunity. 

However, Kistowska et al. (2008) found dysregulation of mevalonate was characterised 

by an large increase in HMGR expression within the first hour of bacterial infection. Here, 

this clearly isn’t the case; an initial down-regulation of HMGR was followed by >9-fold 

expression of HMGR by 24 h. Another explanation then for HMGR up-regulation in 

response to P. ances could be active porphyrin damage of THP-1 cell plasma membrane. 

Studies show that P. acnes produces various porphyrins that actively assist pore formation 

in target cell plasma membrane; thus HMGR up-regulation is to synthesise extra 

cholesterol for cell membrane repair .  

The same pattern of increasing expression for HMGR was echoed for LDLR, ABCA1 and 

SREBP-2. The cholesterol feedback regulation of LDLR and HMGR are mediated by the 

SCAP-SREBP2 pathway and are key regulatory elements for cholesterol homeostasis in 

human cells (Bauman et al. 2009; Wang et al. 2009). It is suggested that high serum 

cholesterol or high LDL has protective effects against infection (Ravnskov 2003). Indeed, 

during acute infections, cholesterol synthesis, measured as degree of 3H-mevalonic acid 

incorporation into free cholesterol, increases, but the disappearance rate of cholesterol 

from plasma is also increased (Fiser et al. 1971) probably explained by the excessive 

expression of ABCA1 seen here. ABCA1 expression promotes cholesterol export from 
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cells to high-density lipoproteins and constitutes an important element of ‘reverse 

cholesterol transport’. ABCA1 was the most highly expressed gene of the cholesterol 

genes (table 6.04). The large expression of ABCA1 would suggest the efflux of excess 

cholesterol from P. acnes-infected THP-1 cells. However, as the medium was not 

supplemented with LDL, it is difficult to interpret this result. The expression of ABCA1 

is responsive to many cytokines and microbial stimuli (Schmitz & Langmann 2005). 

Interestingly, LPS-infected ABCA1 -/- macrophages express enhanced levels of pro-

inflammatory cytokines with increased activation of the NF-κB and MAPK pathways.  In 

addition ABCA1 -/- mice injected with LPS also resulted in a higher pro-inflammatory 

response in compared with wild type mice (Zhu et al. 2008). This would suggest that a 

down-regulated ABCA1 promotes a protective innate response by increasing pro-

inflammatory cytokine expression. Interestingly this protective response was not at play 

here. 

To our knowledge, this is the first evidence that shows regulation of genes that mediate 

cholesterol biosynthesis, trafficking and efflux in THP-1 cells exposed to P. acnes. 

Although the present study demonstrates expression of HMGR, SREBP2, LDLR and 

ABCA1 in P. acnes-infected THP-1, which invariably relates cholesterol synthesis, 

trafficking and efflux during infection, it tells us little about the potential cross-talk 

between inflammation and cholesterol mediation. For this it would be necessary to silence 

key inflammatory mediators, such as TLR2 in P. acnes-infected THP-1 in the presence of 

LDL cholesterol (Li et al. 2013). Moreover, these findings relate to mRNA levels only and 

therefore, any interpretation of cellular pathways can only be done superficially. By 

investigating P. acnes infection and how bacteria may influence cholesterol homeostasis, 

it may be possible to understand how infection may contribute to the development of foam 

cells through encouraging lipid-loading in macrophages cells within the atherosclerotic 

lesion.  

7.4 Conclusion  

In this chapter of work it has been shown that P. acnes was capable of up-regulating THP-

1 cell genes involved with cholesterol biosynthesis, trafficking and efflux, inflammation 

and apoptosis. As a commonly detected species within the atherosclerotic plaque samples 

examined here, P. acnes has the potential to induce several genes that are known to 

contribute to atherosclerosis. A major hallmark of atherosclerosis is the development of 

macrophage foam cells as a result of unregulated internalisation of modified and oxidised 
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LDL. P. acnes-induced upregulation of HMGR, SCAP and LDLR could increase 

intracellular cholesterol levels in monocyte/macrophages through de novo synthesis and 

receptor mediated uptake. This is important because any additional lipid to an already 

unregulated process of cholesterol uptake could actively contribute to atherosclerotic 

plaque mass. Genes involved in leukocyte recruitment were also upregulated in response 

to P. acnes. In addition to cholesterol mediation, P. acnes was also capable of upregulating 

cytokine and chemotactic genes. Typically, cytokines and chemokines are regulated by 

macrophages in response to bacterial stimuli and inflammation. Here we demonstrate that 

P. acnes is capable of inducing expression of monocytes genes that have potential to 

increase inflammatory milieu that could have a negative effect within an atherosclerotic 

lesion. However, due to the design of this study it is not possible to to suggest that this 

profile of THP-1 cell gene expression would not be observed if a different species of 

bacteria was used. 
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The prime objective of this thesis was to begin to uncover the role that infection plays on 

the development of atherosclerosis through the identification of bacteria species present 

within CAP tissue. The evidence discussed within this thesis provides novel insight into a 

unique collection of bacterial 16S rDNA and viable bacteria species residing in CAP 

tissue. In addition, this thesis also provides potential novel data for the expression of genes 

affecting inflammation, cholesterol homeostasis and apoptosis, both in tissue and in THP-

1 monocyte cells following challenge with commonly encountered plaque-dwelling isolate 

P. acnes. This chapter brings together those findings to discuss the potential source of the 

bacterial signatures observed in CAP tissue and attempts to present a role for bacteria 

within the pathogenesis of atherosclerosis. 
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8.1 Bacteria present in atherosclerotic plaque tissue 

8.1.1 Periodontopathic bacteria  

The theory that bacteria may be present in atherosclerotic plaque tissue is established with 

the findings presented within this thesis. While the focus of this thesis has been a to screen 

for the presence of any latent bacteria present within atherosclerotic plaque tissue a 

particular emphasis has been placed on the detection of the periodontopathic species of the 

red complex. Both P. gingivalis and T. forsythia DNA was readily detected in the CAP 

samples examined. This is in stark contrast to, T. denticola, which was the only RCB not 

detected. This comes as no surprise, although T. denticola DNA has been identified in 

aortic and coronary plaque tissue, often detection rates are either poor or detection relates 

to just one case study (Okuda et al. 2001; Ishihara et al. 2004; Mahendra et al. 2010; 

Mahendra & Mahendra 2013). This observation is difficult to explain and the only stand 

out feature that differentiates T. denticola from its complex counterparts is its large size 

and anatomical structure. Compared to the much smaller coccobacillus P. gingivalis or the 

pleomorphic T. forsythia that both readily disseminate the blood of infected patients, the 

physical size of T. denticola may hinder its systemic dissemination. However, given its 

previous detection in some vessels but not others suggests its size cannot be the sole factor 

in its lack of detection. T. denticola is also the only motile species of the RCB, 

consequently then it has more control over its direction and can therefore control its fate 

to an extent. These features likely directly and indirectly affect the dissemination of T. 

denticola into the bloodstream and its transport from periodontium to vessel. Another 

possible explanation may be the heterogeneity of bacterial species present in the 

periodontal pockets and subgingival plaque of patients with periodontitis. An additional 

examination of patients periodontal status or an assessment of the microbiota present in 

the periodontal dissues of the patients who donated their plaque may have provided further 

information for the discrepancy between the prevalence of some but not all RCB in 

atheromatous tissue.  

To the best of our knowledge, twelve previous studies have attempted to detect 

periodontopathic bacteria in carotid artery plaque samples (Haraszthy & Zambon 2000; 

Cairo et al. 2004; Fiehn & Larsen 2005; Ford et al. 2006; Padilla et al. 2006; Aimetti et al. 

2007; Romano et al. 2007; Aquino et al. 2011; Armingohar et al. 2014; Figuero & Lindahl 

2014; S. Morita et al. 2014; Rangé et al. 2014). Of these, eight studies managed to detect 

periodontopathic bacteria in carotid samples (Haraszthy & Zambon 2000; Fiehn & Larsen 
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2005; Ford et al. 2006; Padilla et al. 2006; Armingohar et al. 2014; Figuero & Lindahl 

2014), but the remaining four did not (Cairo et al. 2004; Aimetti et al. 2007; Romano et 

al. 2007; Aquino et al. 2011), thus highlighting the lack of consistency in study findings 

to date. The fact, the majority of these studies used the sensitive method of PCR for the 

detection of bacterial 16S rDNA suggests the inconsistencies may be partly due to the 

different DNA extraction methods used. In the present thesis tissue was ground to a fine 

powder in the presence of liquid nitrogen, which ensured homogeneity followed by 

treatment with a series of enzymes that permitted lysis of both Gram-negative and the more 

hardy Gram-positive bacteria; this we feel provided an optimum extraction of DNA from 

any bacteria present.  

In the present investigation, 0.5 µg extracted DNA was used as template for PCR, which 

would normally be considered too high and would normally inhibit the reaction due to an 

over-presence of amplifiable target DNA that would exhaust reagents early in the reaction. 

However, it was predicted that actual amplifiable target bacterial DNA would be 

considerably less than the genomic component, hence it was unlikely the actual 

amplifiable bacterial template was excessive. Interestingly, the four studies that failed to 

detect periodontopathic bacteria, two failed to monitor the PCR template amount used for 

PCR (Cairo et al. 2004; Aquino et al. 2011). Of the eight studies that detected 

periodontopathic bacterial DNA in carotid plaque tissue only had success using nested 

PCR (Fiehn & Larsen 2005; Figuero et al. 2011), which suggests that the presence of very 

low copy number bacterial DNA. Remarkably, an actual quantitative assessment of 

periodontal bacteria copy number has never been conducted in carotid atherosclerosis. The 

best estimate comes from a qPCR assessment of periodontopathic DNA present in the 

carotid artery, which demonstrated that periodontopathic bacterial DNA represented 

47.3% of the total bacterial DNA found in atheromatous samples from patients with 

periodontitis and 7.2% of the total bacterial DNA detected in atheromas from periodontally 

healthy subjects (Gaetti-Jardim 2009). Therefore it is clear that patentis with peoriodontal 

disease has much greater incidence of periodontopathic bacteria in their athero-prone 

vessels. Nevertheless, while it could not be elucidated in the present thesis whether the 

DNA extraction method is responsible for the discrepancies in detection of 

periodontopathic bacteria in carotid artery plaque samples; both the aforementioned 

literature and the present thesis highlight the necessity for careful DNA extraction when 

investigating the presence of these species using PCR. Maybe a universal method for 

bacterial DNA extraction would be useful. 
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8.1.2 Streptococcus spp. 

In addition to periodontopathic bacteria, DNA from other oral bacteria were detected, 

specifically Streptococcus spp., which gives further credence to the hypothesis that 

bacteria from the oral cavity are present in the atherosclerotic plaque tissue of the carotid 

artery. Within the scope of this investigation it was not possible to absolutely differentiate 

SMG bacteria to a species level or rather it was not possible to differentiate between S. 

mitis and S. sanguinis. These two species were the most closely related  sequences 

identified in BLAST reference searches both showing maximum identity of 100%. To the 

best of our knowledge this is the first ever detection of S. mitis in carotid atherosclerotic 

plaque tissue, which seems surprising given its abundant colonisation with the oral cavity. 

While, Streptococcus spp. are not highly pathogenic relative to RCB, they are involved in 

dental decay to varying degrees and can in certain situations cause aggressive periodontitis 

(AG) with streptococcal gingivitis in certain immune susceptible individuals; thus 

demonstrating this genera’s potential to induce a similar pathology in periodontal tissue 

(Kara et al. 2007). However, AG caused by streptococcal species is rare; it seems far more 

plausible that if periodontal tissues are compromised due to periodontopathic species 

infection, the close interaction between RCB and other species in dental biofilms would 

provide opportunities for Streptococcus spp. to gain entry to the bloodstream. As the initial 

colonisers of the tooth surface for biofilm formation, both P. gingivalis and T. forsythia 

require Streptococcus spp. for aggregation/colonisation and so have a particularly close 

relationship during subgingival biofilm formation (Daep et al. 2008; Shimotahira et al. 

2013).   

The findings presented here demonstrate a viable presence of Streptococcus spp., possibly 

S. mitis and S. sanguinis in the CAP specimens examined. These findings are particularly 

interesting as it demonstrates the physical survival of oral bacteria both throughout their 

systemic translocation and extended survival within the atherosclerotic plaque itself. This 

has particularly greater negative health implications in that both these species are early 

colonisers of the tooth surface active in biofilm formation. If Streptococcus spp. were able 

to thrive in atherosclerotic plaque tissue, then, by replicating, could possibly adhere to 

plaque surfaces and initiate biofilm formation in the atheroma. In answering the question 

of whether the isolated strains of Streptococcus spp. can adhere to the plaque surfaces one 

may conduct an in situ hybridisation or IHC assessment of Streptococcus spp. localisation 
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and measure adhesin protein activation, such as fibronectin binding protein 1 (Nobbs et al. 

2009; Yamaguchi et al. 2013). 

8.1.3 Propionibacterium acnes. 

P. acnes was the most encountered species both in terms of 16S rDNA direct in tissue 

(33% species specific and 32% cloned sequences) and in the 100 viable isolated colonies 

91% were P. acnes. The P. acnes detected in the CAP samples were closely related to the 

NCBI reference strains SK137, which based on previous antibody testing and phylogenetic 

evaluation of the recA gene and hemolysin/cytotoxin gene (tly), belongs to the lineage type 

IA (McDowell et al. 2005). This particular lineage of P. acnes falls into the subgroup most 

frequently isolated from dental infections, acne lesions and failed prosthetic implants 

(McDowell et al. 2005). The patients who donated their plaque tissue for this study had a 

mean age of 69.9±8.69 years, so the possibility that any of them were suffering with acne 

vulgaris was negligible. Thus, it is far more likely that prosthetic implants or periodontal 

bacteraemia were the likely source of P. acnes infection. It could be proposed that given 

the presence of strictly oral bacteria in the plaque samples examined here, the likelihood 

that P. acnes was originated from the same source is strong, though this cannot be said for 

certain. To begin to answer this question of the origin of the P. acnes isolates, one could 

acquire a more detailed medical history of patients who donated their tissue for this study, 

e.g. previous implant surgery. Furthermore, a more extensive screen for 16S rDNA 

signatures by incorporating the analysis of other bodily sites frequented by P. acnes, such 

as dental sites, intestines and skin sites may narrow down the potential origin. 

Nevertheless, P. acnes has been shown here to be a capable opportunistic pathogen, in 

light of it detection in a viable state. P. acnes has previously been discounted as 

contaminate on account of its role as a commensal. However, genetic elements specific to 

each lineage of P. acnes have been established, which highlight the differences of P. acnes 

in functioning as a commensal of the skin and as a pathogen in the aetiology of diseases 

(Tomida et al. 2013). Also an early coloniser of the tooth surface, P. acnes carries the same 

potential aptitude dental biofilm formation by providing a receptor bridge between 

Streptococcus gordonii (first coloniser) and the periodontopathogen Fusobacterium 

nucleatum (Kolenbrander et al. 2010). The formation of biofilms in atherosclerotic plaque 

tissue is potentially very hazardous. For example, a phenomenon known as “biofilm 

dispersion” could have devastating consequences if occurring with vulnerable plaque. 

Biofilm dispersion is the release of live bacteria from the biofilm as physiologically 
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regulated response to internal or external stimulus (Kaplan 2010). The induction of a 

biofilm dispersion response within an atheroma may, therefore, have the potential to 

induce collateral tissue damage resulting from the localized release of degradative 

enzymes by the participating bacteria (Lanter et al. 2014). This response, in turn, could 

influence the integrity of the surrounding arterial tissues, leading to an enhanced risk of 

plaque rupture and thrombogenesis. Recently it has been demonstrated that P. acnes does 

form as a biofilm in carotid atherosclerotic plaque (Lanter et al. 2014).  In addition, P. 

acnes isolated from the carotid artery has the ability to form biofilms in vitro, which 

dispersed when treated with with physiologically relevant levels of norepinephrine, a stress 

hormone responsible for the fight-or-flight response (Lanter & Davies 2015). Given the 

abilities of P. acnes to act as an opportunistic pathogen and its overwhelmingly high 

presence in a viable state within the atherosclerotic plaques samples examined here, it felt 

like the necessary bacterium to investigate further. 

8.1.4 Lactobacillus spp. 

Lactobacillus spp. DNA was also detected, which not only gives weight to the argument 

that oral bacteria can infect the atherosclerotic artery but also raises the question, “is it 

only putative periodontopathic strains of bacteria that play a potential negative role in 

atherogenesis?” Certain clues come from how Lactobacilli operates in the oral cavity 

where it has an predominantly protective, antimicrobial effect on P. gingivalis, T. forsythia 

and certain cariogenic species by limiting the secretion of pro-inflammatory 

cytokine/chemokines IL-1β, IL-6 and IL-8 by gingival cells (Zhao et al. 2012; Baca-

Castañón et al. 2015). However, this anti-inflammatory role is confused somewhat when 

considering how it operates in the vessel as L. casei cell wall components have been shown 

to accelerate atherosclerosis is hypercholesterolemic mice models, suggesting this 

particular microbe may operate in a different way within distinct bodily niches (Chen et 

al. 2012). It is therefore difficult to interpret the extent to which Lactobacilli species may 

impact atherosclerosis in humans. 

8.1.5 Mycobacterium tuberculosis  

In addition to oral species, species from other bodily niches were detected. Two pulmonary 

infective species were identified, namely Mycobacterium tuberculosis (H37Rv) and 

Klebsiella pneumoniae (sub sp. KP5-1). The findings presented in this thesis provide the 

first evidence for the presence of M. tuberculosis DNA in CAP tissue. While the general 
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experimental design for this and other detection based investigations is the use of a broad 

range primer set for a wide scale screen of bacterial DNA, previous investigators have 

specifically targeted M. tuberculosis, with no success  (Farsak, Yildirir, Akyön, Pinar, Öç, 

et al. 2000; Rota et al. 2005). There are significant findings for the possible involvement 

of M. tuberculosis in the pathogenesis of atherosclerosis such as high levels of antibodies 

to mycobacterial heat shock protein 65 (Rota & Rota 2005). Also, a large cohort was 

studied to estimate the risk of ischemic stroke during a 3-year follow-up period after a 

tuberculosis diagnosis (Sheu et al. 2010). The authors concluded that patients with a 

tuberculosis diagnosis are at 1.52-times increased risk for ischemic stroke but not 

hemorrhagic stroke in the next 3 years. As the relationship was cerebral in nature, 

suggesting the link may be between carotid atherosclerosis and M. tuberculosis. This 

warrants further investigation to elucidate the atherogenic potential of M. tuberculosis. 

8.2 Potential routes of translocation to the Carotid artery 

8.2.1 Oral bacteraemia 

 Successful identification of P. gingivalis and T. forsythia in CAP tissue demonstrates a 

relationship between infective agents of periodontal disease and vascular sites affected by 

atherosclerosis. As previously discussed in the main introduction of this thesis oral cavity 

is densely colonised by bacteria, which, can enter the bloodstream via transient 

bacteraemias, following routine daily activities such as mastication, teeth brushing and 

dental treatment(Forner et al. 2006). However, when chronic periodontal disease is 

evident, the tissue of the periodontium is compromised providing increased opportunity 

for systemic challenge of periodontal or oral species that cause secondary infections at 

sites distant from the oral cavity (Kozarov & Grbic 2012). This is one possibility for the 

mechanism of systemic entry of P. gingivalis T forsythia, S, mitis and S. sanguinis. It is 

possible this route accounts for P. acnes and Lactobacillus spp, also, although this cannot 

be said for certain for reasons already discussed. Table 8.01 represent the hypothetical 

mechanism of bacterial systemic dissemination from source tissue and their translocation 

to distant vascular sites where they induce vascular inflammation and contribute to 

atherosclerosis.  

8.2.2 Macrophage internalisation and translocation 

Bacteria may also be transported to vascular sites by macrophages following phagocytosis 

of pathogens at sites distant from the vessel wall, then, by responding to inflammatory 
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signals created by injured endothelial cells, the macrophages inadvertently transport the 

bacterial cargo to the artery wall (figure 8.01). Subsequently, when the macrophage later 

becomes necrotic from excess lipid loading, releases the bacteria into the artery wall. 

Interestingly, P. acnes, can survive intracellularly for up to 2 weeks in macrophages in 

vitro, thus, this mechanism of transport may be reflective of how P. acnes infected the 

plaques examined here (Fischer et al. 2013).  

8.2.3 Leaky gut and intestinal bacteraemia  

Secretory IgA in the gut can bind to the mucus layer on top of the epithelial cells to form 

a barrier capable of neutralizing threats before they reach the cell and preventing the 

passage of bacteria (Mantis et al. 2011). Some species of bacteria Streptococcus 

pneumoniae release protease that degrades IgA and breakdown the normally tight cell-cell 

junctions between the epithelial cells of the gut providing entry to the submucosa (Proctor 

& Manning 1990) (figure 8.01). Bacteria can then become systemic through accessing 

damaged capillaries created by tares in the gut or chronic diseases such as Crohn’s disease. 

8.3 THP-1 gene expression 

8.3.1 Expression of cholesterol homeostatic gene in P. acnes-infected THP-1 cells 

8.3.1.1 SREBP2 

In the current study SREBP2 mRNA expression in THP-1 cells challenged with P. acnes 

showed significant up-regulation following 24 hours infection compared to PBS-treated 

control cell expression at the same time point. Evidenced by our understanding of the role 

of SREBP2, such a significant increase in SREBP2 expression suggests a cell condition 

with diminishing cytosolic cholesterol levels. To the best of our knowledge this is the first 

observation of P. acnes-induced SREBP2 expression in THP-1 cells, thus such a marked 

increase in SREBP2 in monocytes challenged with P. acnes is difficult to interpret. P. 

acnes is considered to play a etiological role in the pathogenesis of acne vulgaris where it 

has been proposed to directly influence lipogenesis in the sebaceous gland. It may be 

possible then to take certain clues from our understanding of P. acnes etiological role in 

disease and the increasing in vitro evidence in that field. 

In a similar in vitro investigation, P. acnes infection was found to augment the formation 

of intracellular lipid droplets in sebocytes (Iinuma et al. 2009). Furthermore, P. acnes-

infected sebocytes showed significant up-regulated diacylglycerol acyltransferase 
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(DGAT), the rate-limiting enzyme for triglyceride synthesis, which was found to 

physically increase the intracellular levels of triglyceride in both undifferentiated and 

differentiated sebocytes (Iinuma et al. 2009). 

Similarly, culture supernatant of P. acnes has been shown to induced SREBP-1 expression 

in sebocytes and system of activation that is dependent on protease-activated receptor-

2 (Lee et al. 2015). While direct comparisons cannot be made between the aforementioned 

studies finding and those presented here; these studies are important in confirming that P. 

acnes can directly influence a lipid pathway, which has certain parallels with findings 

presented here.  Ultimately, the lipid loading effect of P. acnes in sebocytes encompasses 

an isoform of the same gene (SREBP1) shown here to be highly expressed in monocytes 

(SREBP2). In addition, the up-regulation of DGAT for the de novo synthesis of 

triglyceride in P. acnes-infected sebocytes observed by Iinuma et al. (2009) is equivalent 

to the rate limiting step in the mevalonate pathway, HMGR, shown here to be significantly 

up-regulated in THP-1 cells. As the master gene for transcription of numerous cholesterol 

homeostatic genes, P. acnes-induced dysregulation of SREBP2 of SREBP2 could have 

negative implications, although without protein expression data, any interpretation of these 

findings should be approached with caution. Nevertheless, the findings presented here 

indicate that P. acnes may be involved in up-regulating SREBP2 which warrants further 

investigation 
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Figure 8.01: Flow schematic of the hypothetical mechanisms that may give rise to transient bacteraemia of the species detected in CAP samples studied in the present 

investigation. The tissue at the primary infection infection site (e.g. periodontal (1), pulmonary (2) or intestinal (4)) is subject to inflammation & tissue damage that gives rise 

to transient bacteraemia. Bacteria translocate to the vascular tissue where a secondary infection ensues. Macrophages phagocytose commensal and pathogenic bacteria at each 
of the primary infection sites and within the blood, which survive intercellularly (3). When macrophages are activated in response to vascular injury, they respond, carrying 

the internalised bacteria that are subsequently release when the macrophage becomes necrotic due to foam cell development in the intimal layer of atherosclerotic vessels. 
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8.3.1.2 HMGR 

The significant up-regulation of HMGR in P. acnes-infected THP-1 cells compared to a 

PBS vehicle control cells is, to the best of our understanding, not been previously observed. 

Because HMGR is a transcript of SREBP2, the up-regulation of HMGR expression also 

gives further validity to the expression of SREBP. The expression of HMGR in P. acnes-

challenged monocytes suggests that P. acnes may influence de novo cholesterol synthesis 

in monocyte, which could have negative atherogenic implications, particularly in terms of 

foam cell development. For example, if P. acnes influences of monocyte/macrophage 

HMGR expression within the atherosclerotic lesion, this could essentially contribute to 

intracellular net cholesterol content via lipid loading, thus it may be that P. acnes actively 

contributes to foam cell formation. To try and elucidate if this is actually the case, it may 

be informative to conduct future investigation of monocyte challenge with P. acnes by 

measuring physical intracellular cholesterol levels via oil red O staining. 

8.3.1.3 LDLR 

Another SREBP2 transcript that was significantly expressed in monocytes following 

challenge with P. acnes was LDLR up-regulation. Again, this is a novel observation that 

has not, to the best of our understanding; been previously observed. The expression of 

LDLR suggests a cellular signalling in response to depleted cholesterol levels via the 

SREBP2 pathway for uptake of native LDL. Apart from the substitution of P. acnes for 

PBS, control cells were treated in an identical manner to P. acnes challenged cells, which 

suggests the up-regulated response of LDLR in P. acnes-challenged cells is due to the 

presence of P. acnes. It is therefore plausible to suggest that the presence of P. acnes in 

the atherosclerotic plaque may have a negative effect on monocytes/macrophages by 

exacerbating lipoprotein uptake in that may contribute to excess net cholesterol content 

and foam cell formation. It is therefore possible that P. acnes responsible for inducing lipid 

loading in these cells a process highly associated with atherosclerotic disease.  

8.3.1.4 ABCA1 

Finally, ABCA1 was the greatest expressed gene of the cholesterol mediating genes 

studied here, which showed a >120-fold increase in mRNA levels for P. acnes-infected 

THP-1 cells compared to PBS vehicle control cell expression of ABCA1. This significant 

up-regulation of ABCA1 indicates that THP-1 cells have excess cholesterol levels and 

presence of intracellular oxysterols that stimulated LXR/RXR transcription of ABCA1 for 
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cholesterol efflux. However, it cannot be the case that excess cholesterol is present within 

the THP-1 cells cultured here, based on the absence of LDL in culture medium used. The 

up-regulation of ABCA1 conflicts with cell behavious regarding the earlier observed 

expression of SREBP2 transcript up-regulation of HMGR, LDLR and SREBP2 itself, 

which all suggest a cellular condition of diminished cholesterol level, whereas ABCA1 

up-regulation would suggest active efflux of excessive intracellular cholesterol.  

These results would suggest that either genes concerned with uptake or de novo synthesis 

of cholesterol are dysregulated or ABCA1, which should be down-regulated by SREBP2 

is overactive in response to P. acnes. ABCA1 has been demonstrated to have a 

supplementary, more antimicrobial role, in which it participates in the removal of the 

immune-stimulatory bacterial lipid, LPS (Thompson et al. 2010). While this process for 

monocytes requires an exogenous lipoprotein acceptor it may, in part, begin to explain the 

mechanism and reason for ABCA1 activation in response to bacterial infection. In 

addition, ABCA1 can be up-regulated by pro-inflammatory cytokines, such as, TNF-α 

(Gerbod-Giannone et al. 2006). It must be noted though, that ABCA1 protein is highly 

regulated in the transcriptional and post-translation stage at numerous stages, thus, 

ABCA1mRNA levels are a poor indicator of protein (Iwamoto et al. 2010; Yokoyama et 

al. 2012). Hence, it is difficult to decipher the actual cellular status without first 

understanding the relative amounts of protein activation for each of these cholesterol 

homeostatic gene expressions.  Nevertheless, this is a very interesting observation and one 

that warrants further investigation. 

8.3.1.5 THP-1 response to P. acnes: further work 

The evidence obtained in this thesis points to SREBP2 as a potential dysregulated mediator 

of cholesterol levels in the monocytic cell line THP-1. This paradigm suggests that when 

an infective agent is present, SREBP2 expression is increased as a response. As a major 

transcriber of cholesterogenic genes, SREBP2 may unnecessarily increase intracellular net 

cholesterol levels that may eventually play a part in the development of foam cell 

formation in affected cells. Thus, the main hypothesis arising from the present thesis is 

that bacterial infection potentially plays a role in atherogenesis via this mechanism. 

Typically overexpression of this transcription factor in THP-1 cells would lead to the 

transcription of other cholesterogenic genes that were measured here, such as LDLR and 



Chapter 8: General discussion 

285 
 

HMGR, but also should attenuate the expression of cholesterol efflux genes such as 

ABCA1. While the elevated levels of SREBP2 mRNA and the subsequent expression of 

SREBP2 transcripts in THP-1 cells would suggest a response to the infective agent, P. 

acnes, this cannot be said for certain with just a raise in mRNA levels. Could enhanced 

expression of SREBP2 be responsible for transcription of LDLR and HMGR observed in 

THP-1 cells in response to P. acnes? To begin to address this question Western blotting 

could be employed to compare the relative amounts of SREBP2 protein between P. acnes-

infected and PBS vehicle treated THP-1. The same experiment could be performed to 

measure the relative protein levels of LDLR and HMGR. Although this would indicate the 

relative abundance of this transcription factor and the other transcripts of SREBP2 within 

P. acnes-infected cells, it would not however prove that an increase in LDLR and HMGR 

transcription is a consequence of SREBP2 activity or that the activity of SREBP2 was 

cause by P. acnes. A gel-mobility shift assay could in theory demonstrate binding of 

SREBP2 to the sterol regulatory element (SRE) sequences in the control regions of the 

genes that encode LDLR and HMGR. Briefly, nuclear protein would be purified from P. 

acnes-infected THP-1 and combined with nuclear extracts from the same challenged cells 

and from PBS vehicle control cells. Each mixture would be incubated with biotin-labelled 

cDNA constructs coding for the SRE sequences in the promoter regions of LDLR and 

HMGR. The protein-cDNA extract could then be separated on a polyacrylamide gel, which 

would hopefully identify SREBP2 bound to the SRE site of LDLR and/or HMGR. 

The gel-mobility shift assay could be done in conjunction with a SREBP2 translocation 

assay in which P. acnes-infected THP-1 cells would be stained with a specific SREBP2 

primary antibody to track SREBP2 localisation from ER to the Golgi apparatus using a 

confocal microscope. A positive control reaction would include cells treated with a 

cholesterol trafficking inhibitor (U18666A), which would restrict cholesterol egress from 

the cells, thereby activating SREBP2 translocation into the nuclei that could be used as a 

reference (Cenedella 2009). P. acnes-infected cells would be compared to both the positive 

and PBS vehicle control cells to determine the effect of P. acnes on cholesterogenic gene 

expression and protein activation. 

 

 



Chapter 8: General discussion 

286 
 

8.3.2 Expression of cytokines/chemokines in P. acnes-infected THP-1 cells 

 

8.3.2.1 CCL3 (MIP-1α) 

Of all the cytokines tested CCL3 is the only cytokine that indicates bacterial infection and 

as expected very large fold increase in CCL3 expression was observed in P. acnes-infected 

THP-1 cells compared to the expression observed in cells treated with vehicle control. To 

the best of our knowledge, this is the first evidence that demonstrates CCL3 up-regulation 

in P. acnes-infected monocytes. This has particular negative implications inside the setting 

of an atherosclerotic artery. For example, CCL3 can induce chemotaxis of different 

leukocyte subsets, including monocytes/macrophages and T-lymphocytes via CC 

chemokine receptor (CCR)1, CCR4, or CCR5 (Lee et al. 2000). Furthermore, it was shown 

that CCL3 is a mediator of firm adherence and (subsequent) transmigration of neutrophils, 

as a result of lipid mediator production, which, in turn, directly activate neutrophils 

(Reichel et al. 2012). Hence, CCL3 is critical in the recruitment and transmigration process 

during vascular inflammations. Most importantly, CCL3 deficiency inhibits 

atherosclerotic plaque formation in LDLR knockout mouse model by reducing leukocytes 

and neutrophil chemotaxis (de Jager et al. 2013b). Therefore, the findings presented here 

show that P. acnes is capable of inducing particularly high levels of CCL3 mRNA, which 

if present in the atherosclerotic vessel may actively contribute to lesion development via 

recruitment and transmigration of different subsets of leukocytes, neutrophils and T cells. 

Interestingly, CCL3 was also significantly upregulated in the CAP samples examined for 

this thesis, which provides further evidence for the potential involvement of CCL3 in the 

atherosclerotic process that may also be associated with bacterial infection.  

8.3.2.2 CCL2 (MCP-1) 

CCL2 is another potent chemoattractant that was shown here to be induced in THP-1 cells 

in response to P. acnes exposure compared to control cell expression following PBS 

treatment. Although CCL2 was not significantly up-regulated in THP-1 cells-infected with 

P. acnes,  a >5-fold increase was observed in comparison to PBS control treated cells. 

Expression of CCL2 was significantly up-regulated in plaque tissue and in LPS-infected 

THP-1. The only obvious observation was that the standard deviation of CCL2 expression 

in P. acnes exposed cells was high due to one sample down-regulated outlier and therefore, 

considering the relatively low regulation, the statistical significance of the result was 
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drastically reduced.  CCL3 is well recognised as a chemoattractant and plays a significant 

role in recruitment and transmigration of leukocytes into the artery wall of atherosclerotic 

vessels (Kusano et al. 2004; Yu et al. 2004). Any additional increase in leukocyte 

recruitment or transmigration would have potential atherogenic consequences (Packard et 

al. 2009).  

8.3.2.3 ICAM-1 

To the best of our knowledge, the data presented in this thesisss demonstrate the first up-

regulated response of THP-1 ICAM-1 in response to P. acnes infection. Expression of 

ICAM-1 in P. acnes-infected THP-1 was greater than LPS-induced ICAM-1. Expression 

occurred steadily over the 24 h time course with the greatest and only significant change 

occurring at 24h. As the key cellular adhesion molecule ICAM-1 plays a central role in 

regulating the recruitment and trans-endothelial migration of leukocytes into the vessel 

wall and has been associated with the development of atherosclerotic plaque (DeGraba et 

al. 1998; Jones et al. 1998). While, ICAM-1 was also up-regulated in the CAP tissue 

examined for this thesis, the level of mRNA were markedly less that the levels observed 

in response to P. acnes but similar to those seen in response to E. coli LPS. Monocyte 

ICAM-1 is analogous to ICAM-1 present on the surface of endothelium cells; both are 

activated during tissue stress/injury and function by forming a strong ligand interaction to 

bring the monocyte to a stop after rolling along the surface of the endothelium. As P. acnes 

infected cells showed the greatest up-regulation of ICAM-1 compared to E. coli LPS and 

in CAP tissue directly, it could be suggested that P. acnes could aggravate plaque 

formation by inducing leukocyte recruitment, thereby advancing plaque formation. To 

provide additional assurance that leukocyte recruitment was elevated in response to P. 

acnes, it would be necessary to measure protein levels reflect the mRNA profile observed 

here. 

8.3.2.4 TNFα 

TNF-α was significantly up-regulated in THP-1 cells in response to P. acnes infection 

compared to cells treated with a PBS vehicle control. This reaction was replicated in E. 

coli LPS-infected THP-1 cell, though a significant regulation of TNF-α was not observed 

in the atherosclerotic plaque samples examined for this project. Although it is not good 

practice to compare single sample gene expression data, it was observed that every single 

plaque sample that was previously observed to contain 16S rDNA signatures of P. acnes 
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was either down-regulated or un-regulated, which could suggest that the load of P. acnes 

must have been extremely low copy number levels. The lack of TNF-α expression in the 

atherosclerotic plaque samples examined here is quite unusual given that this cytokine 

plays a considerable role in atherogenesis.  

8.3.2.5 IL-1β 

IL-1β was highly expressed in THP-1 cells in response to P. acnes compared to PBS 

treated control cells. Also, a similar level of mRNA expression was observed in THP-1 

that were exposed to E. coli LPS compared to control cells. Like TNF-α, IL-1β was not 

significantly expressed directly in atherosclerotic plaque compared to LITA tissue. IL-1β 

was expressed within 1.5 hours in LPS infected cells, which suggests cytokine gene 

expression of is extremely rapid, particularly for IL-1β. Also cytokine expression occurs 

in waves which may account for observation of IL-1β in vitro but not in tissue (Schaue et 

al. 2012). One of the major pathways that mediates the production of IL-1β is via the 

NLRP3inflammasome, in which pro-IL-1β is cleaved by caspase-1 to produce mature IL-

1β. Interestingly P. acnes has been shown to trigger NLRP3 for the increased IL-1β 

productions, which indicates intracellular activation/stimulus (Sahdo et al. 2013; 

Kistowska et al. 2014; Qin et al. 2014; Thiboutot 2014).  

Both TNFα and IL-1β have been shown to induce the expression of the cholesterogenic 

genes such as SREBP2-SCAP (Ruan et al. 2001). As mRNA from both cytokines were 

elevated significantly in the P. acnes-infected THP-1 cells compared to PBS vehicle 

control cells, it may be that the pro-inflammatory cytokine up-regulation influenced 

SREBP2 expressed in these cells. To determine whether this is a possibility, one could 

perform an RNA interference assay to attenuate the expression levels of pro-inflammatory 

cytokines. Briefly, if P. acnes-infected THP-1 was transfected with small interfering 

(si)RNA oligonucleotide probes for the silencing of MyD88; a universal adapter protein 

used by almost all TLRs in the protein cascade to activate NF-κB transcription of IL-1β 

and TNF-α. If SREBP2-SCAP mRNA and protein levels were significantly reduced in the 

MyD88-silenced THP-1 cells but levels remained elevated in non-silenced cells, it could 

be suggested that the pro-inflammatory pathway may be influencing the expression of 

SREBP2. 
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8.3.2.6 B-cell lymphoma 2 protein A1 (BCL2A1) 

BCL2A1 was by far the most potently expressed of all genes tested in the present study, 

with a 560-fold increase of BCL2A1 mRNA observed in P. acnes-infected THP-1 

compared to PBS vehicle control cells expression. BCL2A1 was also up-regulated in 

response to LPS, although expression was markedly less in LPS exposed cells than that 

observed for P. acnes. While there is a strong possibility that BCL2A1 expression in P. 

acnes challenged cells is actually the result of bacterial stimulus, there are a number of 

other possible stimuli in the atherosclerotic plaque tissue that may have led to a rise in 

expression. BCL2A1 is activated as a pathway to cell survival by reducing the release of 

pro-apoptotic cytochrome c from mitochondria and thereby blocks caspase activation 

(Vogler 2012). A primary source of BCL2A1 expression in atherosclerotic plaque is as a 

cell survival strategy in lipid-loaded macrophages that switch to a protective anti-apoptotic 

profile of gene expression (Martinet et al. 2002; Kutuk & Basaga 2006). The very large 

increase in BCL2A1 mRNA expression observed in the current investigation suggests that 

anti-apoptotic genes are up-regulated in monocytic cells in response to infection, more 

specifically, P. acnes. Given that BCL2A1 plays a role in foam cell survival, expression 

of BCL2A1 in response to bacterial infection could have serious implications for 

atherosclerotic plaque progression. 

8.4 Conclusion 

Data in this thesis provides evidence demonstrating the identification and isolation of 

several different species of bacteria in atherosclerotic plaque tissue from the human carotid 

artery. The bacterial species identified are representative of various bodily niches such as 

the gut and skin, but most predominant of which, the oral cavity and periodontal tissue. 

Two out of the three RCB species specifically targeted, i.e. P. gingivalis and T. forsythia 

were present in the CAP samples, though not as viable isolates. The identification of 

periodontopathic species in carotid atherosclerotic plaque tissue indicates that bacterial 

infection associated with the chronic breakdown of periodontal soft and hard tissue may 

possibly be related to further secondary complications in carotid artery tissue which drive 

atherogenesis. Here we showed this may also be the case the most predominant species of 

bacteria present in the CAP samples examined here, P. acnes; a strain most isolated from 

diseased tissue, including periodontal disease. The data presented in this thesis provides 

evidence demonstrating that P. acnes infection can mediate the up-regulation of genes that 
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control de novo synthesis and uptake of extracellular cholesterol, leukocyte cell adhesion, 

inflammation and apoptosis. In almost every case gene expression was analogous between 

plaque tissue, and THP-1 cells infected with E. coli LPS and P. acnes, which would 

suggest that the genes examined here play an atherogenic role. The cholesterol homeostatic 

and anti-apoptotic gene expression in P. acnes-infected cells, which provide particularly 

novel findings that indicate P. acnes may affect foam cell development, a major hallmark 

of atherosclerotic disease. Overall these observations indicate a possible cholesterol 

mediating role of bacteria that inhabit the atherosclerotic lesion that may be driven by a 

perpetual inflammatory response in the CAP lesion. The bacteria species that drive this 

response originate from the microflora of numerous bodily site, of which the periodontal 

tissue is a major contributor; disseminating into the bloodstream to cause secondary 

infections within the atherosclerotic plaque. 
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10.0 Appendices  

Appendix A. Brain heart infusion (BHI)  

 

BHI broth was used for the maintenance of P. gingivalis W50/11834 and was prepared by 

mixing the following ingredients. 

 

Component 100 ml 250 ml 500 ml 

BHI broth powder† 3.7 g 18.5 g 37 g 

Hemin (1 mg/ml)‡ 500 µl 1.25 ml 2.5 ml 

Menadione (16 mg/ml)§ 6.25 µl 15.6 µl 31.25 µl 

L-cystiene HCL (1 mg/ml)‖ 400 mg 250 µl 500 µl 

Yeast extract 100 µl 1 g 2 g 

dH2O To 100 ml To 250 ml To 500 ml 

- Mix all ingredients and autoclave immediately.  

- Allow to cool at room temperature then store at 4˚C until required.  

 

† For 1 L medium BHI broth powder provides: 12.5 g brain infusion solids, 5 g beef 

infusion solids, 10 g protease peptone, 2 g glucose, 5 g NaCl and 2.5 g Na2HPO4. 
‡ Hemin stock solution was prepared by dissolving in dH2O in the presence of 1 M 

NaOH (100 µl NaOH:1 ml hemin solution).  
§ Menadione (vitamin K3) stock solution was prepared in 95% EtOH.  
‖ L-cystiene HCL stock solution was prepared by dissolving in dH2O. 
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Appendix B. Tryptic Soy Broth (TSB)  

TSB was used for the maintenance cultures of T. forsythia and was prepared by mixing the 

following ingredients. 

Component 100 ml 250 ml 500 ml 

TSB powder† 2.75 g 13.75 g 27.5 g 

Hemin (1 mg/ml)‡ 500 µl 1.25 ml 2.5 ml 

Menadione (16 mg/ml)§ 6.25 µl 15.6 µl 31.25 µl 

L-cystiene HCL (1 mg/ml)‖ 400 mg 250 µl 500 µl 

N-acetylmuramic acid (50 mg/ml)¶ 10 µl 25 µl 100 µl 

Yeast extract 100 µl 1 g 2 g 

dH2O To 100 ml To 250 ml To 500 ml 

 

- Mix all ingredients and autoclave immediately.  

- Allow to cool at room temperature then store at 4˚C until required. 

 

† For 1 L medium TSB broth powder provides: 17 g Pancreatic digest of casein, 3 g enzymatic 

digest of soya bean, 2.5 g glucose, 5 g NaCl and 2.5 g Na2HPO4. 
‡ Hemin stock solution was prepared by dissolving in dH2O in the presence of 1 M NaOH (100 

µl NaOH:1 ml hemin solution).  
§ Menadione (vitamin K3) stock solution was prepared in 95% EtOH.  
‖ L-cystiene HCL stock solution was prepared by dissolving in dH2O. 
¶ N-acetylmuramic acid (NAM) was prepared as a solution in sterile dH2O. 
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Appendix C. Tryptone-Yeast extract-Gelatine-Volatile Fatty Acid-Serum (TYGVS) 

YGVS broth was used for the maintenance of T. denticola and was prepared by mixing the 

following ingredients. 

Solution A: 

Component For 400mL For 100mL 

Tryptone 5 g 1.25 g 

Brain Heart Infusion Broth 2.5 g 0.625 g 

Yeast Extract 5 g 1.25 g 

Gelatine (for non-semi-solid) 5 g 0.5 g 

Ammonium Sulphate 0.25 g 0.06 g 

Magnesium Sulphate Heptahydrate 0.05 g 0.0125 g 

Potassium phosphate, dibasic 1 g 0.25 g 

Sodium Chloride 0.5 g 0.125 g 

Distilled water To 400 mL To 100 mL 

For semi-solid    

Agar 2.5 g 0.5 g 

Gelatine 2.5 g  

- Mix with gentle heating to dissolve gelatine and/or agar 

- Autoclave immediately 

- Store at RT (pH should be 7.2 without adjusting) 

 

VFA Solution: (Use glassware only; avoid plastic, work in fume hood) 

Component For 150mL For 125mL To 62.5mL 

Glacial acetic acid 8.5 mL 7.1 mL 3.55 mL 

Propionic acid 3 mL 2.5 mL 1.25 mL 

Butyric acid 2 mL 1.7 mL 0.85 mL 

Valeric acid 0.5 mL 0.42 mL 0.21 mL 

Isobutyric acid 0.5 mL 0.42 mL 0.21 mL 

Isovaleric acid 0.5 mL 0.42 mL 0.21 mL 

Methylbutyric acid 0.5 mL 0.42 mL 0.21 mL 

Distilled water To 150 mL To 125 mL To 62.5 mL 

 

Solution B: 

Component For 500 mL For 250 mL 

Glucose (i.e. dextrose) 5 g 2.5 g 

L-Cysteine hydrochloride 5 g 2.5 g 

Sodium pyruvate 1.25 g 0.625 g 

VFA Solution 125 mL 62.5 mL 

Thiamine pyrophosphate 62.5 mg 31.25 mg 

Distilled water To 500 mL To 250 mL 

- pH to 7.2 with 7M KOH Filter sterilise and store at 4C 

 

Complete Medium 

- 50 uL Solution B 

- 400 mL Solution A 

- 50 mL Normal Rabbit Serum (heat inactivated at 56C for 30 mins) 

-  
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Appendix D. Final developed growth medium to support the growth of all RCB 

A complex growth medium formula was developed from TSB (appendix A) through the 

stepwise addition of growth supplements known to support the growth of T. denticola. The 

final medium was shown to support the pure growth of all RCB. The finalised medium 

was used to culture RCB and other supported strains of bacteria present in CAP and LITA 

tissues. 
 

Solution A     

Component For 400 ml For 100 ml Stock solution Final conc. 

Tripticase soy broth 27.5 g 2.75 g   

Hemin 2.5 ml 500 µl 1 mg/ml stock 5 µg/ml 

Menadione (Vit K3) 31.25 µl 6.25 µl 16 mg/ml stock 1 µg/ml 

L-cystiene HCL 500 µl 100 µl 1 mg/ml stock 1 µg/ml 

N-acetylmuramic acid 100 µl 10 µl 50 mg/ml stock 10 µg/ml 

Yeast extract 2 g 400 mg            - 0.4% 

(NH4)2SO4 250 mg 62.5 mg   

K2HPO4 625 mg 156.25 mg   

NaCl2 500 mg 125 mg   

Distilled water To 400 ml To 100 ml   

Autoclave immediately 

Store at RT (pH should be 7.2 without adjusting) 

    

VFA Solution: (Use glassware only; avoid plastic, work in fume hood) 

Component For 150 ml For 125 ml For 62.5 ml 
Final conc. in 

media 

Glacial acetic acid 8.5 ml 7.1 ml 3.55 ml 14.9 mM 

Propionic acid 3 ml 2.5 ml 1.25 ml 4.00 mM 

Butyric acid 2 ml 1.7 ml 0.85 ml  2.21 mM 

Valeric acid 0.5 ml 0.42 ml 0.21 ml 0.46 mM 

Isobutyric acid 0.5 ml 0.42 ml 0.21 ml 0.55 mM 

Isovaleric acid 0.5 ml 0.42 ml 0.21 ml 0.46 mM 

Methylbutyric acid 0.5 ml 0.42 ml 0.21 ml 0.46 mM 

Distilled water To 150 ml to 125 ml 0.21 ml  

    

Solution B: 

Component For 500 ml For 250 ml Final conc. in media 

Thiamine pyrophosphate 104.25 mg 52.125 mg 12.5 ug/ml (27.18 µM) 

Sodium pyruvate 2.08 g 1.04 g 250 µg/ml  

VFA solution 125 ml 62.5 ml  

Distilled water To 500 ml To 250 ml  

- pH to 7.2 with 7M KOH Filter sterilise and store at 4˚C 

    

Complete Medium (500 ml)    

- 30 ml Solution B 

- 420 ml Solution A 

- 50 ml Normal Rabbit Serum (heat inactivated at 56˚C for 40 mins) 
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