

MATHEMATICAL MODELLING OF COMPLEX

DYNAMICS

by

Sohail Ahmed Memon

A Thesis submitted in partial fulfilment for the requirements for the degree of Doctor of

Philosophy at the University of Central Lancashire

April 2017

I declare that while registered as a candidate for the research degree, I have not been a

registered candidate or enrolled student for another award of the University or other

academic or professional institution.

I declare that no material contained in the thesis has been used in any other submission

for an academic award and is solely my own work.

Signature of Candidate

Type of Award Doctor of Philosophy

School Physical Sciences and Computing

i

Abstract

Soft materials have a wide range of applications, which include the production of masks

for nano–lithography, the separation of membranes with nano–pores, and the preparation

of nano–size structures for electronic devices. Self–organization in soft matter is a

primary mechanism for the formation of structure. Block copolymers are long chain

molecules composed of several different polymer blocks covalently bonded into a single

macromolecule, which belong to an important class of soft materials which can self–

assemble into different nano–structures due to their natural ability to microphase separate.

Experimental and theoretical studies of block copolymers are quite challenging and,

without computer simulations, it is difficult and problematic to analyse modern

experiments. The Cell Dynamics Simulation (CDS) technique is a fast and accurate

computational technique, which has been used to investigate block copolymers.

The stability has been analysed by making use of different discrete Laplacian operators

using well–chosen time steps in CDS. This analysis offers stability conditions for phase–

field, based on the Cahn–Hilliard Cook (CHC) equations of which CDS is the finite

difference approximation. To overcome grid related artefacts (discretization errors) in the

computational grid, the study has been done for employing an isotropic Laplacian

operator in the CDS framework. Several 2D and 3D discrete Laplacians have been

quantitatively compared for their isotropy. The novel 2D 9–point BV(D2Q9) isotropic

stencil operators have been derived from the B.A.C. van Vlimmeren method and their

isotropy measure has been determined optimally better than other exiting 2D 9–point

discrete Laplacian operators. Overall, the stencils in 9–point family Laplacians in 2D and

the 19–point stencil operators in 3D have been found to be optimal in terms of isotropy

and time step stability.

ii

Considerable implementation of Laplacians with good isotropy has played an important

role in achieving a proper structure factor in modelling methods of block copolymers.

The novel models have been developed by implementing CDS via more stable implicit

methods, including backward Euler, Crank–Nicolson (CN) and Alternating Direction

Implicit (ADI) methods. The CN scheme were implemented for both one order and two

order parameter systems in CDS and successful results were obtained compared to

forward Euler method. Due to the implementation of implicit methods, the CDS has

achieved second–order accuracy both in time and space and it has become stronger, robust

and more stable technique for simulation of the phase–separation phenomena in soft

materials.

iii

Contents
Abstract .. i

List of Figures .. vi

List of Tables .. x

Acknowledgements .. xi

Terminology .. xii

Chapter One .. 1

1 Introduction ... 1

1.1 Motivation of the study ... 2

1.2 Aim and Objectives ... 4

1.3 Original contributions in the thesis ... 5

1.4 Outline of thesis .. 7

Chapter Two .. 9

2 Literature review ... 9

2.1 Overview of Mathematical Contributions in Soft Materials ... 9

2.2 Block Copolymers and their Applications .. 13

2.3 Applications of Cell Dynamics Simulation (CDS) Method .. 15

2.4 Two Order Parameter Systems .. 16

2.5 Importance of Isotropic Laplacian Operators .. 18

2.6 Finite Difference Methods .. 22

2.6.1 Forward Time, Centred Space ... 23

2.6.2 Backward Time, Centred Space .. 25

2.6.3 Crank–Nicolson Scheme ... 26

2.6.4 Alternating Direction Implicit Method ... 30

Chapter Three .. 36

3 Method and Model Equations (One order parameter) .. 36

3.1 Cell dynamics simulation method ... 36

3.2 Laplacian schemes .. 39

3.2.1 Two dimensional Laplacian schemes .. 41

3.2.2 Three–dimensional Laplacian schemes ... 54

3.3 Stability analysis ... 62

3.4 Conclusions ... 64

Chapter Four ... 66

4 Simulation Results (One–Order Parameter) .. 66

4.1 Two–dimensional simulations .. 67

4.1.1 2D Simulation results based on anisotropic Laplacian schemes 72

iv

4.1.2 2D Simulation results based on isotropic Laplacian schemes 77

4.2 Three–dimensional simulations .. 79

4.3 Conclusions ... 85

Chapter Five .. 87

5 Implementation of the Crank–Nicolson method for CDS equations 87

5.1 Implementation of the Crank–Nicolson (CN) Scheme in cell dynamics 87

5.1.1 Matrix based forward Euler and backward Euler methods for CDS 88

5.1.2 Crank–Nicolson method for CDS ... 95

5.1.3 Implementation of boundary conditions ... 98

5.2 Conclusions ... 106

Chapter Six .. 108

6 The Cell Dynamics Simulations of Two Order Parameter Systems 108

6.1 Mathematical model of two order parameter systems .. 108

6.2 Numerical method for two order parameter systems .. 112

6.2.1 Computer simulations ... 113

6.3 Three-dimensional simulations of A–B/C systems .. 117

6.4 Implementation of Crank–Nicolson scheme in A–B/C systems 121

6.5 Conclusions ... 130

Chapter Seven ... 132

7 Implementation of the Alternating Direction Implicit method for CDS equations 132

7.1 Implementation of the ADI method for CDS .. 132

7.1.1 Generalized ADI method .. 134

7.1.2 Hundsdorfer’s ADI method ... 143

7.2 Conclusions ... 146

Chapter Eight .. 148

8 Conclusions and Future Works ... 148

8.1 Conclusions ... 148

8.2 Future works ... 151

References ... 154

Appendix A ... 162

2D CDS Code (Default) .. 162

Appendix B ... 170

CDS Code for 9–point Star Laplacain Scheme ... 170

Appendix C ... 171

CDS Code for 17–point Laplacian Scheme .. 171

Appendix D ... 173

v

3D CDS Code (Default) .. 173

Appendix E ... 183

Conjugate Gradient Method .. 183

Appendix F .. 185

CDS CN Code ... 185

Appendix G ... 196

Two Order Parameter Systems CDS Code ... 196

vi

List of Figures

Figure 2.1: Energy shells form stencils on a cubic unit shell. This image is taken from [6]. 20

Figure 2.2: Three different schemes for a two-dimensional heat equation 29

Figure 3.1: The 9–point stencil shape of Laplacian on 2D grid. The dark circle is the centre, the

square boxes are its nearest neighbours (NN) and the crosses are its next nearest neighbours

(NNN). .. 42

Figure 3.2: The value of a measure of the isotropy)(rd for the actual Laplacian (red dashed

line for
2k) and other discrete Laplacians with r the radius. .. 46

Figure 3.3: The value of a measure of the isotropy)(rd for the actual Laplacian (red solid line

for
2k) and other discrete Laplacians against the radius r. The BV(D2Q9) are newly derived

stencils. .. 51

Figure 3.4: Stencil shapes of Laplacian on 2D grid. a) 9–point star stencil; b) 17–point stencil.52

Figure 3.5: The value of a measure of the isotropy)(rd for the actual Laplacian (red solid line

for
2k) and other discrete Laplacians with r the radius. ... 53

Figure 3.6: The stencil for three-dimensional Laplacian schemes, where NN, NNN, and NNNN

are the nearest neighbours, next–nearest neighbours and next–next nearest neighbours to the

point r. This image is taken with the permission of [2]. .. 55

Figure 3.7: The value of a measure of the isotropy)(rd for the actual Laplacian (red solid line

for
2k) and other discrete Laplacians with r the radius. ... 59

Figure 3.8: The value of a measure of the isotropy)(rd for the actual Laplacian (red solid line

for
2k) and other discrete Laplacians with r the radius. ... 60

Figure 4.1: Results of CDS based on OP(D2Q9) 9–point stencil, equation (3.59). Real space

simulation snapshots in (a), (b) and (c) are for 100th, 10000th and 100000th time steps

respectively obtained by using parameters given in Table 4.2. Real space simulation snapshot in

(d) is for 100000th time step obtained by using parameters given in Table 4.3. 68

Figure 4.2: CDS results based on Laplacian scheme A(D2Q5); a) real space simulation snapshot

at100000th time step by using parameters given in Table 4.2; b) real space simulation snapshot

of binary blend at 100000th time step by using parameters given in Table 4.3. 72

Figure 4.3: CDS results based on Laplacian scheme D2Q5 given in equation (3.57); a) real

space simulation snapshot at100000th time step obtained by using parameters given in Table 4.2;

b) real space simulation snapshot at 100000th time step obtained by using parameters given in

Table 4.3.. 73

Figure 4.4: CDS results based on Laplacian scheme D2Q9 given in equation (3.60). The real

space simulation snapshot at 100th time step obtained by using parameters given in Table 4.2. 73

Figure 4.5: CDS results based on Laplacian scheme BK(D2Q9) given in equation (3.61); a) real

space simulation snapshot at100000th time step obtained by using parameters given in Table 4.2;

b) real space simulation snapshot at 100000th time step obtained by using parameters given in

Table 4.3.. 74

Figure 4.6: CDS results based on Laplacian scheme D2Q9star; a) real space simulation snapshot

at100000th time step obtained by using parameters given in Table 4.2; b) real space simulation

snapshot at 100000th time step obtained by using parameters given in Table 4.3....................... 75

Figure 4.7: CDS results based on Laplacian scheme D2Q17 given in equation (3.66); a) real

space simulation snapshot at100000th time step obtained by using parameters given in Table 4.2;

vii

b) real space simulation snapshot at 100000th time step obtained by using parameters given in

Table 4.3.. 76

Figure 4.8: CDS results based on Laplacian scheme PK(D2Q9) given in equation (3.58); a) real

space simulation snapshot at100000th time step obtained by using parameters given in Table 4.2;

b) real space simulation snapshot at 100000th time step obtained by using parameters given in

Table 4.3.. 77

Figure 4.9: CDS results based on Laplacian scheme BV(D2Q9)case1 given in equation (3.62); a)

real space simulation snapshot at 100000th time step obtained by using parameters given in

Table 4.2; b) real space simulation snapshot at 100000th time step obtained by using parameters

given in Table 4.3. ... 78

Figure 4.10: CDS results based on Laplacian scheme BV(D2Q9)case2 given in equation (3.63); a)

real space simulation snapshot at 100000th time step obtained by using parameters given in

Table 4.2; b) real space simulation snapshot at 100000th time step obtained by using parameters

given in Table 4.3. ... 79

Figure 4.11: CDS results based on Laplacian scheme BV(D2Q9)case3 given in equation (3.64); a)

real space simulation snapshot at 100000th time step obtained by using parameters given in

Table 4.2; b) real space simulation snapshot at 100000th time step obtained by using parameters

given in Table 4.3. ... 79

Figure 4.12: CDS results based on Laplacian scheme SO(D3Q27); a) real space simulation

snapshot at 100th time step; b) real space simulation snapshot at 10000th time step; c) real space

simulation snapshot at 100000th time step... 82

Figure 4.13: 3D CDS results based on Laplacian schemes D3Q7 and D3Q15. a) real space

simulation snapshot at 100000th time step using Laplacian scheme D3Q7; b) real space

simulation snapshot at 100000th time step using Laplacian scheme D3Q15. 83

Figure 4.14: 3D results of CDS in spherical morphology for A-B diblock copolymer systems. a)

Real space simulation snapshot at 100000th time step obtained using Laplacian scheme D3Q19.

b) Real space simulation snapshot at 100000th time step obtained using Laplacian scheme

D3Q27. c) Real space simulation snapshot at 100000th time step obtained using Laplacian

scheme PK(D3Q27). d) Real space simulation snapshot at 100000th time step obtained using

Laplacian scheme BV(D3Q27). .. 84

Figure 5.1: Forward Euler method for two-dimensional CDS equations based on 5–point

formula at different time steps. a) at t = 10; b) t = 100; c) t = 1000. ... 92

Figure 5.2: Backward Euler method for two-dimensional CDS equations based on 5– point

formula at different time steps. a) at t = 10; b) t = 100; c) t = 1000. 95

Figure 5.3: CN scheme for two-dimensional CDS equations based on 5–point formula at

different time steps. a) at t = 10; b) t = 100; c) t = 1000. .. 97

Figure 5.4: Explicit forward Euler method based on 5–point formula using periodic boundary

conditions where (a) and (b) images are 100th and 10000th time steps. 100

Figure 5.5: Implicit backward Euler method based on 5–point formula using periodic boundary

conditions where images (a) and (b) are 100th and 10000th time steps. 100

Figure 5.6: CN method based on 5–point formula using periodic boundary conditions where

images (a) and (b) are 100th and 10000th time steps respectively. ... 101

Figure 5.7: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 10000th time steps in images (a) and (b) respectively. Two lines of different

colour show numerical values of  x for two different methods, the forward Euler and the CN.

The numerical values plotted here were obtained from the simulations shown in Figure 5.4 and

5.6. ... 102

viii

Figure 5.8: Explicit forward Euler method based on 9–point formula using periodic boundary

conditions where (a) and (b) images are 100th and 10000th time steps respectively. 104

Figure 5.9: Implicit backward Euler method based on 9–point formula using periodic boundary

conditions where images (a) and (b) are 100th and 10000th time steps respectively. 104

Figure 5.10: CN method based on 9–point formula using periodic boundary conditions where

images (a) and (b) are 100th and 10000th time steps respectively. ... 104

Figure 5.11: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 10000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler, backward Euler and the CN methods. The numerical

values plotted here were obtained from the simulations shown in Figure 5.8, 5.9 and 5.10. ... 105

Figure 6.1: The diblock copolymer and homopolymer (A–B/C) systems. Images (a), (b) and (c)

are 1000th, 4000th and 50000th time steps respectively. ... 114

Figure 6.2: Hexagonal microdomains in A– B/C systems. Images (a) and (b) are 10000
th

and

50000
th

time steps respectively. ... 116

Figure 6.3: The simulation images (a), (b), (c) and (d) are 1000th, 4000th, 10000th and 70000th

time steps respectively. ... 117

Figure 6.4: The simulation images (a), (b), and (c) are 1000th, 10000th, and 50000th time steps

respectively using Laplacian scheme SO(D3Q27).. 119

Figure 6.5: The simulation images (a) and (b) were obtained at 50000th time step using

Laplacian schemes D3Q19 and BV(D3Q27) respectively. ... 120

Figure 6.6: The images (a) and (b) are 1000th and 10000th time steps respectively obtained using

the backward Euler method for two–order parameter systems. .. 125

Figure 6.7: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 10000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and backward Euler methods. The numerical values

plotted here were obtained from the simulations shown in Figure 6.3 and 6.6. 126

Figure 6.8: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 10000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and backward Euler methods. The numerical values

plotted here were obtained from the simulations shown in Figure 6.3 and 6.6. 126

Figure 6.9: The images (a) and (b) are 10000th and 70000th time steps respectively obtained

using the CN method for two–order parameter systems. .. 127

Figure 6.10: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 70000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and CN methods. The numerical values plotted here

were obtained from the simulations shown in Figure 6.3 and 6.9. ... 128

Figure 6.11: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 70000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and CN methods. The numerical values plotted here

were obtained from the simulations shown in Figure 6.3 and 6.9. ... 128

Figure 7.1: Explicit forward Euler method based on 5–point formula (Laplacian scheme

A(D2Q5)) using periodic boundary conditions where images (a) and (b) are at 1000th and

100000th time steps respectively. .. 136

file:///H:/Thesis_complete/Thesis_complete_v10.docx%23_Toc475890683
file:///H:/Thesis_complete/Thesis_complete_v10.docx%23_Toc475890683
file:///H:/Thesis_complete/Thesis_complete_v10.docx%23_Toc475890684
file:///H:/Thesis_complete/Thesis_complete_v10.docx%23_Toc475890684
file:///H:/Thesis_complete/Thesis_complete_v10.docx%23_Toc475890685
file:///H:/Thesis_complete/Thesis_complete_v10.docx%23_Toc475890685

ix

Figure 7.2: Generalized ADI method based on 5–point formula (Laplacian scheme A(D2Q5))

using periodic boundary conditions where images (a) and (b) are at 1000th and 100000th time

steps respectively. ... 137

Figure 7.3: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 1000th and 100000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and generalized ADI methods. The numerical values

plotted here were obtained from the simulations shown in Figure 7.1 and 7.2. 137

Figure 7.4: Generalized ADI method based on 5–point formula using 256256 grid size and

time interval 0.1t where images (a) and (b) are at 1000th and 100000th time steps

respectively. .. 139

Figure 7.5: Three-dimensional results using explicit method based on 7–point formula using

646464  grid size and time interval 1.0t where images (a) and (b) are at 1000th and

10000th time steps respectively. .. 141

Figure 7.6: Three–dimensional results using generalized ADI method based on 7–point formula

using 646464  grid size and time interval 0.1t where images (a) and (b) are at 1000th

and 10000th time steps respectively. .. 141

Figure 7.7: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 1000th and 100000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and generalized ADI methods. The numerical values

plotted here were obtained from the 3D simulations shown in Figure 7.5 and 7.6. 142

Figure 7.8: Hundsdorfer’s ADI method based on 5–point formula (Laplacian scheme A) using

periodic boundary conditions where images (a) and (b) at 1000th and 100000th time steps

respectively. .. 145

Figure 7.9: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 1000th and 100000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and Hundsdorfer’s ADI methods. The numerical

values plotted here were obtained from the simulations shown in Figure 7.1 and 7.8. 145

x

List of Tables

Table 3.1: Time step (t) values for all two– and three–dimensional Laplacian schemes

obtained from stability analysis criteria .. 64

Table 4.1: Simulation parameters used for the different morphologies 67

Table 4.2: System parameters used in cell dynamical method for Lamellae morphology.......... 69

Table 4.3: System parameters used in cell dynamical method for binary blend 69

Table 4.4: 2D stencils along with their weights for utilisation in computer code and isotropic or

anisotropic status ... 71

Table 4.5: 3D stencils along with their weights for utilisation in computer code and isotropic or

anisotropic status. .. 80

Table 5.1: System parameters used in cell dynamical method for lamellae morphology 91

Table 7.1: System parameters used in cell dynamical method for lamellae morphology 136

xi

Acknowledgements

I am indebted and grateful to many people for the support, encouragement, advice and

friendship that they have offered during my studies at the University of Central

Lancashire. It is a great pleasure to acknowledge them here.

I would like to first express my sincere gratitude to my supervisors, Dr Dung Ly and

Professor Waqar Ahmed for their vital guidance, patience and encouragement over the

past years. Many thanks for your confidence in me and your enthusiasm.

I would also like to thank Professor Andrei Zvelindovsky and Dr Marco Pinna for their

help. Thanks go to all my colleagues and friends for their motivation and help, and for

reminding me that to have fun occasionally is fine.

Finally, a huge and special thanks to my family for their support and love. This journey

would have not been possible without their support. I dedicate this thesis to my sisters,

brothers, wife and daughter.

xii

Terminology

Nomenclature

f Global volume fraction of A monomers in the diblock

AN Number of A monomers

BN Number of B monomers

 g Map function

D Positive constant for diffusion coefficient

F Free energy functional

X Laplacian on quantity X

 Phenomenological mobility constant

 k Wave factor

 F Free energy functional

B Chain length dependence

t Time interval

M Matrix

Greek Letters

A Local volume fraction

B Local volume fraction

 Order parameter

 Order parameter

 Differential operator

xiii

Abbreviations

MD Molecular Dynamics

MC Monte Carlo

DPD Dissipative Particle Dynamics

BD Brownian Dynamics

TDGL Time-dependent Ginzburg-Landau

SCFT Self-consistent Field Theory

CDS Cell Dynamic Simulation

A–B/C Mixture of A-B diblock copolymer and C homopolymer

BCPs Block Copolymer Systems

CHC Cahn-Hilliard Cook

PDEs Partial Differential Equations

MesoDyn Mesoscopic Dynamics

CN Crank–Nicolson

ADI Alternative Direction Implicit

FDT Fluctuation Dissipation Theorem

FDTD Finite Difference Time Domain

FD Finite Difference

PDO Partial Differential Operator

BTCS Backward Time, Centred Space

FTCS Forward Time, Centred Space

CG Conjugate Gradient

D2Q5 Two–dimensional 5–point stencil

D2Q9 Two–dimensional 9–point stencil

D3Q19 Three–dimensional 19–point stencil

D3Q27 Three–dimensional 27–point stencil

1

Chapter One

1 Introduction

The studies of block copolymers in soft materials have been considered theoretically and

experimentally over the last few decades and have attracted the attention of both material

scientists and mathematicians. Block copolymers are materials that, due to their intrinsic

property of microphase separation, can self–assemble into different nanostructures on a

scale in the range of 10–100 nm. These structures are lamellae, spheres, packed cylinders

and gyroids [1, 2]. Block copolymers are useful due to their ability to form regular

nanometre–scale patterns. Experimental studies of these materials are time consuming,

expensive and challenging. Therefore, computer simulation can be used in a computer–

aided design to provide new insights into their characteristics; many computer simulation

techniques have been designed to study block copolymer systems. A cell dynamics

simulation (CDS) technique, based on solving partial differential equations (PDEs), is

computationally very fast compared to other simulation methods.

This study focuses on mathematical modelling and computer simulations of diblock

copolymers (two blocks per molecule) in lamellar forming systems. In this new

contribution, the computer simulations of diblock copolymers were performed by

employing CDS in a Cartesian coordinate system. A cellular automaton called the cell

dynamics simulation (CDS) method was first proposed by Oono and Puri for the

modelling of spinodal decomposition [3]. The CDS technique was used to study block

copolymer structures in order to gain molecular information. Block copolymer structures

are very sensitive to external influences. In computer simulation it manifests itself in

sensitivity via discretization errors. In this study, several discretization schemes were

investigated in order to improve CDS performance and a comparison between different

2

discretization schemes was performed. The CDS simulation codes were developed in

FORTRAN computer language for the evolution of order parameters.

1.1 Motivation of the study

In this study CDS has been employed because it offers a number of advantages, which

include:

 The CDS is a fast method of simple Time Dependent Ginzburg–Landau (TDGL)

type simulation in describing the phase separation dynamics in soft systems

concerning the diffusive dynamics. For example, it was applied to Block

Copolymer (BCP) systems to accurately describe very complex dynamical

behaviour in large scale BCP systems [4]

 CDS can be efficiently used to model dynamic processes in block copolymers at

the mesoscale level.

 The CDS method is proposed for obtaining numerical results in spatial

decomposition considering the neighbouring points to minimize the calculation

cost.

 It is a good compromise between computational speed and physical accuracy.

 CDS is less computationally intensive compared to the Self–Consistent Field

(SCF) simulation method and it allows wider space parameters and a longer time

for evolution [2].

 CDS is considered more efficient than discretised TDGL or Cahn–Hilliard Cook

(CHC) equations, due to a much larger (effective) and stable time step.

However, CDS also suffers some drawbacks, including:

 The stability of CDS for larger (effective) time steps is still questionable.

3

 The finite difference Laplacian schemes (stencil operators) that lead to grid related

artefacts (or discretization errors).

 The general implementation of CDS framework in the explicit finite difference

method is not very stable or first-order accurate in time.

In order to enhance the CDS performance, the following were addressed:

 The CDS method needs further improvement in terms of stability analysis. It is

the larger time step that recognizes the CDS’s most efficient method of studying

the microphase separation or spinodal decomposition [5]. Therefore, the stability

analysis was performed for the CDS framework using different Laplacian

schemes.

 The use of an isotropic discrete Laplacian operator in CDS is necessary to avoid

grid related artefacts (anisotropies). To implement a strong grid–based simulation

methodology, it is crucial to choose Laplacians with good isotropy and scaling

behaviour. The achievement of proper structure factors in modelling methods of

block copolymers is important and this process requires a considerable

implementation of isotropy. Several discrete Laplacians were proposed in the

literature [6, 7], especially for the Lattice–Boltzmann method. Here, the most

frequent choices of discrete Laplacians will be considered and discussed, giving

their properties and isotropic behaviour in detail.

 The general finite difference method applied to CDS has been the forward Euler

method (explicit scheme). It is well known that the explicit scheme has some

limitations, mainly regarding convergence and stability [8]. The forward Euler

method is not very stable or conditionally stable and is first–order accurate in time

and second–order accurate in space. Other implicit schemes, i.e. the Crank–

Nicolson scheme (CN), must be implemented to replace the conventional

4

approach of the finite difference method. The implicit schemes are

unconditionally convergent and stable (in terms of using time step value) and are

second–order accurate in time and space. The Crank–Nicolson (CN) scheme is

one of the implicit schemes, having less truncation errors and more stability than

the forward Euler method [8]. In this work the CDS equations have been modified

with implicit finite difference schemes which include backward Euler, CN and

Alternating Direction Implicit (ADI) methods.

1.2 Aim and Objectives

This thesis is aimed at developing the analysis of partial differential equations (PDEs)

involved in the CDS method for investigating phase separation in diblock copolymer

systems.

The objectives of this research study were as follows:

 To investigate 2D and 3D discrete Laplacian operators for ensuring isotropy and

to perform the stability analysis for time step value so that these isotropic discrete

Laplacian operators can be employed in CDS for modelling of diblock

copolymers.

 To investigate simulation results of A–B diblock copolymers systems using CDS

by employing various 2D and 3D isotropic Laplacian schemes.

 To implement the Crank–Nicolson (CN) method for CDS based on one order

parameter system. The CN is a finite difference method which is second-order

accurate in time and space. The CN method is slow but more stable compared to

the forward Euler method, which is fast but not stable.

 To implement the CN method for CDS based on a two order parameter system.

The two order parameter systems are comprised of A–B diblock copolymer and C

5

homopolymer with incompressibility conditions for two independent variables.

One of these variables describes the segregation of copolymers and the other

describes order parameter in micro-phase separation. The new methodology for

such systems will be helpful and useful to relieve the anisotropy of the system in

the late stage of domain growth, which may arise from the discretization of the

space.

 To implement the Alternating Direction Implicit (ADI) method for CDS based on

one order parameter system. The ADI method is a finite difference method which

is second-order accurate in time and space. The ADI is faster than CN. The

implementation of the ADI method for CDS framework makes the CDS more

stable and robust technique.

1.3 Original contributions in the thesis

The work presented in the thesis makes the following novel contributions:

 Although the two– and three–dimensional discrete Laplacian operators have

been studied for their isotropy and scaling behaviour [6, 7, 9], in this study

various stencils for Laplacian operators are quantitatively compared to

measure their isotropy. Three new two-dimensional 9–point isotropic stencil

operators (BV(D2Q9)) are derived from B.A.C. van Vlimmeren’s method.

The isotropy of these stencils is measured and compared with the existing 9-

point isotropic discrete Laplacian OP(D2Q9). One of these stencils has been

found to be more isotropic. The stability of the efficient CDS method was

analysed by making use of special properties of the discrete Laplacian

operator. It was found that the isotropic discrete Laplacians up to fourth–order

on k become anisotropic for larger wave vectors, and up to second–order ‘less

6

isotropic’ are slightly anisotropic on the whole k range. The two-dimensional

9–point PK(D2Q9) and three-dimensional 19–point (D3Q19) discrete

Laplacians were found to be ideally isotropic.

 Computer codes in FORTRAN were developed for CDS based on 2D and 3D

Laplacian schemes in order to investigate isotropic simulation results of A–B

diblock copolymer systems.

 Generally, the explicit scheme (forward Euler method) has been implemented

for CDS equations. In this work, the novel model of CDS has been developed

by implementing implicit finite difference schemes which include backward

Euler, Crank–Nicolson and Alternating Direction Implicit (ADI) methods. In

CN methodology for CDS, a 9–point isotropic Laplacian operator was

successfully employed and numerical results were obtained. The implicit

schemes are more stable and second-order accurate in time and space. The

implementation of these schemes makes the CDS stronger in terms of stability

and consistency.

 To make the CN method more generalized for CDS method. The CN method

was implemented for two order parameter systems using CDS model

equations and the computer codes were also developed. The 9–point isotropic

Laplacian operator was successfully employed and numerical results were

obtained. The novel development of CDS for two order parameter systems in

CN method helps to relieve the anisotropy of the system in the late stage of

domain growth, which may arise from the discretization of the space.

7

1.4 Outline of thesis

This thesis is divided into eight chapters. Chapter One gives a brief introduction.

In chapter two, the review of mathematical models and a related literature review are

given. In addition, the block copolymers and their applications are discussed, the

importance of Laplacian operators is addressed and the finite difference schemes are

explained.

In chapter three, the cell dynamics simulation model explains the one-order parameter

system. The 2D and 3D Laplacian schemes and their properties are investigated. A

stability analysis was undertaken for each Laplacian scheme to suggest the suitable time

interval value.

In chapter four, the simulations are presented for 2D and 3D Laplacian schemes which

are discussed in Chapter three. The isotropic results of the lamellar forming of A–B

diblock copolymer for 2D simulations and the isotropic results of spherical morphology

in 3D simulations are analysed using Laplacian schemes.

In chapter five, the matrix-based forward Euler, backward Euler and Crank–Nicolson

methods are implemented for CDS, based on one–order parameter system model

equations. Two different Laplacian schemes are employed in a newly developed model

using the Crank–Nicolson method for CDS.

In chapter six, the cell dynamical model is explained for two–order parameter systems

of A–B diblock copolymer and C homopolymer mixtures. The backward Euler and

Crank–Nicolson method is implemented for two–order parameter systems.

8

In chapter seven, the Alternating Direction Implicit (ADI) method is implemented for

the cell dynamical model of one–order parameter systems. Two different ADI methods

are implemented.

In chapter eight, the conclusions are given for the findings and future work is elaborated.

9

Chapter Two

2 Literature review

2.1 Overview of Mathematical Contributions in Soft Materials

Soft materials research is now a highly demanding field which is transforming into a

quantitative science. The collaboration between the mathematical sciences and materials

sciences is increasing and researchers from both fields are working together and have

developed a broad mathematical theory of materials. Materials science has been the main

area of research for mathematics professionals. At the same time, the development in

materials science has been the focus for industries such as aerospace, automotive,

biomaterials, chemicals, electronics, energy, metals, and telecommunications [10, 11].

The important and emerging area in the field of materials science is polymers, where the

problems of liquid flow are arising. Today, the field of materials science is vast and covers

physical sciences, engineering and mathematics. The synthesis and manufacture of new

materials, the modification of materials, and the understanding and prediction of materials

and materials properties and their evolution over time, are all basic objectives of materials

science. The mathematical sciences play a unique role by giving a quantitative description

of the processes and phenomena of materials. The mathematical sciences are helpful in

unifying force, revealing underlying structure, and developing computational modelling

of processes and phenomena of soft materials. The mathematical methods solve

significant problems in materials science and suggest further interesting research areas in

mathematical sciences [12].

There are a number of aspects in atomic-scale theories which are modelled by

mathematical simulation methods, e.g. the Monte Carlo (MC) [13, 14] simulation method

which has been used for the computation of equilibrium atomic configurations and the

10

Molecular Dynamics (MD) [13] simulation method for the evolution of nonequilibrium

atomic configurations at nonzero temperature [15]. In various other phenomena, the

evolution of a system is calculated with the specification of external variables involved

such as pressure, volume, or temperature etc. The studies of such systems include

dislocation formation and motion, plastic flow, grain boundary sliding and strengthening,

crack propagation, and chemical reactivity, etc. [16, 17]. The mathematical sciences

contribute on a larger scale to the numerical implementation of the systems described

above and examples of the mathematical techniques used are fast Fourier transforms,

multidimensional integration, curved–space description, solution of nonlinear equations,

nonlinear regression, conjugate gradient methods, and eigenvalue methods for large or

sparse matrices.

Many mathematical methods still remain poorly understood, though broadly used, in the

field of materials science. These include a number of factors that can be carefully

considered in the process of approximations; such investigations may be: (i) the stability

of methodology, (ii) the types of approximation schemes to be applied to predict the

behaviour of particular models, and (iii) guidance to the solution of the integral equations

that occur in such systems. While the theory of atomic models has been emerging rapidly

during the past few decades [18], there remains much work to be done to understand the

complexities in molecular systems. Molecular systems involve several or many atoms (as

for polymers) covalently bonded together; they form different geometrical objects and

the conventional graph theory best describes such molecular models [19]. As far as the

improvement in theory of equilibrium interfaces gain rapid attention, the other research

field of interfacial dynamics becomes open to mathematical researchers. The studies of

interfacial dynamics are phenomenological and are based on the order parameters [20].

Mathematical researchers are making a grand contribution to this field by developing new

11

algorithms and computational models to obtain the numerical solutions of equations

involved in these systems, as materials are produced from phase–separated polymers and

the strengths of materials are determined by interfacial strength and morphology.

Specifically, investigations have been focused on interfaces in binary blends [21, 22]. In

the fields of phase transformations and pattern formations, solidification is an important

area which requires a considerable mathematical effort. For instance, it involves a strong

interaction between materials scientists, mathematicians, and numerical analysts to

develop a new theory and method of calculation for pattern formation during the

processes of alloy solidification [23]. An example of such a method is the ‘phase–field

model’, based on a set of phase field equations which are basically time–dependent

parabolic partial differential equations. These equations describe the phase transition in

which the interface is determined by setting a function called phase or order parameter

[23]. Such methods are extended to be applied to the systems of binary alloys. While the

model equations describe the formulation of alloy solidification elegantly, many

mathematical challenges arise to obtaining these solutions. Some of the mathematical

intricacies are highlighted here. The equations which involve small parameters

multiplying highest–order derivative pose stiffness; simple finite difference methods with

explicit time stepping are not sufficiently accurate and specifically address the stability

of the solution with respect to mesh size, orientation, numerical noise and time step. The

mechanical performance of materials is highly important for their application. Such

applications are airframes of aircraft, automobile structures, the interconnections of

microelectronics, and many others. The defects and their responses in many ways affect

the mechanical behaviour of materials. Many defects, deformations and fracture problems

create curiosities among materials scientists, structural analysts and applied

mathematicians to address such problems. The mathematical methods, such as partial

12

differential equations representing phase separation phenomena, singularity analysis,

finite element methods and so on, have been applied and developed in this area [12].

The theoretical and experimental studies of spinodal decomposition are now attracting

attention of both material scientists and mathematicians. The systems of binary mixtures,

such as metal alloys and polymer blends, or diblock copolymers based on one scalar order

parameter were simulated in order to recognize the technologically relevant fundamental

information about kinetics and morphologies. However, there are number of challenges

to face when dealing with the issues in the study of growth of order parameter through

domain coarsening or phase ordering dynamics [24], and some of these are explained

here. An experiment of phase ordering is a process of hours or days and it is still not

certain whether the equilibrium state of the system is achieved; this is because the driving

forces for coarsening are minute [25]. The theoretical studies of such processes, which

use simple models, focus on limiting behaviour [24]. The use of computational methods

provides knowledge for dynamic properties and nonequilibrium morphologies. The

mathematical approaches should be able to simulate large volumes with proper statistics,

minimize the role of boundary conditions, and choose between efficient methodologies

which are responsible for the microscopic time and length scales. Considering all the

aspects mentioned above, there is still much work to be done to develop computational

models in order to sort out between experimental behaviour and simulation results to gain

sufficient molecular information. On the other hand, spinodal decomposition often strives

with internal factors such as impurities in alloys [26] and symmetry breaking by

confinement in thin films [26, 27]. There are external factors which are applied as

parameters to avoid defects and tailor overall structure orientation [4]. All these factors

play an important role in developing theoretical studies for model description and the

appropriate molecular information. Therefore, the computational study of such systems

13

is still of considerable importance. The partial differential equations (PDEs), such as

time–dependent Ginzburgh–Landau (TDGL) or Cahn–Hilliard Cook (CHC) equations,

best describe phase ordering kinetics or phase separation processes. Computational

models based on finite–difference approximation of these PDEs have expounded several

characteristics of phase separation for a whole range of systems [28]. This research work

deals with the mathematical models for phase separation in diblock copolymers.

2.2 Block Copolymers and their Applications

Polymers can be defined as a long chain of molecules which is formed by the reaction

within the smaller units of molecules called monomers, and for two or more different

chemical blocks the polymer may come into formation of a block copolymer [29]. The

polymer based structures can be found in melts, blends or solutions in various ranges from

nanometre scales to microns, millimetres, or even larger [13]. The chain of molecules that

form block copolymers is composed of chemically different polymer blocks covalently

bonded into one macromolecule. The formation of block copolymers depends on a

number of different chemical blocks in the polymer [29]. The block copolymers have two

distinct monomers, A and B form: A–B diblock, A–B–A triblock, or multiblock

copolymers [30].

Block copolymers have many applications in the field of soft nanotechnology, such as

templates for nanoelectronics [31], separation nonporous membranes [32], photonic

crystals [33], and catalyst materials [34], nanoparticle synthesis, mechanical flow fields,

electric fields, temperature gradients and others [35].

Moreover, the use of block copolymers in applications of electronic devices such as fuel

cells, batteries, or optoelectronic devices relies on their existing properties. Their use in

applications requires highly ordered and defect-free structures. Although the block

14

copolymers have contributed to various applications ranging from drug delivery to

structural materials, these have also made an extensive contribution to thin films. The

block copolymer thin films are heavily focussed on because they gain two dimensional

patterns at optimum level [2, 36]. Other structures, such as high density hard drives, which

may be regarded as the smaller versions of current electronics, can be manufactured by

employing polymer nano–domains. These patterned magnetic bits can have better

performance rates than current optical lithographically patterned drives [36]. The block

copolymers are also widely used in commercial products such as bottle stoppers, jelly

candles, outer coverings of optical fibres, and artificial organ technology [37].

The applications of block copolymers are made possible in drug delivery and engineering

by further discovering the formation of nanostructures [30]. To understand the

complexities of these systems, computer technology is employed, for which mathematical

models are developed. The microscopic observation of such systems is presented through

computer models which help to study these systems, giving a broader view [4].

The block copolymers are not only investigated as a single aspect, but the studies are also

undertaken to understand the phase behaviour of the mixtures or blends made up of block

copolymers and other polymers of identical monomeric units (homopolymer) [4, 38].

Polymeric blends or mixtures exhibit the behaviour of phase separation and this behaviour

encourages researchers to study associated mechanical, chemical and structural

properties; for example, polymeric alloys such as brass formed as a solid phase from

combining copper and zinc, and also the microstructured phases as formed in steel by the

addition of carbon and other elements to iron.

15

2.3 Applications of Cell Dynamics Simulation (CDS) Method

Many computer simulation techniques have been developed to investigate block

copolymers which include molecular dynamics (MD) [13], Monte Carlo (MC) [13, 14]

dissipative particle dynamics (DPD) [13, 39], Brownian dynamics (BD) [40], the Time–

Dependent Ginzburg–Landau (TDGL) method (including cell dynamics simulation

(CDS)) [4, 13, 41], the self–consistent field theory (SCFT) [42] and the Lattice Boltzmann

method [13, 43, 44]. The CDS is a fast method of simple TDGL type simulation method

which has been applied to study the evolution of diffusive structure in binary blends of

both polymers and alloys [3, 45-48] and diblock copolymers [49]. The modelling of

reaction–diffusion systems of the Fischer type for studying chemical reactions and

population dynamics has been implemented by using CDS technique [50]. Recently, CDS

has been applied to study phase separation in diblock copolymers including additional

factors, such as confinement, shear, and electric fields [4]. The use of CDS allows

convenience in exploring the phase ordering process for examining various dynamical

scaling hypotheses [51, 52]. The mesoscopic structure formation of diblock copolymer

systems can best be analysed at large extent by incorporating CDS.

Shinozaki and Oono [3, 47] used CDS for modelling the phase–ordering dynamics of

thermodynamically unstable phases. They have explained that for spinodal

decomposition many analytical and numerical approaches have been applied. For

example, Monte Carlo technique was considered the best numerical simulation technique

for the problem of highly non–linear phase separation. To overcome the conventional

analytical formulation in terms of partial differential equation they have used

computationally efficient CDS. Bahiana and Oono [53] conducted a detailed study using

CDS method which found out relatively a close connection between microphase

separation of block copolymers and spinodal decomposition. The numerical study via

16

CDS done by them indicated that for very late time–ordering processes, the

hydrodynamic effects are essentially important. Kodama and Doi [54] conducted a

computer simulation for 2D system to analyse the structural changes of lamellae of block

copolymer consisting of two blocks A and B under steady shear flow. In this work they

have used CDS to solve the time evolution equation. Ren and Hamley [41] describe

various applications of this powerful CDS method, e.g. simulation of microemulations,

binary blends containing surfactants or hard particles, cross linked polymer blends and

simulation of microphase separated structures in BCPs and the kinetics of microphase

separation. In another study for shear orientation of lamellar phases in block copolymer

BCP, the dynamic density functional method of mesoscopic dynamics (MesoDyn) has

been given a little comparison with CDS where the kinetics of order parameter evolution

are same. MesoDyn simulations have been considered slower than CDS [55].

The review of applications of CDS method given above present an insight into the

importance of this method. The CHC equation and its Euler discretized CDS form have

different roots but in the literature a close relation has been shown between them [46] that

the CDS is an efficient finite difference approximation of these PDEs.

2.4 Two Order Parameter Systems

The study of phase separation in mixtures or blends of soft materials has been of great

interest theoretically and experimentally [56-58]. The phase separation behaviour of

systems has been the main focus in the ways of both the macrophase and the microphase

separation for the past few decades. The phase separation is invoked in structures such as

lamellar, cylindrical hexagonal, spherical and regular three-dimensional bicontinuous

structures [59]. Two order parameter systems can be defined as systems where a mixture

or a blend contains A–B diblock copolymer and C homopolymer. The phase separation

triggers two different ways of macrophase and microphase separations. In the model of

17

the system, one independent variable represents the microphase separation that takes

place in A–B diblock copolymer, and the second independent variable represents the

macrophase separation between A–B diblock copolymer and solvent C homopolymer.

The two independent variables under the incompressibility condition are taken as

BA   and ,BA   where ,A B and C are local volume fractions of

monomers. The variable  describes the segregation of A–B diblock copolymer and C

homopolymer, while  represents the microphase separation in A–B diblock copolymer

[59].

The block copolymers can “microphase separate” to form periodic nanostructures. The

nanoscale structures created from block copolymers could potentially be used for creating

devices for use in computer memory, nanoscale–templating and nanoscale separations.

The ‘macrophase separation’ takes place between the diblock copolymer and the

homopolymer mixture, and then ‘microphase separation’ takes place between the A–B

diblock copolymer.

In a copolymer molecule, the chain of sequences of A and B monomers are incompatible

with each other. If the two sequences of monomers are chemically connected at a junction

point, then the macrophase separation cannot occur. For this reason, the phase separation

is on macroscopic scale and microdomains of A–rich and B–rich regions occur. This

incompatibility causes spatial segregation at low temperatures for copolymer melt and in

thermal equilibrium these microdomains are regularly arranged [60].

T. Ohta and A. Ito [59] studied the dynamics and domain morphology of phase separation

in diblock copolymer–homopolymer mixtures and kinetics of double phase separation.

They investigated that there exists incompatibility of monomers because of mutual

connectivity and this is the reason that phase separation causes spatially periodic

18

equilibrium structures such as lamellar, cylindrical hexagonal and regular three-

dimensional structures. There are two key parameters: the block ratio and the temperature,

due to which ordered states change and cause a mesophase state. There is a short repulsive

interaction between A and B monomers of a chain of each copolymer. The same repulsive

interaction can be assumed between C monomers in homopolymer and B monomers in

copolymer. It is shown how macrophase separation causes microphase separation for

volume fraction and chain lengths and, because of this different domain, patterns appear.

2.5 Importance of Isotropic Laplacian Operators

From a mathematical point of view, the operators are integral or differential. The

Laplacian ( operator) is the divergence of the gradient (or Nabla,  operator) can be

written as:


 




N

i ix1
2

2

)(


 , for ix = x,y,z … dimensions. (2.1)

When these operators are applied to specific problems for numerical solutions then these

operators are discretized. There are various methods of discretizations where accuracy,

stability, consistency and conservation of any condition are kept in full consideration for

the method to be applicable. Generally, the discretizations face error terms which are

anisotropic (artefacts) in a numerical solution of the PDEs [6, 61, 62]. The phenomenon

of block copolymers simulated by the CDS method involves the PDEs, and therefore the

mathematical operators such as Laplacian operators come into play. Isotropy plays an

important role in discretization of the Laplacian operator. Here an example is presented

from digital image processing about the importance of the isotropic Laplacian operator.

If the discretized approximations of the Laplacian operator are not isotropic, then the

Laplacian operator yields different values for two identical edges oriented at different

19

angles. This produces anisotropy which affects outlining edges [63]. It is, therefore, the

isotropic properties of various two– and three–dimensional operators that are thoroughly

investigated in this study. These Laplacian schemes are then employed in CDS for

numerical results. The original CDS technique uses forward Euler’s method for solving

PDEs [46]. Sumesh et al. [6] have proposed two– and three–dimensional Laplacian

schemes for cell–dynamical and hybrid lattice Boltzman simulations. The discretization

approaches have been used to overcome anisotropic Laplacians in larger stencils and to

preserve isotropy up to leading order error. These schemes are completely based on the

finite difference method for spatial discretization. They have presented one isotropic

scheme in a 9-point Laplacian for two dimensions and all others for three dimensions.

They have given a very good comparison of Laplacian operators by Fourier, transforming

those at two different planes. The DdQn model is shown in Figure 2.1, where d is the

number of dimensions and n is the number of points which follow the weights of the

Laplacian schemes. In Figure 2.1, the ordering points on a cubic unit cell and energy

shells e1, e2, and e3 with e0 on a cubic grid are shown. Sumesh et al. [9] present a

numerical method for the solution of nonlinear stochastic partial differential model H

equations for binary mixtures. These equations cannot have an analytical solution so they

are dealt with by numerical methods.

20

Figure 2.1: Energy shells form stencils on a cubic unit shell. This image is taken from [6].

Numerical methods which are used for discretization of equations of motion on a lattice

ensure non–violation of the conservation laws and Fluctuation Dissipation Theorem

(FDT). Otherwise, the naive discretization of both the momentum and the order

parameter in model H can lead to violations of conditions on the lattice. They use two

methods: the finite difference method and the finite volume method, for spatial

discretization of the order parameter equation. The discretization of two-dimensional 9–

point Laplacian operators through finite volume method proved to be less isotropic than

Shinozaki and Onoo’s Laplacian choice [3, 46]. The Yee algorithm approximates the

Laplacian operator through strongly anisotropic 5–point, 9–point and 25–point Laplacian

schemes in two dimensions. For implementation of the Yee algorithm, a finite difference

time domain method (FDTD) is analysed with respect to the approximation of the two–

dimensional Laplacian operator, associated with curl–curl operator. The Yee algorithm

is a well–known finite difference time domain (FDTD) approximate to Maxwell’s

equations. This method assumes a staggered filed arrangement in both space and time,

where first order partial derivatives are approximated through second order accurate finite

21

differences. Efforts have been made to improve FDTD schemes. These schemes are based

on the transverse Laplacian term associated with curl–curl operator and can be more

isotropic, less dispersive and have a higher courant number than the Yee algorithm and

its versions [64]. Fei Xiao et al. [65] have presented a 2–D isotropic finite difference time

domain (FDTD) method, unlike the 1–D finite difference scheme, as the 1–D finite

difference scheme approximates the spatial partial differential operator (PDO) in

Maxwell’s equations. To improve results they adopted the high–dimensional isotropic

finite difference scheme in the FDTD to greatly decrease the numerical anisotropy by

demonstrating the superiority and applicability of the method. This method was

developed with the help of Fourier analysis, which greatly reduced the numerical

anisotropy in comparison to that of the conventional Yee-FDTD method. Kumar [66]

presented a new method called isotropic finite–difference method in order to preserve

isotropy by numerical simulation of partial differential equations (PDEs). Conventional

finite–difference methods were pointed out for discretizing PDEs which introduced

anisotropy into the numerical scheme; that anisotropy comes from the directional bias of

error terms in the discretization. Conclusively, a finite difference scheme is proposed,

where the lowest order error terms are without directional bias. The analysis of error

terms is necessary in our research study, particularly when we discretize PDEs into

numerical simulation. Furthermore, Chow [67] presented discretization of the Laplacian

operator on non-hyper–cubical lattices. He explained an implication of the result of an

equation that one–shell discretization of the Laplacian operator always has second order

errors in any lattice.

22

2.6 Finite Difference Methods

As in this study the CDS technique is implemented in different finite difference (FD)

methods, in this section the FD methods are explained in a very basic way. The model

heat equation is presented as an example in the context of numerical approximations for

different FD methods.

The finite difference method approximates the solution in a generated grid and uses its

schemes for obtaining numerical solutions to ordinary or partial differential equations.

The PDEs or ODEs become a linear or non–linear system of algebraic equations. The

numerical solution of partial differential equations can be achieved by the finite difference

method, which is obtained by replacing the derivatives in the equation by appropriate

numerical differentiation formulae [8, 68]. Discrete approximations replace the numerical

solutions at some finite number of points in a physical domain. The set of finite points

can be collectively known as mesh, where algebraic equations are constructed for discrete

approximations, solved or evaluated for discrete unknowns. The fundamental idea of the

finite difference method is to replace continuous derivatives with different formulae

involving discrete approximations related to positions on mesh; these positions are called

nodes. One important thing must be taken into consideration, which is that not all the

finite difference approximations provide accurate numerical schemes, but some of them

assure stability and convergence in order to satisfy reliable results from these methods

[8].

The heat equation is an important partial differential equation which has many

applications in different areas. The heat equation has its origins in physics and is studied

from a number of perspectives. The form of this equation is commonly known as the

diffusion equation. In this work, the two–dimensional heat equation is approximated

numerically. The motivation of a heat equation is just thinking of a one-dimensional

23

heated metal rod or thin metal bar of length L. For two-dimensional heat equations,

suppose a thin square plate of size LL is heated and heat enters or leaves the plate by

means of conduction or radiation. It is assumed that the plate is insulated along its top

and bottom.

Let:

),,(tyxu temperature of the plate at position),(yx and time t.

The basic differential equation of heat in two–dimensions is given below [8]:

,)(2

2

2

2

2

uD
y

u

x

u
D

t

u















 ,0 Lx  Ly 0 and Tt 0 (2.2)

where D is a constant coefficient presenting thermal diffusivity and u is the dependent

variable, equation (2.2) is a partial differential equation that is satisfied by u , subject to

the initial condition:

),,()0,,(yxfyxu  Ryx ),((2.3)

where    LLR ,0,0  .

At the edges of the plate, the Dirichlet boundary conditions are imposed and given as

follows:

.0),,(),0,(

,0),,(),,0(





tLxutxu

tyLutyu
 (2.4)

2.6.1 Forward Time, Centred Space

The generalization of finite difference formula in forward time, centred space (FTCS) or

explicit forward Euler method for a two-dimensional heat equation (2.2) is:

24

,)(,

)(

2

)(

2,

1

,

n

kj

y

y

x

x

n

kj

n

kj urruu 
 (2.5)

including the following operators:

,2 ,1,,1,

)(

2

n

kj

n

kj

n

kj

n

kj

x uuuu   (2.6)

.2 1,,1,,

)(

2

n

kj

n

kj

n

kj

n

kj

y uuuu   (2.7)

and ,/ 2xtDrx  and 2/ ytDry  [69].

The stability of the Explicit scheme can be taken into consideration such that the discrete

Fourier mode of term
n

kju , in equation (2.5) is [69]:

 ,,

yikqxijpnn

kj eeu   (2.8)

and substituting equation (2.8) into homogenous equation (2.5), and dividing the resulting

equation by
1n gives:








 







 


2
sin4

2
sin41 22 yq

r
xp

r yx


 . (2.9)

The discrete Neumann criterion 1 implies that .2/1 yx rr

If the uniform mesh, yx  is used, such a condition requires 4/1 yx rr and restricts

to take a twice smaller t (or 2 – times larger)x to ensure stability.

In the FTCS scheme, the time derivative is discretized in forward difference and the

Taylor expansion is given below [70, 71]:

)(...
2 2

21

tO
t

ut

t

uu

t

u nn






















 

25

where the dots show higher order terms. The time derivative has truncation error).(tO 

The space derivatives are discretized in central difference so their truncation error is

).()(22 yOxO  The discretization error of the FTCS scheme is:

 which shows it is linear in time space and quadratic in step

space [69].

2.6.2 Backward Time, Centred Space

The explicit forward Euler method approximates values of terms in n space on the right

hand side of diffusion equation (2.2) for term in n+1 space, but in backward time, centred

space (BTCS) or implicit backward Euler method it is reversed; the values in n+1 terms

space are approximated from n space term. The finite difference in backward time,

centred space for diffusion equation is given below:

.)(,

1

,

)(

2

)(

2

1

,

n

kj

n

kj

y

y

x

x

n

kj uurru  
 (2.10)

To approximate equation (2.10) numerically, it needs to bring in Mx =b where M is the

two dimensional matrix of size)1)(1()1)(1( yxyx NNNN and b is a one–

dimensional matrix of size)1)(1( yx NN . After algebraic manipulation on equation

(2.10) it becomes:

 

b

n

kj

x

n

kj

A

y

y

x

x uurr ,

1

,

)(

2

)(

2)1( 

  
 (2.11)

Hence, a linear system must be solved to obtain
1

,

n

kju from
n

kju , . However, xr and yr are

greater than zero, so the matrix A is positive definite and strictly diagonally dominant, as

well as being tri–diagonal [69]. There are several iterative algorithms, i.e. the Crout

Factorization method, the SOR algorithm, the LU decomposition method or the

)()()(22 yOxOtO 

26

Conjugate Gradient method. The linear system in equation (2.11) takes the form:

.1bMx  The inverse of the matrix M, which involves the stiffness matrix of the

Laplacian operator, is not easy in high dimensions. In the BTCS scheme, the time

derivative is discretized in forward difference and space derivatives are discretized in

central difference. The discretization error of this scheme is:)()()(22 yOxOtO 

[69] which is linear in time space and quadratic in step space.

The stability of the implicit forward Euler method can be given as the eigenvalues of 1M

are reciprocals of those of M, the spectral radius 1M , .1)(1 M This implies that 1M

is convergent. So the method is stable, independent of any choice of xr or yr [69]. The

amplification factor for two–dimensional equation (2.11) is:

   2/sin42/sin41

1
22 yqrxpr yx 




 (2.12)

The two–dimensional implicit backward Euler method is absolutely stable, since .1

2.6.3 Crank–Nicolson Scheme

The Crank–Nicolson (CN) scheme is popular in financial engineering and for

approximating the convection–diffusion equation. The CN scheme was proposed by

Crank and Nicolson [72, 73] and is a FD method which is unconditionally stable and is

used to approximate partial differential equations (PDEs) numerically. It is known that

both the FTCS and BTCS schemes have a discretization error of order)(2htO  , but

the CN technique puts its efficiency into achieving second order in time and space

)(22 htO  [8, 69]. As the second order accuracy in time and space can be achieved

through this technique, the CN method is regarded as numerically stable; however,

oscillations may still occur. It is an implicit method and is a widely used FD method for

27

the modelling of heat–diffusive problems in one or more dimensions. The CN scheme is

made up of a half explicit FTCS step and a half implicit BTCS step, each with time step

.2/t An averaging at the ith and (i+1)th time step is given for the spatial difference. In

other words, it is the average of the forward Euler and backward Euler method with a

central difference in space. The derivation of the CN scheme for heat equation (2.2) is

constructed in a way that, on the left hand side the prediction of values of u is done at

1n time step, which is an implicit approach, and on the right hand side the prediction

of values of u is done at n time step, which is an explicit approach; on the right side all

the values are assumed to be known easily. The form of diffusion equation (2.2) using

the CN scheme is given below:

 .
22

1
22

1 ,

)(

2

)(

2

1

,

)(

2

)(

2

n

kj

yyxxn

kj

yyxx u
rr

u
rr






















  (2.13)

The CN method can be written in matrices as:

n

ji

n

ji uMuM ,2

1

,1 
. (2.14)

The non–singular matrices
1M and

2M are positive definite and have the size

).1)(1()1)(1( yxyx NNNN To solve systems of linear equations in equation

(2.14), either the LU decomposition or Conjugate Gradient method can be used to obtain

1

,

n

jiu from .,

n

jiu The discrete Neumann criterion for stability is again derived by Fourier

analysis, as for the explicit scheme. The amplification factor for the CN method is [69]:

   

   2/sin22/sin21

2/sin22/sin21
22

22

yqrxpr

yqrxpr

yx

yx









 (2.15)

28

where it is necessary to have ,1 for all non–negative xr and ,yr so the two–

dimensional CN scheme is absolutely stable and has order of convergence)(22 htO  .

In order to analyze the second order accuracy of CN scheme, each side of equation (2.13)

can be rearranged into a partial factored form as follows [74]:

n

kj

yyxxn

kj

yyxx u
rr

u
rr

,

)(

2

)(

2

1

,

)(

2

)(

2
2

1
2

1
2

1
2

1 


































 

 (2.16)

The CN scheme (2.16) of heat equation (2.2) in factored form has been derived from

equation (2.13) without the loss of accuracy. Doing some algebraic manipulation on

equation (2.16) gives:

n

kj

yxyxyyxxn

kj

yxyxyyxx u
rrrr

u
rrrr

,

)(

2

)(

2

)(

2

)(

2

1

,

)(

2

)(

2

)(

2

)(

2
422

1
422

1 
















 

 (2.17)

Let yx rhtr  2/ and the equation (2.17) can be rewritten as follows:

    .
2

1

4
1

,

1

,)(

2

)(

22

,

1

,)(

2

)(

24

2













 






































 n

kj

n

kjyx

n

kj

n

kjyx
uu

ht

uu

h

t
 (2.18)

The equation (2.18) shows that the discretization error of CN scheme is quadratic in time

space as well as quadratic in step space  .)()()(222 yOxOtO  The CN scheme

shows an obvious difference with implicit BTCS in terms of discretization error order.

The BTCS and CN schemes have an almost identical algorithmic approach where the

truncation error for the Crank–Nicolson scheme is significantly smaller than the temporal

truncation error of the BTCS scheme [69].

29

 Figure 2.2: Three different schemes for a two-dimensional heat equation

Numerical simulations of heat equation (2.2) are presented by mesh plots in Figure 2.2

for three different methods. These simulatins were executed for 50x50 grid with space

 FTCS

01.0t

 BTCS

0.1t

 CN

0.1t

30

steps 2.0 yx up to 100 time steps. The boundary conditions were assigned by zeros

and diffusion constant D was chosen 0.25. The time interval t was chosen 0.01 for

forward Euler method because it is explicit method where time interval can be used

conditionally. In Figure 2.2, the numerical solution u(x,y) is shown against the x- and y-

coordinates on a grid which was obtained same for three different methods but using

different time interval t values. The images in Figure 2.2 are showing the state of the

heat for the function)sin(),(xyyxf  initially assigned. It can be seen in Figure 2.2

that the images of the plots are identical for each scheme, where the explicit FTCS scheme

was observed faster in execution compared to implicit schemes. The implicit methods CN

and BTCS were found slower but allowed unconditional choice of using time interval t

value.

2.6.4 Alternating Direction Implicit Method

The Alternating Direction Implicit (ADI) method is a finite difference method introduced

by Peaceman and Rachford for the numerical solutions of heat flow equations [75]. The

implicit Crank–Nicolson (CN) and backward Euler schemes are using the large matrices.

The large matrices become huge, which require sufficient memory for processing and due

to the huge matrices these methods work very slowly, especially for two–dimensional

higher grids or for three dimensions [76]. The CN scheme is second order accurate in

time and space and is unconditionally stable, but requires more operations per time step

than the number of unknown variables [77]. To overcome this difficulty and complexity

for obtaining numerical results, the operators are used in split format and the idea of using

operator splitting is becoming more common day by day. The ADI scheme is based on

the same concept of operator splitting [78]. The ADI scheme is computationally efficient

and has the same properties as the CN scheme. It is second order accurate in time and

space and, unlike the CN scheme, it requires the number of operations per time step that

31

is proportional to the number of unknowns [77]. A variety of stable schemes are available

in the ADI method which can be employed for the elliptical or parabolic partial

differential equations. It all depends on the type of partial differential equation used; for

example, any equation comprised of mixed derivative terms can be handled with a

different scheme in the ADI method [79]. The finite difference methods for two–

dimensional heat equations (2.1) and related spatial derivatives are discussed in previous

sections. Here, the ADI method is elaborated for a two–dimensional heat equation (2.2);

this ADI method employs the classic Peaceman and Rachford scheme [75, 76].

,
2

1
2

1 ,

)(

2

2/1

,

)(

2

n

kj

yyn

kj

xx u
r

u
r




















 

 (2.19)

.
2

1
2

1 2/1

,

)(

2

1

,

)(

2





















 n

kj

xxn

kj

yy
u

r
u

r
 (2.20)

This methodology works in two steps; the first step is given in equation (2.19) in which

the first half of the time step t the spatial derivative is computed implicitly in coordinate

x and explicitly in coordinate y, and this process is reversed in the second step which is

given in equation (2.20). In equation (2.19) the values are approximated for the

intermediate solution for 2/1

,

n

kju and in equation (2.20) the values are approximated for

1

,

n

kju from the intermediate solution on the right hand side. For the numerical

approximation of heat equation (2.2), the Peaceman and Rachford scheme is employed,

as this scheme is unconditionally stable and is)()()(222 yOxOtO  (second–order

accurate) [76, 77].

The steps given in equations (2.19) and (2.20) can be written in matrix form:

32

 ,
2

1 ,

)(

2

2/1

,

n

kj

yyn

kj u
r

Mu 









 (2.21)

 .
2

1 2/1

,

)(

2

1

,










 n

kj

xxn

kj u
r

Mu (2.22)

The matrix M on the left hand side of equations (2.21) and (2.22) is the tridiagonal matrix

which simplifies the calculations, unlike the sparse matrices used in the CN scheme. The

matrix M for a two–dimensional operator kjkjkj

x uuu ,1,,1

)(

2 2   is given as follows:

 .

2100

12

010

121

0012











































M (2.23)

The specific form of the matrix M can depend on the type of boundary conditions used:

either Dirichlet or periodic. As in the CN scheme, if the grid size is ,nn the matrix

becomes the
22 nn  size and the system of linear equations becomes difficult to solve. In

ADI, if the grid size is ,nn , the size of the matrix is)n()n(11  and is tridiagonal.

The beauty of the ADI scheme is that it is using the same matrix M for both steps because

the split operator is taken over one direction, either x–direction or y–direction. The

operator)(

2

y on the right side of equation (2.21) is not a matrix, but can be treated as the

operations of subtraction and addition, simply in the manner of the forward Euler method.

If it were a matrix, then the calculations would have been more complicated [77]. In the

first step on the right hand side of equation (2.21), the)1(M equations are solved for

the unknown vectors, and for the whole intermediate solution the tridiagonal matrix

solves the)1()1( MM equations. After the intermediate solution is determined, the

same procedure is carried out for the second step, which is given in equation (2.22); in

33

this way the discretization for equation (2.2) approximates values by the so–called ADI

method. To solve the linear system of equations, the LU decomposition or the Conjugate

Gradient (CG) method can be used, as in the CN method. The Thomas algorithm is

efficient for solving linear system of equations in the ADI method [80].

The stability of the ADI scheme is proved in Ref. [77]. To analyse the stability of the ADI

scheme employed in equations (2.19) and (2. 20) for heat equation (2.2), it can be written

in one equation. If the value of
2/1

,

n

kju from equation (2.19) is substituted into equation

(2.20), then one gets the following:

 .
2

1
2

1
2

1
2

1 ,

)(

2

)(

2

1

,

)(

2

)(

2

n

kj

yyxxn

kj

yyxx u
rr

u
rr




































  (2.24)

In discrete von Neumann stability analysis, the Fourier mode of term
n

kju , in equation

(2.24) is [76, 77]:

 ,,

yikqxijpnn

kj eeu   (2.25)

 ..1

,

yikqxijpnn

kj eeu    (2.26)

Substituting the Fourier modes given in equations (2.25) and (2.26) in equation (2.24),

the resulting equation becomes:

     
     221221

221221
22

22

/yqsinr/xpsinr

/yqsinr/xpsinr

yx

yx









 . (2.27)

The two–dimensional ADI scheme is stable since .1

The consistency of the ADI method is also discussed here. Adding two equations (2.19)

and (2.20) together, the resulting equation becomes:

34

);(
2

,

1

,

)(

2

2/1

,

)(

2,

1

,

n

kj

n

kj

yyn

kj

x

x

n

kj

n

kj uu
r

uruu  
 (2.28)

and if equation (2.19) is subtracted from equation (2.20) the following equation is

obtained:

.
222

,

1

,)(

2

,

1

,2/1

, 











 









n

kj

n

kjyy

n

kj

n

kjn

kj

uuruu
u (2.29)

By substituting equation (2.29) into equation (2.28) and
2/ htrr yx  gives:

    .
2

1

4
1

,

1

,)(

2

)(

22

,

1

,)(

2

)(

24

2













 






































 n

kj

n

kjyx

n

kj

n

kjyx
uu

ht

uu

h

t
 (2.30)

The equation (2.30) can be compared with equation (2.18) which shows that the

discretization error of ADI scheme for heat equation (2.2) is second order accurate

in both space and time, i.e.,   22
htO  . The discretization error of time step is

quadratic ( 2tO ) in equation (2.30), which makes this second–order accurate in

time. It must be noted that the FTCS and BTCS methods have discretization error

of   ,htO 2 which shows that the order error ( tO ) is not quadratic. Equation

(2.18) is derived to show that the CN scheme is second order accurate in time and

space and in the same way equation (2.30) shows that the ADI scheme is second

order accurate in time and space.

So far, the two–dimensional ADI method employing the Peaceman and Rachford

scheme is discussed, which is fast and its stability is the same as that of the CN

method. The three–dimensional Peaceman and Rachford scheme is not uncon-

ditionally stable [77]. An alternative ADI method was proposed for the two- and

35

three-dimensional heat equation, which is unconditionally stable [81-83]. This

method is well known as the Douglas method or the Douglas–Gunn method [82]

but it is not explained here in this chapter. The Douglas–Gunn method is

mentioned here to highlight that there are various unconditional stable schemes

available which can be employed in the ADI method for two- and three–

dimensional PDEs. Extensive work on ADI methods has been undertaken for

linear second and fourth order parabolic problems [84, 85].

The ADI method has been very helpful in numerical simulations of problems in

fluid dynamics [86-88]. Eres et al. [89] present a three–dimensional numerical

approximation for the mathematical model based on the flow of drying paint films

on horizontal substrates. For the numerical implementation, they employ an

implicit method by condemning the explicit method for the small time step, and

mention that the explicit method is computationally inefficient. They also mention

that the ADI methods used by Peaceman and Rachford [75] and Douglas [82] are

unconditionally stable for heat flow problems, but are not unconditionally stable

for the higher order partial differential equations which involve the biharmonic

equation. In this study, the ADI method has been implemented for the cell

dynamical simulation technique to make the CDS technique more stable and

robust. The ADI method implementation for CDS equations is covered in chapter

7.

36

Chapter Three

3 Method and Model Equations (One order parameter)

In this chapter the cell dynamics simulation (CDS) method is elaborated. In CDS, the

original averaging operator does not represent the discrete Laplacian and that the CDS

method should not be analysed via the Time–Dependent Ginzburg–Landau (TDGL)

equations. Therefore, the formations and properties of two– and three–dimensional

Laplacian operators (averaging operators) are discussed in terms of stencil size and their

isotropic behaviour, which ensure the stability of CDS results. The analysis of several

discrete Laplacians in terms of isotropy has been performed on a more quantitative

balance than previously considered [6]. The stability analysis is also undertaken for the

Laplacian schemes for investigating their time step value that will be used in simulations

based on CDS.

3.1 Cell dynamics simulation method

The CDS technique is used in a number of works in diblock copolymers and binary

mixtures, i.e. metal alloys [3, 48, 53, 90]. The CDS is basically a discretization of the set

of partial differential equations involved in the block copolymers for the purpose of

obtaining numerical results [4]. The efficiency and the stability of the CDS was

investigated by Oono and Puri [46]. In this chapter, the CDS model equations are

presented for a one order parameter system in a lamellae forming of A–B diblock

copolymer systems. In CDS, the value of an order parameter),(it is determined at time

t in cell i of discrete lattice. Suitable choice of the order parameter of an A–B diblock

copolymer is defined as [2]:

),21(fBA   (3.1)

37

where
A and

B are local volume fractions of A and B monomers, and

)/(BAA NNNf  is the volume fraction of the A monomer in the diblock. The

evolution of the order parameter in a single cell is given by:

)),((),1(itgit   (3.2)

where  g is the so called map function [46, 91]. The cells need to be connected in order

to observe the spatial cooperative interactions. The force on the order parameter),(it

tends to have proportionality to its difference from the average of the order parameters in

the neighbourhood cells. Considering the diffusive dynamics for spatial cooperative

interaction between the connectivity of cells, the case of non–conserved order parameter

for the time evolution order parameter with term of diffusive dynamics becomes [41],

   ),(),(),()),((),1(itititDitgit   (3.3)

where the sum is given by first term related to chemical potential gradients and second

term that considers diffusive dynamics [41]. In equation (3.3), D is a positive constant

which presents phenomenological diffusion constant, XX  , which is essentially an

isotropized discrete Laplacian. The general definition X on a two–dimensional square

lattice is given by

 
NNNNN

itWtiWit),(),(,(21  (3.4)

where NN and NNN represent its nearest neighbours and next–nearest neighbours

respectively, and Ws are weights, i.e. 6/11 W and 12/12 W [2, 46]. The inclusion of

contributions from the surrounding cells is necessary in the case of a conserved order

parameter. The isotropic behaviour of the CDS model in the case of a conserved order

38

parameter model may be affected due to an exchange of order parameter values between

a cell and its neighbouring cells. Therefore, to maintain isotropy, the net change of the

order parameter should be avoided inside the neighbourhood surrounding the centre cell.

Thus, for a conserved order parameter, the net gain of order parameter in a particular cell

is given by  ),(),(itit   and in this way the discrete model for conserved order

parameter of CDS becomes [41, 46]:

   ),(),(),(),1(itititit   . (3.5)

An additional term,),(itB , is added to equation (3.5); this term comes from the

contribution of long range ordering to the free energy [41] and equation (3.5) becomes:

   ),(),(),(),(),1(itBitititit   . (3.6)

For the dynamics of),(rt , the Cahn-Hilliard-Cook (CHC) equation is used which is

given as follows [54, 92]:

 

















 F

t

2
, (3.7)

where K is a phenomenological mobility constant. This mobility constant is set to unity

for the corresponding setting of the timescale for the diffusive process and  F is the

free energy functional and is given as [53]:

  )'()()'('
22

)()(
2

rrrrGdrdr
BD

HdrrF  







   . (3.8)

In equation (3.8), the first and second terms are the short– and long–range interactions

respectively, the diffusion coefficient D is a positive constant, and the constant B

represents the chain length dependence to the free energy and  H is given as:

39

4322

4
)21(

3
)21(

22
)(




u
f

v
f

A
H 








 , (3.9)

where  is a temperature and A, v, u are phenomenological constants [41]. All of these

parameters represent the relation to molecular characteristics. The numerical evolution of

equation (3.7) is given by [55, 93]:

)},(),(),({),(),1(itBitititit   , (3.10)

where XX  is an isotropized discrete Laplacian in square coordinates for quantity

X,),(yx iii  and

)],,(),([),()),((),(ititDititgit   (3.11)

where the so called map function is given by:

        ufvfAg  22 21)21(1 . (3.12)

3.2 Laplacian schemes

In this section the Laplacian schemes are discussed by elaborating their properties. The

two-dimensional and three-dimensional Laplacian operators are discussed with their

Fourier transforms. Each Laplacian scheme is incorporated in the form of equation (3.4)

for implementing in simulations for obtaining numerical results.

The Laplacian ( operator) is the divergence of the gradient (or Nabla,  operator) and

can be written as:

 
 




N

i ix1
2

2

)(


 for ix = x,y,z… dimensions (3.13)

40

In Fourier space, the Laplacian operator is given by:

 k2. (3.14)

where k is the wave-vector in Fourier series expansion. The minus sign in  makes

this operator positive–semidefinite [94, 95]. The Laplacian operator is discretized on the

grid by application of finite difference scheme:

).(nhOS  (3.15)

where S represents a stencil and)(nhO is the truncation error of the order n due to finite

mesh size h.

The mathematical operators have special importance when they describe the physical

world around us. The isotropy is another aspect of discrete Laplacian that must be ensured

to carry out proper numerical simulations and this aspect is focussed on in this study. The

Laplacian operator is rotationally invariant but all its discretized approximations are not

isotropic [63]. The term isotropy is used in several scientific disciplines and defines the

certain properties of an object of the nature to be identical when quantified from any

direction. The term anisotropy is the opposite of the isotropy and the definition of

anisotropy is that it is a condition where different properties are obtained in different

directions. The direction is the main factor that is contained in the differentiation of both

the isotropic and anisotropic phenomena. Generally, the isotropy is a homogeneousness

in all orientations and the anisotropy is a situation where properties vary systematically

[96, 97].

Many mathematical techniques, e.g. compact schemes, Padé approximations etc., have

been implemented to bolster the numerical accuracy in simulations of partial differential

equations (PDEs). A numerical scheme is said to be isotropic if it does not have

41

directional preference. Sometimes the use of conventional finite difference approach for

discretizing the PDE causes anisotropy in the numerical scheme. The anisotropy in any

numerical scheme is produced from directional bias of the error terms in the discretization

[66].

The isotropic property is dealt with as a desirable feature in the discretization of the

Laplacian operator. If the discretization is not isotropic then numerical values face

artefacts (error terms) which result in anisotropy [6]. An isotropic Laplacian abrades the

function equally in all directions [94]. The importance of using isotropic Laplacian

operators can be known as an example of heat conduction, and the stability criterion of

the numerical scheme becomes better by using the isotropic discretization of the

Laplacian [66]. Hale [94] has presented computer simulation images of paintings using

isotropic and anisotropic Laplacians. The poor approximations to the anisotropic

Laplacians produce checkerboard patterns of the images due to the artefacts, and therefore

improved approximations (isotropic Laplacians) are suggested to produce clear images.

3.2.1 Two dimensional Laplacian schemes

In this section, the various two-dimensional Laplacians schemes are discussed, including

9–point family stencils and various other stencils. These Laplacian schemes are obtained

from a finite difference scheme for a two–dimensional Laplacian operator. The stencil

shape for 9–point family Laplacians is given in Figure 3.1. The DmQn notation is used

where m is the number of dimensions and n is the number of points to be calculated. The

first scheme is obtained considering its nearest neighbours (NN) [63, 98, 99] as shown in

equation (3.16), and the second scheme equation (3.17) is obtained considering its next

nearest neighbours (NNN) [63, 99].

42

    .4
1

)(0
4

1

1

2)52(







 




i

iQDA
h

 (3.16)

    .4
2

1
)(

4

1

02

252 







 

i

iQD
h

 (3.17)

The subscript D2Q5 in equations (3.16) and (3.17) represent the 5–point stencil in two

dimensions. The letter A in the subscript of equation (3.16) is given to distinguish it from

equation (3.17), and will be discussed frequently in the text. When both the NN and NNN

are considered, a new model, suggested by Tomita [100] in equation (3.18), is presented

which gives 9–point stencil operators on the grid:

Figure 3.1: The 9–point stencil shape of Laplacian on 2D grid. The dark circle is the centre, the

square boxes are its nearest neighbours (NN) and the crosses are its next nearest neighbours

(NNN).

      .)1(4
21

1
)(0

4

1

2
4

1

1

92






 










i

i
i

iQD (3.18)

Varying values of  , with ,4/1 , ,2/1 , ,4/3 and 1 give finite difference

schemes, which are listed below:

43

      .204

6

1 4

1

02
4

1

1

2)92(





 
 i

i
i

iQDPK
h

 (3.19)

      .6

2

1

2

1 4

1

02
4

1

1

2)92(







 
 i

i
i

iQDOP
h

 (3.20)

      .7

4

3

5

2 4

1

02
4

1

1

292 







 
 i

i
i

iQD
h

 (3.21)

      .8

3

1 4

1

02
4

1

1

2)92(





 
 i

i
i

iQDBK
h

 (3.22)

The subscripts PK, SO and BK in equations (3.19), (3.20) and (3.22) stand for Patra and

Karttunen, Oono and Puri and Behzad Kamgar respectively. Partra and Karttunen [7]

have shown that equation (3.16) is anisotropic and equation (3.19) is isotropic. Shinozaki

and Oono used equation (3.20) for cell dynamics simulations [3, 47], which is generally

considered to be the best choice for isotropy by Tomita [100]. Equation (3.17) is shown

to be anisotropic [95] and equation (3.22) is discussed in the literature but is not isotropic

[63]. The scheme in equation (3.21) is found to be unstable and is not present in the

literature. The isotropy of the discrete Laplacians considered above can best be analysed

in Fourier space. The corresponding Fourier transforms of equations (3.16), (3.17) and

(3.19–3.22) are given below:

  .2)cos()cos(
)(

2
)(

2)52(


 xkxk
x

k yxQDA (3.23)

  .2])cos[(])cos[(
)(

1
)(

252 


 xkkxkk
x

k yxyxQD (3.24)

   

      
.

5coscos
2

1

cos2cos2

)(3

2
)(

2)92(
























xkkxkk

xkxk

x
k

yxyx

yx

QDPK (3.25)

44

 

      
  

.
6cos

coscos2cos2

2

1
)(

2)92(




















xkk

xkkxkxk

x
k

yx

yxyx

QDOP (3.26)

 

   

      
.

7coscos
2

3

cos2cos2

5

2
)(

292
























xkkxkk

xkxk

x
k

yxyx

yx

QD (3.27)

 

   
     

.
8cos2cos2

cos2cos2

3

1
)(

2)92(




















xkkxkk

xkxk

x
k

yxyx

yx

QDBK (3.28)

Expanding)cos(x in the above equations at around 0x provides:

).(
6

)(
)(

12

)(
)()(622

2
222

2
22

)52(kOkk
x

kk
x

kkk yxyxyxNNQDA 





 (3.29)

).(
3

)(
)(

12

)(
)()(622

2
222

2
22

52 kOkk
x

kk
x

kkk yxyxyxNNNQD 





 (3.30)

).()(
12

)(
)()(6222

2
22

)92(kOkk
x

kkk yxyxQDPK 


 (3.31)

).(
12

)(
)(

12

)(
)()(622

2
222

2
22

)92(kOkk
x

kk
x

kkk yxyxyxQDOP 





 (3.32)

).()5185(
60

)(
)()(64224

2
22

92 kOkkkk
x

kkk yyxxyxQD 


 (3.33)

).(
6

)(
)(

12

)(
)()(622

2
222

2
22

)92(kOkk
x

kk
x

kkk yxyxyxQDBK 





 (3.34)

P.I.C. Teixeira and B.M. Mulder have made a little algebraic mistake when Fourier

transforming equation (3.16); see equation (6) in Ref. [101]. They have presented the

following equation:

).(
3

)(2
)(

3

)(
)()(622

2
222

2
22

)52(kOkk
x

kk
x

kkk yxyxyxQDA 





 (3.35)

45

They also made another algebraic mistake for Fourier transforming the triangular stencil

operator (3.36). For this operator, in the article they have presented the equation (3.37)

after expanding)cos(x at around 0x ; see equation (9) in Ref. [101]:























































6
2

3

2

1
cos2

2

3

2

1
cos2)cos(2

)(3

2
)(

2

xkxk

xkxkxk

x
k

yx

yxx

tri (3.36)

  ).(
16

)(6222
2

22 kOkk
x

kk yxyx 


 (3.37)

After expansion of)cos(x in operator (3.36), the result is different; the resulting equation

is presented below:

  ).(2
16

)(
)2(6222

2
22 kOkk

x
kk yxyx 


 (3.38)

The difference can be seen easily by comparing equation (3.29) with equation (3.35) and

equation (3.37) with equation (3.38).

All equations from (3.29) to (3.34) are second order in k where equations (3.31) and (3.32)

are isotropic and equation (3.33) has anisotropic term which can be observed in its second

term.

To compare the properties of these two-dimensional discrete Laplacians in terms of

isotropy, a measure of isotropy for the discrete Laplacians has been performed. In Figure

3.2, an analysis of isotropy and anisotropy of the discrete Laplacains has been shown after

introducing cylindrical coordinates),(r in reciprocal k space by plotting:

46

).,(min),(max)(


rrrd  (3.39)

Equation (3.39) calculates the difference between the maximum and minimum value of

)(k for radius r. A clear difference between anisotropic and isotropic discrete Laplacians

is shown in Figure 3.2. The isotropy measure d(r) with maximum deviation from radius

r shows the maximum anisotropic behaviour (or maximum anisotropy) in comparison

with the analytical expression ,2k which does not show any deviation from radius r

because it is considered to have maximum isotropy. All the discrete Laplacians A(D2Q5),

D2Q5, BK(D2Q9) with solid lines seem to be anisotropic because of a noticeable

deviation. The other two 9–point discrete Laplacians (PK(D2Q9) and OP(D2Q9)) with

dotted lines, which are generally considered to be isotropic, seem to have less deviation

from the radius r. The discrete Laplacian PK(D2Q9) with dotted lines (light black colour)

is isotropic for ,2r but for larger r, it becomes anisotropic. The stencil OP(D2Q9) of

Oono–Puri is less isotropic than the PK(D2Q9) for 5.25.1  r , but more isotropic for

.5.2r Surprisingly, the isotropy of OP(D2Q9) is even better than that of PK(D2Q9).

Figure 3.2: The value of a measure of the isotropy)(rd for the actual Laplacian (red dashed

line for
2k) and other discrete Laplacians with r the radius.

47

There has been extensive research work on the investigation of isotropic stencil operators

in two and three dimensions for complex dynamics systems. B.A.C. van Vlimmeren [102]

has proposed a unique method to calculate the weights of a three–dimensional 27–point

stencil operator. Fraaije and his co–workers [61, 103] re–evaluated the basic numerical

aspects of the standard lattice models and calculated the weights of a 27–point isotropic

stencil operator using the method of B.A.C. van Vlimmeren on the lattice to represent the

linkage operator efficiently and accurately. Their work confirmed that isotropy and

scaling conditions can be considered to calculate the values for the weights. To investigate

the best isotropic stencil operators in 9–point stencil in this study, this method is applied

in 2D. The following method calculates the values for the weights d in a 9–point

isotropic stencil. The half point difference scheme is such that:

.

)
2

()
2

(

))((
9

1









m

hr

r
h

xfr
h

xf

dxfD
 



 (3.40)

In Fourier space the discrete half point derivative operator D in direction  is:

 ,
2

sin
2









 





hkr

hr

i
D (3.41)

where r is a lattice direction in positive half–space:

.
)1,1(

)1,1(

.
)1,0(

)0,1(

11

10

dr

dr


























 (3.42)

48

The vector length k is considered for positive half space to be k and the directions

are  0,k and  2/,2/ kk . In Fourier space, 2 is kk  , with the corresponding

discrete S(k):

 


 DDdkSq)(2
 (3.43)

The values of the weights d are found by invoking the following two conditions:

 2
2

2






ixk

S where yxxi , (3.44)

and:

 









2
,

2
)0,(


 SS (3.45)

The first equation is for a scaling condition, whereas the second condition is for an

isotropy condition, which result in weights 53015.010 d and 469849.011 d . The

stencil is obtained as follows:

.
2

)(
sin2

2

)(
sin2469849.0

2
sin4

2
sin4530151.0)(

22

22






















 








 























 








 


xkkxkk

xkxk
kS

yxyx

yx

 (3.46)

Other different vector lengths are also chosen and different stencil weights are obtained.

Details are given as follows by categorizing three different cases for the different vector

choices:

49

Case 1: In this case, the first vector choice is    2/,2/0,  SS  , which is given

above, and then the stencil in equation (3.46) is obtained with weights 53015.010 d and

469849.011 d .

Case 2: In this case, the second vector choice is    22/,22/0,2/  SS  and for this

vector choice, the obtained weights are 63778.010 d and 362218.011 d . The choice of

any vector gives different weights but the terms in stencil remain the same as in equation

(3.38). For the second vector choice, the stencil is given below:






















 








 























 








 


22

22

2

)(
sin2

2

)(
sin2362218.0

2
sin4

2
sin4637782.0)(

xkkxkk

xkxk
kS

yxyx

yx

 (3.47)

Case 3: In this case, the third vector choice is    24/3,24/30,4/3  SS  and for this

vector choice the obtained weights are 59713.010 d and 402869.011 d . For the third

vector choice the stencil is given below:






















 








 























 








 


22

22

2

)(
sin2

2

)(
sin2402869.0

2
sin4

2
sin4597131.0)(

xkkxkk

xkxk
kS

yxyx

yx

 (3.48)

The stencils obtained in equations (3.46–3.48) are in k domain. For the simulations in cell

dynamics (CDS), these equations need to be transformed into real space analogue. The

transformation is given below in equations (3.49–3.51) for equations (3.46–3.48)

respectively.

50

.

0603.3])cos[(2

])cos[(2(234925.0

))cos(2)cos(2(530151.0

)(

1
)(

21)92(


























xkk

xkk

xkxk

x
kS

yx

yx

yx

caseQDBV (3.49)

 .

3.27556])cos[(2

])cos[(2(0.181109

))cos(2)cos(2(0.637782

)(

1
)(

22)92(


























xkk

xkk

xkxk

x
kS

yx

yx

yx

casQDBV (3.50)

 .

3.19426])cos[(2

])cos[(2(0.201435

))cos(2)cos(2(0.597131

)(

1
)(

23)92(


























xkk

xkk

xkxk

x
kS

yx

yx

yx

caseQDBV (3.51)

The subscript BV in equations (3.49–3.51) indicates that these stencils are obtained by

following B.A.C. van Vlimmeren’s method. It is clear from Figure 3.3 that all the

BV(D2Q9) stencils are isotropic in comparison to PK(D2Q9). The two stencils

BV(D2Q9)case2 and BV(D2Q9)case3 are equally isotropic for 3.2r and seem to be better

than PK(D2Q9), but these are anisotropic for larger r. The deviation of lines from radius

r show that the green line for the BV(D2Q9)case1 behaves in almost the same way as

OP(D2Q9), which is less isotropic than the other two cases for ,5.25.1  r and more

isotropic for .5.2r It must be noted that the isotropy of the BV(D2Q9)case1 stencil is

better than all the other discrete Laplacians in the 9–point family.

51

Figure 3.3: The value of a measure of the isotropy)(rd for the actual Laplacian (red solid line

for
2k) and other discrete Laplacians against the radius r. The BV(D2Q9) are newly derived

stencils.

After the investigation of 9–point family Laplacian schemes for error order)(2hO , the

stencil shapes are analysed for error order)(4hO . These shapes include a 9–point star

stencil and a 17–point stencil. The Laplacian operator is then derived from the finite

differences and all these are discussed here. The 9–point star and 17–point Laplacians

have the error order term)(4hO . Stencil shapes for these three Laplacians are shown in

Figure 3.4 (a) and (b) respectively. The dark circles in each part of Figure 3.4 are the

points for forming Laplacians schemes. The Laplacian schemes obtained from the 9–point

star and17–point stencils and the corresponding Fourier transforms are given as follows:

.6016
12

1
)()0(

4

1

)2(
4

4

)1(

292 





 



ii

starQD
h

 (3.52)

 .
30))2cos()2(cos(

))cos()(cos(16

)(6

1
)(

292




















xkxk

xkxk

x
k

yx

yx

StarQD (3.53)

52

.540816128
120

1
)()0(

4

1

4

4

4

4

)4()3()2(
4

4

)1(

2172 





  
  


i i ii

QD
h

 (3.54)

 
    

 
    

.

270)22(cos)22(cos

)2cos()2cos(8

)(cos)(cos16

)cos()cos(128

)(60

1
)(

2172
































xkkxkk

xkxk

xkkxkk

xkxk

x
k

yxyx

yx

yxyx

yx

QD (3.55)

 (a) (b)

Figure 3.4: Stencil shapes of Laplacian on 2D grid. a) 9–point star stencil; b) 17–point stencil.

Equations (3.53) and (3.55) are the corresponding Fourier transforms of equations (3.52),

and (3.54) respectively. The 9–point star discrete Laplacian is reported as anisotropic and

the 17–point are reported as isotropic [7]. In Figure 3.5, the isotropy is measured for these

fourth-order discrete Laplacians along with the isotropy measure of second order

PK(D2Q9), discrete Laplacian and the analytical expression (actual Laplacian 2k). It

is obvious from Figure 3.5 that the 9–point star stencil deviates more from radius r and

therefore becomes completely anisotropic. The isotropy of the 17–point stencil (D2Q17)

with green dashed line is not much better than the discrete Laplacian PK(D2Q9) with the

blue solid line. The 17–point stencil cab be observed to have maximum divergence,

therefore, it cannot be considered to be isotropic.

53

In the way the Laplacian schemes are used in cell dynamics simulation technique, all the

two-dimensional Laplacian schemes are modified a little by calculating the average

weights for the nearest neighbours (NN), next nearest neighbours (NNN), next–next

nearest neighbours (NNNN) and next–next–next nearest neighbours (NNNNN), in

accordance with the simulation requirements; these are given in the form of X .

Figure 3.5: The value of a measure of the isotropy)(rd for the actual Laplacian (red solid line

for
2k) and other discrete Laplacians with r the radius.

The two-dimensional Laplacian schemes are listed with alphabetical titles so that they

may be easily referred to throughout the thesis. The equations with small modifications

listed below are for equations (3.16, 3.17, 3.19–3.22, 3.46–3.48, 3.52 and 3.54)

respectively:


NN

QDA


4

1
)52(

 (3.56)


NNN

QD


4

1
52

 (3.57)

 
NNNNN

QDPK


20

1

5

1
)92(

 (3.58)

54

 
NNNNN

QDOP


12

1

6

1
)92(

 (3.59)

 
NNNNN

QD


28

3

7

1
92

 (3.60)

 
NNNNN

QDBK


8

1

8

1
)52(

 (3.61)


NNNNNcase

QDBV
 076765.0173235.0

1
)92(

 (3.62)


NNNNNcaseQDBV
 0.0552910.194709

2)92(
 (3.63)


NNNcaseQDBV

0.0630610.186939
3)92(

 (3.64)


NNNNNstarQD


60

1

15

4
92

 (3.65)

  
NNN NNNN NNNNNNN

QD


540

1

135

2

135

4

135

32
172

 (3.66)

3.2.2 Three–dimensional Laplacian schemes

Three–dimensional Laplacian schemes are presented in this section. The isotropic and

anisotropic three–dimensional Laplacian schemes are investigated to be employed in

CDS to analyse the numerical results of one order parameter evolution in a Lamellae

morphology system of block copolymers.

55

Figure 3.6: The stencil for three-dimensional Laplacian schemes, where NN, NNN, and NNNN

are the nearest neighbours, next–nearest neighbours and next–next nearest neighbours to the point

r. This image is taken with the permission of [2].

The Laplacian schemes are derived through finite difference considering the nearest

neighbours (NN) and the next nearest neighbours (NNN) with error order)(2hO . The

stencil points can be seen in Figure 3.6. All three-dimensional Laplacian schemes are

listed below:

 .6
1

)()0(
6

1

)1(

273 




 



i

QD
h

 (3.67)

 .568
12

1
)()0(

8

1

)3(
6

1

)1(

2153 




 



ii

QD
h

 (3.68)

 .242
6

1
)()0(

12

1

)2(
6

1

)1(

2193 




 



ii

QD
h

 (3.69)

 .152416
36

1
)()0(

8

1

)3(
12

1

)2(
6

1

)1(

2273 




  



iii

QD
h

 (3.70)

56

 .128314
30

1
)()0(

8

1

)3(
12

1

)2(
6

1

)1(

2)273(




  



iii

QDPK
h

 (3.71)

 .8036
22

1
)()0(

8

1

)3(
12

1

)2(
6

1

)1(

2)273(




  



iii

QDSO
h

 (3.72)

The subscripts PK and SO stand for Patra Kartunnen and Shinozaki–Oono respectively.

The 7–point Laplacian (D3Q7) scheme in equation (3.67) is based on its nearest

neighbours (NN) only and is obtained from the simple central finite difference method.

The D3Q7 is reported as anisotropic [6, 7]. Laplacian schemes for 15–point (D3Q15) and

19–point (D3Q19) stencils given in equations (3.68) and (3.69) are obtained from general

finite difference derivations and are described as isotropic [6, 7]. There are various

schemes for the 27–point Laplacian operator, which are discussed in the literature.

Sumesh et. al. [6] discussed various three–dimensional 27–point Laplacian schemes. The

27–point Laplacian scheme (D3Q27) in equation (3.59) is based on its nearest neighbours

(NN), next nearest neighbours (NNN) and the next–next nearest neighbours (NNNN) and

is described as isotropic [6]. The Laplacian scheme PK(D3Q27) given in equation (3.71)

has been systematically derived by imposing conditions of rotational invariance and

isotropy [7]. The Laplacian scheme SO(D3Q27) given in equation (3.72) has been used

in CDS as an averaging operator to maintain isotropy, but is not the optimal choice for

achieving isotropy [49].

The isotropy of the three–dimensional discrete Laplacians discussed above can also be

analysed in Fourier space. The corresponding Fourier transforms of Laplacian schemes

in equations (3.66–3.72) are given below respectively:

 
 .3))cos()cos()(cos(

2
)(

273 


 xkxkxk
x

k zyxQD (3.73)

57

 
.

28))cos()cos()(cos(4

))cos()cos()(cos(8

6

1
)(

2153




















xkxkxk

xkxkxk

x
k

zyx

zyx

QD (3.74)

 
.

12))cos()cos(

)cos()cos()cos()(cos(4

))cos()cos()(cos(2

3

1
)(

2193


























xkxk

xkxkxkxk

xkxkxk

x
k

zy

zxyx

zyx

QD

 (3.75)

 

.

38))cos()cos()(cos(2

))cos()cos(

)cos()cos()cos()(cos(4

))cos()cos()(cos(8

9

1
)(

2273
































xkxkxk

xkxk

xkxkxkxk

xkxkxk

x
k

zyx

zy

zxyx

zyx

QD (3.76)

 

.

64))cos()cos()(cos(4

))cos()cos(

)cos()cos()cos()(cos(6

))cos()cos()(cos(14

15

1
)(

2)273(
































xkxkxk

xkxk

xkxkxkxk

xkxkxk

x
k

zyx

zy

zxyx

zyx

QDPK (3.77)

 

.

80))cos()cos()(cos(8

))cos()cos(

)cos()cos()cos()(cos(12

))cos()cos()(cos(12

22

1
)(

2)273(
































xkxkxk

xkxk

xkxkxkxk

xkxkxk

x
k

zyx

zy

zxyx

zyx

QDSO (3.78)

The resulting equation after expanding cos(x) around the origin in Fourier transforms

(3.74 – 3.77) of discrete Laplacians D3Q15, D3Q19, D3Q27 and PK(D3Q27) is obtained

the same for all, which is given below:

),(
12

)(6
4

2

kO
k

kk  (3.79)

and the expansions of cos(x) around origin for D3Q7 and SO(D3Q27) are as follows:

).(
612

)(6

2222224
2

73 kO
kkkkkkk

kk
zyzxyx

QD 










 
 (3.80)

58

).(
33

][2

12
)(6

2222224
2

)273(kO
kkkkkkk

kk
zyzxyx

QDSO 










 
 (3.81)

All the stencils from (3.74) to (3.77) are observed to be isotropic up to fourth order in k.

The 7–point stencil D3Q7 can be expected to be anisotropic, due to using the few stencil

points in its construction. The Laplacian scheme SO(D3Q27) use all 27 points but in spite

of that it is isotropic at leading order in error.

Sumesh et al. [6] gave a good comparison of various three–dimensional discrete

Laplacians for isotropy with the discrete operator used in the original study of Shinozaki

and Oono [47]. They compare Laplacians via isocontour plots along the 0zk and zk

planes, but such analogy only provides qualitative information. For quantitative analysis,

the isotropy of the three–dimensional discrete Laplacians may be measured by calculating

d and then observing the deviation of the Laplacian curve along the radius r. Such

measurement of isotropy can be performed after introducing spherical coordinates

),,(r in k space by plotting:

).,,(min),,(max)(
,,




rrrd (3.82)

The results for discrete Laplacians D3Q15, D3Q19, D3Q27 and PK(D3Q27) are shown

in Figure 3.7. All four of these discrete Laplacians belong to the same class, as can be

observed from equation (3.79). However, as the r increases, the Laplacian becomes

anisotropic and therefore the proper isotropy can be found for small r. It can be concluded

that the D3Q19 (19–point stencil in equation (3.69)) is most isotropic.

59

Figure 3.7: The value of a measure of the isotropy)(rd for the actual Laplacian (red solid line

for
2k) and other discrete Laplacians with r the radius.

Another three–dimensional 27–point isotropic stencil operator is given below, obtained

by the method of B.A.C. van Vlimmeren [102], and the same method has also been

explained by Fraaije and co–workers [61, 103]:

2
2

2






ixk

S where zyxxi ,, (Scaling condition)

 


















3
,

3
,

3
0,

2
,

2
)0,0,(


 SSS (Isotropy condition)

The Laplacian scheme in equation (3.83) is obtained from the above method and is

presented in real analogue. The weights are generated in the Fourier domain (3.84) so the

equation has been modified in real analogue:



























)0(
8

1

)3(

12

1

)2(
6

1

)1(

2)273(

3.649750.0586061

0.1177012 0.294726
1

)(







i

ii

QDBV
h

 (3.83)

60

.

3.64975))cos()cos()(cos(0.4688

))cos()cos(

)cos()cos()cos()(cos(0.4708

))cos()cos()(cos(0.589451

)(

1
)(

2)273(
































xkxkxk

xkxk

xkxkxkxk

xkxkxk

x
k

zyx

zy

zxyx

zyx

QDBV (3.84)

).(][8191.0
12

)(6222222
4

2

)273(kOkkkkkk
k

kk zyzxyxQDBV 







 (3.85)

The isotropy of the three–dimensional discrete Laplacians BV(D3Q27), D3Q7 and

SO(D3Q27) are shown in Figure 3.8. It is obvious from equations (3.80), (3.81) and (3.85)

that these three Laplacians have isotropic error up to second order in k. The discrete

Laplacian D3Q7 is anisotropic because it is showing maximum deviation along the radius

r. Overall, the less common BV(D3Q27) and the usual Shinozaki and Oono’s choice

SO(D3Q27) Laplacians are slightly anisotropic, whereas the BV(D3Q27) performs better

than SO(D3Q27) for large r due to the specific conditions for which it was derived.

Figure 3.8: The value of a measure of the isotropy)(rd for the actual Laplacian (red solid line

for
2k) and other discrete Laplacians with r the radius.

61

Generally, the discrete Laplacian D3Q19 seems the best choice among all the considered

discrete Laplacians. It is fourth order in k and is using only 19 points on the grid. It is

isotropic in the low k range and slightly anisotropic for larger k .

In the way the Laplacian schemes are used for the simulations in CDS, like two–

dimensional Laplacian schemes, all the three–dimensional Laplacian schemes are a little

modified by calculating the average weights for the nearest neighbours (NN), next nearest

neighbours (NNN), next–next nearest neighbours (NNNN) and next–next–next nearest

neighbours (NNNNN), in accordance with the simulation requirements; these are given

in the form of X . The three–dimensional Laplacian schemes are listed with

alphabetical titles so that these may be easily referred to throughout the thesis. All

Laplacian schemes are listed below for 7–point, 15–point, 19–point and 27–point stencils:


NN

QD


6

1
273

 (3.86)

 
NNNNNN

QD


56

1

7

1
153

 (3.87)

 
NNNNN

QD


24

1

12

1
193

 (3.88)

  
NNNNNNNNN

QD


152

1

152

4

152

16
273

 (3.89)

  
NNNNNNNNN

QDPK


128

1

128

3

128

14
)273(

 (3.90)

  
NNNNNNNNN

QDSO


80

1

80

3

80

6
)273(

 (3.91)

62

  
NNNNNNN

QDBV
 0.0160576 0.0322491 0.0807524

NN
)273(

 (3.92)

3.3 Stability analysis

For stability considerations, the linearized CDS equation (3.93) [101] can be derived with

tanh map from equation (3.10) by ignoring the term),(tiB .

  
 22)1(



DA

t
 (3.93)

The Fourier transform of order parameter linearized around the homogeneous fixed

point gives equation (3.94), see Ref. ([104], equation (3.7)).

,,,
)(

k
k

kkk Htt   (3.94)

where:

',

2

',
])()()1[(

kkkk
ktDktAH  (3.95)

It is essential to maintain 1, kkH for the stability of the successive iterations of Fourier

modes. Thus, two different instability conditions of bifurcation can be dealt with; one is

tangential bifurcation, where 1, kkH may occur, and the second is sub-harmonic

bifurcation where 1, kkH can occur. The condition of tangential bifurcation gives

equation (3.96), which results in smaller growth of k modes [104].

 1)( k (3.96)

63

The condition of sub–harmonic bifurcation creates constraints on time step t , which is

dependent on mesh size [101, 104]. The condition of sub–harmonic bifurcation gives the

following equation:

 2)()()1(2  ktDktA (3.97)

where t is the time step. The sub–harmonic bifurcation can be avoided for all k modes

for the Laplacian operators by forming the following inequalities. Here a few Laplacian

schemes are selected to give just an idea of how the formation of inequalities can be

formed for the stability from Fourier transforms of Laplacian schemes. After substitution

of the Laplacian operator)(k in equation (3.97) from Fourier transform equation (3.23)

for 5–point stencil, the following equation (3.98) is obtained:

2

4

))(1(432

)(

xAD

x
t




 (3.98)

where A=1.5, D =0.7, and 0.1x are the parameters which are used for the numerical

simulation in CDS code. After substitutions of the values for A, D, and x in the above

inequalities, the time step values are obtained for all the Laplacian schemes and are given

in Table 3.1.

64

Table 3.1: Time step (t) values for all two– and three–dimensional Laplacian schemes

obtained from stability analysis criteria

S.No. Time step Corresponding

Laplacians

S.No. Time step Corresponding

Laplacians

1. 049.0t 5–point NN A(D2Q5) 11. 038.0t 17–pont D2Q17

2. 046.0t 5–point NNN D2Q5 12. 021.0t 7–point D3Q7

3. 072.0t 9–point PK(D2Q9) 13. 035.0t 15–point D3Q15

4. 09.0t 9–point SOP(D2Q9) 14. 111.1t 19–point D3Q19

5. 10.0t 9–point D2Q9 15. 097.0t 27-point D3Q27

6. 11.0t 9–point BK(D2Q9) 16. 085.0t 27-point PK(D3Q27)

7. 086.0t 9–point BV(D2Q9)case1
17. 2173.0t 27-point SO(D3Q27)

8. 0.074 t 9–point BV(D2Q9)case2 18. 1698.0t 27-point BV(D3Q27)

9. 0.078 t 9–point BV(D2Q9)case3

10. 030.0t 9–point Star (D2Q9)

3.4 Conclusions

In this chapter, the CDS model has been explained for one order parameter systems for

the evolution of lamellar forming of A–B diblock copolymer systems. The overall study

in this chapter was conducted for the analysis of isotropic Laplacian operators to be used

in CDS. The stencil (computational molecule) plays a very important role in the quality

of the evolution of the order parameter, and keeping this point in consideration, several

different stencil operators for CDS have been investigated.

Fourier analysis is also undertaken for the Laplacian operators. Isotropic properties of

two– and three–dimensional Laplacian operators were analysed in detail. The two–

dimensional 9–point Laplacians have been discussed with order error)(2hO . The two–

65

dimensional 9–point star and 17–point Laplacian operators with order error)(4hO have

been discussed and formatted for employing in CDS. In the same way, three–dimensional

Laplacian schemes have been investigated and isotropic schemes have been notified.

Following the method of B.A.C. van Vlimmeren for a three–dimensional isotropic stencil

operator, the two–dimensional 9–point isotropic stencil operators (BV(D2Q9) in three

cases) were derived and discussed along with three different vector choices. These are

novel isotropic stencil operators which are presented in this study and are more efficient.

The 9–point family Laplacians, the stencils PK(D2Q9), BV(D2Q9)case2 and

BV(D2Q9)case3 in 2D were found to be isotropic, and among these stencils the

BV(D2Q9)cas2 is optimally good in isotropy. In 3D, the 19–point stencil has been found

to be more isotropic and it is more stable because it allows a larger time step value for .t

The other stencils OP(D2Q9), BV(D2Q9)case1, SO(D3Q27) and BV(D3Q27), have been

found to be slightly anisotropic on the whole range k, but enabling larger time steps can

be valid alternatives.

From the analysis of averaging operator (Laplacian) in CDS, it is clear that the original

averaging operator does not represent the discrete Laplacian and that the CDS method

should not be analysed via the TDGL equations. However, the original averaging operator

can be replaced by a discrete representation of Laplacian via considering the stencil size

and isotropic behaviour, which ensure the stability of CDS results. The investigation of

several isotropic discrete Laplacian operators provides an alternative to use more

isotropic Laplacian operators, which can helpful to resolve the grid related artefacts

(anisotropies) in CDS results.

66

Chapter Four

4 Simulation Results (One–Order Parameter)

Numerous techniques have been used for modelling diblock copolymers over the last few

decades; hence, a method is required that takes into account both accuracy and speed,

taking into account a closer relationship between the real world and the laboratory by

modelling the behaviour of diblock copolymers on a large scale and preventing the size

effect problem. A coarse–grained discretization CDS scheme was identified as a

promising candidate to compute and define the mesoscopic self–assembled structure of

diblock copolymers [4]. The objective of the study in this chapter is to employ various

2D and 3D Laplacian operators in CDS for A–B dibblock copolymer systems in order to

investigate isotropic simulation results. The Laplacian schemes employed for the

simulations here were discussed in Chapter 3. To achieve this objective, initially a

description has been given on the application of CDS to simulate microphase separation,

front propagation and evolution of order parameter in A–B dibblock copolymer systems.

The CDS technique is implemented in Fortran 90 programming language. The system

specifications were used Linux 3.7 desktop Opensuse 12.3 with Intel(R) Xeon(R) CPU

with IFORT compiler.

The discretized CDS version of Time–Dependent Ginzburg–Landau (TDGL) equation in

the forward Euler method were simulated in Fortran program to carry out 2D and 3D

simulations. The steps for the program were set up based on discrete equations (3.10),

(3.11) and (3.12), which are given as follows:

1. Assigning random initial values to a variable representing order parameter . ;

2. Setting the periodic boundary conditions, i.e. x, y and z directions;

3. Calculation of first discrete Laplacian for order parameter , i.e.   ;

67

4. The multiplication of the result of step 3 by diffusion constant D, i.e.  ; D

5. Calculation of the map function (3.12) based on the order parameter with initial

random values and other constants with specific values;

6. Combining steps 4 and 5; see equation (3.11);

7. Calculation of second (outer) discrete Laplacian for the result of step 6, as follows:

),(),(itit   ;

8. Calculation of order parameter based on new obtained values with respect to time

evolution, see equation (3.10).

4.1 Two–dimensional simulations

A morphology is mainly concerned with the shape evolution of microphase separation of

A–B diblock copolymers in different time steps. Several different morphologies were

found: lamellae, cylinder, bicontinuous, and spheres, as well as the coexistence of spheres

and cylinders [2]. The constants in equations (3.12) are treated as parameters for deciding

a specific morphology. The parameter values for different morphologies are given in

Table 4.1 [2].

Table 4.1: Simulation parameters used for the different morphologies

 f u v B D A Morphology

0.36 0.48 0.38 2.3 0.02 0.7 1.5 Lamellae

0.33 0.44 0.38 2.3 0.02 0.5 1.5 Bicontinuous

0.30 0.40 0.38 2.3 0.02 0.4 1.5 Cylinders

0.20 0.40 0.38 2.3 0.01 0.5 1.5 Spheres

The 2D simulations are presented here for lamellae morphology (lamellar forming) of the

A–B diblock copolymer systems. For all the 2D simulations given in this section, the grid

68

size was set at 128128 with grid spacing 1 yxh and these simulations were

started from an initial random disordered state, i.e. 30. . It should be noted that

snapshots of 2D simulations are presented without any specific time scale and these

snapshots show numerical values of . The source–code for the implementation of CDS

presented in Figure 4.1 is given in Appendix A.

Figure 4.1: Results of CDS based on OP(D2Q9) 9–point stencil, equation (3.59). Real space

simulation snapshots in (a), (b) and (c) are for 100th, 10000th and 100000th time steps respectively

obtained by using parameters given in Table 4.2. Real space simulation snapshot in (d) is for

100000th time step obtained by using parameters given in Table 4.3.

69

Table 4.2: System parameters used in cell dynamical method for Lamellae morphology

CDS Parameters  f u v B D A
Initial random

values

Lamellae Morphology
0.36 0.48 0.38 2.3 0.02 0.7 1.5

30.i 

Table 4.3: System parameters used in cell dynamical method for binary blend

CDS Parameters  f u v B D A
Initial random

values

Lamellae

Morphology

0.36 0.48 0.38 2.3 0.0 0.7 1.5
01030 ..i 

In the CDS method of A–B diblock copolymers, the compositional order parameter in

terms of local and global volume fraction is defined by the following relation [4]:

 fBA 21  (4.1)

where ,A B are the local volume fractions of the A and B monomers respectively. The

volume fraction of A monomers is defined by the relation  ,NN/Nf BAAA  and

similarly the volume fraction of B monomers is defined by the relation

 ,NN/Nf BABB  where AN represents the number of monomers of block A, and BN

represents the number of monomers of block B. The constant f in both Tables 4.2 and 4.3

represents this ratio in the diblock copolymer system. For example, the constant f = 0.5

implies that the ratio of A and B monomers is equal in a mixture.

The simulation results presented in Figure 4.1 were obtained by using the 9–point

isotropic operator of Oono and Puri’s choice (equation (3.59)). In Figure 4.1 (a), (b) and

(c), the images are shown for different stages of evolution of lamellae in a lamellar

forming system of A–B diblock copolymers at different time step values. The initial stage

70

of lamellae can be observed in Figure 4.1 (a) and the microphase separation starts to take

place with respect to time and well-aligned lamellae can be seen in Figure 4.2 (b). In

snapshots (b) and (c) in Figure 4.1, the lamellae coloured red along with an interfacial

yellow colour can be seen microphase–separated in the diblock copolymer system

representing either A or B block. In Figure 4.2 (b), the image is shown for a 10000th time

step where the lamellar forming system becomes stable, which means the microphase

separation has been completed and there is no further change in the lamellae evolution.

Due to this, it is clear from Figure 4.1 (c) for the 100000th time step that lamellae are in a

similar pattern as in Figure 4.1 (b) for a 10000th time step. Simulation results of

microphase separation in a lamella forming system shown in Figure 4.1 (a), (b) and (c)

were obtained by employing the parameter values given in Table 4.2.

The snapshot in Figure 4.1 (d) shows the simulation of a binary blend at a 100000th time

step which was obtained by using a CDS parameter system (Table 4.3) for lamella

forming system except (B=0). In this case, instead of microphase separation, a

macrophase separation occurred in the pore system. In the pore system shown in Figure

4.1 (d), the domain is divided into two subdomains where the clearly visible yellow

interfacial regions macrophase–separate A–rich subdomains in a red colour, and B-rich

subdomains in a blue colour. It should be noted that the simulation result of a binary

blend shown in Figure 4.1 (d) was obtained by using Laplacian scheme OP(D2Q9) and

the red circular regions occur due to the isotropy of this scheme. The well aligned lamellae

formations in Figure 4.1 (b) and (c) show that this Laplacian scheme is isotropic.

Therefore, in this work, the Laplacian scheme OP(D2Q9) is termed as the default CDS

averaging operator and the simulation results obtained using this scheme are termed as

the default CDS results. All the 2D simulation results based on other Laplacian schemes

will be compared with these default results.

71

Table 4.4 gives the complete information of Laplacian operators discussed in Chapter 3;

these stencils are shown with the titles (alphabetic letters A–L) and along their weights

c1, c2, c3 and c4 for their nearest neighbours (NN), and next–nearest neighbours (NNN),

NNNN and NNNNN respectively.

Table 4.4: 2D stencils along with their weights for utilisation in computer code and isotropic or

anisotropic status

Schemes

Weights
Isotropic

/Anisotropic
Equations c1 c2 c3 c4

A(D2Q5) 1/4 0 0 0 Anisotropic (3.56)

D2Q5 0 1/4 0 0 Anisotropic (3.57)

PK(D2Q9) 1/5 1/20 0 0 Isotropic (3.58)

OP(D2Q9) 1/6 1/12 0 0 Isotropic (3.59)

D2Q9 1/7 1/28 0 0 Anisotropic (3.60)

BK(D2Q9) 1/8 1/8 0 0 Anisotropic (3.61)

BV(D2Q9)case1 0173235 0.076765 0 0 Isotropic (3.62)

BV(D2Q9)case2 0.194709 0.055291 0 0 Isotropic (3.63)

BV(D2Q9)case3 0.186939 0.063061 0 0 Isotropic (3.64)

D2Q9star 4/15 -1/60 0 0 Anisotropic (3.65)

D2Q17 32/135 4/135 -2/135 -1/540 Isotropic (3.66)

The format for the averaging operator used in the computer program is shown below:

  
NNNNNNNNNNNNNN

ccccDmQn 4321 (4.2)

where m is the number of dimensions and n is the number of points in a stencil.

72

4.1.1 2D Simulation results based on anisotropic Laplacian schemes

In this section, the simulation results are presented for anisotropic schemes which are

compared with the isotropic default CDS results shown in Figure 4.1.

Figure 4.2: CDS results based on Laplacian scheme A(D2Q5); a) real space simulation snapshot

at100000th time step by using parameters given in Table 4.2; b) real space simulation snapshot of

binary blend at 100000th time step by using parameters given in Table 4.3.

The simulation snapshots shown in Figure 4.2 were obtained by using Laplacian scheme

A(D2Q5). In Figure 4.2 (a), the parameters were employed from Table 4.2 and it can be

observed that the lamellae seem to be short, not well aligned and do not form lamellar

chain lengths compared to Figure 4.1 (c). The simulation snapshots in Figure 4.2 (b) were

obtained by employing the parameters given in Table 4.3. In the pore system of binary

blend shown in Figure 4.2 (c), the subdomains coloured red can be seen by the rectangular

shapes. Compared to the red circular shapes formed for the subdomains in CDS default

results shown in Figure 4.1 (d), the rectangular shapes of subdomains in Figure 4.2 (b)

show that the scheme did not perform well for the simulation based on the parameters of

binary blend in Table 4.3. The Laplacian scheme OP(D2Q9) produced isotropic results

for both sets of parameter values in Table 4.2 and Table 4.3; however, scheme A(D2Q5),

due to its anisotropy, could not accommodate two different sets of parameter values.

73

Figure 4.3: CDS results based on Laplacian scheme D2Q5 given in equation (3.57); a) real space

simulation snapshot at100000th time step obtained by using parameters given in Table 4.2; b) real

space simulation snapshot at 100000th time step obtained by using parameters given in Table 4.3.

Figure 4.4: CDS results based on Laplacian scheme D2Q9 given in equation (3.60). The real space

simulation snapshot at 100th time step obtained by using parameters given in Table 4.2.

The simulation results in Figure 4.3 were obtained using Laplacian D2Q5 and the

simulation results in Figure 4.3 (a) and (b) were based on two different sets of parameter

values given in Table 4.2 and Table 4.3 respectively. It can be seen in Figure 4.3 (a) that

microphase separation in A–B diblock copolymer cannot be analysed or observed

properly and the lamellae formations are not visible; also the macrophase separation in

74

Figure 4.3 (b) is not well defined compared to the default CDS simulation results given

in Figure 4.1 (d). This is because of the anisotropy of the Laplacian scheme D2Q5.

The simulation snapshots given in Figure 4.4 were obtained using the Laplacian scheme

D2Q9 given in equation (3.60). The parameters for this simulation were those given in

Table 4.2. The simulation based on Laplacian scheme D2Q9 did not produce any

meaningful results. Deformations can be observed and no state of microphase separation

can be identified in Figure 4.4. The simulation based on this scheme did not run for longer

time steps, and the numerical values were diverged immediately after the 100th time step.

Both simulation results in Figure 4.3 and Figure 4.4 can be compared with the default

results given in Figure 4.1. It must be noted that the source–code for simulations using

schemes A(D2Q5), D2Q5 and D2Q9 were the same as those given in Appendix A for the

default CDS using scheme OP(D2Q9); only the values of the weights (c1, c2) were

changed. The simulation results given in Figure 4.5 were obtained using Laplacian

scheme BK(D2Q9) and both snapshots show that this scheme did not produce well-

defined lamellae formations.

Figure 4.5: CDS results based on Laplacian scheme BK(D2Q9) given in equation (3.61); a) real

space simulation snapshot at100000th time step obtained by using parameters given in Table 4.2;

b) real space simulation snapshot at 100000th time step obtained by using parameters given in

Table 4.3.

75

Figure 4.6: CDS results based on Laplacian scheme D2Q9star; a) real space simulation snapshot

at100000th time step obtained by using parameters given in Table 4.2; b) real space simulation

snapshot at 100000th time step obtained by using parameters given in Table 4.3.

Two different simulations were performed using Laplacian scheme BK(D2Q9) by

employing the sets of parameters given in Table 4.2 and Table 4.3. In Figure 4.5 (a), the

lamellae can be seen to be parallel with the horizontal axis and their formations are not in

agreement with the default CDS results given in Figure 4.1 (c). Due to the anisotropy of

scheme BK(D2Q9), the simulation result does not have any circular subdomains in Figure

4.5 (b) compared to those shown in Figure 4.1 (d) for default CDS results. The source

code used for simulation based on scheme BK(D2Q9) is given in Appendix A. The

Laplacian weights were only changed in the code of scheme OP(D2Q9).

In Figure 4.6, the simulation results are presented which were obtained by using 9–point

‘star’ Laplacian scheme D2Q9star equation (3.65). As with other simulations, the

simulation based on scheme D2Q9star was also carried out for two different sets of

parameter values given in Tables 4.2 and 4.3. It can be observed in Figure 4.6 (a), the

lamellae are formed straight in one direction which is parallel to the horizontal axis. It

can be observed from Figure 4.6 (b) that the simulation of binary blend based on

Laplacian scheme D2Q9star is far different from the default CDS results; this is due to the

anisotropy of the stencil 9–point ‘star’. The source code used for scheme D2Q9star is given

76

in Appendix B. The source code was modified, especially the code segment for writing

Laplacian, because of the different scaling of scheme D2Q9star compared to other 9–point

stencil formulas.

Figure 4.7: CDS results based on Laplacian scheme D2Q17 given in equation (3.66); a) real space

simulation snapshot at100000th time step obtained by using parameters given in Table 4.2; b) real

space simulation snapshot at 100000th time step obtained by using parameters given in Table 4.3.

The simulation results shown in Figure 4.7 were obtained using Laplacian scheme D2Q17

(17-point stencil). In Figure 4.7 (a), it can be observed that the lamellae formations are

well formed, but in Figure 4.7 (b), the simulation snapshot of the binary blend does not

show a defined macrophase separation compared to the default CDS results in Figure 4.1

(d). The periodic boundary conditions do not seem to be preserved and therefore the

orange colour can be seen on the boundaries. Due to the anisotropy of the Laplacian

scheme D2Q17, it cannot be recommended for the simulations. The isotropy measure of

this stencil can be seen in Figure 3.5 in Chapter three. The source code used for scheme

D2Q17 is given in Appendix C. The source code given in Appendix A was modified for

Laplacian D2Q17 because of the different scaling of scheme D2Q17 compared to other

9–point stencil formulas.

77

4.1.2 2D Simulation results based on isotropic Laplacian schemes

In this section the CDS results are presented based on isotropic Laplacian schemes. The

simulations were run by employing two different sets of parameter values, as given in

Tables 4.2 and 4.3, for each Laplacian scheme. The purpose of using two sets of parameter

values is to investigate the isotropic behaviour of the Laplacian for the evolution of order

parameter to investigate the phase separations in two different conditions. It must be noted

that anisotropic Laplacians did not produce well–defined simulation results.

Figure 4.8: CDS results based on Laplacian scheme PK(D2Q9) given in equation (3.58); a) real

space simulation snapshot at100000th time step obtained by using parameters given in Table 4.2;

b) real space simulation snapshot at 100000th time step obtained by using parameters given in

Table 4.3.

The CDS results given in Figures 4.8, 4.9, 4.10 and 4.11 were obtained using Laplacian

schemes OP(DQ9), BV(D2Q9)case1, BV(D2Q9)case2, and BV(D2Q9)case3, respectively.

The lamellae formations in these Figures seem to be well aligned and well defined and

also no deformed or unidirectional chains of lamellae can be seen. It can be observed

from the (a) snapshots of these Figures that the Laplacian schemes OP(D2Q9),

BV(D2Q9)case1, BV(D2Q9)case2 and BV(D2Q9)case3 yield isotropic results for microphase

separation in A–B diblock copolymers. In the (b) snapshots of these Figures, the circular

78

shapes of red subdomains in a binary blend can also be observed. The simulation results

based on Laplacian schemes OP(D2Q9), BV(D2Q9)case1, BV(D2Q9)case2 and

BV(D2Q9)case3 can be compared with the default CDS results and it can be concluded that

these Laplacians performed well enough for the simulations. The isotropy measure of the

stencil of Laplacian scheme BV(D2Q9)case1 was determined to be closely similar to that

of Laplacian scheme OP(D2Q9); therefore the CDS results presented in Figure 4.9 are

almost similar to those given in Figure 4.1 (c) and (d). It must be noted that in Table 4.4,

the Laplacian schemes listed alphabetically in the right-hand column correspond to the

stencils shown in the left-hand columns. The stencils of Laplacian schemes OP(D2Q9),

BV(D2Q9)case2, and BV(D2Q9)case3 were determined to be isotropic for low k range in a

similar way and among these, the stencil of Laplacian scheme BV(D2Q9)case2 was

determined with less divergence from radius r compared to OP(D2Q9) and

BV(D2Q9)case3. The source code for simulations using scheme OP(D2Q9),

BV(D2Q9)case1, BV(D2Q9)case2 and BV(D2Q9)case3 were used the same as that given in

Appendix A for the default CDS using scheme OP(D2Q9); only the values of weights

(c1, c2) were changed.

Figure 4.9: CDS results based on Laplacian scheme BV(D2Q9)case1 given in equation (3.62); a)

real space simulation snapshot at 100000th time step obtained by using parameters given in Table

4.2; b) real space simulation snapshot at 100000th time step obtained by using parameters given

in Table 4.3.

79

Figure 4.10: CDS results based on Laplacian scheme BV(D2Q9)case2 given in equation (3.63); a)

real space simulation snapshot at 100000th time step obtained by using parameters given in Table

4.2; b) real space simulation snapshot at 100000th time step obtained by using parameters given

in Table 4.3.

Figure 4.11: CDS results based on Laplacian scheme BV(D2Q9)case3 given in equation (3.64); a)

real space simulation snapshot at 100000th time step obtained by using parameters given in Table

4.2; b) real space simulation snapshot at 100000th time step obtained by using parameters given

in Table 4.3.

4.2 Three–dimensional simulations

In this section 3D Laplacian schemes were employed in CDS in order to investigate their

isotropic or anisotropic behaviour in simulations. Here, all the 3D simulations were

presented for spherical phase morphology of the A–B diblock copolymer systems. This

morphology was chosen to closely observe the isotropic simulations clearly in 3D. The

spherical morphology was investigated using a dynamic self–consistent field (SCF)

80

simulation and it was found that a spherical phase morphology transforms into a

hexagonal cylindrical phase [105]. This morphology, under external fields, i.e. shear flow

and electric fields, was investigated by Pinna [2] using CDS and due to the computational

efficiency of CDS it was possible for them to perform a larger parameter search, and

simulate larger boxes for longer time steps than in previous work undertaken with SCF

or Molecular Dynamics [105, 106].

Table 4.5 is presented below, before the discussion of 3D simulation based on Laplacian

schemes, containing information about the weights used for Laplacian schemes and with

isotropic or anisotropic status.

Table 4.5: 3D stencils along with their weights for utilisation in computer code and isotropic or

anisotropic status.

Schemes

Weights
Isotropic

/Anisotropic
Equations c1 c2 c3

D3Q7 1/6 0 0 Anisotropic (3.86)

D3Q15 1/7 0 1/56 Isotropic (3.87)

D3Q19 1/12 1/24 0 Isotropic (3.88)

D3Q27 16/152 4/152 1/152 Isotropic (3.89)

PK(D3Q27) 14/128 3/128 1/128 Isotropic (3.90)

SO(D3Q27) 6/80 3/80 1/80 Isotropic (3.91)

BV(D3Q27) 0.0807524 0.0322491 0.0160576 Isotropic (3.92)

In this section, all 3D simulations were run on a grid of size 507575  for up to 100000

time steps with grid spacing 1 yxh . These simulations were started from an

initial random disordered state ( was a random number within the range 3.0). It

should be noted that snapshots of 3D simulations are presented without any specific time

81

scale. The source code for the implementation of 3D CDS results presented in Figure 4.12

is given in Appendix D.

In Figure 4.12, the images (a), (b), (c) and (d) are shown for different stages of evolution

of 3D spheres (spherical particles) in spherical morphology of A-B diblock copolymers at

different time step values. The initial stage of evolution can be observed in Figure 4.12

(a) where the microphase separation takes place. The parameter values for map function

have been employed from Table 4.1 for spherical morphology. The simulations in Figure

4.12 were obtained by employing the 3D 27–point Laplacian operator of Shinozaki and

Oono’s choice (Laplacian scheme SO(D3Q27)). In this work, the 3D averaging operator

scheme SO(D3Q27) is termed as the default CDS operator and the simulation results

given in Figure 4.12 based on it are termed as the default CDS results.

It can be observed in Figure 4.12 (a) that the spherical particles start to microphase–

separate in a light green colour for one of the components, either A or B block, in diblock

copolymer. Figure 4.12 (c) shows the microphase separation for the spherical morphology

in its complete state.

82

Figure 4.12: CDS results based on Laplacian scheme SO(D3Q27); a) real space simulation

snapshot at 100th time step; b) real space simulation snapshot at 10000th time step; c) real space

simulation snapshot at 100000th time step.

The simulation results given in Figures 4.13 (a) and (b) were obtained using 3D Laplacian

schemes D3Q7 and D3Q15 respectively. The snapshot in Figure 4.13 (a) at the 100000th

time step shows that the 3D 7–point Laplacian scheme D3Q7 did not perform well for the

simulation of spherical morphology, although the microphase separation can be observed,

but the required shapes of the spheres have not been formed perfectly. In Figure 4.13 (b),

the defects can be observed in terms of mixed particles and rectangular shapes. It should

be noted that a perfect system is one that is stable and does not have any defects as in the

CDS default system which is given in Figure 4.12 (c). The simulation result in Figure

4.13 (a) can be compared with the default CDS results given in Figure 4.12. The 3D

snapshot (b) of Figure 4.13 at the 100000th time step shows that the 15–point Laplacian

scheme D3Q15 also did not perform well for the simulation. The shapes of rectangles can

83

be observed rather than spheres and also the mixed particles can be seen which are

considered to be defects in simulations.

Figure 4.13: 3D CDS results based on Laplacian schemes D3Q7 and D3Q15. a) real space

simulation snapshot at 100000th time step using Laplacian scheme D3Q7; b) real space simulation

snapshot at 100000th time step using Laplacian scheme D3Q15.

The Laplacian schemes D3Q7 and D3Q15 cannot be considered to be isotropic because

the simulation results obtained using these schemes were found to be poor compared to

the default CDS 3D results given in Figure 4.12. The source code for the simulations

using schemes D3Q7 and D3Q15 were the same as those given in Appendix D for

Laplacian scheme SO(D3Q27), just the values for weights were changed.

sMixed

Particles

sMixed

Particles

sMixed

Particles

84

Figure 4.14: 3D results of CDS in spherical morphology for A-B diblock copolymer systems. a)

Real space simulation snapshot at 100000th time step obtained using Laplacian scheme D3Q19.

b) Real space simulation snapshot at 100000th time step obtained using Laplacian scheme D3Q27.

c) Real space simulation snapshot at 100000th time step obtained using Laplacian scheme

PK(D3Q27). d) Real space simulation snapshot at 100000th time step obtained using Laplacian

scheme BV(D3Q27).

The simulation results given in Figure 4.14 (a), (b), (c) and (d) were obtained using 3D

Laplacian schemes D3Q19, D3Q27, PK(D3Q27) and BV(D3Q27) respectively. The

snapshot in Figure 4.14 (a) at the 100000th time step shows that the 3D 19–point Laplacian

scheme D3Q19 performed well for the simulation of spherical morphology; the

microphase separation can be observed where the shapes of spheres for blocks are very

obvious and can be seen without defects. The snapshot in Figure 4.14 (b) shows perfect

sphere shapes without obvious defects; the stencil Laplacian scheme D3Q27 used for this

simulation was found to be isotropic. The snapshot in Figure 4.14 (c) shows that the

Laplacian scheme performed well overall, but small defects can be observed. It is very

85

clear from Figure 4.14 (d) that the Laplacian scheme BV(D3Q27) performed very well;

perfect shapes of spheres can be observed and no defects can be found. The simulation

results in Figure 4.14 can be compared with the 3D default CDS results given in Figure

4.12 (c). It must be noted that the 3D Laplacian schemes which were mentioned as

isotropic schemes in Chapter 3 have yielded isotropic results. The source code for the

schemes D3Q19, D3Q27, PK(D3Q27) and BV(D3Q27) was used the same as that given

in Appendix D for Laplacian scheme SO(D3Q27), just the values of weights were

changed.

4.3 Conclusions

Simulation results have been presented for the 2D and 3D Laplacian schemes. The

snapshots show that Laplacian schemes D2Q5, D2Q9 and BK(D2Q9) are unstable for

simulations. The anisotropic two–dimensional 5–point Laplacian A(D2Q5) and 3D 7–

point Laplacian D3Q7 did not perform well as compared to isotropic Laplacians. The

simulation snapshots obtained by using 2D 9–point Laplacian PK(D2Q9) depicted perfect

lamellae formations. The simulations of binary blend using PK(D2Q9) and OP(D2Q9)

schemes were found to be similar. The 9–point isotropic stencil operators derived from

the B.A.C. van Vlimmeren’s method performed similarly to Laplacian scheme

OP(D2Q9) for two different parameter systems.

The simulations results obtained by using 2D 9–point star Laplacain scheme (D2Q9)star

and 17–point D2Q17 were found badly anistropic for the macrophase sepration. The

simulations based on these stencils took longer time for executions compared to isotropic

9–point family Laplcains.

86

In the 3D simulation results based on 15–point Laplacian scheme D3Q15, the rectangular

shapes and mixed particles were found to be as defects for spherical morphology and due

to the behaviour of scheme D3Q15, the results were considered anisotropic. The 3D 19–

point Laplacian scheme D3Q19 is considered more compact due to the fewer stencil

points and it was found with optimal isotropy. The Laplacian scheme D3Q19 performed

well for the simulation of spherical morphology; the shapes of the spheres were found to

be perfect. In three-dimensional simulations, 27–point based Laplacian schemes

produced good results for the evolution of order parameter for spherical morphology. The

Laplacian scheme BV(D3Q27) obtained by the method used by B.A.C. van Vlimmeren

produced the isotropic results compared to the original CDS Laplacian scheme

SO(D3Q27).

87

Chapter Five

5 Implementation of the Crank–Nicolson method for CDS

equations

In this chapter, the main objective is to achieve the implementation of the CN method for

the CDS equations. Originally, the CDS technique was employed using the forward Euler

method in the literature [2, 4, 41, 49]. However, the forward Euler method is not stable,

whereas the CN method is more stable and second–order accurate in time and space.

Three different Finite Difference (FD) methods are analysed and implemented for the

CDS equations. All the FD methods, including explicit and implicit schemes, are

incorporated for modelling the lamellar forming of A–B diblock copolymer systems. The

computer codes of all three FD methods for CDS were developed by following the same

algorithm of eight steps, which was given at the beginning of Chapter 4. The matrix based

approach has been adopted for the forward Euler method in the computer program, which

is different from the conventional approach. Initial programs of FD methods for CDS are

discussed without incorporating the boundary conditions and are based on the basic 5–

point formula of Laplacian operator. The techniques are then extended to include

boundary conditions and a better isotropic Laplacian scheme based on a 9–point stencil.

The results obtained from the backward Euler and CN methods are compared with those

of the forward Euler method.

5.1 Implementation of the Crank–Nicolson (CN) Scheme in cell dynamics

Before going to the implementation of CN for CDS, two other methods are implemented

for CDS: the matrix-based forward Euler method and the backward Euler method. The

description of these methods including CN method is given in section 2.6 of Chapter two

for the model heat diffusion equation.

88

Shown here are the steps needed to solve the time–dependent Ginzburg–Landau (TDGL)

equation, based on a finite difference technique. First, equation (3.10) can be re–written

in a simple form of PDE as [2]:

}))(({ 22 


BDg
t





. (5.1)

with  the spatial order parameter, t the time, 2 the Laplacian of function of free

energy, and D as a diffusive parameter. Equation (5.1) is non–linear and fourth order,

including the bi–Laplacian or biharmonic operator 4 .

5.1.1 Matrix based forward Euler and backward Euler methods for CDS

At the first step, equation (5.1) is approximated in the matrix-based explicit forward Euler

method without considering the periodic boundary conditions; later the periodic boundary

conditions are considered. The derivation of equation (5.1) is carried out in the form of

Mbx  , where M is a symmetric and positive definite matrix. This experiment is carried

out for the two–dimensional equation (5.1). Here equation (5.1) is rewritten as:




BDg
t





)()(222 , (5.2)

where)(g is the so-called map function as given by [2]:

   .u)f(v)f(A)(g   22 21211 (5.3)

Writing equation (5.2) in the form of 1n and n space, the resulting equation is given

as:

     
2

,

2

,

1

,

22

,

1

,)()(

part

n

kj

n

kj

part

n

kj

n

kj

n

kj gttBtD  
. (5.4)

89

Equation (5.4) is a non–homogenous partial differential equation where the homogenous

terms are given in part 1 and the non–homogenous term is given in part 2. The

homogenous part is brought into matrix M and is used to evaluate the independent

variable
n

kj , in the first instance. The last non–homogeneous term in equation (5.4)

containing)(g is evaluated at a second stage and in this way the values for
1

,

n

kj are

approximated.

The five–point Laplacian operator 2 [98] is used for the evaluation of the map function

which is also used in earlier results of an order parameter. The five–point formula is given

below:

 ).(4
1 2

,1,1,,1,12,

2 hO
h

n

kj

n

kj

n

kj

n

kj

n

kj

n

kj    (5.5)

To apply the five–point formula in cell dynamics equations, according to the averaging

conditions XX  and the five–point formula, it takes the following form:

  n

kj

n

kj

n

kj

n

kj

n

kj

n

kj ,1,1,,1,1,

2

4

1
  

. (5.6)

 
NN

n

kj

n

kj

n

kj ,,,

2

4

1
 . (5.7)

Now equation (5.7) is given a matrix form without periodic boundary conditions, say for

a nn grid.

,

14/100

4/1

04/10

04/114/1

004/11

1









































M ,

4/10000

0

0

00

004/1

2

































M

90

























0000

0

00

00

0000

3











M and .

1233

2

323

3212

3321

























MMMM

M

MMM

MMMM

MMMM

M











The block matrix M is a symmetric and has a positive definite of size 22 nn  and can be

generalized for any grid size and also the sub–matrices. In equation (5.4), there is a

biharmonic operator 422)( in the second term on the right hand side which can be

discretized in the thirteen–point stencil [98], so let 4C and C is taken as .MMC 

The block matrix C is also symmetric and positive definite of size 22 nn  comprising sub–

matrices as with those of M and can be generalized for any grid size. The two-dimensional

thirteen–point stencil formula for the biharmonic operator formatted in C is given below

[98, 107, 108]:

),()()()(2)()(22

,4

4

,22

4

,4

4

,

4 hOhO
yyxx

kjkjkjkj 













  (5.8)

where the spatial discretization is given as follows:

),(
2

)(2

2

,,1,1

,2

2

hO
hx

kjkjkj

kj 





  
 (5.9)

  ,
464

)(2

4

,2,1,,1,2

,4

4

hO
hx

kjkjkjkjkj

kj 





  
 (5.10)

and similarly for)(,2

2

kj
y





and).(,4

4

kj
y






91

Equation (5.4) takes the following form:

  
2

,

1

,

1

,)()(

Part

n

kj

Part

n

kj

n

kj tAftDCtBII  
 . (5.11)

In part 1 of the equation (5.11), I is the identity matrix containing 1s on its main diagonal

of size M matrix and
n

kj , is treated as the vector, having initial random values. First the

homogenous part 1 of equation (5.11) is evaluated and then the non–homogenous part 2

of equation (5.11) is evaluated, which is the map function. Thus, the order parameter is

evaluated as a whole.

For the explicit forward Euler method, the CDS technique was implemented in Fortran

77 programming language. All simulations were performed for a lamellar forming

diblock copolymer system of block copolymers using the parameters for the map

functions given in Table 5.1. These parameters are suggested for a lamellar forming

system of diblock copolymers [2] and all the two-dimensional simulations in this chapter

are based on these parameters.

Table 5.1: System parameters used in cell dynamical method for lamellae morphology

 CDS

Parameters
 f u v B D A

Lamellae Morphology
0.36 0.48 0.38 2.3 0.02 0.7 1.5

The simulation results given in Figure 5.1 were obtained based on the following

specifications:

 The grid size chosen was 6464 with grid spacing 1 yx ;

 The total time of the simulations was up to 10000 time steps with the time interval

1.0t ;

92

 The simulations were run without periodic boundary conditions;

 A matrix-based approach was used for calculating the Laplacian;

 The simulations were started from an initial random disordered state 3.0 .

Figure 5.1: Forward Euler method for two-dimensional CDS equations based on 5–point formula

at different time steps. a) at t = 10; b) t = 100; c) t = 1000.

In Figure 5.1 (a), (b) and (c), the images are shown for different stages of evolution of

lamellae in a lamellar morphology of A-B diblock copolymer systems at different time

steps. The order parameter evolution takes place successfully, which can be observed

from the simulation results given in Figure 5.1 (a) and (b). In Figure 5.1 (c), the

microphase separation can be observed and the lamellae formations can be seen but the

93

absence of boundary conditions is clearly noticeable. The boundaries are covered with a

blue colour, which means that the lamellae do not appear from the other side.

Conclusively, the simulation results shown in Figure 5.1 were obtained without

employing boundary conditions for the explicit forward Euler method; this method

worked initially for the minimum specifications. In the next step the same results are

produced using the implicit backward Euler method in order to proceed to the CN method.

Let us write equation (5.4) in the implicit BTCS method:

n

kj

n

kj

n

kj

n

kj

n

kj fttBtD ,

1

,

21

,

1

,

221

,)()(  
 (5.12)

n

kj

Part

n

kj

Part

n

kj tAftDCtBII ,

2

1

,

1

1

,)()(  

   (5.13)

Equations (5.12) and (5.13) are written in the implicit backward Euler method [8, 69]

which is well described in section 2.6.2 of Chapter two for the model heat diffusion

equation. The terms are shown on the left hand side to evaluate in n+1 space, see equation

(2.11). The calculation is carried out in a way that part 1 (homogenous) in the equation

(5.13) is evaluated first to identify the values of
1

,

n

kj from
n

kj , and then part 2 (non–

homogenous) is evaluated with new values of
1

,

n

kj . Thus, the order parameter is obtained.

To solve the linear system of equations given in equation (5.13), iterative methods need

to be used for which LU decomposition was tried. LU decomposition worked very slowly

and could be better for lower grids. The Conjugate Gradient (CG) method was used to get

faster results. CG outperforms Jaccobi, Gauss–Seidel and Successive Over Relaxation

(SOR) for large systems. Good results can be obtained in N steps of iteration [69]. The

solution of the PDE is related to a solution bMx  system, that is bMx 1 , where x is

94

an unknown vector, b is a known vector and M is known. The lemma in the case of CG

is that bAx  is equivalent to a quadratic minimization problem of the form.

bxMxxxf TT 
2

1
)((5.14)

with .nRf  The minimum is reached when .1bMx  The method is effective for

symmetric positive systems [109]. Memory usage is low with this method since only a

small number of vectors are required. For the iterates, the residual vectors are also the

gradients of a quadratic functional, the minimization of which is equivalent to solving the

linear system [109]. Per iteration, on the matrix–vector product, three vector updates and

two inner products were solved [109]. The CG algorithm is given in Appendix E.

The simulation results in Figure 5.2 were obtained using the implicit backward Euler

method. The parameters and specifications are the same as those which were used for the

explicit forward Euler method for simulation in Figure 5.1. It can be observed from Figure

5.2 that the evolution of an order parameter was successful using the implicit backward

Euler method. The simulation results in Figure 5.2 show the same modelling of diblock

copolymers as in Figure 5.1. The microphase separation can be clearly observed in Figure

5.2 (c). In section 2.6.2 of Chapter two, it is shown that this method is unconditionally

stable. Comparatively, the implicit backward Euler method is preferable because the time

interval t does not need to have any specific choice for its value. This property of the

backward Euler method makes this scheme more preferable to use compared to the

explicit forward Euler method.

95

 Figure 5.2: Backward Euler method for two-dimensional CDS equations based on 5–

 point formula at different time steps. a) at t = 10; b) t = 100; c) t = 1000.

5.1.2 Crank–Nicolson method for CDS

The CN method is convenient, particularly for one or two dimensions; however for two

or more dimensions, the Alternating Direction Implicit method (ADI) [84] is favoured

due to the simpler equations needing to be solved and hence faster results are obtained.

The ADI method splits the finite difference equation into two implicit equations that result

in a system of symmetric and tri–diagonal equations suitable for e.g. Cholesky

decomposition or LU decomposition.

The main objective is to implement the CN scheme and to acquire results for a partial

differential equation (5.4). It was discussed in section 2.6.3 of Chapter two that the CN

96

method is the average of the explicit forward Euler and the implicit backward Euler

methods and is also unconditionally stable. So accordingly, equation (5.4) is written in

the CN method and is given as follows:

)(
22

)(
2

)(
22

)(
2

,

2

,,

22

,

1

,

21

,

1

,

221

,

n

kj

n

kj

n

kj

n

kj

n

kj

n

kj

n

kj

n

kj

f
ttBtD

f
ttBtD

























 

. (5.15)

  

  

2

,

1

,

2

1

,

1

1

,

)(
222

)(
222

Part

n

kj

Part

n

kj

Part

n

kj

Part

n

kj

Af
t

C
tD

I
tB

I

Af
t

C
tD

I
tB

I














 














 



 

. (5.16)

Equation (5.16) is a CN scheme for equation (5.4) where the terms on the right hand side

are evaluated by the explicit forward Euler method in n space. The left hand side is

evaluated from the right hand side values at n+1 space for part 1 using the CG method

which was used in the implicit backward Euler method. After obtaining the values for an

order parameter ,1

,

n

kj the nonhomogeneous part 2 of the map function on the left hand

side is evaluated based on the new values of the order parameter. Thus, the order

parameter is finally obtained. The results are presented in Figure 5.3, but as an

experiment these results are without periodic boundary conditions. The images in Figure

5.3 are at the 10th, 100th and 1000th time steps. The simulation results given in Figure 5.3

were obtained using the same parameters and specifications that were used for the

simulation of the explicit forward Euler method in this chapter. The simulation results in

Figure 5.3 show the modelling of block copolymers in the same way as in Figures 5.1 and

5.3.

97

To analyse the stability of the CN scheme using the biharmonic operator, consider the

homogenous part 1 of equation (5.16) excluding the term with coefficient B as follows:

.)2(
2

)2(
2

,4

4

22

4

4

4

,

1

,4

4

22

4

4

4
1

,

n

kj

n

kj

n

kj

n

kj

yyxx

tD

yyxx

tD

































 

 (5.17)

Figure 5.3: CN scheme for two-dimensional CDS equations based on 5–point formula at different

time steps. a) at t = 10; b) t = 100; c) t = 1000.

To derive a sufficient condition for stability, the discrete Neumann stability criterion was

applied, the discrete Fourier mode [69, 84] in two dimensions,

98

 ,,

yikqxijpnn

kj ee   (5.18)

and by inserting equation (5.18) in equation (5.17) and dividing the resulting equation by

,1n gives:

 ,

)2/(sin)2/(sin16

)2/(sin8)2/(sin81

)2/(sin)2/(sin16

)2/(sin8)2/(sin81

22

44

22

44



































yqxptD

yqtDxptD

yqxptD

yqtDxptD

n









 (5.19)

and from the Fourier analysis we get 1 for all non–negative tD , so the two–

dimensional Crank–Nicolson scheme employing the CDS method is unconditionally

stable. The stability analysis can be applied in the same way for the explicit forward Euler

method and implicit backward Euler method.

5.1.3 Implementation of boundary conditions

The results presented before are without the use of boundary conditions. Here the

discussion is elaborated taking the boundary conditions into account. The boundary

conditions are very important in computer simulations if these simulations are producing

images. The CDS equations employ periodic boundary conditions. The periodic

boundary conditions (PCBs) are used to avoid problems with boundary effects caused by

finite size, and make the system more like an infinite one, at the cost of possible

periodicity effect. The existence of PBC means that any object (atom or molecule) that

leaves a simulation box by, say, the right-hand face, and then enters the simulation box

by the left-hand face or vice versa. How the periodic boundary conditions are

implemented in the matrix of the Laplacian is explained here. Consider the five–point

formula for 55 grid:

99

 ,4 ,1,1,,1,1,

2

5 kjkjkjkjkjkjp    5,,2,1, kj (5.20)

Let ux, vx, uy and vy be the array of indexes such that the last entry in ux is 1 and the first

entry in vx is 5 and the same for the uy and vy. In the following way:

),1,5,4,3,2( uyux and).4,3,2,1,5( vyvx (5.21)

The equation (5.20) takes the following form:

 ,4 ,)(,)(,),(),(,

2

5 kjkvyjkuyjkjvxkjuxkjp   5,,2,1, kj (5.22)

When the matrix of Laplacian is constructed there is a small change in the sub–matrix

M1. The sub–matrices M2 and M3 remain the same and the change in M1 obviously

causes the change of values in M matrix and so the C. The matrices M1 and M are given

below:

 ,

14/104/1

4/1

04/10

04/114/1

4/104/11

1









































M .

1231

2

323

3212

1321

























MMMM

M

MMM

MMMM

MMMM

M











The results based on periodic boundary conditions are given in Figure 5.4 for the explicit

forward Euler method.

100

Figure 5.4: Explicit forward Euler method based on 5–point formula using periodic boundary

conditions where (a) and (b) images are 100th and 10000th time steps.

Figure 5.5: Implicit backward Euler method based on 5–point formula using periodic boundary

conditions where images (a) and (b) are 100th and 10000th time steps.

The results in Figures 5.4, 5.5 and 5.6 are the images at 100th and 10000th time steps. For

the simulation results given in Figures 5.4 and 5.5, the system parameters used are given

in Table 5.1 and the other specifications used are given as follows:

 The grid size chosen was 128128 with grid spacing 1 yx ;

 The total time of the simulations was up to 10000 time steps;

 The simulations were run with periodic boundary conditions;

101

 The simulations were started from an initial random disordered state 3.0 .

It is emphasized that the value 1.0t was used for the explicit forward Euler method.

The simulations results given in Figure 5.5 were obtained using the implicit backward

Euler method. Here it is clear that the value 0.1t does not work in the five–point

Laplacian generally in the explicit forward Euler method. The divergence of values takes

place immediately on reaching 100th or 1000th time step and so on. When the implicit

schemes are employed there is no issue of using 0.1t for the five–point Laplacain.

The results in Figure 5.6 were obtained successfully using the CN method, which is also

unconditionally stable and has a discretization error order).(22 htO  In Figures 5.4,

5.5, and 5.6 the simulation results are shown for different stages of evolution of lamellae

in a lamellar morphology of A-B diblock copolymer systems at different time steps. The

order parameter evolution takes place successfully, which can be observed from the

simulation results given in snapshot (a) of these Figures; snapshot (c) of these Figures

shows the microphase separation and the lamellae formations can also be seen.

Figure 5.6: CN method based on 5–point formula using periodic boundary conditions where

images (a) and (b) are 100th and 10000th time steps respectively.

102

Figure 5.7: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 10000th time steps in images (a) and (b) respectively. Two lines of different

colour show numerical values of  x for two different methods, the forward Euler and the CN.

The numerical values plotted here were obtained from the simulations shown in Figure 5.4 and

5.6.

The Figure 5.7 displays the profile of  y,x against the space (0 – 128). This space is

assumed to be either x- or y-axis. The range of the space is fixed 0 – 128 because the

domain size was chosen 128 x 128. The scale of plot in this Figure is set in such a way

that on the vertical axis,  y,x represents the numerical values in the range ±1 against

space (0 – 128) on the horizontal axis. In order to compare the two finite difference

methods, the numerical values of order parameter are plotted in Figure 5.7 at different

time steps. In Figure 5.7 (a), the values are compared at 100th time step and in Figure 5.7

(b) the values are compared at 10000th time step. The simulation images of these time

steps are shown in Figure 5.4 and Figure 5.6. The two lines coloured pink and green show

the forward Euler method and the CN method respectively for comparison. In Figure 5.7

(a), both lines are exactly parallel, which illustrates that the tendency of numerical values

obtained from the two methods is the same while the methodologies are different. Figure

5.7 (b) shows that the numerical values differ between 80 and 100 on the horizontal axis

but the two lines are matching except in this region. The parallel distribution of numerical

values on the same scale in Figure 5.7 for the two different methods shows that there is

(b) (a)

103

no obvious difference for the evolution of order parameter and therefore the lamellae

formations are almost similar in pattern, which can be observed by comparing Figure 5.4

and Figure 5.6.

After the successful implementation of the five–point Laplacian in implicit backward

Euler and CN methods, isotropic nine–point Laplacian operators were employed, as used

by Oono and Puri [3, 47]. This 9–point isotropic Laplacian operator was employed

simultaneously for all three finite difference schemes. The 9–point isotropic Laplacian

operator was discussed in Chapter 3 as Laplacian scheme OP(D2Q9), which is given

below:

     
 


4

1

02
4

1

1

)92(
12

1

6

1

i
i

i
iQDOP . (5.23)

The Laplacian operator given in equation (5.23) was simulated in matrix M considering

the periodic boundary conditions. The CDS equations were run using this formula with

all previously used parameters and configurations on a 128128 grid size having

.0.1t The simulation results are presented with the same pattern in Figures 5.8, 5.9

and 5.10 for explicit forward Euler, implicit backward Euler and CN methods

respectively. These simulation results yield the same information about the modelling of

A-B diblock copolymer systems. The order parameter evolution takes place successfully,

which can be observed from the simulation results given in snapshot (a) of the Figures

5.8, 5.9 and 5.10. Snapshot (c) of these Figures shows the microphase separation and the

lamellae formations can be seen. The source code for CN method is given in Appendix F

for the simulations shown in Figure 5.10. Snapshots of all the simulations in Figures 5.8,

5.9 and 5.10 represent a range of values between 3.0 and 3.0 for an order

parameter. Two snapshots are shown for 100th and 10000th time steps.

104

Figure 5.8: Explicit forward Euler method based on 9–point formula using periodic boundary

conditions where (a) and (b) images are 100th and 10000th time steps respectively.

Figure 5.9: Implicit backward Euler method based on 9–point formula using periodic boundary

conditions where images (a) and (b) are 100th and 10000th time steps respectively.

Figure 5.10: CN method based on 9–point formula using periodic boundary conditions where

images (a) and (b) are 100th and 10000th time steps respectively.

105

Figure 5.11: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 10000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler, backward Euler and the CN methods. The numerical

values plotted here were obtained from the simulations shown in Figure 5.8, 5.9 and 5.10.

Figure 5.11 is constructed in a similar way to Figure 5.7, where the distribution of

numerical values of the order parameter  obtained from 2D simulations (Figures 5.8,

5.9 and 5.10) for forward Euler, backward Euler and CN methods are shown for

comparison. In Figure 5.11 (a), the values are compared at the 100th time step and in

Figure 5.11 (b) the values are compared at the 10000th time step. Three lines of different

colours show three different methods and each line represents the numerical values. In

the simulations of the three different methods, the 9–point isotropic Laplacian scheme

OP(D2Q9) was employed. Three lines are exactly parallel, which shows that the tendency

of numerical values obtained from the three different methods is the same, while the

methodologies are different. The parallel distribution of the numerical values in Figure

5.11 for the three different methods shows that there is no obvious difference for the

evolution of the order parameter and therefore the lamellae formations are almost similar

in pattern, which can be observed by comparing Figure 5.8, Figure 5.9 and Figure 5.10.

(a) (b)

106

5.2 Conclusions

The cell dynamics simulations were used to carry out calculations for a diblock copolymer

system using different finite difference schemes. The main objective was achieved via

the implementation of the Crank–Nicolson scheme, and the results obtained from the CN

method were compared with the explicit forward Euler and the implicit backward Euler

methods. The conventional approach of algorithms using the forward Euler method was

replaced by more stable schemes, especially the CN method. In the first stage, the

conventional explicit scheme was transformed into a matrix-based approach, which made

it possible to carry out calculations for the implicit backward Euler method based on the

five–point Laplacian operator. The issue of boundary conditions was resolved technically

using periodic boundary conditions. The explicit forward Euler method has some

limitations for the choice of time interval t , and implicit schemes overcame these

limitations. For implementing the implicit backward Euler scheme, different algorithms

were tried to solve the system of .1bMx  In this regard, LU decomposition worked

very slowly so the Conjugate Gradient method was employed for faster calculations. The

implicit schemes used matrices and, for larger two-dimensional grids, i.e. 128x128, the

huge sparse matrices were produced up to the squares in each dimension length.

Therefore, in this chapter during the simulations for a CN approach applied to cell

dynamics equations it was only possible to use a two-dimensional grid of size 128x128.

The whole work was limited to this grid size and two dimensions; for three dimensions

the scheme encountered limitations of computer memory due to the huge sparse matrices.

Both the schemes, implicit backward Euler and CN are stable, but are very slow in

comparison to the conventional forward Euler method. The reason is that huge

calculations were carried out between different sparse matrices and vectors. The forward

Euler method is very fast but not very stable, which is the disadvantage of this method.

107

The CN scheme was also employed in the two-order parameter system in cell dynamics

equations and results were successfully obtained, which are presented in the next chapter.

There is an Alternating Direction Implicit (ADI) method which is fast and very stable and

has the same properties as the CN scheme. Three-dimensional results for cell dynamics

can be obtained using the ADI scheme.

108

Chapter Six

6 The Cell Dynamics Simulations of Two Order Parameter

Systems

In this chapter, two order parameter systems were investigated using the Cell Dynamics

Simulation (CDS) method. The two order parameter systems are comprised of a binary

blend which contains an A–B diblock copolymer and a solvent C homopolymer (A–B/C

systems). In such systems, the phase separation takes place in two different ways – one is

the microphase separation in the A–B diblock copolymer and the other is macrophase

separation between the A–B diblock copolymer and the C homopolymer. It must be noted

that in Chapter three, the CDS model was presented based on one order parameter

evolution for the microphase separation in A–B diblock copolymer systems.

 In this chapter, the main objective of this study is to implement the Crank–Nicolson finite

difference scheme for the model equations of the CDS method, based on two order

parameter systems. The implementation of the stable finite difference schemes for CDS

based on such systems will be helpful and useful to relieve the anisotropy of the system

in the late stage of domain growth which usually arise from the discretization of the space.

The implementation of implicit methodologies will make these CDS models more reliable

in terms of speed, accuracy and time interval stability. Here, the CDS of two order

parameter systems has been implemented in explicit and implicit finite difference

methods in two dimensions. The two order parameter systems were discussed in section

2.4 of Chapter two.

6.1 Mathematical model of two order parameter systems

Two order parameter systems are systems where a mixture or a blend contains an A–B

diblock copolymer and a C homopolymer [110]. The phase separation triggers in two

109

different ways: macrophase and microphase separations. In the model of the systems, one

independent variable represents the microphase separation that takes place in the A–B

diblock copolymer, and the second independent variable represents the macrophase

separation between the A–B diblock copolymer and the solvent C homopolymer.

The polymerization indices of the A–B diblock copolymer and the C homopolymer are

AN ,
BN and CN , respectively. The ,A

B and C are local volume fractions of A, B and

C monomers respectively. The block ratio f is defined by [59]:

 BA

A

NN

N
f


 (6.1)

Two order parameter with incompressibility conditions are:

BA

BA








 (6.2)

where  is for an order parameter in the microphase separation and  is the segregation

of copolymer/homopolymer. Ohta introduced a new variable c  , where c is the

volume fraction at the critical point of the macrophase separation [59]. The model of free

energy is presented in short–range and long–range parts for copolymer–homopolymer

mixtures in terms of  and  [59].

      .,,,  LS FFF  (6.3)

The short range part is written as follows:

              ,
22

,
2221 Wdrrdr

c
rdr

c
FS

 (6.4)

where
1c and

2c are positive constants and

110

       2242322
121

222
, 

bbb
bggW  (6.5)

are local interactions between  and  where
1b and

2b are positive constants. The other

constant 3b vanishes for 2/1f and is taken as)/1/1(03 BA NNbb  with 0b a positive

constant. The functions  1g and  2g are even functions where  1g exhibits a

double–potential below the macrophase–separation temperature and function  2g is

not double well in the macrophase–separated state [59]. The term 1b in equation (6.5)

is responsible for the short–range interaction between the monomers, if the interaction

strength between i and j monomers is put as  CBAjiuij ,,,  [59]. Thus, the energy

obtained from the short–range interaction is written as:

 
ji

jiij dru
,2

1
 (6.6)

The constant
1b is given in terms of iju by:

)(
2

1
)(

4

1
1 BCACBBAA uuuub  (6.7)

The third term with factor 1b in equation (6.5) is the interaction strength [111]. The last

term in equation (6.5) arises from the configurational entropy of polymer chains. The

fourth term 2

2)2/(b tells how the microphase–separation takes place only in the

copolymer rich phase [111]. The last term in equation (6.5) controls phase separations;

the first is the macrophase separation between copolymers and homopolymers and the

second is the microphase separation in block copolymers [111]. The long–range free

energy arises from long–range interaction in copolymer systems and this interaction is

resembled to a coulomb type repulsive interaction in copolymer systems [59, 60, 111].

111

The model equation of the long–range energy used in a two order parameter system is

given below:

  













































])'(][)([
2

])'(][)([

])'(][)([
2

)',(',











rr

rr

rr

rrGdrdrFL
 (6.8)

where)',(rrG is Green’s function, and more clearly it is given by the relation

)'()',(2 rrrrG   and


 )()(rr . The symbols


 and


 represent the spatial

average of  and  respectively [59, 111]. Here the definition of ,  and  is given as

follows [59]:

,
NN

a
BA

2

11








 (6.9a)

,
NN

a
BA

2

22

11








 (6.9b)

,
NN

b
BA

2

11








 (6.9c)

where a is positive constant. Using the above free energy F, the dynamical model of phase

separation in a copolymer–homopolymer mixture is modelled by the following set of

equations in terms of  and  [59, 111]:

 

 








,

,

2

2

2

1

F
L

t

F
L

t











 (6.10)

112

where the transport coefficients 121  LL are positive.

6.2 Numerical method for two order parameter systems

The cell dynamical equations for corresponding partial differential equation (PDE) in

equation (6.10) are given as follows [111, 112]:

),,;(),;(),;(jitTTjitjitt   (6.11)

],),;([),;(),;(),;(


   jitjitTTjitjitt (6.12)

where:

 ,
2

1
tanh)(),;(2

43

2

2111  bbbbAcjitT  (6.13)

 ,
2

1
tanh)(),;(2

4

2

32122  bbbbAcjitT  (6.14)

and the Laplacian for quantity X is given as follows:

 .21  
NNNNN

XWXWX (6.15)

where NN and NNN represent nearest–neighbours and next–nearest neighbours

respectively, and Ws are weights, i.e. 6/11 W and 12/12 W [3]. The form of the local

interactions xxAdxxdg ii  tanh/)((i=1 and 2) with the coefficients 311 .A  and

112 .A  are given [59, 111]. The lamellar forming system is chosen for the two order

parameter system simulations to understand the essence of phase–separation phenomena

of A–B/C systems where a lamellar structure of diblock copolymer is expected to appear

in the macrophase–separated phase. Therefore, the case of 2/1f or)(BA NN  is

considered and this value of f makes the term absent identically with coefficient 3b in

equation (6.5). For the absence of this term, the coefficient 03 b is set in equations

113

(6.13) and (6.14). Also, the higher–order term in equation (6.5) with coefficient
4b is not

considered for first simulations in this chapter because the main objective is to understand

the domain growth in A–B/C systems and therefore the coefficient 04 b is set. Later in

this chapter the higher order term in equation (6.5) with coefficient
4b is included for the

simulations.

6.2.1 Computer simulations

In this section the computer simulations are presented; the steps for the computer program

were set up based on discrete equations (6.11)–(6.14), which are given as follows:

1. Assigning random initial values to variables representing two order parameters 

and  ;

2. Setting the periodic boundary conditions, i.e. x, y and z directions;

3. Calculation of first discrete Laplacian for order parameters, i.e.   ;

4. Calculation of the map function (6.13) and (6.14) based on the order parameters

with initial random values and other constants with specific values;

5. Calculation of second (outer) discrete Laplacian for the result of step 4;

6. Calculation of order parameters based on new obtained values with respect to time

evolution.

The simulation results shown in Figure 6.1 were based on the following specifications:

The grid size chosen was 128128 with grid spacing ,yx 1 the total time of the

simulations was up to 50000 time steps with time interval 50.t  . The initial values of

 and  at each cell were assigned randomly around their spatial averages and the range

of initial random values was taken as .5.0 The other parameters [59, 111] for

114

simulations given in Figure 6.1 were chosen as 3.11 A , ,1.12 A 0


 , 02.0

,.cc 5021  ,.b 0701  and 202 .b  for the domain growth in the lamellar forming

system [59]. The source code for these simulations is given in Appendix G.

The phase separation can be noticed, which starts in Figure 6.1 (a) where the macrophase

separation between the copolymer–rich (small red particles covered by blue) and

homopolymer (yellow) rich phases takes place. The evolution of order parameter in the

(a) (b)

(c)

Figure 6.1: The diblock copolymer and homopolymer (A–B/C) systems. Images (a), (b) and (c) are

1000th, 4000th and 50000th time steps respectively.

115

macrophase separation is carried out by independent variable  and the evolution of

order parameter in microphase separation is carried out by  . As the evolution of the two

order parameter system goes on, the microphase separation actually starts after some

time–evolution, which can be noticed in Figure 6.1 (b) at the 4000th time step. In Figure

6.1 (c), the homopolymer is now in the rich domain, as mostly the green domain can be

noticed.

The simulation results are also presented for the hexagonal microdomains. This is a

different morphology in the A–B/C systems. When the value of f is chosen different from

in 1/2, the lamellar structure does not remain stable and such microdomains come into

formation [59]. The objective of including these results is basically to extend the

understanding of two order parameter systems and how the model equations can be used

to investigate other morphologies. The parameters are different from the lamellar

microdomain simulations. The double phase separation corresponds to .4.0f Other

parameters that were used are given as ,2.0


 ,0


 ,.b 001  ,01.03 b ,.020

,02.0 and 002.0 [59]. The simulation results of the hexagonal microdomains’

morphology are given in Figure 6.2. The source code used for simulations shown in

Figure 6.2 was the same as is given in Appendix G for the simulations in Figure 6.1.

In hexagonal microdomains simulations, the value of f is taken differently from that of

lamellar morphology, and it can be observed that the term with coefficient 3b in equation

(6.5) comes into play. The idea behind the simulations is to manipulate model equations

with different values and discuss the obtained results. So far, the discussion is undertaken

for the phase separation in the A–B diblock copolymer and the C homompolymer (A–

B/C) systems. Here, the discussion is undertaken in more detail to understand the relation

116

between the kinetics and morphology and the pattern formation within the A–B/C systems

[111].

In the next simulations the domain pattern is slightly changed in equation (6.5); the value

of
2b is nonzero and the term of higher order with coefficient

4b is avoided by setting its

value as zero. The term with coefficient 3b vanishes itself as the parameter f =1/2 is

chosen. The initial random conditions for the disordered state of  and  were chosen at

t = 0.0 where ss 


 and ss 


 with s = 0.01 [111]. The parameters

used in equations (6.11)–(6.14) were chosen, as ,2.0


 ,0.0


 ,.c 011  ,.c 502 

,.A 311  ,.A 112  and 02.0 . The simulation results based on these parameters are

shown in Figure 6.3.

The phase separation is shown for the A–B diblock copolymer and C homopolymer in

Figure 6.3. In Figure 6.3 (a) the phase separation starts and in the first instance the

macrophase phase separation takes place between the A–B diblock copolymer and the C

homopolymer and then the microphase separation can been seen in the A–B diblock

Figure 6.2: Hexagonal microdomains in A– B/C systems. Images (a) and (b) are 10000
th

and

50000
th

time steps respectively.

(a) (b)

117

copolymers. In Figure 6.3 (b) and (d) the macrophase separation can be seen. It can be

noted that in Figure 6.3 (d) the diblock copolymers emerge as onion rings. This is not

because of any particular use of the Laplacian operator, but due to the random initial

conditions described above. The time step 5.0t was chosen to keep the model

isotropic [111].

6.3 Three-dimensional simulations of A–B/C systems

The 3D simulations have been incorporated for the two order parameter systems to

understand the essence of phase–separation phenomena of A–B/C systems where a

(a) (b)

(c) (d)

Figure 6.3: The simulation images (a), (b), (c) and (d) are 1000th, 4000th, 10000th and 70000th

time steps respectively.

118

lamellar structure of diblock copolymer is expected to appear in the macrophase–

separated phase. The 3D simulations were based on discrete equations (6.11)–(6.14) and

computer programs were developed and executed by following the six steps of an

algorithm given in section 6.2.1. The simulation results shown in Figure 6.4 and Figure

6.5 were based on the following specifications: The grid size chosen was 507575 

with grid spacing ,yx 1 the total time of the simulations was up to 50000 time steps

with time interval 50.t  . The initial values of  and  at each cell were assigned

randomly around their spatial averages and the range of initial random values was taken

as ..30 The other parameters [59, 111] for simulations given in Figure 6.4 and

Figure 6.5 were chosen as 3.11 A , ,1.12 A 0


 , 02.0 ,.cc 5021 

,.b 0701  and 202 .b  for the domain growth in the lamellar forming system [59]. It must

be noted the that the snapshots of 3D simulations are presented without any specific time

scale.

The simulations shown in Figure 6.4 were obtained using the 3D 27–point Laplacian

operator of Shinozaki and Oono’s choice (Laplacian scheme SO(D3Q27)) in forward

Euler method. In Figure 6.4, the images (a), (b) and (c) are shown for different stages of

domain growth in a phase separation based on above parameters in A–B/C systems at

different time steps. The initial stage of evolution can be observed in Figure 6.4 (a) where

the macrophase separation takes place between A–B diblock copolymers and C

homopolymer. In Figure 6.4 (b), the simulation image at 10000th time step displays the

phase separation in a complete domain growth where C homopolymer rich domain for

0 is indicated by blue colour and a copolymer rich domain for 0 is drawn by the

green colour. It should be noted when the microphase separation starts then the copolymer

rich domains become sufficiently large. It can be observed from Figure 6.4 (b) and (c)

119

that in most part of the macro–domains (blue colour), the lamellar domains (green colour)

are surrounded by a thin layer. These thin layers are the A blocks. The image in Figure

6.4 (c) shows the domain growth of the system at 50000th time step where macro–domains

become larger and at this stage the system becomes stable.

Figure 6.4: The simulation images (a), (b), and (c) are 1000th, 10000th, and 50000th time steps

respectively using Laplacian scheme SO(D3Q27).

For 3D simulations given in Figure 6.4, the default CDS averaging operator SO(D3Q27)

was employed to obtain isotropic simulation results. The 3D simulations were also

executed using 19–point D3Q19 and 27–point BV(D3Q27) Laplacian schemes based on

the same parameters used for simulations given in Figure 6.4. The simulation result

120

shown in Figure 6.5 was obtained using Laplacian scheme D3Q19 and the simulation

result shown in Figure 6.5 (b) was obtained using BV(D3Q27). In Figure 6.5, images (a)

and (b) show the phase separation in A–B/C systems in a similar way as shown in Figure

6.4 (c). These 3D Laplacian schemes were discussed in chapter four for isotropic

simulation results of spherical morphology and for those simulations these three schemes

performed better.

Figure 6.5: The simulation images (a) and (b) were obtained at 50000th time step using

Laplacian schemes D3Q19 and BV(D3Q27) respectively.

The simulations results obtained from three different isotropic Laplacian schemes yield

almost same results which can be observed by comparing Figure 6.4 (c), Figure 6.5 (a)

and Figure 6.5 (b). No any divergence of values was observed during the execution by

using these 3D Laplacian schemes. It can be observed that the (b) image of Figure 6.5 is

clearer and better in shape compared to Figure 6.4 (c) and Figure 6.5 (a). It must be noted

that the execution of simulations based on 19–point Laplacian scheme D3Q19 was

121

observed faster due to the few stencil points. It also allows a larger room for using time

interval value. The simulations based on BV(D3Q27) seem more isotropic and this

Laplacian scheme performs better.

6.4 Implementation of Crank–Nicolson scheme in A–B/C systems

The Crank–Nicolson (CN) scheme was explained in Chapter five, where this scheme was

implemented for the one order parameter system of the lamellar forming of diblock

copolymer systems. In this chapter, the CN scheme was implemented for the two order

parameter (A–B/C) systems; that is, for the lamellar forming of the A–B diblock

copolymer and the C homopolymer. Before carrying out the implementation of the CN

scheme for two–order parameter systems, the implementation of the backward Euler

method was undertaken for the two order parameter systems. The backward Euler method

is unconditionally stable but first–order accurate [69].

The mathematical model for the two order parameter systems is presented in section 6.1,

where this model is discussed in detail in terms of short–range and long–range free

energies. The finite differencing for two order parameter systems is implemented, based

on the numerical equations given in section 6.2.

Two order parameter with incompressibility conditions are:

BA

BA








 (6.16)

where  is for an order parameter in the microphase separation and  is the segregation

of copolymer/homopolymer. Ohta introduced a new variable c  , where c is the

volume fraction at the critical point of the macrophase separation [59]. The numerical

122

equations (6.11) and (6.12) are written in the simple form of partial differential equations,

which are mainly involved in the two order parameter system and are given as follows:

).
2

1
tanh(2

43

2

211

2

1

2 


bbbbAc
dt

d
 (6.17)

).
2

1
tanh(2

4

2

3212

2

2

2 


bbbbAc
dt

d
 (6.18)

The terms with coefficients 3b and 4b are omitted in the above set of equations (6.17)

and (6.18) and, for the purpose of finite differencing, these equations in the form of n and

n+1 are given as follows:

).)(
2

1
tanh(2

21,

2

1

2

,

1

,

nnnnn

kj

n

kj

n

kj bbAc   
 (6.19)

).tanh(21,

2

1

2

,

1

,

nnnnnn

kj

n

kj

n

kj bbAc   
 (6.20)

Equations (6.19) and (6.20) are non–homogenous partial differential equations and will

be implemented in the CN methodology. The homogenous parts of the equations will be

evaluated first and then the non–homogenous parts will be evaluated later. In both

equations (6.19) and (6.20), Laplacian operators are used. The choice of the Laplacian

operators is taken as that of the 9–point Laplacian operator given below:

 uuuu
NNNNN

 
12

1

6

12
 (6.21)

The above 9–point Laplacian scheme was discussed in Chapter three for the one order

parameter system of lamellar forming of diblock copolymers using the cell dynamics

simulation technique. This is the choice used by Oono and Puri [47] and is recognized as

the isotropic Laplacian operator. The simulation results given in this chapter were based

123

on this Laplacian operator. The two–order parameter equations (6.19) and (6.20) can be

written in the backward Euler method, given as follows:

 .))(
2

1
tanh(,

21

2

1

1

11

1

1

,

2

1

21

,

n

kj

nnnnn

kj

n

kj bbAc    (6.22)

 .))(tanh(,

211

2

1

1

11

2

1

,

2

2

21

,

n

kj

nnnnnn

kj

n

kj bbAc   
 (6.23)

The above equations are derived from equations (6.19) and (6.20) where the terms are

shown on the left hand side. To describe equations (6.22) and (6.23) more clearly, these

equations are rewritten as follows:

 .))(bbtanhA()c(n

k,j

part

n

k,j

n

k,j

n

k,j

n

k,j

part

n

k,j

n

k,j   

    
2

21

2

1

1

11

1

2

1

12

1

21

2

1 (6.24)

 .))n(bnbtanhA()c(n

k,j

part

n

k,j

n

k,j

n

k,j

n

k,j

n

k,j

part

n

k,j

n

k,j   

    
2

211

2

1

1

11

2

2

1

12

2

21 (6.25)

In the above set of equations, part 1 is comprised of homogenous terms and part 2 is

comprised of non–homogenous terms. The homogenous parts of equations (6.24) and

(6.25) are evaluated in the first step and then the non–homogenous parts are evaluated in

the second step. In order to solve the linear system of equations (6.24) and (6.25), the

iterative method needed to be used. Equations (6.24) and (6.25) of the backward Euler

method are given in two dimensions which contain the Laplacian operator 2 and the

biharmonic (bilaplacian) operator .4 The 9–point isotropic Laplacian operator 2 given

in equation (6.21) is simulated in the matrix M and the biharmonic operator is assumed

to be .4 MMP Both the M and P matrices are constructed considering the

periodic boundary conditions as per the requirements of the two order parameter

computer simulations [111]. Basically, the M matrix is comprised of submatrices.

124

In Chapter five, a complete description is given regarding the formation of these matrices

for the 5–point Laplacian operator using periodic boundary conditions. The Conjugate

Gradient (CG) method was used to solve the system of bPx 1 in equations (6.24) and

(6.25) where x is unknown and b is known. The Conjugate Gradient (CG) method is

discussed in detail in Appendix E. This iterative method is efficient and stable compared

to the LU decomposition method, which is found to be slower for the higher grids.

The backward Euler method for CDS based on two order parameter systems was

implemented for the simulation of lamellar forming of the A–B diblock copolymer and

the C homopolymer systems. The grid size chosen was 128128 with grid spacing

,yx 1 and the total time of the simulations was up to 10000 time steps. The initial

random conditions for disordered state of  and  at t = 0.0 were ss 


 and

ss 


 with s = 0.01 [111]. The parameters used in equations (6.24) and (6.24)

were chosen as ,2.0


 ,0.0


 ,.c 011  ,.c 502  ,.A 311  ,.A 112  and 02.0 .

The simulation results obtained from the backward Euler method using CDS for A–B/C

systems are shown in Figure 6.6 and these simulation results represent the phase

separation based on two order parameter systems and the dynamics of these systems is

the same as that described for the simulation results shown in Figure 6.3.

In order to compare the forward Euler and backward Euler methods, the distribution of

two order parameters in A–B/C systems is presented in Figure 6.7 for order parameter 

and in Figure 6.8 for order parameter  against the space 0–128. Figure 6.7 and Figure

6.8 are constructed in a similar way as in Figure 5.7, where the distribution of numerical

values of order parameter  obtained from 2D simulations (Figure 6.3 and Figure 6.6)

for forward Euler and backward Euler are shown for comparison.

125

Figure 6.6: The images (a) and (b) are 1000th and 10000th time steps respectively obtained using

the backward Euler method for two–order parameter systems.

In Figure 6.7 (a) and Figure 6.8 (a) the values are compared at the 1000th time step and in

Figure 6.7 (b) and Figure 6.8 (b) the values are compared at the 10000th time step. The

comparison graphs show the simultaneous two order parameters’ evolution using the two

different methods. In all four images of Figures 6.7 and 6.8, two lines of different colours

show two different methods; each line represents the numerical values for an order

parameter which was assigned by the initial random values for the simulations. In the

simulations of both methods, the 9–point isotropic Laplacian scheme OP(D2Q9) was

employed. The lines are exactly parallel, which shows that the tendency of the numerical

values obtained from the two different methods is the same, while the methodologies are

different. The parallel distribution of numerical values in Figure 6.7 and Figure 6.8 shows

that there is no obvious difference for the evolution of order parameters and therefore the

phase separations simulated by using the two different methods are almost similar in

pattern, which can be observed by comparing the simulation results shown in Figure 6.6

(b) for the backward Euler method and the simulation results shown in the (a) and (c)

snapshots of Figure 6.3 for the forward Euler method.

126

Figure 6.7: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 10000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and backward Euler methods. The numerical values

plotted here were obtained from the simulations shown in Figure 6.3 and 6.6.

Figure 6.8: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 10000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and backward Euler methods. The numerical values

plotted here were obtained from the simulations shown in Figure 6.3 and 6.6.

The main objective is to implement the CN scheme for the two order parameter systems

and to acquire accurate results, as with those of the forward Euler method. Here, the

equations of two order parameter systems are implemented in the CN scheme. The CDS

equations of two order parameter systems are given below:

(a) (b)

(a) (b)

127

    

    

2

2

,2,1,,1

2

1

,

2

1

2

,

2

21

,2

1

,1

1

,

1

,1

2

1

1

,

2

1

21

,

))(
2

1
tanh()(

))(
2

1
tanh()(

part

n

kj

n

kj

n

kj

n

kj

part

n

kj

n

kj

part

n

kj

n

kj

n

kj

n

kj

part

n

kj

n

kj

bbAc

bbAc







 

 (6.26)

  

  

2

2

,,2,1,,2

1

,2,

2

21

,

1

,2

1

,1

1

,

1

,2

1

1

,2

1

,

))(tanh(

))(tanh(

part

n

kj

n

kj

n

kj

n

kj

n

kj

part

n

kj

n

kj

part

n

kj

n

kj

n

kj

n

kj

n

kj

part

n

kj

n

kj

nbbAMPc

nbbAMPc







 

 (6.27)

Equations (6.26) and (6.27) are implemented in the CN scheme, where the terms on the

right hand side are evaluated with the forward Euler method in n space. When the right

hand sides are approximated completely, then the new values are evaluated for n+1 at the

left hand side from the values approximated at the right hand side by using the backward

Euler technique. On the left hand side, for the approximation of the values, the CG method

was used. The CN scheme worked successfully and the results using this scheme are

presented in the following Figure (6.9), with the graphs for comparison in Figure 6.10

and Figure 6.11.

Figure 6.9: The images (a) and (b) are 10000th and 70000th time steps respectively obtained

using the CN method for two–order parameter systems.

128

The parameters and the specifications used were the same as those used in the simulations

shown in Figure 6.6 for the backward Euler method. The total time of simulation of was

up to 70000 time steps.

Figure 6.10: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 70000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and CN methods. The numerical values plotted here were

obtained from the simulations shown in Figure 6.3 and 6.9.

Figure 6.11: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 100th and 70000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and CN methods. The numerical values plotted here

were obtained from the simulations shown in Figure 6.3 and 6.9.

The simulation results presented in Figure 6.9 were obtained using the CN scheme and it

can be observed that the order parameters’ evolution behaved the same as that of the

forward and the backward Euler methods. The macrophase separation between the A–B

(a) (b)

(a) (b)

129

diblock copolymer and the C homopolymer takes place first, then the microphase

separation in the diblock copolymer takes place. The time evolution process for time steps

can be observed in Figures 6.9 (a) and 6.9 (b), especially in Figure 6.9 (b) where the

diblock copolymers become rich in their domains. The two order parameter systems are

comprised of two processes carried out by two independent variables where represents

the microphase separation and  represents the macrophase separation.

In order to compare the forward Euler and CN methods, the distribution of two order

parameters in A–B/C systems is presented in Figure 6.10 for order parameter)y,x( and

in Figure 6.11 for order parameter)y,x( against the space 0–128. Figure 6.10 and

Figure 6.11 are constructed in a similar way as in Figure 6.7 and Figure 6.8. In Figure

6.10 (a) and Figure 6.11 (a) the values are compared at the 10000th time step and in Figure

6.10 (b) and Figure 6.11 (b) the values are compared at the 70000th time step. The plots

in Figures 6.10 and 6.11 are representing the numerical values obtained for the 2D

simulations shown in Figures 6.3 and 6.9. The comparison graphs show the simultaneous

two order parameters’ evolution using the two different methods. In all four images of

Figures 6.10 and 6.11, two lines of different colours show the two different methods and

each line represents the numerical values for an order parameter which was assigned by

the initial random values for the simulations. The lines are exactly parallel, which shows

that the tendency of the numerical values obtained from the two different methods is the

same, while the methodologies are different. The parallel distribution of the numerical

values in Figure 6.10 and Figure 6.11 shows that there is no obvious difference for the

evolution of order parameters and therefore the phase separations simulated by using the

two different methods are almost similar in pattern, which can be observed by comparing

the simulation results shown in Figure 6.9 for the CN method and the simulation results

shown in the (c) and (d) snapshots of Figure 6.3 for the forward Euler method.

130

The implementation of the Crank–Nicolson method for a two order–parameter system

allows the use of any time interval value for simulations; this flexibility of choosing a

time interval value helps to relieve the anisotropy of the domain in the late stage of

domain growth, which may arise from the discretization of the space. Aya Ito [111]

presented the simulations for domain patterns in copolymer and homopolymer mixtures

where he chose 5.0t to avoid numerical instability and if any other t value is used

the system becomes unstable. By the implementation of implicit schemes, especially the

CN method, it was possible to obtain these simulation results for choosing .1t

6.5 Conclusions

In this chapter, the simulation results are presented for a mixture of A–B diblock

copolymers and C homopolymers. After changing some parameters in the same set of

equations for a two order parameter system, the simulation results were obtained for the

hexagonal domains and onion-like lamellar forming, which were investigated to

understand the two order parameter system in its various other structure formations. The

cell dynamics simulation technique for two order parameter systems was implemented in

two other finite difference schemes, the backward Euler and the Crank–Nicolson

schemes. As already discussed, the backward Euler scheme is unconditionally stable and

so is the Crank–Nicolson. The Matrix based approach was used for the Laplacian

operator, where the periodic boundary conditions were set for the 9–point isotropic

Laplacian operator. The five–point formula for the Laplacian operator could also be used,

as could other isotropic Laplacian operators. In the literature, the only choice taken is that

of the 9–point isotropic Laplacian operator of Oono and Puri. The CG method was

employed for solving linear systems of equations. Using the implicit schemes, huge and

large sparse matrices were produced and for this reason it was only possible to use the

grid size of 128128 for the simulations in these schemes.

131

It was not possible to carry out the three-dimensional simulations in both the backward

Euler and CN schemes. Three-dimensional results for cell dynamics in two order systems

can be obtained using the ADI scheme.

132

Chapter Seven

7 Implementation of the Alternating Direction Implicit

method for CDS equations

In this chapter, the Alternating Direction Implicit (ADI) method is implemented for the

Cell Dynamics Simulation (CDS) method for the lamellar forming of A–B diblock

copolymers using the one–order parameter system. The implementation of the ADI

scheme for CDS is one of the objectives of this study. Two different Finite Difference

(FD) methods based on ADI are discussed and implemented for the CDS equations for

modelling the lamellar forming system of A–B diblock copolymers. The computer codes

of ADI methods for CDS were developed by following the same algorithm of eight steps

which was given at the start of Chapter four. Firstly, the generalized ADI method is

implemented, based on the 5–point Laplacian operator. Secondly, Hundsdorfer’s ADI

method is implemented, based on the 5–point Laplacian. The results obtained from the

ADI methods are compared with those of the forward Euler method.

7.1 Implementation of the ADI method for CDS

In this section, the implementation of the ADI method is presented for the Cell Dynamics

Simulation (CDS) technique. The model of CDS is comprised of partial differential

equations which essentially involve the biharmonic operator. In Chapter five, the

biharmonic operator was discussed for the implementation of the CN method for CDS.

The steps needed to solve the Time–Dependent Ginzburg–Landau (TDGL) equation

based on the ADI method are shown here. First, equation (3.10) can be re–written in a

simple form of PDE as [2]:

}))(({ 22 


BDg
t





. (7.1)

133

with  the spatial order parameter, t the time, 2 the Laplacian on a function of free

energy functional, and D as a diffusive parameter. Equation (7.1) is non–linear and

fourth–order, including the bi–Laplacian or biharmonic operator 4 . After doing some

algebraic manipulation without changing the meaning of the equation (7.1), it can be

written as:




BDg
t





)()(222

, (7.2)

where)(g is the so–called map function given by [2]:

 .)21(])21(1[)(22  ufvfAg  (7.3)

Equation (7.2) is a non–homogenous partial differential equation. The first part contains

the homogenous terms and the second part contains the non–homogenous term as given

below:

 .)()(

2

,

2

1

,,

22

,

1

,   
part

n

kj

part

n

kj

n

kj

n

kj

n

kj gttBtD  
 (7.4)

The Laplacian operator 2 can be seen in the non–homogenous part of the equation. The

five–point stencil formula [98] is employed for the Laplacian operator in numerical

simulations of the map function. Equations (5.5) to (5.7) can be seen for the five–point

formula. In equation (7.4), there is a biharmonic operator 422)( in the second term

on the right hand side which can be discretized using the thirteen–point stencil [98]. The

two-dimensional thirteen–point stencil formula for the biharmonic operator [107, 108] is

given in equation (5.8) in section 5.1.1 of Chapter five.

134

To use splitting operators, the operators)(/ ,

44

kjx  and)(/ ,

44

kjy  in thirteen-point

formula are denoted by)(

4

x and)(

4

y respectively. Equation (5.10) in section 5.1.1 can

be seen for the full derivative form of)(/ ,

44

kjx  operator. The CDS equation involves

the biharmonic operator and many other such types of equations which involve the

biharmonic operator are used in various applied mathematical models [113-116]. The

biharmonic operator uses the mixed derivatives and therefore the ADI method using the

Douglas and Gunn [82] scheme for approximating mixed derivate terms is not suitable to

implement for the approximation of biharmonic operator including the boundary value

problems [107]. The ADI methods for equations involving mixed derivate terms are

present in the literature [79, 117, 118]. Conte and Dames published their work for the

implementation of the ADI scheme for problems involving the biharmonic operator [84,

119, 120].

7.1.1 Generalized ADI method

Witelski and Bowen derived a generalized ADI operator–split form (see Ref. [107],

equation (2.10)) from D’Yakanov’s [121, 122] form and this ADI method for equation

(7.4) is given below:

.

,

),(

,

1

,

,

2

,,

4

,

v

wvL

fttBtDwL

n

kj

n

kj

y

n

kj

n

kj

n

kj

n

kjx







 



 (7.5)

where:

)
22

()(

4

x

x

tDtIB
IL 





 (7.6)

)
22

()(

4

y

y

tDtIB
IL 





 (7.7)

135

The xL and
yL are matrices where .MLL yx  The M is a penta–diagonal matrix used

to calculate the values for vectors w and v in equation (7.5). The periodic boundary

conditions are implemented in matrix M and its general is form is given below:





























6542

5543

44432

33321

2221

1111

00

00

0

0

00

00

baef

cbae

dcbae

dcbae

dcba

fdcb

M (7.8)

Equation (7.5) can be seen in three steps and in the first step the explicit part is on the

right hand side. In the first step of equation (7.5), the one–dimensional vector of size N is

calculated explicitly if the grid size is .NN  In the first part of the equation (7.5), the

non–homogenous part of equation (7.4) is combined with the full operator. On the left

hand side, the values are approximated for vector w implicitly in x–direction by using

MLx  matrix. In the second step of equation (7.5), the values for v on the left hand side

are approximated in y–direction implicitly from vector w. The last step calculates the n+1

values for order parameter . The LU decomposition method is used to separate M in L

and U matrices for the convenience of employing the Thomas algorithm. This technique

only uses vectors other than the whole matrix and thus it simplifies the solution. The

results shown in Figure 7.1 and Figure 7.2 are the images at 1000th and 100000th time

steps.

For simulation results given in Figures 7.1 and 7.2, the system parameters used are given

in Table 7.1 and the other specifications used are given as follows:

 The grid size was chosen 128128 with grid spacing 1 yx ;

 The total time of the simulations was up to 100000 time steps;

 The simulations were run with periodic boundary conditions;

136

 The simulations were started from an initial random disordered state 3.0 .

Table 7.1: System parameters used in cell dynamical method for lamellae morphology

CDS Parameters  f u V B D A

Lamellae Morphology
0.36 0.48 0.38 2.3 0.02 0.7 1.5

The parameters given in Table 7.1 are suggested for lamellar forming diblock copolymer

systems [2] and all the simulations in this chapter are based on these. The results in Figure

7.1 are based on the explicit forward Euler method and in Figure 7.2 the results presented

are obtained from the general ADI method.

Figure 7.1: Explicit forward Euler method based on 5–point formula (Laplacian scheme

A(D2Q5)) using periodic boundary conditions where images (a) and (b) are at 1000th and 100000th

time steps respectively.

137

Figure 7.2: Generalized ADI method based on 5–point formula (Laplacian scheme A(D2Q5))

using periodic boundary conditions where images (a) and (b) are at 1000th and 100000th time steps

respectively.

In Figures 7.1 and 7.2, the simulation results are shown for different stages of evolution

of lamellae in a lamellar morphology of A-B diblock copolymer systems at different time

steps. For the simulation results in Figure 7.2, the order parameter evolution takes place

successfully, as can be observed from these results. The microphase separation and the

lamellae formations can also be seen.

Figure 7.3: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 1000th and 100000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and generalized ADI methods. The numerical values

plotted here were obtained from the simulations shown in Figure 7.1 and 7.2.

(a) (b)

138

Figure 7.3 is constructed in the similar way as Figure 5.7, where the distribution of the

numerical values of order parameter  obtained from 2D simulations for forward Euler

and generalized ADI methods are shown for comparison. In Figure 7.3 (a), the values are

compared at 1000th time step and in Figure 7.3 (b) the values are compared at 100000th

time step. Two lines of different colours show two different methods and each line

represents the numerical values for an order parameter. The order parameter values are

shown on the vertical axis against the grid size given on the horizontal axis. The two lines,

coloured pink for the forward Euler method and green for the ADI method, show the

comparison of the numerical values. In Figure 7.3 (a), the numerical values differ between

40 and 50, and except this range, both lines are exactly parallel, which illustrates that the

tendency of numerical values obtained from the two methods is the same while the

methodologies are different. Figure 7.3 (b) shows that the numerical values differ between

40 and 60 and between 80 and 100 on the horizontal axis, but the two lines grow parallel

except in these regions. The parallel distribution of the numerical values on the same scale

in Figure 7.3 for the two different methods show that there is no obvious difference for

the evolution of the order parameter and therefore the lamellae formations are almost the

same in pattern for both methods, which can be observed by comparing Figures 7.1 and

Figure 7.2.

In Figure 7.4 the simulation results were obtained using 256256 grid size and time

interval 0.1t in the generalized ADI method for CDS. The system parameters used

are given in Table 7.1. The purpose of using 256256 grid size is to show that the

generalized ADI method has no memory issue, while the CN method does not work for

such a grid size. On the other hand, the use of time interval 0.1t indicates that this

method is unconditionally stable for use at any time interval value, unlike the explicit

forward Euler method.

139

Figure 7.4: Generalized ADI method based on 5–point formula using 256256 grid size and

time interval 0.1t where images (a) and (b) are at 1000th and 100000th time steps

respectively.

The generalized ADI method is further extended to three–dimensional simulations for

CDS. Equation (7.4) can be written in three dimensions as follows:

 .)()(

2

,,

2

1

,,,,

22

,,

1

,,   
part

n

kji

part

n

kji

n

kji

n

kji

n

kji fttBtD  
 (7.9)

The generalized ADI operator split form given in equation (7.5) is given in equation

(7.10) as a three–dimensional ADI method for the CDS equation (7.9).

.

,

),(

,,

1

,,

,,

2

,,,,

4

,,

u

vuL

wvL

fttBtDwL

n

kji

n

kji

z

y

n

kji

n

kji

n

kji

n

kjix









 



 (7.10)

Equation (7.10) can be seen in four steps and in the first step the explicit part is on the

right hand side. In the first step of equation (7.10), the one–dimensional vector of size N

is calculated explicitly if the grid size is given NNN  and on the left hand side the

140

values are approximated for vector w implicitly by using MLx  matrix in the x–

direction. The other steps are approximated in the same way but in the y and z–directions,

except the last step.

In Figures 7.5 and 7.6, the 3D simulation shows the results which were obtained for the

two different methods: the generalized ADI and the explicit forward Euler methods

respectively. These simulations were obtained using the parameters given in Table 7.1

and the specifications are given as follows:

 The grid size 646464  was chosen, with grid spacing 1 yx ;

 The total time of the simulations was up to 10000 time steps;

 The simulations were run with periodic boundary conditions;

 The simulations were started from an initial random disordered state 3.0 .

The generalized ADI method overcomes memory usage, unlike the CN method. Because

of the limitation of the CN method, the three–dimensional simulations cannot be

performed unless using the fastest computers with sufficient memory. The 3D simulation

results shown in Figures 7.5 and 7.6 were obtained using 7–point Laplacian scheme M.

It must be noted that the 3D simulation results obtained based on the 7–point Laplacian

scheme M for spherical morphology were found to be anisotropic and generally the 7–

point stencil was also found to be anisotropic. Therefore, the 3D results shown in Figures

7.5 and 7.6 were also anisotropic. These simulation results show the evolution of the order

parameter in a microphase separation of A-B diblock copolymer and due to the anisotropy

of the Lapalcian scheme used, the lamellae formations are not well aligned and healthy.

The 3D implementation of the generalized ADI method for CDS remained successful,

thus the simulation results shown in Figure 7.6 were obtained by using a more stable

method compared to the forward Euler method. It is well known and discussed in previous

141

chapters that the forward Euler method is not more stable in terms of time step value. The

graphs of comparison are given in Figure 7.7 for one order parameter evolution using two

different methods in three–dimensions.

Figure 7.5: Three-dimensional results using explicit method based on 7–point formula using

646464  grid size and time interval 1.0t where images (a) and (b) are at 1000th and

10000th time steps respectively.

Figure 7.6: Three–dimensional results using generalized ADI method based on 7–point formula

using 646464  grid size and time interval 0.1t where images (a) and (b) are at 1000th

and 10000th time steps respectively.

142

Figure 7.7: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 1000th and 100000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and generalized ADI methods. The numerical values

plotted here were obtained from the 3D simulations shown in Figure 7.5 and 7.6.

Figure 7.7 is similar to Figure 7.3, where the distribution of the numerical values of order

parameter  obtained from the 3D simulations (Figures 7.5 and 7.6) for the forward Euler

and generalized ADI methods are shown for comparison. In Figure 7.7 (a), the values are

compared at the 1000th time step and in Figure 7.7 (b) the values are compared at the

100000th time step. Two lines of different colours show the two different methods and

each line represents the numerical values for an order parameter. In Figure 7.7 (a), the

lines of the numerical values are exactly parallel, which illustrates that the tendency of

the numerical values obtained from the two methods is the same, while the methodologies

are different. Figure 7.7 (b) shows that the numerical values differ at many places on the

horizontal axis. It must be noted that when the simulations were run for both methods,

no divergence of values was observed. Sometimes, due to the inappropriate use of time

interval value t in a method, the divergence of values occurs and no more simulation

images can be developed. The change of values shown in Figure 7.7 (b) is due to the use

of time interval 0.1t and this time step value does not work for the 7–point stencil in

forward Euler method. Using both methods, the microphase separation takes place and

the generalized ADI method is more stable because of allowing more space for the time

(a) (b)

143

step value. This flexibility of using a larger time step value enhances the speed of

execution for certain methods, making it more stable and fast.

7.1.2 Hundsdorfer’s ADI method

CDS equation (7.2) contains non–homogeneous terms and therefore the generalized ADI

method is insufficient to achieve second order accuracy. Witelski and Bowen [107]

suggest iterative methods at each time step to achieve second–order accuracy for non–

linear problems. These iterative methods can be Newton’s method or the pseudo–linear

factorization method [107]. Calatroni et al. [108] implemented the ADI method for the

nonlinear partial differential equations by employing Hundsdorfer’s ADI method [123].

Hundsdorfer’s ADI method is an extension to Douglas’s method [124, 125] by adding

another parameter 1 for stabilising the method. To achieve second–order accuracy in

time step and space step, at each time step two calculations were performed. The steps

needed to solve CDS equation (7.2) using this method, and are given as follows:

),(,

2

,,

4

,

1

0

n

kj

n

kj

n

kj

n

kj fttBtDY   (7.11a)

 ,,

41

0

1

1

n

kjxx YYL  (7.11b)

 ,,

41

1

1

2

n

kjyy YYL  (7.11c)

 ,1

2

2/1

, Yn

kj  (7.11d)

),)((

)(

,,

2

,

4

2/1

,

22/1

,

41

0

~
1

0

n

kj

n

kj

n

kj

n

kj

n

kj

tBfttD

fttDYY







 

 (7.11e)

 ,2/1

,

4
~
1

0

~
1

1

 n

jixx YYL  (7.11f)

144

 ,2/1

,

4
~
1

1

~
1

2

 n

jiyy YYL  (7.11g)

 .
~
1

2

1

, Yn

kj  (7.11h)

The stabilizing parameter is set at ,1 the intermediate solution is obtained in (7.11d)

and the complete approximation is obtained in equation (7.11h). At each time step, two

calculations are carried out in each dimension. The above ADI method for equation (7.11)

can be seen in equations (3.4) and (4.4) in [108]. The ADI method in equation (7.11) is

unconditionally stable and the stability properties of this method are discussed in [126].

The simulation results are given in Figure 7.8 over a 128128 grid using all the same

parameters used in this chapter for other simulations. The comparison graphs between the

explicit method and Hundsdorfer’s method are given in Figure 7.9. The simulation results

in Figure 7.8 show the different stages of evolution of order parameter in a microphase

separation of A–B diblock copolymer systems at different time steps. The CDS equations

involve a biharmonic operator, and the CN being stable and second–order accurate in

time, uses the sparse matrices to accommodate the biharmonic operator. Due to this, the

CDS programs based on the CN method execute for a longer time. Hundsdorfer’s ADI

method has the same properties as the CN method; it is a second–order accurate and

unconditionally stable method. The aided advantage of this method is that this is faster in

execution than the CN method. The results given in Figure 7.8 show that the simulations

were executed successfully, based on Hundsdorfer’s method for a 5–point Laplacian

scheme. The implementation of Hundsdorfer’s ADI method for CDS makes the CDS

numerically more stable, fast and accurate. The simulation results given in Figure 7.8

were executed for the time interval value 1.0t . The simulations were also executed

for 0.1t and this method can also be used for the maximum grid size.

145

Figure 7.8: Hundsdorfer’s ADI method based on 5–point formula (Laplacian scheme A) using

periodic boundary conditions where images (a) and (b) at 1000th and 100000th time steps

respectively.

Figure 7.9: The numerical values of order parameter  y,x are plotted against the space (0 –

128) for 1000th and 100000th time steps in images (a) and (b) respectively. Numerical values of

 y,x are shown for the forward Euler and Hundsdorfer’s ADI methods. The numerical values

plotted here were obtained from the simulations shown in Figure 7.1 and 7.8.

In Figure 7.9, the distribution of numerical values of order parameter  obtained from

2D simulations (Figures 7.1 and 7.8) for the forward Euler and Hundsdorfer’s ADI

methods are shown for comparison. In Figure 7.9 (a), the values are compared at the

1000th time step and in Figure 7.9 (b) the values are compared at the 100000th time step.

In Figure 7.9 (a), the lines of the numerical values are exactly parallel, which illustrates

(a) (b)

146

that the tendency of the numerical values obtained from the two methods is the same,

while the methodologies are different. A negligible difference in the two lines can be

observed in Figure 7.9 (b) between 80 and 100 on the horizontal axis. The parallel

distribution of numerical values on the same scale in Figure 7.9 for the two different

methods shows that there is no obvious difference for the evolution of the order parameter

and therefore the lamellae formations are almost similar in pattern for both methods,

which can be observed by comparing Figures 7.1 and 7.8. Also, the simulation results

given in Figure 7.2, which were obtained from the generalized ADI method, can be

compared with the simulation results given in Figure 7.8. The simulation results in all

these figures are similar, but the results shown in Figure 7.8 were obtained by a stronger

and more stable method.

7.2 Conclusions

Two different ADI methods have been discussed and implemented for the cell dynamics

simulation technique using the same parameters and specifications which were used in

the explicit forward Euler method. Two- and three–dimensional simulations were

executed using the generalized ADI method. The generalized ADI method was executed

using different time interval values which showed that the generalized ADI method is

unconditionally stable. The generalized ADI method is first–order accurate and the

implementation of the generalized ADI method was not sufficient for CDS to achieve

second–order accuracy because the CDS equations involve nonlinear terms. Therefore,

the Hundsdorfer’s ADI method was implemented, which is second–order accurate. Both

these methods are unconditionally stable. In this work, the new CDS models based on the

ADI methods were developed using the basic formula of the 5–point Laplacian operator,

but these can be further extended by using 9–point isotropic Laplacian schemes in 2D and

27–point isotropic Laplacian schemes in 3D. The CDS technique for two order parameter

147

systems can also be implemented using Hundsdorfer’s ADI method in two and three

dimensions.

148

Chapter Eight

8 Conclusions and Future Works

8.1 Conclusions

The achievements of the objectives set out for this study are summarized in this section.

The conclusions drawn from the findings of this study are given as follows:

 The 2D 9–point isotropic stencil operators (BV(D2Q9) in three cases) were

derived. These are novel isotropic stencil operators presented in this study which

are more efficient.

 The stencils PK(D2Q9), BV(D2Q9)case2 and BV(D2Q9)case3 in 2D 9–point family

Laplacians of second–order were found to be isotropic and, among these stencils,

the BV(D2Q9)cas2 was found to be optimally good in isotropy.

 In 3D, the 19–point stencil (D3Q19) was found to be more isotropic and more

stable due to allowing a larger time step value for .t

 The stencils OP(D2Q9) and BV(D2Q9)case1 in 2D and SO(D3Q27) and

BV(D3Q27) in 3D have been found to be slightly anisotropic on the whole range

k, but because of enabling larger time steps, these can be considered as valid

alternatives.

 Various 2D Laplacian schemes were employed in the CDS framework to analyse

the isotropic results in lamellar morphology and in macrophase separation of a

binary blend. The anisotropic 2D 5–point Laplacian A(D2Q5) did not perform

well in simulations of lamellar morphology as compared to isotropic Laplacians.

 The simulations of a binary blend based on Laplacian A(D2Q5) yielded the

rectangular shapes of rich domains of A blcoks (red coloured subdomains) which

were found different compred to simulations of isotropic Laplacians.

149

 The simulation snapshots obtained by using 2D 9–point Laplacian scheme

PK(D2Q9) depicted perfect lamellae formations in microphase separation and

circular shapes of A rich domains in macrophase separation, as with that of Oono

and Puri’s Laplacian scheme OP(D2Q9). The 2D 9–point isotropic stencil

operators derived from the method of B.A.C. van Vlimmeren produced stable

simulation results in both phenomena.

 The results showed that two–dimensional Laplacian schemes D2Q5 (equation

(3.57)), D2Q9 (equation (3.60) and BK(D2Q9) (equation (3.61)) are unstable for

simulations.

 The simulations results obtained by using 2D 9–point star Laplacain scheme

(D2Q9)star and 17–point D2Q17 were found badly anistropic for the macrophase

sepration of a binary blend. The simulations based on these stencils took longer

time for executions compared to isotropic 9–point family Laplcains.

 In 3D simulations, the Laplacian schemes D3Q19, D3Q27 and PK(D3Q27) were

found to be stable for simulation results for the evolution of order parameter in a

spherical morphology. The well formed and well aligned spherical particles in

circular shapes were observed based on these Laplacains. Laplacian scheme

BV(D3Q27) also produced stable results compared to the original CDS choice for

Laplacian scheme SO(D3Q27) of Shinozaki and Oono.

 In 3D simulations, the Laplacian schemes D3Q7 and D3Q15 were found to be

anistropic. Mostly the mixed particles and rectangular shapes were observed in a

spherical morphology.

 Novel models of CDS have been developed in this study by implementing implicit

finite difference schemes which include backward Euler and Crank–Nicolson.

The results obtained from the CN method were compared with the explicit

150

forward Euler and the implicit backward Euler methods, and the order parameter

evolution were the same in both methods.

 In CN methodology for CDS based on one-order parameter evolution, a 9–point

isotropic Laplacian operator OP(D2Q9) was successfully employed and the

simulation results obtained were the same as those obtained for the explicit

forward Euler method.

 In both the schemes, however, the implicit backward Euler and the CN schemes

were stable but were found to be very slow in comparison to the forward Euler

method.

 Two–dimensional simulations were possible for the implicit backward Euler and

CN methods based on CDS. The whole work was limited to a grid of size 128 x

128; for a larger grid or three–dimensional simulations, these implicit schemes

have limitations of computer memory due to the huge sparse matrices.

 The CDS for a two-order parameter system was implemented in the Crank–

Nicolson scheme.

 The 9–point isotropic Laplacian operator OP(D2Q9) of Oono and Puri’s choice

was employed in the implementation of the CN scheme for CDS, based on two-

order parameter systems; the simulation results obtained were the same as those

obtained for the explicit forward Euler method.

 In the CDS technique conducted by Aya Ito for domain patterns in copolymer and

homopolymer mixtures, the time step value 5.0t was chosen to avoid

numerical instability. If any other t value was used, the system became unstable.

By the implementation of implicit schemes, especially the CN method, it was

possible to obtain these simulations for choosing .1t

151

 Another novel model of CDS was developed in this study by the implementation

of the Alternating Direction Implicit (ADI) method for the modelling of one-order

parameter in the lamellar forming of A–B diblock copolymer systems. The results

obtained were compared with the forward Euler method.

 As the generalized ADI method is first–order accurate, to achieve second–order

accuracy, the Hundsdorfer’s ADI method was employed, which is also

unconditionally stable in terms of time step. The simulation results obtained by

using both methods were same as those obtained from forward Euler method.

 Generally, the ADI method is faster than the CN method and the implementation

of the ADI method for CDS makes the CDS more stable, faster and more robust.

8.2 Future works

The application of the research work conducted in this study and future work

suggestions are presented as follows:

 The mathematical methods implemented for the CDS in this work can be applied

to the modelling of soft matters by modifying map function. These can be

extended to the modelling of nano–structures in the field of soft materials and

nano–technology.

 The CDS based on implicit methods, e.g. CN and ADI, may also be applied to

widespread applications such as the modelling of reaction–diffusion systems for

studying chemical reactions and population dynamics, the investigation of

spinodal decomposition, the simulation of microemulations and binary blends

containing surfactants or hard particles, cross-linked polymer blends, and so on.

152

 The CDS methods developed in this study can be applied to investigate three-

order parameter systems and their properties based on a mixture of two more

solvents.

 The CDS based on implicit methods developed in this study will have wider

applications (in terms of computer simulations) in the field of bio–mimicking.

 The ADI method as an independent and fast algorithm is preferred for parallel

computing and therefore the ADI implementation for CDS enables it in the

incorporation of parallel computing where large and very complex problems can

be simulated via CDS and molecular information can be gained.

 The CDS based on the ADI method can be extended to current multi-core

implementation. Such algorithms for CDS method on distributed memory arch-

itecture can solve the scalability issue and can also execute a larger domain size

of the CDS without giving any consideration to memory limitations.

 Work can be carried out for CDS in the CN scheme including the shear flow and

noise terms in the modelling of diblock copolymers with different morphologies.

 The ADI method for CDS can be developed for 2D simulations based on a 9–

point Laplacian operator and for 3D simulations, including the shear flow and

noise terms.

 The CDS technique for two-order parameter systems can also be implemented

using the ADI method in 2D and 3D and the executions of such system can be

faster and more stable.

 Using implicit CDS methods, various other morphologies can be investigated

which include spheres, hexagonally-packed cylinders, and more complex

structures such as gyroids.

153

 A new mathematical model for the CDS, based on the finite volume method, can

be designed so that the limitations of structured/regular grids can be addressed

and the accuracy of the results can be improved.

154

References

[1] I. W. Hamley, Introduction to Soft Matter: Synthetic and Biological Self-Assembling

Materials. John Wiley & Sons, 2013.

[2] P. Marco, Mesoscale Modelling of Block Copolymer Systems. Germany: VDM Verlag Dr.

Muller Aktiengesellschaft, 2010.

[3] Y. Oono and S. Puri, "Computationally efficient modeling of ordering of quenched phases,"

Phys. Rev. Lett., vol. 58, pp. 836, 1987.

[4] M. Pinna and A. Zvelindovsky, "Large scale simulation of block copolymers with cell

dynamics," The European Physical Journal B, vol. 85, pp. 1-18, 2012.

[5] M. Cheng and A. D. Rutenberg, "Maximally fast coarsening algorithms," Physical Review

E, vol. 72, pp. 055701, 2005.

[6] S. P. Thampi, S. Ansumali, R. Adhikari and S. Succi, "Isotropic discrete Laplacian operators

from lattice hydrodynamics," Journal of Computational Physics, vol. 234, pp. 1-7, 2013.

[7] M. Patra and M. Karttunen, "Stencils with isotropic discretization error for differential

operators," Numerical Methods for Partial Differential Equations, vol. 22, pp. 936-953, 2006.

[8] D. J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential

Equation Approach. John Wiley & Sons, 2013.

[9] S. P. Thampi, I. Pagonabarraga and R. Adhikari, "Lattice-Boltzmann-Langevin simulations

of binary mixtures," Physical Review E, vol. 84, pp. 046709, 2011.

[10] D. D. Chung, Applied Materials Science: Applications of Engineering Materials in

Structural, Electronics, Thermal, and Other Industries. CRC Press, 2001.

[11] V. Zackay, E. Parker, J. Morris and G. Thomas, "The application of materials science to the

design of engineering alloys. A Review," Materials Science and Engineering, vol. 16, pp. 201-

221, 1974.

[12] National Research Council staff, Mathematical Research in Material Science. National

Academies Press, 1993.

[13] S. C. Glotzer and W. Paul, "Molecular and mesoscale simulation methods for polymer

materials," Annual Review of Materials Research, vol. 32, pp. 401-436, 2002.

[14] X. He, M. Song, H. Liang and C. Pan, "Self-assembly of the symmetric diblock copolymer

in a confined state: Monte Carlo simulation," J. Chem. Phys., vol. 114, pp. 10510-10513, 2001.

[15] B. Hayes, "The Science of Computing: The Wheel of Fortune," Am. Sci., vol. 81, pp. 114-

118, 1993.

[16] U. Landman, R. Barnett and W. Luedtke, "Simulations of materials: from electrons to

friction," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, vol. 341, pp. 337-350, 1992.

155

[17] F. H. Stillinger and T. A. Weber, "Molecular dynamics study of chemical reactivity in

liquid sulfur," J. Phys. Chem., vol. 91, pp. 4899-4907, 1987.

[18] R. Evans, "The nature of the liquid-vapour interface and other topics in the statistical

mechanics of non-uniform, classical fluids," Adv. Phys., vol. 28, pp. 143-200, 1979.

[19] M. Wertheim, "Integral equation for the Smith–Nezbeda model of associated fluids," J.

Chem. Phys., vol. 88, pp. 1145-1155, 1988.

[20] J. Gunton, M. San Miguel, P. S. Sahni, C. Domb and J. Lebowitz, "Phase transitions and

critical phenomena," 1983.

[21] E. Helfand, S. M. Bhattacharjee and G. H. Fredrickson, "Molecular weight dependence of

polymer interfacial tension and concentration profile," J. Chem. Phys., vol. 91, pp. 7200-7208,

1989.

[22] K. M. Hong and J. Noolandi, "Theory of phase equilibriums in systems containing block

copolymers," Macromolecules, vol. 16, pp. 1083-1093, 1983.

[23] A. A. Wheeler, W. J. Boettinger and G. B. McFadden, "Phase-field model for isothermal

phase transitions in binary alloys," Physical Review A, vol. 45, pp. 7424, 1992.

[24] A. Bray, "Theory of phase ordering kinetics," Physica A: Statistical Mechanics and its

Applications, vol. 194, pp. 41-52, 1993.

[25] C. Harrison, D. H. Adamson, Z. Cheng, J. M. Sebastian, S. Sethuraman, D. A. Huse, R. A.

Register and P. M. Chaikin, "Mechanisms of ordering in striped patterns," Science, vol. 290, pp.

1558-1560, Nov 24, 2000.

[26] S. Puri and N. Parekh, "Non-algebraic domain growth in binary alloys with quenched

disorder," Journal of Physics A: Mathematical and General, vol. 25, pp. 4127, 1992.

[27] L. Tsarkova, G. A. Sevink and G. Krausch, "Nanopattern evolution in block copolymer

films: Experiment, simulations and challenges," in Complex Macromolecular Systems

IAnonymous Springer, 2010, pp. 33-73.

[28] H. Emmerich, "Advances of and by phase-field modelling in condensed-matter physics,"

Adv. Phys., vol. 57, pp. 1-87, 2008.

[29] A. N. Singh, R. D. Thakre, J. C. More, P. K. Sharma and Y. Agrawal, "Block Copolymer

Nanostructures and Their Applications: A Review," Polym. Plast. Technol. Eng., vol. 54, pp.

1077-1095, 2015.

[30] T. P. Lodge, "Block copolymers: past successes and future challenges," Macromolecular

Chemistry and Physics, vol. 204, pp. 265-273, 2003.

[31] S. Tallegas, T. Baron, G. Gay, C. Aggrafeil, B. Salhi, T. Chevolleau, G. Cunge, A. Bsiesy,

R. Tiron and X. Chevalier, "Block copolymer technology applied to nanoelectronics," Physica

Status Solidi (C), vol. 10, pp. 1195-1206, 2013.

[32] M. A. Hillmyer, "Nanoporous materials from block copolymer precursors," in Block

Copolymers IIAnonymous Springer, 2005, pp. 137-181.

156

[33] A. Urbas, R. Sharp, Y. Fink, E. L. Thomas, M. Xenidou and L. J. Fetters, "Tunable block

copolymer/homopolymer photonic crystals," Adv Mater, vol. 12, pp. 812-814, 2000.

[34] D. J. Arriola, E. M. Carnahan, P. D. Hustad, R. L. Kuhlman and T. T. Wenzel, "Catalytic

production of olefin block copolymers via chain shuttling polymerization," Science, vol. 312,

pp. 714-719, May 5, 2006.

[35] C. Park, J. Yoon and E. L. Thomas, "Enabling nanotechnology with self assembled block

copolymer patterns," Polymer, vol. 44, pp. 6725-6760, 2003.

[36] R. A. Segalman, "Patterning with block copolymer thin films," Materials Science and

Engineering: R: Reports, vol. 48, pp. 191-226, 2005.

[37] J. Dawkins, "Block copolymers: synthetic strategies, physical properties and applications.

N Hadjichristidis, S Pispas and GA Floudas. John Wiley & Sons, Ltd, Chichester, UK, 2002. pp

440, ISBN 0‐471‐39436‐x," Polym. Int., vol. 53, pp. 232-232, 2004.

[38] F. S. Bates, "Polymer-polymer phase behavior," Science, vol. 251, pp. 898-905, Feb 22,

1991.

[39] X. Li, J. Guo, Y. Liu and H. Liang, "Microphase separation of diblock copolymer poly

(styrene-b-isoprene): A dissipative particle dynamics simulation study," J. Chem. Phys., vol.

130, pp. 74908, 2009.

[40] S. Lin, N. Numasawa, T. Nose and J. Lin, "Brownian molecular dynamics simulation on

self-assembly behavior of rod-coil diblock copolymers," Macromolecules, vol. 40, pp. 1684-

1692, 2007.

[41] S. Ren and I. Hamley, "Cell dynamics simulations of microphase separation in block

copolymers," Macromolecules, vol. 34, pp. 116-126, 2001.

[42] T. L. Chantawansri, A. W. Bosse, A. Hexemer, H. D. Ceniceros, C. J. García-Cervera, E. J.

Kramer and G. H. Fredrickson, "Self-consistent field theory simulations of block copolymer

assembly on a sphere," Physical Review E, vol. 75, pp. 031802, 2007.

[43] G. Gonnella, E. Orlandini and J. Yeomans, "Spinodal decomposition to a lamellar phase:

effects of hydrodynamic flow," Phys. Rev. Lett., vol. 78, pp. 1695, 1997.

[44] G. Gonnella, E. Orlandini and J. Yeomans, "Lattice Boltzmann simulations of lamellar and

droplet phases," Physical Review E, vol. 58, pp. 480, 1998.

[45] S. Puri and H. Frisch, "Segregation dynamics of binary mixtures with simple chemical

reactions," Journal of Physics A: Mathematical and General, vol. 27, pp. 6027, 1994.

[46] Y. Oono and S. Puri, "Study of phase-separation dynamics by use of cell dynamical

systems. I. Modeling," Physical Review A, vol. 38, pp. 434, 1988.

[47] A. Shinozaki and Y. Oono, "Spinodal decomposition in 3-space," Physical Review E, vol.

48, pp. 2622, 1993.

[48] S. Puri and Y. Oono, "Study of phase-separation dynamics by use of cell dynamical

systems. II. Two-dimensional demonstrations," Physical Review A, vol. 38, pp. 1542, 1988.

157

[49] I. W. Hamley, "Cell dynamics simulations of block copolymers," Macromolecular Theory

and Simulations, vol. 9, pp. 363-380, 2000.

[50] N. Parekh and S. Puri, "A new numerical scheme for the Fisher equation," Journal of

Physics A: Mathematical and General, vol. 23, pp. L1085, 1990.

[51] H. Furukawa, "A dynamic scaling assumption for phase separation," Adv. Phys., vol. 34,

pp. 703-750, 1985.

[52] M. San Miguel, M. Grant and J. D. Gunton, "Phase separation in two-dimensional binary

fluids," Physical Review A, vol. 31, pp. 1001, 1985.

[53] M. Bahiana and Y. Oono, "Cell dynamical system approach to block copolymers,"

Physical Review A, vol. 41, pp. 6763, 1990.

[54] H. Kodama and M. Doi, "Shear-induced instability of the lamellar phase of a block

copolymer," Macromolecules, vol. 29, pp. 2652-2658, 1996.

[55] S. Ren, I. Hamley, G. Sevink, A. Zvelindovsky and J. Fraaije, "Mesoscopic simulations of

lamellar orientation in block copolymers," Macromolecular Theory and Simulations, vol. 11,

pp. 123-127, 2002.

[56] T. Uneyama and M. Doi, "Density functional theory for block copolymer melts and

blends," Macromolecules, vol. 38, pp. 196-205, 2005.

[57] T. Uneyama, "Density functional simulation of spontaneous formation of vesicle in block

copolymer solutions," J. Chem. Phys., vol. 126, pp. 114902, 2007.

[58] T. Ohta and K. Kawasaki, "Equilibrium morphology of block copolymer melts,"

Macromolecules, vol. 19, pp. 2621-2632, 1986.

[59] T. Ohta and A. Ito, "Dynamics of phase separation in copolymer-homopolymer mixtures,"

Physical Review E, vol. 52, pp. 5250, 1995.

[60] T. Ohta and K. Kawasaki, "Comment on the free energy functional of block copolymer

melts in the strong segregation limit," Macromolecules, vol. 23, pp. 2413-2414, 1990.

[61] N. Maurits, J. Fraaije, P. Altevogt and O. Evers, "Simple numerical quadrature rules for

Gaussian chain polymer density functional calculations in 3D and implementation on parallel

platforms," Computational and Theoretical Polymer Science, vol. 6, pp. 1-8, 1996.

[62] A. A. Joshi, D. W. Shattuck, P. M. Thompson and R. M. Leahy, "A parameterization-based

numerical method for isotropic and anisotropic diffusion smoothing on non-flat surfaces," IEEE

Trans. Image Process., vol. 18, pp. 1358-1365, 2009.

[63] B. Kamgar-Parsi, B. Kamgar-Parsi and A. Rosenfeld, "Optimally isotropic Laplacian

operator," IEEE Trans. Image Process., vol. 8, pp. 1467-1472, 1999.

[64] A. H. Panaretos, J. T. Aberle and R. E. Díaz, "The effect of the 2-D Laplacian operator

approximation on the performance of finite-difference time-domain schemes for Maxwell’s

equations," Journal of Computational Physics, vol. 227, pp. 513-536, 2007.

158

[65] F. Xiao, X. Tang, L. Wang and H. Ma, "2-D isotropic finite difference time domain

method," in Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference

Proceedings, 2005, pp. 4 pp.

[66] A. Kumar, "Isotropic finite-differences," Journal of Computational Physics, vol. 201, pp.

109-118, 2004.

[67] C. Chow, "Discretization errors and rotational symmetry: the Laplacian operator on non-

hypercubical lattices," Nuclear Physics B, vol. 547, pp. 281-302, 1999.

[68] A. Spitzbart and N. Macon, "Numerical differentiation formulas," The American

Mathematical Monthly, vol. 64, pp. 721-723, 1957.

[69] R. L. Burden and J. D. Faires, "Numerical analysis," 1993.

[70] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference

Methods. Oxford university press, 1985.

[71] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations:

Steady-State and Time-Dependent Problems. Siam, 2007.

[72] J. Crank and P. Nicolson, "A practical method for numerical evaluation of solutions of

partial differential equations of the heat-conduction type," in Mathematical Proceedings of the

Cambridge Philosophical Society, 1947, pp. 50-67.

[73] P. Wilmott, S. Howison and J. Dewynne, The Mathematics of Financial Derivatives: A

Student Introduction. Cambridge University Press, 1995.

[74] P. Moin, Fundamentals of Engineering Numerical Analysis. Cambridge University Press,

2010.

[75] D. W. Peaceman and J. Rachford Henry H, "The numerical solution of parabolic and

elliptic differential equations," Journal of the Society for Industrial and Applied Mathematics,

vol. 3, pp. 28-41, 1955.

[76] S. Sirca and M. Horvat, "Computational Methods for Physicists," 2012.

[77] (). The Heat equation in 2 and 3 spatial dimensions. Available:

http://www.cems.uvm.edu/~tlakoba/math337/notes_15.pdf.

[78] W. H. Press, Numerical Recipes with Source Code CD-ROM 3rd Edition: The Art of

Scientific Computing. Cambridge University Press, 2007.

[79] I. J. Craig and A. D. Sneyd, "An alternating-direction implicit scheme for parabolic

equations with mixed derivatives," Comput. Math. Appl., vol. 16, pp. 341-350, 1988.

[80] W. Lee, "Tridiagonal matrices: Thomas algorithm," MS6021, Scientific Computation,

University of Limerick, .

[81] J. Douglas, "Alternating direction methods for three space variables," Numerische

Mathematik, vol. 4, pp. 41-63, 1962.

http://www.cems.uvm.edu/~tlakoba/math337/notes_15.pdf

159

[82] J. Douglas and J. E. Gunn, "A general formulation of alternating direction methods,"

Numerische Mathematik, vol. 6, pp. 428-453, 1964.

[83] J. Douglas Jim, "On the Numerical Integration of ∂^2u∂x^2 ∂^2u∂y^2=∂u∂t by Implicit

Methods," Journal of the Society for Industrial and Applied Mathematics, vol. 3, pp. 42-65,

1955.

[84] S. Conte, "Numerical solution of vibration problems in two space variables," Pacific

J.Math, vol. 7, pp. 1535-1544, 1957.

[85] J. Douglas and H. H. Rachford, "On the numerical solution of heat conduction problems in

two and three space variables," Transactions of the American Mathematical Society, vol. 82, pp.

421-439, 1956.

[86] M. Eres, L. Schwartz and R. Roy, "Fingering phenomena for driven coating films," Physics

of Fluids (1994-Present), vol. 12, pp. 1278-1295, 2000.

[87] L. W. Schwartz, "Hysteretic effects in droplet motions on heterogeneous substrates: direct

numerical simulation," Langmuir, vol. 14, pp. 3440-3453, 1998.

[88] L. W. Schwartz, R. V. Roy, R. R. Eley and S. Petrash, "Dewetting patterns in a drying

liquid film," J. Colloid Interface Sci., vol. 234, pp. 363-374, 2001.

[89] M. Eres, D. Weidner and L. Schwartz, "Three-dimensional direct numerical simulation of

surface-tension-gradient effects on the leveling of an evaporating multicomponent fluid,"

Langmuir, vol. 15, pp. 1859-1871, 1999.

[90] Y. Oono, S. Puri, C. Yeung and M. Bahiana, "Cell dynamical system study of phase

separation dynamics," Journal of Applied Crystallography, vol. 21, pp. 883-885, 1988.

[91] A. Shinozaki and Y. Oono, "Spinodal decomposition in a Hele-Shaw cell," Physical

Review A, vol. 45, pp. R2161, 1992.

[92] T. Ohta, Y. Enomoto, J. L. Harden and M. Doi, "Anomalous rheological behavior of

ordered phases of block copolymers. 1," Macromolecules, vol. 26, pp. 4928-4934, 1993.

[93] J. Feng and E. Ruckenstein, "Long-range ordered structures in diblock copolymer melts

induced by combined external fields," J. Chem. Phys., vol. 121, pp. 1609-1625, 2004.

[94] D. Hale, "Compact finite-difference approximations for anisotropic image smoothing and

painting," Matrix, vol. 500, pp. D12, .

[95] S. Fomel and J. F. Claerbout, "Exploring three-dimensional implicit wavefield

extrapolation with the helix transform," Stanford Exploration Project, vol. 95, pp. 43-60, 1997.

[96] (February 22, 2012). Difference Between Isotropic and Anisotropic. Available:

http://www.differencebetween.net/science/chemistry-science/difference-between-isotropic-and-

anisotropic/.

[97] T. Petrie and J. Randall, "Spherical isotropy representations," Publications Mathématiques

De L'IHÉS, vol. 62, pp. 5-40, 1985.

http://www.differencebetween.net/science/chemistry-science/difference-between-isotropic-and-anisotropic/
http://www.differencebetween.net/science/chemistry-science/difference-between-isotropic-and-anisotropic/

160

[98] M. Abramowitz and I. A. Stegun, "Handbook of mathematical functions," Applied

Mathematics Series, vol. 55, pp. 62, 1966.

[99] A. Kumar, "Isotropic averaging for cell-dynamical-system simulation of spinodal

decomposition," Pramana, vol. 61, pp. 1-5, 2003.

[100] H. Tomita, "Preservation of isotropy at the mesoscopic stage of phase separation

processes," Progress of Theoretical Physics, vol. 85, pp. 47-56, 1991.

[101] P. Teixeira and B. Mulder, "Comment on``Study of phase-separation dynamics by use of

cell dynamical systems. I. Modeling''," Physical Review E, vol. 55, pp. 3789, 1997.

[102] B. Van Vlimmeren and J. Fraaije, "Calculation of noise distribution in mesoscopic

dynamics models for phase separation of multicomponent complex fluids," Comput. Phys.

Commun., vol. 99, pp. 21-28, 1996.

[103] J. Fraaije, B. Van Vlimmeren, N. Maurits, M. Postma, O. Evers, C. Hoffmann, P.

Altevogt and G. Goldbeck-Wood, "The dynamic mean-field density functional method and its

application to the mesoscopic dynamics of quenched block copolymer melts," J. Chem. Phys.,

vol. 106, pp. 4260-4269, 1997.

[104] T. Rogers, K. Elder and R. C. Desai, "Numerical study of the late stages of spinodal

decomposition," Physical Review B, vol. 37, pp. 9638, 1988.

[105] A. Zvelindovsky and G. Sevink, "Sphere morphology of block copolymer systems under

shear," EPL (Europhysics Letters), vol. 62, pp. 370, 2003.

[106] I. Rychkov, "Block copolymers under shear flow," Macromolecular Theory and

Simulations, vol. 14, pp. 207-242, 2005.

[107] T. P. Witelski and M. Bowen, "ADI schemes for higher-order nonlinear diffusion

equations," Applied Numerical Mathematics, vol. 45, pp. 331-351, 2003.

[108] L. Calatroni, B. Düring and C. Schönlieb, "ADI splitting schemes for a fourth-order

nonlinear partial differential equation from image processing," arXiv Preprint arXiv:1305.5362,

2013.

[109] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.

Pozo, C. Romine and H. Van der Vorst, Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods. Siam, 1994.

[110] Z. Ling-Cui, S. Min-Na, P. Jun-Xing, W. Bao-Feng, Z. Jin-Jun and W. Hai-Shun,

"Copolymer—homopolymer mixtures in a nanopore," Chinese Physics B, vol. 22, pp. 096401,

2013.

[111] A. Ito, "Domain patterns in copolymer-homopolymer mixtures," Physical Review E, vol.

58, pp. 6158, 1998.

[112] J. Zhang, G. Jin and Y. Ma, "Wetting-driven structure ordering of a

copolymer/homopolymer/nanoparticle mixture in the presence of a modulated potential," The

European Physical Journal E, vol. 18, pp. 359-365, 2005.

161

[113] A. L. Bertozzi, "The mathematics of moving contact lines in thin liquid films," Notices of

the AMS, vol. 45, pp. 689-697, 1998.

[114] C. M. Elliott and D. A. French, "Numerical studies of the Cahn-Hilliard equation for

phase separation," IMA Journal of Applied Mathematics, vol. 38, pp. 97-128, 1987.

[115] J. M. Hyman, B. Nicolaenko and S. Zaleski, "Order and complexity in the Kuramoto-

Sivashinsky model of weakly turbulent interfaces," Physica D, vol. 23, pp. 265-292, 1986.

[116] A. Novick-Cohen and L. A. Segel, "Nonlinear aspects of the Cahn-Hilliard equation,"

Physica D, vol. 10, pp. 277-298, 1984.

[117] S. McKee and A. Mitchell, "Alternating direction methods for parabolic equations in two

space dimensions with a mixed derivative," The Computer Journal, vol. 13, pp. 81-86, 1970.

[118] R. Mohanty and M. Jain, "High accuracy difference schemes for the system of two space

nonlinear parabolic differential equations with mixed derivatives and variable coefficients," J.

Comput. Appl. Math., vol. 70, pp. 15-32, 1996.

[119] S. D. Conte and R. T. Dames, "On an alternating direction method for solving the plate

problem with mixed boundary conditions," Journal of the ACM (JACM), vol. 7, pp. 264-273,

1960.

[120] S. D. Conte and R. T. Dames, "An alternating direction method for solving the

biharmonic equation," Mathematical Tables and Other Aids to Computation, vol. 12, pp. 198-

205, 1958.

[121] A. R. Mitchell and D. F. Griffiths, The Finite Difference Method in Partial Differential

Equations. John Wiley, 1980.

[122] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations. Siam,

2004.

[123] W. Hundsdorfer, "Accuracy and stability of splitting with stabilizing corrections," Applied

Numerical Mathematics, vol. 42, pp. 213-233, 2002.

[124] van der Houwen, Piet J and J. G. Verwer, "One-step splitting methods for semi-discrete

parabolic equations," Computing, vol. 22, pp. 291-309, 1979.

[125] W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection-

Diffusion-Reaction Equations. Springer Science & Business Media, 2013.

[126] K. In't Hout and B. Welfert, "Unconditional stability of second-order ADI schemes

applied to multi-dimensional diffusion equations with mixed derivative terms," Applied

Numerical Mathematics, vol. 59, pp. 677-692, 2009.

162

Appendix A

2D CDS Code (Default)

The Input File for the CDS Fortran Program. It is general for all

methodologies for 2D.

'New simulation (0) or continue a previous one (1)'

0

'Input filename containing starting atomic configuration (max 80 c)

for 1'

restartfile.dat

'Insert D'

0.7d0

'Insert A'

1.5d0

'Insert B'

0.02d0

'Insert f'

0.48d0

'Insert Tau'

0.36d0

'Insert v'

2.3d0

'Insert u'

0.38d0

'Insert Grid size'

128,128,1

'Insert the deltat'

1.d0

'Total TimeSteps'

1000000

'Save order parameter configuration for restarting every ... steps'

1000

'Write pos-neg order parameter in the following file'

'final.bak'

'Saving pos-neg order parameter in the following steps(max 10;5 for

line):'

200,700,1000,3000,5000

10000,20000,50000,70000,100000

'Insert file record positive'

'final2.bak'

'Input the first name (you must input 8 characters)'

'cdsnew01'

'Input the second name (you must input 2 characters tau only 28)'

20

163

The CDS Fortran Program

c

c ***

c CDS 2D simulation source code

c ***

 program order_parameter

 implicit none

 double precision pxi(0:300,0:300)

 double precision pxi0(0:300,0:300)

 double precision zxi(0:300,0:300)

 double precision apxi1(0:300,0:300)

 double precision aapxi1(0:300,0:300)

 double precision bapxi1(0:300,0:300)

 double precision capxi1(0:300,0:300)

 double precision apxi2(0:300,0:300)

 double precision aapxi2(0:300,0:300)

 double precision bapxi2(0:300,0:300)

 double precision capxi2(0:300,0:300)

 double precision f(0:300,0:300)

 double precision map1(0:300,0:300)

 double precision mxi1(0:300,0:300)

 double precision z(0:300)

 double precision h1,h2,h3

 double precision hx(0:100)

 double precision hy(0:100)

 double precision hz(0:100)

 double precision tau,v,u,omega,omega0

 double precision a,b,d,r,e,sh,e0,sh0,c1,c2,c3

c ***

c Boudary condictions declarations

c ***

 integer upx(0:300),upy(0:300)

 integer downx(0:300),downy(0:300)

 double precision m(0:300)

 integer m1(0:300)

c ***

c Parameters for the CD simualtion

c***

 integer i,j,k,s,nx,ny,nz,ex,ey,ez,seed,t,time,conf,ktime

 integer s1,s2,s3,s4,s5,s6,s7,s8,s9,s10

 integer everyconf,ftime,bcx,bcy,bcz,ht,R2

 character*80 label

 character*80 finalposition,fileconf,writeconf

c**

c Parameter to record data(order parameter)

c**

 real delapse,dtime,t1(2)

 character*8 name1

 character*2 name2

 character*7 name3

 character*29 name4

 integer ma,esse2

c**

c File open

164

c**

 open(unit=98,file = 'cds.in', status='old',form='formatted')

c**

c Read input data from file CDS.IN

c**

 read(98,*) label

 read(98,*) conf

 read(98,*) label

 read(98,*) fileconf

 read(98,*) label

 read(98,*) d

 read(98,*) label

 read(98,*) a

 read(98,*) label

 read(98,*) b

 read(98,*) label

 read(98,*) r

 read(98,*) label

 read(98,*) tau

 read(98,*) label

 read(98,*) v

 read(98,*) label

 read(98,*) u

 read(98,*) label

 read(98,*) nx,ny,nz

 read(98,*) label

 read(98,*) eta

 read(98,*) label

 read(98,*) e

 read(98,*) label

 read(98,*) sh

 read(98,*) label

 read(98,*) omega

 read(98,*) label

 read(98,*) bcx,bcy,bcz

 read(98,*) label

 read(98,*) h1,h2,h3

 read(98,*) label

 read(98,*) deltat

 read(98,*) label

 read(98,*) time

 read(98,*) label

 read(98,*) everyconf

 read(98,*) label

 read(98,*) writeconf

 read(98,*) label

 read(98,*) s1,s2,s3,s4,s5

 read(98,*) s6,s7,s8,s9,s10

 read(98,*) label

 read(98,*) finalposition

 read(98,*) label

 read(98,*) name1

 read(98,*) label

 read(98,*) r2

165

c**

c Random value initialization for Pxi

c**

 ktime=0

 do i = 1, nx

 do j =1, ny

 call random_number(temp)

 if (temp.ge.0 .and. temp.lt.0.5) then

 Pxi(i,j) = 0.3d0

 else

 Pxi(i,j) = -0.3d0

 endif

 enddo

 enddo

c**

c Costant numbers

c**

 pi2=2.d0*dacos(-1.d0)

 ma=0

 name2=char(r2)

 write(name2,'(i2.2)') r2

c**

c Laplacian weights

c**

 c1=1.0d0/6.0d0

 c2=1.0d0/12.0d0

c***

c These following steps are to take boundary conditions into account

c For x

c**

 if (nx.eq.1) then

 do s=1 , nx

 upx(s) = s+1

 downx(s) = s-1

 enddo

 dO j=1,ny

 do i=1,nx

 pxi0(downx(i),j)=0.0d0

 pxi0(upx(i),j)=0.0d0

 pxi(downx(i),j)=0.0d0

 pxi(upx(i),j)=0.0d0

 map1(downx(i),j)=0.0d0

 map1(upx(i),j)=0.0d0

 enddo

 enddo

 c1=1.0d0/6.0d0

 c2=1.0d0/12.0d0

 else

 do s=1 , nx

 upx (s) = s+1

 downx (s) = s-1

 end do

 if(bcx.eq.0) then

166

 upx (nx) = 1

 downx (1) = nx

 else

 upx (nx) =nx

 downx (1) = 1

 end if

 end if

c**

c FOR y

c**

 if (ny.eq.1) then

 do s=1 , ny

 upy(s) = s+1

 downy(s) =s-1

 enddo

 do j=1,ny

 do i=1,nx

 pxi0(i,downy(j))=0.0d0

 pxi0(i,upy(j))=0.0d0

 pxi(i,downy(j))=0.0d0

 pxi(i,upy(j))=0.0d0

 map1(i,downy(j))=0.0d0

 map1(i,upy(j))=0.0d0

 enddo

 enddo

 c1=1.0d0/6.0d0

 c2=1.0d0/12.0d0

 else

 do s=1 , ny

 upy (s) = s+1

 downy (s) = s-1

 enddo

 if(bcy.eq.0) then

 upy (ny) = 1

 downy (1) = ny

 else

 upy (ny) = ny

 downy (1) = 1

 endif

 endif

c **

c Now it starts to run time (t) evolution

c **

 do t = ktime, time-1,1

c***

c This following step is to calculate First Laplacian

c APxi1 = [<< Pxi >> - Pxi]

c***

 do j=1,ny

 do i=1,nx

 pxi0(i,j)=pxi(i,j)

 aapxi1(i,j)=c1*(pxi(upx(i),j)

 1 + pxi(downx(i),j)

 1 + pxi(i,upy(j))+pxi(i,downy(j)))

167

 bapxi1(i,j)=c2*(pxi(downx(i),upy(j))

 1 +pxi(downx(i),downy(j))

1 +pxi(upx(i),upy(j))+pxi(upx(i),downy(j)))

 apxi1(i,j) = aapxi1(i,j) +bapxi1(i,j)

 enddo

 enddo

c***

c This following step is to calculate map function

c***

 do j=1,ny

 do i=1,nx

 f(i,j) = (tau-a*((1-2*r)**2))*pxi(i,j)

 1 -v*(1-2*r)*(pxi(i,j)**2)-u*(pxi(i,j)**3)

 enddo

 enddo

c***

c This following step is to calculate

c Map = {f(Pxi) + D[<<Pxi>> - Pxi] - Pxi}

c***

 do j=1,ny

 do i=1,nx

 map1(i,j) = f(i,j) + d*(apxi1(i,j)

 1 - pxi(i,j))

 enddo

 enddo

c***

c The following is to calculate outer Laplacian on map function

c***

 do j=1,ny

 do i=1,nx

 aapxi2(i,j)=c1*(map1(upx(i),j)

 1 +map1(downx(i),j)

 1 +map1(i,upy(j))+map1(i,downy(j)))

 bapxi2(i,j)=c2*(map1(downx(i),upy(j))

 1 +map1(downx(i),downy(j))

 1 +map1(upx(i),upy(j))+map1(upx(i),downy(j)))

 apxi2(i,j)=aapxi2(i,j)

 1 +bapxi2(i,j)+capxi2(i,j)

 enddo

 enddo

c**

c This following step is to calculate whole equation for Pxi(t+1,n)

c**

 do j=1,ny

 do i=1,nx

 pxi(i,j) = pxi0(i,j)+deltat*

 1 (- b * pxi(i,j) +map1(i,j) - APxi2(i,j))

 enddo

 enddo

168

c***

c writing Pxi values in files for time steps

c***

 esse =(t+1)*deltat

 esse2=esse

 name3=char(esse2)

 write(name3,'(I7.7)') esse2

 name4=name1//'_pxi.'//name2//'_t'//name3//'.txt'

 if(esse .lt. 100.D0) then

 if(mod(t+1, int(10.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 write(ma,*) "#Grid", nx,ny

 do i = 1, Nx

 do j = 1, Ny

 write (ma,*) pxi(i,j)

 enddo

 enddo

 close(ma)

 endif

 endif

 if(esse .lt. 1000.D0) then

 if(mod(t+1, int(100.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 write(ma,*) "#Grid", nx,ny

 do i = 1, nx

 do j = 1, ny

 write (ma,*) pxi(i,j)

 enddo

 enddo

 close(ma)

 endif

 elseif(esse .lt. 10000.D0) then

 if(mod(t+1, int(1000.D0/deltat)) .eq. 0)then

 ma=ma+1

 open(ma,file=name4)

 write(ma,*) "#Grid", nx,ny

 do i = 1, nx

 do j = 1, ny

 write (ma,*) pxi(i,j)

 enddo

 enddo

 close(ma)

 endif

 elseif(esse .le. 1000000.D0) then

 if(mod(t+1, int(10000.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 write(MA,*) "#Grid", Nx,Ny

 do i = 1, Nx

 do j = 1, Ny

 write (Ma,*) pxi(i,j)

 enddo

 enddo

 close(ma)

 endif

 else

 if(mod(t+1,int(100000.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

169

 write(MA,*) "#Grid", Nx,Ny

 do i = 1, nx

 do j = 1, ny

 write (ma,*) pxi(i,j)

 enddo

 enddo

 close(ma)

 endif

 endif

 If (esse .le. 10000000.D0) then

 if(MOD(t+1,int(1000000.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 if ((nz.eq.1)) then

 write(ma,*) "#Grid", nx,ny

 do i = 1, nx

 do j = 1, ny

 write (ma,*) pxi(i,j)

 enddo

 enddo

 close(ma)

 endif

 endif

 If(ma.gt.80) then

 ma=0

 endif

 endif

 enddo

 end

c********************End of source Code************

170

Appendix B

CDS Code for 9–point Star Laplacain Scheme

c

c ***

c Here is presented the segment of the code from Appendix A. Only

c the Laplacian scheme simulation part is changed according 9 –

c point star scaling.

c ***

c***

c This following step is to calculate First Laplacian

c APxi1 = [<< Pxi >> - Pxi]

c***

 do j=1,ny

 do i=1,nx

 pxi0(i,j)=pxi(i,j)

 aapxi1(i,j)=c1*(pxi(upx(i),j)

 1 + pxi(downx(i),j) + pxi(i,upy(j))+pxi(i,downy(j))

 aaapxi1(i,j)=c2*(pxi(upx(i+1),j)

 1 + pxi(downx(i-1),j)

 1 + pxi(i,upy(j+1))+pxi(i,downy(j-1))

 apxi1(i,j)=aapxi1(i,j)+aaapxi1(i,j)

c ***

 enddo

 enddo

c***

c The following is to calculate outer Laplacian on map function

c***

 do j=1,ny

 do i=1,nx

 aapxi2(i,j)=c1*(map1(upx(i),j)

 1 +map1(downx(i),j)

 1 +map1(i,upy(j))+map1(i,downy(j))

 aaapxi2(i,j)=c2*(map1(upx(i+1),j)

 1 +map1(downx(i+1),j)

 1 +map1(i,upy(j+1))+map1(i,downy(j+1))

 apxi2(i,j)=aapxi2(i,j)+aaapxi2(i,j)

 enddo

 enddo

171

Appendix C

CDS Code for 17–point Laplacian Scheme

c

c ***

c Here is presented the segment of the code from Appendix A. Only

c the Laplacian scheme simulation part is changed according 17 –

c point scaling.

c ***

c***

c This following step is to calculate First Laplacian

c APxi1 = [<< Pxi >> - Pxi]

c***

 do j=1,ny

 do i=1,nx

 pxi0(i,j)=pxi(i,j)

 aapxi1(i,j)=c1*(pxi(upx(i),j

 1 + pxi(downx(i),j)

 1 + pxi(i,upy(j))+pxi(i,downy(j))

c ***

 bapxi1(i,j)=c2*(pxi(downx(i),upy(j))

 1 +pxi(downx(i),downy(j))

 1 +pxi(upx(i),upy(j))+pxi(upx(i),downy(j))

c **

 aaapxi1(i,j)=c3*(pxi(upx(i+1),j)

 1 + pxi(downx(i-1),j)

 1 + pxi(i,upy(j+1))+pxi(i,downy(j-1))

c ***

 bbapxi1(i,j)=c4*(pxi(downx(i-1),upy(j+1))

 1 +pxi(downx(i-1),downy(j-1))

 1 +pxi(upx(i+1),upy(j+1))+pxi(upx(i+1),downy(j-1))

c ***

 apxi1(i,j)=aapxi1(i,j)+bapxi1(i,j)

 1 +aaapxi1(i,j)+bbapxi1(i,j)

c ***

 enddo

 enddo

c***

c The following is to calculate outer Laplacian on map function

c***

172

 do j=1,ny

 do i=1,nx

 aapxi2(i,j)=c1*(map1(upx(i),j)

 1 +map1(downx(i),j)

 1 +map1(i,upy(j))+map1(i,downy(j))

 bapxi2(i,j)=c2*(map1(downx(i),upy(j))

 1 +map1(downx(i),downy(j))

 1 +map1(upx(i),upy(j))+map1(upx(i),downy(j))

 aaapxi2(i,j)=c3*(map1(upx(i+1),j)

 1 +map1(downx(i-1),j)

 1 +map1(i,upy(j+1))+map1(i,downy(j-1))

 bbapxi2(i,j)=c4*(map1(downx(i-1),upy(j+1))

 1 +map1(downx(i-1),downy(j-1))

 1 +map1(upx(i+1),upy(j+1))

1 +map1(upx(i+1),downy(j-1))

 apxi2(i,j)=aapxi2(i,j)++bapxi2(i,j)

 1 +aaapxi2(i,j)+bbapxi2(i,j)

 enddo

 enddo

173

Appendix D

3D CDS Code (Default)

‘The Input File for the CDS Fortran Program. It is general all

‘methodologies for 2D.

'New simulation (0) or continue a previous one (1)'

0

'Input filename containing starting atomic configuration (max 80 c)

for 1'

restartfile.dat

'Insert D'

0.5d0

'Insert A'

1.5d0

'Insert B'

0.01d0

'Insert f'

0.40d0

'Insert Tau'

0.20d0

'Insert v'

2.3d0

'Insert u'

0.38d0

'Insert Grid size'

75,75,50

'Insert the deltat'

1.d0

'Total TimeSteps'

1000000

'Save order parameter configuration for restarting every ... steps'

1000

'Write pos-neg order parameter in the following file'

'final.bak'

'Saving pos-neg order parameter in the following steps(max 10;5 for

line):'

200,700,1000,3000,5000

10000,20000,50000,70000,100000

'Insert file record positive'

'final2.bak'

'Input the first name (you must input 8 characters)'

'cdsnew01'

'Input the second name (you must input 2 characters tau only 28)'

20

174

c ***

c CDS simulation for Laplacian scheme

c 1/80+3/80+6/80

c ***

 program order parameter

 implicit none

 double precision pxi(0:400,0:400,0:2)

 double precision pxi0(0:400,0:400,0:2)

 double precision zxi(0:400,0:400,0:2)

 double precision apxi1(0:400,0:400,0:2)

 double precision aapxi1(0:400,0:400,0:2)

 double precision bapxi1(0:400,0:400,0:2)

 double precision capxi1(0:400,0:400,0:2)

 double precision apxi2(0:400,0:400,0:2)

 double precision aapxi2(0:400,0:400,0:2)

 double precision bapxi2(0:400,0:400,0:2)

 double precision capxi2(0:400,0:400,0:2)

 double precision f(0:400,0:400,0:2)

 double precision map1(0:400,0:400,0:2)

 double precision mxi1(0:400,0:400,0:2)

 double precision z(0:400)

 double precision h1,h2,h3

 double precision hx(0:100)

 double precision hy(0:100)

 double precision hz(0:100)

 double precision tau,v,u,omega,omega0

 double precision a,b,d,r,e,sh,e0,sh0,c1,c2,c3

c ***

c -------------Boudary condictions -------------------

c ***

 integer upx(0:400),upy(0:400),upz(0:2)

 integer downx(0:400),downy(0:400),downz(0:2)

 double precision m(0:400)

 integer m1(0:400)

c ***

c ---------Parameters for the CD simualtion------------------------

c ***

 integer i,j,k,s,nx,ny,nz,ex,ey,ez,seed,t,time,conf,ktime

 integer s1,s2,s3,s4,s5,s6,s7,s8,s9,s10

 double precision mx,my

 double precision nxx,nyy,nzz,r1,rr

 integer everyconf,ftime,bcx,bcy,bcz,ht,R2

 character*80 label

 character*80 finalposition,fileconf,writeconf

c**

c ----------- Parameter to record data(order parameter)------------

c**

 real delapse,dtime,t1(2)

 character*8 name1

 character*2 name2

 character*7 name3

 character*29 name4

 integer ma,esse2

c ***

c ***

c open(unit=9,file"cds.in",status='old',form='formatted')

 open(unit=98,file = 'cds.in', status='old',form='formatted')

c ***

175

c

c Read input data from file CDS.IN

 read(98,*) label

 read(98,*) conf

 read(98,*) label

 read(98,*) fileconf

 read(98,*) label

 read(98,*) d

 read(98,*) label

 read(98,*) a

 read(98,*) label

 read(98,*) b

 read(98,*) label

 read(98,*) r

 read(98,*) label

 read(98,*) tau

 read(98,*) label

 read(98,*) v

 read(98,*) label

 read(98,*) u

 read(98,*) label

 read(98,*) nx,ny,nz

 read(98,*) label

 read(98,*) deltat

 read(98,*) label

 read(98,*) time

 read(98,*) label

 read(98,*) everyconf

 read(98,*) label

 read(98,*) writeconf

 read(98,*) label

 read(98,*) s1,s2,s3,s4,s5

 read(98,*) s6,s7,s8,s9,s10

 read(98,*) label

 read(98,*) finalposition

 read(98,*) label

 read(98,*) name1

 read(98,*) label

 read(98,*) r2

 open(90, file = finalposition)

c ***

c These following steps are to create randomly initial values

c order parameter Pxi, these values are: +0.3 or -0.3.

c ***

 flag=0

 if (conf.eq.1) then

 open (77,file=fileconf,status='old')

 do i=1,nx

 do j=1,ny

 do k=1,nz

 read(77,*) pxi(i,j,k)

 enddo

 enddo

 enddo

c ktime=0

 else

 ktime=0

176

 do i = 1, nx

 do j =1, ny

 do k= 1, nz

 call random_number(temp)

 if (temp.ge.0 .and. temp.lt.0.3) then

 Pxi(i,j,k) = 0.3d0

 else

 Pxi(i,j,k) = -0.3d0

 endif

 enddo

 enddo

 enddo

 endif

c***

c Constant numbers and Laplacian weights

c***

 c1=1.0d0/6.0d0

 c2=1.0d0/12.0d0

 c3=0.0d0

 ma=0

 name2=char(r2)

 write(name2,'(i2.2)') r2

c **

c These following steps are to take boundary conditions into account

c ***

c For x

c **

 if (nx.eq.1) then

 do s=1 , nx

 upx(s) = s+1

 downx(s) = s-1

 enddo

 dO k=1,nz

 dO j=1,ny

 dO i=1,ny

 pxi0(downx(i),j,k)=0.0d0

 pxi0(upx(i),j,k)=0.0d0

 pxi(downx(i),j,k)=0.0d0

 pxi(upx(i),j,k)=0.0d0

 map1(downx(i),j,k)=0.0d0

 map1(upx(i),j,k)=0.0d0

 enddo

 enddo

 enddo

 c1=1.0d0/6.0d0

 c2=1.0d0/12.0d0

 c3=0.0d0

 else

 do s=1 , nx

 upx (s) = s+1

 downx (s) = s-1

 hx(s)=0.0d0

 end do

 if(bcx.eq.0) then

 upx (nx) = 1

 downx (1) = nx

 else

 upx (nx) =nx

177

 downx (1) = 1

 hx(nx)= h1

 hx(1)=h1

 end if

 end if

c ***

c ************ FOR y **********************************

c ***

 if (ny.eq.1) then

 do s=1 , ny

 upy(s) = s+1

 downy(s) =s-1

 enddo

 do k=1,nz

 do j=1,ny

 do i=1,ny

 pxi0(i,downy(j),k)=0.0d0

 pxi0(i,upy(j),k)=0.0d0

 pxi(i,downy(j),k)=0.0d0

 pxi(i,upy(j),k)=0.0d0

 map1(i,downy(j),k)=0.0d0

 map1(i,upy(j),k)=0.0d0

 enddo

 enddo

 enddo

 c1=1.0d0/6.0d0

 c2=1.0d0/12.0d0

 c3=0.0d0

 else

 do s=1 , ny

 upy (s) = s+1

 downy (s) = s-1

 hy(s)=0.0d0

 enddo

 if(bcy.eq.0) then

 upy (ny) = 1

 downy (1) = ny

 else

 upy (ny) = ny

 downy (1) = 1

 hy(ny)= h2

 hy(1)=h2

 endif

 endif

c ***

c ************ FOR z **********************************

c ***

 if (nz.eq.1) then

 do s=1 , nz

 upz(s) = s+1

 downz(s) =s-1

 enddo

 do k=1,nz

 do j=1,ny

 do i=1,ny

 pxi0(i,j,upz(k))=0.0d0

 pxi0(i,j,downz(k))=0.0d0

 pxi(i,j,upz(k))=0.0d0

 pxi(i,j,downz(k))=0.0d0

 map1(i,j,upz(k))=0.0d0

 map1(i,j,downz(k))=0.0d0

178

 enddo

 enddo

 enddo

 c1=1.0d0/6.0d0

 c2=1.0d0/12.0d0

 c3=0.0d0

 else

 do s=1 , nz

 upz (s) = s+1

 downz (s) = s-1

 hz(s)=0.0d0

 end do

 if(bcz.eq.0) then

 upz (nz) = 1

 downz (1) = nz

 else

 upz (nz) = nz

 downz (1) = 1

 hz(nz)= h3

 hz(1)=h3

 end if

 endif

c

c **

 delapse=dtime(t1)

c **

c

 if (sh.ne.0.0d0) then

 do i=1,nx

 z(i)=0.0d0

 enddo

 endif

c **

c Now it starts to run time (t) evolution

c **

c

 do t = ktime, time-1,1

c **

c APxi1 = [<< Pxi >> - Pxi]

c **

 do k=1,nz

 do j=1,ny

 do i=1,nx

 pxi0(i,j,k)=pxi(i,j,k)

 aapxi1(i,j,k)=c1*(pxi(upx(i),j,k)

 1 + pxi(downx(i),j,k)

 1 + pxi(i,upy(j),k)+pxi(i,downy(j),k)

 1 + pxi(i,j,upz(k))+pxi(i,j,downz(k)))

c ***

 bapxi1(i,j,k)=c2*(pxi(downx(i),upy(j),k)

 1 +pxi(downx(i),downy(j),k)

 1 +pxi(upx(i),upy(j),k)+pxi(upx(i),downy(j),k)

 1 +pxi(i,downy(j),upz(k))+pxi(i,downy(j),downz(k))

 1 +pxi(i,upy(j),upz(k))+pxi(i,upy(j),downz(k))

 1 +pxi(downx(i),j,upz(k))+pxi(downx(i),j,downz(k))

 1 +pxi(upx(i),j,upz(k))+pxi(upx(i),j,downz(k)))

c ***

 capxi1(i,j,k)=c3*(pxi(downx(i),downy(j),upz(k))

 1 +pxi(downx(i),upy(j),upz(k))

179

 1 +pxi(downx(i),downy(j),downz(k))

 1 +pxi(downx(i),upy(j),downz(k))

 1 +pxi(upx(i),downy(j),upz(k))

 1 +pxi(upx(i),upy(j),upz(k))

 1 +pxi(upx(i),downy(j),downz(k))

 1 +pxi(upx(i),upy(j),downz(k)))

c ***

 apxi1(i,j,k)=aapxi1(i,j,k)

 1 +bapxi1(i,j,k)+capxi1(i,j,k)

c ***

 enddo

 enddo

 enddo

c This following step is to calculate Map function:

 do k=1,nz

 do j=1,ny

 do i=1,nx

 f(i,j,k) = (tau-a*((1-2*r)**2))*pxi(i,j,k)

 1 -v*(1-2*r)*(pxi(i,j,k)**2)-u*(pxi(i,j,k)**3)

 enddo

 enddo

 enddo

c This following step is to calculate:

c Map = {Atanh(Pxi) + D[<<Pxi>> - Pxi] - Pxi}

 do k=1,nz

 do j=1,ny

 do i=1,nx

 map1(i,j,k) = f(i,j,k) + d*(apxi1(i,j,k)

 1 - pxi(i,j,k))

 enddo

 enddo

 enddo

c This following step is to take into account the boundary

conditions

c for Map(i,j) which will be needed for next step.

c

 do k=1,nz

 do j=1,ny

 do i=1,nx

 aapxi2(i,j,k)=c1*(map1(upx(i),j,k)

 1 +map1(downx(i),j,k)

 1 +map1(i,upy(j),k)+map1(i,downy(j),k)

 1 +map1(i,j,upz(k))+map1(i,j,downz(k)))

 bapxi2(i,j,k)=c2*(map1(downx(i),upy(j),k)

 1 +map1(downx(i),downy(j),k)

 1 +map1(upx(i),upy(j),k)+map1(upx(i),downy(j),k)

 1 +map1(i,downy(j),upz(k))+map1(i,downy(j),downz(k))

 1 +map1(i,upy(j),upz(k))+map1(i,upy(j),downz(k))

 1 +map1(downx(i),j,upz(k))+map1(downx(i),j,downz(k))

 1 +map1(upx(i),j,upz(k))+map1(upx(i),j,downz(k)))

 capxi2(i,j,k)=c3*(map1(downx(i),downy(j),upz(k))

 1 +map1(downx(i),upy(j),upz(k))

 1 +map1(downx(i),downy(j),downz(k))

 1 +map1(downx(i),upy(j),downz(k))

 1 +map1(upx(i),downy(j),upz(k))

 1 +map1(upx(i),upy(j),upz(k))

 1 +map1(upx(i),downy(j),downz(k))

 1 +map1(upx(i),upy(j),downz(k)))

180

 apxi2(i,j,k)=aapxi2(i,j,k)

 1 +bapxi2(i,j,k)+capxi2(i,j,k)

 enddo

 enddo

 enddo

c ***

c This following step is to calculate whole equation for Pxi(t+1,n)

c **

 do k=1,nz

 do j=1,ny

 do i=1,nx

 pxi(i,j,k) = pxi(i,j,k)+deltat*

 1 (- b * pxi(i,j,k)

 1 - apxi2(i,j,k) +map1(i,j,k))

 enddo

 enddo

 enddo

c ***

c *****Save the configuration every tot step*************

c ***

 ftime=((t+1)*deltat)+ktime

 ht=(t+1)*deltat

 esse =(t+1)*deltat

 if((ht).eq.esse) then

 if ((ht).eq.(everyconf* (ht/everyconf)))then

 open (unit=96,file=writeconf)

 write (96,*) ftime , nx,ny,nz,deltat

 write (96,*) d,a,b,r,tau,v,u,e,sh,omega

 do i=1,nx

 do j=1,ny

 do k=1,nz

 write (96,*) pxi(i,j,k)

 enddo

 enddo

 enddo

 close (96)

 endif

cc

cc

 esse =(t+1)*deltat

 esse2=esse

 name3=char(esse2)

 write(name3,'(I7.7)') esse2

 name4=name1//'_pxi.'//name2//'_t'//name3//'.txt'

 if(esse .lt. 100.D0) then

 if(mod(t+1, int(10.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 write(ma,*) "#Grid", nx,ny,nz

 do i = 1, Nx

 do j = 1, Ny

 do k = 1 , Nz

 write (ma,*) pxi(i,j,k)

 enddo

 enddo

 enddo

 close(ma)

 endif

181

 endif

 if(esse .lt. 1000.D0) then

 if(mod(t+1, int(100.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 write(ma,*) "#Grid", nx,ny,nz

 do i = 1, nx

 do j = 1, ny

 do k = 1 , nz

 write (ma,*) pxi(i,j,k)

 enddo

 enddo

 enddo

 close(ma)

 endif

 elseif(esse .lt. 10000.D0) then

 if(mod(t+1, int(1000.D0/deltat)) .eq. 0)then

 ma=ma+1

 open(ma,file=name4)

 write(ma,*) "#Grid", nx,ny,nz

 do i = 1, nx

 do j = 1, ny

 do k = 1 , nz

 write (ma,*) pxi(i,j,k)

 enddo

 enddo

 enddo

 close(ma)

 endif

 elseif(esse .le. 1000000.D0) then

 if(mod(t+1, int(10000.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 write(MA,*) "#Grid", Nx,Ny,Nz

 do i = 1, Nx

 do j = 1, Ny

 do k = 1 , Nz

 write (Ma,*) pxi(i,j,k)

 enddo

 enddo

 enddo

 close(ma)

 endif

 else

 if(mod(t+1,int(100000.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 write(MA,*) "#Grid", Nx,Ny,Nz

 do i = 1, nx

 do j = 1, ny

 do k = 1 , nz

 write (ma,*) pxi(i,j,k)

 enddo

 enddo

 enddo

 close(ma)

 endif

 endif

 If (esse .le. 10000000.D0) then

 if(MOD(t+1,int(1000000.D0/deltat)) .eq. 0) then

 ma=ma+1

182

 open(ma,file=name4)

 if ((nz.eq.1)) then

 write(ma,*) "#Grid", nx,ny,nz

 do i = 1, nx

 do j = 1, ny

 do k = 1 , nz

 write (ma,*) pxi(i,j,k)

 enddo

 enddo

 enddo

 close(ma)

 endif

 endif

 If(ma.gt.80) then

 ma=0

 endif

 endif

 enddo

c **

c **

 delapse=dtime(t1)

 write(95,*) delapse,t1(1),t1(2)

c **

c **

 close(90)

 close(97)

 close(95)

 stop

 end

c *************end of program ********************

183

Appendix E

Conjugate Gradient Method

Basic algorithm for a non–preconditioned CG technique works as follows:

Given a linear system ,bAx  the first step with guess Tx)0,0,0(0  and ,1 IPP  

where I is the identity or unit matrix and P the preconditioning matrix. Following is given

CG algorithm [109]:

Step 0 – Preliminaries

Njxx

NkjP

Nkbb

NkjaA

j

kj

k

kj









1,

,1,

1,

,1,

,

,


 (1)

Step 1 – Setup Step
















N

j

j

t

www

bwPv

brPw

bAxbr

1

2

1

01

00

,

 (2)

Step 2 – Start iteration with k = 1 until Nk 

Step 3 – Check if v < Tolerance ?: Solution xn, residual rn found. Stop.

184























N

k

j

N

k kk

k

www

rrPw

utrr

vtxx

uv
t

uv
t

Avu

1

2

111

1

01

1

1

01

1
11

1

)(,

)(

)(
,





 (3)

Step 4 – Check if Tolerance ?: If Tolerancer  ?: Solution ,nx residual nr found.

Stop.













 1

1

2

1

vswPv

s

t (4)

Step 5 – Check if (k < N) ?: Maximal numbers of iterations exceeded. Stop.

Step 6 – Restart iteration with k = 2, etc.

 










3

2

v

Avu

 (5)

The preconditioning matrix ,LP  where L comes from the Cholesky factorization TLL

of A. it follows that 11   APP T is good approximation [76].

185

Appendix F

CDS CN Code

The Input File for the CDS Fortran Program. It is general all

methodologies for 2D.

'New simulation (0) or continue a previous one (1)'

0

'Input filename containing starting atomic configuration (max 80 c)

for 1'

restartfile.dat

'Insert D'

0.7d0

'Insert A'

1.5d0

'Insert B'

0.02d0

'Insert f'

0.48d0

'Insert Tau'

0.36d0

'Insert v'

2.3d0

'Insert u'

0.38d0

'Insert Grid size'

128,128,1

'Insert the deltat'

1.d0

'Total TimeSteps'

1000000

'Save order parameter configuration for restarting every ... steps'

1000

'Write pos-neg order parameter in the following file'

'final.bak'

'Saving pos-neg order parameter in the following steps(max 10;5 for

line):'

200,700,1000,3000,5000

10000,20000,50000,70000,100000

'Insert file record positive'

'final2.bak'

'Input the first name (you must input 8 characters)'

'cdsnew01'

'Input the second name (you must input 2 characters tau only 28)'

20

186

The CDS CN Fortran Program

c

c ***

c CDS 2D simulation source code (Fortran code for CN Method)

c ***

c ***

c Module section for diagonal Matrices

c ***

 module routines

 contains

 subroutine diag(NN,MM,d,deltat,nx)

 integer nx,snx,tnx,n,hnx,i,j,nstp,h,u

 double precision d, deltat,c1,c2

 real MM1(0:200,0:200)

 real MM2(0:200,0:200)

 real NN1(0:200,0:200)

 real NN2(0:200,0:200)

 real MA(0:200,0:200)

 real MB(0:200,0:200)

 real MC(0:200,0:200)

 real MD(0:200,0:200)

 real A(0:200,0:200)

 real B(0:200,0:200)

 real C(0:200,0:200)

 real, dimension(:,:), allocatable,intent(inout)::MM

 real, dimension (:,:), allocatable ,intent(inout)::NN

 nstp = nx*nx

 allocate(MM(0:nstp+1,0:nstp+1))

 allocate(NN(0:nstp+1,0:nstp+1))

 write(*,*) "First"

c**

c Laplacian weights

c**

 c1 = 1.d0/6.d0

 c2 = 1.d0/12.d0

c**

 do i=1,nx

 MM1(i,i) = -1.d0

 if (i<nx) then

 MM1(i,i+1) = c1

 MM1(i+1,i) = c1

 end if

 if (i .eq. nx) then

 MM1(1,i) = c1

 MM1(i,1) = c1

 end if

 enddo

 do i=1,nx

 MM2(i,i) = c1

 if (i<nx) then

 MM2(i,i+1) = c2

 MM2(i+1,i) = c2

 end if

 if (i .eq. nx) then

 MM2(1,i) = c2

 MM2(i,1) = c2

 end if

187

 enddo

 snx = nx

 tnx = nx*nx

 do i=1,snx

 do j=1,snx

 NN(i,j) = MM1(i,j)

 NN(i,j+snx) = MM2(i,j)

 NN((tnx-snx)+i,(tnx-snx)+j) = MM1(i,j)

 NN((tnx-snx)+i,(tnx-snx*2)+j) = MM2(i,j)

 end do

 end do

 do n = 1,nx-2

 snx = n*nx

 do i = snx+1, nx+snx

 hnx=1

 do j = (snx - nx) + 1,snx

 NN(i,j) = MM2(i-snx,hnx)

 NN(i,j+nx) = MM1(i-snx,hnx)

 NN(i,j+2*nx) = MM2(i-snx,hnx)

 hnx = hnx+1

 enddo

 enddo

 enddo

 snx = nx

 tnx = nx*nx

 do i=1,snx

 do j=1,snx

 NN(i,(tnx-snx)+j) = MM2(i,j)

 NN((tnx-snx)+i,j) = MM2(i,j)

 end do

 end do

 MA(1:nx,1:nx)=MATMUL(MM1(1:nx,1:nx),d*MM1(1:nx,1:nx))

 MB(1:nx,1:nx)=MATMUL(MM2(1:nx,1:nx),d*MM2(1:nx,1:nx))

 MC(1:nx,1:nx)=MATMUL(MM1(1:nx,1:nx),d*MM2(1:nx,1:nx))

 MD(1:nx,1:nx)=MATMUL(MM2(1:nx,1:nx),d*MM1(1:nx,1:nx))

 A(1:nx,1:nx)= MA(1:nx,1:nx)+MB(1:nx,1:nx)+MB(1:nx,1:nx)

 B(1:nx,1:nx) = MC(1:nx,1:nx)+MD(1:nx,1:nx)

 C(1:nx,1:nx) = MB(1:nx,1:nx)

 do n=1,nx

 snx = n*nx

 u=1

 do i=snx-nx+1,snx

 hnx=1

 do j=(snx-nx)+1,snx

 MM(i,j) = A(u,hnx)

 hnx=hnx+1

 end do

 u = u+1

 end do

 end do

 do n=2,nx

 snx = n*nx

 u=1

 do i=snx-nx+1,snx

 hnx=1

 do j=(snx-2*nx)+1,snx-nx

188

 MM(i,j) = B(u,hnx)

 MM(i-nx,j+nx) = B(u,hnx)

 hnx=hnx+1

 end do

 u=u+1

 end do

 end do

 do n=3,nx

 snx = n*nx

 u=1

 do i=snx-nx+1,snx

 hnx = 1

 do j=(snx-3*nx)+1,snx-2*nx

 MM(i,j) = C(u,hnx)

 MM(i-2*nx,j+2*nx) = C(u,hnx)

 hnx = hnx+1

 end do

 u=u+1

 end do

 end do

 snx = nx

 tnx = nx*nx

 do i=1,snx

 do j=1,snx

 MM(i,(tnx-snx)+j) = B(i,j)

 MM((tnx-snx)+i,j) = B(i,j)

 MM(i,(tnx-2*snx)+j) = C(i,j)

 MM((tnx-2*snx)+i,j) = C(i,j)

 MM(i+nx,(tnx-snx)+j) = C(i,j)

 MM((tnx-snx)+i,j+nx) = C(i,j)

 end do

 end do

 end subroutine diag

c ***

c Conjugate Gradient Method

c ***************** **************************

 subroutine conjgradx(ML,uu,x,tol,n,nx)

 integer n,i,j,k,e,snx,p,nx

 real alpha,beta,h,t,s,tol,sum1

 real A(0:4100,0:4100)

 real, dimension(:,:), allocatable :: ML

 real, dimension(:), allocatable :: uu

 real, dimension(:), allocatable :: x

 real, dimension(:,:), allocatable:: C

 real, dimension(:), allocatable:: r

 real, dimension(:), allocatable :: w

 real, dimension(:), allocatable :: v

 real, dimension(:), allocatable ::u

 real, dimension(:), allocatable :: l

 allocate(C(0:n+1,0:n+1))

 allocate(r(0:n+1))

 allocate(w(0:n+1))

 allocate(v(0:n+1))

 allocate(u(0:n+1))

 allocate(l(0:n+1))

 C = 0.d0

 do i=1,n

 C(i,i) = 1.d0

 enddo

189

 do i=1,n

 do j=1,n

 r(i) = uu(i)- ML(i,j)*x(j)

 end do

 end do

 if (NORM2(r) < tol) then

 return

 end if

 w(1:n) = MATMUL(C(1:n,1:n),r(1:n))

 v(1:n) = MATMUL(C(1:n,1:n),w(1:n))

 alpha = DOT_PRODUCT(w(1:n),w(1:n))

 do k=1,n

 u(1:n) = MATMUL(ML(1:n,1:n),v(1:n))

 t = alpha/DOT_PRODUCT(v(1:n),u(1:n))

 x(1:n) = x(1:n) + t*v(1:n)

 r(1:n) = r(1:n) - t*u(1:n)

 if (NORM2(r) < tol) then

 return

 end if

 w(1:n) = MATMUL(C(1:n,1:n),r(1:n))

 beta =0.d0

 beta = DOT_PRODUCT(w(1:n),w(1:n))

 s= beta/alpha

 v(1:n) = MATMUL(C(1:n,1:n),w(1:n))

 1 +s*v(1:n)

 alpha = beta

 enddo

 deallocate(C,w,v,u,l,r)

 end subroutine conjgradx

c***

 end module routines

c***

c***

c Main Program

c***

 program order_parameter

 use routines

 implicit none

 real, dimension (:,:), allocatable ::pxi

 real, dimension (:,:), allocatable ::apxi1

 real, dimension (:,:), allocatable ::f

 real, dimension (:,:), allocatable :: pxin

 real, dimension (:,:), allocatable ::map1

 double precision tau,v,u,tmp,tt

 double precision a,b,d,r,e,sh,e0,sh0,c1,c2,c3

 real, dimension (:,:), allocatable,save ::MM

 real, dimension (:,:), allocatable ::Id

190

 real, dimension (:,:), allocatable,save ::NN

 real, dimension (:,:), allocatable ::ML

 real, dimension (:,:), allocatable ::MR

 real, dimension (:), allocatable ::uu

 real, dimension (:), allocatable ::uu1

 real, dimension (:), allocatable ::x

 double precision L,alpha,beta,cond

 integer nstep,p,n,hnx,it,mx,tnx,snx,nt

 double precision eta,pi2,temp,deltat,deltat0,esse,cost,rand

c ***

c ---------Parameters for the CD simualtion------------------------

c ***

 integer i,j,k,s,nx,ny,nz,ex,ey,ez,seed,t,time,conf,ktime

 integer s1,s2,s3,s4,s5,s6,s7,s8,s9,s10

 integer everyconf,ftime,bcx,bcy,bcz,ht,R2

 real tol

 character*80 label

 character*80 finalposition,fileconf,writeconf

c**

c ----------- Parameter to record data(order parameter)------------

c**

 real delapse,dtime,t1(2)

 character*8 name1

 character*2 name2

 character*7 name3

 character*29 name4

 integer ma,esse2

c ***

c**

c File open

c**

 open(unit=98,file = 'cds.in', status='old',form='formatted')

c**

c Read input data from file CDS.IN

c**

 read(98,*) label

 read(98,*) conf

 read(98,*) label

 read(98,*) fileconf

 read(98,*) label

 read(98,*) d

 read(98,*) label

 read(98,*) a

 read(98,*) label

 read(98,*) b

 read(98,*) label

 read(98,*) r

 read(98,*) label

 read(98,*) tau

 read(98,*) label

 read(98,*) v

 read(98,*) label

 read(98,*) u

 read(98,*) label

 read(98,*) nx,ny,nz

 read(98,*) label

 read(98,*) bcx,bcy,bcz

191

 read(98,*) label

 read(98,*) deltat

 read(98,*) label

 read(98,*) time

 read(98,*) label

 read(98,*) everyconf

 read(98,*) label

 read(98,*) writeconf

 read(98,*) label

 read(98,*) s1,s2,s3,s4,s5

 read(98,*) s6,s7,s8,s9,s10

 read(98,*) label

 read(98,*) finalposition

 read(98,*) label

 read(98,*) name1

 read(98,*) label

 read(98,*) r2

 data tol /1.0e-10/

 nstep = nx*ny

 allocate (pxi(0:nx+1,0:ny+1))

 allocate (apxi1(0:nx+1,0:ny+1))

 allocate (pxin(0:nx+1,0:ny+1))

 allocate (map1(0:nx+1,0:ny+1))

 allocate (f(0:nx+1,0:ny+1))

 allocate (Id(0:nstep+1,0:nstep+1))

 allocate (ML(0:nstep+1,0:nstep+1))

 allocate (MR(0:nstep+1,0:nstep+1))

 allocate (uu(0:nstep+1))

 allocate (uu1(0:nstep+1))

 allocate (x(0:nstep+1))

 ktime=0

 do i = 1, nx

 do j =1, ny

 call random_number(temp)

 if (temp.ge.0 .and. temp.lt.0.3) then

 pxi(i,j) = 0.3d0

 else

 pxi(i,j) = -0.3d0

 endif

 enddo

 enddo

c**

c Costant numbers

c**

 pi2=2.d0*dacos(-1.d0)

 c1=1.0d0/4.0d0

 nstep = nx*nx

 ma=0

 name2=char(r2)

 write(name2,'(i2.2)') r2

c**

 call diag(NN,MM,d,deltat,nx)

 Id = 0.d0

 do i=1,nstep

192

 Id(i,i) = 1.d0

 end do

 MR(1:nstep,1:nstep) = Id(1:nstep,1:nstep)

 1 -((b*deltat)/2.d0)*Id(1:nstep,1:nstep)

 1 - (deltat/2.0)* MM(1:nstep,1:nstep)

 ML(1:nstep,1:nstep) = Id(1:nstep,1:nstep)

 1 +((b*deltat)/2.d0)*Id(1:nstep,1:nstep)

 1 + (deltat/2.0)* MM(1:nstep,1:nstep)

c**

c Now we start to run time (t) evolution

c **

c

 do t = ktime,time-1,1

c***

c This following step is to calculate

C First Laplacian (Forward Euler Method)

c APxi1 = [<< Pxi >> - Pxi]

c***

 uu=0.d0

 snx = 1

 do i=1,nx

 do j=1,nx

 uu(snx) = pxi(i,j)

 snx = snx+1

 enddo

 enddo

 uu1 = 0.d0

 uu1(1:nstep) = MATMUL(MR(1:nstep,1:nstep),uu(1:nstep))

 snx = 1

 do i=1,nx

 do j=1,nx

 apxi1(i,j) =uu1(snx)

 snx = snx+1

 enddo

 enddo

c***

c This following step is to calculate map function

c (Forward Euler method)

c***

 do j=1,ny

 do i=1,nx

 f(i,j) = (tau-a*((1-2*r)**2))*pxi(i,j)

 1 -v*(1-2*r)*(pxi(i,j)**2)-u*(pxi(i,j)**3)

 enddo

 enddo

 uu=0.d0

 uu1 = 0.d0

 snx = 1

 do i=1,nx

 do j=1,nx

 uu(snx) = f(i,j)

 snx = snx+1

 enddo

 enddo

 uu1(1:nstep) = MATMUL(NN(1:nstep,1:nstep),uu(1:nstep))

193

 snx = 1

 do i=1,nx

 do j=1,nx

 f(i,j) = (deltat/2.d0)*uu1(snx)

 snx = snx+1

 end do

 end do

 do i=1,nx

 do j=1,ny

 pxi(i,j) = apxi1(i,j)-f(i,j)

 enddo

 enddo

c***

c This following step is to calculate First Laplacian

c (Backward Euler Method)

c Pxin = [<< Pxi >> - Pxi]

c***

 x(1:nstep) = 0.d0

 uu=0.d0

 snx = 1

 do i=1,nx

 do j=1,nx

 uu(snx) = pxi(i,j)

 snx = snx+1

 enddo

 enddo

 call conjgradx(ML,uu,x,tol,nstep,nx)

 snx = 1

 do i=1,nx

 do j=1,nx

 pxin(i,j) =x(snx)

 snx = snx+1

 enddo

 enddo

c***

c This following step is to calculate map function

c (Backward Euler method)

c***

 do j=1,ny

 do i=1,nx

 f(i,j) = (tau-a*((1-2*r)**2))*pxin(i,j)

 1 -v*(1-2*r)*(pxin(i,j)**2)-u*(pxin(i,j)**3)

 enddo

 enddo

 uu=0.d0

 snx = 1

 do i=1,nx

 do j=1,nx

 uu(snx) = f(i,j)

 snx = snx+1

 enddo

 enddo

 uu1(1:nstep) = MATMUL(NN(1:nstep,1:nstep),uu(1:nstep))

 snx = 1

194

 do i=1,nx

 do j=1,nx

 f(i,j) = (deltat/2.d0)*uu1(snx)

 snx = snx+1

 end do

 end do

c**

c This following step is to calculate whole equation for Pxi(t+1,n)

c**

 snx = 1

 do i=1,nx

 do j=1,ny

 pxi(i,j) = pxin(i,j)-f(i,j)

 snx = snx+1

 enddo

 enddo

c***

c writing Pxi values in files for time steps in files

c***

 esse =(t+1)*deltat

 esse2=esse

 name3=char(esse2)

 write(name3,'(I7.7)') esse2

 name4=name1//'_pxi.'//name2//'_t'//name3//'.txt'

 if(esse .lt. 100.D0) then

 if(mod(t+1, int(10.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 write(ma,*) "#Grid", nx,ny

 do i = 1, Nx

 do j = 1, Ny

 write (ma,*) pxi(i,j)

 enddo

 enddo

 close(ma)

 endif

 endif

 if(esse .lt. 1000.D0) then

 if(mod(t+1, int(100.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 write(ma,*) "#Grid", nx,ny

 do i = 1, nx

 do j = 1, ny

 write (ma,*) pxi(i,j)

 enddo

 enddo

 close(ma)

 endif

 elseif(esse .lt. 10000.D0) then

 if(mod(t+1, int(1000.D0/deltat)) .eq. 0)then

 ma=ma+1

 open(ma,file=name4)

 write(ma,*) "#Grid", nx,ny

 do i = 1, nx

 do j = 1, ny

 write (ma,*) pxi(i,j)

 enddo

195

 enddo

 close(ma)

 endif

 elseif(esse .le. 1000000.D0) then

 if(mod(t+1, int(10000.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 write(MA,*) "#Grid", Nx,Ny

 do i = 1, Nx

 do j = 1, Ny

 write (Ma,*) pxi(i,j)

 enddo

 enddo

 close(ma)

 endif

 else

 if(mod(t+1,int(100000.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 write(MA,*) "#Grid", Nx,Ny

 do i = 1, nx

 do j = 1, ny

 write (ma,*) pxi(i,j)

 enddo

 enddo

 close(ma)

 endif

 endif

 If (esse .le. 10000000.D0) then

 if(MOD(t+1,int(1000000.D0/deltat)) .eq. 0) then

 ma=ma+1

 open(ma,file=name4)

 if ((nz.eq.1)) then

 write(ma,*) "#Grid", nx,ny

 do i = 1, nx

 do j = 1, ny

 write (ma,*) pxi(i,j)

 enddo

 enddo

 close(ma)

 endif

 endif

 If(ma.gt.80) then

 ma=0

 endif

 endif

 enddo

 end

c***********************End of program**********************

196

Appendix G

Two Order Parameter Systems CDS Code

'New simulation (0) or continue a previous one (1)'

0

'Input filename containing starting atomic configuration (max 80 c)

for 1'

'restartfile.dat'

'Inserire D'

0.5d0

'Inserire A'

1.5d0

'Inserire B'

0.02d0

'Inserire f'

0.48d0

'Inserire Tau'

0.30d0

'Inserire v'

1.5d0

'Inserire u'

0.5d0

'Box dimension: 0 for 2D and 1 for 3D'

0

'Inseririre N mesh'

128,128,1

'Insert the size of the noise'

0.0d0

'Insert the electric field'

0.003d0

'Insert the amplitude of the shear'

0.0d0

'Insert the omega of the shear'

0.0d0

'Insert the neutral wall (0,0,0)=(x,y,z) ex:1,0,0'

0,0,0

'Insert the deltat'

0.5d0

'Total TimeSteps'

2050000

'Save order parameter every step...'

10,100,1000,10000,100000,1000000

'Save order parameter configuration for restarting every ... steps'

100

'Write pos-neg order parameter in the following file'

'final.bak'

'Saving pos-neg order parameter in the following steps(max 10;5 for

line):'

200,700,1000,3000,5000

10000,20000,50000,70000,100000

'Inserire file record positive'

'final2.bak'

'Input the first name (you must input 8 characters)'

'newcds01'

'cc1, Ohta (2.2)'

1.0d0

'cc2, Ohta (2.2)'

0.5d0

'b1, Ohta (2.3), (2.4a), (2.4b)'

197

0.07d0

'b2, Ohta (2.3)'

0.2d0

'b3, Ohta (2.3)'

0.0d0

'b4, Ohta (2.3)'

0.0d0

'alpha, Ohta (2.6a)'

0.02d0

'beta, Ohta (2.6b)'

0.0d0

'A1 for tanh, Ohta (p 52 III)'

1.3d0

'A2 for tanh, Ohta (p 52 III)'

1.1d0

'pxi_c, eta, critical point, input positive value instead of negative'

0.0d0

'Average phi'

0.0d0

'Average pxi - not needed, set pxi_c instead'

-0.2d0

198

c **

c Here the Two order parameter source code is presented

c which was used for both the 2D and 3D simulations. Only the

c changes for either dimension can be made in the IN file given

c above for this system.

c **

 program order_parameter

 implicit none

 real, dimension (:,:,:), allocatable :: pxi

 real, dimension (:,:,:), allocatable :: pxi0

 real, dimension (:,:,:), allocatable :: zxi, zxi2

 real, dimension (:,:,:), allocatable :: apxi1

 real, dimension (:,:,:), allocatable :: aapxi1

 real, dimension (:,:,:), allocatable :: bapxi1

 real, dimension (:,:,:), allocatable :: capxi1

 real, dimension (:,:,:), allocatable :: apxi2

 real, dimension (:,:,:), allocatable :: aapxi2

 real, dimension (:,:,:), allocatable :: bapxi2

 real, dimension (:,:,:), allocatable :: capxi2

 real, dimension (:,:,:), allocatable :: f

 real, dimension (:,:,:), allocatable :: ff

 real, dimension (:,:,:), allocatable :: map1

 real, dimension (:,:,:), allocatable :: mxi1, mxi2

 real, dimension (:), allocatable :: z

 double precision tau,v,u,omega,omega0

 double precision a,b,d,r,e,sh,e0,sh0,c1,c2,c3

c ***

c --------------Random generator for the noise---------------------

c ***

 double precision caso1,caso2,caso3,caso4,caso5,caso6,caso7

 double precision caso8,caso9

 real, dimension (:,:,:), allocatable :: csi1,csi2,csi3

 double precision sumvx,sumvy,sumvz,vmax1,vmax2,vmax3

c ***

c -------------Boudary condiction and shear flow-------------------

c ***

 double precision eta,pi2,temp,deltat,deltat0,esse,cost,rand

 integer, dimension (:), allocatable :: upx, upy, upz

 integer, dimension (:), allocatable :: downx, downy, downz

 integer, dimension (:), allocatable :: m, m1

c ***

c ----------INTEGER for random generator for the noise-------------

c ***

 real, dimension (:,:,:), allocatable :: a1, a2, a3

 integer flag

c ***

c ---------Parameters for the CD simualtion------------------------

c ***

 integer i,j,k,s,nx,ny,nz,ex,ey,ez,seed,t,time,conf,ktime

 integer s1,s2,s3,s4,s5,s6,s7,s8,s9,s10

 integer f1,f2,f3,f4,f5,f6

 integer everyconf,ftime,bcx,bcy,bcz,ht,r2

 character*80 label

 character*80 finalposition,fileconf,writeconf

c**

c ----------- Parameter to record data(order parameter)------------

c**

199

 integer restart

 character*80 restartfile1

 character*80 restartfile2

 real delapse,dtime,t1(2)

 character*8 name1

 character*7 name3

 character*29 name4

 character*29 name5

 integer ma, ma2, esse2, simdim

 real, dimension (:,:,:), allocatable :: phi

 real, dimension (:,:,:), allocatable :: aphi1

 real, dimension (:,:,:), allocatable :: aaphi1

 real, dimension (:,:,:), allocatable :: baphi1

 real, dimension (:,:,:), allocatable :: caphi1

 real, dimension (:,:,:), allocatable :: map2

 real, dimension (:,:,:), allocatable :: aphi2

 real, dimension (:,:,:), allocatable :: aaphi2

 real, dimension (:,:,:), allocatable :: baphi2

 real, dimension (:,:,:), allocatable :: caphi2

c cc1 will be cc1 / 2 (save computing time)

c cc2 will be cc2 / 2 (save computing time)

 double precision cc1, cc2, bb1, bb2, bb3, bb4, aa1, aa2

 double precision alpha, beta, gamma, psic, phim, pxim

c ***

 open(unit=98,file = 'cds.in',status='old',form='formatted')

c **

c **

c Read input data from file CDS.IN

c **

 read(98,*) label

 read(98,*) conf

 read(98,*) label

 read(98,*) fileconf

 read(98,*) label

 read(98,*) d

 read(98,*) label

 read(98,*) a

 read(98,*) label

 read(98,*) b

 read(98,*) label

 read(98,*) r

200

 read(98,*) label

 read(98,*) tau

 read(98,*) label

 read(98,*) v

 read(98,*) label

 read(98,*) u

 read(98,*) label

 read(98,*) simdim

 read(98,*) label

 read(98,*) nx,ny,nz

 read(98,*) label

 read(98,*) eta

 read(98,*) label

 read(98,*) e

 read(98,*) label

 read(98,*) sh

 read(98,*) label

 read(98,*) omega

 read(98,*) label

 read(98,*) bcx,bcy,bcz

 read(98,*) label

 read(98,*) deltat

 read(98,*) label

 read(98,*) time

 read(98,*) label

 read(98,*) f1,f2,f3,f4,f5,f6

 read(98,*) label

 read(98,*) everyconf

 read(98,*) label

 read(98,*) writeconf

 read(98,*) label

 read(98,*) s1,s2,s3,s4,s5

 read(98,*) s6,s7,s8,s9,s10

 read(98,*) label

 read(98,*) finalposition

 read(98,*) label

 read(98,*) name1

 read(98,*) label

 read(98,*) cc1

201

 read(98,*) label

 read(98,*) cc2

 read(98,*) label

 read(98,*) bb1

 read(98,*) label

 read(98,*) bb2

 read(98,*) label

 read(98,*) bb3

 read(98,*) label

 read(98,*) bb4

 read(98,*) label

 read(98,*) alpha

 read(98,*) label

 read(98,*) beta

 read(98,*) label

 read(98,*) aa1

 read(98,*) label

 read(98,*) aa2

 read(98,*) label

 read(98,*) psic

 read(98,*) label

 read(98,*) phim

 read(98,*) label

 read(98,*) pxim

 open(90, file = finalposition)

c **

c Allocate Arrays

c **

 allocate (pxi(0:nx+1,0:ny+1,0:nz+1))

 allocate (zxi(0:nx+1,0:ny+1,0:nz+1))

 allocate (zxi2(0:nx+1,0:ny+1,0:nz+1))

 allocate (apxi1(0:nx+1,0:ny+1,0:nz+1))

 allocate (aapxi1(0:nx+1,0:ny+1,0:nz+1))

 allocate (bapxi1(0:nx+1,0:ny+1,0:nz+1))

 allocate (capxi1(0:nx+1,0:ny+1,0:nz+1))

 allocate (apxi2(0:nx+1,0:ny+1,0:nz+1))

 allocate (aapxi2(0:nx+1,0:ny+1,0:nz+1))

 allocate (bapxi2(0:nx+1,0:ny+1,0:nz+1))

 allocate (capxi2(0:nx+1,0:ny+1,0:nz+1))

 allocate (phi(0:nx+1,0:ny+1,0:nz+1))

 allocate (aphi1(0:nx+1,0:ny+1,0:nz+1))

 allocate (aaphi1(0:nx+1,0:ny+1,0:nz+1))

 allocate (baphi1(0:nx+1,0:ny+1,0:nz+1))

202

 allocate (caphi1(0:nx+1,0:ny+1,0:nz+1))

 allocate (aphi2(0:nx+1,0:ny+1,0:nz+1))

 allocate (aaphi2(0:nx+1,0:ny+1,0:nz+1))

 allocate (baphi2(0:nx+1,0:ny+1,0:nz+1))

 allocate (caphi2(0:nx+1,0:ny+1,0:nz+1))

 allocate (f(0:nx+1,0:ny+1,0:nz+1))

 allocate (ff(0:nx+1,0:ny+1,0:nz+1))

 allocate (map1(0:nx+1,0:ny+1,0:nz+1))

 allocate (map2(0:nx+1,0:ny+1,0:nz+1))

 allocate (mxi1(0:nx+1,0:ny+1,0:nz+1))

 allocate (mxi2(0:nx+1,0:ny+1,0:nz+1))

 allocate (csi1(0:nx+1,0:ny+1,0:nz+1))

 allocate (csi2(0:nx+1,0:ny+1,0:nz+1))

 allocate (csi3(0:nx+1,0:ny+1,0:nz+1))

 allocate (a1(0:nx+1,0:ny+1,0:nz+1))

 allocate (a2(0:nx+1,0:ny+1,0:nz+1))

 allocate (a3(0:nx+1,0:ny+1,0:nz+1))

 allocate (upx(nx))

 allocate (upy(ny))

 allocate (upz(nz))

 allocate (downx(nx))

 allocate (downy(ny))

 allocate (downz(nz))

 allocate (m(nx))

 allocate (z(nx))

 allocate (m1(nx))

c **

c These following steps are to create randomly initial values

c **

 flag=0

 if (conf.eq.1) then

 open (77,file=fileconf,status='old')

 do i=1,nx

 do j=1,ny

 do k=1,nz

 read(77,*) pxi(i,j,k)

 enddo

 enddo

 enddo

 else

 ktime=0

 do i = 1, nx

 do j =1, ny

 do k= 1, nz

 call random_number(temp)

 if (temp.GE.0.0d0 .and. temp.LT.0.5d0) then

 pxi(i,j,k) = -0.19d0

 else

 pxi(i,j,k) = -0.21d0

 endif

 call random_number(temp)

 if (temp.ge.0.0d0 .and. temp .lt. 0.5d0) then

 phi(i,j,k) = 0.01d0

 else

203

 phi(i,j,k) = -0.01d0

 endif

 enddo

 enddo

 enddo

 endif

c

c ***

c -----------------Costant numbers---------------------------------

c ***

 if (simdim.eq.1) then

c For 3D

 c1 = 6.0d0/80.d0

 c2 = 3.0d0/80.0d0

 c3 = 1.0d0/80.0d0

 else

 if (simdim.eq.0) then

c For 2D

 c1 = 1.0d0/6.0d0

 c2 = 1.0d0/12.0d0

 c3 = 0.0d0

 endif

 endif

c For control unit file I/O

 ma= 0

 ma2 = 40

c **

c These following steps are to take boundary conditions into

c account

c **

c **************For x ***

c ***

 If (nx.eq.1) then

 do s=1 , nx

 upx(s) = s+1

 downx(s) = s-1

 enddo

 do k=1,nz

 do j=1,ny

 do i=1,nx

 pxi(downx(i),j,k)=0.0d0

 pxi(upx(i),j,k)=0.0d0

 map1(downx(i),j,k)=0.0d0

 map1(upx(i),j,k)=0.0d0

 phi(downx(i),j,k)=0.0d0

 phi(upx(i),j,k)=0.0d0

 map2(downx(i),j,k)=0.0d0

 map2(upx(i),j,k) = 0.0d0

 enddo

 enddo

 enddo

 if (simdim.eq.1) then

204

c For 3D

 c1 = 6.0d0/80.d0

 c2 = 3.0d0/80.0d0

 c3 = 1.0d0/80.0d0

 else

 if (simdim.eq.0) then

c For 2D

 c1 = 1.0d0/6.0d0

 c2 = 1.0d0/12.0d0

 c3 = 0.0d0

 endif

 endif

 else

 do s=1,nx

 upx(s) = s+1

 downx(s) = s-1

 enddo

 if(bcx.eq.0) then

 upx(nx) = 1

 downx(1) = nx

 else

 upx(nx) =nx

 downx(1) = 1

 end if

 end if

c ***

c ************ FOR y **********************************

c ***

 if (ny.eq.1) then

 do s=1 , ny

 upy(s) = s+1

 downy(s) =s-1

 enddo

 do k=1,nz

 do j=1,ny

 do i=1,nx

 pxi(i,downy(j),k)=0.0d0

 pxi(i,upy(j),k)=0.0d0

 map1(i,downy(j),k)=0.0d0

 map1(i,upy(j),k)=0.0d0

 phi(i,downy(j),k)=0.0d0

 phi(i,upy(j),k)=0.0d0

 map2(i,downy(j),k)=0.0d0

 map2(i,upy(j),k) = 0.0d0

 enddo

 enddo

 enddo

 if (simdim.eq.1) then

c For 3D

 c1 = 6.0d0/80.d0

 c2 = 3.0d0/80.0d0

 c3 = 1.0d0/80.0d0

 else

205

 if (simdim.eq.0) then

c For 2D

 c1 = 1.0d0/6.0d0

 c2 = 1.0d0/12.0d0

 c3 = 0.0d0

 endif

 endif

 else

 do s=1 , ny

 upy(s) = s+1

 downy(s) = s-1

 enddo

 if(bcy.eq.0) then

 upy(ny) = 1

 downy(1) = ny

 else

 upy(ny) = ny

 downy(1) = 1

 endif

 endif

c ***

c ************ FOR z **********************************

c ***

 if (nz.eq.1) then

 do s=1 , nz

 upz(s) = s+1

 downz(s) =s-1

 enddo

 do k=1,nz

 do j=1,ny

 do i=1,nx

 pxi(i,j,upz(k))=0.0d0

 pxi(i,j,downz(k))=0.0d0

 map1(i,j,upz(k))=0.0d0

 map1(i,j,downz(k))=0.0d0

 phi(i,j,upz(k))=0.0d0

 phi(i,j,downz(k))=0.0d0

 map2(i,j,downz(k))=0.0d0

 map2(i,j,upz(k)) = 0.0d0

 enddo

 enddo

 enddo

 if (simdim.eq.1) then

c For 3D

 c1 = 6.0d0/80.d0

 c2 = 3.0d0/80.0d0

 c3 = 1.0d0/80.0d0

 else

 if (simdim.eq.0) then

c For 2D

 c1 = 1.0d0/6.0d0

 c2 = 1.0d0/12.0d0

 c3 = 0.0d0

 endif

 endif

206

 else

 do s=1 , nz

 upz(s) = s+1

 downz(s) = s-1

 end do

 if(bcz.Eq.0) then

 upz(nz) = 1

 downz(1) = nz

 else

 upz(nz) = nz

 downz(1) = 1

 end if

 end if

c **

 delapse=dtime(t1)

c **

 if (sh.ne.0.0d0) then

 do i=1,nx

 z(i)=0.0d0

 enddo

 endif

c

**

c Now we start to run time (t) evolution

c

**

 do t =ktime, time-1,1

 write(*,*) 'T',t

c

**

c APxi1 = [<< Pxi >> - Pxi]

c **

c

 do k=1,nz

 do j=1,ny

 do i=1,nx

 aapxi1(i,j,k)=c1*(pxi(upx(i),j,k)

 1 + pxi(downx(i),j,k)

 1 + pxi(i,upy(j),k)+pxi(i,downy(j),k)

 1 + pxi(i,j,upz(k))+pxi(i,j,downz(k)))

c ***

 bapxi1(i,j,k)=c2*(pxi(downx(i),upy(j),k)

 1 +pxi(downx(i),downy(j),k)

 1 +pxi(upx(i),upy(j),k)+pxi(upx(i),downy(j),k)

 1 +pxi(i,downy(j),upz(k))+pxi(i,downy(j),downz(k))

 1 +pxi(i,upy(j),upz(k))+pxi(i,upy(j),downz(k))

 1 +pxi(downx(i),j,upz(k))+pxi(downx(i),j,downz(k))

 1 +pxi(upx(i),j,upz(k))+pxi(upx(i),j,downz(k)))

c ***

 capxi1(i,j,k)=c3*(pxi(downx(i),downy(j),upz(k))

 1 +pxi(downx(i),upy(j),upz(k))

 1 +pxi(downx(i),downy(j),downz(k))

 1 +pxi(downx(i),upy(j),downz(k))

207

 1 +pxi(upx(i),downy(j),upz(k))

 1 +pxi(upx(i),upy(j),upz(k))

 1 +pxi(upx(i),downy(j),downz(k))

 1 +pxi(upx(i),upy(j),downz(k)))

c ***

apxi1(i,j,k)=aapxi1(i,j,k)+bapxi1(i,j,k)+capxi1(i,j,k)

c ***

 enddo

 enddo

 enddo

 do k=1, nz

 do j=1, ny

 do i = 1,nx

 aaphi1(i,j,k) = c1*(phi(upx(i),j,k)

 1 +phi(downx(i),j,k)

 1 +phi(i,upy(j),k) + phi(i,downy(j),k)

 1 +phi(i,j,upz(k)) + phi(i,j,downz(k)))

c **

 baphi1(i,j,k) = c2*(phi(downx(i),upy(j),k)

 1 +phi(downx(i), downy(j),k)

 1 +phi(upx(i),upy(j),k)+phi(upx(i),downy(j),k)

 1 +phi(i,downy(j),upz(k))+phi(i,downy(j),downz(k))

 1 +phi(i,upy(j),upz(k))+phi(i,upy(j),downz(k))

 1 +phi(downx(i),j,upz(k))+phi(downx(i),j,downz(k))

 1 +phi(upx(i),j,upz(k))+phi(upx(i),j,downz(k)))

c ***

 capxi1(i,j,k)=c3*(phi(downx(i),downy(j),upz(k))

 1 +phi(downx(i),upy(j),upz(k))

 1 +phi(downx(i),downy(j),downz(k))

 1 +phi(downx(i),upy(j),downz(k))

 1 +phi(upx(i),downy(j),upz(k))

 1 +phi(upx(i),upy(j),upz(k))

 1 +phi(upx(i),downy(j),downz(k))

 1 +phi(upx(i),upy(j),downz(k)))

C ***

aphi1(i,j,k)=aaphi1(i,j,k)+baphi1(i,j,k)+caphi1(i,j,k)

 enddo

 enddo

 enddo

c This following step is to calculate

 do i=1,nx

 do j =1,ny

 do k =1,nz

 map1(i,j,k) = -cc1*(apxi1(i,j,k)-pxi(i,j,k))

 1 -aa1*tanh(pxi(i,j,k))+pxi(i,j,k)

 1 +bb1*phi(i,j,k)

 1 -0.5d0*bb2*phi(i,j,k)**2

 1 +bb3*pxi(i,j,k)*(phi(i,j,k)**2)

208

 enddo

 enddo

 enddo

 do i=1,nx

 do j=1,ny

 do k=1,nz

 map2(i,j,k) =-cc2*(aphi1(i,j,k)-phi(i,j,k))

 1 -aa2*tanh(phi(i,j,k)) + phi(i,j,k)

 1 +bb1*pxi(i,j,k)

 1 -bb2*pxi(i,j,k)*phi(i,j,k)

 1 +bb3*phi(i,j,k)*(pxi(i,j,k)**2)

 enddo

 enddo

 enddo

c **

c This following step is to take into account the boundary

c conditions

c **

c*******for Map(i,j) which will be needed for next step.*******

 do k=1,nz

 do j=1,ny

 do i=1,nx

 aapxi2(i,j,k)=c1*(map1(upx(i),j,k)

 1 +map1(downx(i),j,k)

 1 +map1(i,upy(j),k)+map1(i,downy(j),k)

 1 +map1(i,j,upz(k))+map1(i,j,downz(k)))

 bapxi2(i,j,k)=c2*(map1(downx(i),upy(j),k)

 1 +map1(downx(i),downy(j),k)

 1 +map1(upx(i),upy(j),k)+map1(upx(i),downy(j),k)

 1 +map1(i,downy(j),upz(k))+map1(i,downy(j),downz(k))

 1 +map1(i,upy(j),upz(k))+map1(i,upy(j),downz(k))

 1 +map1(downx(i),j,upz(k))+map1(downx(i),j,downz(k))

 1 +map1(upx(i),j,upz(k))+map1(upx(i),j,downz(k)))

 capxi2(i,j,k)=c3*(map1(downx(i),downy(j),upz(k))

 1 +map1(downx(i),upy(j),upz(k))

 1 +map1(downx(i),downy(j),downz(k))

 1 +map1(downx(i),upy(j),downz(k))

 1 +map1(upx(i),downy(j),upz(k))

 1 +map1(upx(i),upy(j),upz(k))

 1 +map1(upx(i),downy(j),downz(k))

 1 +map1(upx(i),upy(j),downz(k)))

apxi2(i,j,k)=aapxi2(i,j,k)+bapxi2(i,j,k)+capxi2(i,j,k)

 enddo

 enddo

 enddo

 do k=1,nz

 do j=1,ny

 do i=1,nx

209

 aaphi2(i,j,k) = c1*(map2(upx(i),j,k)

 1 +map2(downx(i),j,k)

 1 +map2(i,upy(j),k) + map2(i,downy(j),k)

 1 +map2(i,j,upz(k)) + map2(i,j,downz(k)))

 baphi2(i,j,k)=c2*(map2(downx(i),upy(j),k)

 1 +map2(downx(i),downy(j),k)

 1 +map2(upx(i),upy(j),k)+map2(upx(i),downy(j),k)

 1 +map2(i,downy(j),upz(k))+map2(i,downy(j),downz(k))

 1 +map2(i,upy(j),upz(k))+map2(i,upy(j),downz(k))

 1 +map2(downx(i),j,upz(k))+map2(downx(i),j,downz(k))

 1 +map2(upx(i),j,upz(k))+map2(upx(i),j,downz(k)))

 caphi2(i,j,k)=c3*(map2(downx(i),downy(j),upz(k))

 1 +map2(downx(i),upy(j),upz(k))

 1 +map2(downx(i),downy(j),downz(k))

 1 +map2(downx(i),upy(j),downz(k))

 1 +map2(upx(i),downy(j),upz(k))

 1 +map2(upx(i),upy(j),upz(k))

 1 +map2(upx(i),downy(j),downz(k))

 1 +map2(upx(i),upy(j),downz(k)))

aphi2(i,j,k)=aaphi2(i,j,k)+baphi2(i,j,k)+caphi2(i,j,k)

 enddo

 enddo

 enddo

 do k=1,nz

 do j=1,ny

 do i=1,nx

 pxi(i,j,k) = pxi(i,j,k)+deltat*

 1 (-map1(i,j,k)+apxi2(i,j,k))

 enddo

 enddo

 enddo

 do k=1,nz

 do j=1,ny

 do i=1,nx

 phi(i,j,k) = phi(i,j,k) + deltat*(-map2(i,j,k)

 1 +aphi2(i,j,k)

 1 -alpha*(phi(i,j,k)-phim))

 enddo

 enddo

 enddo

c**

c Customized output writing output to files is in the same way

c as given in Appendix A

c**

