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Abstract 

Soft materials have a wide range of applications, which include the production of masks 

for nano–lithography, the separation of membranes with nano–pores, and the preparation 

of nano–size structures for electronic devices. Self–organization in soft matter is a 

primary mechanism for the formation of structure. Block copolymers are long chain 

molecules composed of several different polymer blocks covalently bonded into a single 

macromolecule, which belong to an important class of soft materials which can self–

assemble into different nano–structures due to their natural ability to microphase separate. 

Experimental and theoretical studies of block copolymers are quite challenging and, 

without computer simulations, it is difficult and problematic to analyse modern 

experiments. The Cell Dynamics Simulation (CDS) technique is a fast and accurate 

computational technique, which has been used to investigate block copolymers.  

The stability has been analysed by making use of different discrete Laplacian operators 

using well–chosen time steps in CDS. This analysis offers stability conditions for phase–

field, based on the Cahn–Hilliard Cook (CHC) equations of which CDS is the finite 

difference approximation. To overcome grid related artefacts (discretization errors) in the 

computational grid, the study has been done for employing an isotropic Laplacian 

operator in the CDS framework. Several 2D and 3D discrete Laplacians have been 

quantitatively compared for their isotropy.  The novel 2D 9–point BV(D2Q9) isotropic 

stencil operators have been derived from the B.A.C. van Vlimmeren method and their 

isotropy measure has been determined optimally better than other exiting 2D 9–point 

discrete Laplacian operators. Overall, the stencils in 9–point family Laplacians in 2D and 

the 19–point stencil operators in 3D have been found to be optimal in terms of isotropy 

and time step stability.  
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Considerable implementation of Laplacians with good isotropy has played an important 

role in achieving a proper structure factor in modelling methods of block copolymers.  

The novel models have been developed by implementing CDS via more stable implicit 

methods, including backward Euler, Crank–Nicolson (CN) and Alternating Direction 

Implicit (ADI) methods.  The CN scheme were implemented for both one order and two 

order parameter systems in CDS and successful results were obtained compared to 

forward Euler method.  Due to the implementation of implicit methods, the CDS has 

achieved second–order accuracy both in time and space and it has become stronger, robust 

and more stable technique for simulation of the phase–separation phenomena in soft 

materials.  
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Chapter One 

1 Introduction 

The studies of block copolymers in soft materials have been considered theoretically and 

experimentally over the last few decades and have attracted the attention of both material 

scientists and mathematicians. Block copolymers are materials that, due to their intrinsic 

property of microphase separation, can self–assemble into different nanostructures on a 

scale in the range of 10–100 nm. These structures are lamellae, spheres, packed cylinders 

and gyroids [1, 2]. Block copolymers are useful due to their ability to form regular 

nanometre–scale patterns. Experimental studies of these materials are time consuming, 

expensive and challenging. Therefore, computer simulation can be used in a computer–

aided design to provide new insights into their characteristics; many computer simulation 

techniques have been designed to study block copolymer systems. A cell dynamics 

simulation (CDS) technique, based on solving partial differential equations (PDEs), is 

computationally very fast compared to other simulation methods. 

This study focuses on mathematical modelling and computer simulations of diblock 

copolymers (two blocks per molecule) in lamellar forming systems. In this new 

contribution, the computer simulations of diblock copolymers were performed by 

employing CDS in a Cartesian coordinate system. A cellular automaton called the cell 

dynamics simulation (CDS) method was first proposed by Oono and Puri for the 

modelling of spinodal decomposition [3]. The CDS technique was used to study block 

copolymer structures in order to gain molecular information. Block copolymer structures 

are very sensitive to external influences. In computer simulation it manifests itself in 

sensitivity via discretization errors. In this study, several discretization schemes were 

investigated in order to improve CDS performance and a comparison between different 
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discretization schemes was performed. The CDS simulation codes were developed in 

FORTRAN computer language for the evolution of order parameters.   

1.1 Motivation of the study 
 

In this study CDS has been employed because it offers a number of advantages, which 

include:  

 The CDS is a fast method of simple Time Dependent Ginzburg–Landau (TDGL) 

type simulation in describing the phase separation dynamics in soft systems 

concerning the diffusive dynamics. For example, it was applied to Block 

Copolymer (BCP) systems to accurately describe very complex dynamical 

behaviour in large scale BCP systems [4]  

 CDS can be efficiently used to model dynamic processes in block copolymers at 

the mesoscale level.  

 The CDS method is proposed for obtaining numerical results in spatial 

decomposition considering the neighbouring points to minimize the calculation 

cost. 

  It is a good compromise between computational speed and physical accuracy.  

 CDS is less computationally intensive compared to the Self–Consistent Field 

(SCF) simulation method and it allows wider space parameters and a longer time 

for evolution [2].  

 CDS is considered more efficient than discretised TDGL or Cahn–Hilliard Cook 

(CHC) equations, due to a much larger (effective) and stable time step.  

However, CDS also suffers some drawbacks, including: 

 The stability of CDS for larger (effective) time steps is still questionable.  
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 The finite difference Laplacian schemes (stencil operators) that lead to grid related 

artefacts (or discretization errors).  

 The general implementation of CDS framework in the explicit finite difference 

method is not very stable or first-order accurate in time.  

In order to enhance the CDS performance, the following were addressed: 

 The CDS method needs further improvement in terms of stability analysis. It is 

the larger time step that recognizes the CDS’s most efficient method of studying 

the microphase separation or spinodal decomposition [5]. Therefore, the stability 

analysis was performed for the CDS framework using different Laplacian 

schemes.  

 The use of an isotropic discrete Laplacian operator in CDS is necessary to avoid 

grid related artefacts (anisotropies). To implement a strong grid–based simulation 

methodology, it is crucial to choose Laplacians with good isotropy and scaling 

behaviour. The achievement of proper structure factors in modelling methods of 

block copolymers is important and this process requires a considerable 

implementation of isotropy. Several discrete Laplacians were proposed in the 

literature [6, 7], especially for the Lattice–Boltzmann method. Here, the most 

frequent choices of discrete Laplacians will be considered and discussed, giving 

their properties and isotropic behaviour in detail.  

 The general finite difference method applied to CDS has been the forward Euler 

method (explicit scheme). It is well known that the explicit scheme has some 

limitations, mainly regarding convergence and stability [8]. The forward Euler 

method is not very stable or conditionally stable and is first–order accurate in time 

and second–order accurate in space. Other implicit schemes, i.e. the Crank–

Nicolson scheme (CN), must be implemented to replace the conventional 
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approach of the finite difference method. The implicit schemes are 

unconditionally convergent and stable (in terms of using time step value) and are 

second–order accurate in time and space. The Crank–Nicolson (CN) scheme is 

one of the implicit schemes, having less truncation errors and more stability than 

the forward Euler method [8]. In this work the CDS equations have been modified 

with implicit finite difference schemes which include backward Euler, CN and 

Alternating Direction Implicit (ADI) methods.  

1.2 Aim and Objectives 

This thesis is aimed at developing the analysis of partial differential equations (PDEs) 

involved in the CDS method for investigating phase separation in diblock copolymer 

systems.  

The objectives of this research study were as follows: 

 

 To investigate 2D and 3D discrete Laplacian operators for ensuring isotropy and 

to perform the stability analysis for time step value so that these isotropic discrete 

Laplacian operators can be employed in CDS for modelling of diblock 

copolymers. 

 To investigate simulation results of A–B diblock copolymers systems using CDS 

by employing various 2D and 3D isotropic Laplacian schemes.  

 To implement the Crank–Nicolson (CN) method for CDS based on one order 

parameter system. The CN is a finite difference method which is second-order 

accurate in time and space. The CN method is slow but more stable compared to 

the forward Euler method, which is fast but not stable.  

 To implement the CN method for CDS based on a two order parameter system. 

The two order parameter systems are comprised of A–B diblock copolymer and C 
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homopolymer with incompressibility conditions for two independent variables. 

One of these variables describes the segregation of copolymers and the other 

describes order parameter in micro-phase separation. The new methodology for 

such systems will be helpful and useful to relieve the anisotropy of the system in 

the late stage of domain growth, which may arise from the discretization of the 

space.  

 To implement the Alternating Direction Implicit (ADI) method for CDS based on 

one order parameter system. The ADI method is a finite difference method which 

is second-order accurate in time and space. The ADI is faster than CN. The 

implementation of the ADI method for CDS framework makes the CDS more 

stable and robust technique. 

1.3   Original contributions in the thesis 
 

The work presented in the thesis makes the following novel contributions:  

 

 Although the two– and three–dimensional discrete Laplacian operators have 

been studied for their isotropy and scaling behaviour [6, 7, 9], in this study 

various stencils for Laplacian operators are quantitatively compared to 

measure their isotropy. Three new two-dimensional 9–point isotropic stencil 

operators (BV(D2Q9)) are derived from B.A.C. van Vlimmeren’s method.  

The isotropy of these stencils is measured and compared with the existing 9-

point isotropic discrete Laplacian OP(D2Q9).  One of these stencils has been 

found to be more isotropic. The stability of the efficient CDS method was 

analysed by making use of special properties of the discrete Laplacian 

operator. It was found that the isotropic discrete Laplacians up to fourth–order 

on k become anisotropic for larger wave vectors, and up to second–order ‘less 
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isotropic’ are slightly anisotropic on the whole k range. The two-dimensional 

9–point PK(D2Q9) and three-dimensional 19–point (D3Q19) discrete 

Laplacians were found to be ideally isotropic.  

 Computer codes in FORTRAN were developed for CDS based on 2D and 3D 

Laplacian schemes in order to investigate isotropic simulation results of A–B 

diblock copolymer systems. 

 Generally, the explicit scheme (forward Euler method) has been implemented 

for CDS equations. In this work, the novel model of CDS has been developed 

by implementing implicit finite difference schemes which include backward 

Euler, Crank–Nicolson and Alternating Direction Implicit (ADI) methods. In 

CN methodology for CDS, a 9–point isotropic Laplacian operator was 

successfully employed and numerical results were obtained. The implicit 

schemes are more stable and second-order accurate in time and space. The 

implementation of these schemes makes the CDS stronger in terms of stability 

and consistency.  

 To make the CN method more generalized for CDS method. The CN method 

was implemented for two order parameter systems using CDS model 

equations and the computer codes were also developed. The 9–point isotropic 

Laplacian operator was successfully employed and numerical results were 

obtained. The novel development of CDS for two order parameter systems in 

CN method helps to relieve the anisotropy of the system in the late stage of 

domain growth, which may arise from the discretization of the space.  
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1.4   Outline of thesis 
 

This thesis is divided into eight chapters. Chapter One gives a brief introduction.  

In chapter two, the review of mathematical models and a related literature review are 

given. In addition, the block copolymers and their applications are discussed, the 

importance of Laplacian operators is addressed and the finite difference schemes are 

explained.  

In chapter three, the cell dynamics simulation model explains the one-order parameter 

system. The 2D and 3D Laplacian schemes and their properties are investigated. A 

stability analysis was undertaken for each Laplacian scheme to suggest the suitable time 

interval value.  

In chapter four, the simulations are presented for 2D and 3D Laplacian schemes which 

are discussed in Chapter three. The isotropic results of the lamellar forming of A–B 

diblock copolymer for 2D simulations and the isotropic results of spherical morphology 

in 3D simulations are analysed using Laplacian schemes.  

In chapter five, the matrix-based forward Euler, backward Euler and Crank–Nicolson 

methods are implemented for CDS, based on one–order parameter system model 

equations. Two different Laplacian schemes are employed in a newly developed model 

using the Crank–Nicolson method for CDS. 

In chapter six, the cell dynamical model is explained for two–order parameter systems 

of A–B diblock copolymer and C homopolymer mixtures. The backward Euler and 

Crank–Nicolson method is implemented for two–order parameter systems.  



 

8 
 

In chapter seven, the Alternating Direction Implicit (ADI) method is implemented for 

the cell dynamical model of one–order parameter systems. Two different ADI methods 

are implemented.  

In chapter eight, the conclusions are given for the findings and future work is elaborated.  
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Chapter Two 

2 Literature review  

2.1 Overview of Mathematical Contributions in Soft Materials 

Soft materials research is now a highly demanding field which is transforming into a 

quantitative science. The collaboration between the mathematical sciences and materials 

sciences is increasing and researchers from both fields are working together and have 

developed a broad mathematical theory of materials. Materials science has been the main 

area of research for mathematics professionals. At the same time, the development in 

materials science has been the focus for industries such as aerospace, automotive, 

biomaterials, chemicals, electronics, energy, metals, and telecommunications [10, 11]. 

The important and emerging area in the field of materials science is polymers, where the 

problems of liquid flow are arising. Today, the field of materials science is vast and covers 

physical sciences, engineering and mathematics. The synthesis and manufacture of new 

materials, the modification of materials, and the understanding and prediction of materials 

and materials properties and their evolution over time, are all basic objectives of materials 

science. The mathematical sciences play a unique role by giving a quantitative description 

of the processes and phenomena of materials. The mathematical sciences are helpful in 

unifying force, revealing underlying structure, and developing computational modelling 

of processes and phenomena of soft materials. The mathematical methods solve 

significant problems in materials science and suggest further interesting research areas in 

mathematical sciences [12].  

There are a number of aspects in atomic-scale theories which are modelled by 

mathematical simulation methods, e.g. the Monte Carlo (MC) [13, 14] simulation method 

which has been used for the computation of equilibrium atomic configurations and the 
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Molecular Dynamics (MD) [13] simulation method for the evolution of nonequilibrium 

atomic configurations at nonzero temperature [15]. In various other phenomena, the 

evolution of a system is calculated with the specification of external variables involved 

such as pressure, volume, or temperature etc. The studies of such systems include 

dislocation formation and motion, plastic flow, grain boundary sliding and strengthening, 

crack propagation, and chemical reactivity, etc. [16, 17]. The mathematical sciences 

contribute on a larger scale to the numerical implementation of the systems described 

above and examples of the mathematical techniques used are fast Fourier transforms, 

multidimensional integration, curved–space description, solution of nonlinear equations, 

nonlinear regression, conjugate gradient methods, and eigenvalue methods for large or 

sparse matrices.  

Many mathematical methods still remain poorly understood, though broadly used, in the 

field of materials science. These include a number of factors that can be carefully 

considered in the process of approximations; such investigations may be: (i) the stability 

of methodology, (ii) the types of approximation schemes to be applied to predict the 

behaviour of particular models, and (iii) guidance to the solution of the integral equations 

that occur in such systems. While the theory of atomic models has been emerging rapidly 

during the past few decades [18], there remains much work to be done to understand the 

complexities in molecular systems. Molecular systems involve several or many atoms (as 

for polymers) covalently bonded together; they form different geometrical objects and 

the conventional graph theory best describes such molecular models [19]. As far as the 

improvement in theory of equilibrium interfaces gain rapid attention, the other research 

field of interfacial dynamics becomes open to mathematical researchers. The studies of 

interfacial dynamics are phenomenological and are based on the order parameters [20].  

Mathematical researchers are making a grand contribution to this field by developing new 
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algorithms and computational models to obtain the numerical solutions of equations 

involved in these systems, as materials are produced from phase–separated polymers and 

the strengths of materials are determined by interfacial strength and morphology. 

Specifically, investigations have been focused on interfaces in binary blends [21, 22]. In 

the fields of phase transformations and pattern formations, solidification is an important 

area which requires a considerable mathematical effort. For instance, it involves a strong 

interaction between materials scientists, mathematicians, and numerical analysts to 

develop a new theory and method of calculation for pattern formation during the 

processes of alloy solidification [23]. An example of such a method is the ‘phase–field 

model’, based on a set of phase field equations which are basically time–dependent 

parabolic partial differential equations. These equations describe the phase transition in 

which the interface is determined by setting a function called phase or order parameter 

[23]. Such methods are extended to be applied to the systems of binary alloys. While the 

model equations describe the formulation of alloy solidification elegantly, many 

mathematical challenges arise to obtaining these solutions. Some of the mathematical 

intricacies are highlighted here. The equations which involve small parameters 

multiplying highest–order derivative pose stiffness; simple finite difference methods with 

explicit time stepping are not sufficiently accurate and specifically address the stability 

of the solution with respect to mesh size, orientation, numerical noise and time step. The 

mechanical performance of materials is highly important for their application. Such 

applications are airframes of aircraft, automobile structures, the interconnections of 

microelectronics, and many others. The defects and their responses in many ways affect 

the mechanical behaviour of materials. Many defects, deformations and fracture problems 

create curiosities among materials scientists, structural analysts and applied 

mathematicians to address such problems. The mathematical methods, such as partial 
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differential equations representing phase separation phenomena, singularity analysis, 

finite element methods and so on, have been applied and developed in this area [12].  

The theoretical and experimental studies of spinodal decomposition are now attracting 

attention of both material scientists and mathematicians. The systems of binary mixtures, 

such as metal alloys and polymer blends, or diblock copolymers based on one scalar order 

parameter were simulated in order to recognize the technologically relevant fundamental 

information about kinetics and morphologies. However, there are number of challenges 

to face when dealing with the issues in the study of growth of order parameter through 

domain coarsening or phase ordering dynamics [24], and some of these are explained 

here. An experiment of phase ordering is a process of hours or days and it is still not 

certain whether the equilibrium state of the system is achieved; this is because the driving 

forces for coarsening are minute [25]. The theoretical studies of such processes, which 

use simple models, focus on limiting behaviour [24]. The use of computational methods 

provides knowledge for dynamic properties and nonequilibrium morphologies. The 

mathematical approaches should be able to simulate large volumes with proper statistics, 

minimize the role of boundary conditions, and choose between efficient methodologies 

which are responsible for the microscopic time and length scales. Considering all the 

aspects mentioned above, there is still much work to be done to develop computational 

models in order to sort out between experimental behaviour and simulation results to gain 

sufficient molecular information. On the other hand, spinodal decomposition often strives 

with internal factors such as impurities in alloys [26] and symmetry breaking by 

confinement in thin films [26, 27]. There are external factors which are applied as 

parameters to avoid defects and tailor overall structure orientation [4]. All these factors 

play an important role in developing theoretical studies for model description and the 

appropriate molecular information. Therefore, the computational study of such systems 



 

13 
 

is still of considerable importance. The partial differential equations (PDEs), such as 

time–dependent Ginzburgh–Landau (TDGL) or Cahn–Hilliard Cook (CHC) equations, 

best describe phase ordering kinetics or phase separation processes. Computational 

models based on finite–difference approximation of these PDEs have expounded several 

characteristics of phase separation for a whole range of systems [28]. This research work 

deals with the mathematical models for phase separation in diblock copolymers. 

2.2 Block Copolymers and their Applications  

Polymers can be defined as a long chain of molecules which is formed by the reaction 

within the smaller units of molecules called monomers, and for two or more different 

chemical blocks the polymer may come into formation of a block copolymer [29]. The 

polymer based structures can be found in melts, blends or solutions in various ranges from 

nanometre scales to microns, millimetres, or even larger [13]. The chain of molecules that 

form block copolymers is composed of chemically different polymer blocks covalently 

bonded into one macromolecule. The formation of block copolymers depends on a 

number of different chemical blocks in the polymer [29]. The block copolymers have two 

distinct monomers, A and B form:  A–B diblock, A–B–A triblock, or multiblock 

copolymers [30].  

Block copolymers have many applications in the field of soft nanotechnology, such as 

templates for nanoelectronics [31], separation nonporous membranes [32], photonic 

crystals [33], and catalyst materials [34], nanoparticle synthesis, mechanical flow fields, 

electric fields, temperature gradients and others [35].  

Moreover, the use of block copolymers in applications of electronic devices such as fuel 

cells, batteries, or optoelectronic devices relies on their existing properties. Their use in 

applications requires highly ordered and defect-free structures. Although the block 



 

14 
 

copolymers have contributed to various applications ranging from drug delivery to 

structural materials, these have also made an extensive contribution to thin films. The 

block copolymer thin films are heavily focussed on because they gain two dimensional 

patterns at optimum level [2, 36]. Other structures, such as high density hard drives, which 

may be regarded as the smaller versions of current electronics, can be manufactured by 

employing polymer nano–domains. These patterned magnetic bits can have better 

performance rates than current optical lithographically patterned drives [36]. The block 

copolymers are also widely used in commercial products such as bottle stoppers, jelly 

candles, outer coverings of optical fibres, and artificial organ technology [37].  

The applications of block copolymers are made possible in drug delivery and engineering 

by further discovering the formation of nanostructures [30]. To understand the 

complexities of these systems, computer technology is employed, for which mathematical 

models are developed. The microscopic observation of such systems is presented through 

computer models which help to study these systems, giving a broader view [4].  

The block copolymers are not only investigated as a single aspect, but the studies are also 

undertaken to understand the phase behaviour of the mixtures or blends made up of block 

copolymers and other polymers of identical monomeric units (homopolymer) [4, 38]. 

Polymeric blends or mixtures exhibit the behaviour of phase separation and this behaviour 

encourages researchers to study associated mechanical, chemical and structural 

properties; for example, polymeric alloys such as brass formed as a solid phase from 

combining copper and zinc, and also the microstructured phases as formed in steel by the 

addition of carbon and other elements to iron.  
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2.3 Applications of Cell Dynamics Simulation (CDS) Method 

Many computer simulation techniques have been developed to investigate block 

copolymers which include molecular dynamics (MD) [13], Monte Carlo (MC) [13, 14] 

dissipative particle dynamics (DPD) [13, 39], Brownian dynamics (BD) [40], the Time–

Dependent Ginzburg–Landau (TDGL) method (including cell dynamics simulation 

(CDS)) [4, 13, 41], the self–consistent field theory (SCFT) [42] and the Lattice Boltzmann 

method [13, 43, 44]. The CDS is a fast method of simple TDGL type simulation method 

which has been applied to study the evolution of diffusive structure in binary blends of 

both polymers and alloys [3, 45-48] and diblock copolymers [49]. The modelling of 

reaction–diffusion systems of the Fischer type for studying chemical reactions and 

population dynamics has been implemented by using CDS technique [50]. Recently, CDS 

has been applied to study phase separation in diblock copolymers including additional 

factors, such as confinement, shear, and electric fields [4]. The use of CDS allows 

convenience in exploring the phase ordering process for examining various dynamical 

scaling hypotheses [51, 52].  The mesoscopic structure formation of diblock copolymer 

systems can best be analysed at large extent by incorporating CDS.  

Shinozaki and Oono [3, 47] used CDS for modelling the phase–ordering dynamics of 

thermodynamically unstable phases. They have explained that for spinodal 

decomposition many analytical and numerical approaches have been applied. For 

example, Monte Carlo technique was considered the best numerical simulation technique 

for the problem of highly non–linear phase separation. To overcome the conventional 

analytical formulation in terms of partial differential equation they have used 

computationally efficient CDS. Bahiana and Oono [53] conducted a detailed study using 

CDS method which found out relatively a close connection between microphase 

separation of block copolymers and spinodal decomposition. The numerical study via 
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CDS done by them indicated that for very late time–ordering processes, the 

hydrodynamic effects are essentially important. Kodama and Doi [54] conducted a 

computer simulation for 2D system to analyse the structural changes of lamellae of block 

copolymer consisting of two blocks A and B under steady shear flow. In this work they 

have used CDS to solve the time evolution equation. Ren and Hamley [41] describe 

various applications of this powerful CDS method, e.g. simulation of microemulations, 

binary blends containing surfactants or hard particles, cross linked polymer blends and 

simulation of microphase separated structures in BCPs and the kinetics of microphase 

separation. In another study for shear orientation of lamellar phases in block copolymer 

BCP, the dynamic density functional method of mesoscopic dynamics (MesoDyn) has 

been given a little comparison with CDS where the kinetics of order parameter evolution 

are same. MesoDyn simulations have been considered slower than CDS [55].  

The review of applications of CDS method given above present an insight into the 

importance of this method. The CHC equation and its Euler discretized CDS form have 

different roots but in the literature a close relation has been shown between them [46] that 

the CDS is an efficient finite difference approximation of these PDEs. 

2.4 Two Order Parameter Systems 

The study of phase separation in mixtures or blends of soft materials has been of great 

interest theoretically and experimentally [56-58]. The phase separation behaviour of 

systems has been the main focus in the ways of both the macrophase and the microphase 

separation for the past few decades. The phase separation is invoked in structures such as 

lamellar, cylindrical hexagonal, spherical and regular three-dimensional bicontinuous 

structures [59]. Two order parameter systems can be defined as systems where a mixture 

or a blend contains A–B diblock copolymer and C homopolymer. The phase separation 

triggers two different ways of macrophase and microphase separations. In the model of 
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the system, one independent variable represents the microphase separation that takes 

place in A–B diblock copolymer, and the second independent variable represents the 

macrophase separation between A–B diblock copolymer and solvent C homopolymer.  

The two independent variables under the incompressibility condition are taken as 

BA   and ,BA    where ,A  B  and C are local volume fractions of 

monomers. The variable  describes the segregation of A–B diblock copolymer and C 

homopolymer, while   represents the microphase separation in A–B diblock copolymer 

[59].  

The block copolymers can “microphase separate” to form periodic nanostructures. The 

nanoscale structures created from block copolymers could potentially be used for creating 

devices for use in computer memory, nanoscale–templating and nanoscale separations. 

The ‘macrophase separation’ takes place between the diblock copolymer and the 

homopolymer mixture, and then ‘microphase separation’ takes place between the A–B 

diblock copolymer.  

In a copolymer molecule, the chain of sequences of A and B monomers are incompatible 

with each other. If the two sequences of monomers are chemically connected at a junction 

point, then the macrophase separation cannot occur. For this reason, the phase separation 

is on macroscopic scale and microdomains of A–rich and B–rich regions occur. This 

incompatibility causes spatial segregation at low temperatures for copolymer melt and in 

thermal equilibrium these microdomains are regularly arranged [60].  

T. Ohta and A. Ito [59] studied the dynamics and domain morphology of phase separation 

in diblock copolymer–homopolymer mixtures and kinetics of double phase separation. 

They investigated that there exists incompatibility of monomers because of mutual 

connectivity and this is the reason that phase separation causes spatially periodic 
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equilibrium structures such as lamellar, cylindrical hexagonal and regular three-

dimensional structures. There are two key parameters: the block ratio and the temperature, 

due to which ordered states change and cause a mesophase state. There is a short repulsive 

interaction between A and B monomers of a chain of each copolymer. The same repulsive 

interaction can be assumed between C monomers in homopolymer and B monomers in 

copolymer. It is shown how macrophase separation causes microphase separation for 

volume fraction and chain lengths and, because of this different domain, patterns appear.  

2.5 Importance of Isotropic Laplacian Operators 

From a mathematical point of view, the operators are integral or differential. The 

Laplacian ( operator) is the divergence of the gradient (or Nabla,  operator) can be 

written as:  


 




N

i ix1
2

2

)(


 ,  for ix = x,y,z … dimensions.                      (2.1) 

When these operators are applied to specific problems for numerical solutions then these 

operators are discretized. There are various methods of discretizations where accuracy, 

stability, consistency and conservation of any condition are kept in full consideration for 

the method to be applicable. Generally, the discretizations face error terms which are 

anisotropic (artefacts) in a numerical solution of the PDEs [6, 61, 62]. The phenomenon 

of block copolymers simulated by the CDS method involves the PDEs, and therefore the 

mathematical operators such as Laplacian operators come into play. Isotropy plays an 

important role in discretization of the Laplacian operator. Here an example is presented 

from digital image processing about the importance of the isotropic Laplacian operator. 

If the discretized approximations of the Laplacian operator are not isotropic, then the 

Laplacian operator yields different values for two identical edges oriented at different 
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angles. This produces anisotropy which affects outlining edges [63]. It is, therefore, the 

isotropic properties of various two–  and three–dimensional operators that are thoroughly 

investigated in this study. These Laplacian schemes are then employed in CDS for 

numerical results. The original CDS technique uses forward Euler’s method for solving 

PDEs [46]. Sumesh et al. [6] have proposed two– and three–dimensional Laplacian 

schemes for cell–dynamical and hybrid lattice Boltzman simulations. The discretization 

approaches have been used to overcome anisotropic Laplacians in larger stencils and to 

preserve isotropy up to leading order error. These schemes are completely based on the 

finite difference method for spatial discretization. They have presented one isotropic 

scheme in a 9-point Laplacian for two dimensions and all others for three dimensions. 

They have given a very good comparison of Laplacian operators by Fourier, transforming 

those at two different planes. The DdQn model is shown in Figure 2.1, where d is the 

number of dimensions and n is the number of points which follow the weights of the 

Laplacian schemes. In Figure 2.1, the ordering points on a cubic unit cell and energy 

shells e1, e2, and e3 with e0 on a cubic grid are shown. Sumesh et al. [9] present a 

numerical method for the solution of nonlinear stochastic partial differential model H 

equations for binary mixtures. These equations cannot have an analytical solution so they 

are dealt with by numerical methods.   
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Figure 2.1:  Energy shells form stencils on a cubic unit shell. This image is taken from [6]. 

 

Numerical methods which are used for discretization of equations of motion on a lattice 

ensure non–violation of the conservation laws and Fluctuation Dissipation Theorem 

(FDT). Otherwise, the naive discretization of both the momentum and the order 

parameter in model H can lead to violations of conditions on the lattice. They use two 

methods: the finite difference method and the finite volume method, for spatial 

discretization of the order parameter equation. The discretization of two-dimensional 9–

point Laplacian operators through finite volume method proved to be less isotropic than 

Shinozaki and Onoo’s Laplacian choice [3, 46]. The Yee algorithm approximates the 

Laplacian operator through strongly anisotropic 5–point, 9–point and 25–point Laplacian 

schemes in two dimensions. For implementation of the Yee algorithm, a finite difference 

time domain method (FDTD) is analysed with respect to the approximation of the two–

dimensional Laplacian operator, associated with curl–curl operator. The Yee algorithm 

is a well–known finite difference time domain (FDTD) approximate to Maxwell’s 

equations. This method assumes a staggered filed arrangement in both space and time, 

where first order partial derivatives are approximated through second order accurate finite 
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differences. Efforts have been made to improve FDTD schemes. These schemes are based 

on the transverse Laplacian term associated with curl–curl operator and can be more 

isotropic, less dispersive and have a higher courant number than the Yee algorithm and 

its versions [64]. Fei Xiao et al. [65] have presented a 2–D isotropic finite difference time 

domain (FDTD) method, unlike the 1–D finite difference scheme, as the 1–D finite 

difference scheme approximates the spatial partial differential operator (PDO) in 

Maxwell’s equations. To improve results they adopted the high–dimensional isotropic 

finite difference scheme in the FDTD to greatly decrease the numerical anisotropy by 

demonstrating the superiority and applicability of the method. This method was 

developed with the help of Fourier analysis, which greatly reduced the numerical 

anisotropy in comparison to that of the conventional Yee-FDTD method. Kumar [66] 

presented a new method called isotropic finite–difference method in order to preserve 

isotropy by numerical simulation of partial differential equations (PDEs). Conventional 

finite–difference methods were pointed out for discretizing PDEs which introduced 

anisotropy into the numerical scheme; that anisotropy comes from the directional bias of 

error terms in the discretization. Conclusively, a finite difference scheme is proposed, 

where the lowest order error terms are without directional bias. The analysis of error 

terms is necessary in our research study, particularly when we discretize PDEs into 

numerical simulation. Furthermore, Chow [67] presented discretization of the Laplacian 

operator on non-hyper–cubical lattices. He explained an implication of the result of an 

equation that one–shell discretization of the Laplacian operator always has second order 

errors in any lattice. 
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2.6 Finite Difference Methods  

As in this study the CDS technique is implemented in different finite difference (FD) 

methods, in this section the FD methods are explained in a very basic way. The model 

heat equation is presented as an example in the context of numerical approximations for 

different FD methods.  

The finite difference method approximates the solution in a generated grid and uses its 

schemes for obtaining numerical solutions to ordinary or partial differential equations. 

The PDEs or ODEs become a linear or non–linear system of algebraic equations. The 

numerical solution of partial differential equations can be achieved by the finite difference 

method, which is obtained by replacing the derivatives in the equation by appropriate 

numerical differentiation formulae [8, 68]. Discrete approximations replace the numerical 

solutions at some finite number of points in a physical domain. The set of finite points 

can be collectively known as mesh, where algebraic equations are constructed for discrete 

approximations, solved or evaluated for discrete unknowns. The fundamental idea of the 

finite difference method is to replace continuous derivatives with different formulae 

involving discrete approximations related to positions on mesh; these positions are called 

nodes. One important thing must be taken into consideration, which is that not all the 

finite difference approximations provide accurate numerical schemes, but some of them 

assure stability and convergence in order to satisfy reliable results from these methods 

[8].  

The heat equation is an important partial differential equation which has many 

applications in different areas. The heat equation has its origins in physics and is studied 

from a number of perspectives. The form of this equation is commonly known as the 

diffusion equation. In this work, the two–dimensional heat equation is approximated 

numerically. The motivation of a heat equation is just thinking of a one-dimensional 
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heated metal rod or thin metal bar of length L. For two-dimensional heat equations, 

suppose a thin square plate of size LL is heated and heat enters or leaves the plate by 

means of conduction or radiation. It is assumed that the plate is insulated along its top 

and bottom.  

Let:  

),,( tyxu   temperature of the plate at position ),( yx and time t.  

The basic differential equation of heat in two–dimensions is given below [8]:  
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










 ,0 Lx   Ly 0 and Tt 0       (2.2) 

where D  is a constant coefficient presenting thermal diffusivity and u  is the dependent 

variable, equation (2.2) is a partial differential equation that is satisfied by u , subject to 

the initial condition: 

    ),,()0,,( yxfyxu   Ryx ),(                                      (2.3) 

where    LLR ,0,0  . 

At the edges of the plate, the Dirichlet boundary conditions are imposed and given as 

follows: 

      
.0),,(),0,(

,0),,(),,0(





tLxutxu

tyLutyu
        (2.4) 

2.6.1 Forward Time, Centred Space  

The generalization of finite difference formula in forward time, centred space (FTCS) or 

explicit forward Euler method for a two-dimensional heat equation (2.2) is: 
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including the following operators: 
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and ,/ 2xtDrx   and  2/ ytDry   [69].  

The stability of the Explicit scheme can be taken into consideration such that the discrete 

Fourier mode of term 
n

kju , in equation (2.5) is [69]: 

    ,,

yikqxijpnn

kj eeu                                                          (2.8) 

and substituting equation (2.8) into homogenous equation (2.5), and dividing the resulting 

equation by 
1n  gives: 
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The discrete Neumann criterion 1  implies that .2/1 yx rr  

If the uniform mesh, yx   is used, such a condition requires 4/1 yx rr and restricts 

to take a twice smaller t  (or 2 – times larger )x to ensure stability.  

In the FTCS scheme, the time derivative is discretized in forward difference and the 

Taylor expansion is given below [70, 71]: 

   )(...
2 2

21

tO
t

ut

t

uu

t

u nn






















 

 



 

25 
 

where the dots show higher order terms. The time derivative has truncation error ).( tO   

The space derivatives are discretized in central difference so their truncation error is 

).()( 22 yOxO  The discretization error of the FTCS scheme is:

 which shows it is linear in time space and quadratic in step 

space [69].  

2.6.2 Backward Time, Centred Space  

The explicit forward Euler method approximates values of terms in n space on the right 

hand side of diffusion equation (2.2) for term in n+1 space, but in backward time, centred 

space (BTCS) or implicit backward Euler method it is reversed; the values in n+1 terms 

space are approximated from n space term. The finite difference in backward time, 

centred space for diffusion equation is given below: 
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                                                       (2.10)   

To approximate equation (2.10) numerically, it needs to bring in Mx =b where M is the 

two dimensional matrix of size )1)(1()1)(1(  yxyx NNNN  and b is a one–

dimensional matrix of size )1)(1(  yx NN . After algebraic manipulation on equation 

(2.10) it becomes: 
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                          (2.11) 

Hence, a linear system must be solved to obtain 
1

,

n

kju  from 
n

kju , . However, xr  and yr  are 

greater than zero, so the matrix A is positive definite and strictly diagonally dominant, as 

well as being tri–diagonal [69]. There are several iterative algorithms, i.e. the Crout 

Factorization method, the SOR algorithm, the LU decomposition method or the 

)()()( 22 yOxOtO 
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Conjugate Gradient method. The linear system in equation (2.11) takes the form: 

.1bMx   The inverse of the matrix M, which involves the stiffness matrix of the 

Laplacian operator, is not easy in high dimensions. In the BTCS scheme, the time 

derivative is discretized in forward difference and space derivatives are discretized in 

central difference. The discretization error of this scheme is: )()()( 22 yOxOtO 

[69] which is linear in time space and quadratic in step space. 

The stability of the implicit forward Euler method can be given as the eigenvalues of 1M  

are reciprocals of those of M, the spectral radius 1M , .1)( 1 M   This implies that 1M

is convergent. So the method is stable, independent of any choice of xr  or yr  [69].  The 

amplification factor for two–dimensional equation (2.11) is:  

   2/sin42/sin41

1
22 yqrxpr yx 




               (2.12) 

The two–dimensional implicit backward Euler method is absolutely stable, since .1  

2.6.3 Crank–Nicolson Scheme 

The Crank–Nicolson (CN) scheme is popular in financial engineering and for 

approximating the convection–diffusion equation. The CN scheme was proposed by 

Crank and Nicolson [72, 73] and is a FD method which is unconditionally stable and is 

used to approximate partial differential equations (PDEs) numerically. It is known that 

both the FTCS and BTCS schemes have a discretization error of order )( 2htO  , but 

the CN technique puts its efficiency into achieving second order in time and space 

)( 22 htO  [8, 69]. As the second order accuracy in time and space can be achieved 

through this technique, the CN method is regarded as numerically stable; however, 

oscillations may still occur. It is an implicit method and is a widely used FD method for 
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the modelling of heat–diffusive problems in one or more dimensions. The CN scheme is 

made up of a half explicit FTCS step and a half implicit BTCS step, each with time step 

.2/t  An averaging at the ith and (i+1)th time step is given for the spatial difference. In 

other words, it is the average of the forward Euler and backward Euler method with a 

central difference in space. The derivation of the CN scheme for heat equation (2.2) is 

constructed in a way that, on the left hand side the prediction of values of u is done at 

1n  time step, which is an implicit approach, and on the right hand side the prediction 

of values of u is done at n time step, which is an explicit approach; on the right side all 

the values are assumed to be known easily.  The form of diffusion equation (2.2) using 

the CN scheme is given below: 
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The CN method can be written in matrices as: 

    
n

ji

n

ji uMuM ,2

1

,1 
.                           (2.14) 

The non–singular matrices 
1M  and 

2M  are positive definite and have the size 

).1)(1()1)(1(  yxyx NNNN  To solve systems of linear equations in equation 

(2.14), either the LU decomposition or Conjugate Gradient method can be used to obtain 

1

,

n

jiu from .,

n

jiu  The discrete Neumann criterion for stability is again derived by Fourier 

analysis, as for the explicit scheme. The amplification factor for the CN method is [69]: 
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where it is necessary to have ,1  for all non–negative xr  and ,yr  so the two–

dimensional CN scheme is absolutely stable and has order of convergence )( 22 htO  . 

In order to analyze the second order accuracy of CN scheme, each side of equation (2.13) 

can be rearranged into a partial factored form as follows [74]:   
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                 (2.16) 

The CN scheme (2.16) of heat equation (2.2) in factored form has been derived from 

equation (2.13) without the loss of accuracy. Doing some algebraic manipulation on 

equation (2.16) gives:   
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Let yx rhtr  2/  and the equation (2.17) can be rewritten as follows: 
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The equation (2.18) shows that the discretization error of CN scheme is quadratic in time 

space as well as quadratic in step space  .)()()( 222 yOxOtO    The CN scheme 

shows an obvious difference with implicit BTCS in terms of discretization error order. 

The BTCS and CN schemes have an almost identical algorithmic approach where the 

truncation error for the Crank–Nicolson scheme is significantly smaller than the temporal 

truncation error of the BTCS scheme [69].   
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   Figure 2.2: Three different schemes for a two-dimensional heat equation  

 

Numerical simulations of heat equation (2.2) are presented by mesh plots in Figure 2.2 

for three different methods. These simulatins were executed for 50x50 grid with space 
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steps 2.0 yx  up to 100 time steps. The boundary conditions were assigned by zeros 

and diffusion constant D was chosen 0.25. The time interval t was chosen 0.01 for 

forward Euler method because it is explicit method where time interval can be used 

conditionally.  In Figure 2.2, the numerical solution u(x,y) is shown against the x- and y-

coordinates on a grid which was obtained same for three different methods but using 

different time interval t values. The images in Figure 2.2 are showing the state of the 

heat for the function )sin(),( xyyxf   initially assigned. It can be seen in Figure 2.2 

that the images of the plots are identical for each scheme, where the explicit FTCS scheme 

was observed faster in execution compared to implicit schemes. The implicit methods CN 

and BTCS were found slower but allowed unconditional choice of using time interval t

value.  

2.6.4 Alternating Direction Implicit Method  

The Alternating Direction Implicit (ADI) method is a finite difference method introduced 

by Peaceman and Rachford for the numerical solutions of heat flow equations [75]. The 

implicit Crank–Nicolson (CN) and backward Euler schemes are using the large matrices. 

The large matrices become huge, which require sufficient memory for processing and due 

to the huge matrices these methods work very slowly, especially for two–dimensional 

higher grids or for three dimensions [76]. The CN scheme is second order accurate in 

time and space and is unconditionally stable, but requires more operations per time step 

than the number of unknown variables [77]. To overcome this difficulty and complexity 

for obtaining numerical results, the operators are used in split format and the idea of using 

operator splitting is becoming more common day by day. The ADI scheme is based on 

the same concept of operator splitting [78]. The ADI scheme is computationally efficient 

and has the same properties as the CN scheme. It is second order accurate in time and 

space and, unlike the CN scheme, it requires the number of operations per time step that 
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is proportional to the number of unknowns [77]. A variety of stable schemes are available 

in the ADI method which can be employed for the elliptical or parabolic partial 

differential equations. It all depends on the type of partial differential equation used; for 

example, any equation comprised of mixed derivative terms can be handled with a 

different scheme in the ADI method [79]. The finite difference methods for two–

dimensional heat equations (2.1) and related spatial derivatives are discussed in previous 

sections. Here, the ADI method is elaborated for a two–dimensional heat equation (2.2); 

this ADI method employs the classic Peaceman and Rachford scheme [75, 76].  
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This methodology works in two steps; the first step is given in equation (2.19) in which 

the first half of the time step t the spatial derivative is computed implicitly in coordinate 

x and explicitly in coordinate y, and this process is reversed in the second step which is 

given in equation (2.20). In equation (2.19) the values are approximated for the 

intermediate solution for 2/1

,

n

kju  and in equation (2.20) the values are approximated for 

1

,

n

kju  from the intermediate solution on the right hand side. For the numerical 

approximation of heat equation (2.2), the Peaceman and Rachford scheme is employed, 

as this scheme is unconditionally stable and is )()()( 222 yOxOtO  (second–order 

accurate) [76, 77].  

The steps given in equations (2.19) and (2.20) can be written in matrix form: 
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The matrix M on the left hand side of equations (2.21) and (2.22) is the tridiagonal matrix 

which simplifies the calculations, unlike the sparse matrices used in the CN scheme. The 

matrix M for a two–dimensional operator kjkjkj

x uuu ,1,,1

)(

2 2    is given as follows: 
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The specific form of the matrix M can depend on the type of boundary conditions used: 

either Dirichlet or periodic. As in the CN scheme, if the grid size is ,nn  the matrix 

becomes the 
22 nn   size and the system of linear equations becomes difficult to solve. In 

ADI, if the grid size is ,nn , the size of the matrix is )n()n( 11   and is tridiagonal. 

The beauty of the ADI scheme is that it is using the same matrix M for both steps because 

the split operator is taken over one direction, either x–direction or y–direction. The 

operator )(

2

y  on the right side of equation (2.21) is not a matrix, but can be treated as the 

operations of subtraction and addition, simply in the manner of the forward Euler method.  

If it were a matrix, then the calculations would have been more complicated [77]. In the 

first step on the right hand side of equation (2.21), the )1( M  equations are solved for 

the unknown vectors, and for the whole intermediate solution the tridiagonal matrix 

solves the )1()1(  MM  equations. After the intermediate solution is determined, the 

same procedure is carried out for the second step, which is given in equation (2.22); in 
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this way the discretization for equation (2.2) approximates values by the so–called ADI 

method. To solve the linear system of equations, the LU decomposition or the Conjugate 

Gradient (CG) method can be used, as in the CN method. The Thomas algorithm is 

efficient for solving linear system of equations in the ADI method [80]. 

The stability of the ADI scheme is proved in Ref. [77]. To analyse the stability of the ADI 

scheme employed in equations (2.19) and (2. 20) for heat equation (2.2), it can be written 

in one equation. If the value of 
2/1

,

n

kju  from equation (2.19) is substituted into equation 

(2.20), then one gets the following:   
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In discrete von Neumann stability analysis, the Fourier mode of term 
n

kju ,  in equation 

(2.24) is [76, 77]: 
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Substituting the Fourier modes given in equations (2.25) and (2.26) in equation (2.24), 

the resulting equation becomes: 
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The two–dimensional ADI scheme is stable since .1  

The consistency of the ADI method is also discussed here. Adding two equations (2.19) 

and (2.20) together, the resulting equation becomes: 
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and if equation (2.19) is subtracted from equation (2.20) the following equation is 

obtained:  
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By substituting equation (2.29) into equation (2.28) and 
2/ htrr yx   gives:   
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The equation (2.30) can be compared with equation (2.18) which shows that the 

discretization error of ADI scheme for heat equation (2.2) is second order accurate 

in both space and time, i.e.,   22
htO  . The discretization error of time step is 

quadratic (  2tO  ) in equation (2.30), which makes this second–order accurate in 

time. It must be noted that the FTCS and BTCS methods have discretization error 

of   ,htO 2  which shows that the order error (  tO  ) is not quadratic. Equation 

(2.18) is derived to show that the CN scheme is second order accurate in time and 

space and in the same way equation (2.30) shows that the ADI scheme is second 

order accurate in time and space.  

So far, the two–dimensional ADI method employing the Peaceman and Rachford 

scheme is discussed, which is fast and its stability is the same as that of the CN 

method. The three–dimensional Peaceman and Rachford scheme is not uncon-

ditionally stable [77]. An alternative ADI method was proposed for the two- and 
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three-dimensional heat equation, which is unconditionally stable [81-83]. This 

method is well known as the Douglas method or the Douglas–Gunn method [82] 

but it is not explained here in this chapter. The Douglas–Gunn method is 

mentioned here to highlight that there are various unconditional stable schemes 

available which can be employed in the ADI method for two- and three–

dimensional PDEs. Extensive work on ADI methods has been undertaken for 

linear second and fourth order parabolic problems [84, 85].  

The ADI method has been very helpful in numerical simulations of problems in 

fluid dynamics [86-88]. Eres et al. [89] present a three–dimensional numerical 

approximation for the mathematical model based on the flow of drying paint films 

on horizontal substrates. For the numerical implementation, they employ an 

implicit method by condemning the explicit method for the small time step, and 

mention that the explicit method is computationally inefficient. They also mention 

that the ADI methods used by Peaceman and Rachford [75] and Douglas [82] are 

unconditionally stable for heat flow problems, but are not unconditionally stable 

for the higher order partial differential equations which involve the biharmonic 

equation. In this study, the ADI method has been implemented for the cell 

dynamical simulation technique to make the CDS technique more stable and 

robust. The ADI method implementation for CDS equations is covered in chapter 

7.  
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Chapter Three 

3 Method and Model Equations (One order parameter) 

In this chapter the cell dynamics simulation (CDS) method is elaborated. In CDS, the 

original averaging operator does not represent the discrete Laplacian and that the CDS 

method should not be analysed via the Time–Dependent Ginzburg–Landau (TDGL) 

equations. Therefore, the formations and properties of two– and three–dimensional 

Laplacian operators (averaging operators) are discussed in terms of stencil size and their 

isotropic behaviour, which ensure the stability of CDS results. The analysis of several 

discrete Laplacians in terms of isotropy has been performed on a more quantitative 

balance than previously considered [6]. The stability analysis is also undertaken for the 

Laplacian schemes for investigating their time step value that will be used in simulations 

based on CDS.  

3.1 Cell dynamics simulation method  

The CDS technique is used in a number of works in diblock copolymers and binary 

mixtures, i.e. metal alloys [3, 48, 53, 90]. The CDS is basically a discretization of the set 

of partial differential equations involved in the block copolymers for the purpose of 

obtaining numerical results [4]. The efficiency and the stability of the CDS was 

investigated by Oono and Puri [46]. In this chapter, the CDS model equations are 

presented for a one order parameter system in a lamellae forming of A–B diblock 

copolymer systems. In CDS, the value of an order parameter ),( it  is determined at time 

t in cell i of discrete lattice. Suitable choice of the order parameter of an A–B diblock 

copolymer is defined as [2]: 

),21( fBA                      (3.1) 
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where 
A   and 

B   are local volume fractions of A and B monomers, and 

)/( BAA NNNf   is the volume fraction of the A monomer in the diblock. The 

evolution of the order parameter in a single cell is given by:  

)),((),1( itgit                       (3.2) 

where  g  is the so called map function [46, 91]. The cells need to be connected in order 

to observe the spatial cooperative interactions. The force on the order parameter ),( it

tends to have proportionality to its difference from the average of the order parameters in 

the neighbourhood cells. Considering the diffusive dynamics for spatial cooperative 

interaction between the connectivity of cells, the case of non–conserved order parameter 

for the time evolution order parameter with term of diffusive dynamics becomes [41],  

   ),(),(),()),((),1( itititDitgit                  (3.3) 

where the sum is given by first term related to chemical potential gradients and second 

term that considers diffusive dynamics [41].  In equation (3.3), D is a positive constant 

which presents phenomenological diffusion constant, XX  , which is essentially an 

isotropized discrete Laplacian. The general definition X on a two–dimensional square 

lattice is given by 

 
NNNNN

itWtiWit ),(),(,( 21                   (3.4) 

where NN and NNN represent its nearest neighbours and next–nearest neighbours 

respectively, and Ws are weights, i.e. 6/11 W  and 12/12 W [2, 46]. The inclusion of 

contributions from the surrounding cells is necessary in the case of a conserved order 

parameter. The isotropic behaviour of the CDS model in the case of a conserved order 



 

38 
 

parameter model may be affected due to an exchange of order parameter values between 

a cell and its neighbouring cells. Therefore, to maintain isotropy, the net change of the 

order parameter should be avoided inside the neighbourhood surrounding the centre cell.  

Thus, for a conserved order parameter, the net gain of order parameter in a particular cell 

is given by   ),(),( itit    and in this way the discrete model for conserved order 

parameter of CDS becomes [41, 46]: 

    ),(),(),(),1( itititit   .                (3.5)  

An additional term, ),( itB , is added to equation (3.5); this term comes from the 

contribution of long range ordering to the free energy [41] and equation (3.5) becomes:  

    ),(),(),(),(),1( itBitititit   .               (3.6) 

For the dynamics of ),( rt , the Cahn-Hilliard-Cook (CHC) equation is used which is 

given as follows [54, 92]: 

    
 

















 F

t

2
,                                 (3.7) 

where K is a phenomenological mobility constant. This mobility constant is set to unity 

for the corresponding setting of the timescale for the diffusive process and  F  is the 

free energy functional and is given as [53]: 

      )'()()'('
22

)()(
2

rrrrGdrdr
BD

HdrrF  







   .   (3.8) 

In equation (3.8), the first and second terms are the short– and long–range interactions 

respectively, the diffusion coefficient D is a positive constant, and the constant B 

represents the chain length dependence to the free energy and  H  is given as: 
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






 ,               (3.9) 

where  is a temperature and A, v, u are phenomenological constants [41]. All of these 

parameters represent the relation to molecular characteristics. The numerical evolution of 

equation (3.7) is given by [55, 93]: 

)},(),(),({),(),1( itBitititit   ,                         (3.10) 

where XX   is an isotropized discrete Laplacian in square coordinates for quantity 

X, ),( yx iii   and  

                          )],,(),([),()),((),( ititDititgit                            (3.11) 

where the so called map function is given by: 

                  ufvfAg  22 21)21(1 .             (3.12) 

 

3.2 Laplacian schemes 

In this section the Laplacian schemes are discussed by elaborating their properties. The 

two-dimensional and three-dimensional Laplacian operators are discussed with their 

Fourier transforms. Each Laplacian scheme is incorporated in the form of equation (3.4) 

for implementing in simulations for obtaining numerical results.  

The Laplacian (  operator) is the divergence of the gradient (or Nabla,  operator) and 

can be written as: 

   
 




N

i ix1
2

2

)(


   for ix = x,y,z… dimensions                          (3.13) 
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In Fourier space, the Laplacian operator is given by: 

 k2.                                                  (3.14) 

where k is the wave-vector in Fourier series expansion. The minus sign in  makes 

this operator positive–semidefinite [94, 95]. The Laplacian operator is discretized on the 

grid by application of finite difference scheme: 

 

    ).( nhOS                             (3.15) 

where S represents a stencil and )( nhO  is the truncation error of the order n due to finite 

mesh size h.  

The mathematical operators have special importance when they describe the physical 

world around us. The isotropy is another aspect of discrete Laplacian that must be ensured 

to carry out proper numerical simulations and this aspect is focussed on in this study. The 

Laplacian operator is rotationally invariant but all its discretized approximations are not 

isotropic [63]. The term isotropy is used in several scientific disciplines and defines the 

certain properties of an object of the nature to be identical when quantified from any 

direction. The term anisotropy is the opposite of the isotropy and the definition of 

anisotropy is that it is a condition where different properties are obtained in different 

directions. The direction is the main factor that is contained in the differentiation of both 

the isotropic and anisotropic phenomena. Generally, the isotropy is a homogeneousness 

in all orientations and the anisotropy is a situation where properties vary systematically 

[96, 97].  

Many mathematical techniques, e.g. compact schemes, Padé approximations etc., have 

been implemented to bolster the numerical accuracy in simulations of partial differential 

equations (PDEs). A numerical scheme is said to be isotropic if it does not have 
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directional preference. Sometimes the use of conventional finite difference approach for 

discretizing the PDE causes anisotropy in the numerical scheme. The anisotropy in any 

numerical scheme is produced from directional bias of the error terms in the discretization 

[66].   

The isotropic property is dealt with as a desirable feature in the discretization of the 

Laplacian operator. If the discretization is not isotropic then numerical values face 

artefacts (error terms) which result in anisotropy [6]. An isotropic Laplacian abrades the 

function equally in all directions [94]. The importance of using isotropic Laplacian 

operators can be known as an example of heat conduction, and the stability criterion of 

the numerical scheme becomes better by using the isotropic discretization of the 

Laplacian [66]. Hale [94] has presented computer simulation images of paintings using 

isotropic and anisotropic Laplacians. The poor approximations to the anisotropic 

Laplacians produce checkerboard patterns of the images due to the artefacts, and therefore 

improved approximations (isotropic Laplacians) are suggested to produce clear images.  

3.2.1 Two dimensional Laplacian schemes 

In this section, the various two-dimensional Laplacians schemes are discussed, including 

9–point family stencils and various other stencils. These Laplacian schemes are obtained 

from a finite difference scheme for a two–dimensional Laplacian operator. The stencil 

shape for 9–point family Laplacians is given in Figure 3.1. The DmQn notation is used 

where m is the number of dimensions and n is the number of points to be calculated. The 

first scheme is obtained considering its nearest neighbours (NN) [63, 98, 99] as shown in 

equation (3.16), and the second scheme equation (3.17) is obtained considering its next 

nearest neighbours (NNN) [63, 99].  
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The subscript D2Q5 in equations (3.16) and (3.17) represent the 5–point stencil in two 

dimensions. The letter A in the subscript of equation (3.16) is given to distinguish it from 

equation (3.17), and will be discussed frequently in the text. When both the NN and NNN 

are considered, a new model, suggested by Tomita [100] in equation (3.18), is presented 

which gives 9–point stencil operators on the grid: 

 

Figure 3.1: The 9–point stencil shape of Laplacian on 2D grid. The dark circle is the centre, the 

square boxes are its nearest neighbours (NN) and the crosses are its next nearest neighbours 

(NNN). 
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Varying values of  , with ,4/1 , ,2/1 , ,4/3 and 1 give finite difference 

schemes, which are listed below:  
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The subscripts PK, SO and BK in equations (3.19), (3.20) and (3.22) stand for Patra and 

Karttunen, Oono and Puri and Behzad Kamgar respectively.  Partra and Karttunen [7] 

have shown that equation (3.16) is anisotropic and equation (3.19) is isotropic. Shinozaki 

and Oono used equation (3.20) for cell dynamics simulations [3, 47], which is generally 

considered to be the best choice for isotropy by Tomita [100]. Equation (3.17) is shown 

to be anisotropic [95] and equation (3.22) is discussed in the literature but is not isotropic 

[63]. The scheme in equation (3.21) is found to be unstable and is not present in the 

literature. The isotropy of the discrete Laplacians considered above can best be analysed 

in Fourier space. The corresponding Fourier transforms of equations (3.16), (3.17) and 

(3.19–3.22) are given below: 

                       .2)cos()cos(
)(

2
)(

2)52( 


 xkxk
x

k yxQDA                          (3.23)   

     .2])cos[(])cos[(
)(

1
)(

252 


 xkkxkk
x

k yxyxQD              (3.24)             

   

   

      
.

5coscos
2

1

cos2cos2

)(3

2
)(

2)92(
























xkkxkk

xkxk

x
k

yxyx

yx

QDPK              (3.25) 



 

44 
 

   
 

      
  

.
6cos

coscos2cos2

2

1
)(

2)92(




















xkk

xkkxkxk

x
k

yx

yxyx

QDOP             (3.26) 

                   
 

   

      
.

7coscos
2

3

cos2cos2

5

2
)(

292
























xkkxkk

xkxk

x
k

yxyx

yx

QD               (3.27) 

      
 

   
     

.
8cos2cos2

cos2cos2

3

1
)(

2)92(




















xkkxkk

xkxk

x
k

yxyx

yx

QDBK           (3.28) 

 

Expanding )cos(x  in the above equations at around 0x provides: 

            ).(
6

)(
)(

12

)(
)()( 622

2
222

2
22

)52( kOkk
x

kk
x

kkk yxyxyxNNQDA 





                (3.29)   

            ).(
3

)(
)(

12

)(
)()( 622

2
222

2
22

52 kOkk
x

kk
x

kkk yxyxyxNNNQD 





              (3.30)    

 ).()(
12

)(
)()( 6222

2
22

)92( kOkk
x

kkk yxyxQDPK 


                                        (3.31) 

             ).(
12

)(
)(

12

)(
)()( 622

2
222

2
22

)92( kOkk
x

kk
x

kkk yxyxyxQDOP 





               (3.32) 

              ).()5185(
60

)(
)()( 64224

2
22

92 kOkkkk
x

kkk yyxxyxQD 


                         (3.33) 

              ).(
6

)(
)(

12

)(
)()( 622

2
222

2
22

)92( kOkk
x

kk
x

kkk yxyxyxQDBK 





                (3.34) 

P.I.C. Teixeira and B.M. Mulder have made a little algebraic mistake when Fourier 

transforming equation (3.16); see equation (6) in Ref. [101]. They have presented the 

following equation: 
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They also made another algebraic mistake for Fourier transforming the triangular stencil 

operator (3.36). For this operator, in the article they have presented the equation (3.37) 

after expanding )cos(x  at around 0x ; see equation (9) in Ref. [101]: 
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After expansion of )cos(x  in operator (3.36), the result is different; the resulting equation 

is presented below: 
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The difference can be seen easily by comparing equation (3.29) with equation (3.35) and 

equation (3.37) with equation (3.38).   

All equations from (3.29) to (3.34) are second order in k where equations (3.31) and (3.32) 

are isotropic and equation (3.33) has anisotropic term which can be observed in its second 

term. 

To compare the properties of these two-dimensional discrete Laplacians in terms of 

isotropy, a measure of isotropy for the discrete Laplacians has been performed. In Figure 

3.2, an analysis of isotropy and anisotropy of the discrete Laplacains has been shown after 

introducing cylindrical coordinates ),( r in reciprocal k space by plotting: 
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).,(min),(max)( 


rrrd                 (3.39) 

Equation (3.39) calculates the difference between the maximum and minimum value of 

)(k for radius r. A clear difference between anisotropic and isotropic discrete Laplacians 

is shown in Figure 3.2. The isotropy measure d(r) with maximum deviation from radius 

r shows the maximum anisotropic behaviour (or maximum anisotropy) in comparison 

with the analytical expression ,2k  which does not show any deviation from radius r 

because it is considered to have maximum isotropy. All the discrete Laplacians A(D2Q5), 

D2Q5, BK(D2Q9) with solid lines seem to be anisotropic because of a noticeable 

deviation. The other two 9–point discrete Laplacians (PK(D2Q9) and OP(D2Q9)) with 

dotted lines, which are generally considered to be isotropic, seem to have less deviation 

from the radius r. The discrete Laplacian PK(D2Q9) with dotted lines (light black colour) 

is isotropic for ,2r  but for larger r, it becomes anisotropic. The stencil OP(D2Q9) of 

Oono–Puri is less isotropic than the PK(D2Q9) for 5.25.1  r , but more isotropic for 

.5.2r  Surprisingly, the isotropy of OP(D2Q9) is even better than that of PK(D2Q9).  

 

Figure 3.2: The value of a measure of the isotropy )(rd  for the actual Laplacian (red dashed 

line for 
2k ) and other discrete Laplacians with r the radius.  
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There has been extensive research work on the investigation of isotropic stencil operators 

in two and three dimensions for complex dynamics systems. B.A.C. van Vlimmeren [102] 

has proposed a unique method to calculate the weights of a three–dimensional 27–point 

stencil operator. Fraaije and his co–workers [61, 103] re–evaluated the basic numerical 

aspects of the standard lattice models and calculated the weights of a 27–point isotropic 

stencil operator using the method of B.A.C. van Vlimmeren on the lattice to represent the 

linkage operator efficiently and accurately. Their work confirmed that isotropy and 

scaling conditions can be considered to calculate the values for the weights. To investigate 

the best isotropic stencil operators in 9–point stencil in this study, this method is applied 

in 2D.  The following method calculates the values for the weights d  in a 9–point 

isotropic stencil. The half point difference scheme is such that:  
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In Fourier space the discrete half point derivative operator D  in direction  is:  

    ,
2

sin
2









 





hkr

hr

i
D                (3.41) 

where r  is a lattice direction in positive half–space: 
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The vector length k  is considered for positive half space to be k and the directions 

are  0,k  and   2/,2/ kk .  In Fourier space, 2  is kk  , with the corresponding 

discrete S(k): 

    


 DDdkSq )(2
               (3.43) 

The values of the weights d   are found by invoking the following two conditions: 
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The first equation is for a scaling condition, whereas the second condition is for an 

isotropy condition, which result in weights 53015.010 d  and  469849.011 d . The 

stencil is obtained as follows:  
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Other different vector lengths are also chosen and different stencil weights are obtained.  

Details are given as follows by categorizing three different cases for the different vector 

choices: 
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Case 1: In this case, the first vector choice is    2/,2/0,  SS  ,  which is given 

above, and then the stencil in equation (3.46) is obtained with weights 53015.010 d  and

469849.011 d . 

Case 2: In this case, the second vector choice is    22/,22/0,2/  SS   and for this 

vector choice, the obtained weights are 63778.010 d  and 362218.011 d . The choice of 

any vector gives different weights but the terms in stencil remain the same as in equation 

(3.38).  For the second vector choice, the stencil is given below: 
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Case 3: In this case, the third vector choice is    24/3,24/30,4/3  SS   and for this 

vector choice the obtained weights are 59713.010 d  and 402869.011 d . For the third 

vector choice the stencil is given below: 
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The stencils obtained in equations (3.46–3.48) are in k domain. For the simulations in cell 

dynamics (CDS), these equations need to be transformed into real space analogue. The 

transformation is given below in equations (3.49–3.51) for equations (3.46–3.48) 

respectively. 
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The subscript BV in equations (3.49–3.51) indicates that these stencils are obtained by 

following B.A.C. van Vlimmeren’s method. It is clear from Figure 3.3 that all the 

BV(D2Q9) stencils are isotropic in comparison to PK(D2Q9). The two stencils 

BV(D2Q9)case2  and BV(D2Q9)case3  are equally isotropic for 3.2r and seem to be better 

than PK(D2Q9), but these are anisotropic for larger r. The deviation of lines from radius 

r show that the green line for the BV(D2Q9)case1 behaves in almost the same way as  

OP(D2Q9), which is less isotropic than the other two cases for ,5.25.1  r  and more 

isotropic for .5.2r  It must be noted that the isotropy of the BV(D2Q9)case1 stencil is 

better than all the other discrete Laplacians in the 9–point family.    
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Figure 3.3: The value of a measure of the isotropy )(rd  for the actual Laplacian (red solid line 

for 
2k ) and other discrete Laplacians against the radius r. The BV(D2Q9) are newly derived 

stencils.  

 

After the investigation of 9–point family Laplacian schemes for error order )( 2hO , the 

stencil shapes are analysed for error order )( 4hO . These shapes include a 9–point star 

stencil and a 17–point stencil. The Laplacian operator is then derived from the finite 

differences and all these are discussed here. The 9–point star and 17–point Laplacians 

have the error order term )( 4hO . Stencil shapes for these three Laplacians are shown in 

Figure 3.4 (a) and (b) respectively. The dark circles in each part of Figure 3.4 are the 

points for forming Laplacians schemes. The Laplacian schemes obtained from the 9–point 

star and17–point stencils and the corresponding Fourier transforms are given as follows: 
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                  (a)               (b) 

 
 

Figure 3.4: Stencil shapes of Laplacian on 2D grid. a) 9–point star stencil; b) 17–point stencil.  

 

Equations (3.53) and (3.55) are the corresponding Fourier transforms of equations (3.52), 

and (3.54) respectively. The 9–point star discrete Laplacian is reported as anisotropic and 

the 17–point are reported as isotropic [7]. In Figure 3.5, the isotropy is measured for these 

fourth-order discrete Laplacians along with the isotropy measure of second order 

PK(D2Q9), discrete Laplacian and the analytical expression (actual Laplacian 2k ). It 

is obvious from Figure 3.5 that the 9–point star stencil deviates more from radius r and 

therefore becomes completely anisotropic. The isotropy of the 17–point stencil (D2Q17) 

with green dashed line is not much better than the discrete Laplacian PK(D2Q9) with the 

blue solid line. The 17–point stencil cab be observed to have maximum divergence, 

therefore, it cannot be considered to be isotropic.  
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In the way the Laplacian schemes are used in cell dynamics simulation technique, all the 

two-dimensional Laplacian schemes are modified a little by calculating the average 

weights for the nearest neighbours (NN), next nearest neighbours (NNN), next–next 

nearest neighbours (NNNN) and next–next–next nearest neighbours (NNNNN), in 

accordance with the simulation requirements; these are given in the form of X . 

 

Figure 3.5: The value of a measure of the isotropy )(rd  for the actual Laplacian (red solid line 

for 
2k ) and other discrete Laplacians with r the radius. 

 

The two-dimensional Laplacian schemes are listed with alphabetical titles so that they 

may be easily referred to throughout the thesis. The equations with small modifications 

listed below are for equations (3.16, 3.17, 3.19–3.22, 3.46–3.48, 3.52 and 3.54) 

respectively:    
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3.2.2 Three–dimensional Laplacian schemes 

Three–dimensional Laplacian schemes are presented in this section. The isotropic and 

anisotropic three–dimensional Laplacian schemes are investigated to be employed in 

CDS to analyse the numerical results of one order parameter evolution in a Lamellae 

morphology system of block copolymers. 
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Figure 3.6: The stencil for three-dimensional Laplacian schemes, where NN, NNN, and NNNN 

are the nearest neighbours, next–nearest neighbours and next–next nearest neighbours to the point 

r. This image is taken with the permission of [2]. 

 

The Laplacian schemes are derived through finite difference considering the nearest 

neighbours (NN) and the next nearest neighbours (NNN) with error order )( 2hO . The 

stencil points can be seen in Figure 3.6. All three-dimensional Laplacian schemes are 

listed below: 
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The subscripts PK and SO stand for Patra Kartunnen and Shinozaki–Oono respectively. 

The 7–point Laplacian (D3Q7) scheme in equation (3.67) is based on its nearest 

neighbours (NN) only and is obtained from the simple central finite difference method. 

The D3Q7 is reported as anisotropic [6, 7]. Laplacian schemes for 15–point (D3Q15) and 

19–point (D3Q19) stencils given in equations (3.68) and (3.69) are obtained from general 

finite difference derivations and are described as isotropic [6, 7]. There are various 

schemes for the 27–point Laplacian operator, which are discussed in the literature. 

Sumesh et. al. [6] discussed various three–dimensional 27–point Laplacian schemes. The 

27–point Laplacian scheme (D3Q27) in equation (3.59) is based on its nearest neighbours 

(NN), next nearest neighbours (NNN) and the next–next nearest neighbours (NNNN) and 

is described as isotropic [6].  The Laplacian scheme PK(D3Q27) given in equation (3.71) 

has been systematically derived by imposing conditions of rotational invariance and 

isotropy [7]. The Laplacian scheme SO(D3Q27) given in equation (3.72) has been used 

in CDS as an averaging operator to maintain isotropy, but is not the optimal choice for 

achieving isotropy [49].  

The isotropy of the three–dimensional discrete Laplacians discussed above can also be 

analysed in Fourier space. The corresponding Fourier transforms of Laplacian schemes 

in equations (3.66–3.72) are given below respectively: 
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The resulting equation after expanding cos(x) around the origin in Fourier transforms 

(3.74 – 3.77) of discrete Laplacians D3Q15, D3Q19, D3Q27 and PK(D3Q27) is obtained 

the same for all, which is given below: 
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and the expansions of cos(x) around origin for D3Q7 and SO(D3Q27) are as follows: 
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All the stencils from (3.74) to (3.77) are observed to be isotropic up to fourth order in k.  

The 7–point stencil D3Q7 can be expected to be anisotropic, due to using the few stencil 

points in its construction. The Laplacian scheme SO(D3Q27) use all 27 points but in spite 

of that it is isotropic at leading order in error.   

Sumesh et al. [6] gave a good comparison of various three–dimensional discrete 

Laplacians for isotropy with the discrete operator used in the original study of Shinozaki 

and Oono [47]. They compare Laplacians via isocontour plots along the 0zk and zk  

planes, but such analogy only provides qualitative information.  For quantitative analysis, 

the isotropy of the three–dimensional discrete Laplacians may be measured by calculating 

d and then observing the deviation of the Laplacian curve along the radius r. Such 

measurement of isotropy can be performed after introducing spherical coordinates 

),,( r in k space by plotting: 

                                     ).,,(min),,(max)(
,,




rrrd                           (3.82) 

The results for discrete Laplacians D3Q15, D3Q19, D3Q27 and PK(D3Q27) are shown 

in Figure 3.7. All four of these discrete Laplacians belong to the same class, as can be 

observed from equation (3.79). However, as the r increases, the Laplacian becomes 

anisotropic and therefore the proper isotropy can be found for small r. It can be concluded 

that the D3Q19 (19–point stencil in equation (3.69)) is most isotropic. 
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Figure 3.7: The value of a measure of the isotropy )(rd  for the actual Laplacian (red solid line 

for 
2k ) and other discrete Laplacians with r the radius. 

 

Another three–dimensional 27–point isotropic stencil operator is given below, obtained 

by the method of B.A.C. van Vlimmeren [102], and the same method has also been 

explained by Fraaije and co–workers [61, 103]:  
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The Laplacian scheme in equation (3.83) is obtained from the above method and is 

presented in real analogue. The weights are generated in the Fourier domain (3.84) so the 

equation has been modified in real analogue:  
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The isotropy of the three–dimensional discrete Laplacians BV(D3Q27), D3Q7 and 

SO(D3Q27) are shown in Figure 3.8. It is obvious from equations (3.80), (3.81) and (3.85) 

that these three Laplacians have isotropic error up to second order in k. The discrete 

Laplacian D3Q7 is anisotropic because it is showing maximum deviation along the radius 

r. Overall, the less common BV(D3Q27) and the usual Shinozaki and Oono’s choice 

SO(D3Q27) Laplacians are slightly anisotropic, whereas the BV(D3Q27) performs better 

than SO(D3Q27) for large r due to the specific conditions for which it was derived.  

     

Figure 3.8: The value of a measure of the isotropy )(rd  for the actual Laplacian (red solid line 

for 
2k ) and other discrete Laplacians with r the radius. 
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Generally, the discrete Laplacian D3Q19 seems the best choice among all the considered 

discrete Laplacians. It is fourth order in k and is using only 19 points on the grid. It is 

isotropic in the low k range and slightly anisotropic for larger k . 

In the way the Laplacian schemes are used for the simulations in CDS, like two–

dimensional Laplacian schemes, all the three–dimensional Laplacian schemes are a little 

modified by calculating the average weights for the nearest neighbours (NN), next nearest 

neighbours (NNN), next–next nearest neighbours (NNNN) and next–next–next nearest 

neighbours (NNNNN), in accordance with the simulation requirements; these are given 

in the form of X . The three–dimensional Laplacian schemes are listed with 

alphabetical titles so that these may be easily referred to throughout the thesis. All 

Laplacian schemes are listed below for 7–point, 15–point, 19–point and 27–point stencils:  


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         
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        (3.92) 

3.3 Stability analysis 

For stability considerations, the linearized CDS equation (3.93) [101]  can be derived with 

tanh map from equation (3.10) by ignoring the term ),( tiB . 

                           
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


DA

t
                          (3.93)     

The Fourier transform of order parameter linearized around the homogeneous fixed 

point gives equation (3.94), see Ref. ([104], equation (3.7)).  
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It is essential to maintain 1, kkH  for the stability of the successive iterations of Fourier 

modes. Thus, two different instability conditions of bifurcation can be dealt with; one is 

tangential bifurcation, where 1, kkH   may occur, and the second is sub-harmonic 

bifurcation where 1, kkH  can occur. The condition of tangential bifurcation gives 

equation (3.96), which results in smaller growth of k modes [104].  

           1)(  k                             (3.96) 
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The condition of sub–harmonic bifurcation creates constraints on time step t , which is 

dependent on mesh size [101, 104]. The condition of sub–harmonic bifurcation gives the 

following equation:  

         2)()()1( 2  ktDktA                                      (3.97) 

where t  is the time step. The sub–harmonic bifurcation can be avoided for all k modes 

for the Laplacian operators by forming the following inequalities. Here a few Laplacian 

schemes are selected to give just an idea of how the formation of inequalities can be 

formed for the stability from Fourier transforms of Laplacian schemes. After substitution 

of the Laplacian operator )(k  in equation (3.97) from Fourier transform equation (3.23) 

for 5–point stencil, the following equation (3.98) is obtained: 

2
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))(1(432
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xAD

x
t




                            (3.98) 

where A=1.5, D =0.7, and 0.1x   are the parameters which are used for the numerical 

simulation in CDS code. After substitutions of the values for A, D, and x  in the above 

inequalities, the time step values are obtained for all the Laplacian schemes and are given 

in Table  3.1.  
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Table 3.1: Time step ( t ) values for all two– and three–dimensional Laplacian schemes 

obtained from stability analysis criteria  

S.No. Time step Corresponding 

Laplacians 

S.No. Time step Corresponding 

Laplacians 

1. 049.0t  5–point NN A(D2Q5) 11. 038.0t  17–pont D2Q17  

2. 046.0t  5–point NNN D2Q5 12. 021.0t  7–point D3Q7 

3. 072.0t  9–point PK(D2Q9) 13. 035.0t  15–point D3Q15 

4. 09.0t  9–point SOP(D2Q9) 14. 111.1t  19–point D3Q19 

5. 10.0t  9–point D2Q9 15. 097.0t  27-point D3Q27 

6. 11.0t  9–point BK(D2Q9) 16. 085.0t  27-point PK(D3Q27) 

7. 086.0t  9–point BV(D2Q9)case1 
17. 2173.0t  27-point SO(D3Q27) 

8. 0.074 t  9–point BV(D2Q9)case2 18. 1698.0t  27-point BV(D3Q27) 

9. 0.078 t  9–point BV(D2Q9)case3    

10. 030.0t  9–point Star (D2Q9)    

 

3.4 Conclusions  

In this chapter, the CDS model has been explained for one order parameter systems for 

the evolution of lamellar forming of A–B diblock copolymer systems. The overall study 

in this chapter was conducted for the analysis of isotropic Laplacian operators to be used 

in CDS. The stencil (computational molecule) plays a very important role in the quality 

of the evolution of the order parameter, and keeping this point in consideration, several 

different stencil operators for CDS have been investigated.  

Fourier analysis is also undertaken for the Laplacian operators. Isotropic properties of 

two– and three–dimensional Laplacian operators were analysed in detail. The two–

dimensional 9–point Laplacians have been discussed with order error )( 2hO .  The two–
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dimensional 9–point star and 17–point Laplacian operators with order error )( 4hO  have 

been discussed and formatted for employing in CDS.  In the same way, three–dimensional 

Laplacian schemes have been investigated and isotropic schemes have been notified. 

Following the method of B.A.C. van Vlimmeren for a three–dimensional isotropic stencil 

operator, the two–dimensional 9–point isotropic stencil operators (BV(D2Q9) in three 

cases) were derived and discussed along with three different vector choices. These are 

novel isotropic stencil operators which are presented in this study and are more efficient.  

The 9–point family Laplacians, the stencils PK(D2Q9), BV(D2Q9)case2 and 

BV(D2Q9)case3 in 2D were found to be isotropic, and among these stencils the 

BV(D2Q9)cas2 is optimally good in isotropy. In 3D, the 19–point stencil has been found 

to be more isotropic and it is more stable because it allows a larger time step value for .t  

The other stencils OP(D2Q9), BV(D2Q9)case1, SO(D3Q27)  and BV(D3Q27),  have been 

found to be slightly anisotropic on the whole range k, but enabling larger time steps can 

be valid alternatives.  

From the analysis of averaging operator (Laplacian) in CDS, it is clear that the original 

averaging operator does not represent the discrete Laplacian and that the CDS method 

should not be analysed via the TDGL equations. However, the original averaging operator 

can be replaced by a discrete representation of Laplacian via considering the stencil size 

and isotropic behaviour, which ensure the stability of CDS results. The investigation of 

several isotropic discrete Laplacian operators provides an alternative to use more 

isotropic Laplacian operators, which can helpful to resolve the grid related artefacts 

(anisotropies) in CDS results.  
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Chapter Four 

4 Simulation Results (One–Order Parameter) 

Numerous techniques have been used for modelling diblock copolymers over the last few 

decades; hence, a method is required that takes into account both accuracy and speed, 

taking into account a closer relationship between the real world and the laboratory by 

modelling the behaviour of diblock copolymers on a large scale and preventing the size 

effect problem. A coarse–grained discretization CDS scheme was identified as a 

promising candidate to compute and define the mesoscopic self–assembled structure of 

diblock copolymers [4]. The objective of the study in this chapter is to employ various 

2D and 3D Laplacian operators in CDS for A–B dibblock copolymer systems in order to 

investigate isotropic simulation results. The Laplacian schemes employed for the 

simulations here were discussed in Chapter 3. To achieve this objective, initially a 

description has been given on the application of CDS to simulate microphase separation, 

front propagation and evolution of order parameter in A–B dibblock copolymer systems.  

The CDS technique is implemented in Fortran 90 programming language. The system 

specifications were used Linux 3.7 desktop Opensuse 12.3 with Intel(R) Xeon(R) CPU 

with IFORT compiler.  

The discretized CDS version of Time–Dependent Ginzburg–Landau (TDGL) equation in 

the forward Euler method were simulated in Fortran program to carry out 2D and 3D 

simulations.  The steps for the program were set up based on discrete equations (3.10), 

(3.11) and (3.12), which are given as follows: 

1. Assigning random initial values to a variable representing order parameter . ;  

2. Setting the periodic boundary conditions, i.e. x, y and z directions;  

3. Calculation of first discrete Laplacian for order parameter ,  i.e.   ; 
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4. The multiplication of the result of step 3 by diffusion constant D, i.e.  ; D  

5. Calculation of the map function (3.12) based on the order parameter with initial 

random values and other constants with specific values; 

6. Combining steps 4 and 5; see equation (3.11); 

7. Calculation of second (outer) discrete Laplacian for the result of step 6, as follows:   

),(),( itit   ; 

8. Calculation of order parameter based on new obtained values with respect to time 

evolution, see equation (3.10).   

4.1 Two–dimensional simulations 

A morphology is mainly concerned with the shape evolution of microphase separation of 

A–B diblock copolymers in different time steps. Several different morphologies were 

found: lamellae, cylinder, bicontinuous, and spheres, as well as the coexistence of spheres 

and cylinders [2]. The constants in equations (3.12) are treated as parameters for deciding 

a specific morphology. The parameter values for different morphologies are given in 

Table 4.1 [2].  

Table 4.1: Simulation parameters used for the different morphologies 

  f u v B D A Morphology 

0.36 0.48 0.38 2.3 0.02 0.7 1.5 Lamellae 

0.33 0.44 0.38 2.3 0.02 0.5 1.5 Bicontinuous 

0.30 0.40 0.38 2.3 0.02 0.4 1.5 Cylinders 

0.20 0.40 0.38 2.3 0.01 0.5 1.5 Spheres 

 

The 2D simulations are presented here for lamellae morphology (lamellar forming) of the 

A–B diblock copolymer systems. For all the 2D simulations given in this section, the grid 
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size was set at 128128  with grid spacing 1 yxh  and these simulations were 

started from an initial random disordered state, i.e. 30. . It should be noted that 

snapshots of 2D simulations are presented without any specific time scale and these 

snapshots show numerical values of .  The source–code for the implementation of CDS 

presented in Figure 4.1 is given in Appendix A.  

 

             

Figure 4.1: Results of CDS based on OP(D2Q9) 9–point stencil, equation (3.59). Real space 

simulation snapshots in (a), (b) and (c) are for 100th, 10000th and 100000th time steps respectively 

obtained by using parameters given in Table 4.2. Real space simulation snapshot in (d) is for 

100000th time step obtained by using parameters given in Table 4.3. 
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Table 4.2: System parameters used in cell dynamical method for Lamellae morphology 

CDS Parameters   f u v B D A 
Initial random 

values 

Lamellae Morphology 
0.36 0.48 0.38 2.3 0.02 0.7 1.5 

30.i   

 

 

Table 4.3: System parameters used in cell dynamical method for binary blend 

CDS Parameters   f u v B D A 
Initial random 

values 

Lamellae 

Morphology 

0.36 0.48 0.38 2.3 0.0 0.7 1.5 
01030 ..i   

 

In the CDS method of A–B diblock copolymers, the compositional order parameter in 

terms of local and global volume fraction is defined by the following relation [4]: 

 fBA 21                   (4.1) 

where ,A  B  are the local volume fractions of the A and B monomers respectively.  The 

volume fraction of A monomers is defined by the relation  ,NN/Nf BAAA  and 

similarly the volume fraction of B monomers is defined by the relation 

 ,NN/Nf BABB  where AN represents the number of monomers of block A, and BN

represents the number of monomers of block B. The constant f in both Tables 4.2 and 4.3 

represents this ratio in the diblock copolymer system. For example, the constant f = 0.5 

implies that the ratio of A and B monomers is equal in a mixture.   

The simulation results presented in Figure 4.1 were obtained by using the 9–point 

isotropic operator of Oono and Puri’s choice (equation (3.59)). In Figure 4.1 (a), (b) and 

(c), the images are shown for different stages of evolution of lamellae in a lamellar 

forming system of A–B diblock copolymers at different time step values. The initial stage 
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of lamellae can be observed in Figure 4.1 (a) and the microphase separation starts to take 

place with respect to time and well-aligned lamellae can be seen in Figure 4.2 (b).  In 

snapshots (b) and (c) in Figure 4.1, the lamellae coloured red along with an interfacial 

yellow colour can be seen microphase–separated in the diblock copolymer system 

representing either A or B block.  In Figure 4.2 (b), the image is shown for a 10000th time 

step where the lamellar forming system becomes stable, which means the microphase 

separation has been completed and there is no further change in the lamellae evolution. 

Due to this, it is clear from Figure 4.1 (c) for the 100000th time step that lamellae are in a 

similar pattern as in Figure 4.1 (b) for a 10000th time step. Simulation results of 

microphase separation in a lamella forming system shown in Figure 4.1 (a), (b) and (c) 

were obtained by employing the parameter values given in Table 4.2.  

The snapshot in Figure 4.1 (d) shows the simulation of a binary blend at a 100000th time 

step which was obtained by using a CDS parameter system (Table 4.3) for lamella 

forming system except (B=0). In this case, instead of microphase separation, a 

macrophase separation occurred in the pore system. In the pore system shown in Figure 

4.1 (d), the domain is divided into two subdomains where the clearly visible yellow 

interfacial regions macrophase–separate A–rich subdomains in a red colour, and B-rich 

subdomains in a blue colour.  It should be noted that the simulation result of a binary 

blend shown in Figure 4.1 (d) was obtained by using Laplacian scheme OP(D2Q9) and 

the red circular regions occur due to the isotropy of this scheme. The well aligned lamellae 

formations in Figure 4.1 (b) and (c) show that this Laplacian scheme is isotropic. 

Therefore, in this work, the Laplacian scheme OP(D2Q9) is termed as the default CDS 

averaging operator and the simulation results obtained using this scheme are termed as 

the default CDS results. All the 2D simulation results based on other Laplacian schemes 

will be compared with these default results.   
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Table 4.4 gives the complete information of Laplacian operators discussed in Chapter 3; 

these stencils are shown with the titles (alphabetic letters A–L) and along their weights 

c1, c2, c3 and c4 for their nearest neighbours (NN), and next–nearest neighbours (NNN), 

NNNN and NNNNN respectively.  

Table 4.4: 2D stencils along with their weights for utilisation in computer code and isotropic or 

anisotropic status 

Schemes 

Weights 
Isotropic 

/Anisotropic 
Equations c1 c2 c3 c4 

A(D2Q5) 1/4 0 0 0 Anisotropic (3.56) 

D2Q5 0 1/4 0 0 Anisotropic (3.57) 

PK(D2Q9) 1/5 1/20 0 0 Isotropic (3.58) 

OP(D2Q9) 1/6 1/12 0 0 Isotropic (3.59) 

D2Q9 1/7 1/28 0 0 Anisotropic (3.60) 

BK(D2Q9) 1/8 1/8 0 0 Anisotropic (3.61) 

BV(D2Q9)case1 0173235 0.076765 0 0 Isotropic (3.62) 

BV(D2Q9)case2 0.194709 0.055291 0 0 Isotropic (3.63) 

BV(D2Q9)case3 0.186939 0.063061 0 0 Isotropic (3.64) 

D2Q9star 4/15 -1/60 0 0 Anisotropic (3.65) 

D2Q17 32/135 4/135 -2/135 -1/540 Isotropic (3.66) 

 

 

The format for the averaging operator used in the computer program is shown below:  

          
NNNNNNNNNNNNNN

ccccDmQn 4321                 (4.2) 

where m is the number of dimensions and n is the number of points in a stencil. 
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4.1.1 2D Simulation results based on anisotropic Laplacian schemes  

In this section, the simulation results are presented for anisotropic schemes which are 

compared with the isotropic default CDS results shown in Figure 4.1.  

            

Figure 4.2: CDS results based on Laplacian scheme A(D2Q5); a) real space simulation snapshot 

at100000th time step by using parameters given in Table 4.2; b) real space simulation snapshot of 

binary blend at 100000th time step by using parameters given in Table 4.3. 

 

The simulation snapshots shown in Figure 4.2 were obtained by using Laplacian scheme 

A(D2Q5). In Figure 4.2 (a), the parameters were employed from Table 4.2 and it can be 

observed that the lamellae seem to be short, not well aligned and do not form lamellar 

chain lengths compared to Figure 4.1 (c). The simulation snapshots in Figure 4.2 (b) were 

obtained by employing the parameters given in Table 4.3. In the pore system of binary 

blend shown in Figure 4.2 (c), the subdomains coloured red can be seen by the rectangular 

shapes. Compared to the red circular shapes formed for the subdomains in CDS default 

results shown in Figure 4.1 (d), the rectangular shapes of subdomains in Figure 4.2 (b) 

show that the scheme did not perform well for the simulation based on the parameters of 

binary blend in Table 4.3.  The Laplacian scheme OP(D2Q9) produced isotropic results 

for both sets of parameter values in Table 4.2 and Table 4.3; however, scheme A(D2Q5), 

due to its anisotropy, could not accommodate two different sets of parameter values.  
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Figure 4.3: CDS results based on Laplacian scheme D2Q5 given in equation (3.57); a) real space 

simulation snapshot at100000th time step obtained by using parameters given in Table 4.2; b) real 

space simulation snapshot at 100000th time step obtained by using parameters given in Table 4.3. 

 

 

                         

Figure 4.4: CDS results based on Laplacian scheme D2Q9 given in equation (3.60). The real space 

simulation snapshot at 100th time step obtained by using parameters given in Table 4.2. 

 

The simulation results in Figure 4.3 were obtained using Laplacian D2Q5 and the 

simulation results in Figure 4.3 (a) and (b) were based on two different sets of parameter 

values given in Table 4.2 and Table 4.3 respectively.  It can be seen in Figure 4.3 (a) that 

microphase separation in A–B diblock copolymer cannot be analysed or observed 

properly and the lamellae formations are not visible; also the macrophase separation in 
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Figure 4.3 (b) is not well defined compared to the default CDS simulation results given 

in Figure 4.1 (d). This is because of the anisotropy of the Laplacian scheme D2Q5.  

The simulation snapshots given in Figure 4.4 were obtained using the Laplacian scheme 

D2Q9 given in equation (3.60). The parameters for this simulation were those given in 

Table 4.2. The simulation based on Laplacian scheme D2Q9 did not produce any 

meaningful results. Deformations can be observed and no state of microphase separation 

can be identified in Figure 4.4. The simulation based on this scheme did not run for longer 

time steps, and the numerical values were diverged immediately after the 100th time step. 

Both simulation results in Figure 4.3 and Figure 4.4 can be compared with the default 

results given in Figure 4.1. It must be noted that the source–code for simulations using 

schemes A(D2Q5), D2Q5 and D2Q9 were the same as those given in Appendix A for the 

default CDS using scheme OP(D2Q9); only the values of the weights (c1, c2) were 

changed.  The simulation results given in Figure 4.5 were obtained using Laplacian 

scheme BK(D2Q9) and both snapshots show that this scheme did not produce well-

defined lamellae formations.  

     

Figure 4.5: CDS results based on Laplacian scheme BK(D2Q9) given in equation (3.61); a) real 

space simulation snapshot at100000th time step obtained by using parameters given in Table 4.2; 

b) real space simulation snapshot at 100000th time step obtained by using parameters given in 

Table 4.3. 
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Figure 4.6: CDS results based on Laplacian scheme D2Q9star; a) real space simulation snapshot 

at100000th time step obtained by using parameters given in Table 4.2; b) real space simulation 

snapshot at 100000th time step obtained by using parameters given in Table 4.3. 

 

Two different simulations were performed using Laplacian scheme BK(D2Q9) by 

employing the sets of parameters given in Table 4.2 and Table 4.3. In Figure 4.5 (a), the 

lamellae can be seen to be parallel with the horizontal axis and their formations are not in 

agreement with the default CDS results given in Figure 4.1 (c). Due to the anisotropy of 

scheme BK(D2Q9), the simulation result does not have any circular subdomains in Figure 

4.5 (b) compared to those shown in Figure 4.1 (d) for default CDS results. The source 

code used for simulation based on scheme BK(D2Q9) is given in Appendix A. The 

Laplacian weights were only changed in the code of scheme OP(D2Q9).   

In Figure 4.6, the simulation results are presented which were obtained by using 9–point 

‘star’ Laplacian scheme D2Q9star equation (3.65). As with other simulations, the 

simulation based on scheme D2Q9star was also carried out for two different sets of 

parameter values given in Tables 4.2 and 4.3. It can be observed in Figure 4.6 (a), the 

lamellae are formed straight in one direction which is parallel to the horizontal axis. It 

can be observed from Figure 4.6 (b) that the simulation of binary blend based on 

Laplacian scheme D2Q9star is far different from the default CDS results; this is due to the 

anisotropy of the stencil 9–point ‘star’. The source code used for scheme D2Q9star is given 
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in Appendix B. The source code was modified, especially the code segment for writing 

Laplacian, because of the different scaling of scheme D2Q9star compared to other 9–point 

stencil formulas.  

      

Figure 4.7: CDS results based on Laplacian scheme D2Q17 given in equation (3.66); a) real space 

simulation snapshot at100000th time step obtained by using parameters given in Table 4.2; b) real 

space simulation snapshot at 100000th time step obtained by using parameters given in Table 4.3. 

 

The simulation results shown in Figure 4.7 were obtained using Laplacian scheme D2Q17 

(17-point stencil). In Figure 4.7 (a), it can be observed that the lamellae formations are 

well formed, but in Figure 4.7 (b), the simulation snapshot of the binary blend does not 

show a defined macrophase separation compared to the default CDS results in Figure 4.1 

(d). The periodic boundary conditions do not seem to be preserved and therefore the 

orange colour can be seen on the boundaries. Due to the anisotropy of the Laplacian 

scheme D2Q17, it cannot be recommended for the simulations. The isotropy measure of 

this stencil can be seen in Figure 3.5 in Chapter three. The source code used for scheme 

D2Q17 is given in Appendix C. The source code given in Appendix A was modified for 

Laplacian D2Q17 because of the different scaling of scheme D2Q17 compared to other 

9–point stencil formulas.  
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4.1.2 2D Simulation results based on isotropic Laplacian schemes  

In this section the CDS results are presented based on isotropic Laplacian schemes. The 

simulations were run by employing two different sets of parameter values, as given in 

Tables 4.2 and 4.3, for each Laplacian scheme. The purpose of using two sets of parameter 

values is to investigate the isotropic behaviour of the Laplacian for the evolution of order 

parameter to investigate the phase separations in two different conditions. It must be noted 

that anisotropic Laplacians did not produce well–defined simulation results.  

 

     

Figure 4.8: CDS results based on Laplacian scheme PK(D2Q9) given in equation (3.58); a) real 

space simulation snapshot at100000th time step obtained by using parameters given in Table 4.2; 

b) real space simulation snapshot at 100000th time step obtained by using parameters given in 

Table 4.3. 

 

The CDS results given in Figures 4.8, 4.9, 4.10 and 4.11 were obtained using Laplacian 

schemes OP(DQ9), BV(D2Q9)case1, BV(D2Q9)case2, and BV(D2Q9)case3, respectively. 

The lamellae formations in these Figures seem to be well aligned and well defined and 

also no deformed or unidirectional chains of lamellae can be seen. It can be observed 

from the (a) snapshots of these Figures that the Laplacian schemes OP(D2Q9), 

BV(D2Q9)case1, BV(D2Q9)case2 and BV(D2Q9)case3 yield isotropic results for microphase 

separation in A–B diblock copolymers. In the (b) snapshots of these Figures, the circular 
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shapes of red subdomains in a binary blend can also be observed. The simulation results 

based on Laplacian schemes OP(D2Q9), BV(D2Q9)case1, BV(D2Q9)case2 and 

BV(D2Q9)case3 can be compared with the default CDS results and it can be concluded that 

these Laplacians performed well enough for the simulations. The isotropy measure of the 

stencil of Laplacian scheme BV(D2Q9)case1 was determined to be closely similar to that 

of Laplacian scheme OP(D2Q9);  therefore the CDS results presented in Figure 4.9 are 

almost similar to those given in Figure 4.1 (c) and (d). It must be noted that in Table 4.4, 

the Laplacian schemes listed alphabetically in the right-hand column correspond to the 

stencils shown in the left-hand columns. The stencils of Laplacian schemes OP(D2Q9), 

BV(D2Q9)case2, and BV(D2Q9)case3 were determined to be isotropic for low k range in a 

similar way and among these, the stencil of Laplacian scheme BV(D2Q9)case2 was 

determined with less divergence from radius r compared to OP(D2Q9) and 

BV(D2Q9)case3. The source code for simulations using scheme OP(D2Q9), 

BV(D2Q9)case1, BV(D2Q9)case2 and BV(D2Q9)case3 were used the same as that given in 

Appendix A for the default CDS using scheme OP(D2Q9); only the values of weights 

(c1, c2) were changed. 

       

Figure 4.9: CDS results based on Laplacian scheme BV(D2Q9)case1 given in equation (3.62); a) 

real space simulation snapshot at 100000th time step obtained by using parameters given in Table 

4.2; b) real space simulation snapshot at 100000th time step obtained by using parameters given 

in Table 4.3. 
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Figure 4.10: CDS results based on Laplacian scheme BV(D2Q9)case2 given in equation (3.63); a) 

real space simulation snapshot at 100000th time step obtained by using parameters given in Table 

4.2; b) real space simulation snapshot at 100000th time step obtained by using parameters given 

in Table 4.3. 

 

     

Figure 4.11: CDS results based on Laplacian scheme BV(D2Q9)case3 given in equation (3.64); a) 

real space simulation snapshot at 100000th time step obtained by using parameters given in Table 

4.2; b) real space simulation snapshot at 100000th time step obtained by using parameters given 

in Table 4.3. 

 

4.2 Three–dimensional simulations 

In this section 3D Laplacian schemes were employed in CDS in order to investigate their 

isotropic or anisotropic behaviour in simulations. Here, all the 3D simulations were 

presented for spherical phase morphology of the A–B diblock copolymer systems. This 

morphology was chosen to closely observe the isotropic simulations clearly in 3D. The 

spherical morphology was investigated using a dynamic self–consistent field (SCF) 
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simulation and it was found that a spherical phase morphology transforms into a 

hexagonal cylindrical phase [105]. This morphology, under external fields, i.e. shear flow 

and electric fields, was investigated by Pinna [2] using CDS and due to the computational 

efficiency of CDS it was possible for them to perform a larger parameter search, and 

simulate larger boxes for longer time steps than in previous work undertaken with SCF 

or Molecular Dynamics [105, 106].  

Table 4.5 is presented below, before the discussion of 3D simulation based on Laplacian 

schemes, containing information about the weights used for Laplacian schemes and with 

isotropic or anisotropic status.  

Table 4.5: 3D stencils along with their weights for utilisation in computer code and isotropic or 

anisotropic status. 

Schemes 

Weights 
Isotropic 

/Anisotropic 
Equations c1 c2 c3 

D3Q7 1/6 0 0 Anisotropic (3.86) 

D3Q15 1/7 0 1/56 Isotropic (3.87) 

D3Q19 1/12 1/24 0 Isotropic (3.88) 

D3Q27 16/152 4/152 1/152 Isotropic (3.89) 

PK(D3Q27) 14/128 3/128 1/128 Isotropic (3.90) 

SO(D3Q27) 6/80 3/80 1/80 Isotropic (3.91) 

BV(D3Q27) 0.0807524  0.0322491  0.0160576  Isotropic (3.92) 

 

In this section, all 3D simulations were run on a grid of size 507575   for up to 100000 

time steps with grid spacing 1 yxh . These simulations were started from an 

initial random disordered state (  was a random number within the range 3.0 ). It 

should be noted that snapshots of 3D simulations are presented without any specific time 
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scale. The source code for the implementation of 3D CDS results presented in Figure 4.12 

is given in Appendix D.  

In Figure 4.12, the images (a), (b), (c) and (d) are shown for different stages of evolution 

of 3D spheres (spherical particles) in spherical morphology of A-B diblock copolymers at 

different time step values. The initial stage of evolution can be observed in Figure 4.12 

(a) where the microphase separation takes place. The parameter values for map function 

have been employed from Table 4.1 for spherical morphology. The simulations in Figure 

4.12 were obtained by employing the 3D 27–point Laplacian operator of Shinozaki and 

Oono’s choice (Laplacian scheme SO(D3Q27)).  In this work, the 3D averaging operator 

scheme SO(D3Q27) is termed as the default CDS operator and the simulation results 

given in Figure 4.12 based on it are termed as the default CDS results.  

It can be observed in Figure 4.12 (a) that the spherical particles start to microphase–

separate in a light green colour for one of the components, either A or B block, in diblock 

copolymer. Figure 4.12 (c) shows the microphase separation for the spherical morphology 

in its complete state.  
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Figure 4.12: CDS results based on Laplacian scheme SO(D3Q27); a) real space simulation 

snapshot at 100th time step; b) real space simulation snapshot at 10000th time step; c) real space 

simulation snapshot at 100000th time step. 

 

The simulation results given in Figures 4.13 (a) and (b) were obtained using 3D Laplacian 

schemes D3Q7 and D3Q15 respectively. The snapshot in Figure 4.13 (a) at the 100000th 

time step shows that the 3D 7–point Laplacian scheme D3Q7 did not perform well for the 

simulation of spherical morphology, although the microphase separation can be observed, 

but the required shapes of the spheres have not been formed perfectly. In Figure 4.13 (b), 

the defects can be observed in terms of mixed particles and rectangular shapes. It should 

be noted that a perfect system is one that is stable and does not have any defects as in the 

CDS default system which is given in Figure 4.12 (c). The simulation result in Figure 

4.13 (a) can be compared with the default CDS results given in Figure 4.12. The 3D 

snapshot (b) of Figure 4.13 at the 100000th time step shows that the 15–point Laplacian 

scheme D3Q15 also did not perform well for the simulation. The shapes of rectangles can 
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be observed rather than spheres and also the mixed particles can be seen which are 

considered to be defects in simulations.  

               

Figure 4.13: 3D CDS results based on Laplacian schemes D3Q7 and D3Q15. a) real space 

simulation snapshot at 100000th time step using Laplacian scheme D3Q7; b) real space simulation 

snapshot at 100000th time step using Laplacian scheme D3Q15. 

 

The Laplacian schemes D3Q7 and D3Q15 cannot be considered to be isotropic because 

the simulation results obtained using these schemes were found to be poor compared to 

the default CDS 3D results given in Figure 4.12. The source code for the simulations 

using schemes D3Q7 and D3Q15 were the same as those given in Appendix D for 

Laplacian scheme SO(D3Q27), just the values for weights were changed.  

sMixed 

Particles 

sMixed 

Particles 

sMixed 

Particles 
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Figure 4.14: 3D results of CDS in spherical morphology for A-B diblock copolymer systems. a) 

Real space simulation snapshot at 100000th time step obtained using Laplacian scheme D3Q19. 

b)  Real space simulation snapshot at 100000th time step obtained using Laplacian scheme D3Q27. 

c) Real space simulation snapshot at 100000th time step obtained using Laplacian scheme 

PK(D3Q27). d) Real space simulation snapshot at 100000th time step obtained using Laplacian 

scheme BV(D3Q27). 

 

The simulation results given in Figure 4.14 (a), (b), (c) and (d) were obtained using 3D 

Laplacian schemes D3Q19, D3Q27, PK(D3Q27) and BV(D3Q27) respectively. The 

snapshot in Figure 4.14 (a) at the 100000th time step shows that the 3D 19–point Laplacian 

scheme D3Q19 performed well for the simulation of spherical morphology; the 

microphase separation can be observed where the shapes of spheres for blocks are very 

obvious and can be seen without defects. The snapshot in Figure 4.14 (b) shows perfect 

sphere shapes without obvious defects; the stencil Laplacian scheme D3Q27 used for this 

simulation was found to be isotropic.  The snapshot in Figure 4.14 (c) shows that the 

Laplacian scheme performed well overall, but small defects can be observed. It is very 
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clear from Figure 4.14 (d) that the Laplacian scheme BV(D3Q27) performed very well; 

perfect shapes of spheres can be observed and no defects can be found. The simulation 

results in Figure 4.14 can be compared with the 3D default CDS results given in Figure 

4.12 (c). It must be noted that the 3D Laplacian schemes which were mentioned as 

isotropic schemes in Chapter 3 have yielded isotropic results. The source code for the 

schemes D3Q19, D3Q27, PK(D3Q27) and  BV(D3Q27) was used the same as that given 

in Appendix D for Laplacian scheme SO(D3Q27), just the values of weights were 

changed.  

 

4.3 Conclusions 

Simulation results have been presented for the 2D and 3D Laplacian schemes.  The 

snapshots show that Laplacian schemes D2Q5, D2Q9 and BK(D2Q9) are unstable for 

simulations.  The anisotropic two–dimensional 5–point Laplacian A(D2Q5) and 3D 7–

point Laplacian D3Q7 did not perform well as compared to isotropic Laplacians. The 

simulation snapshots obtained by using 2D 9–point Laplacian PK(D2Q9) depicted perfect 

lamellae formations. The simulations of binary blend using PK(D2Q9) and OP(D2Q9) 

schemes were found to be similar. The 9–point isotropic stencil operators derived from 

the B.A.C. van Vlimmeren’s method performed similarly to Laplacian scheme 

OP(D2Q9) for two different parameter systems.  

The simulations results obtained by using 2D 9–point star Laplacain scheme (D2Q9)star 

and 17–point D2Q17 were found badly anistropic for the macrophase sepration. The 

simulations based on these stencils took longer time for executions compared to isotropic 

9–point family Laplcains.  
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In the 3D simulation results based on 15–point Laplacian scheme D3Q15, the rectangular 

shapes and mixed particles were found to be as defects for spherical morphology and due 

to the behaviour of scheme D3Q15, the results were considered anisotropic. The 3D 19–

point Laplacian scheme D3Q19 is considered more compact due to the fewer stencil 

points and it was found with optimal isotropy. The Laplacian scheme D3Q19 performed 

well for the simulation of spherical morphology; the shapes of the spheres were found to 

be perfect. In three-dimensional simulations, 27–point based Laplacian schemes 

produced good results for the evolution of order parameter for spherical morphology. The 

Laplacian scheme BV(D3Q27) obtained by the method used by B.A.C. van Vlimmeren 

produced the isotropic results compared to the original CDS Laplacian scheme 

SO(D3Q27).  
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Chapter Five 

5 Implementation of the Crank–Nicolson method for CDS 

equations  

In this chapter, the main objective is to achieve the implementation of the CN method for 

the CDS equations. Originally, the CDS technique was employed using the forward Euler 

method in the literature [2, 4, 41, 49]. However, the forward Euler method is not stable, 

whereas the CN method is more stable and second–order accurate in time and space. 

Three different Finite Difference (FD) methods are analysed and implemented for the 

CDS equations. All the FD methods, including explicit and implicit schemes, are 

incorporated for modelling the lamellar forming of A–B diblock copolymer systems. The 

computer codes of all three FD methods for CDS were developed by following the same 

algorithm of eight steps, which was given at the beginning of Chapter 4. The matrix based 

approach has been adopted for the forward Euler method in the computer program, which 

is different from the conventional approach. Initial programs of FD methods for CDS are 

discussed  without incorporating the boundary conditions and are based on the basic 5–

point formula of Laplacian operator. The techniques are then extended to include 

boundary conditions and a better isotropic Laplacian scheme based on a 9–point stencil. 

The results obtained from the backward Euler and CN methods are compared with those 

of the forward Euler method. 

5.1 Implementation of the Crank–Nicolson (CN) Scheme in cell dynamics 

Before going to the implementation of CN for CDS, two other methods are implemented 

for CDS: the matrix-based forward Euler method and the backward Euler method. The 

description of these methods including CN method is given in section 2.6 of Chapter two 

for the model heat diffusion equation.  
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Shown here are the steps needed to solve the time–dependent Ginzburg–Landau (TDGL) 

equation, based on a finite difference technique. First, equation (3.10) can be re–written 

in a simple form of PDE as [2]: 

}))(({ 22 


BDg
t





.                            (5.1) 

with   the spatial order parameter, t the time, 2  the Laplacian of function of free 

energy, and D as a diffusive parameter. Equation (5.1) is non–linear and fourth order, 

including the bi–Laplacian or biharmonic operator 4 .   

5.1.1 Matrix based forward Euler and backward Euler methods for CDS 

At the first step, equation (5.1) is approximated in the matrix-based explicit forward Euler 

method without considering the periodic boundary conditions; later the periodic boundary 

conditions are considered. The derivation of equation (5.1) is carried out in the form of 

Mbx  , where M is a symmetric and positive definite matrix. This experiment is carried 

out for the two–dimensional equation (5.1). Here equation (5.1) is rewritten as:  




BDg
t





)()( 222 ,                            (5.2) 

where )(g  is the so-called map function as given by [2]:  

    .u)f(v)f(A)(g   22 21211                              (5.3) 

Writing equation (5.2) in the form of 1n  and n space, the resulting equation is given 

as: 
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Equation (5.4) is a non–homogenous partial differential equation where the homogenous 

terms are given in part 1 and the non–homogenous term is given in part 2.  The 

homogenous part is brought into matrix M and is used to evaluate the independent 

variable 
n

kj ,  in the first instance. The last non–homogeneous term in equation (5.4) 

containing )(g  is evaluated at a second stage and in this way the values for 
1

,

n

kj  are 

approximated.   

The five–point Laplacian operator 2  [98] is used for the evaluation of the map function 

which is also used in earlier results of an order parameter. The five–point formula is given 

below: 
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To apply the five–point formula in cell dynamics equations, according to the averaging 

conditions XX   and the five–point formula, it takes the following form: 

  n

kj

n

kj

n

kj

n

kj

n

kj

n

kj ,1,1,,1,1,

2

4

1
  

.               (5.6) 

 
NN

n

kj

n

kj

n

kj ,,,

2

4

1
 .                 (5.7) 

Now equation (5.7) is given a matrix form without periodic boundary conditions, say for 

a  nn  grid.  

,

14/100

4/1

04/10

04/114/1

004/11

1









































M    ,

4/10000

0

0

00

004/1

2

































M  



 

90 
 

























0000

0

00

00

0000

3











M     and     .

1233

2

323

3212

3321

























MMMM

M

MMM

MMMM

MMMM

M











 

The block matrix M is a symmetric and has a positive definite of size 22 nn  and can be 

generalized for any grid size and also the sub–matrices. In equation (5.4), there is a 

biharmonic operator 422 )(   in the second term on the right hand side which can be 

discretized in the thirteen–point stencil [98], so let 4C and C is taken as .MMC   

The block matrix C is also symmetric and positive definite of size 22 nn  comprising sub–

matrices as with those of M and can be generalized for any grid size. The two-dimensional 

thirteen–point stencil formula for the biharmonic operator formatted in C is given below 

[98, 107, 108]: 
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where the spatial discretization is given as follows: 
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and similarly for )( ,2
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Equation (5.4) takes the following form:  
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In part 1 of the equation (5.11), I is the identity matrix containing 1s on its main diagonal 

of size M matrix and 
n

kj ,  is treated as the vector, having initial random values. First the 

homogenous part 1 of equation (5.11) is evaluated and then the non–homogenous part 2 

of equation (5.11) is evaluated, which is the map function. Thus, the order parameter is 

evaluated as a whole.  

For the explicit forward Euler method, the CDS technique was implemented in Fortran 

77 programming language. All simulations were performed for a lamellar forming 

diblock copolymer system of block copolymers using the parameters for the map 

functions given in Table 5.1. These parameters are suggested for a lamellar forming 

system of diblock copolymers [2] and all the two-dimensional simulations in this chapter 

are based on these parameters.       

Table 5.1: System parameters used in cell dynamical method for lamellae morphology 

 CDS 

Parameters 
  f u v B D A 

Lamellae Morphology 
0.36 0.48 0.38 2.3 0.02 0.7 1.5 

 

The simulation results given in Figure 5.1 were obtained based on the following 

specifications: 

 The grid size chosen was 6464  with grid spacing 1 yx ;  

 The total time of the simulations was up to 10000 time steps with the time interval 

1.0t ; 
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 The simulations were run without periodic boundary conditions;  

 A matrix-based approach was used for calculating the Laplacian;  

 The simulations were started from an initial random disordered state 3.0 . 

 

       

Figure 5.1: Forward Euler method for two-dimensional CDS equations based on 5–point formula 

at different time steps. a) at t = 10; b) t = 100; c) t = 1000. 

 

          

In Figure 5.1 (a), (b) and (c), the images are shown for different stages of evolution of 

lamellae in a lamellar morphology of A-B diblock copolymer systems at different time 

steps. The order parameter evolution takes place successfully, which can be observed 

from the simulation results given in Figure 5.1 (a) and (b). In Figure 5.1 (c), the 

microphase separation can be observed and the lamellae formations can be seen but the 
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absence of boundary conditions is clearly noticeable.  The boundaries are covered with a 

blue colour, which means that the lamellae do not appear from the other side. 

Conclusively, the simulation results shown in Figure 5.1 were obtained without 

employing boundary conditions for the explicit forward Euler method; this method 

worked initially for the minimum specifications. In the next step the same results are 

produced using the implicit backward Euler method in order to proceed to the CN method.  

Let us write equation (5.4) in the implicit BTCS method:   
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                                            (5.13) 

Equations (5.12) and (5.13) are written in the implicit backward Euler method [8, 69] 

which is well described in section 2.6.2 of Chapter two for the model heat diffusion 

equation. The terms are shown on the left hand side to evaluate in n+1 space, see equation 

(2.11). The calculation is carried out in a way that part 1 (homogenous) in the equation 

(5.13) is evaluated first to identify the values of 
1

,

n

kj  from 
n

kj ,  and then part 2 (non–

homogenous) is evaluated with new values of 
1

,

n

kj . Thus, the order parameter is obtained. 

To solve the linear system of equations given in equation (5.13), iterative methods need 

to be used for which LU decomposition was tried. LU decomposition worked very slowly 

and could be better for lower grids. The Conjugate Gradient (CG) method was used to get 

faster results. CG outperforms Jaccobi, Gauss–Seidel and Successive Over Relaxation 

(SOR) for large systems. Good results can be obtained in N steps of iteration [69]. The 

solution of the PDE is related to a solution bMx   system, that is bMx 1 , where x is 
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an unknown vector, b is a known vector and M is known. The lemma in the case of CG 

is that bAx  is equivalent to a quadratic minimization problem of the form. 

bxMxxxf TT 
2

1
)(                              (5.14) 

with .nRf    The minimum is reached when .1bMx   The method is effective for 

symmetric positive systems [109]. Memory usage is low with this method since only a 

small number of vectors are required. For the iterates, the residual vectors are also the 

gradients of a quadratic functional, the minimization of which is equivalent to solving the 

linear system [109]. Per iteration, on the matrix–vector product, three vector updates and 

two inner products were solved [109]. The CG algorithm is given in Appendix E. 

The simulation results in Figure 5.2 were obtained using the implicit backward Euler 

method. The parameters and specifications are the same as those which were used for the 

explicit forward Euler method for simulation in Figure 5.1. It can be observed from Figure 

5.2 that the evolution of an order parameter was successful using the implicit backward 

Euler method. The simulation results in Figure 5.2 show the same modelling of diblock 

copolymers as in Figure 5.1. The microphase separation can be clearly observed in Figure 

5.2 (c). In section 2.6.2 of Chapter two, it is shown that this method is unconditionally 

stable. Comparatively, the implicit backward Euler method is preferable because the time 

interval t  does not need to have any specific choice for its value. This property of the 

backward Euler method makes this scheme more preferable to use compared to the 

explicit forward Euler method. 

 



 

95 
 

      

 Figure 5.2: Backward Euler method for two-dimensional CDS equations based on 5–

 point formula at different time steps. a) at t = 10; b) t = 100; c) t = 1000. 

 

5.1.2 Crank–Nicolson method for CDS 

The CN method is convenient, particularly for one or two dimensions; however for two 

or more dimensions, the Alternating Direction Implicit method (ADI) [84] is favoured 

due to the simpler equations needing to be solved and hence faster results are obtained. 

The ADI method splits the finite difference equation into two implicit equations that result 

in a system of symmetric and tri–diagonal equations suitable for e.g. Cholesky 

decomposition or LU decomposition. 

The main objective is to implement the CN scheme and to acquire results for a partial 

differential equation (5.4). It was discussed in section 2.6.3 of Chapter two that the CN 
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method is the average of the explicit forward Euler and the implicit backward Euler 

methods and is also unconditionally stable. So accordingly, equation (5.4) is written in 

the CN method and is given as follows: 
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Equation (5.16) is a CN scheme for equation (5.4) where the terms on the right hand side 

are evaluated by the explicit forward Euler method in n space. The left hand side is 

evaluated from the right hand side values at n+1 space for part 1 using the CG method 

which was used in the implicit backward Euler method. After obtaining the values for an 

order parameter ,1

,

n

kj  the nonhomogeneous part 2 of the map function on the left hand 

side is evaluated based on the new values of the order parameter. Thus, the order 

parameter is finally obtained.  The results are presented in Figure 5.3, but as an 

experiment these results are without periodic boundary conditions.  The images in Figure 

5.3 are at the 10th, 100th and 1000th time steps. The simulation results given in Figure 5.3 

were obtained using the same parameters and specifications that were used for the 

simulation of the explicit forward Euler method in this chapter. The simulation results in 

Figure 5.3 show the modelling of block copolymers in the same way as in Figures 5.1 and 

5.3.   
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To analyse the stability of the CN scheme using the biharmonic operator, consider the 

homogenous part 1 of equation (5.16) excluding the term with coefficient B as follows: 
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                   (5.17) 

                      

             

Figure 5.3: CN scheme for two-dimensional CDS equations based on 5–point formula at different 

time steps. a) at t = 10; b) t = 100; c) t = 1000. 

 

To derive a sufficient condition for stability, the discrete Neumann stability criterion was 

applied, the discrete Fourier mode [69, 84] in two dimensions, 
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         ,,

yikqxijpnn

kj ee                                                    (5.18) 

and by inserting equation (5.18) in equation (5.17) and dividing the resulting equation by 

,1n  gives: 
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and from the Fourier analysis we get 1 for all non–negative tD , so the two–

dimensional Crank–Nicolson scheme employing the CDS method is unconditionally 

stable. The stability analysis can be applied in the same way for the explicit forward Euler 

method and implicit backward Euler method.  

5.1.3 Implementation of boundary conditions 

The results presented before are without the use of boundary conditions. Here the 

discussion is elaborated taking the boundary conditions into account. The boundary 

conditions are very important in computer simulations if these simulations are producing 

images.  The CDS equations employ periodic boundary conditions. The periodic 

boundary conditions (PCBs) are used to avoid problems with boundary effects caused by 

finite size, and make the system more like an infinite one, at the cost of possible 

periodicity effect. The existence of PBC means that any object (atom or molecule) that 

leaves a simulation box by, say, the right-hand face, and then enters the simulation box 

by the left-hand face or vice versa.  How the periodic boundary conditions are 

implemented in the matrix of the Laplacian is explained here. Consider the five–point 

formula for 55 grid: 
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              ,4 ,1,1,,1,1,

2

5 kjkjkjkjkjkjp    5,,2,1, kj                    (5.20) 

Let ux, vx, uy and vy be the array of indexes such that the last entry in ux is 1 and the first 

entry in vx is 5 and the same for the uy and vy. In the following way: 

  ),1,5,4,3,2( uyux   and ).4,3,2,1,5( vyvx                                   (5.21) 

The equation (5.20) takes the following form: 

 ,4 ,)(,)(,),(),(,

2

5 kjkvyjkuyjkjvxkjuxkjp    5,,2,1, kj                 (5.22) 

When the matrix of Laplacian is constructed there is a small change in the sub–matrix 

M1. The sub–matrices M2 and M3 remain the same and the change in M1 obviously 

causes the change of values in M matrix and so the C.  The matrices M1 and M are given 

below: 
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The results based on periodic boundary conditions are given in Figure 5.4 for the explicit 

forward Euler method.  
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Figure 5.4: Explicit forward Euler method based on 5–point formula using periodic boundary 

conditions where (a) and (b) images are 100th and 10000th time steps. 

 

                        

Figure 5.5: Implicit backward Euler method based on 5–point formula using periodic boundary 

conditions where images (a) and (b) are 100th and 10000th time steps. 

 

The results in Figures 5.4, 5.5 and 5.6 are the images at 100th and 10000th time steps. For 

the simulation results given in Figures 5.4 and 5.5, the system parameters used are given 

in Table 5.1 and the other specifications used are given as follows: 

 The grid size chosen was 128128  with grid spacing 1 yx ;  

 The total time of the simulations was up to 10000 time steps; 

 The simulations were run with periodic boundary conditions;  
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 The simulations were started from an initial random disordered state 3.0 . 

It is emphasized that the value 1.0t  was used for the explicit forward Euler method. 

The simulations results given in Figure 5.5 were obtained using the implicit backward 

Euler method.  Here it is clear that the value  0.1t  does not work in the five–point 

Laplacian generally in the explicit forward Euler method. The divergence of values takes 

place immediately on reaching 100th or 1000th time step and so on. When the implicit 

schemes are employed there is no issue of using 0.1t  for the five–point Laplacain. 

The results in Figure 5.6 were obtained successfully using the CN method, which is also 

unconditionally stable and has a discretization error order ).( 22 htO   In Figures 5.4, 

5.5, and 5.6 the simulation results are shown for different stages of evolution of lamellae 

in a lamellar morphology of A-B diblock copolymer systems at different time steps. The 

order parameter evolution takes place successfully, which can be observed from the 

simulation results given in snapshot (a) of these Figures; snapshot (c) of these Figures 

shows the microphase separation  and the lamellae formations can also be seen.  

   

Figure 5.6: CN method based on 5–point formula using periodic boundary conditions where 

images (a) and (b) are 100th and 10000th time steps respectively. 
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Figure 5.7: The numerical values of order parameter  y,x  are plotted against the space (0 – 

128) for 100th and 10000th time steps in images (a) and (b) respectively. Two lines of different 

colour show numerical values of  x for two different methods, the forward Euler and the CN. 

The numerical values plotted here were obtained from the simulations shown in Figure 5.4 and 

5.6. 

 

The Figure 5.7 displays the profile of  y,x  against the space (0 – 128).  This space is 

assumed to be either x- or y-axis. The range of the space is fixed 0 – 128 because the 

domain size was chosen 128 x 128.  The scale of plot in this Figure is set in such a way 

that on the vertical axis,  y,x  represents the numerical values in the range ±1 against 

space (0 – 128) on the horizontal axis. In order to compare the two finite difference 

methods, the numerical values of order parameter are plotted in Figure 5.7 at different 

time steps. In Figure 5.7 (a), the values are compared at 100th time step and in Figure 5.7 

(b) the values are compared at 10000th time step. The simulation images of these time 

steps are shown in Figure 5.4 and Figure 5.6. The two lines coloured pink and green show 

the forward Euler method and the CN method respectively for comparison. In Figure 5.7 

(a), both lines are exactly parallel, which illustrates that the tendency of numerical values 

obtained from the two methods is the same while the methodologies are different. Figure 

5.7 (b) shows that the numerical values differ between 80 and 100 on the horizontal axis 

but the two lines are matching except in this region. The parallel distribution of numerical 

values on the same scale in Figure 5.7 for the two different methods shows that there is 

(b) (a) 
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no obvious difference for the evolution of order parameter and therefore the lamellae 

formations are almost similar in pattern, which can be observed by comparing Figure 5.4 

and Figure 5.6. 

After the successful implementation of the five–point Laplacian in implicit backward 

Euler and CN methods, isotropic nine–point Laplacian operators were employed, as used 

by Oono and Puri [3, 47]. This 9–point isotropic Laplacian operator was employed 

simultaneously for all three finite difference schemes. The 9–point isotropic Laplacian 

operator was discussed in Chapter 3 as Laplacian scheme OP(D2Q9), which is given 

below: 

     
 
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i
iQDOP .                         (5.23) 

The Laplacian operator given in equation (5.23) was simulated in matrix M considering 

the periodic boundary conditions. The CDS equations were run using this formula with 

all previously used parameters and configurations on a 128128  grid size having 

.0.1t  The simulation results are presented with the same pattern in Figures 5.8, 5.9 

and 5.10 for explicit forward Euler, implicit backward Euler and CN methods 

respectively. These simulation results yield the same information about the modelling of 

A-B diblock copolymer systems. The order parameter evolution takes place successfully, 

which can be observed from the simulation results given in snapshot (a) of the Figures 

5.8, 5.9 and 5.10. Snapshot (c) of these Figures shows the microphase separation and the 

lamellae formations can be seen. The source code for CN method is given in Appendix F 

for the simulations shown in Figure 5.10. Snapshots of all the simulations in Figures 5.8, 

5.9 and 5.10 represent a range of values between 3.0 and 3.0  for an order 

parameter. Two snapshots are shown for 100th and 10000th time steps.  
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Figure 5.8:  Explicit forward Euler method based on 9–point formula using periodic boundary 

conditions where (a) and (b) images are 100th and 10000th time steps respectively. 

 

             

Figure 5.9: Implicit backward Euler method based on 9–point formula using periodic boundary 

conditions where images (a) and (b) are 100th and 10000th time steps respectively. 

 

                

Figure 5.10: CN method based on 9–point formula using periodic boundary conditions where 

images (a) and (b) are 100th and 10000th time steps respectively.  
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Figure 5.11: The numerical values of order parameter  y,x  are plotted against the space (0 – 

128) for 100th and 10000th time steps in images (a) and (b) respectively. Numerical values of 

 y,x  are shown for the forward Euler, backward Euler and the CN methods. The numerical 

values plotted here were obtained from the simulations shown in Figure 5.8, 5.9 and 5.10. 

  

Figure 5.11 is constructed in a similar way to Figure 5.7, where the distribution of 

numerical values of the order parameter  obtained from 2D simulations (Figures 5.8, 

5.9 and 5.10) for forward Euler, backward Euler and CN methods are shown for 

comparison. In Figure 5.11 (a), the values are compared at the 100th time step and in 

Figure 5.11 (b) the values are compared at the 10000th time step. Three lines of different 

colours show three different methods and each line represents the numerical values. In 

the simulations of the three different methods, the 9–point isotropic Laplacian scheme 

OP(D2Q9) was employed. Three lines are exactly parallel, which shows that the tendency 

of numerical values obtained from the three different methods is the same, while the 

methodologies are different. The parallel distribution of the numerical values in Figure 

5.11 for the three different methods shows that there is no obvious difference for the 

evolution of the order parameter and therefore the lamellae formations are almost similar 

in pattern, which can be observed by comparing Figure 5.8, Figure 5.9 and Figure 5.10. 

 

(a) (b) 
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5.2 Conclusions 

The cell dynamics simulations were used to carry out calculations for a diblock copolymer 

system using different finite difference schemes. The main objective was achieved via 

the implementation of the Crank–Nicolson scheme, and the results obtained from the CN 

method were compared with the explicit forward Euler and the implicit backward Euler 

methods. The conventional approach of algorithms using the forward Euler method was 

replaced by more stable schemes, especially the CN method. In the first stage, the 

conventional explicit scheme was transformed into a matrix-based approach, which made 

it possible to carry out calculations for the implicit backward Euler method based on the 

five–point Laplacian operator. The issue of boundary conditions was resolved technically 

using periodic boundary conditions. The explicit forward Euler method has some 

limitations for the choice of time interval t , and implicit schemes overcame these 

limitations. For implementing the implicit backward Euler scheme, different algorithms 

were tried to solve the system of .1bMx   In this regard, LU decomposition worked 

very slowly so the Conjugate Gradient method was employed for faster calculations. The 

implicit schemes used matrices and, for larger two-dimensional grids, i.e. 128x128, the 

huge sparse matrices were produced up to the squares in each dimension length. 

Therefore, in this chapter during the simulations for a CN approach applied to cell 

dynamics equations it was only possible to use a two-dimensional grid of size 128x128. 

The whole work was limited to this grid size and two dimensions; for three dimensions 

the scheme encountered limitations of computer memory due to the huge sparse matrices. 

Both the schemes, implicit backward Euler and CN are stable, but are very slow in 

comparison to the conventional forward Euler method. The reason is that huge 

calculations were carried out between different sparse matrices and vectors. The forward 

Euler method is very fast but not very stable, which is the disadvantage of this method. 
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The CN scheme was also employed in the two-order parameter system in cell dynamics 

equations and results were successfully obtained, which are presented in the next chapter. 

There is an Alternating Direction Implicit (ADI) method which is fast and very stable and 

has the same properties as the CN scheme. Three-dimensional results for cell dynamics 

can be obtained using the ADI scheme.  
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Chapter Six 

6 The Cell Dynamics Simulations of Two Order Parameter 

Systems 

In this chapter, two order parameter systems were investigated using the Cell Dynamics 

Simulation (CDS) method. The two order parameter systems are comprised of a binary 

blend which contains an A–B diblock copolymer and a solvent C homopolymer (A–B/C 

systems). In such systems, the phase separation takes place in two different ways – one is 

the microphase separation in the A–B diblock copolymer and the other is macrophase 

separation between the A–B diblock copolymer and the C homopolymer. It must be noted 

that in Chapter three, the CDS model was presented based on one order parameter 

evolution for the microphase separation in A–B diblock copolymer systems. 

 In this chapter, the main objective of this study is to implement the Crank–Nicolson finite 

difference scheme for the model equations of the CDS method, based on two order 

parameter systems. The implementation of the stable finite difference schemes for CDS 

based on such systems will be helpful and useful to relieve the anisotropy of the system 

in the late stage of domain growth which usually arise from the discretization of the space.  

The implementation of implicit methodologies will make these CDS models more reliable 

in terms of speed, accuracy and time interval stability. Here, the CDS of two order 

parameter systems has been implemented in explicit and implicit finite difference 

methods in two dimensions. The two order parameter systems were discussed in section 

2.4 of Chapter two. 

6.1 Mathematical model of two order parameter systems 

Two order parameter systems are systems where a mixture or a blend contains an A–B 

diblock copolymer and a C homopolymer [110]. The phase separation triggers in two 
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different ways: macrophase and microphase separations. In the model of the systems, one 

independent variable represents the microphase separation that takes place in the A–B 

diblock copolymer, and the second independent variable represents the macrophase 

separation between the A–B diblock copolymer and the solvent C homopolymer. 

The polymerization indices of the A–B diblock copolymer and the C homopolymer are 

AN , 
BN  and CN , respectively. The ,A  

B  and C  are local volume fractions of A, B and 

C monomers respectively. The block ratio f is defined by [59]: 

 BA

A

NN

N
f


                   (6.1) 

Two order parameter with incompressibility conditions are:  

BA

BA








                   (6.2) 

where    is for an order parameter in the microphase separation and   is the segregation 

of copolymer/homopolymer. Ohta introduced a new variable c  , where c is the 

volume fraction at the critical point of the macrophase separation [59]. The model of free 

energy is presented in short–range and long–range parts for copolymer–homopolymer 

mixtures in terms of  and   [59]. 

                                          .,,,  LS FFF                   (6.3) 

The short range part is written as follows: 

                              ,
22

,
2221 Wdrrdr

c
rdr

c
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               (6.4) 

where 
1c and 

2c are positive constants and  
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, 

bbb
bggW                 (6.5) 

are local interactions between   and   where 
1b  and 

2b are positive constants. The other 

constant 3b vanishes for 2/1f  and is taken as )/1/1(03 BA NNbb  with 0b  a positive 

constant. The functions  1g  and  2g  are even functions where  1g   exhibits a 

double–potential below the macrophase–separation temperature and function  2g   is 

not double well in the macrophase–separated state [59]. The term 1b  in equation (6.5) 

is responsible for the short–range interaction between the monomers, if the interaction 

strength between i and j monomers is put as  CBAjiuij ,,,   [59]. Thus, the energy 

obtained from the short–range interaction is written as: 

 
ji

jiij dru
,2

1
                   (6.6) 

The constant 
1b  is given in terms of iju  by: 

               )(
2

1
)(

4

1
1 BCACBBAA uuuub                                  (6.7) 

The third term with factor 1b  in equation (6.5) is the interaction strength [111]. The last 

term in equation (6.5) arises from the configurational entropy of polymer chains. The 

fourth term 2

2 )2/( b tells how the microphase–separation takes place only in the 

copolymer rich phase [111]. The last term in equation (6.5) controls phase separations; 

the first is the macrophase separation between copolymers and homopolymers and the 

second is the microphase separation in block copolymers [111]. The long–range free 

energy arises from long–range interaction in copolymer systems and this interaction is 

resembled to a coulomb type repulsive interaction in copolymer systems [59, 60, 111]. 
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The model equation of the long–range energy used in a two order parameter system is 

given below: 

               
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where )',( rrG  is Green’s function, and more clearly it is given by the relation 

)'()',(2 rrrrG    and 


  )()( rr . The symbols 


  and 


  represent the spatial 

average of   and    respectively [59, 111]. Here the definition of ,   and   is given as 

follows [59]: 
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where a is positive constant. Using the above free energy F, the dynamical model of phase 

separation in a copolymer–homopolymer mixture is modelled by the following set of 

equations in terms of   and  [59, 111]: 
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where the transport coefficients 121  LL  are positive.   

6.2 Numerical method for two order parameter systems 

The cell dynamical equations for corresponding partial differential equation (PDE) in 

equation (6.10) are given as follows [111, 112]: 

   ),,;(),;(),;( jitTTjitjitt                           (6.11) 

       ],),;([),;(),;(),;(


   jitjitTTjitjitt                 (6.12) 

where:  
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32122  bbbbAcjitT      (6.14) 

and the Laplacian for quantity X is given as follows: 

    .21  
NNNNN

XWXWX                                         (6.15) 

where NN and NNN represent nearest–neighbours and next–nearest neighbours 

respectively, and Ws are weights, i.e. 6/11 W  and 12/12 W  [3]. The form of the local 

interactions xxAdxxdg ii  tanh/)(  (i=1 and 2) with the coefficients 311 .A   and 

112 .A   are given [59, 111]. The lamellar forming system is chosen for the two order 

parameter system simulations to understand the essence of phase–separation phenomena 

of A–B/C systems where a lamellar structure of diblock copolymer is expected to appear 

in the macrophase–separated phase. Therefore, the case of 2/1f  or )( BA NN    is 

considered and this value of f makes the term absent identically with coefficient 3b   in 

equation (6.5). For the absence of this term, the coefficient 03 b  is set in equations 



 

113 
 

(6.13) and (6.14). Also, the higher–order term in equation (6.5) with coefficient 
4b is not 

considered for first simulations in this chapter because the main objective is to understand 

the domain growth in A–B/C systems and therefore the coefficient 04 b  is set. Later in 

this chapter the higher order term in equation (6.5) with coefficient 
4b is included for the 

simulations.  

 

6.2.1 Computer simulations 

In this section the computer simulations are presented; the steps for the computer program 

were set up based on discrete equations (6.11)–(6.14), which are given as follows:  

1. Assigning random initial values to variables representing two order parameters 

and  ;  

2. Setting the periodic boundary conditions, i.e. x, y and z directions;  

3. Calculation of first discrete Laplacian for order parameters, i.e.   ; 

4. Calculation of the map function (6.13) and (6.14) based on the order parameters 

with initial random values and other constants with specific values; 

5. Calculation of second (outer) discrete Laplacian for the result of step 4; 

6. Calculation of order parameters based on new obtained values with respect to time 

evolution.  

The simulation results shown in Figure 6.1 were based on the following specifications:  

The grid size chosen was 128128  with grid spacing ,yx 1 the total time of the 

simulations was up to 50000 time steps with time interval 50.t  . The initial values of 

  and   at each cell were assigned randomly around their spatial averages and the range 

of initial random values was taken as .5.0  The other parameters  [59, 111] for 



 

114 
 

simulations given in Figure 6.1 were chosen as 3.11 A ,  ,1.12 A  0


 , 02.0

,.cc 5021   ,.b 0701  and 202 .b   for the domain growth in the lamellar forming 

system [59]. The source code for these simulations is given in Appendix G. 

      

 

 

 

 

  

 

 

                     

                                                

    

 

 

 

The phase separation can be noticed, which starts in Figure 6.1 (a) where the macrophase 

separation between the copolymer–rich (small red particles covered by blue) and 

homopolymer (yellow) rich phases takes place. The evolution of order parameter in the 

(a) (b) 

(c) 
 

Figure 6.1: The diblock copolymer and homopolymer (A–B/C) systems. Images (a), (b) and (c) are 

1000th, 4000th  and 50000th time steps respectively. 
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macrophase separation is carried out by independent variable   and the evolution of 

order parameter in microphase separation is carried out by  . As the evolution of the two 

order parameter system goes on, the microphase separation actually starts after some 

time–evolution, which can be noticed in Figure 6.1 (b) at the 4000th time step.  In Figure 

6.1 (c), the homopolymer is now in the rich domain, as mostly the green domain can be 

noticed.  

The simulation results are also presented for the hexagonal microdomains. This is a 

different morphology in the A–B/C systems. When the value of f is chosen different from 

in 1/2, the lamellar structure does not remain stable and such microdomains come into 

formation [59]. The objective of including these results is basically to extend the 

understanding of two order parameter systems and how the model equations can be used 

to investigate other morphologies. The parameters are different from the lamellar 

microdomain simulations. The double phase separation corresponds to .4.0f  Other 

parameters that were used are given as ,2.0


  ,0


   ,.b 001   ,01.03 b  ,.020  

,02.0 and 002.0  [59]. The simulation results of the hexagonal microdomains’ 

morphology are given in Figure 6.2. The source code used for simulations shown in 

Figure 6.2 was the same as is given in Appendix G for the simulations in Figure 6.1. 

In hexagonal microdomains simulations, the value of f is taken differently from that of 

lamellar morphology, and it can be observed that the term with coefficient 3b in equation 

(6.5) comes into play.  The idea behind the simulations is to manipulate model equations 

with different values and discuss the obtained results. So far, the discussion is undertaken 

for the phase separation in the A–B diblock copolymer and the C homompolymer (A–

B/C) systems.  Here, the discussion is undertaken in more detail to understand the relation 
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between the kinetics and morphology and the pattern formation within the A–B/C systems 

[111].  

 

 

 

 

 

 

 

 

 

 

            

In the next simulations the domain pattern is slightly changed in equation (6.5); the value 

of 
2b is nonzero and the term of higher order with coefficient 

4b  is avoided by setting its 

value as zero. The term with coefficient 3b  vanishes itself as the parameter f =1/2 is 

chosen. The initial random conditions for the disordered state of    and   were chosen at 

t = 0.0 where ss 


  and ss 


 with s = 0.01 [111]. The parameters 

used in equations (6.11)–(6.14) were chosen, as ,2.0


  ,0.0


  ,.c 011   ,.c 502   

,.A 311   ,.A 112   and 02.0 . The simulation results based on these parameters are 

shown in Figure 6.3.  

The phase separation is shown for the A–B diblock copolymer and C homopolymer in 

Figure 6.3.  In Figure 6.3 (a) the phase separation starts and in the first instance the 

macrophase phase separation takes place between the A–B diblock copolymer and the C 

homopolymer and then the microphase separation can been seen in the A–B diblock 

Figure 6.2: Hexagonal microdomains in A– B/C systems. Images (a) and (b) are 10000
th  

and 

50000
th 

time steps respectively. 

(a) (b) 
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copolymers. In Figure 6.3 (b) and (d) the macrophase separation can be seen. It can be 

noted that in Figure 6.3 (d) the diblock copolymers emerge as onion rings. This is not 

because of any particular use of the Laplacian operator, but due to the random initial 

conditions described above. The time step 5.0t was chosen to keep the model 

isotropic [111].  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

6.3 Three-dimensional simulations of A–B/C systems 

The 3D simulations have been incorporated for the two order parameter systems to 

understand the essence of phase–separation phenomena of A–B/C systems where a 

(a) (b) 

(c) (d) 

Figure 6.3:  The simulation images (a), (b), (c) and (d) are 1000th, 4000th, 10000th  and 70000th 

time steps respectively. 
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lamellar structure of diblock copolymer is expected to appear in the macrophase–

separated phase. The 3D simulations were based on discrete equations (6.11)–(6.14) and 

computer programs were developed and executed by following the six steps of an 

algorithm given in section 6.2.1. The simulation results shown in Figure 6.4 and Figure 

6.5 were based on the following specifications:  The grid size chosen was 507575   

with grid spacing ,yx 1 the total time of the simulations was up to 50000 time steps 

with time interval 50.t  . The initial values of   and   at each cell were assigned 

randomly around their spatial averages and the range of initial random values was taken 

as ..30  The other parameters  [59, 111] for simulations given in Figure 6.4 and 

Figure 6.5 were chosen as 3.11 A ,  ,1.12 A  0


 , 02.0 ,.cc 5021   

,.b 0701  and 202 .b   for the domain growth in the lamellar forming system [59]. It must 

be noted the that the snapshots of 3D simulations are presented without any specific time 

scale.  

The simulations shown in Figure 6.4 were obtained using the 3D 27–point Laplacian 

operator of Shinozaki and Oono’s choice (Laplacian scheme SO(D3Q27)) in forward 

Euler method. In Figure 6.4, the images (a), (b) and (c) are shown for different stages of 

domain growth in a phase separation based on above parameters in A–B/C systems at 

different time steps. The initial stage of evolution can be observed in Figure 6.4 (a) where 

the macrophase separation takes place between A–B diblock copolymers and C 

homopolymer.  In Figure 6.4 (b), the simulation image at 10000th time step displays the 

phase separation in a complete domain growth where C homopolymer rich domain for 

0 is indicated by blue colour and a copolymer rich domain for 0  is drawn by the 

green colour. It should be noted when the microphase separation starts then the copolymer 

rich domains become sufficiently large. It can be observed from Figure 6.4 (b) and (c) 
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that in most part of the macro–domains (blue colour), the lamellar domains (green colour) 

are surrounded by a thin layer. These thin layers are the A blocks. The image in Figure 

6.4 (c) shows the domain growth of the system at 50000th time step where macro–domains 

become larger and at this stage the system becomes stable.  

   

  

Figure 6.4: The simulation images (a), (b), and (c) are 1000th, 10000th, and 50000th time steps 

respectively using Laplacian scheme SO(D3Q27).  

 

For 3D simulations given in Figure 6.4, the default CDS averaging operator SO(D3Q27) 

was employed to obtain isotropic simulation results. The 3D simulations were also 

executed using 19–point D3Q19 and 27–point BV(D3Q27) Laplacian schemes based on 

the same parameters used for simulations given in Figure 6.4.  The simulation result 
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shown in Figure 6.5 was obtained using Laplacian scheme D3Q19 and the simulation 

result shown in Figure 6.5 (b) was obtained using BV(D3Q27). In Figure 6.5, images (a) 

and (b) show the phase separation in A–B/C systems in a similar way as shown in Figure 

6.4 (c). These 3D Laplacian schemes were discussed in chapter four for isotropic 

simulation results of spherical morphology and for those simulations these three schemes 

performed better.  

 

    

Figure 6.5: The simulation images (a) and (b) were obtained at 50000th time step using 

Laplacian schemes D3Q19 and BV(D3Q27) respectively.  
  

 

The simulations results obtained from three different isotropic Laplacian schemes yield 

almost same results which can be observed by comparing Figure 6.4 (c), Figure 6.5 (a) 

and Figure 6.5 (b). No any divergence of values was observed during the execution by 

using these 3D Laplacian schemes.  It can be observed that the (b) image of Figure 6.5 is 

clearer and better in shape compared to Figure 6.4 (c) and Figure 6.5 (a). It must be noted 

that the execution of simulations based on 19–point Laplacian scheme D3Q19 was 
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observed faster due to the few stencil points. It also allows a larger room for using time 

interval value. The simulations based on BV(D3Q27) seem more isotropic and this 

Laplacian scheme performs better.  

   

6.4 Implementation of Crank–Nicolson scheme in A–B/C systems 

The Crank–Nicolson (CN) scheme was explained in Chapter five, where this scheme was 

implemented for the one order parameter system of the lamellar forming of diblock 

copolymer systems. In this chapter, the CN scheme was implemented for the two order 

parameter (A–B/C) systems; that is, for the lamellar forming of the A–B diblock 

copolymer and the C homopolymer.  Before carrying out the implementation of the CN 

scheme for two–order parameter systems, the implementation of the backward Euler 

method was undertaken for the two order parameter systems. The backward Euler method 

is unconditionally stable but first–order accurate [69].  

The mathematical model for the two order parameter systems is presented in section 6.1, 

where this model is discussed in detail in terms of short–range and long–range free 

energies. The finite differencing for two order parameter systems is implemented, based 

on the numerical equations given in section 6.2.  

Two order parameter with incompressibility conditions are:  

BA

BA








              (6.16) 

where    is for an order parameter in the microphase separation and   is the segregation 

of copolymer/homopolymer. Ohta introduced a new variable c  , where c is the 

volume fraction at the critical point of the macrophase separation [59]. The numerical 
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equations (6.11) and (6.12) are written in the simple form of partial differential equations, 

which are mainly involved in the two order parameter system and are given as follows: 
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The terms with coefficients 3b  and  4b  are omitted in the above set of equations (6.17) 

and (6.18) and, for the purpose of finite differencing, these equations in the form of n and 

n+1 are given as follows: 
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Equations (6.19) and (6.20) are non–homogenous partial differential equations and will 

be implemented in the CN methodology. The homogenous parts of the equations will be 

evaluated first and then the non–homogenous parts will be evaluated later. In both 

equations (6.19) and (6.20), Laplacian operators are used. The choice of the Laplacian 

operators is taken as that of the 9–point Laplacian operator given below: 

                uuuu
NNNNN
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12
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6

12
                         (6.21) 

The above 9–point Laplacian scheme was discussed in Chapter three for the one order 

parameter system of lamellar forming of diblock copolymers using the cell dynamics 

simulation technique. This is the choice used by Oono and Puri [47] and is recognized as 

the isotropic Laplacian operator. The simulation results given in this chapter were based 
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on this Laplacian operator. The two–order parameter equations (6.19) and (6.20) can be 

written in the backward Euler method, given as follows: 
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The above equations are derived from equations (6.19) and (6.20) where the terms are 

shown on the left hand side. To describe equations (6.22) and (6.23) more clearly, these 

equations are rewritten as follows:  
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In the above set of equations, part 1 is comprised of homogenous terms and part 2 is 

comprised of non–homogenous terms. The homogenous parts of equations (6.24) and 

(6.25) are evaluated in the first step and then the non–homogenous parts are evaluated in 

the second step. In order to solve the linear system of equations (6.24) and (6.25), the 

iterative method needed to be used. Equations (6.24) and (6.25) of the backward Euler 

method are given in two dimensions which contain the Laplacian operator 2 and the 

biharmonic (bilaplacian) operator .4  The 9–point isotropic Laplacian operator 2  given 

in equation (6.21) is simulated in the matrix M and the biharmonic operator is assumed 

to be  .4 MMP  Both the M and P matrices are constructed considering the 

periodic boundary conditions as per the requirements of the two order parameter 

computer simulations [111].  Basically, the M matrix is comprised of submatrices.  
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In Chapter five, a complete description is given regarding the formation of these matrices 

for the 5–point Laplacian operator using periodic boundary conditions. The Conjugate 

Gradient (CG) method was used to solve the system of bPx 1  in equations (6.24) and 

(6.25) where x is unknown and b is known. The Conjugate Gradient (CG) method is 

discussed in detail in Appendix E. This iterative method is efficient and stable compared 

to the LU decomposition method, which is found to be slower for the higher grids.  

The backward Euler method for CDS based on two order parameter systems was 

implemented for the simulation of lamellar forming of the A–B diblock copolymer and 

the C homopolymer systems. The grid size chosen was 128128  with grid spacing 

,yx 1 and the total time of the simulations was up to 10000 time steps. The initial 

random conditions for disordered state of    and   at t = 0.0 were ss 


  and 

ss 


 with s = 0.01 [111]. The parameters used in equations (6.24) and (6.24) 

were chosen as ,2.0


  ,0.0


  ,.c 011   ,.c 502   ,.A 311   ,.A 112   and 02.0 . 

The simulation results obtained from the backward Euler method using CDS for A–B/C 

systems are shown in Figure 6.6 and these simulation results represent the phase 

separation based on two order parameter systems and the dynamics of these systems is 

the same as that described for the simulation results shown in Figure 6.3.  

In order to compare the forward Euler and backward Euler methods, the distribution of 

two order parameters in A–B/C systems is presented in Figure 6.7 for order parameter   

and in Figure 6.8 for order parameter   against the space 0–128.  Figure 6.7 and Figure 

6.8 are constructed in a similar way as in Figure 5.7, where the distribution of numerical 

values of order parameter  obtained from 2D simulations (Figure 6.3 and Figure 6.6) 

for forward Euler and backward Euler are shown for comparison. 
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Figure 6.6: The images (a) and (b) are 1000th and 10000th time steps respectively obtained using 

the backward Euler method for two–order parameter systems. 

 

In Figure 6.7 (a) and Figure 6.8 (a) the values are compared at the 1000th time step and in 

Figure 6.7 (b) and Figure 6.8 (b) the values are compared at the 10000th time step. The 

comparison graphs show the simultaneous two order parameters’ evolution using the two 

different methods. In all four images of Figures 6.7 and 6.8, two lines of different colours 

show two different methods; each line represents the numerical values for an order 

parameter which was assigned by the initial random values for the simulations.  In the 

simulations of both methods, the 9–point isotropic Laplacian scheme OP(D2Q9) was 

employed. The lines are exactly parallel, which shows that the tendency of the numerical 

values obtained from the two different methods is the same, while the methodologies are 

different. The parallel distribution of numerical values in Figure 6.7 and Figure 6.8 shows 

that there is no obvious difference for the evolution of order parameters and therefore the 

phase separations simulated by using the two different methods are almost similar in 

pattern, which can be observed by comparing the simulation results shown in Figure 6.6 

(b) for the backward Euler method and the simulation results shown in the (a) and (c) 

snapshots of Figure 6.3 for the forward Euler method.  
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Figure 6.7: The numerical values of order parameter  y,x  are plotted against the space (0 – 

128) for 100th and 10000th time steps in images (a) and (b) respectively. Numerical values of 

 y,x  are shown for the forward Euler and backward Euler methods. The numerical values 

plotted here were obtained from the simulations shown in Figure 6.3 and 6.6. 

 

  
 

Figure 6.8: The numerical values of order parameter  y,x  are plotted against the space (0 – 

128) for 100th and 10000th time steps in images (a) and (b) respectively. Numerical values of 

 y,x  are shown for the forward Euler and backward Euler methods. The numerical values 

plotted here were obtained from the simulations shown in Figure 6.3 and 6.6.  

 

The main objective is to implement the CN scheme for the two order parameter systems 

and to acquire accurate results, as with those of the forward Euler method. Here, the 

equations of two order parameter systems are implemented in the CN scheme. The CDS 

equations of two order parameter systems are given below: 

(a) (b) 

(a) (b) 
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                     (6.27) 

 

Equations (6.26) and (6.27) are implemented in the CN scheme, where the terms on the 

right hand side are evaluated with the forward Euler method in n space. When the right 

hand sides are approximated completely, then the new values are evaluated for n+1 at the 

left hand side from the values approximated at the right hand side by using the backward 

Euler technique. On the left hand side, for the approximation of the values, the CG method 

was used.  The CN scheme worked successfully and the results using this scheme are 

presented in the following Figure (6.9), with the graphs for comparison in Figure 6.10 

and Figure 6.11.  

                       

Figure 6.9: The images (a) and (b) are 10000th and 70000th time steps respectively obtained 

using the CN method for two–order parameter systems. 
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The parameters and the specifications used were the same as those used in the simulations 

shown in Figure 6.6 for the backward Euler method. The total time of simulation of was 

up to 70000 time steps. 

 

Figure 6.10: The numerical values of order parameter  y,x  are plotted against the space (0 – 

128) for 100th and 70000th time steps in images (a) and (b) respectively. Numerical values of 

 y,x  are shown for the forward Euler and CN methods. The numerical values plotted here were 

obtained from the simulations shown in Figure 6.3 and 6.9. 

 

 

Figure 6.11: The numerical values of order parameter  y,x  are plotted against the space (0 – 

128) for 100th and 70000th time steps in images (a) and (b) respectively. Numerical values of   

 y,x  are shown for the forward Euler and CN methods. The numerical values plotted here 

were obtained from the simulations shown in Figure 6.3 and 6.9.  

 

The simulation results presented in Figure 6.9 were obtained using the CN scheme and it 

can be observed that the order parameters’ evolution behaved the same as that of the 

forward and the backward Euler methods. The macrophase separation between the A–B 

(a) (b) 

(a) (b) 
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diblock copolymer and the C homopolymer takes place first, then the microphase 

separation in the diblock copolymer takes place. The time evolution process for time steps 

can be observed in Figures 6.9 (a) and 6.9 (b), especially in Figure 6.9 (b) where the 

diblock copolymers become rich in their domains. The two order parameter systems are 

comprised of two processes carried out by two independent variables where represents 

the microphase separation and   represents the macrophase separation.  

In order to compare the forward Euler and CN methods, the distribution of two order 

parameters in A–B/C systems is presented in Figure 6.10 for order parameter )y,x(  and 

in Figure 6.11 for order parameter )y,x(  against the space 0–128. Figure 6.10 and 

Figure 6.11 are constructed in a similar way as in Figure 6.7 and Figure 6.8.  In Figure 

6.10 (a) and Figure 6.11 (a) the values are compared at the 10000th time step and in Figure 

6.10 (b) and Figure 6.11 (b) the values are compared at the 70000th time step. The plots 

in Figures 6.10 and 6.11 are representing the numerical values obtained for the 2D 

simulations shown in Figures 6.3 and 6.9. The comparison graphs show the simultaneous 

two order parameters’ evolution using the two different methods.  In all four images of 

Figures 6.10 and 6.11, two lines of different colours show the two different methods and 

each line represents the numerical values for an order parameter which was assigned by 

the initial random values for the simulations.  The lines are exactly parallel, which shows 

that the tendency of the numerical values obtained from the two different methods is the 

same, while the methodologies are different. The parallel distribution of the numerical 

values in Figure 6.10 and Figure 6.11 shows that there is no obvious difference for the 

evolution of order parameters and therefore the phase separations simulated by using the 

two different methods are almost similar in pattern, which can be observed by comparing 

the simulation results shown in Figure 6.9 for the CN method and the simulation results 

shown in the (c) and (d) snapshots of Figure 6.3 for the forward Euler method.  
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The implementation of the Crank–Nicolson method for a two order–parameter system 

allows the use of any time interval value for simulations;  this flexibility of choosing a 

time interval value helps to relieve the anisotropy of the domain in the late stage of 

domain growth, which may arise from the discretization of the space. Aya Ito [111]  

presented the simulations for domain patterns in copolymer and homopolymer mixtures 

where he chose 5.0t  to avoid numerical instability and if any other t  value is used 

the system becomes unstable. By the implementation of implicit schemes, especially the 

CN method, it was possible to obtain these simulation results for choosing .1t  

6.5 Conclusions 

In this chapter, the simulation results are presented for a mixture of A–B diblock 

copolymers and C homopolymers. After changing some parameters in the same set of 

equations for a two order parameter system, the simulation results were obtained for the 

hexagonal domains and onion-like lamellar forming, which were investigated to 

understand the two order parameter system in its various other structure formations. The 

cell dynamics simulation technique for two order parameter systems was implemented in 

two other finite difference schemes, the backward Euler and the Crank–Nicolson 

schemes. As already discussed, the backward Euler scheme is unconditionally stable and 

so is the Crank–Nicolson. The Matrix based approach was used for the Laplacian 

operator, where the periodic boundary conditions were set for the 9–point isotropic 

Laplacian operator. The five–point formula for the Laplacian operator could also be used, 

as could other isotropic Laplacian operators. In the literature, the only choice taken is that 

of the 9–point isotropic Laplacian operator of Oono and Puri. The CG method was 

employed for solving linear systems of equations. Using the implicit schemes, huge and 

large sparse matrices were produced and for this reason it was only possible to use the 

grid size of 128128  for the simulations in these schemes.  
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It was not possible to carry out the three-dimensional simulations in both the backward 

Euler and CN schemes. Three-dimensional results for cell dynamics in two order systems 

can be obtained using the ADI scheme.  
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Chapter Seven 

7 Implementation of the Alternating Direction Implicit 

method for CDS equations  

In this chapter, the Alternating Direction Implicit (ADI) method is implemented for the 

Cell Dynamics Simulation (CDS) method for the lamellar forming of A–B diblock 

copolymers using the one–order parameter system. The implementation of the ADI 

scheme for CDS is one of the objectives of this study. Two different Finite Difference 

(FD) methods based on ADI are discussed and implemented for the CDS equations for 

modelling the lamellar forming system of A–B diblock copolymers. The computer codes 

of ADI methods for CDS were developed by following the same algorithm of eight steps 

which was given at the start of Chapter four. Firstly, the generalized ADI method is 

implemented, based on the 5–point Laplacian operator. Secondly, Hundsdorfer’s ADI 

method is implemented, based on the 5–point Laplacian. The results obtained from the 

ADI methods are compared with those of the forward Euler method. 

7.1 Implementation of the ADI method for CDS  

In this section, the implementation of the ADI method is presented for the Cell Dynamics 

Simulation (CDS) technique. The model of CDS is comprised of partial differential 

equations which essentially involve the biharmonic operator. In Chapter five, the 

biharmonic operator was discussed for the implementation of the CN method for CDS.  

The steps needed to solve the Time–Dependent Ginzburg–Landau (TDGL) equation 

based on the ADI method are shown here. First, equation (3.10) can be re–written in a 

simple form of PDE as [2]:  

}))(({ 22 


BDg
t





.                            (7.1) 
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with   the spatial order parameter, t the time, 2  the Laplacian on a function of free 

energy functional, and D as a diffusive parameter. Equation (7.1) is non–linear and 

fourth–order, including the bi–Laplacian or biharmonic operator 4 .  After doing some 

algebraic manipulation without changing the meaning of the equation (7.1), it can be 

written as: 




BDg
t





)()( 222

,                 (7.2) 

where )(g  is the so–called map function given by [2]:  

  .)21(])21(1[)( 22  ufvfAg                             (7.3) 

Equation (7.2) is a non–homogenous partial differential equation. The first part contains 

the homogenous terms and the second part contains the non–homogenous term as given 

below:  
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                (7.4) 

The Laplacian operator 2  can be seen in the non–homogenous part of the equation. The 

five–point stencil formula [98] is employed for the Laplacian operator in numerical 

simulations of the map function. Equations (5.5) to (5.7) can be seen for the five–point 

formula. In equation (7.4), there is a biharmonic operator 422 )(   in the second term 

on the right hand side which can be discretized using the thirteen–point stencil [98]. The 

two-dimensional thirteen–point stencil formula for the biharmonic operator [107, 108] is 

given in equation (5.8) in section 5.1.1 of Chapter five.  
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To use splitting operators, the operators )(/ ,

44

kjx   and )(/ ,

44

kjy   in thirteen-point 

formula are denoted by )(

4

x  and )(

4

y  respectively. Equation (5.10) in section 5.1.1 can 

be seen for the full derivative form of  )(/ ,

44

kjx   operator. The CDS equation involves 

the biharmonic operator and many other such types of equations which involve the 

biharmonic operator are used in various applied mathematical models [113-116]. The 

biharmonic operator uses the mixed derivatives and therefore the ADI method using the 

Douglas and Gunn [82] scheme for approximating mixed derivate terms is not suitable to 

implement for the approximation of biharmonic operator including the boundary value 

problems [107].  The ADI methods for equations involving mixed derivate terms are 

present in the literature [79, 117, 118]. Conte and Dames published their work for the 

implementation of the ADI scheme for problems involving the biharmonic operator [84, 

119, 120]. 

7.1.1 Generalized ADI method 

Witelski and Bowen derived a generalized ADI operator–split form (see Ref. [107], 

equation (2.10)) from D’Yakanov’s [121, 122] form and this ADI method for equation 

(7.4) is given below: 
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where: 
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The xL  and 
yL  are matrices where .MLL yx   The M is a penta–diagonal matrix used 

to calculate the values for vectors w and v in equation (7.5).  The periodic boundary 

conditions are implemented in matrix M and its general is form is given below: 
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

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M                             (7.8) 

Equation (7.5) can be seen in three steps and in the first step the explicit part is on the 

right hand side. In the first step of equation (7.5), the one–dimensional vector of size N is 

calculated explicitly if the grid size is .NN   In the first part of the equation (7.5), the 

non–homogenous part of equation (7.4) is combined with the full operator. On the left 

hand side, the values are approximated for vector w implicitly in x–direction by using 

MLx  matrix. In the second step of equation (7.5), the values for v on the left hand side 

are approximated in y–direction implicitly from vector w. The last step calculates the n+1 

values for order parameter .  The LU decomposition method is used to separate M in L 

and U matrices for the convenience of employing the Thomas algorithm. This technique 

only uses vectors other than the whole matrix and thus it simplifies the solution. The 

results shown in Figure 7.1 and Figure 7.2 are the images at 1000th and 100000th time 

steps. 

For simulation results given in Figures 7.1 and 7.2, the system parameters used are given 

in Table 7.1 and the other specifications used are given as follows: 

 The grid size was chosen 128128  with grid spacing 1 yx ;  

 The total time of the simulations was up to 100000 time steps; 

 The simulations were run with periodic boundary conditions;  
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 The simulations were started from an initial random disordered state 3.0 . 

 

Table 7.1: System parameters used in cell dynamical method for lamellae morphology 

CDS Parameters   f u V B D A 

Lamellae Morphology 
0.36 0.48 0.38 2.3 0.02 0.7 1.5 

 

The parameters given in Table 7.1 are suggested for lamellar forming diblock copolymer 

systems [2] and all the simulations in this chapter are based on these. The results in Figure 

7.1 are based on the explicit forward Euler method and in Figure 7.2 the results presented 

are obtained from the general ADI method.  

              

 

Figure 7.1: Explicit forward Euler method based on 5–point formula (Laplacian scheme 

A(D2Q5)) using periodic boundary conditions where images (a) and (b) are at 1000th and 100000th 

time steps respectively. 
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Figure 7.2: Generalized ADI method based on 5–point formula (Laplacian scheme A(D2Q5)) 

using periodic boundary conditions where images (a) and (b) are at 1000th and 100000th time steps 

respectively. 

 

In Figures 7.1 and 7.2, the simulation results are shown for different stages of evolution 

of lamellae in a lamellar morphology of A-B diblock copolymer systems at different time 

steps. For the simulation results in Figure 7.2, the order parameter evolution takes place 

successfully, as can be observed from these results. The microphase separation and the 

lamellae formations can also be seen.  

 

Figure 7.3: The numerical values of order parameter  y,x  are plotted against the space (0 – 

128) for 1000th and 100000th time steps in images (a) and (b) respectively. Numerical values of 

 y,x  are shown for the forward Euler and generalized ADI methods. The numerical values 

plotted here were obtained from the simulations shown in Figure 7.1 and 7.2.  

 

(a) (b) 
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Figure 7.3 is constructed in the similar way as Figure 5.7, where the distribution of the 

numerical values of order parameter  obtained from 2D simulations for forward Euler 

and generalized ADI methods are shown for comparison. In Figure 7.3 (a), the values are 

compared at 1000th time step and in Figure 7.3 (b) the values are compared at 100000th  

time step.  Two lines of different colours show two different methods and each line 

represents the numerical values for an order parameter. The order parameter values are 

shown on the vertical axis against the grid size given on the horizontal axis. The two lines, 

coloured pink for the forward Euler method and green for the ADI method, show the 

comparison of the numerical values. In Figure 7.3 (a), the numerical values differ between 

40 and 50, and except this range, both lines are exactly parallel, which illustrates that the 

tendency of numerical values obtained from the two methods is the same while the 

methodologies are different. Figure 7.3 (b) shows that the numerical values differ between 

40 and 60 and between 80 and 100 on the horizontal axis, but the two lines grow parallel 

except in these regions. The parallel distribution of the numerical values on the same scale 

in Figure 7.3 for the two different methods show that there is no obvious difference for 

the evolution of the order parameter and therefore the lamellae formations are almost the 

same in pattern for both methods, which can be observed by comparing Figures 7.1 and 

Figure 7.2.  

In Figure 7.4 the simulation results were obtained using 256256  grid size and time 

interval 0.1t  in the generalized ADI method for CDS. The system parameters used 

are given in Table 7.1. The purpose of using 256256  grid size is to show that the 

generalized ADI method has no memory issue, while the CN method does not work for 

such a grid size. On the other hand, the use of time interval 0.1t  indicates that this 

method is unconditionally stable for use at any time interval value, unlike the explicit 

forward Euler method.  
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Figure 7.4: Generalized ADI method based on 5–point formula using 256256  grid size and 

time interval 0.1t  where images (a) and (b) are at 1000th and 100000th time steps 

respectively. 

 

The generalized ADI method is further extended to three–dimensional simulations for 

CDS. Equation (7.4) can be written in three dimensions as follows:  
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The generalized ADI operator split form given in equation (7.5) is given in equation 

(7.10) as a three–dimensional ADI method for the CDS equation (7.9). 
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Equation (7.10) can be seen in four steps and in the first step the explicit part is on the 

right hand side. In the first step of equation (7.10), the one–dimensional vector of size N 

is calculated explicitly if the grid size is given NNN  and on the left hand side the 
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values are approximated for vector w implicitly by using MLx  matrix in the x–

direction. The other steps are approximated in the same way but in the y and z–directions, 

except the last step.  

In Figures 7.5 and 7.6, the 3D simulation shows the results which were obtained for the 

two different methods: the generalized ADI and the explicit forward Euler methods 

respectively. These simulations were obtained using the parameters given in Table 7.1 

and the specifications are given as follows:  

 The grid size 646464   was chosen, with grid spacing 1 yx ;  

 The total time of the simulations was up to 10000 time steps; 

 The simulations were run with periodic boundary conditions;  

 The simulations were started from an initial random disordered state 3.0 . 

The generalized ADI method overcomes memory usage, unlike the CN method. Because 

of the limitation of the CN method, the three–dimensional simulations cannot be 

performed unless using the fastest computers with sufficient memory. The 3D simulation 

results shown in Figures 7.5 and 7.6 were obtained using 7–point Laplacian scheme M. 

It must be noted that the 3D simulation results obtained based on the 7–point Laplacian 

scheme M for spherical morphology were found to be anisotropic and generally the 7–

point stencil was also found to be anisotropic. Therefore, the 3D results shown in Figures 

7.5 and 7.6 were also anisotropic. These simulation results show the evolution of the order 

parameter in a microphase separation of A-B diblock copolymer and due to the anisotropy 

of the Lapalcian scheme used, the lamellae formations are not well aligned and healthy. 

The 3D implementation of the generalized ADI method for CDS remained successful, 

thus the simulation results shown in Figure 7.6 were obtained by using a more stable 

method compared to the forward Euler method. It is well known and discussed in previous 
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chapters that the forward Euler method is not more stable in terms of time step value.  The 

graphs of comparison are given in Figure 7.7 for one order parameter evolution using two 

different methods in three–dimensions. 

 

Figure 7.5: Three-dimensional results using explicit method based on 7–point formula using 

646464   grid size and time interval 1.0t  where images (a) and (b) are at 1000th and 

10000th time steps respectively. 

 

 

Figure 7.6: Three–dimensional results using generalized ADI method based on 7–point formula 

using 646464   grid size and time interval 0.1t  where images (a) and (b) are at 1000th 

and 10000th time steps respectively. 
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Figure 7.7: The numerical values of order parameter  y,x  are plotted against the space (0 – 

128) for 1000th and 100000th time steps in images (a) and (b) respectively. Numerical values of 

 y,x  are shown for the forward Euler and generalized ADI methods. The numerical values 

plotted here were obtained from the 3D simulations shown in Figure 7.5 and 7.6.  

 

Figure 7.7 is similar to Figure 7.3, where the distribution of the numerical values of order 

parameter  obtained from the 3D simulations (Figures 7.5 and 7.6) for the forward Euler 

and generalized ADI methods are shown for comparison. In Figure 7.7 (a), the values are 

compared at the 1000th time step and in Figure 7.7 (b) the values are compared at the 

100000th time step. Two lines of different colours show the two different methods and 

each line represents the numerical values for an order parameter. In Figure 7.7 (a), the 

lines of the numerical values are exactly parallel, which illustrates that the tendency of 

the numerical values obtained from the two methods is the same, while the methodologies 

are different. Figure 7.7 (b) shows that the numerical values differ at many places on the 

horizontal axis.  It must be noted that when the simulations were run for both methods, 

no divergence of values was observed. Sometimes, due to the inappropriate use of time 

interval value t  in a method, the divergence of values occurs and no more simulation 

images can be developed. The change of values shown in Figure 7.7 (b) is due to the use 

of time interval 0.1t and this time step value does not work for the 7–point stencil in 

forward Euler method. Using both methods, the microphase separation takes place and 

the generalized ADI method is more stable because of allowing more space for the time 

(a) (b) 
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step value. This flexibility of using a larger time step value enhances the speed of 

execution for certain methods, making it more stable and fast. 

7.1.2 Hundsdorfer’s ADI method  

CDS equation (7.2) contains non–homogeneous terms and therefore the generalized ADI 

method is insufficient to achieve second order accuracy. Witelski and Bowen [107] 

suggest iterative methods at each time step to achieve second–order accuracy for non–

linear problems. These iterative methods can be Newton’s method or the pseudo–linear 

factorization method [107].  Calatroni et al. [108]  implemented the ADI method for the 

nonlinear partial differential equations by employing Hundsdorfer’s ADI method [123]. 

Hundsdorfer’s ADI method is an extension to Douglas’s method [124, 125] by adding 

another parameter 1 for stabilising the method. To achieve second–order accuracy in 

time step and space step, at each time step two calculations were performed. The steps 

needed to solve CDS equation (7.2) using this method, and are given as follows: 
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The stabilizing parameter is set at ,1 the intermediate solution is obtained in (7.11d) 

and the complete approximation is obtained in equation (7.11h). At each time step, two 

calculations are carried out in each dimension. The above ADI method for equation (7.11) 

can be seen in equations (3.4) and (4.4) in [108]. The ADI method in equation (7.11) is 

unconditionally stable and the stability properties of this method are discussed in [126]. 

The simulation results are given in Figure 7.8 over a 128128  grid using all the same 

parameters used in this chapter for other simulations. The comparison graphs between the 

explicit method and Hundsdorfer’s method are given in Figure 7.9. The simulation results 

in Figure 7.8 show the different stages of evolution of order parameter in a microphase 

separation of A–B diblock copolymer systems at different time steps.  The CDS equations 

involve a biharmonic operator, and the CN being stable and second–order accurate in 

time, uses the sparse matrices to accommodate the biharmonic operator. Due to this, the 

CDS programs based on the CN method execute for a longer time. Hundsdorfer’s ADI 

method has the same properties as the CN method; it is a second–order accurate and 

unconditionally stable method. The aided advantage of this method is that this is faster in 

execution than the CN method. The results given in Figure 7.8 show that the simulations 

were executed successfully, based on Hundsdorfer’s method for a 5–point Laplacian 

scheme. The implementation of Hundsdorfer’s ADI method for CDS makes the CDS 

numerically more stable, fast and accurate. The simulation results given in Figure 7.8 

were executed for the time interval value 1.0t . The simulations were also executed 

for 0.1t and this method can also be used for the maximum grid size. 
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Figure 7.8: Hundsdorfer’s ADI method based on 5–point formula (Laplacian scheme A) using 

periodic boundary conditions where images (a) and (b) at 1000th and 100000th time steps 

respectively. 

 

 

Figure 7.9: The numerical values of order parameter  y,x  are plotted against the space (0 – 

128) for 1000th and 100000th time steps in images (a) and (b) respectively. Numerical values of 

 y,x  are shown for the forward Euler and Hundsdorfer’s ADI methods. The numerical values 

plotted here were obtained from the simulations shown in Figure 7.1 and 7.8.  

  

In Figure 7.9, the distribution of numerical values of order parameter  obtained from 

2D simulations (Figures 7.1 and 7.8) for the forward Euler and Hundsdorfer’s ADI 

methods are shown for comparison.  In Figure 7.9 (a), the values are compared at the 

1000th time step and in Figure 7.9 (b) the values are compared at the 100000th time step. 

In Figure 7.9 (a), the lines of the numerical values are exactly parallel, which illustrates 

(a) (b) 
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that the tendency of the numerical values obtained from the two methods is the same, 

while the methodologies are different. A negligible difference in the two lines can be 

observed in Figure 7.9 (b) between 80 and 100 on the horizontal axis. The parallel 

distribution of numerical values on the same scale in Figure 7.9 for the two different 

methods shows that there is no obvious difference for the evolution of the order parameter 

and therefore the lamellae formations are almost similar in pattern for both methods, 

which can be observed by comparing Figures 7.1 and 7.8. Also, the simulation results 

given in Figure 7.2, which were obtained from the generalized ADI method, can be 

compared with the simulation results given in Figure 7.8. The simulation results in all 

these figures are similar, but the results shown in Figure 7.8 were obtained by a stronger 

and more stable method.  

7.2 Conclusions 

Two different ADI methods have been discussed and implemented for the cell dynamics 

simulation technique using the same parameters and specifications which were used in 

the explicit forward Euler method. Two- and three–dimensional simulations were 

executed using the generalized ADI method. The generalized ADI method was executed 

using different time interval values which showed that the generalized ADI method is 

unconditionally stable. The generalized ADI method is first–order accurate and the 

implementation of the generalized ADI method was not sufficient for CDS to achieve 

second–order accuracy because the CDS equations involve nonlinear terms. Therefore, 

the Hundsdorfer’s ADI method was implemented, which is second–order accurate.  Both 

these methods are unconditionally stable. In this work, the new CDS models based on the 

ADI methods were developed using the basic formula of the 5–point Laplacian operator, 

but these can be further extended by using 9–point isotropic Laplacian schemes in 2D and 

27–point isotropic Laplacian schemes in 3D. The CDS technique for two order parameter 
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systems can also be implemented using Hundsdorfer’s ADI method in two and three 

dimensions. 
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Chapter Eight 

8 Conclusions and Future Works 

8.1 Conclusions 

The achievements of the objectives set out for this study are summarized in this section. 

The conclusions drawn from the findings of this study are given as follows:  

 The 2D 9–point isotropic stencil operators (BV(D2Q9) in three cases) were 

derived. These are novel isotropic stencil operators presented in this study which 

are more efficient.  

 The stencils PK(D2Q9), BV(D2Q9)case2 and BV(D2Q9)case3 in 2D 9–point family 

Laplacians of second–order were found to be isotropic and, among these stencils, 

the BV(D2Q9)cas2 was found to be optimally good in isotropy.   

 In 3D, the 19–point stencil (D3Q19) was found to be more isotropic and more 

stable due to allowing a larger time step value for .t   

 The stencils OP(D2Q9) and BV(D2Q9)case1 in 2D and SO(D3Q27)  and 

BV(D3Q27) in 3D have been found to be slightly anisotropic on the whole range 

k, but because of enabling larger time steps, these can be considered as valid 

alternatives.  

 Various 2D Laplacian schemes were employed in the CDS framework to analyse 

the isotropic results in lamellar morphology and in macrophase separation of a 

binary blend. The anisotropic 2D 5–point Laplacian A(D2Q5) did not perform 

well in simulations of lamellar morphology as compared to isotropic Laplacians.  

 The simulations of a binary blend based on Laplacian A(D2Q5) yielded the 

rectangular shapes of rich domains of A blcoks (red coloured subdomains) which 

were found different compred to simulations of isotropic Laplacians.  
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 The simulation snapshots obtained by using 2D 9–point Laplacian scheme 

PK(D2Q9) depicted perfect lamellae formations in microphase separation and 

circular shapes of A rich domains in macrophase separation, as with that of Oono 

and Puri’s Laplacian scheme OP(D2Q9).  The 2D 9–point isotropic stencil 

operators derived from the method of B.A.C. van Vlimmeren produced stable 

simulation results in both phenomena. 

 The results showed that two–dimensional Laplacian schemes D2Q5 (equation 

(3.57)), D2Q9 (equation (3.60) and BK(D2Q9) (equation (3.61)) are unstable for 

simulations.   

 The simulations results obtained by using 2D 9–point star Laplacain scheme 

(D2Q9)star and 17–point D2Q17 were found badly anistropic for the macrophase 

sepration of a binary blend. The simulations based on these stencils took longer 

time for executions compared to isotropic 9–point family Laplcains.  

 In 3D simulations, the Laplacian schemes D3Q19, D3Q27 and PK(D3Q27) were 

found to be stable for simulation results for the evolution of order parameter in a 

spherical morphology.  The well formed and well aligned spherical particles in 

circular shapes were observed based on these Laplacains. Laplacian scheme 

BV(D3Q27) also produced stable results compared to the original CDS choice for 

Laplacian scheme SO(D3Q27) of Shinozaki and Oono.  

 In 3D simulations, the Laplacian schemes D3Q7 and D3Q15 were found to be 

anistropic. Mostly the mixed particles and rectangular shapes were observed in a 

spherical morphology.  

 Novel models of CDS have been developed in this study by implementing implicit 

finite difference schemes which include backward Euler and Crank–Nicolson. 

The results obtained from the CN method were compared with the explicit 
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forward Euler and the implicit backward Euler methods, and the order parameter 

evolution were the same in both methods.  

 In CN methodology for CDS based on one-order parameter evolution, a 9–point 

isotropic Laplacian operator OP(D2Q9) was successfully employed and the 

simulation results obtained were the same as those obtained for the explicit 

forward Euler method.  

 In both the schemes, however, the implicit backward Euler and the CN schemes 

were stable but were found to be very slow in comparison to the forward Euler 

method.  

 Two–dimensional simulations were possible for the implicit backward Euler and 

CN methods based on CDS. The whole work was limited to a grid of size 128 x 

128; for a larger grid or three–dimensional simulations, these implicit schemes 

have limitations of computer memory due to the huge sparse matrices. 

 The CDS for a two-order parameter system was implemented in the Crank–

Nicolson scheme.  

 The 9–point isotropic Laplacian operator OP(D2Q9) of Oono and Puri’s choice 

was employed in the implementation of the CN scheme for CDS, based on two-

order parameter systems; the simulation results obtained were the same as those 

obtained for the explicit forward Euler method.   

 In the CDS technique conducted by Aya Ito for domain patterns in copolymer and 

homopolymer mixtures, the time step value 5.0t  was chosen to avoid 

numerical instability. If any other t  value was used, the system became unstable. 

By the implementation of implicit schemes, especially the CN method, it was 

possible to obtain these simulations for choosing .1t   
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 Another novel model of CDS was developed in this study by the implementation 

of the Alternating Direction Implicit (ADI) method for the modelling of one-order 

parameter in the lamellar forming of A–B diblock copolymer systems. The results 

obtained were compared with the forward Euler method.  

 As the generalized ADI method is first–order accurate, to achieve second–order 

accuracy, the Hundsdorfer’s ADI method was employed, which is also 

unconditionally stable in terms of time step. The simulation results obtained by 

using both methods were same as those obtained from forward Euler method. 

 Generally, the ADI method is faster than the CN method and the implementation 

of the ADI method for CDS makes the CDS more stable, faster and more robust.  

8.2 Future works 

The application of the research work conducted in this study and future work 

suggestions are presented as follows:  

 The mathematical methods implemented for the CDS in this work can be applied 

to the modelling of soft matters by modifying map function. These can be 

extended to the modelling of nano–structures in the field of soft materials and 

nano–technology.  

 The CDS based on implicit methods, e.g. CN and ADI, may also be applied to 

widespread applications such as the modelling of reaction–diffusion systems for 

studying chemical reactions and population dynamics, the investigation of 

spinodal decomposition, the simulation of microemulations and binary blends 

containing surfactants or hard particles, cross-linked polymer blends, and so on. 
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 The CDS methods developed in this study can be applied to investigate three-

order parameter systems and their properties based on a mixture of two more 

solvents.   

 The CDS based on implicit methods developed in this study will have wider 

applications (in terms of computer simulations) in the field of bio–mimicking.  

 The ADI method as an independent and fast algorithm is preferred for parallel 

computing and therefore the ADI implementation for CDS enables it in the 

incorporation of parallel computing where large and very complex problems can 

be simulated via CDS and molecular information can be gained.   

 The CDS based on the ADI method can be extended to current multi-core 

implementation.  Such algorithms for CDS method on distributed memory arch-

itecture can solve the scalability issue and can also execute a larger domain size 

of the CDS without giving any consideration to memory limitations. 

 Work can be carried out for CDS in the CN scheme including the shear flow and 

noise terms in the modelling of diblock copolymers with different morphologies.  

 The ADI method for CDS can be developed for 2D simulations based on a 9–

point Laplacian operator and for 3D simulations, including the shear flow and 

noise terms. 

 The CDS technique for two-order parameter systems can also be implemented 

using the ADI method in 2D and 3D and the executions of such system can be 

faster and more stable.  

 Using implicit CDS methods, various other morphologies can be investigated 

which include spheres, hexagonally-packed cylinders, and more complex 

structures such as gyroids.  
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 A new mathematical model for the CDS, based on the finite volume method, can 

be designed so that the limitations of structured/regular grids can be addressed 

and the accuracy of the results can be improved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 



 

154 
 

References 

[1] I. W. Hamley, Introduction to Soft Matter: Synthetic and Biological Self-Assembling 

Materials. John Wiley & Sons, 2013. 

[2] P. Marco, Mesoscale Modelling of Block Copolymer Systems. Germany: VDM Verlag Dr. 

Muller Aktiengesellschaft, 2010. 

[3] Y. Oono and S. Puri, "Computationally efficient modeling of ordering of quenched phases," 

Phys. Rev. Lett., vol. 58, pp. 836, 1987.  

[4] M. Pinna and A. Zvelindovsky, "Large scale simulation of block copolymers with cell 

dynamics," The European Physical Journal B, vol. 85, pp. 1-18, 2012.  

[5] M. Cheng and A. D. Rutenberg, "Maximally fast coarsening algorithms," Physical Review 

E, vol. 72, pp. 055701, 2005.  

[6] S. P. Thampi, S. Ansumali, R. Adhikari and S. Succi, "Isotropic discrete Laplacian operators 

from lattice hydrodynamics," Journal of Computational Physics, vol. 234, pp. 1-7, 2013.  

[7] M. Patra and M. Karttunen, "Stencils with isotropic discretization error for differential 

operators," Numerical Methods for Partial Differential Equations, vol. 22, pp. 936-953, 2006.  

[8] D. J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential 

Equation Approach. John Wiley & Sons, 2013. 

[9] S. P. Thampi, I. Pagonabarraga and R. Adhikari, "Lattice-Boltzmann-Langevin simulations 

of binary mixtures," Physical Review E, vol. 84, pp. 046709, 2011.  

[10] D. D. Chung, Applied Materials Science: Applications of Engineering Materials in 

Structural, Electronics, Thermal, and Other Industries. CRC Press, 2001. 

[11] V. Zackay, E. Parker, J. Morris and G. Thomas, "The application of materials science to the 

design of engineering alloys. A Review," Materials Science and Engineering, vol. 16, pp. 201-

221, 1974.  

[12] National Research Council staff, Mathematical Research in Material Science. National 

Academies Press, 1993. 

[13] S. C. Glotzer and W. Paul, "Molecular and mesoscale simulation methods for polymer 

materials," Annual Review of Materials Research, vol. 32, pp. 401-436, 2002.  

[14] X. He, M. Song, H. Liang and C. Pan, "Self-assembly of the symmetric diblock copolymer 

in a confined state: Monte Carlo simulation," J. Chem. Phys., vol. 114, pp. 10510-10513, 2001.  

[15] B. Hayes, "The Science of Computing: The Wheel of Fortune," Am. Sci., vol. 81, pp. 114-

118, 1993.  

[16] U. Landman, R. Barnett and W. Luedtke, "Simulations of materials: from electrons to 

friction," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical 

and Engineering Sciences, vol. 341, pp. 337-350, 1992.  



 

155 
 

[17] F. H. Stillinger and T. A. Weber, "Molecular dynamics study of chemical reactivity in 

liquid sulfur," J. Phys. Chem., vol. 91, pp. 4899-4907, 1987.  

[18] R. Evans, "The nature of the liquid-vapour interface and other topics in the statistical 

mechanics of non-uniform, classical fluids," Adv. Phys., vol. 28, pp. 143-200, 1979.  

[19] M. Wertheim, "Integral equation for the Smith–Nezbeda model of associated fluids," J. 

Chem. Phys., vol. 88, pp. 1145-1155, 1988.  

[20] J. Gunton, M. San Miguel, P. S. Sahni, C. Domb and J. Lebowitz, "Phase transitions and 

critical phenomena," 1983.  

[21] E. Helfand, S. M. Bhattacharjee and G. H. Fredrickson, "Molecular weight dependence of 

polymer interfacial tension and concentration profile," J. Chem. Phys., vol. 91, pp. 7200-7208, 

1989.  

[22] K. M. Hong and J. Noolandi, "Theory of phase equilibriums in systems containing block 

copolymers," Macromolecules, vol. 16, pp. 1083-1093, 1983.  

[23] A. A. Wheeler, W. J. Boettinger and G. B. McFadden, "Phase-field model for isothermal 

phase transitions in binary alloys," Physical Review A, vol. 45, pp. 7424, 1992.  

[24] A. Bray, "Theory of phase ordering kinetics," Physica A: Statistical Mechanics and its 

Applications, vol. 194, pp. 41-52, 1993.  

[25] C. Harrison, D. H. Adamson, Z. Cheng, J. M. Sebastian, S. Sethuraman, D. A. Huse, R. A. 

Register and P. M. Chaikin, "Mechanisms of ordering in striped patterns," Science, vol. 290, pp. 

1558-1560, Nov 24, 2000.  

[26] S. Puri and N. Parekh, "Non-algebraic domain growth in binary alloys with quenched 

disorder," Journal of Physics A: Mathematical and General, vol. 25, pp. 4127, 1992.  

[27] L. Tsarkova, G. A. Sevink and G. Krausch, "Nanopattern evolution in block copolymer 

films: Experiment, simulations and challenges," in Complex Macromolecular Systems 

IAnonymous Springer, 2010, pp. 33-73. 

[28] H. Emmerich, "Advances of and by phase-field modelling in condensed-matter physics," 

Adv. Phys., vol. 57, pp. 1-87, 2008.  

[29] A. N. Singh, R. D. Thakre, J. C. More, P. K. Sharma and Y. Agrawal, "Block Copolymer 

Nanostructures and Their Applications: A Review," Polym. Plast. Technol. Eng., vol. 54, pp. 

1077-1095, 2015.  

[30] T. P. Lodge, "Block copolymers: past successes and future challenges," Macromolecular 

Chemistry and Physics, vol. 204, pp. 265-273, 2003.  

[31] S. Tallegas, T. Baron, G. Gay, C. Aggrafeil, B. Salhi, T. Chevolleau, G. Cunge, A. Bsiesy, 

R. Tiron and X. Chevalier, "Block copolymer technology applied to nanoelectronics," Physica 

Status Solidi (C), vol. 10, pp. 1195-1206, 2013.  

[32] M. A. Hillmyer, "Nanoporous materials from block copolymer precursors," in Block 

Copolymers IIAnonymous Springer, 2005, pp. 137-181. 



 

156 
 

[33] A. Urbas, R. Sharp, Y. Fink, E. L. Thomas, M. Xenidou and L. J. Fetters, "Tunable block 

copolymer/homopolymer photonic crystals," Adv Mater, vol. 12, pp. 812-814, 2000.  

[34] D. J. Arriola, E. M. Carnahan, P. D. Hustad, R. L. Kuhlman and T. T. Wenzel, "Catalytic 

production of olefin block copolymers via chain shuttling polymerization," Science, vol. 312, 

pp. 714-719, May 5, 2006.  

[35] C. Park, J. Yoon and E. L. Thomas, "Enabling nanotechnology with self assembled block 

copolymer patterns," Polymer, vol. 44, pp. 6725-6760, 2003.  

[36] R. A. Segalman, "Patterning with block copolymer thin films," Materials Science and 

Engineering: R: Reports, vol. 48, pp. 191-226, 2005.  

[37] J. Dawkins, "Block copolymers: synthetic strategies, physical properties and applications. 

N Hadjichristidis, S Pispas and GA Floudas. John Wiley & Sons, Ltd, Chichester, UK, 2002. pp 

440, ISBN 0‐471‐39436‐x," Polym. Int., vol. 53, pp. 232-232, 2004.  

[38] F. S. Bates, "Polymer-polymer phase behavior," Science, vol. 251, pp. 898-905, Feb 22, 

1991.  

[39] X. Li, J. Guo, Y. Liu and H. Liang, "Microphase separation of diblock copolymer poly 

(styrene-b-isoprene): A dissipative particle dynamics simulation study," J. Chem. Phys., vol. 

130, pp. 74908, 2009.  

[40] S. Lin, N. Numasawa, T. Nose and J. Lin, "Brownian molecular dynamics simulation on 

self-assembly behavior of rod-coil diblock copolymers," Macromolecules, vol. 40, pp. 1684-

1692, 2007.  

[41] S. Ren and I. Hamley, "Cell dynamics simulations of microphase separation in block 

copolymers," Macromolecules, vol. 34, pp. 116-126, 2001.  

[42] T. L. Chantawansri, A. W. Bosse, A. Hexemer, H. D. Ceniceros, C. J. García-Cervera, E. J. 

Kramer and G. H. Fredrickson, "Self-consistent field theory simulations of block copolymer 

assembly on a sphere," Physical Review E, vol. 75, pp. 031802, 2007.  

[43] G. Gonnella, E. Orlandini and J. Yeomans, "Spinodal decomposition to a lamellar phase: 

effects of hydrodynamic flow," Phys. Rev. Lett., vol. 78, pp. 1695, 1997.  

[44] G. Gonnella, E. Orlandini and J. Yeomans, "Lattice Boltzmann simulations of lamellar and 

droplet phases," Physical Review E, vol. 58, pp. 480, 1998.  

[45] S. Puri and H. Frisch, "Segregation dynamics of binary mixtures with simple chemical 

reactions," Journal of Physics A: Mathematical and General, vol. 27, pp. 6027, 1994.  

[46] Y. Oono and S. Puri, "Study of phase-separation dynamics by use of cell dynamical 

systems. I. Modeling," Physical Review A, vol. 38, pp. 434, 1988.  

[47] A. Shinozaki and Y. Oono, "Spinodal decomposition in 3-space," Physical Review E, vol. 

48, pp. 2622, 1993.  

[48] S. Puri and Y. Oono, "Study of phase-separation dynamics by use of cell dynamical 

systems. II. Two-dimensional demonstrations," Physical Review A, vol. 38, pp. 1542, 1988.  



 

157 
 

[49] I. W. Hamley, "Cell dynamics simulations of block copolymers," Macromolecular Theory 

and Simulations, vol. 9, pp. 363-380, 2000.  

[50] N. Parekh and S. Puri, "A new numerical scheme for the Fisher equation," Journal of 

Physics A: Mathematical and General, vol. 23, pp. L1085, 1990.  

[51] H. Furukawa, "A dynamic scaling assumption for phase separation," Adv. Phys., vol. 34, 

pp. 703-750, 1985.  

[52] M. San Miguel, M. Grant and J. D. Gunton, "Phase separation in two-dimensional binary 

fluids," Physical Review A, vol. 31, pp. 1001, 1985.  

[53] M. Bahiana and Y. Oono, "Cell dynamical system approach to block copolymers," 

Physical Review A, vol. 41, pp. 6763, 1990.  

[54] H. Kodama and M. Doi, "Shear-induced instability of the lamellar phase of a block 

copolymer," Macromolecules, vol. 29, pp. 2652-2658, 1996.  

[55] S. Ren, I. Hamley, G. Sevink, A. Zvelindovsky and J. Fraaije, "Mesoscopic simulations of 

lamellar orientation in block copolymers," Macromolecular Theory and Simulations, vol. 11, 

pp. 123-127, 2002.  

[56] T. Uneyama and M. Doi, "Density functional theory for block copolymer melts and 

blends," Macromolecules, vol. 38, pp. 196-205, 2005.  

[57] T. Uneyama, "Density functional simulation of spontaneous formation of vesicle in block 

copolymer solutions," J. Chem. Phys., vol. 126, pp. 114902, 2007.  

[58] T. Ohta and K. Kawasaki, "Equilibrium morphology of block copolymer melts," 

Macromolecules, vol. 19, pp. 2621-2632, 1986.  

[59] T. Ohta and A. Ito, "Dynamics of phase separation in copolymer-homopolymer mixtures," 

Physical Review E, vol. 52, pp. 5250, 1995.  

[60] T. Ohta and K. Kawasaki, "Comment on the free energy functional of block copolymer 

melts in the strong segregation limit," Macromolecules, vol. 23, pp. 2413-2414, 1990.  

[61] N. Maurits, J. Fraaije, P. Altevogt and O. Evers, "Simple numerical quadrature rules for 

Gaussian chain polymer density functional calculations in 3D and implementation on parallel 

platforms," Computational and Theoretical Polymer Science, vol. 6, pp. 1-8, 1996.  

[62] A. A. Joshi, D. W. Shattuck, P. M. Thompson and R. M. Leahy, "A parameterization-based 

numerical method for isotropic and anisotropic diffusion smoothing on non-flat surfaces," IEEE 

Trans. Image Process., vol. 18, pp. 1358-1365, 2009.  

[63] B. Kamgar-Parsi, B. Kamgar-Parsi and A. Rosenfeld, "Optimally isotropic Laplacian 

operator," IEEE Trans. Image Process., vol. 8, pp. 1467-1472, 1999.  

[64] A. H. Panaretos, J. T. Aberle and R. E. Díaz, "The effect of the 2-D Laplacian operator 

approximation on the performance of finite-difference time-domain schemes for Maxwell’s 

equations," Journal of Computational Physics, vol. 227, pp. 513-536, 2007.  



 

158 
 

[65] F. Xiao, X. Tang, L. Wang and H. Ma, "2-D isotropic finite difference time domain 

method," in Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference 

Proceedings, 2005, pp. 4 pp. 

[66] A. Kumar, "Isotropic finite-differences," Journal of Computational Physics, vol. 201, pp. 

109-118, 2004.  

[67] C. Chow, "Discretization errors and rotational symmetry: the Laplacian operator on non-

hypercubical lattices," Nuclear Physics B, vol. 547, pp. 281-302, 1999.  

[68] A. Spitzbart and N. Macon, "Numerical differentiation formulas," The American 

Mathematical Monthly, vol. 64, pp. 721-723, 1957.  

[69] R. L. Burden and J. D. Faires, "Numerical analysis," 1993.  

[70] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference 

Methods. Oxford university press, 1985. 

[71] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: 

Steady-State and Time-Dependent Problems. Siam, 2007. 

[72] J. Crank and P. Nicolson, "A practical method for numerical evaluation of solutions of 

partial differential equations of the heat-conduction type," in Mathematical Proceedings of the 

Cambridge Philosophical Society, 1947, pp. 50-67. 

[73] P. Wilmott, S. Howison and J. Dewynne, The Mathematics of Financial Derivatives: A 

Student Introduction. Cambridge University Press, 1995. 

[74] P. Moin, Fundamentals of Engineering Numerical Analysis. Cambridge University Press, 

2010. 

[75] D. W. Peaceman and J. Rachford Henry H, "The numerical solution of parabolic and 

elliptic differential equations," Journal of the Society for Industrial and Applied Mathematics, 

vol. 3, pp. 28-41, 1955.  

[76] S. Sirca and M. Horvat, "Computational Methods for Physicists," 2012.  

[77] (). The Heat equation in 2 and 3 spatial dimensions. Available: 

http://www.cems.uvm.edu/~tlakoba/math337/notes_15.pdf. 

[78] W. H. Press, Numerical Recipes with Source Code CD-ROM 3rd Edition: The Art of 

Scientific Computing. Cambridge University Press, 2007. 

[79] I. J. Craig and A. D. Sneyd, "An alternating-direction implicit scheme for parabolic 

equations with mixed derivatives," Comput. Math. Appl., vol. 16, pp. 341-350, 1988.  

[80] W. Lee, "Tridiagonal matrices: Thomas algorithm," MS6021, Scientific Computation, 

University of Limerick, . 

[81] J. Douglas, "Alternating direction methods for three space variables," Numerische 

Mathematik, vol. 4, pp. 41-63, 1962.  

http://www.cems.uvm.edu/~tlakoba/math337/notes_15.pdf


 

159 
 

[82] J. Douglas and J. E. Gunn, "A general formulation of alternating direction methods," 

Numerische Mathematik, vol. 6, pp. 428-453, 1964.  

[83] J. Douglas Jim, "On the Numerical Integration of ∂^2u∂x^2 ∂^2u∂y^2=∂u∂t by Implicit 

Methods," Journal of the Society for Industrial and Applied Mathematics, vol. 3, pp. 42-65, 

1955.  

[84] S. Conte, "Numerical solution of vibration problems in two space variables," Pacific 

J.Math, vol. 7, pp. 1535-1544, 1957.  

[85] J. Douglas and H. H. Rachford, "On the numerical solution of heat conduction problems in 

two and three space variables," Transactions of the American Mathematical Society, vol. 82, pp. 

421-439, 1956.  

[86] M. Eres, L. Schwartz and R. Roy, "Fingering phenomena for driven coating films," Physics 

of Fluids (1994-Present), vol. 12, pp. 1278-1295, 2000.  

[87] L. W. Schwartz, "Hysteretic effects in droplet motions on heterogeneous substrates: direct 

numerical simulation," Langmuir, vol. 14, pp. 3440-3453, 1998.  

[88] L. W. Schwartz, R. V. Roy, R. R. Eley and S. Petrash, "Dewetting patterns in a drying 

liquid film," J. Colloid Interface Sci., vol. 234, pp. 363-374, 2001.  

[89] M. Eres, D. Weidner and L. Schwartz, "Three-dimensional direct numerical simulation of 

surface-tension-gradient effects on the leveling of an evaporating multicomponent fluid," 

Langmuir, vol. 15, pp. 1859-1871, 1999.  

[90] Y. Oono, S. Puri, C. Yeung and M. Bahiana, "Cell dynamical system study of phase 

separation dynamics," Journal of Applied Crystallography, vol. 21, pp. 883-885, 1988.  

[91] A. Shinozaki and Y. Oono, "Spinodal decomposition in a Hele-Shaw cell," Physical 

Review A, vol. 45, pp. R2161, 1992.  

[92] T. Ohta, Y. Enomoto, J. L. Harden and M. Doi, "Anomalous rheological behavior of 

ordered phases of block copolymers. 1," Macromolecules, vol. 26, pp. 4928-4934, 1993.  

[93] J. Feng and E. Ruckenstein, "Long-range ordered structures in diblock copolymer melts 

induced by combined external fields," J. Chem. Phys., vol. 121, pp. 1609-1625, 2004.  

[94] D. Hale, "Compact finite-difference approximations for anisotropic image smoothing and 

painting," Matrix, vol. 500, pp. D12, . 

[95] S. Fomel and J. F. Claerbout, "Exploring three-dimensional implicit wavefield 

extrapolation with the helix transform," Stanford Exploration Project, vol. 95, pp. 43-60, 1997.  

[96] (February 22, 2012). Difference Between Isotropic and Anisotropic. Available: 

http://www.differencebetween.net/science/chemistry-science/difference-between-isotropic-and-

anisotropic/. 

[97] T. Petrie and J. Randall, "Spherical isotropy representations," Publications Mathématiques 

De L'IHÉS, vol. 62, pp. 5-40, 1985.  

http://www.differencebetween.net/science/chemistry-science/difference-between-isotropic-and-anisotropic/
http://www.differencebetween.net/science/chemistry-science/difference-between-isotropic-and-anisotropic/


 

160 
 

[98] M. Abramowitz and I. A. Stegun, "Handbook of mathematical functions," Applied 

Mathematics Series, vol. 55, pp. 62, 1966.  

[99] A. Kumar, "Isotropic averaging for cell-dynamical-system simulation of spinodal 

decomposition," Pramana, vol. 61, pp. 1-5, 2003.  

[100] H. Tomita, "Preservation of isotropy at the mesoscopic stage of phase separation 

processes," Progress of Theoretical Physics, vol. 85, pp. 47-56, 1991.  

[101] P. Teixeira and B. Mulder, "Comment on``Study of phase-separation dynamics by use of 

cell dynamical systems. I. Modeling''," Physical Review E, vol. 55, pp. 3789, 1997.  

[102] B. Van Vlimmeren and J. Fraaije, "Calculation of noise distribution in mesoscopic 

dynamics models for phase separation of multicomponent complex fluids," Comput. Phys. 

Commun., vol. 99, pp. 21-28, 1996.  

[103] J. Fraaije, B. Van Vlimmeren, N. Maurits, M. Postma, O. Evers, C. Hoffmann, P. 

Altevogt and G. Goldbeck-Wood, "The dynamic mean-field density functional method and its 

application to the mesoscopic dynamics of quenched block copolymer melts," J. Chem. Phys., 

vol. 106, pp. 4260-4269, 1997.  

[104] T. Rogers, K. Elder and R. C. Desai, "Numerical study of the late stages of spinodal 

decomposition," Physical Review B, vol. 37, pp. 9638, 1988.  

[105] A. Zvelindovsky and G. Sevink, "Sphere morphology of block copolymer systems under 

shear," EPL (Europhysics Letters), vol. 62, pp. 370, 2003.  

[106] I. Rychkov, "Block copolymers under shear flow," Macromolecular Theory and 

Simulations, vol. 14, pp. 207-242, 2005.  

[107] T. P. Witelski and M. Bowen, "ADI schemes for higher-order nonlinear diffusion 

equations," Applied Numerical Mathematics, vol. 45, pp. 331-351, 2003.  

[108] L. Calatroni, B. Düring and C. Schönlieb, "ADI splitting schemes for a fourth-order 

nonlinear partial differential equation from image processing," arXiv Preprint arXiv:1305.5362, 

2013.  

[109] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. 

Pozo, C. Romine and H. Van der Vorst, Templates for the Solution of Linear Systems: Building 

Blocks for Iterative Methods. Siam, 1994. 

[110] Z. Ling-Cui, S. Min-Na, P. Jun-Xing, W. Bao-Feng, Z. Jin-Jun and W. Hai-Shun, 

"Copolymer—homopolymer mixtures in a nanopore," Chinese Physics B, vol. 22, pp. 096401, 

2013.  

[111] A. Ito, "Domain patterns in copolymer-homopolymer mixtures," Physical Review E, vol. 

58, pp. 6158, 1998.  

[112] J. Zhang, G. Jin and Y. Ma, "Wetting-driven structure ordering of a 

copolymer/homopolymer/nanoparticle mixture in the presence of a modulated potential," The 

European Physical Journal E, vol. 18, pp. 359-365, 2005.  



 

161 
 

[113] A. L. Bertozzi, "The mathematics of moving contact lines in thin liquid films," Notices of 

the AMS, vol. 45, pp. 689-697, 1998.  

[114] C. M. Elliott and D. A. French, "Numerical studies of the Cahn-Hilliard equation for 

phase separation," IMA Journal of Applied Mathematics, vol. 38, pp. 97-128, 1987.  

[115] J. M. Hyman, B. Nicolaenko and S. Zaleski, "Order and complexity in the Kuramoto-

Sivashinsky model of weakly turbulent interfaces," Physica D, vol. 23, pp. 265-292, 1986.  

[116] A. Novick-Cohen and L. A. Segel, "Nonlinear aspects of the Cahn-Hilliard equation," 

Physica D, vol. 10, pp. 277-298, 1984.  

[117] S. McKee and A. Mitchell, "Alternating direction methods for parabolic equations in two 

space dimensions with a mixed derivative," The Computer Journal, vol. 13, pp. 81-86, 1970.  

[118] R. Mohanty and M. Jain, "High accuracy difference schemes for the system of two space 

nonlinear parabolic differential equations with mixed derivatives and variable coefficients," J. 

Comput. Appl. Math., vol. 70, pp. 15-32, 1996.  

[119] S. D. Conte and R. T. Dames, "On an alternating direction method for solving the plate 

problem with mixed boundary conditions," Journal of the ACM (JACM), vol. 7, pp. 264-273, 

1960.  

[120] S. D. Conte and R. T. Dames, "An alternating direction method for solving the 

biharmonic equation," Mathematical Tables and Other Aids to Computation, vol. 12, pp. 198-

205, 1958.  

[121] A. R. Mitchell and D. F. Griffiths, The Finite Difference Method in Partial Differential 

Equations. John Wiley, 1980. 

[122] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations. Siam, 

2004. 

[123] W. Hundsdorfer, "Accuracy and stability of splitting with stabilizing corrections," Applied 

Numerical Mathematics, vol. 42, pp. 213-233, 2002.  

[124] van der Houwen, Piet J and J. G. Verwer, "One-step splitting methods for semi-discrete 

parabolic equations," Computing, vol. 22, pp. 291-309, 1979.  

[125] W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection-

Diffusion-Reaction Equations. Springer Science & Business Media, 2013. 

[126] K. In't Hout and B. Welfert, "Unconditional stability of second-order ADI schemes 

applied to multi-dimensional diffusion equations with mixed derivative terms," Applied 

Numerical Mathematics, vol. 59, pp. 677-692, 2009.  

  

 

 

 



 

162 
 

Appendix A  

2D CDS Code (Default) 

The Input File for the CDS Fortran Program. It is general for all 

methodologies for 2D. 

'New simulation (0) or continue a previous one (1)' 

0 

'Input filename containing starting atomic configuration (max 80 c) 

for 1' 

restartfile.dat 

'Insert D' 

0.7d0 

'Insert A' 

1.5d0 

'Insert B' 

0.02d0 

'Insert f' 

0.48d0 

'Insert Tau' 

0.36d0 

'Insert v' 

2.3d0 

'Insert u' 

0.38d0 

'Insert Grid size' 

128,128,1 

'Insert the deltat' 

1.d0  

'Total TimeSteps' 

1000000 

'Save order parameter configuration for restarting every ... steps' 

1000 

'Write pos-neg order parameter in the following file' 

'final.bak' 

'Saving pos-neg order parameter in the following steps(max 10;5 for 

line):' 

200,700,1000,3000,5000 

10000,20000,50000,70000,100000 

'Insert file record positive' 

'final2.bak' 

'Input the first name (you must input 8 characters)' 

'cdsnew01' 

'Input the second name (you must input 2 characters tau only 28)' 

20 
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The CDS Fortran Program 

c        

c ***************************************************************** 

c   CDS 2D simulation source code 

c ***************************************************************** 

    

        program order_parameter 

        implicit none 

        double precision pxi(0:300,0:300) 

        double precision pxi0(0:300,0:300) 

        double precision zxi(0:300,0:300) 

        double precision apxi1(0:300,0:300) 

        double precision aapxi1(0:300,0:300) 

        double precision bapxi1(0:300,0:300) 

        double precision capxi1(0:300,0:300) 

        double precision apxi2(0:300,0:300) 

        double precision aapxi2(0:300,0:300) 

        double precision bapxi2(0:300,0:300) 

        double precision capxi2(0:300,0:300) 

        double precision f(0:300,0:300) 

        double precision map1(0:300,0:300) 

        double precision mxi1(0:300,0:300) 

        double precision z(0:300) 

        double precision h1,h2,h3 

        double precision hx(0:100) 

        double precision hy(0:100) 

        double precision hz(0:100) 

        double precision tau,v,u,omega,omega0 

        double precision a,b,d,r,e,sh,e0,sh0,c1,c2,c3 

 

c ***************************************************************** 

c   Boudary condictions declarations 

c ***************************************************************** 

         

        integer upx(0:300),upy(0:300) 

        integer downx(0:300),downy(0:300) 

        double precision m(0:300) 

        integer m1(0:300) 

 

c ***************************************************************** 

c     Parameters for the CD simualtion 

c*****************************************************************         

        integer i,j,k,s,nx,ny,nz,ex,ey,ez,seed,t,time,conf,ktime 

        integer s1,s2,s3,s4,s5,s6,s7,s8,s9,s10 

        integer everyconf,ftime,bcx,bcy,bcz,ht,R2 

        character*80 label 

        character*80 finalposition,fileconf,writeconf 

 

c****************************************************************** 

c     Parameter to record data(order parameter)         

c****************************************************************** 

        real delapse,dtime,t1(2) 

        character*8 name1 

        character*2 name2 

        character*7 name3 

        character*29 name4 

        integer ma,esse2 

 

c******************************************************************         

c      File open  
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c******************************************************************         

 

      open(unit=98,file = 'cds.in', status='old',form='formatted') 

 

c********************************************************  

c Read input data from file CDS.IN 

c********************************************************  

 

        read(98,*) label 

        read(98,*) conf 

        read(98,*) label 

        read(98,*) fileconf 

        read(98,*) label 

        read(98,*) d 

        read(98,*) label 

        read(98,*) a 

        read(98,*) label 

        read(98,*) b 

        read(98,*) label 

        read(98,*) r 

        read(98,*) label 

        read(98,*) tau 

        read(98,*) label 

        read(98,*) v 

        read(98,*) label 

        read(98,*) u 

        read(98,*) label 

        read(98,*) nx,ny,nz 

        read(98,*) label 

        read(98,*) eta 

        read(98,*) label 

        read(98,*) e 

        read(98,*) label 

        read(98,*) sh 

        read(98,*) label 

        read(98,*) omega 

        read(98,*) label 

        read(98,*) bcx,bcy,bcz 

        read(98,*) label 

        read(98,*) h1,h2,h3 

        read(98,*) label 

        read(98,*) deltat 

        read(98,*) label 

        read(98,*) time 

        read(98,*) label 

        read(98,*) everyconf 

        read(98,*) label 

        read(98,*) writeconf 

        read(98,*) label 

        read(98,*) s1,s2,s3,s4,s5 

        read(98,*) s6,s7,s8,s9,s10 

        read(98,*) label 

        read(98,*) finalposition 

        read(98,*) label 

        read(98,*) name1 

        read(98,*) label 

        read(98,*) r2 
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c****************************************************************** 

c   Random value initialization for Pxi 

c****************************************************************** 

 

  ktime=0 

        do i = 1, nx 

           do j =1, ny 

                 call random_number(temp) 

                 if (temp.ge.0 .and. temp.lt.0.5) then 

                   Pxi(i,j) = 0.3d0 

                 else 

                   Pxi(i,j) = -0.3d0 

                 endif 

           enddo 

        enddo 

 

c****************************************************************** 

c   Costant numbers 

c****************************************************************** 

 

        pi2=2.d0*dacos(-1.d0) 

        ma=0 

        name2=char(r2) 

        write(name2,'(i2.2)') r2 

 

c****************************************************************** 

c   Laplacian weights 

c****************************************************************** 

 

  c1=1.0d0/6.0d0 

              c2=1.0d0/12.0d0 

c*************************************************************** 

c These following steps are to take boundary conditions into account 

c    For x  

c**************************************************************** 

 

        if (nx.eq.1) then 

           do s=1 , nx 

              upx(s) = s+1 

              downx(s) = s-1 

           enddo 

              dO j=1,ny 

                 do i=1,nx 

                    pxi0(downx(i),j)=0.0d0 

                    pxi0(upx(i),j)=0.0d0 

                    pxi(downx(i),j)=0.0d0 

                    pxi(upx(i),j)=0.0d0 

                    map1(downx(i),j)=0.0d0 

                    map1(upx(i),j)=0.0d0 

                 enddo 

              enddo 

            

        c1=1.0d0/6.0d0 

        c2=1.0d0/12.0d0 

 

        else 

           do s=1 , nx 

              upx (s) = s+1 

              downx (s) = s-1 

           end do 

           if(bcx.eq.0) then 
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              upx (nx) = 1 

              downx (1) = nx 

           else 

              upx (nx) =nx 

              downx (1) = 1 

           end if 

        end if 

c************************************************************** 

c      FOR y  

c************************************************************** 

        if (ny.eq.1) then 

           do s=1 , ny 

              upy(s) = s+1 

              downy(s) =s-1 

           enddo 

               do j=1,ny 

                 do i=1,nx 

                    pxi0(i,downy(j))=0.0d0 

                    pxi0(i,upy(j))=0.0d0 

                    pxi(i,downy(j))=0.0d0 

                    pxi(i,upy(j))=0.0d0 

                    map1(i,downy(j))=0.0d0 

                    map1(i,upy(j))=0.0d0 

                 enddo 

              enddo 

            

           c1=1.0d0/6.0d0 

           c2=1.0d0/12.0d0 

 

        else 

           do s=1 , ny 

              upy (s) = s+1 

              downy (s) = s-1 

           enddo 

           if(bcy.eq.0) then 

              upy (ny) = 1 

              downy (1) = ny 

           else 

              upy (ny) = ny 

              downy (1) = 1 

           endif 

        endif 

 

c ****************************************************************** 

c       Now it starts to run time (t) evolution 

c ****************************************************************** 

 

       do t = ktime, time-1,1 

 

 

c***************************************************************** 

c       This following step is to calculate First Laplacian 

c    APxi1 = [<< Pxi >> - Pxi] 

c***************************************************************** 

 

              do j=1,ny 

                 do i=1,nx 

                    pxi0(i,j)=pxi(i,j) 

                    aapxi1(i,j)=c1*(pxi(upx(i),j) 

     1              + pxi(downx(i),j) 

     1              + pxi(i,upy(j))+pxi(i,downy(j))) 
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                    bapxi1(i,j)=c2*(pxi(downx(i),upy(j)) 

     1              +pxi(downx(i),downy(j)) 

1 +pxi(upx(i),upy(j))+pxi(upx(i),downy(j))) 

 

                    apxi1(i,j) = aapxi1(i,j) +bapxi1(i,j) 

 

                 enddo 

              enddo   

 

c***************************************************************** 

c       This following step is to calculate map function 

c***************************************************************** 

           

              do j=1,ny 

                 do i=1,nx 

                    f(i,j) = (tau-a*((1-2*r)**2))*pxi(i,j) 

     1              -v*(1-2*r)*(pxi(i,j)**2)-u*(pxi(i,j)**3) 

                 enddo 

              enddo 

c***************************************************************** 

c         This following step is to calculate  

c         Map = {f(Pxi) + D[<<Pxi>> - Pxi] - Pxi} 

c***************************************************************** 

            

               do j=1,ny 

                 do i=1,nx 

                     map1(i,j) = f(i,j) + d*(apxi1(i,j) 

     1               - pxi(i,j)) 

                 enddo 

              enddo 

c***************************************************************** 

c The following is to calculate outer Laplacian on map function 

c***************************************************************** 

            

          do j=1,ny 

              do i=1,nx 

                 aapxi2(i,j)=c1*(map1(upx(i),j) 

     1           +map1(downx(i),j) 

     1           +map1(i,upy(j))+map1(i,downy(j))) 

 

                 bapxi2(i,j)=c2*(map1(downx(i),upy(j)) 

     1           +map1(downx(i),downy(j)) 

     1           +map1(upx(i),upy(j))+map1(upx(i),downy(j))) 

 

                 apxi2(i,j)=aapxi2(i,j) 

     1           +bapxi2(i,j)+capxi2(i,j) 

             enddo 

        enddo        

c****************************************************************** 

c This following step is to calculate whole equation for Pxi(t+1,n) 

c****************************************************************** 

   

              do j=1,ny 

                 do i=1,nx 

                    pxi(i,j) = pxi0(i,j)+deltat* 

     1              ( - b * pxi(i,j)  +map1(i,j) - APxi2(i,j)) 

                 enddo 

              enddo 
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c********************************************************* 

c    writing Pxi values in files for time steps  

c********************************************************* 

           esse =(t+1)*deltat 

           esse2=esse 

           name3=char(esse2) 

           write(name3,'(I7.7)') esse2 

           name4=name1//'_pxi.'//name2//'_t'//name3//'.txt' 

           if( esse .lt. 100.D0 ) then 

              if( mod(t+1, int(10.D0/deltat)) .eq. 0 ) then 

                  ma=ma+1 

                  open(ma,file=name4) 

                  write(ma,*) "#Grid", nx,ny 

                  do i = 1, Nx 

                     do j = 1, Ny 

                        write (ma,*) pxi(i,j) 

                        enddo 

                     enddo 

              close(ma) 

              endif 

           endif 

           if( esse .lt. 1000.D0 ) then 

              if( mod(t+1, int(100.D0/deltat)) .eq. 0 ) then 

                   ma=ma+1 

                   open(ma,file=name4) 

                   write(ma,*) "#Grid", nx,ny 

                   do i = 1, nx 

                      do j = 1, ny 

                         write (ma,*) pxi(i,j) 

                      enddo 

                   enddo 

                   close(ma) 

              endif 

            elseif( esse .lt. 10000.D0 ) then 

              if( mod(t+1, int(1000.D0/deltat)) .eq. 0 )then 

                 ma=ma+1 

                 open(ma,file=name4) 

                 write(ma,*) "#Grid", nx,ny 

                 do i = 1, nx 

                    do j = 1, ny 

                       write (ma,*) pxi(i,j) 

                    enddo 

                 enddo 

                 close(ma) 

              endif 

           elseif( esse .le. 1000000.D0) then 

              if( mod(t+1, int(10000.D0/deltat)) .eq. 0) then 

                   ma=ma+1 

                   open(ma,file=name4) 

                   write(MA,*) "#Grid", Nx,Ny 

                   do i = 1, Nx 

                      do j = 1, Ny 

                         write (Ma,*) pxi(i,j) 

                       enddo 

                   enddo 

              close(ma) 

              endif 

           else 

              if(mod(t+1,int(100000.D0/deltat)) .eq. 0)  then 

                   ma=ma+1 

                   open(ma,file=name4) 
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                   write(MA,*) "#Grid", Nx,Ny 

                   do i = 1, nx 

                      do j = 1, ny 

                          write (ma,*) pxi(i,j) 

                      enddo 

                   enddo 

              close(ma) 

              endif 

           endif 

           If ( esse .le. 10000000.D0) then 

              if( MOD(t+1,int(1000000.D0/deltat)) .eq. 0)  then 

                 ma=ma+1 

                 open(ma,file=name4) 

                 if ((nz.eq.1)) then 

                    write(ma,*) "#Grid", nx,ny 

                    do i = 1, nx 

                       do j = 1, ny 

                          write (ma,*) pxi(i,j) 

                       enddo 

                    enddo 

                  close(ma) 

                 endif 

              endif 

              If(ma.gt.80) then 

                 ma=0 

              endif 

           endif 

       enddo      

 

   end     

c********************End of source Code************ 
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Appendix B  

CDS Code for 9–point Star Laplacain Scheme 

c        

c ***************************************************************** 

c    Here is presented the segment of the code from Appendix A. Only  

c    the Laplacian scheme simulation part is changed according 9 –  

c    point star scaling.  

c ***************************************************************** 

 

c***************************************************************** 

c       This following step is to calculate First Laplacian 

c    APxi1 = [<< Pxi >> - Pxi] 

c***************************************************************** 

 

              do j=1,ny 

                 do i=1,nx 

                    pxi0(i,j)=pxi(i,j) 

                    aapxi1(i,j)=c1*(pxi(upx(i),j) 

     1              + pxi(downx(i),j) + pxi(i,upy(j))+pxi(i,downy(j)) 

 

                    aaapxi1(i,j)=c2*(pxi(upx(i+1),j) 

     1              + pxi(downx(i-1),j) 

     1              + pxi(i,upy(j+1))+pxi(i,downy(j-1)) 

 

                    apxi1(i,j)=aapxi1(i,j)+aaapxi1(i,j) 

      

c    *************************************************************** 

 

                 enddo 

              enddo 

 

c***************************************************************** 

c The following is to calculate outer Laplacian on map function 

c***************************************************************** 

 

              do j=1,ny 

                 do i=1,nx 

 

                    aapxi2(i,j)=c1*(map1(upx(i),j) 

     1              +map1(downx(i),j) 

     1              +map1(i,upy(j))+map1(i,downy(j)) 

 

 

                    aaapxi2(i,j)=c2*(map1(upx(i+1),j) 

     1              +map1(downx(i+1),j) 

     1              +map1(i,upy(j+1))+map1(i,downy(j+1)) 

      

                    apxi2(i,j)=aapxi2(i,j)+aaapxi2(i,j) 

    

                 enddo 

              enddo 
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Appendix C  

CDS Code for 17–point Laplacian Scheme 

c        

c ***************************************************************** 

c    Here is presented the segment of the code from Appendix A. Only  

c    the Laplacian scheme simulation part is changed according 17 –  

c    point scaling.  

c ***************************************************************** 

 

c***************************************************************** 

c       This following step is to calculate First Laplacian 

c    APxi1 = [<< Pxi >> - Pxi] 

c***************************************************************** 

 

               do j=1,ny 

                 do i=1,nx 

                    pxi0(i,j)=pxi(i,j) 

                    aapxi1(i,j)=c1*(pxi(upx(i),j 

    1               + pxi(downx(i),j)   

    1              + pxi(i,upy(j))+pxi(i,downy(j)) 

 

c    *********************************************************** 

 

                    bapxi1(i,j)=c2*(pxi(downx(i),upy(j)) 

     1              +pxi(downx(i),downy(j)) 

     1              +pxi(upx(i),upy(j))+pxi(upx(i),downy(j)) 

      

 

c    ************************************************************** 

 

                    aaapxi1(i,j)=c3*(pxi(upx(i+1),j) 

     1              + pxi(downx(i-1),j) 

     1              + pxi(i,upy(j+1))+pxi(i,downy(j-1)) 

      

 

c    ********************************************************* 

 

                    bbapxi1(i,j)=c4*(pxi(downx(i-1),upy(j+1)) 

     1              +pxi(downx(i-1),downy(j-1)) 

     1              +pxi(upx(i+1),upy(j+1))+pxi(upx(i+1),downy(j-1)) 

      

      

c    *************************************************************** 

                    apxi1(i,j)=aapxi1(i,j)+bapxi1(i,j) 

     1              +aaapxi1(i,j)+bbapxi1(i,j) 

c    *************************************************************** 

 

                 enddo 

              enddo 

 

 

 

c***************************************************************** 

c The following is to calculate outer Laplacian on map function 

c***************************************************************** 

 



 

172 
 

            do j=1,ny 

                 do i=1,nx 

 

                    aapxi2(i,j)=c1*(map1(upx(i),j) 

     1              +map1(downx(i),j) 

     1              +map1(i,upy(j))+map1(i,downy(j)) 

      

                    bapxi2(i,j)=c2*(map1(downx(i),upy(j)) 

     1              +map1(downx(i),downy(j)) 

     1              +map1(upx(i),upy(j))+map1(upx(i),downy(j)) 

 

                    aaapxi2(i,j)=c3*(map1(upx(i+1),j) 

     1              +map1(downx(i-1),j) 

     1              +map1(i,upy(j+1))+map1(i,downy(j-1)) 

 

                    bbapxi2(i,j)=c4*(map1(downx(i-1),upy(j+1)) 

     1              +map1(downx(i-1),downy(j-1)) 

     1              +map1(upx(i+1),upy(j+1)) 

1 +map1(upx(i+1),downy(j-1)) 

 

                    apxi2(i,j)=aapxi2(i,j)++bapxi2(i,j)  

     1              +aaapxi2(i,j)+bbapxi2(i,j) 

 

                 enddo 

              enddo 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

173 
 

Appendix D  

3D CDS Code (Default) 

‘The Input File for the CDS Fortran Program. It is general all 

‘methodologies for 2D. 

'New simulation (0) or continue a previous one (1)' 

0 

'Input filename containing starting atomic configuration (max 80 c) 

for 1' 

restartfile.dat 

'Insert D' 

0.5d0 

'Insert A' 

1.5d0 

'Insert B' 

0.01d0 

'Insert f' 

0.40d0 

'Insert Tau' 

0.20d0 

'Insert v' 

2.3d0 

'Insert u' 

0.38d0 

'Insert Grid size' 

75,75,50 

'Insert the deltat' 

1.d0  

'Total TimeSteps' 

1000000 

'Save order parameter configuration for restarting every ... steps' 

1000 

'Write pos-neg order parameter in the following file' 

'final.bak' 

'Saving pos-neg order parameter in the following steps(max 10;5 for 

line):' 

200,700,1000,3000,5000 

10000,20000,50000,70000,100000 

'Insert file record positive' 

'final2.bak' 

'Input the first name (you must input 8 characters)' 

'cdsnew01' 

'Input the second name (you must input 2 characters tau only 28)' 

20 
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c ***************************************************************** 

c CDS simulation for Laplacian scheme 

c 1/80+3/80+6/80 

c ***************************************************************** 

 

        program order parameter 

        implicit none  

        double precision pxi(0:400,0:400,0:2) 

        double precision pxi0(0:400,0:400,0:2) 

        double precision zxi(0:400,0:400,0:2) 

        double precision apxi1(0:400,0:400,0:2) 

        double precision aapxi1(0:400,0:400,0:2) 

        double precision bapxi1(0:400,0:400,0:2) 

        double precision capxi1(0:400,0:400,0:2) 

        double precision apxi2(0:400,0:400,0:2) 

        double precision aapxi2(0:400,0:400,0:2) 

        double precision bapxi2(0:400,0:400,0:2) 

        double precision capxi2(0:400,0:400,0:2) 

        double precision f(0:400,0:400,0:2) 

        double precision map1(0:400,0:400,0:2) 

        double precision mxi1(0:400,0:400,0:2) 

        double precision z(0:400) 

        double precision h1,h2,h3 

        double precision hx(0:100) 

        double precision hy(0:100) 

        double precision hz(0:100) 

        double precision tau,v,u,omega,omega0 

        double precision a,b,d,r,e,sh,e0,sh0,c1,c2,c3 

c ***************************************************************** 

c -------------Boudary condictions -------------------         

c ***************************************************************** 

         integer upx(0:400),upy(0:400),upz(0:2) 

        integer downx(0:400),downy(0:400),downz(0:2) 

        double precision m(0:400) 

        integer m1(0:400) 

c *****************************************************************         

c ---------Parameters for the CD simualtion------------------------ 

c *****************************************************************         

        integer i,j,k,s,nx,ny,nz,ex,ey,ez,seed,t,time,conf,ktime 

        integer s1,s2,s3,s4,s5,s6,s7,s8,s9,s10 

        double precision mx,my 

        double precision nxx,nyy,nzz,r1,rr 

        integer everyconf,ftime,bcx,bcy,bcz,ht,R2 

        character*80 label 

        character*80 finalposition,fileconf,writeconf 

c****************************************************************** 

c ----------- Parameter to record data(order parameter)------------         

c****************************************************************** 

        real delapse,dtime,t1(2) 

        character*8 name1 

        character*2 name2 

        character*7 name3 

        character*29 name4 

        integer ma,esse2 

c *****************************************************************         

c       ********************************************************* 

c       open(unit=9,file"cds.in",status='old',form='formatted') 

        open(unit=98,file = 'cds.in', status='old',form='formatted') 

c       *********************************************************  
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c 

c       Read input data from file CDS.IN 

        read(98,*) label 

        read(98,*) conf 

        read(98,*) label 

        read(98,*) fileconf  

        read(98,*) label 

        read(98,*) d 

        read(98,*) label 

        read(98,*) a 

        read(98,*) label 

        read(98,*) b 

        read(98,*) label 

        read(98,*) r 

        read(98,*) label 

        read(98,*) tau 

        read(98,*) label 

        read(98,*) v 

        read(98,*) label 

        read(98,*) u 

        read(98,*) label 

        read(98,*) nx,ny,nz 

        read(98,*) label 

        read(98,*) deltat 

        read(98,*) label 

        read(98,*) time 

        read(98,*) label 

        read(98,*) everyconf 

        read(98,*) label 

        read(98,*) writeconf 

        read(98,*) label 

        read(98,*) s1,s2,s3,s4,s5 

        read(98,*) s6,s7,s8,s9,s10 

        read(98,*) label 

        read(98,*) finalposition 

        read(98,*) label 

        read(98,*) name1 

        read(98,*) label 

        read(98,*) r2 

 

        open(90, file = finalposition) 

 

c ***************************************************************** 

c These following steps are to create randomly initial values 

c order parameter Pxi, these values are: +0.3 or -0.3. 

c ***************************************************************** 

 

     

        flag=0 

        if (conf.eq.1) then 

        open (77,file=fileconf,status='old') 

        do i=1,nx 

           do j=1,ny 

              do k=1,nz 

                 read(77,*) pxi(i,j,k) 

              enddo 

           enddo 

        enddo 

c        ktime=0 

        else 

        ktime=0        
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        do i = 1, nx 

           do j =1, ny 

              do k= 1, nz 

                 call random_number(temp) 

                 if (temp.ge.0 .and. temp.lt.0.3) then 

                   Pxi(i,j,k) = 0.3d0 

                 else 

                   Pxi(i,j,k) = -0.3d0  

                 endif 

              enddo 

           enddo 

        enddo 

        endif 

 

c********************************************************************* 

c Constant numbers and Laplacian weights 

c********************************************************************* 

 

        c1=1.0d0/6.0d0 

        c2=1.0d0/12.0d0 

        c3=0.0d0 

        ma=0 

        name2=char(r2) 

        write(name2,'(i2.2)') r2 

 

c ****************************************************************** 

c These following steps are to take boundary conditions into account 

c  ***************************************************************** 

c     For x 

c ****************************************************************** 

        if (nx.eq.1) then 

           do s=1 , nx 

              upx(s) = s+1 

              downx(s) = s-1 

           enddo 

           dO k=1,nz 

              dO j=1,ny 

                 dO i=1,ny 

                    pxi0(downx(i),j,k)=0.0d0 

                    pxi0(upx(i),j,k)=0.0d0 

                    pxi(downx(i),j,k)=0.0d0 

                    pxi(upx(i),j,k)=0.0d0 

                    map1(downx(i),j,k)=0.0d0 

                    map1(upx(i),j,k)=0.0d0 

                 enddo 

              enddo 

           enddo 

           c1=1.0d0/6.0d0 

           c2=1.0d0/12.0d0 

           c3=0.0d0 

        else        

           do s=1 , nx 

              upx (s) = s+1 

              downx (s) = s-1 

              hx(s)=0.0d0          

           end do 

           if(bcx.eq.0) then 

              upx (nx) = 1 

              downx (1) = nx 

           else 

              upx (nx) =nx 
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              downx (1) = 1 

              hx(nx)= h1 

              hx(1)=h1 

           end if 

        end if    

c  ***************************************************** 

c  ************ FOR y ********************************** 

c  ***************************************************** 

        if (ny.eq.1) then 

           do s=1 , ny 

              upy(s) = s+1 

              downy(s) =s-1 

           enddo 

           do k=1,nz 

              do j=1,ny 

                 do i=1,ny 

                    pxi0(i,downy(j),k)=0.0d0 

                    pxi0(i,upy(j),k)=0.0d0  

                    pxi(i,downy(j),k)=0.0d0 

                    pxi(i,upy(j),k)=0.0d0 

                    map1(i,downy(j),k)=0.0d0 

                    map1(i,upy(j),k)=0.0d0 

                 enddo 

              enddo 

           enddo 

           c1=1.0d0/6.0d0 

           c2=1.0d0/12.0d0 

           c3=0.0d0 

        else  

           do s=1 , ny 

              upy (s) = s+1 

              downy (s) = s-1 

              hy(s)=0.0d0 

           enddo 

           if(bcy.eq.0) then 

              upy (ny) = 1 

              downy (1) = ny 

           else 

              upy (ny) = ny 

              downy (1) = 1 

              hy(ny)= h2 

              hy(1)=h2 

           endif 

        endif 

c  ***************************************************** 

c  ************ FOR z ********************************** 

c  ***************************************************** 

        if (nz.eq.1) then 

           do s=1 , nz 

              upz(s) = s+1 

              downz(s) =s-1 

           enddo 

           do k=1,nz 

              do j=1,ny 

                 do i=1,ny 

                    pxi0(i,j,upz(k))=0.0d0 

                    pxi0(i,j,downz(k))=0.0d0 

                    pxi(i,j,upz(k))=0.0d0 

                    pxi(i,j,downz(k))=0.0d0 

                    map1(i,j,upz(k))=0.0d0 

                    map1(i,j,downz(k))=0.0d0 
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                 enddo 

              enddo  

           enddo 

           c1=1.0d0/6.0d0 

           c2=1.0d0/12.0d0 

           c3=0.0d0 

        else          

           do s=1 , nz 

              upz (s) = s+1 

              downz (s) = s-1 

              hz(s)=0.0d0 

           end do 

           if(bcz.eq.0) then 

              upz (nz) = 1 

              downz (1) = nz 

           else 

              upz (nz) = nz 

              downz (1) = 1 

              hz(nz)= h3 

              hz(1)=h3 

           end if 

        endif   

c 

c ****************************************************************** 

        delapse=dtime(t1) 

c ****************************************************************** 

c 

        if (sh.ne.0.0d0) then 

           do i=1,nx  

              z(i)=0.0d0 

           enddo 

        endif 

c ****************************************************************** 

c       Now it starts to run time (t) evolution 

c ****************************************************************** 

c 

        do t = ktime, time-1,1   

 

c ****************************************************************** 

c       APxi1 = [<< Pxi >> - Pxi] 

c ******************************************************************  

 

           do k=1,nz 

              do j=1,ny 

                 do i=1,nx 

                    pxi0(i,j,k)=pxi(i,j,k) 

                    aapxi1(i,j,k)=c1*(pxi(upx(i),j,k) 

     1              + pxi(downx(i),j,k) 

     1              + pxi(i,upy(j),k)+pxi(i,downy(j),k) 

     1              + pxi(i,j,upz(k))+pxi(i,j,downz(k))) 

c    ********************************************************* 

                    bapxi1(i,j,k)=c2*(pxi(downx(i),upy(j),k) 

     1              +pxi(downx(i),downy(j),k) 

     1              +pxi(upx(i),upy(j),k)+pxi(upx(i),downy(j),k) 

     1              +pxi(i,downy(j),upz(k))+pxi(i,downy(j),downz(k)) 

     1              +pxi(i,upy(j),upz(k))+pxi(i,upy(j),downz(k)) 

     1              +pxi(downx(i),j,upz(k))+pxi(downx(i),j,downz(k)) 

     1              +pxi(upx(i),j,upz(k))+pxi(upx(i),j,downz(k))) 

c    ***************************************************************** 

                    capxi1(i,j,k)=c3*(pxi(downx(i),downy(j),upz(k)) 

     1              +pxi(downx(i),upy(j),upz(k)) 
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     1              +pxi(downx(i),downy(j),downz(k)) 

     1              +pxi(downx(i),upy(j),downz(k)) 

     1              +pxi(upx(i),downy(j),upz(k)) 

     1              +pxi(upx(i),upy(j),upz(k)) 

     1              +pxi(upx(i),downy(j),downz(k)) 

     1              +pxi(upx(i),upy(j),downz(k))) 

c    *************************************************************** 

                    apxi1(i,j,k)=aapxi1(i,j,k) 

     1              +bapxi1(i,j,k)+capxi1(i,j,k) 

c    *************************************************************** 

                 enddo 

              enddo 

           enddo 

c       This following step is to calculate Map function: 

           do k=1,nz 

              do j=1,ny 

                 do i=1,nx 

                    f(i,j,k) = (tau-a*((1-2*r)**2))*pxi(i,j,k) 

     1              -v*(1-2*r)*(pxi(i,j,k)**2)-u*(pxi(i,j,k)**3)         

                 enddo 

              enddo 

           enddo 

c       This following step is to calculate: 

c       Map = {Atanh(Pxi) + D[<<Pxi>> - Pxi] - Pxi} 

           do k=1,nz 

              do j=1,ny 

                 do i=1,nx 

                     map1(i,j,k) = f(i,j,k) + d*(apxi1(i,j,k)  

     1               - pxi(i,j,k)) 

                 enddo 

              enddo 

           enddo 

c     This following step is to take into account the boundary 

conditions 

c       for Map(i,j) which will be needed for next step. 

c   

           do k=1,nz 

              do j=1,ny 

                 do i=1,nx 

 

                    aapxi2(i,j,k)=c1*(map1(upx(i),j,k) 

     1              +map1(downx(i),j,k) 

     1              +map1(i,upy(j),k)+map1(i,downy(j),k) 

     1              +map1(i,j,upz(k))+map1(i,j,downz(k))) 

 

                    bapxi2(i,j,k)=c2*(map1(downx(i),upy(j),k) 

     1              +map1(downx(i),downy(j),k) 

     1              +map1(upx(i),upy(j),k)+map1(upx(i),downy(j),k) 

     1              +map1(i,downy(j),upz(k))+map1(i,downy(j),downz(k)) 

     1              +map1(i,upy(j),upz(k))+map1(i,upy(j),downz(k)) 

     1              +map1(downx(i),j,upz(k))+map1(downx(i),j,downz(k)) 

     1              +map1(upx(i),j,upz(k))+map1(upx(i),j,downz(k))) 

 

                    capxi2(i,j,k)=c3*(map1(downx(i),downy(j),upz(k)) 

     1              +map1(downx(i),upy(j),upz(k)) 

     1              +map1(downx(i),downy(j),downz(k)) 

     1              +map1(downx(i),upy(j),downz(k)) 

     1              +map1(upx(i),downy(j),upz(k)) 

     1              +map1(upx(i),upy(j),upz(k)) 

     1              +map1(upx(i),downy(j),downz(k)) 

     1              +map1(upx(i),upy(j),downz(k))) 
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                    apxi2(i,j,k)=aapxi2(i,j,k) 

     1              +bapxi2(i,j,k)+capxi2(i,j,k) 

                 enddo 

              enddo 

           enddo 

c ***************************************************************** 

c This following step is to calculate whole equation for Pxi(t+1,n) 

c ****************************************************************** 

           do k=1,nz 

              do j=1,ny 

                 do i=1,nx 

                    pxi(i,j,k) = pxi(i,j,k)+deltat* 

      1              (- b * pxi(i,j,k)  

      1               - apxi2(i,j,k) +map1(i,j,k)) 

                 enddo 

              enddo 

           enddo 

   

 

c  ******************************************************* 

c  *****Save the configuration every tot step************* 

c  *******************************************************      

           ftime=((t+1)*deltat)+ktime 

           ht=(t+1)*deltat 

           esse =(t+1)*deltat 

           if((ht).eq.esse) then 

              if  ((ht).eq.(everyconf* (ht/everyconf)))then 

                 open (unit=96,file=writeconf) 

                 write (96,*) ftime , nx,ny,nz,deltat 

                 write (96,*) d,a,b,r,tau,v,u,e,sh,omega 

                 do i=1,nx 

                    do j=1,ny 

                       do k=1,nz 

                          write (96,*) pxi(i,j,k) 

                       enddo 

                    enddo 

                 enddo 

              close (96) 

              endif 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc         

           esse =(t+1)*deltat  

           esse2=esse 

           name3=char(esse2) 

           write(name3,'(I7.7)') esse2 

           name4=name1//'_pxi.'//name2//'_t'//name3//'.txt'       

           if( esse .lt. 100.D0 ) then 

              if( mod(t+1, int(10.D0/deltat)) .eq. 0 ) then 

                  ma=ma+1 

                  open(ma,file=name4) 

                  write(ma,*) "#Grid", nx,ny,nz 

                  do i = 1, Nx 

                     do j = 1, Ny 

                        do k = 1 , Nz 

                           write (ma,*) pxi(i,j,k) 

                        enddo 

                     enddo 

                  enddo 

              close(ma) 

              endif 
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           endif 

           if( esse .lt. 1000.D0 ) then 

              if( mod(t+1, int(100.D0/deltat)) .eq. 0 ) then 

                   ma=ma+1 

                   open(ma,file=name4) 

                   write(ma,*) "#Grid", nx,ny,nz 

                   do i = 1, nx 

                      do j = 1, ny 

                         do k = 1 , nz 

                            write (ma,*) pxi(i,j,k) 

                         enddo 

                      enddo 

                   enddo  

                   close(ma) 

              endif 

           elseif( esse .lt. 10000.D0 ) then 

              if( mod(t+1, int(1000.D0/deltat)) .eq. 0 )then 

                 ma=ma+1 

                 open(ma,file=name4) 

                 write(ma,*) "#Grid", nx,ny,nz 

                 do i = 1, nx 

                    do j = 1, ny 

                       do k = 1 , nz 

                          write (ma,*) pxi(i,j,k) 

                       enddo 

                    enddo 

                 enddo 

                 close(ma) 

              endif 

           elseif( esse .le. 1000000.D0) then 

              if( mod(t+1, int(10000.D0/deltat)) .eq. 0) then 

                   ma=ma+1 

                   open(ma,file=name4) 

                   write(MA,*) "#Grid", Nx,Ny,Nz 

                   do i = 1, Nx 

                      do j = 1, Ny 

                         do k = 1 , Nz 

                            write (Ma,*) pxi(i,j,k) 

                         enddo 

                      enddo 

                   enddo 

              close(ma) 

              endif 

           else 

              if(mod(t+1,int(100000.D0/deltat)) .eq. 0)  then 

                   ma=ma+1 

                   open(ma,file=name4) 

                   write(MA,*) "#Grid", Nx,Ny,Nz 

                   do i = 1, nx 

                      do j = 1, ny 

                         do k = 1 , nz 

                            write (ma,*) pxi(i,j,k) 

                         enddo 

                      enddo 

                   enddo 

              close(ma) 

              endif 

           endif 

           If ( esse .le. 10000000.D0) then 

              if( MOD(t+1,int(1000000.D0/deltat)) .eq. 0)  then 

                 ma=ma+1 



 

182 
 

                 open(ma,file=name4) 

                 if ((nz.eq.1)) then 

                    write(ma,*) "#Grid", nx,ny,nz 

                    do i = 1, nx 

                       do j = 1, ny 

                          do k = 1 , nz 

                             write (ma,*) pxi(i,j,k) 

                          enddo 

                       enddo 

                    enddo 

                   close(ma) 

                 endif 

              endif 

              If(ma.gt.80) then 

                 ma=0 

              endif 

           endif 

        enddo  

c       ****************************************** 

c       ****************************************** 

        delapse=dtime(t1) 

        write(95,*) delapse,t1(1),t1(2) 

c       ****************************************** 

c       ******************************************        

        close(90) 

        close(97) 

        close(95) 

        stop           

        end 

c *************end of program ******************** 
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Appendix E  

Conjugate Gradient Method 

Basic algorithm for a non–preconditioned CG technique works as follows: 

Given a linear system ,bAx   the first step with guess Tx )0,0,0(0  and ,1 IPP    

where I is the identity or unit matrix and P the preconditioning matrix. Following is given 

CG algorithm [109]:  

Step 0 – Preliminaries  
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Step 1 – Setup Step  
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Step 2 – Start iteration with k = 1 until Nk   

 

 

Step 3 – Check if v < Tolerance ?: Solution xn, residual rn found. Stop. 



 

184 
 

   























N

k

j

N

k kk

k

www

rrPw

utrr

vtxx

uv
t

uv
t

Avu

1

2

111

1

01

1

1

01

1
11

1

)(,

)(

)(
,





                                               (3) 

Step 4 – Check if Tolerance ?: If Tolerancer  ?: Solution ,nx residual nr found. 

Stop. 
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Step 5 – Check if (k < N) ?: Maximal numbers of iterations exceeded. Stop.  

Step 6 – Restart iteration with k = 2, etc. 

 










3

2

v

Avu

                                                                      (5) 

The preconditioning matrix ,LP  where L comes from the Cholesky factorization TLL

of A. it follows that 11   APP T is good approximation [76]. 

 

 

 



 

185 
 

Appendix F  

CDS CN Code 

The Input File for the CDS Fortran Program. It is general all 

methodologies for 2D. 

'New simulation (0) or continue a previous one (1)' 

0 

'Input filename containing starting atomic configuration (max 80 c) 

for 1' 

restartfile.dat 

'Insert D' 

0.7d0 

'Insert A' 

1.5d0 

'Insert B' 

0.02d0 

'Insert f' 

0.48d0 

'Insert Tau' 

0.36d0 

'Insert v' 

2.3d0 

'Insert u' 

0.38d0 

'Insert Grid size' 

128,128,1 

'Insert the deltat' 

1.d0  

'Total TimeSteps' 

1000000 

'Save order parameter configuration for restarting every ... steps' 

1000 

'Write pos-neg order parameter in the following file' 

'final.bak' 

'Saving pos-neg order parameter in the following steps(max 10;5 for 

line):' 

200,700,1000,3000,5000 

10000,20000,50000,70000,100000 

'Insert file record positive' 

'final2.bak' 

'Input the first name (you must input 8 characters)' 

'cdsnew01' 

'Input the second name (you must input 2 characters tau only 28)' 

20 
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The CDS CN Fortran Program 

c        

c ***************************************************************** 

c CDS 2D simulation source code (Fortran code for CN Method) 

c ***************************************************************** 

    

c *********************************************** 

c   Module section for diagonal Matrices 

c *********************************************** 

         module routines                                

             contains 

                subroutine diag(NN,MM,d,deltat,nx) 

                integer nx,snx,tnx,n,hnx,i,j,nstp,h,u 

                double precision  d, deltat,c1,c2 

                real MM1(0:200,0:200) 

                real MM2(0:200,0:200) 

                real NN1(0:200,0:200) 

                real NN2(0:200,0:200) 

                real MA(0:200,0:200) 

                real MB(0:200,0:200) 

                real MC(0:200,0:200) 

                real MD(0:200,0:200) 

                real A(0:200,0:200) 

                real B(0:200,0:200) 

                real C(0:200,0:200) 

                real, dimension(:,:), allocatable,intent(inout)::MM 

                real, dimension (:,:), allocatable ,intent(inout)::NN 

                nstp = nx*nx 

                allocate(MM(0:nstp+1,0:nstp+1)) 

                allocate(NN(0:nstp+1,0:nstp+1)) 

                write(*,*) "First" 

 

c************************************************ 

c  Laplacian weights 

c************************************************ 

                c1 = 1.d0/6.d0 

                c2 = 1.d0/12.d0 

c************************************************ 

                do i=1,nx 

                    MM1(i,i) = -1.d0 

                    if (i<nx) then 

                           MM1(i,i+1) = c1 

                           MM1(i+1,i) = c1 

                    end if 

                    if (i .eq. nx) then 

                       MM1(1,i) = c1 

                       MM1(i,1) = c1 

                    end if 

                enddo 

 

                do i=1,nx 

                   MM2(i,i) = c1 

                   if (i<nx) then 

                        MM2(i,i+1) = c2 

                        MM2(i+1,i) = c2 

                    end if 

                    if (i .eq. nx) then 

                       MM2(1,i) = c2 

                       MM2(i,1) = c2 

                    end if 
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                enddo 

 

                 snx = nx 

                 tnx = nx*nx 

 

                do i=1,snx 

                    do j=1,snx 

                         NN(i,j) = MM1(i,j) 

                         NN(i,j+snx) = MM2(i,j) 

                         NN((tnx-snx)+i,(tnx-snx)+j) = MM1(i,j) 

                         NN((tnx-snx)+i,(tnx-snx*2)+j) = MM2(i,j) 

                    end do 

                end do 

                do n = 1,nx-2 

                   snx = n*nx 

                  do i = snx+1, nx+snx 

                     hnx=1 

                     do j = (snx - nx) + 1,snx 

                            NN(i,j) = MM2(i-snx,hnx) 

                            NN(i,j+nx) = MM1(i-snx,hnx) 

                            NN(i,j+2*nx) = MM2(i-snx,hnx) 

                            hnx = hnx+1 

                      enddo 

               enddo 

              enddo 

              snx = nx 

              tnx = nx*nx 

              do i=1,snx 

                 do j=1,snx 

                    NN(i,(tnx-snx)+j) = MM2(i,j) 

                    NN((tnx-snx)+i,j) = MM2(i,j) 

                 end do 

               end do 

                

               MA(1:nx,1:nx)=MATMUL(MM1(1:nx,1:nx),d*MM1(1:nx,1:nx)) 

               MB(1:nx,1:nx)=MATMUL(MM2(1:nx,1:nx),d*MM2(1:nx,1:nx)) 

               MC(1:nx,1:nx)=MATMUL(MM1(1:nx,1:nx),d*MM2(1:nx,1:nx)) 

               MD(1:nx,1:nx)=MATMUL(MM2(1:nx,1:nx),d*MM1(1:nx,1:nx)) 

               A(1:nx,1:nx)= MA(1:nx,1:nx)+MB(1:nx,1:nx)+MB(1:nx,1:nx) 

               B(1:nx,1:nx) = MC(1:nx,1:nx)+MD(1:nx,1:nx) 

               C(1:nx,1:nx) = MB(1:nx,1:nx) 

 

               do n=1,nx 

                   snx = n*nx 

                   u=1 

                   do i=snx-nx+1,snx 

                      hnx=1 

                      do j=(snx-nx)+1,snx 

                         MM(i,j) = A(u,hnx) 

                         hnx=hnx+1 

                      end do 

                      u = u+1 

                    end do 

                end do 

 

               do n=2,nx 

                   snx = n*nx 

                   u=1 

                   do i=snx-nx+1,snx 

                      hnx=1 

                      do j=(snx-2*nx)+1,snx-nx 
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                         MM(i,j) = B(u,hnx) 

                         MM(i-nx,j+nx) = B(u,hnx) 

                         hnx=hnx+1 

                      end do 

                      u=u+1 

                    end do 

                end do 

               do n=3,nx 

                  snx = n*nx 

                  u=1 

                  do i=snx-nx+1,snx 

                     hnx = 1 

                     do j=(snx-3*nx)+1,snx-2*nx 

                        MM(i,j) = C(u,hnx) 

                        MM(i-2*nx,j+2*nx) = C(u,hnx) 

                        hnx = hnx+1 

                     end do 

                     u=u+1 

                  end do 

               end do 

             snx = nx 

             tnx = nx*nx 

             do i=1,snx 

                do j=1,snx 

                   MM(i,(tnx-snx)+j) = B(i,j) 

                   MM((tnx-snx)+i,j) = B(i,j) 

                   MM(i,(tnx-2*snx)+j) = C(i,j) 

                   MM((tnx-2*snx)+i,j) = C(i,j) 

                   MM(i+nx,(tnx-snx)+j) = C(i,j) 

                   MM((tnx-snx)+i,j+nx) = C(i,j) 

                end do 

             end do 

 

           end subroutine diag 

c ******************************************* 

c Conjugate Gradient Method 

c ***************** ************************** 

          subroutine conjgradx(ML,uu,x,tol,n,nx) 

          integer n,i,j,k,e,snx,p,nx 

          real alpha,beta,h,t,s,tol,sum1 

          real A(0:4100,0:4100) 

          real, dimension(:,:), allocatable :: ML 

          real, dimension(:), allocatable :: uu 

          real, dimension(:), allocatable :: x 

          real, dimension(:,:), allocatable:: C 

          real, dimension(:), allocatable:: r 

          real, dimension(:), allocatable :: w 

          real, dimension(:), allocatable :: v 

          real, dimension(:), allocatable ::u 

          real, dimension(:), allocatable :: l 

 

          allocate(C(0:n+1,0:n+1)) 

          allocate(r(0:n+1)) 

          allocate(w(0:n+1)) 

          allocate(v(0:n+1)) 

          allocate(u(0:n+1)) 

          allocate(l(0:n+1)) 

          C = 0.d0 

          do i=1,n 

           C(i,i) = 1.d0 

          enddo 
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          do i=1,n 

             do j=1,n 

                r(i) = uu(i)- ML(i,j)*x(j) 

             end do 

          end do 

 

          if (NORM2(r) < tol) then 

              return 

          end if 

 

         w(1:n) = MATMUL(C(1:n,1:n),r(1:n)) 

         v(1:n) = MATMUL(C(1:n,1:n),w(1:n)) 

 

         alpha = DOT_PRODUCT(w(1:n),w(1:n)) 

 

         do k=1,n 

            u(1:n) = MATMUL(ML(1:n,1:n),v(1:n)) 

 

            t = alpha/DOT_PRODUCT(v(1:n),u(1:n)) 

 

            x(1:n) = x(1:n) + t*v(1:n) 

            r(1:n) = r(1:n) - t*u(1:n) 

 

             if (NORM2(r) < tol) then 

                 return 

              end if 

            w(1:n) = MATMUL(C(1:n,1:n),r(1:n)) 

            beta =0.d0 

            beta = DOT_PRODUCT(w(1:n),w(1:n)) 

            s= beta/alpha 

            v(1:n) = MATMUL(C(1:n,1:n),w(1:n)) 

     1                   +s*v(1:n) 

 

          alpha = beta 

       enddo 

       deallocate(C,w,v,u,l,r) 

       end subroutine conjgradx 

c******************************************************* 

      end module routines 

c******************************************************* 

 

c******************************************************* 

c Main Program 

c******************************************************* 

         

        program order_parameter 

        use routines 

        implicit none 

        real, dimension (:,:), allocatable ::pxi 

        real, dimension (:,:), allocatable ::apxi1 

        real, dimension (:,:), allocatable ::f 

        real, dimension (:,:), allocatable :: pxin 

        real, dimension (:,:), allocatable ::map1 

        double precision tau,v,u,tmp,tt 

        double precision a,b,d,r,e,sh,e0,sh0,c1,c2,c3 

        real, dimension (:,:), allocatable,save ::MM 

        real, dimension (:,:), allocatable ::Id 
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        real, dimension (:,:), allocatable,save ::NN 

        real, dimension (:,:), allocatable ::ML 

        real, dimension (:,:), allocatable ::MR 

        real, dimension (:), allocatable ::uu 

        real, dimension (:), allocatable ::uu1 

        real, dimension (:), allocatable ::x 

        double precision L,alpha,beta,cond 

        integer nstep,p,n,hnx,it,mx,tnx,snx,nt 

 

        double precision eta,pi2,temp,deltat,deltat0,esse,cost,rand 

c *****************************************************************         

c ---------Parameters for the CD simualtion------------------------ 

c *****************************************************************         

        integer i,j,k,s,nx,ny,nz,ex,ey,ez,seed,t,time,conf,ktime 

        integer s1,s2,s3,s4,s5,s6,s7,s8,s9,s10 

        integer everyconf,ftime,bcx,bcy,bcz,ht,R2 

        real tol 

        character*80 label 

        character*80 finalposition,fileconf,writeconf 

c****************************************************************** 

c ----------- Parameter to record data(order parameter)------------         

c****************************************************************** 

        real delapse,dtime,t1(2) 

        character*8 name1 

        character*2 name2 

        character*7 name3 

        character*29 name4 

        integer ma,esse2 

c *****************************************************************         

c******************************************************************         

c      File open  

c******************************************************************         

 

      open(unit=98,file = 'cds.in', status='old',form='formatted') 

 

c********************************************************  

c Read input data from file CDS.IN 

c********************************************************  

 

        read(98,*) label 

        read(98,*) conf 

        read(98,*) label 

        read(98,*) fileconf 

        read(98,*) label 

        read(98,*) d 

        read(98,*) label 

        read(98,*) a 

        read(98,*) label 

        read(98,*) b 

        read(98,*) label 

        read(98,*) r 

        read(98,*) label 

        read(98,*) tau 

        read(98,*) label 

        read(98,*) v 

        read(98,*) label 

        read(98,*) u 

        read(98,*) label 

        read(98,*) nx,ny,nz 

        read(98,*) label 

        read(98,*) bcx,bcy,bcz 
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        read(98,*) label 

        read(98,*) deltat 

        read(98,*) label 

        read(98,*) time 

        read(98,*) label 

        read(98,*) everyconf 

        read(98,*) label 

        read(98,*) writeconf 

        read(98,*) label 

        read(98,*) s1,s2,s3,s4,s5 

        read(98,*) s6,s7,s8,s9,s10 

        read(98,*) label 

        read(98,*) finalposition 

        read(98,*) label 

        read(98,*) name1 

        read(98,*) label 

        read(98,*) r2 

 

        data tol /1.0e-10/ 

        nstep = nx*ny 

        allocate (pxi(0:nx+1,0:ny+1)) 

        allocate (apxi1(0:nx+1,0:ny+1)) 

        allocate (pxin(0:nx+1,0:ny+1)) 

        allocate (map1(0:nx+1,0:ny+1)) 

        allocate (f(0:nx+1,0:ny+1)) 

        allocate (Id(0:nstep+1,0:nstep+1)) 

        allocate (ML(0:nstep+1,0:nstep+1)) 

        allocate (MR(0:nstep+1,0:nstep+1)) 

        allocate (uu(0:nstep+1)) 

        allocate (uu1(0:nstep+1)) 

        allocate (x(0:nstep+1)) 

        ktime=0 

        do i = 1, nx 

           do j =1, ny 

                 call random_number(temp) 

                 if (temp.ge.0 .and. temp.lt.0.3) then 

                   pxi(i,j) = 0.3d0 

                 else 

                   pxi(i,j) = -0.3d0 

                 endif 

           enddo 

        enddo 

        

 

  

c****************************************************************** 

c   Costant numbers 

c****************************************************************** 

 

        pi2=2.d0*dacos(-1.d0) 

        c1=1.0d0/4.0d0 

        nstep = nx*nx 

        ma=0 

        name2=char(r2) 

        write(name2,'(i2.2)') r2 

c****************************************************************** 

         

        call diag(NN,MM,d,deltat,nx) 

 

        Id = 0.d0 

        do i=1,nstep 
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             Id(i,i) = 1.d0 

        end do 

        MR(1:nstep,1:nstep) = Id(1:nstep,1:nstep) 

     1   -((b*deltat)/2.d0)*Id(1:nstep,1:nstep)  

     1   - (deltat/2.0)* MM(1:nstep,1:nstep) 

 

        ML(1:nstep,1:nstep) = Id(1:nstep,1:nstep) 

     1   +((b*deltat)/2.d0)*Id(1:nstep,1:nstep)  

     1   + (deltat/2.0)* MM(1:nstep,1:nstep) 

 

 

c****************************************************************** 

c       Now we start to run time (t) evolution 

c ****************************************************************** 

c 

       do t = ktime,time-1,1 

          

c***************************************************************** 

c       This following step is to calculate  

C       First Laplacian (Forward Euler Method) 

c    APxi1 = [<< Pxi >> - Pxi] 

c***************************************************************** 

           uu=0.d0 

            snx = 1 

              do i=1,nx 

                 do j=1,nx 

                    uu(snx) = pxi(i,j) 

                    snx = snx+1 

                 enddo 

              enddo 

          uu1 = 0.d0 

          uu1(1:nstep) = MATMUL(MR(1:nstep,1:nstep),uu(1:nstep)) 

 

          snx = 1 

             do i=1,nx 

                 do j=1,nx 

                    apxi1(i,j) =uu1(snx) 

                    snx = snx+1 

                 enddo 

              enddo 

c***************************************************************** 

c  This following step is to calculate map function  

c  (Forward Euler method) 

c***************************************************************** 

 

          do j=1,ny 

               do i=1,nx 

                    f(i,j) = (tau-a*((1-2*r)**2))*pxi(i,j) 

     1              -v*(1-2*r)*(pxi(i,j)**2)-u*(pxi(i,j)**3) 

                 enddo 

              enddo 

           uu=0.d0 

           uu1 = 0.d0 

           snx = 1 

           do i=1,nx 

               do j=1,nx 

                  uu(snx) = f(i,j) 

                  snx = snx+1 

               enddo 

           enddo 

           uu1(1:nstep) = MATMUL(NN(1:nstep,1:nstep),uu(1:nstep)) 
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           snx = 1 

           do i=1,nx 

             do j=1,nx 

                f(i,j) = (deltat/2.d0)*uu1(snx) 

                snx = snx+1 

             end do 

          end do 

 

             do i=1,nx 

                do j=1,ny 

                    pxi(i,j) = apxi1(i,j)-f(i,j) 

                enddo 

             enddo 

 

c***************************************************************** 

c       This following step is to calculate First Laplacian  

c       (Backward Euler Method) 

c    Pxin = [<< Pxi >> - Pxi] 

c***************************************************************** 

 

          x(1:nstep) = 0.d0     

          uu=0.d0 

            snx = 1 

              do i=1,nx 

                 do j=1,nx 

                    uu(snx) = pxi(i,j) 

                    snx = snx+1 

                 enddo 

              enddo 

         call conjgradx(ML,uu,x,tol,nstep,nx) 

                   

          snx = 1 

             do i=1,nx 

                 do j=1,nx 

                    pxin(i,j) =x(snx) 

                    snx = snx+1 

                 enddo 

              enddo 

c***************************************************************** 

c       This following step is to calculate map function  

c          (Backward Euler method) 

c***************************************************************** 

 

           

          do j=1,ny 

               do i=1,nx 

                    f(i,j) = (tau-a*((1-2*r)**2))*pxin(i,j) 

     1              -v*(1-2*r)*(pxin(i,j)**2)-u*(pxin(i,j)**3) 

                 enddo 

              enddo 

           uu=0.d0 

           snx = 1 

           do i=1,nx 

               do j=1,nx 

                  uu(snx) = f(i,j) 

                  snx = snx+1 

               enddo 

           enddo 

           uu1(1:nstep) = MATMUL(NN(1:nstep,1:nstep),uu(1:nstep)) 

 

           snx = 1 
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           do i=1,nx 

             do j=1,nx 

                f(i,j) = (deltat/2.d0)*uu1(snx) 

                snx = snx+1 

             end do 

          end do 

            

c****************************************************************** 

c    This following step is to calculate whole equation for Pxi(t+1,n) 

c****************************************************************** 

           

             snx = 1 

             do i=1,nx 

                do j=1,ny 

                    pxi(i,j) = pxin(i,j)-f(i,j) 

                    snx = snx+1 

                enddo 

             enddo 

             

c********************************************************* 

c    writing Pxi values in files for time steps in files 

c********************************************************* 

           esse =(t+1)*deltat 

           esse2=esse 

           name3=char(esse2) 

           write(name3,'(I7.7)') esse2 

           name4=name1//'_pxi.'//name2//'_t'//name3//'.txt' 

           if( esse .lt. 100.D0 ) then 

              if( mod(t+1, int(10.D0/deltat)) .eq. 0 ) then 

                  ma=ma+1 

                  open(ma,file=name4) 

                  write(ma,*) "#Grid", nx,ny 

                  do i = 1, Nx 

                     do j = 1, Ny 

                        write (ma,*) pxi(i,j) 

                        enddo 

                     enddo 

              close(ma) 

              endif 

           endif 

           if( esse .lt. 1000.D0 ) then 

              if( mod(t+1, int(100.D0/deltat)) .eq. 0 ) then 

                   ma=ma+1 

                   open(ma,file=name4) 

                   write(ma,*) "#Grid", nx,ny 

                   do i = 1, nx 

                      do j = 1, ny 

                         write (ma,*) pxi(i,j) 

                      enddo 

                   enddo 

                   close(ma) 

              endif 

            elseif( esse .lt. 10000.D0 ) then 

              if( mod(t+1, int(1000.D0/deltat)) .eq. 0 )then 

                 ma=ma+1 

                 open(ma,file=name4) 

                 write(ma,*) "#Grid", nx,ny 

                 do i = 1, nx 

                    do j = 1, ny 

                       write (ma,*) pxi(i,j) 

                    enddo 
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                 enddo 

                 close(ma) 

              endif 

           elseif( esse .le. 1000000.D0) then 

              if( mod(t+1, int(10000.D0/deltat)) .eq. 0) then 

                   ma=ma+1 

                   open(ma,file=name4) 

                   write(MA,*) "#Grid", Nx,Ny 

                   do i = 1, Nx 

                      do j = 1, Ny 

                         write (Ma,*) pxi(i,j) 

                       enddo 

                   enddo 

              close(ma) 

              endif 

           else 

              if(mod(t+1,int(100000.D0/deltat)) .eq. 0)  then 

                   ma=ma+1 

                   open(ma,file=name4) 

                   write(MA,*) "#Grid", Nx,Ny 

                   do i = 1, nx 

                      do j = 1, ny 

                          write (ma,*) pxi(i,j) 

                      enddo 

                   enddo 

              close(ma) 

              endif 

           endif 

           If ( esse .le. 10000000.D0) then 

              if( MOD(t+1,int(1000000.D0/deltat)) .eq. 0)  then 

                 ma=ma+1 

                 open(ma,file=name4) 

                 if ((nz.eq.1)) then 

                    write(ma,*) "#Grid", nx,ny 

                    do i = 1, nx 

                       do j = 1, ny 

                          write (ma,*) pxi(i,j) 

                       enddo 

                    enddo 

                  close(ma) 

                 endif 

              endif 

              If(ma.gt.80) then 

                 ma=0 

              endif 

           endif 

         enddo 

   

        end 

c***********************End of program********************** 
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Appendix G  

Two Order Parameter Systems CDS Code 

'New simulation (0) or continue a previous one (1)' 

0 

'Input filename containing starting atomic configuration (max 80 c) 

for 1' 

'restartfile.dat' 

'Inserire D' 

0.5d0 

'Inserire A' 

1.5d0 

'Inserire B' 

0.02d0 

'Inserire f' 

0.48d0 

'Inserire Tau' 

0.30d0 

'Inserire v' 

1.5d0 

'Inserire u' 

0.5d0 

'Box dimension: 0 for 2D and 1 for 3D' 

0 

'Inseririre N mesh' 

128,128,1 

'Insert the size of the noise' 

0.0d0 

'Insert the electric field' 

0.003d0 

'Insert the amplitude of the shear' 

0.0d0 

'Insert the omega of the shear' 

0.0d0 

'Insert the neutral wall (0,0,0)=(x,y,z) ex:1,0,0' 

0,0,0 

'Insert the deltat' 

0.5d0  

'Total TimeSteps' 

2050000 

'Save order parameter every step...' 

10,100,1000,10000,100000,1000000 

'Save order parameter configuration for restarting every ... steps' 

100 

'Write pos-neg order parameter in the following file' 

'final.bak' 

'Saving pos-neg order parameter in the following steps(max 10;5 for 

line):' 

200,700,1000,3000,5000 

10000,20000,50000,70000,100000 

'Inserire file record positive' 

'final2.bak' 

'Input the first name (you must input 8 characters)' 

'newcds01' 

'cc1, Ohta (2.2)' 

1.0d0 

'cc2, Ohta (2.2)' 

0.5d0 

'b1, Ohta (2.3), (2.4a), (2.4b)' 
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0.07d0 

'b2, Ohta (2.3)' 

0.2d0 

'b3, Ohta (2.3)' 

0.0d0 

'b4, Ohta (2.3)' 

0.0d0 

'alpha, Ohta (2.6a)' 

0.02d0 

'beta, Ohta (2.6b)' 

0.0d0 

'A1 for tanh, Ohta (p 52 III)' 

1.3d0 

'A2 for tanh, Ohta (p 52 III)' 

1.1d0 

'pxi_c, eta, critical point, input positive value instead of negative' 

0.0d0 

'Average phi' 

0.0d0 

'Average pxi - not needed, set pxi_c instead' 

-0.2d0 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

198 
 

c ********************************************************** 

c Here the Two order parameter source code is presented  

c which was used for both the 2D and 3D simulations. Only the  

c changes for either dimension can be made in the IN file given  

c above for this system. 

c ********************************************************** 

  program order_parameter 

        implicit none 

 

        real, dimension (:,:,:), allocatable :: pxi 

        real, dimension (:,:,:), allocatable :: pxi0 

        real, dimension (:,:,:), allocatable :: zxi, zxi2 

        real, dimension (:,:,:), allocatable :: apxi1 

        real, dimension (:,:,:), allocatable :: aapxi1 

        real, dimension (:,:,:), allocatable :: bapxi1 

        real, dimension (:,:,:), allocatable :: capxi1 

        real, dimension (:,:,:), allocatable :: apxi2 

        real, dimension (:,:,:), allocatable :: aapxi2 

        real, dimension (:,:,:), allocatable :: bapxi2 

        real, dimension (:,:,:), allocatable :: capxi2 

        real, dimension (:,:,:), allocatable :: f 

        real, dimension (:,:,:), allocatable :: ff 

        real, dimension (:,:,:), allocatable :: map1 

        real, dimension (:,:,:), allocatable :: mxi1, mxi2 

        real, dimension (:), allocatable :: z 

        double precision tau,v,u,omega,omega0 

        double precision a,b,d,r,e,sh,e0,sh0,c1,c2,c3 

c ***************************************************************** 

c --------------Random generator for the noise--------------------- 

c ***************************************************************** 

        double precision caso1,caso2,caso3,caso4,caso5,caso6,caso7 

        double precision caso8,caso9 

        real, dimension (:,:,:), allocatable :: csi1,csi2,csi3 

        double precision sumvx,sumvy,sumvz,vmax1,vmax2,vmax3 

c ***************************************************************** 

c -------------Boudary condiction and shear flow-------------------         

c ***************************************************************** 

        double precision eta,pi2,temp,deltat,deltat0,esse,cost,rand 

        integer, dimension (:), allocatable :: upx, upy, upz 

        integer, dimension (:), allocatable :: downx, downy, downz 

        integer, dimension (:), allocatable :: m, m1 

c ***************************************************************** 

c ----------INTEGER for random generator for the noise------------- 

c ***************************************************************** 

        real, dimension (:,:,:), allocatable :: a1, a2, a3 

        integer flag 

c *****************************************************************         

c ---------Parameters for the CD simualtion------------------------ 

c *****************************************************************    

        integer i,j,k,s,nx,ny,nz,ex,ey,ez,seed,t,time,conf,ktime 

        integer s1,s2,s3,s4,s5,s6,s7,s8,s9,s10 

        integer f1,f2,f3,f4,f5,f6 

        integer everyconf,ftime,bcx,bcy,bcz,ht,r2 

        character*80 label 

        character*80 finalposition,fileconf,writeconf 

c****************************************************************** 

c ----------- Parameter to record data(order parameter)------------         

c****************************************************************** 
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                integer restart 

        character*80 restartfile1 

        character*80 restartfile2 

 

        real delapse,dtime,t1(2) 

        character*8 name1 

        character*7 name3 

        character*29 name4 

        character*29 name5 

 

        integer ma, ma2, esse2, simdim 

 

       real, dimension (:,:,:), allocatable :: phi 

       real, dimension (:,:,:), allocatable :: aphi1 

       real, dimension (:,:,:), allocatable :: aaphi1 

       real, dimension (:,:,:), allocatable :: baphi1 

       real, dimension (:,:,:), allocatable :: caphi1 

       real, dimension (:,:,:), allocatable :: map2 

       real, dimension (:,:,:), allocatable :: aphi2 

       real, dimension (:,:,:), allocatable :: aaphi2 

       real, dimension (:,:,:), allocatable :: baphi2 

       real, dimension (:,:,:), allocatable :: caphi2 

       

 

c       cc1 will be cc1 / 2 (save computing time) 

c       cc2 will be cc2 / 2 (save computing time) 

 

        double precision cc1, cc2, bb1, bb2, bb3, bb4, aa1, aa2  

        double precision alpha, beta, gamma, psic, phim, pxim  

 

 

c *****************************************************************         

        open(unit=98,file = 'cds.in',status='old',form='formatted') 

c ****************************************************************  

c **************************************************************** 

c       Read input data from file CDS.IN 

c **************************************************************** 

 

  

        read(98,*) label 

        read(98,*) conf 

 

        read(98,*) label 

        read(98,*) fileconf 

 

        read(98,*) label 

        read(98,*) d 

 

        read(98,*) label 

        read(98,*) a 

 

        read(98,*) label 

        read(98,*) b 

 

        read(98,*) label 

        read(98,*) r 
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        read(98,*) label 

        read(98,*) tau 

 

        read(98,*) label 

        read(98,*) v 

 

        read(98,*) label 

        read(98,*) u 

 

        read(98,*) label 

        read(98,*) simdim 

 

        read(98,*) label 

        read(98,*) nx,ny,nz 

 

        read(98,*) label 

        read(98,*) eta 

 

        read(98,*) label 

        read(98,*) e 

 

        read(98,*) label 

        read(98,*) sh 

 

        read(98,*) label 

        read(98,*) omega 

 

        read(98,*) label 

        read(98,*) bcx,bcy,bcz 

 

        read(98,*) label 

        read(98,*) deltat 

 

        read(98,*) label 

        read(98,*) time 

 

        read(98,*) label 

        read(98,*) f1,f2,f3,f4,f5,f6 

 

        read(98,*) label 

        read(98,*) everyconf 

 

        read(98,*) label 

        read(98,*) writeconf 

 

        read(98,*) label 

        read(98,*) s1,s2,s3,s4,s5 

        read(98,*) s6,s7,s8,s9,s10 

 

        read(98,*) label 

        read(98,*) finalposition 

 

        read(98,*) label 

        read(98,*) name1 

 

        read(98,*) label 

        read(98,*) cc1 
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        read(98,*) label 

        read(98,*) cc2 

 

        read(98,*) label 

        read(98,*) bb1 

 

        read(98,*) label 

        read(98,*) bb2 

 

        read(98,*) label 

        read(98,*) bb3 

 

        read(98,*) label 

        read(98,*) bb4 

 

        read(98,*) label 

        read(98,*) alpha 

 

        read(98,*) label 

        read(98,*) beta 

 

        read(98,*) label 

        read(98,*) aa1 

 

        read(98,*) label 

        read(98,*) aa2 

 

        read(98,*) label 

        read(98,*) psic 

 

        read(98,*) label 

        read(98,*) phim 

 

        read(98,*) label 

        read(98,*) pxim 

 

        open(90, file = finalposition) 

 

c **************************************************************** 

c Allocate Arrays 

c **************************************************************** 

 

        allocate (pxi(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (zxi(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (zxi2(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (apxi1(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (aapxi1(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (bapxi1(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (capxi1(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (apxi2(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (aapxi2(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (bapxi2(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (capxi2(0:nx+1,0:ny+1,0:nz+1)) 

 

        allocate (phi(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (aphi1(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (aaphi1(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (baphi1(0:nx+1,0:ny+1,0:nz+1)) 
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        allocate (caphi1(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (aphi2(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (aaphi2(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (baphi2(0:nx+1,0:ny+1,0:nz+1))        

        allocate (caphi2(0:nx+1,0:ny+1,0:nz+1)) 

 

        allocate (f(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (ff(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (map1(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (map2(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (mxi1(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (mxi2(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (csi1(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (csi2(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (csi3(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (a1(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (a2(0:nx+1,0:ny+1,0:nz+1)) 

        allocate (a3(0:nx+1,0:ny+1,0:nz+1)) 

 

        allocate (upx(nx)) 

        allocate (upy(ny)) 

        allocate (upz(nz)) 

        allocate (downx(nx)) 

        allocate (downy(ny)) 

        allocate (downz(nz)) 

 

        allocate (m(nx)) 

        allocate (z(nx)) 

        allocate (m1(nx)) 

c **************************************************************** 

c   These following steps are to create randomly initial values   

c **************************************************************** 

 

        flag=0 

        if (conf.eq.1) then 

           open (77,file=fileconf,status='old') 

           do i=1,nx 

              do j=1,ny 

                 do k=1,nz 

                    read(77,*) pxi(i,j,k) 

                 enddo 

              enddo 

           enddo 

        else 

           ktime=0 

           do i = 1, nx 

              do j =1, ny 

                 do k= 1,  nz 

                    call random_number(temp) 

                    if (temp.GE.0.0d0 .and. temp.LT.0.5d0) then 

                       pxi(i,j,k) = -0.19d0 

                    else 

                       pxi(i,j,k) = -0.21d0 

                    endif 

                    call random_number(temp) 

                    if (temp.ge.0.0d0 .and. temp .lt. 0.5d0) then 

                       phi(i,j,k) = 0.01d0 

                    else 
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                       phi(i,j,k) = -0.01d0 

                    endif 

 

                 enddo 

              enddo 

           enddo 

        endif 

 

c 

c ***************************************************************** 

c -----------------Costant numbers--------------------------------- 

c ***************************************************************** 

      if (simdim.eq.1) then 

 

c For 3D 

          c1 = 6.0d0/80.d0 

          c2 = 3.0d0/80.0d0 

          c3 = 1.0d0/80.0d0 

      else 

         if (simdim.eq.0) then 

c For 2D 

         c1 = 1.0d0/6.0d0 

         c2 = 1.0d0/12.0d0 

         c3 = 0.0d0 

         endif 

      endif 

 

c For control unit file I/O 

       ma= 0 

       ma2 = 40 

c **************************************************************** 

c These following steps are to take boundary conditions into  

c account 

c **************************************************************** 

c **************For x ********************************************* 

c ***************************************************************** 

        If (nx.eq.1) then 

           do s=1 , nx 

              upx(s) = s+1 

              downx(s) = s-1 

           enddo 

           do k=1,nz 

              do j=1,ny 

                 do i=1,nx 

                    pxi(downx(i),j,k)=0.0d0 

                    pxi(upx(i),j,k)=0.0d0 

                    map1(downx(i),j,k)=0.0d0 

                    map1(upx(i),j,k)=0.0d0 

 

                    phi(downx(i),j,k)=0.0d0 

                    phi(upx(i),j,k)=0.0d0 

                    map2(downx(i),j,k)=0.0d0 

                    map2(upx(i),j,k) = 0.0d0 

 

                  enddo 

              enddo 

           enddo 

           if (simdim.eq.1) then 
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c For 3D 

               c1 = 6.0d0/80.d0 

               c2 = 3.0d0/80.0d0 

               c3 = 1.0d0/80.0d0 

           else 

               if (simdim.eq.0) then 

c For 2D 

                  c1 = 1.0d0/6.0d0 

                  c2 = 1.0d0/12.0d0 

                  c3 = 0.0d0 

               endif 

            endif 

        else 

           do s=1,nx 

              upx(s) = s+1 

              downx(s) = s-1 

           enddo 

           if(bcx.eq.0) then 

             upx(nx) = 1 

             downx(1) = nx 

           else 

             upx(nx) =nx 

             downx(1) = 1 

           end if 

        end if 

 

c  ***************************************************** 

c  ************ FOR y ********************************** 

c  ***************************************************** 

        if (ny.eq.1) then 

           do s=1 , ny 

              upy(s) = s+1 

              downy(s) =s-1 

           enddo 

           do k=1,nz 

              do j=1,ny 

                 do i=1,nx 

                    pxi(i,downy(j),k)=0.0d0 

                    pxi(i,upy(j),k)=0.0d0 

                    map1(i,downy(j),k)=0.0d0 

                    map1(i,upy(j),k)=0.0d0 

 

                   phi(i,downy(j),k)=0.0d0 

                   phi(i,upy(j),k)=0.0d0 

                   map2(i,downy(j),k)=0.0d0 

                   map2(i,upy(j),k) = 0.0d0 

 

                 enddo 

              enddo 

           enddo 

           if (simdim.eq.1) then 

 

c For 3D 

               c1 = 6.0d0/80.d0 

               c2 = 3.0d0/80.0d0 

               c3 = 1.0d0/80.0d0 

           else 
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               if (simdim.eq.0) then 

c For 2D 

                  c1 = 1.0d0/6.0d0 

                  c2 = 1.0d0/12.0d0 

                  c3 = 0.0d0 

               endif 

            endif 

        else 

           do s=1 , ny 

               upy(s) = s+1 

               downy(s) = s-1 

           enddo 

           if(bcy.eq.0) then 

                upy(ny) = 1 

                downy(1) = ny 

           else 

                upy(ny) = ny 

                downy(1) = 1 

           endif 

        endif 

c  ***************************************************** 

c  ************ FOR z ********************************** 

c  ***************************************************** 

        if (nz.eq.1) then 

           do s=1 , nz 

              upz(s) = s+1 

              downz(s) =s-1 

           enddo 

           do k=1,nz 

              do j=1,ny 

                 do i=1,nx 

                    pxi(i,j,upz(k))=0.0d0 

                    pxi(i,j,downz(k))=0.0d0 

                    map1(i,j,upz(k))=0.0d0 

                    map1(i,j,downz(k))=0.0d0 

 

                    phi(i,j,upz(k))=0.0d0 

                    phi(i,j,downz(k))=0.0d0 

                    map2(i,j,downz(k))=0.0d0 

                    map2(i,j,upz(k)) = 0.0d0 

 

                 enddo 

              enddo 

           enddo 

           if (simdim.eq.1) then 

 

c For 3D 

               c1 = 6.0d0/80.d0 

               c2 = 3.0d0/80.0d0 

               c3 = 1.0d0/80.0d0 

           else 

               if (simdim.eq.0) then 

c For 2D 

                  c1 = 1.0d0/6.0d0 

                  c2 = 1.0d0/12.0d0 

                  c3 = 0.0d0 

               endif 

            endif 
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        else 

           do s=1 , nz 

              upz(s) = s+1 

              downz(s) = s-1 

           end do 

           if(bcz.Eq.0) then 

              upz(nz) = 1 

              downz(1) = nz 

           else 

             upz(nz) = nz 

             downz(1) = 1 

           end if 

        end if 

 

c **************************************************************** 

        delapse=dtime(t1) 

c **************************************************************** 

 

        if (sh.ne.0.0d0) then 

             do i=1,nx 

                z(i)=0.0d0 

             enddo 

        endif 

c 

****************************************************************** 

c       Now we start to run time (t) evolution 

c 

****************************************************************** 

        do t =ktime, time-1,1 

 

       write(*,*) 'T',t 

 

c 

****************************************************************** 

c       APxi1 = [<< Pxi >> - Pxi] 

c       ******************************************************  

c 

        do k=1,nz 

           do j=1,ny 

              do i=1,nx 

                 aapxi1(i,j,k)=c1*(pxi(upx(i),j,k) 

     1           + pxi(downx(i),j,k) 

     1           + pxi(i,upy(j),k)+pxi(i,downy(j),k) 

     1           + pxi(i,j,upz(k))+pxi(i,j,downz(k))) 

c    ********************************************************* 

                 bapxi1(i,j,k)=c2*(pxi(downx(i),upy(j),k) 

     1           +pxi(downx(i),downy(j),k) 

     1           +pxi(upx(i),upy(j),k)+pxi(upx(i),downy(j),k) 

     1           +pxi(i,downy(j),upz(k))+pxi(i,downy(j),downz(k)) 

     1           +pxi(i,upy(j),upz(k))+pxi(i,upy(j),downz(k)) 

     1           +pxi(downx(i),j,upz(k))+pxi(downx(i),j,downz(k)) 

     1           +pxi(upx(i),j,upz(k))+pxi(upx(i),j,downz(k))) 

c    *********************************************************** 

                 capxi1(i,j,k)=c3*(pxi(downx(i),downy(j),upz(k)) 

     1           +pxi(downx(i),upy(j),upz(k)) 

     1           +pxi(downx(i),downy(j),downz(k)) 

     1           +pxi(downx(i),upy(j),downz(k)) 
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     1           +pxi(upx(i),downy(j),upz(k)) 

     1           +pxi(upx(i),upy(j),upz(k)) 

     1           +pxi(upx(i),downy(j),downz(k)) 

     1           +pxi(upx(i),upy(j),downz(k))) 

c *************************************************************** 

                 

apxi1(i,j,k)=aapxi1(i,j,k)+bapxi1(i,j,k)+capxi1(i,j,k) 

 

c *************************************************************** 

              enddo 

           enddo 

        enddo 

 

        do k=1, nz 

           do j=1, ny 

              do i = 1,nx 

                 aaphi1(i,j,k) = c1*(phi(upx(i),j,k) 

     1           +phi(downx(i),j,k) 

     1           +phi(i,upy(j),k) + phi(i,downy(j),k) 

     1           +phi(i,j,upz(k)) + phi(i,j,downz(k))) 

 

c **************************************************************** 

 

                 baphi1(i,j,k) = c2*(phi(downx(i),upy(j),k) 

     1           +phi(downx(i), downy(j),k) 

     1           +phi(upx(i),upy(j),k)+phi(upx(i),downy(j),k) 

     1           +phi(i,downy(j),upz(k))+phi(i,downy(j),downz(k)) 

     1           +phi(i,upy(j),upz(k))+phi(i,upy(j),downz(k)) 

     1           +phi(downx(i),j,upz(k))+phi(downx(i),j,downz(k)) 

     1           +phi(upx(i),j,upz(k))+phi(upx(i),j,downz(k))) 

c ***************************************************************** 

                 capxi1(i,j,k)=c3*(phi(downx(i),downy(j),upz(k)) 

     1           +phi(downx(i),upy(j),upz(k)) 

     1           +phi(downx(i),downy(j),downz(k)) 

     1           +phi(downx(i),upy(j),downz(k)) 

     1           +phi(upx(i),downy(j),upz(k)) 

     1           +phi(upx(i),upy(j),upz(k)) 

     1           +phi(upx(i),downy(j),downz(k)) 

     1           +phi(upx(i),upy(j),downz(k))) 

C *************************************************************** 

                 

aphi1(i,j,k)=aaphi1(i,j,k)+baphi1(i,j,k)+caphi1(i,j,k) 

      

              enddo 

           enddo 

        enddo 

 

c       This following step is to calculate 

 

        do i=1,nx 

           do j =1,ny 

              do k =1,nz 

                 map1(i,j,k) = -cc1*(apxi1(i,j,k)-pxi(i,j,k)) 

     1           -aa1*tanh(pxi(i,j,k))+pxi(i,j,k) 

     1           +bb1*phi(i,j,k) 

     1           -0.5d0*bb2*phi(i,j,k)**2 

     1           +bb3*pxi(i,j,k)*(phi(i,j,k)**2) 
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               enddo 

            enddo 

        enddo 

 

        do i=1,nx 

           do j=1,ny 

              do k=1,nz 

                 map2(i,j,k) =-cc2*(aphi1(i,j,k)-phi(i,j,k)) 

     1           -aa2*tanh(phi(i,j,k)) + phi(i,j,k) 

     1           +bb1*pxi(i,j,k) 

     1           -bb2*pxi(i,j,k)*phi(i,j,k) 

     1           +bb3*phi(i,j,k)*(pxi(i,j,k)**2) 

              enddo 

            enddo 

        enddo 

 

c ************************************************************** 

c  This following step is to take into account the boundary  

c  conditions 

c ************************************************************** 

 

c*******for Map(i,j) which will be needed for next step.******* 

   

        do k=1,nz 

           do j=1,ny 

              do i=1,nx 

                 aapxi2(i,j,k)=c1*(map1(upx(i),j,k) 

     1           +map1(downx(i),j,k) 

     1           +map1(i,upy(j),k)+map1(i,downy(j),k) 

     1           +map1(i,j,upz(k))+map1(i,j,downz(k))) 

 

                 bapxi2(i,j,k)=c2*(map1(downx(i),upy(j),k) 

     1           +map1(downx(i),downy(j),k) 

     1           +map1(upx(i),upy(j),k)+map1(upx(i),downy(j),k) 

     1           +map1(i,downy(j),upz(k))+map1(i,downy(j),downz(k)) 

     1           +map1(i,upy(j),upz(k))+map1(i,upy(j),downz(k)) 

     1           +map1(downx(i),j,upz(k))+map1(downx(i),j,downz(k)) 

     1           +map1(upx(i),j,upz(k))+map1(upx(i),j,downz(k))) 

 

                 capxi2(i,j,k)=c3*(map1(downx(i),downy(j),upz(k)) 

     1           +map1(downx(i),upy(j),upz(k)) 

     1           +map1(downx(i),downy(j),downz(k)) 

     1           +map1(downx(i),upy(j),downz(k)) 

     1           +map1(upx(i),downy(j),upz(k)) 

     1           +map1(upx(i),upy(j),upz(k)) 

     1           +map1(upx(i),downy(j),downz(k)) 

     1           +map1(upx(i),upy(j),downz(k))) 

 

                 

apxi2(i,j,k)=aapxi2(i,j,k)+bapxi2(i,j,k)+capxi2(i,j,k) 

              enddo 

           enddo 

        enddo 

 

        do k=1,nz 

           do j=1,ny 

              do i=1,nx 
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                 aaphi2(i,j,k) = c1*(map2(upx(i),j,k) 

     1           +map2(downx(i),j,k) 

     1           +map2(i,upy(j),k) + map2(i,downy(j),k) 

     1           +map2(i,j,upz(k)) + map2(i,j,downz(k))) 

   

                 baphi2(i,j,k)=c2*(map2(downx(i),upy(j),k) 

     1           +map2(downx(i),downy(j),k) 

     1           +map2(upx(i),upy(j),k)+map2(upx(i),downy(j),k) 

     1           +map2(i,downy(j),upz(k))+map2(i,downy(j),downz(k)) 

     1           +map2(i,upy(j),upz(k))+map2(i,upy(j),downz(k)) 

     1           +map2(downx(i),j,upz(k))+map2(downx(i),j,downz(k)) 

     1           +map2(upx(i),j,upz(k))+map2(upx(i),j,downz(k))) 

 

                 caphi2(i,j,k)=c3*(map2(downx(i),downy(j),upz(k)) 

     1           +map2(downx(i),upy(j),upz(k)) 

     1           +map2(downx(i),downy(j),downz(k)) 

     1           +map2(downx(i),upy(j),downz(k)) 

     1           +map2(upx(i),downy(j),upz(k)) 

     1           +map2(upx(i),upy(j),upz(k)) 

     1           +map2(upx(i),downy(j),downz(k)) 

     1           +map2(upx(i),upy(j),downz(k))) 

 

                 

aphi2(i,j,k)=aaphi2(i,j,k)+baphi2(i,j,k)+caphi2(i,j,k) 

              enddo 

           enddo 

        enddo 

 

 

        do k=1,nz 

           do j=1,ny 

              do i=1,nx 

                 pxi(i,j,k) = pxi(i,j,k)+deltat* 

     1           (-map1(i,j,k)+apxi2(i,j,k)) 

             enddo 

           enddo 

        enddo 

 

        do k=1,nz 

           do j=1,ny 

              do i=1,nx 

                 phi(i,j,k) = phi(i,j,k) + deltat*(-map2(i,j,k) 

     1           +aphi2(i,j,k) 

     1           -alpha*(phi(i,j,k)-phim)) 

              enddo 

           enddo 

        enddo 

 

 

c**************************************************************** 

c Customized output writing output to files is in the same way   

c as given in Appendix A 

c**************************************************************** 


