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Abstract 
 
 
Bacteria can cause many different types of infections. Virulence factors e.g. 

adherence proteins, biofilm formation, endotoxins and exotoxins allow invasion 

by bacteria and cause infections such as respiratory, urinary, and intestinal and 

blood stream infections. If left untreated they can lead to a condition known as 

sepsis. Sepsis is a whole body inflammatory response that can be fatal. 

Exotoxins, such as pore forming toxins are one of the virulence factors secreted 

by bacteria that are responsible for causing sepsis. Current treatment and 

management of sepsis includes surgical drainage of fluids, blood transfusions 

and administration of antibiotics. Sepsis is a rapid onset with an increased 

mortality rate of 8% per hour. This means that prompt treatment is imperative and 

due to the increase in antibiotic resistance, treatment has become more difficult.   

 

The aim of this study is to develop biomimetic nanosponges from mammalian 

erythrocyte ghosts, as a potential treatment for toxin related sepsis. 

Nanosponges were developed using ovine and leporine blood. Ovine and 

leporine blood were treated with hypotonic buffer to create erythrocyte ghosts 

and then were subjected to sonication to produce erythrocyte vesicles of non-

uniform size. Vesicles were then serially extruded through a 400 nm and 100 nm 

polycarbonate membranes.  Nanosponges were prepared by fusing poly (D, L-

lactic-co-glycolic acid) (PLGA) cores with ovine erythrocyte vesicles. This 

developed two different types of nanosponges. One, which was coated by ovine 

erythrocyte membranes and the other with leporine erythrocyte membranes.  

Ovine blood was chosen as a model to study sepsis as ovine erythrocytes were 

the most susceptible to streptolysin-O lysis. Moreover, adsorption studies in vitro 

showed that ovine nanosponges were able to adsorb streptolysin-O at 37°C as 

the system that contained the nanosponges had the lowest Hb release at 0.005 

g/dl (± 0.005) compared to the system containing just the toxin and erythrocytes 

(0.23 g/dl, ±0.01). The nanosponges were also able to adsorb the streptolysin-O 

at 40°C, as there was no Hb release in the system containing nanosponges. 

Similarly, leporine blood was also chosen as a model to study sepsis treatment 

as leporine erythrocytes were the most susceptible to α-haemolysin lysis. 

However, adsorption studies in vitro showed that leporine nanosponges were not 
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able to adsorb all the toxin present in the system, as at 37°C, the concentration 

of Hb released, in the system containing nanosponges was 0.265 g/dl (± 0.02). 

At 40°C, the concentration of Hb released in the system containing the 

nanosponges was significantly greater compared to nanosponges incubated at 

37°C. These results identify ovine nanosponges as novel therapeutic model to 

test adsorption of cholesterol binding toxins such as streptolysin-O. 
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1 Synthesis of biomimetic nanosponges from mammalian 
erythrocytes  

 

1.1 A brief history of the early stages of medicine 
 

The birth of medicine began with the ancient Egyptians. Much of Egyptian 

medicine relied on magic.  These doctors used a range of drugs obtained from 

herbs and minerals. They were either drunk with beer or wine, or at times mixed 

with dough to form pills. They were the creators of embalming and treated 

exposed wounds with honey. Egyptian surgery was limited to treating wounds 

and broken bones.  Modern medicine came into existence from ancient Greece. 

They carefully observed symptoms and treated patients using herbal remedies. 

They believed the body was made up of four humors (pools of liquids inside the 

body). If a person had too much of it they became ill; this theory was known as 

the four humors, which became quite popular in the field of medicine (Lambert, 

2016). 

The Romans conquered Greece and eventually treated patients using the 

concept of opposites. So if a patient had a cold they were asked to eat a hot 

pepper. During this time, a Roman scientist suggested that tiny animals cause 

disease, which were carried through the air and entered the body through the 

nose and mouth.  They also invented the concept of sanitation, as they saw 

people living near the swamps contracted malaria; this gave them the idea to 

drain the swamps.  They diagnosed certain diseases by examining a patient’s 

urine. The colour taste and smell of urine was important (Lambert, 2016). The 

16th-18th century was an important era for science as there were many 

discoveries and improvements to existing theories (Table 1). 
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Table 1. Major discoveries made in the field of medicine and biology from the 

16th-20th Century  

Century Inventor Major discovery 
16th  Girolamo 

Fracastoro 
1546- Published a book, which suggested that 
infectious diseases were caused by disease 
seeds 

16th  Andreas Vesalius Published a book called Fabric of the human 
body, contained accurate diagrams of the 
Human body. 

16th Ambroise Pare Invented a mixture of egg whites, rose oil and 
turpentine, to treat wounds 

17th  Antoine Van 
Leeuwenhoek 

Invented the Microscope and the first microbial 
organisms were observed 

17th Robert Hooke Discovered the structure of a cell 
17th Santorio He invented the medical thermometer 
18th  James Lind Discovered the treatment for scurvy (vitamin c 

deficiency) 
19th  Rene Laennec Invented the stethoscope 
19th John Snow Discovered that cholera was transmitted by 

water 
19th Louis Pasteur Theorised that microscopic organisms cause 

disease (germ theory of disease), created a 
vaccine for anthrax and rabies and invented 
Pasteurisation.  

20th  Alexander Fleming Discovered the first broad-spectrum antibiotic 
known as penicillin.  

20th Paul Ehrlich  Synthesized Salvarsan which was the 
treatment for syphilis 

 

 From the 19th century, the field of medicine has improved at an incredible rate. 

The discovery of antibiotics, anti-cancer drugs, asepsis, transplant surgeries and 

various other forms of treatment has allowed humans to survive life-threatening 

diseases.  Yet, there are still diseases that cannot be treated, which has allowed 

traditional medicine to move into the new direction of using nanomedicine 

(Lambert, 2016).    

1.2 Birth of Nanomedicine 
 

The introduction to the field of nanomedicine began in 1959 after Richard 

Feynman’s talk on the concepts of nanotechnology entitled “There is Plenty of 

Room at the Bottom" at an American Physical Society meeting at Caltech on 

December 29, 1959. With the development of the transmission electron 

microscope and field ion microscopy, he envisioned that man would one day be 

https://en.wikipedia.org/wiki/American_Physical_Society
https://en.wikipedia.org/wiki/California_Institute_of_Technology
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able to control and manipulate things on a nanoscale level. He stated, “It would 

be interesting in surgery if you could swallow the surgeon. You put the 

mechanical surgeon into the blood vessel and it goes into the heart and looks 

around. It finds out which valve is the faulty one and takes a little knife and slices 

it out” (Feynman, 1960). After this speech, in 1991 a book titled “The Future. The 

Nanotechnology Revolution” was published in which the term nanomedicine was 

used for the first time.  

This was the initial birth of nanomedicine, with the introduction of using bottom 

up and top down approaches to synthesize nanoparticles. The Literature during 

this time period on cell constituents (Bentivoglio, 1999), intra and intercellular 

processes, cellular communication (Mazzarello, 1999), advances in 

biotechnology and biochemistry aided in the production of nanoparticles. In 1960, 

Peter Paul Speiser developed the first nanoparticles, which was used for targeted 

drug therapy. Since this discovery there has be a lot of research on developing 

various carrier systems.  At the end of the 20th century, nanoparticles were 

modified for the transport of DNA fragments into cells with the aid of antibodies 

(Krukemeyer et al., 2015). Since then there has been a surge of publications in 

this area. The publications have increased from 10 articles in 1990 to 1200 

articles in 2004, indicating an increasing interest in nanomedicine (Wagner et al., 

2006).   

1.3 Conventional versus nanomedicine 
 

Conventional medicine has been used to treat diseases in the past and is still 

being used treat diseases like cancer, infections, inflammatory disorders and 

neuronal disorders. Still, a significant amount of drugs receiving approvals have 

poor biopharmaceutical characteristics. A study stated that 40% of Food and 

Drug administration (FDA) approved drugs and 90% of the drugs under clinical 

trials are poorly soluble drugs. They suffer from low permeability, rapid clearance 

by the body and toxicity to the cells of the body (Kalepu and Nekkanti, 2015).  

This study has shown that some conventional drugs are not sufficient to achieve 

the desired therapeutic effect. So, drugs are now being modified into carrier 

systems to achieve a better pharmaceutical profile. This is where nanomedicine 

plays a big role. Water insoluble drugs can be encapsulated into the hydrophobic 

domain of carrier systems such as micelles, polymeric nanoparticles and 
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liposomes. This enables the drug to be carried by a system that has a hydrophilic 

layer, making drug delivery easily achievable. The size of these systems, provide 

an opportunity for targeting tumours via the enhanced permeation and retention 

effect. The hydrophilic coating makes them less susceptible to clearance by the 

immune system, leading to a longer circulation time. These carriers can also be 

modified with ligands or proteins that allow for therapeutic targeting. Interestingly 

the application of nanocarriers extends to diagnostics as these carriers have been 

modified with imaging contrast agents that selectively target certain cancer cells 

and can be visualised using techniques such as magnetic resonance imaging 

(MRI) (Ventola, 2012). Since this is a developing field, traditional medicine is still 

preferred over nanomedicine. 

1.4 Introduction 
 

1.4.1 Nanomedicine and its impact on therapeutic research  
 

The emergence of using nanoparticles as drug delivery systems has made a 

difference in the field of nanomedicine. These systems have been used to treat 

cancer, asthma as well as bacterial infections (Hu et al., 2014). Nanotherapeutic 

models take various different structural forms. They include nanoshells, carbon 

nanotubes, quantum dots, polymeric nanoparticles and lipid derived 

nanoparticles (Jaishree and Gupta, 2012).  

Recently, there has been interest in research around lipid and polymeric systems, 

as therapeutic models for treating cancer and bacterial infections. The reason 

behind this is due to their biocompatibility and biodegradability in the human body. 

Several types of polymers have been used in this field such as poly (lactic acid) 

(PLA), poly (D, L-lactic-co-glycolic acid) (PLGA), and poly(caprolactone) (PCL). 

These polymers are all FDA approved for the use of developing therapeutic 

nanocarriers (Kumari et al., 2010).  Lipid systems are also used for the same 

application as polymeric systems. However, these systems have been chosen 

for their stealth function. They comprise of particular lipids, as found in the human 

body making detection by immune cells difficult. These systems include 

nanocarriers such as liposomes, nanoerythrosomes and micelles (Fang et al., 

2012). There have been many modifications to these systems from which a new 

subcategory of nanocarriers have emerged. These are biomimetic nanoparticles.  
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Polymeric nanoparticles are susceptible to recognition and degradation by 

immune cells (Kumari et al., 2010). This has led to the development of biomimetic 

strategies, as their stealth function have the ability to bypass the immune system. 

Biomimetic nanotherapeutics can mimic the cells biological characteristics, as the 

structure of the system is designed whereby the particle has a polymeric core, 

coated by a lipid membrane. These particles are preferred in modern day 

nanomedicine as they can be fabricated with surface features that are specific for 

targeting cells or tissues (Meyer et al., 2015). Current research has shown that 

biomimicry include particles such as erythrocyte membrane particles with a PLGA 

core (Hu et al., 2011) , magnetic core (Antonelli et al., 2011) and PLGA cores 

enveloped by a white blood cell membranes (Krishnamurthy et al., 2016) .This 

area of nanomedicine is of particular interest as limited research has been 

conducted.      

 

1.4.2 Polymeric nanoparticles and their application in research and 
industry 

 

Challenges in the field of nanomedicine revolve around creating a system that is 

biocompatible, degradable, and non-toxic to the cells of the body, as cellular 

responses are critically different at the nanoscale level. Most importantly, the 

system needs to be stable as Tiwari et al. (2012) stated that unstable engineered 

nanomaterials may cause a haemostatic imbalance and interfere with the 

coagulation system, causing blood clots. This led to synthesising polymeric 

nanoparticles (Duncan and Vicent, 2013). These particles have revolutionised 

how the field of medicine is approached. Current polymeric nanotherapeutics 

include polymeric drugs, block co-polymeric micelles and biomimetic 

nanoparticles. The primary use of polymeric nanoparticles was of the non-

biodegradable kind such as poly(methyl methacrylate) (Shastri, 2003).   These 

sort of polymers were used for various applications such as wound healing, drug 

delivery and anti-microbial activity. it wasn’t however, the best option as they lead 

to inflammatory and toxic reactions in the human body. This led to research in 

the field of biodegradable polymers (Banik et al., 2016) 
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1.4.2.1 Polymers used as drug delivery systems 
 

The polymers used for drug delivery are biodegradable polymers such as PLGA, 

PLA and PCL. Over the years several morphologies of biodegradable polymers 

have been used such as nanofibers and nanoparticles (Ahmad et al., 2014). 

Many studies show controlled drug release profiles by polymeric nanoparticles. 

Cheng et al. (2011) indicated that cisplatin loaded PLGA nanoparticles, had a 

controlled drug release and were effective against ovarian cancer cells. Another 

study showed that docetaxel loaded nanoparticles were effective against different 

types of tumours and were able to release the drug in a controlled fashion (Zhao 

et al., 2013). Based on the potential of using these particles for controlled drug 

release, companies such as Bind Therapeutics, Access Pharmaceuticals and 

Abraxis have developed polymeric nanoparticles to treat cancer. Bind 

Therapeutics have developed Bind-014 shown in Figure 1, which are nano 

particles that contain docetaxel, designed to target tumours at tissue, cellular and 

molecular level. There are several studies showing the use of polymers and their 

effects on neurodegenerative disorders and their ability to cross the blood brain 

barrier. For example, a paper by Kabanov and Gendelman (2007), has reported 

synthesis of polymeric micelles as carriers for the central nervous system. These 

polymers were conjugated with antibodies against a glycoprotein found in the 

 

Figure 1. Timeline of nanotherapeutics. Doxil is a liposome based delivery 

system, was the first nanotherapeutic to be FDA approved. Genexol-PM is a 

paclitaxel loaded polymeric micelle and is used to treat different types of cancer 

(FDA approved). BIND-014 is a polymeric system used for targeted drug delivery 

(FDA approved). Others include PEG(polyethylene glycol) liposomes, PLGA-

PEG NPs (poly (D, L-lactic-co-glycolic acid)-polyethylene glycol nanoparticles), 

CALAA-01 (targeted nanoparticle containing siRNA) and DXTL-TNP (docetaxel 

targeted polymeric nanoparticle). Adapted from Banik et al. (2016). 
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brain. Using a fluorescent probe, the polymeric micelle was able to deliver the 

drug to the target site in the brain. However, there are none that are FDA 

approved (Zhang et al., 2014).  

1.4.2.2 Polymeric nanoparticles as stimuli- responsive materials. 
 

Targeted drug delivery is quite important in the field of nanotherapeutics as the 

higher the payload the more effect the drug has on the site of action. A new 

approach to achieve this outcome is using stimuli-responsive materials. This 

approach is beneficial as the polymers undergo a conformational change in 

response to a stimulus. This allows efficient release of the drug (Torchilin, 2014). 

Most frequent stimuli used are temperature, pH and magnetic field since these 

are easy to manipulate to achieve desired drug release. For example Li et al. 

(2009) synthesised polymeric particles, which were shown to be temperature 

sensitive, once in an environment with a lower temperature. This reduced 

environment caused breakdown of the disulphide bonds on the polymer, which 

allowed the drug to be released.  There are several other polymeric nanoparticles 

that are applied in the similar way, however the only variable that changes is the  

stimuli (Gandhi et al., 2015).  

 

1.4.2.3 Polymeric nanoparticles as imaging agents  
 

The development of imaging techniques such as magnetic resonance imaging 

(MRI) and X-rays, has benefited the field of nanomedicine. Studies have been 

conducted whereby polymeric nanoparticles are modified with contrasting 

agents, and are imaged under MRI and x-rays for diagnostic purposes. This 

technique has made a significant impact, as these agents can selectively target 

cancers and tumours, and allow for rapid diagnosis. For example Sun et al. 

(2012) has shown that PLGA nanoparticles loaded with iron oxide, have co-

localised in breast cancer tissue, and could be easily imaged using MRI. Similarly, 

other studies on polymeric nanoparticles as imaging agents, have shown to be 

useful in the area of nanomedical diagnostics. Since this a developing field, there 

are none that are FDA approved or currently undergoing clinical trials (Srikar et 

al., 2014).  



28 

1.4.3 Biomimetic nanoparticles, a new platform in the area of 
nanomedicine 

 

The use of polymeric nanoparticles and synthetic nanoparticles has led to rapid 

clearance by the immune system. This was one of the factors that led to 

development of systems that were able to mimic the biological morphology of 

cells and achieve the same function as other nanoparticles would. The particulate 

systems can mimic structural and functional features of viruses, bacteria, 

erythrocytes and other biological cell membranes. They are currently used in 

imaging, biosensing, drug delivery and vaccine development (Carmona-Ribeiro, 

2010). In order to achieve the function of biomimicry, there are several factors 

that need to be considered such as size, material and morphology of the particle. 

Literature suggests that the closer the particle is to cell size, the greater the effect 

on the target cell (Meyer et al., 2015). The material of the core and the coating 

depends on the application of the nanoparticle, for example Hu et al. (2011) has 

shown that development of a erythrocyte membrane coated nanoparticle is very 

effective in delivering water insoluble drugs in an animal model.  Similarly, 

another study has shown that paramagnetic nanoparticles coated by an 

erythrocyte membrane makes it an effective tracer, as they can be imaged using 

magnetic particle imaging (Antonelli et al., 2013). Morphology plays a significant 

role in immune recognition. For example, studies have shown that using 

biomimetic coatings on non-spherical particles have shown a 20 fold stronger t-

cell response as compared to spherical shape particles of the same nature 

(Sunshine et al., 2014).  Therefore, to achieve the function of biomimicry these 

factors have shown to play a significant role.  

 

Figure 2.  A diagrammatic illustration of the synthesis of biomimetic 

nanoparticles. Lipid bilayer isolated from biological membranes is fused with the 

desired nanoparticle core to formulate biomimetic nanoparticles. The 

phospholipids and fatty acid tails are indicated by the blue structures and the 

proteins are indicated by the red and yellow structures on the lipid coated 

nanoparticle 
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1.4.4 Current biomimetic nanoparticles  
 

Current research and synthesis of biomimetic nanoparticles revolves around 

mimicking surface chemistry of cells, as they have shown to have benefits, when 

these systems are tested in vivo.  Mimicking surface chemistry involves 

synthesising particles, whereby the biological substances are surrounded by 

highly complex membranes that comprise of lipid bilayers and cell surface 

proteins. Synthesis of these particles can have two approaches, the bottom-up 

approach and the top-down approach.  

 
The bottom-up approach begins with molecular components, built into a larger 

structure using physical and chemical techniques to mimic cells (Figure 3). This 

approach utilises components such as lipids and surface proteins, which are 

incorporated by surface functionalisation or attaching them with an adhesive 

 

Figure 3.  A diagrammatic representation of the two different approaches used to 

synthesize biomimetic nanoparticles. Top down approach is used to synthesise 

liposomes, micelles and vesicles (left). Bottom-up approach (right) is used to 

produce formulations of nanoparticles, which ideally use synthetic lipids and 

proteins. The blue sphere represents lipids, whereas the red and yellow spheres 

are different types of proteins.   
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protein via a chemical interaction.  The top-down approaches utilize macroscale 

structures and turn them into nanoscale structures.  This approach is beneficial, 

as cell membranes are isolated from biological cells and added to particle cores.  

Literature suggests that a lot of research has been conducted on nanoparticles 

using the bottom- up approach over the last few years (Meyer et al., 2015).  

Rather than developing particles from an artificial membrane and using synthetic 

lipids and proteins, several studies have been able to isolate erythrocyte 

membranes from purified cells and use the membrane to coat particles 

(Muzykantov, 2010).  These studies have shown that this technique offers a clear 

advantage over using bottom-up approaches (Patel et al., 2008).  

1.4.5 The top-down approach 
 

Development of nanoparticles such as liposomes, micelles and polymeric 

nanoparticles have revolutionised medicine.  Nevertheless, due to their synthetic 

natures, they remain limited in their clinical application as they could be 

recognised as a foreign object by the immune system.  Interestingly, there is still 

research that is being conducted on these particles, due to the ability to be 

functionalised with large number or ligands and the time required to synthesise 

these particles. Contrary to their advantage, they could cause a variety of health 

problems (Zhang, 2016). The question remains of safety of such particles. The 

currently used technique is to modify these particles with polyethylene glycol 

(PEG), which creates a hydrophilic layer around these particles. This layer allows 

the particle to evade the immune cells. Though, some recent studies show that 

the PEG layer activates the immune system and have shown to be taken up by 

immune cells (Wang et al., 2007) 
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The advent of using natural cell membranes as coatings for synthetic materials 

has shown greater promise than synthetic particles. Among these particles, using 

membranes derived from natural erythrocytes is of current interest.  They are an 

interesting system to work with due to their biocompatibility and long-term 

circulation characteristics (Hamidi et al., 2007). Another advantage of this system 

is that erythrocytes have the ability to re-seal. Therefore, inserting synthetic 

materials into the system can be easily applied. Studies published in the past 

have shown that erythrocytes loaded with drugs are not very effective in delivery 

due to the micrometre size (Patel et al., 2008). This gave rise to developing 

nanoerythrosomes and blood cell based biomimetic carriers as shown in Figure 

4.  

 

 

 

Figure 4. Diagrammatic representation of erythrocyte cloaked nanoparticles 

adapted from Zhang (2016). The erythrocytes are lysed to develop erythrocyte 

ghosts, which has been used as a coat to develop three different nanoparticles 

systems. (1) Erythrocyte carriers (micrometre size) which is used to coat 

hydrophobic drugs (represented by the grey structure, (2) Erythrocyte cloaked 

nanoparticles (nanometre size) are designed by coating a core structure 

containing the entrapped drug with the erythrocyte membrane, (3) 

Nanoerythrosomes (nanometre size) are erythrocyte membranes that envelop a 

hydrophobic drug.  

1. 

2. 

3. 
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1.4.5.1 Whole erythrocyte carrier systems 
 

The primary use of erythrocytes in the field of nanomedicine, was the use of 

erythrocytes as whole carriers. These systems have shown improved 

pharmacokinetic properties as opposed to synthetic nanoparticles.  Erythrocytes 

have gained a lot attention due to the properties stated earlier. Apart from immune 

evasion, erythrocytes can be easily fabricated using a hypotonic lysis method. 

This is a common strategy to prepare carrier erythrocytes (Hamidi and 

Tajerzadeh, 2003). Similar to synthetically derived polymeric nanoparticles and 

lipid nanoparticles, whole erythrocytes have been used as drug delivery vehicles 

(Hamidi et al., 2011), as imaging agents (Brahler et al., 2006) and targeted drug 

delivery carriers (Harisa et al., 2014). 

1.4.5.2 Erythrocyte ghosts 
 

Whole erythrocytes are lysed to synthesize erythrocyte ghosts to study the 

components and characteristics of the erythrocyte membrane.  Erythrocyte 

ghosts are cellular membranes formed after a hypotonic buffer is added to 

erythrocytes. These structures are mainly devoid of intracellular contents, and 

were used for membrane studies (Schwoch and Passow, 1973).   Morphology of 

erythrocyte ghosts differ based on the method used to prepare them. The most 

widely used method is by hypotonic lysis of erythrocytes. There has been 

enormous data generated around the application and characteristics of 

erythrocyte ghosts.  

Schwoch and Passow (1973) have reported the existence of two type of ghosts. 

White ghosts and resealed ghosts. White ghosts are devoid of contamination by 

haemoglobin (Hb) and are devoid of intracellular contents. These type of ghosts 

have been used in the past for membrane characteristic studies. Resealed ghosts 

are able to reseal by addition of a resealing buffer or if incubated on ice. The have 

the ability to reseal, as they regain permeability to left over Hb. These ghosts are 

primarily used to create nanocarriers (Figure 4). 

1.4.5.3 Nanoerythrosomes  
 

The use of any carrier system developed in this field is primarily used as a drug 

delivery vehicle. The use of a particle as a carrier system allows researchers to 
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easily investigate the pharmacokinetics of the system.  These are then 

manipulated to suit certain pharmacological characteristics, which diversifies their 

application in the field. In the same way, whole carrier erythrocytes are 

manipulated to synthesize nanoerythrosomes (Zhang, 2016). The size of whole 

carrier erythrocytes could limit many properties such as targeted delivery and cell 

diffusion across tissue compartments becomes almost impossible (Gupta et al., 

2014). Moreover, due to the size being in the micrometre range the possibility of 

being recognized by the immune system as foreign is higher, therefore 

nanoerythrosomes were developed. Reduction of size from whole carrier 

erythrocytes can be easily performed by using techniques such as sonication or 

extrusion. Nanoerythrosomes have been shown to have a variety of applications 

such as carriers of  antitumor agents (Lejeune et al., 1994), antimalarial agents  

(Agnihotri and Jain, 2013) and they have been applied as an intra-tracheal 

delivery vehicle (Gupta et al., 2014). 

1.4.5.4 Erythrocyte membranes as a coating for synthetic particles 
 

Nanoerythrosomes have several applications in the therapeutic field. However, 

due to the reduction in size, there have been limitations with drug loading and 

release (Zhang, 2016). This was one of the reasons that led to the creation of 

biomimetic nanoparticles. This field of biomimicry is where synthetically drug 

loaded nanoparticles are coated with an erythrocyte membrane. There are 

several advantages to this approach. The erythrocyte membrane coating displays 

“self-properties” and has shown to evade macrophage detection, which has led 

to a longer circulation in the blood stream (Doshi et al., 2009).  This is a 

developing area, so its use has been limited to drug delivery (Hu et al., 2011).  

Most of these particles are cancer targeting or are encapsulated with an anti-

cancer drug. According to literature use of nanoparticles systems, has a very 

limited application in the field of microbiology. Most of these systems are drug 

carriers to target bacterial or parasitic infections (Mu et al., 2016). This opens up 

a new avenue for research into using biomimetic particles to treat bacterial 

infections. A recent study has shown encapsulation of vancomycin into gelatin 

nanoparticles coated by an erythrocyte membrane. This system releases 

vancomycin upon degradation by gelatinase (Li et al., 2014). Apart from this, 

there is limited work in this area. This study will focus on creating a biomimetic 



34 

model to treat a disease known as sepsis, which arises due to bacterial invasion 

and exotoxin production.  

1.4.5.5 Nanosponges 
 

The term nanosponge has several definitions, as it depends on the application of 

this nanoparticle. In 2012, a study stated that nanosponges are a new class of 

materials made of particles, which have presence of cavities. These cavities 

could be used to encapsulate drugs (Krishnamoorthy and Rajappan, 2012). 

Another study reported the use of cyclodextrin nanosponges which act by soaking 

up the drug to be encapsulated (Cavalli et al., 2006). None of these systems 

however, are biomimetic. A study published by Hu et al. (2013), reported 

development of a biomimetic nanosponge that has the ability to adsorb exotoxins. 

This nanosponge was constructed with a polymeric core enveloped by an 

erythrocyte membrane. This design has shown to prolong systemic circulation in 

the blood stream. The erythrocyte coating enables “stealth properties” which may 

allow the nanoparticle to evade uptake by macrophages.  Therefore, the definition 

for this type of nanosponge is the unique capability of the nanoparticles to adsorb 

exotoxins.  

1.4.6 Pathogenicity- Causative agents and bacterial infections 
 

Bacteria can cause many different types of infections (Figure 5). They can invade 

and kill human cells due to many virulence factors. For example, adherence 

proteins, capsules, biofilm formation, endotoxins and exotoxins are all virulence 

factors. The infections caused by these pathogens can range from respiratory, 

skin, blood stream, intestinal and urinary infections (Figure 5).   
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The only way to treat some of these infections is to synthesis a novel treatment. 

In 1928 Fleming discovered the first antibiotic known as benzylpenicillin (penicillin 

G) and observed that some bacteria were inherently resistant (Fleming, 1929). In 

his Nobel lecture, he noted that bacteria could develop resistance to antibiotics 

(French, 2010).    

 

Figure 5.  An overview of bacterial infections caused by different type of bacteria, 

adapted from Ford (2014) . The causative organism has been labelled according 

to its site of infection in the human body.  
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Most resistant strains of bacteria are found in hospitals, as this environment has 

the maximum use of antibiotics. A few years after penicillin G was discovered. In 

1935 the first bacterium that acquired penicillin resistance was discovered. This 

bacterium is known as Staphylococcus aureus (Shanson, 1981). The only way to 

tackle emerging strains that acquired resistance to penicillin was to discover or 

synthesize new antibiotics. From the 1960 to the 1980s, new antibiotics were 

introduced from derivatives of aminopenicillanic acid (6-APA) including broad 

spectrum methicillin, oxacillin and ampicillin (Figure 6).  This led to the birth of 

multidrug resistant Staphylococcus aureus. Multidrug resistance is the reason as 

to why bacterial infections are becoming problematic and life threatening.   

1.4.7 Antibiotic resistance and epidemiology of life threatening bacterial 
infections 

 

The discovery of antibiotics is one of the greatest achievements in the history of 

medicine. They treat infections from minor to life threatening, allow surgeons to 

safely perform procedures and successfully allow non-infected organ 

transplantation.   However, this treatment option is no longer the most applicable 

due to the rise of antibiotic resistant organisms (Watkins and Bonomo, 2016). In 

spite the use of antibiotics in the last 70 years, infectious diseases have had an 

impact on morbidity and mortality throughout the world.   

 

Figure 6. An antibiotic discovery timeline adapted from Lewis (2012). The 

timeline pinpoints the year the antibiotic was discovered.  
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A study conducted by the Health Protection Agency (HPA) showed that the 

maximum amount of patients per 100,000, were consulted for upper and lower 

respiratory tract infections, compared to the other diseases (Figure 7). Over 

12,000 visits to the consultants were for upper respiratory tract infections with a 

further 8,000 for lower respiratory tract infections. The total estimated costs to the 

health care system for infectious diseases in England are shown in Table 2. 

Hospital acquired infections account for 23% of the total cost. Moreover, 50% of 

the total cost is towards GP consultations, These figures do show that people in 

England suffer from respiratory and hospital acquired infections, which cost the 

NHS billions of pounds (Finch and Hunter, 2006). 

 

 

 

 

 

 

 

Figure 7. Epidemiological data recorded in 2003, shows the different types of 

bacterial infections diagnosed in the UK. The rates shown in black correspond to 

GP consultations per 140,000 population (Finch and Hunter, 2006).  



38 

Table 2. The cost of treatment and management of infections in England in 2003 

(Finch and Hunter, 2006) 

Treatment and management Cost £ (in billions) 

GP consultations 3.52 

Hospital-acquired infections 1.39 

Hospital admisssions 0.89 

HIV/AIDS treatment and care 0.27 

Total  6.07 

 

1.4.7.1 Multidrug resistant organisms that account for the highest mortality 
rates 

 
There are many different bacterial strains that have developed resistance to 

specific antibiotics. But, over the years, Staphylococcus aureus shows high rates 

of infection in humans (Lowy, 1998). Staphylococcus aureus has the potential to 

cause local as well as disseminated infections, and has the potential to cause 

lesions near anatomical sites. Between 25% to 35% of humans carry 

Staphylococcus aureus on their skin. This is significant as any wound exposure 

can lead to the bacteria invading the wound and entering the blood stream 

(Wertheim et al., 2005). This does however depend on the virulence of the strain. 

 

Certain strains of Staphylococcus aureus gain antimicrobial restance through a 

horizontal DNA transfer mechanism. One such strain of Staphylococcus aureus 

is  methicillin resistant Staphylococcus aureus (MRSA).  Strains of MRSA were 

discovered soon afer methicillin was introduced. In the 1970s MRSA emerged as 

a major pathogen worldwide (Brumfitt and Hamilton-Miller, 1989). In both the USA 

and Europe 30-50% of the Staphylococcus aureus  isolates are MRSA (French, 

2010).  In 2007 it was estimated that Staphylococcus aureus was responsible for 

causing 108,434 blood stream infections from which 27,711 (26%) were resistant 

to methicillin. In the same year it was estinmated that 5,503 deaths were caused 

by MRSA infections, from which 1,096 were from the UK alone (de Kraker et al., 

2011).    MRSA has shown to have high rates of worldwide infections and also 

represents a percentage of the total mortality rates in Europe. Nonetheless, these 

rates need to be contained and kept under control. Another bacterial strain 

reported in the UK has shown high rates of infection.  In 2010-2011 in England,  
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the HPA reported a number of bacterial infections. Routine surveillance data 

showed increase in the number of Streptococcus  pyogenes and  Streptococcus 

pneumoniae infections (Zakikhany et al., 2011). Streptococcus  is a gram positive 

pathogenic bacterium, that is known to cause a range of infections such as 

meningitis, pneumonia and urinary tract infections. This bacterium has also 

showed high rates of antibiotic resitance in the UK. A study conducted by 

Hounsom et al. (2011) reported, from 686 bacteraemia episodes, which occurred 

in 681 patients. Drug resistant Streptococcus accounted for the third highest 

infection rate, causing 5.8% of the total infections in that year.  Another study by 

Zakikhany et al. (2011) reported increased rates of Streptococcal infection from 

2007 to 2011 contributed to high rates of infection Figure 8.  

Streptococcus is of major concern as well documented research by Public Health 

England has shown that this group of bacteria have gained penicillin,  macrolide, 

and tetracycline resitance. They reported in 2013 that 5% of all Streptococcus 

isolates were penicillin resistant, 7.4% were resistant to macrolides and 22% 

were resitant to tetracycline. (PHE, 2014). Staphylococcus aureus and 

Streptococcus in their non-invasive form are not harmful bacteria. However, when 

exposed to an open wound, due to virulence of the strain, it manages to cause 

an infection within the blood stream. If the bacteria was susceptible to damage 

 

Figure 8. Epidemiology data adopted from Zakikhany et al. (2011) shows total 

rates of Streptococcal infections from 2007-2011, per 100,000 population  
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by broad spectrum antibiotics, the infection would be treatable. But,  as stated 

above, due to the widespread of antibiotic resistance, simple infections become 

difficult to treat. Once in the blood stream, if infections are not treated within a 

few hours, they become seriously dangerous to a patients health and could lead 

to a condition known as sepsis (Hounsom et al., 2011).       

 

1.4.8 Sepsis and its impact on the United Kingdom  
 

Sepsis is a whole body inflammation caused by a severe infection. This could 

develop into severe sepsis (organ dysfunction) or septic shock (abnormal tissue 

perfusion). Sepsis is a major public health problem in England. 

The primary cell the bacteria comes into contact with are erythrocytes. This 

triggers inflammation by the immune cells (Figure 9).  Bacteria have a variety of 

virulence factors such as endotoxins and exotoxins. Exotoxins are released in the 

blood stream of an infected patient and bind to a different types of cells including 

erythrocytes and cause them to lyse leading to sepsis (Peters and Cohen, 2013). 

Patients who acquire sepsis suffer from neurological symptoms, organ 

 

Figure 9. A diagrammatic representation of the mechanism of acquiring sepsis, 

adopted from (Russell 2006) .The schematic also represents, invasion of 

bacteria into the bloodstream of a patient which leads to leaky blood vessels, 

causing inflammatory mediators to leave the blood stream, leading to organ 

dysfunction.     
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dysfunctions, shock, organ hypo-perfusion, lactic acidosis and oliguria. From 

2001-2010, 226,547 deaths were associated with sepsis in the UK, calculations 

showed 1 in 20 people acquired sepsis. (McPherson et al., 2013) 

The tabular data (Figure 10) reports the causes of sepsis along with the mortality 

rates between 2001 and 2010. Labelled in red is the first cause on this list and is 

of importance as it shows that 49.1 % of all deaths that are caused by infectious 

diseases are sepsis associated. This is second highest mortality rate amongst 

the other causes. Other well-documented research has reported deaths by 

infectious disease leading to sepsis. Hounsom et al. (2011) has reported that in 

2006, 32,000 patients died due to sepsis. Another study reported that 

Streptococcus causes hig-h rates of sepsis in pregnant women (Sriskandan, 

2011).  Sepsis is not only affecting the UK, but has had an impact on the United 

States. Figure 11 shows the incidence rate of sepsis in US in 2015. Sepsis is 

shown to be the highest rate in 2015 at 300 cases per 100,000.  

 

 

 

 

 

Figure 10. Tabular data reports the causes of sepsis between 2001 and 2010 in 

the UK, adopted from (McPherson et al., 2013). Labelled in red shows number of 

deaths reported by infectious diseases associated with sepsis.  
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1.4.9 Current treatment and management of sepsis  
 

To reduce the mortality rate caused by sepsis there has to be an improvement in 

treatment. Current options for sepsis caused by infectious diseases include 

antibiotics, surgical drainage of infected fluids, blood transfusion, organ 

replacement and steroids. Most of these treatment strategies manage to reduce 

the inflammatory response, however antibiotic therapy is a selective pressure for 

the evolution of antibiotic resistant bacterial strains. The early treatment of 

patients with sepsis has shown to be an important factor in decreasing mortality 

rates. This concept is known as the “Golden hour”. The golden hour refers to the 

first 6 hours of infection. Early recognition and treatment of this condition is 

believed to stop the chain of events occurring at molecular and cellular levels that 

lead to organ dysfunction. If a patient is diagnosed with sepsis within the first 6 

hours, early goal directed therapy is essential. This refers to administering 

antibiotics, intravenous fluids, and oxygen to the patient. Additionally, blood 

cultures are sampled to identify causative organism and the kidney function is 

monitored (Wheeler, 2015).  

 

 

Figure 11. Epidemiology data adapted from (Trzeciak 2015) shows incidence rates 

of different pathologies in US in 2015, per 100,000 population. 
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1.4.10 Research aims 
 

The aim of this study is to synthesise a model biomimetic nanoparticle known as 

a nanosponge, using mammalian erythrocyte membranes as coatings in order to 

adsorb pore forming toxins (PFTs) in vitro. This in turn could reduce the incidence 

and severity of exotoxin related sepsis in vivo. Nanosponges are nanoparticles 

constructed with a polymeric core (PLGA) enveloped by, in this case, erythrocyte 

membranes. Each component of the nanosponge has a significant property. The 

erythrocyte membrane contains surface properties that allow absorption of PFTs. 

Its highly flexible structure could allow it to pass through narrow capillary networks 

(Hu et al., 2013). By coating it with a mammalian erythrocyte membrane, the 

nanosponge is non-immunogenic even if released back into the same 

mammalian species.   

 

Two different PFTs were chosen in this study, α-haemolysin released form 

Staphylococcus aureus and streptolysin-O released form Streptococcus 

pyogenes. The reason for choosing these toxins are that Staphylococcus aureus 

and Streptococcus pyogenes account for high rates of infection the UK, as shown 

in section 1.4.7. This study will test the ability of these PFTs to lyse mammalian 

erythrocytes. The mammalian blood that is shown to be more susceptible to 

damage by these PFTs, which will be the basis for a coating.  One of the PFTs, 

streptolysin-O is specific for cholesterol present in the lipid bilayer of the 

erythrocyte membrane as shown in chapter 2 section 2.3.2. Therefore, the study 

will aim to incorporate cholesterol into the erythrocyte membranes and test the 

 

Figure 12.  A diagrammatic representation of mechanisms involved to synthesize 

nanosponges. The extrusion allows the erythrocyte vesicles to coat the PLGA 

polymer, adapted from  Hu et al. (2011) 
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adsorption ability of cholesterol incorporated nanosponges against streptolysin-

O. This is important as phospholipids and cholesterol are significant binding sites 

for these PFTs. The study will also asses the loss of lipids during the synthesis 

of nanosponges.  
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1.5 Material and Methods 
 

All chemicals were analytical grade and purchased from Fisher scientific UK Ltd 

(Loughborough, UK) Sigma-Aldrich Ltd (Dorset, England) Diagnostic Reagents 

Ltd, (Oxon, England), Electron Microscopy Sciences (Hatfield, USA) and TCS 

biosciences (Buckingham, UK). 

1.5.1 Blood collection and storage 
 

The method for blood collection and storage was adopted from Zehnder et al. 

(2008) and optimized to obtain accurate collection and storage conditions. Animal 

blood (ovine and porcine) was collected from a local abattoir (William Taylor and 

Sons, Bamber Bridge, Lancs, England). Murine blood was collected from the 

University of Central Lancashire animal laboratory (Fylde road, Preston, Lancs, 

UK). Leporine blood was collected purchased from TCS biosciences 

(Buckingham, UK). The blood was collected into a clean plastic bottle, which 

contained 63 ml of citrate phosphate dextrose (CPD; citrate 26.3 g/l, citric acid 

3.27 g/l, glucose 25.5 g/l and sodium phosphate monobasic 2.51 g/l) as an 

anticoagulant. 35 ml of the blood was aliquoted into 50 ml Falcon tubes (Fisher 

Scientific) and centrifuged at 500x g for 10 minutes at 4°C using a Beckman 

Coulter (Wycombe, England) bench top centrifuge. The plasma and buffy coat 

was aspirated using a Pasteur pipette and stored at 4°C. This removes 

approximately 50% of the volume in the Falcon tube. 11.1 ml of storage medium 

(SAGM containing 8.77g/l sodium chloride, 0.169 g/l, 9.0 g/l glucose and 5.25 g/l 

mannitol) was added to each tube and stored at 4°C up to a month (Hogman et 

al., 1983). The blood was regularly checked using light microscopy at 400X for 

coagulation and cellular debris. If these were found the blood was discarded. 
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1.5.1.1  Lyophilization of animal red blood cells 
 

Freeze drying of animal erythrocytes were essential for long-term storage.  After 

the buffy coat and plasma were separated from the erythrocyte suspension. 30 

ml of 166mM sodium chloride (NaCl) was added to a 15 ml erythrocyte 

suspension. Prior to washing both the erythrocytes and sodium chloride were 

cooled on ice. The suspension was then mixed by swirling the 50 ml falcon tube 

(Fisher Scientific) gently. The tube was then centrifuged at 500x g for 10 minutes 

at 4°C using a bench top centrifuge. This step washes the erythrocytes and was 

repeated three times.  The erythrocyte suspension was separated into 5 ml 

aliquots, to which 5 ml of 5% (w/v) sucrose solution was added. The aliquots were 

sealed with parafilm and frozen overnight at -80°C. The frozen aliquots were 

placed in a Scanval cool safe lyophilizer overnight. The lyophilized erythrocyte 

suspension took on a powdered solid form, which was stored at 4°C (Han et al., 

  

Figure 13. An image captured by a Kodak camera, shows the different 

compartments of blood. Centrifugation of whole blood separates it into three 

different compartments. The plasma at the top of the tube, buffy coat (thin white 

layer) and the sediment at the bottom of the tube is the erythrocyte suspension. 

Plasma 

Buffy coat  

Erythrocyte suspension 
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2005).  The erythrocyte suspension was reconstituted with 5 ml of 1X phosphate 

buffered saline (PBS).(Leslie et al., 1995) 

1.5.2 Measuring haematological parameters of animal blood 
 

1 ml of the collected animal blood (ovine, porcine, murine and leporine) was 

pipetted into 1.5 ml tubes (Fisher Scientific) and kept on ice.  The tube that 

contained animal blood was inserted into the ABX Pentra 60 c+ haemoanalyser 

(Horiba medical, Northampton, England). The haemoanalyser has 5 reagents 

ABX diluent, ABX lysebio, ABX eosinofix, ABX basolyse and ABX cleaner. The 

ABX diluent is an isotonic solution that diluted the animal blood cells and was 

used to measure haematocrit. The ABX lysebio is a mixture of 5% (w/v) 

ammonium salt with a 3% non-ionic based surfactant (v/v). This reagent lysed the 

red blood cells to determine Hb concentration. The ABX basolyse and eosinofix 

are reagents used for white blood cell count and was used to differentiate 

basophils form the other white blood cells. The ABX cleaner is a mixture of an 

organic buffer with proteolytic enzymes, which was used to clean the 

haemoanalyser after the test was conducted. After the tube was inserted, the 

machine took up 60 µl of the animal blood and the result was generated in 10-15 

seconds on an Hp monitor (Bossche et al., 2002) 

1.5.3 Preparation of erythrocyte ghosts 
 

1 ml of a cocktail of Sigma- Aldrich (Dorset, England) protease inhibitor was 

added prior to each wash. This comprises of 2mM 4(2-Aminoethyl) benzene 

sulfonyl fluoride hydrochloride (AEBSF), 0.3μM aprotinin, 130μM bestatin, 1mM 

ethylenediaminetetraacetic acid (EDTA), 14μM 1(((4Guanidinobutylamino)4methyl1oxopentan2yl) 

carbamoyl) cyclopropanecarboxylic acid (E-64) and 1μM leupeptin.  

1.5.3.1 Wash 1 Removal of buffy coat and plasma 
 

5 ml of stored porcine blood was washed three times with 7 ml of 166mM NaCl. 

Both the erythrocytes and NaCl were cooled on in ice. After each wash the cells 

were centrifuged at 500x g for 5 minutes at 4°C and the supernatant was aspirated 

and stored at 4°C (Dodge et al., 1963) 
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1.5.3.2 Wash 2 Cell lysis 
 

After the last wash, the cells are re-suspended in 166mM NaCl to form a 25% cell 

suspension and cooled at 0°C on ice. 1 ml of the 25% cell suspension was added 

to 7 ml of a hypotonic medium containing: 9.64mM NaCl, 1.20mM potassium 

orthophosphate (KH2PO4), 1mM EDTA and 3.61mM sodium phosphate dibasic 

(Na2HPO4) (pH 7.2). The solution was then re-cooled to 0°C for 20 minutes and 

centrifuged at 500x g for 30 minutes at 4°C. This lysis supernatant was aspirated 

and stored at 4°C.  

1.5.3.3 Wash 3 Removal of cellular debris 
 

The pellet was washed with 10 ml of a solution containing 9.6mM Trizma 

hydrochloride (Tris-HCl) and 20mM NaCl (pH 7.2). The solution was centrifuged 

at 500x g for 5 minutes at 4°C. The supernatant was aspirated and stored at 4°C. 

The sediment was then washed in a medium containing 4.8mM Tris-HCl and 

10mM NaCl. The solution was centrifuged at 500x g for 5 minutes at 4°C. The 

supernatant was aspirated and stored at 4°C. The pellet was then washed in 

100mM potassium chloride (KCl) solution and once after in distilled water (Di-

H2O). The solutions were centrifuged at 500x g for 5 minutes at 4°C. The 

supernatants were aspirated and stored at 4°C. At the bottom of the centrifuge 

tube a pink pellet is formed over a dark red agglomerate, which are the 

erythrocyte ghosts as shown by Figure 14 (Weed et al., 1963) 
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1.5.4 Preparation of erythrocyte ghost samples for light microscopy 
 

A Pasteur pipette (Fisher Scientific) was used to deliver one drop of the 

erythrocyte ghost sediment onto a glass slide and a cover slip was placed on top. 

It was then viewed under 400X with a Nikon phase contrast microscope. The 

ghost suspension was compared to erythrocytes prepared using the same 

protocol. 

 

 

 

 

 

 

 

Figure 14. The pink pellet over a dark agglomerate in a 15 ml Falcon tube, is 

erythrocyte ghosts. These ghosts were produced after the suspension was 

washed with Di-H2O 

Erythrocyte ghosts 
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1.5.5 Measuring cell size 
 
A drop of the porcine erythrocytes was added to a glass slide using a Pasteur 

pipette. A cover slip was placed on top of the sample and viewed under 400X 

with a Nikon phase contrast microscope. The size was determined using a scale 

tool on the attached Nikon imaging software, which determines the diameter of 

the cells. This method was repeated to measure the diameter of erythrocyte 

ghosts. 

 

1.5.6 Haemoglobin estimation 
 

This haemoglobincyanide method was adopted from Bain et al. (2006). The 

reconstituted bovine Hb standard (572 mg/l) purchased from Diagnostics 

Reagent LTD, was diluted with distilled water according to Table 3 and allowed 

to stand for 20 minutes prior to use. The spectrophotometer (Jenway 

spectrophotometer 73 series) was zeroed using Drabkins reagent (Diagnostics 

Reagent LTD). 1ml of each concentration was added to a plastic cuvette and the 

absorbance assayed at 540nm. The experimental supernatant samples collected 

from the previous experiment were also estimated for Hb. These solutions were 

mixed before pipetting as they settle out on storage. 4 ml of Drabkins reagent 

was pipetted into a clean tube followed by 20 µl of the experimental samples and 

allowed to stand for 20 minutes. This step was repeated for all samples. 1ml of 

each sample was transferred to a cuvette and assayed at 540 nm.  

Table 3. Bovine Hb standard diluted from a concentration of 572 mg/l to 95.3 mg/l 

to produce a standard curve. 

Volume of Bovine 
Hb standard stock 

(ml) 

Volume of 
distilled water 

(ml) 

Total volume 
(ml) 

Final 
concentration of 
standard (mg/l) 

1 0 1 572.0 
0.5 0.5 1 286.0 

0.34 0.66 1 190.0 
0.25 0.75 1 143.0 
0.19 0.81 1 114.4 
0.16 0.84 1 95.3 
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1.5.7 Measurement of protein release during porcine erythrocyte ghosting  
 

The procedure is adopted from the Bio-Rad protein assay kit (Hertfordshire, 

England, UK). The Bradford reagent was prepared in a 500 ml Duran bottle 

(Fisher Scientific), by diluting 1 part concentrated dye reagent to 4 parts of 

distilled water. The reagent was filtered through Whatman No1 filter paper to 

remove additional particulates. Five dilutions of the Bio-Rad standard (stock: 

1.41 mg/ml bovine serum albumin) were prepared according to the following 

table:  

Table 4. Bovine serum albumin (BSA) standard diluted from a concentration of 

1.41 mg/ml to 0.225 mg/ml to produce a standard curve. 

Volume of Stock 
(ml) 

Volume of diluent 
(ml) 

Total Volume (ml) Final 
concentration 
BSA standard 

(mg/ml) 
1 0 1 1.41 

0.5 0.5 1 0.705 
0.33 0.67 1 0.465 
0.25 0.75 1 0.352 
0.20 0.80 1 0.282 
0.16 0.84 1 0.225 

0 1 1 0 
 

100 µl of prepared standard was added to 5 ml of dye reagent and vortexed for 2 

minutes. The diluted standards were left to react for 5 minutes and absorbance 

was assayed at 595 nm. 1 ml aliquots of the standard BSA was stored at -20°C. 

 

1.5.7.1 Measuring protein release 
 

The experimental supernatant samples collected from the ghosting protocol 

were estimated for protein content. 100 µl of the supernatants were added to 5 

ml of the Bradford reagent in a falcon tube and vortexed for 2 minutes. The 

experimental supernatant samples were left to react for 5 minutes and the 

absorbance was assayed at 595 nm. (Steck, 1974). 
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1.5.8 Scanning electron microscopy of porcine erythrocytes and ghosts 

 
This procedure was adopted from Mircevova (1974). 1 ml of the porcine 

erythrocyte suspension was added to a Falcon tube using a Pasteur pipette. 3 ml 

of a 3% (v/v) glutaraldehyde in 0.1M phosphate buffer (0.1 M phosphate buffer: 

28 ml of 0.2M sodium phosphate monobasic added to 78 ml of 0.2M sodium 

phosphate dibasic, the buffer was diluted to a total volume of 200ml with Di- H2O) 

(Morel et al., 1971) was added (Kayden and Bessis, 1970). The solution was 

allowed to stand for 2 hours to allow for primary fixation, which occurred as a 

result of the glutaraldehyde floating on top of the porcine erythrocyte suspension 

as shown by Figure 15. The glutaraldehyde was then aspirated and discarded. 

The fixed erythrocyte suspension was washed three times with 0.1M phosphate 

buffer (pH 7.2) 

 

 
 
Figure 15. Diagrammatic representation of a Scanning electron microscopy 

specimen preparation method (Bozzola and Russell, 1999). 
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A 2% (w/v) aqueous osmium tetroxide was then added to the tube. The solution 

was allowed to stand for 2 hours to allow for secondary fixation, which occurred 

as a result of the osmium tetroxide floating on top of the fixed porcine erythrocyte 

suspension (Figure 15). The osmium tetroxide solution was aspirated and 

discarded in corn oil as it neutralises osmium tetroxide. The fixed pellet was then 

washed three times with 0.1M phosphate buffer. The erythrocyte pellet was 

dehydrated in a series of increasing ethanol concentrations (30%, 50%, 60%, 

80%, 90%, 96% and 100% all v/v) as shown by Figure 15. Each concentration of 

ethanol was added using a Pasteur pipette. The pellet was dehydrated for 15 

minutes in each ethanol concentration. The dehydrated pellet was kept in a 

desiccator containing silica gel (Fisher Scientific) overnight. The dried pellet was 

added to a carbon coated stub. The erythrocyte sample was viewed under a 

Quanta 200 scanning electron microscope (SEM – Oregon, USA) at different 

magnifications. The method is repeated to view porcine erythrocyte ghosts. Cell 

sizes were also determined using the SEM image J software (Java, California, 

USA). 

1.5.9 Development of mammalian erythrocyte vesicles  
 

Ovine and Leporine erythrocytes were chosen for this method, as they were 

found to be the most susceptible to streptolysin-O and α-haemolysin binding 

shown in sections 2.3.1 and 3.3.2. 3 ml of the prepared erythrocyte ghosts were 

added to a glass universal bottle and subjected to sonication for 20 minutes using 

a Ultrawave water bath sonicator (50-60 hertz) (Luk et al., 2014). The sonicated 

erythrocyte ghosts were then serially extruded through an Avestin lipofast mini 

extruder (Figure 16). Prior to extrusion of the vesicles, water was passed through 

the extruder four times, as this allows membrane wetting, which allows the 

vesicles to pass through easier. 3 ml of the sonicated ghosts were extruded 13 

times at 20°C, through a 400 nm and a 100 nm Avestin polycarbonate membrane, 

which allowed formation of erythrocyte vesicles of uniform size. A sudden 

decrease in resistance during extrusion shows rupturing of the membrane. 
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1.5.10 Preparation of PLGA nanoparticle core  
 

This method was adopted from Hu et al. (2011) and optimized to achieve desired 

conditions. The PLGA cores were prepared using carboxy-terminated 50:50 

PLGA polymer (Sigma-Aldrich UK). The polymer was subjected to a solvent 

displacement method. 15 mg of PLGA was weighed out using a thermo scientific 

weighing balance and dissolved in 15 ml of organic solvent acetone to make a 

concentration of 1mg/ml. The universal containing the PLGA polymer was sealed 

with parafilm and left overnight at room temperature (RTP) to dissolve.  1 ml of 

the PLGA polymer solution was added drop-wise to 3 ml of distilled water and 

stirred for 4 hours at 20°C. The prepared PLGA cores were then washed with 1x 

PBS in a Merck Millipore 15 ml falcon tube with a 10 kDa molecular weight cutoff, 

at 500 g for 20 minutes using a ALC PK120R bench top centrifuge. The PLGA 

cores were washed three times with isotonic PBS to filter out the organic solvent. 

The precipitated PLGA nanoparticles were then reconstituted in 1ml PBS.  

 

 

 

 

 

Figure 16- Mechanism of extrusion. A diagrammatic representation of sonicated 

vesicles being extruded through a 100 nm polycarbonate membrane. The 

vesicles are extruded using the mechanical force generated by the push of the 

syringe. This mechanical energy forces the vesicles through the 100 nm 

membrane synthesizing vesicles of uniform size (Chhabria and Beeton, 2016).  
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1.5.11 Production of biomimetic nanosponges 
 

This method was adopted from Luk et al. (2014) and optimized to achieve desired 

experimental conditions. The erythrocyte vesicles and the PLGA polymeric cores 

were added in equal volumes (1 ml: 1 ml) and extruded 13 times through a 100 

nm polycarbonate membrane at 20°C. The mechanical force of extrusion allowed 

fusion of the erythrocyte vesicles with the PLGA nanoparticle, synthesizing a 

nanoparticle with a lipid coating and a PLGA polymeric core. 

 

1.5.12 Characterisation of nanoparticles 
 

The PLGA polymer and erythrocyte vesicles were characterized using Malvern 

Nano-zs zetasizer (Malvern, Worcestershire, England). 1 ml of the synthesized 

PLGA polymeric suspension was added to a polystyrene cuvette. This cuvette 

was inserted into the zetasizer and assayed for nanoparticle size and zeta 

potential. The nanosponges and erythrocyte vesicles were characterized using 

the same protocol (Weber et al., 2000). The zetasizer was calibrated every 6 

months for size and polydispersity by Malvern.   

 

1.5.13 Storage of nanosponges 
 

The synthesized nanosponges were stored at - 80°C for 2-3 days. For long-term 

storage, 1mg/ml nanosponges were lyophilized with 5% (w/v) sucrose. The 

nanosponges were separated into 200 µl aliquots, to which 200 µl 5% (w/v) 

sucrose was added. The aliquots were sealed with parafilm and frozen overnight 

at -80°C. The frozen aliquots were placed in a Scanval cool safe lyophilizer 

overnight. The lyophilized suspension took on a powdered solid form, which was 

stored at 4°C. 
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1.6 Results 
 

1.6.1 Haematological parameters of mammalian blood 
 

The collected animal blood (ovine, porcine, leporine and murine) were analysed 

for their haematological parameters using a Pentra 60c+ haemoanalyser. 

Specific parameters were assessed, such as red blood cell (RBC) count, Hb, and 

haematocrit, mean corpuscular volume (MCV) and mean corpuscular 

haemoglobin (MCH).  

Table 5. Haematological parameters of porcine whole blood stored at 4°C for 1 

day. The symbol “±” represents standard error of mean (experimental replicates 

=3 (n)). 

Parameters Value Porcine 
Reference 

Range  

Human 
Reference 

range 

RBC count (x106/µl) 6.1 (±0.03) 5-8 4.1-4.5 

Haemoglobin (g/dl) 12.5 (±0.06) 10-16 11.4-12.4 

Haematocrit (%) 37.6 (±0.21) 32-50 42-54 

Mean corpuscular 
volume (µm3) 

62.0 50-68 82.9-95 

Mean corpuscular 
haemoglobin (pg) 

20.5 (±0.12) 17-21 27.4-32 

 

Haematological parameters of porcine blood (Table 5) as measured with a Pentra 

60c+ haemoanalyser. The results are within the expected reference ranges 

(Weiss et al., 2010). Human reference values are added to the table as a 

comparative measure to porcine blood (Hagag et al., 2015).  
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Table 6. Haematological parameters of ovine whole blood stored at 4°C for 1 

day. The symbol “±” represents standard error of mean (n=3) 

Parameters Value Reference 
Range 

Human 
Reference 

range 

RBC count 
(x106/µl) 

7.57 (±0.045) 9-15 4.1-4.5 

Haemoglobin (g/dl) 10.47(±0.054) 9-15 11.4-12.4 

Haematocrit (%) 24.0(±0.141) 27-45 42-54 

Mean corpuscular 
volume (µm3) 

32.0 28-40 82.9-95 

Mean corpuscular 
haemoglobin (pg) 

13.80(±0.170) 8-12 27.4-32 

 

60 μl of the blood was analysed to obtain the relevant haematological parameters 

(Table 6). The results are within the expected reference ranges (Weiss et al., 

2010). Human reference values are added to the table as a comparative measure 

to Ovine blood (Hagag et al., 2015). 
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Table 7. Haematological parameters of murine whole blood stored at 4°C for 1 

day. The symbol “±” represents standard error of mean (n=3). 

Parameters Value Reference 
Range 

Human 
Reference 

range 

RBC count (x106/µl) 7.35 (±0.19) 5-8 4.1-4.5 

Haemoglobin (g/dl) 11 10-16 11.4-12.4 

Haematocrit (%) 30 (±1.15) 32-50 42-54 

Mean corpuscular 
volume (µm3) 

56 50-68 82.9-95 

Mean corpuscular 
haemoglobin (pg) 

20.3 (±0.25) 17-21 27.4-32 

 

The murine blood was obtained from the animal laboratory at the University of 

Central Lancashire. 60 μl of the blood was analysed to obtain the relevant 

haematological parameters (Table 7). The results are within the expected 

reference ranges (Weiss et al., 2010).  Human reference values are added to 

the table as a comparative measure to Ovine blood (Hagag et al., 2015). 
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Table 8. Haematological parameters of leporine whole blood stored at 4°C for 1 

day. The symbol “±” represents standard error of mean (n=3). 

Parameters Value Reference 
Range 

Human 
Reference 

range 

RBC count (x106/µl) 7.1 (±0.06) 5.1-7.9 4.1-4.5 

Haemoglobin (g/dl) 11.9 (±0.38) 9.8-17.4 11.4-12.4 

Haematocrit (%) 44.0 (±1.53) 37-50 42-54 

Mean corpuscular 
volume (µm3) 

61.7 (±0.67) 57.8-65.4 82.9-95 

Mean corpuscular 
haemoglobin (pg) 

22.1 (±0.87) 17.1-23.5 27.4-32 

 

The leporine blood was purchased form TCS biosciences (Table 8). 60 μl of the 

blood was analysed to obtain the relevant haematological parameters. The 

results are within the expected reference ranges (Weiss et al., 2010). Human 

reference values are added to the table as a comparative measure to Ovine blood 

(Hagag et al., 2015). 

1.6.2 Morphology of porcine erythrocytes and ghosts using light 
microscopy 

 

Porcine erythrocyte ghosts were produced using a series of washes. To produce 

erythrocyte ghosts, 1 ml of the porcine erythrocyte suspension was lysed using a 

hypotonic buffer. The lysed erythrocytes were centrifuged, which pelleted the 

erythrocyte ghosts. The erythrocyte ghost pellet was reconstituted in 4 ml 166 

mM PBS. This produces a suspension containing intact porcine erythrocyte 

ghosts. Figure 17 is a light micrograph at 400X magnification. Intact porcine 

erythrocytes can be seen with the edges showing crenation. 
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Anisocytosis (erythrocytes of unequal size) is seen among the erythrocytes, when 

they are measured using the image j software. Porcine erythrocytes were diluted 

in 166 mM NaCl (Figure 18), and therefore appear as a lower count in the field of 

view. After dilution, the cells have now reverted back to an intact spherical shape, 

without presence of crenated structures.  The diluted image also shows signs of 

anisocytosis. 

 

Figure 17. A light micrograph of intact porcine erythrocytes under 400X 

magnification, washed in 166 mM NaCl (bar represents 10 µm).  The cells appear 

to be crenated, due to exposure to air or could be artefacts as a result of sample 

drying. The erythrocytes are a day old and were stored at 4°C. An anticoagulant 

CPD (w/v) was added to blood to prevent coagulation. 
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Figure 17 and Figure 18 were compared against porcine erythrocyte ghosts. The 

ghosts have white centres (Figure 20) and appear to be devoid of intracellular 

contents. The white centres could signify the release of Hb from the cytoplasm. 

Moreover, the ghosts appear to be smaller compared to porcine erythrocytes 

(Figure 19).  

 

 

 

 

 

 

Figure 18. A light micrograph of porcine RBCs under 400X magnification (bar 

represents 10 µm), washed and diluted in 166 mM NaCl. The RBCs are a day 

old and were stored at 4°C. An anticoagulant CPD (w/v) was added to blood to 

prevent coagulation. 
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Figure 19. A light micrograph of porcine erythrocyte ghosts under 400X 

magnification (bar represents 10 µm) using image enhancement. The small white 

centres indicate ghosts, are mixed with porcine erythrocytes (large dense orange 

centres) and an intermediate sub-population of cells. Average diameter of the sub-

population is 2.8 μm (± 0.7). The ghosts were prepared from a day old suspension 

of erythrocytes. The cells in the image were stored on ice. 

 

Figure 20. A light micrograph of porcine erythrocyte ghosts under 400X 

magnification (bar represents 10 µm), indicated by their white centres which 

signifies Hb release from the cytoplasm of erythrocytes. The ghosts were prepared 

from a day old suspension of erythrocytes. The ghosts in the image were stored 

on ice. 
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1.6.3 Morphology of porcine erythrocyte ghosts using scanning electron 
microscopy. 

 

The morphology of porcine erythrocyte ghosts showed significant differences 

from porcine erythrocytes. The porcine erythrocytes (Figure 21 and Figure 22) 

and ghosts were fixed by addition of 3% glutaraldehyde and 2% osmium 

tetroxide. The erythrocyte ghosts were then dehydrated using increasing 

concentrations of ethanol. The sample was placed onto a carbon-coated stub and 

visualised at different magnifications to obtain the best resolution.  

 

 

Figure 21. Digitally enhanced scanning electron micrograph of crenated porcine 

erythrocytes under 2400X magnification (bar represents 20 µm). Fixed in 3% 

glutaraldehyde (0.1M phosphate buffer) and 2% osmium tetroxide. Pseudocolour 

was added using image j software. The porcine erythrocytes in the image are a 

day old suspension stored at 4°C. An anticoagulant CPD (w/v) was added to the 

blood to prevent coagulation  
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It is evident from Figure 21 that the crenations are typical structures found on 

these cells, though there is a variation in the number and size of the crenations. 

Since there are many erythrocytes in the field of view, it can be said that the 

sample used is a concentrated erythrocyte suspension. Figure 23 is a scanning 

electron micrograph of diluted porcine erythrocytes, which shows that the 

erythrocytes have taken on a spherical shape. Under SEM it can be seen that 

many are still crenated even after dilution. The crenations protrude in random 

directions and are different in size and number on each cell. Aggregation of cells 

is also present.  

 

 

 

 

 

Figure 22. Scanning electron micrograph of crenated porcine erythrocytes under 

5000X magnification (bar represents 5 µm). Fixed in 3% glutaraldehyde (0.1M 

phosphate buffer) and 2% osmium tetroxide. The porcine erythrocytes in the image 

are a day old suspension stored at 4°C. An anticoagulant CPD was added to the 

blood to prevent coagulation. 
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Figure 23. Scanning electron micrograph of porcine erythrocytes under 3274X 

magnification (bar represents 5 µm) fixed in 3% glutaraldehyde and diluted in 

0.1M phosphate buffer. The porcine erythrocytes in the image are a day old 

suspension stored at 4°C. An anticoagulant CPD was added to the blood to 

prevent coagulation. 
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Figure 24 and Figure 25 show porcine erythrocyte ghosts prepared using a drop 

preparation technique. This technique involves leaving a drop of the ghost 

suspension on the sample mount to dry overnight rather than using a desiccator. 

Additionally, this technique did not involve the need for a secondary fixation with 

osmium tetroxide. The ghosts have taken on a non-crenated form. Ghosts in the 

centre have taken on a phase dark appearance. The ghosts that are close to the 

borders of the image have taken on a phase white appearance. Individual ghost 

cells appear to be limited in number in the field of view due to presence of 

aggregated ghost cells. Figure 26 shows a greater magnified micrograph of 

porcine erythrocyte ghosts. The erythrocyte ghosts in the image appear to have 

taken on a spherical shape although some are smaller than the others. This could 

be due to the loss of Hb from the cytoplasm of porcine erythrocytes. Similar to 

Figure 24 and Figure 25 some also appear aggregated; this could be due to the 

drying protocol during fixation of the ghosts. 

 

Figure 24. Scanning electron micrograph of porcine erythrocyte ghosts under 

1200x magnification (bar represents 20 µm) fixed in 3% glutaraldehyde. The 

ghosts were prepared from a day old suspension of erythrocytes. The ghosts in 

the image were stored on ice. 
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Figure 25. Scanning electron micrograph of porcine erythrocyte ghosts fixed 

under 1200X magnification (bar represents 20 µm), fixed in 3% glutaraldehyde. 

The ghosts were prepared from a day old suspension of erythrocytes. The 

ghosts in the image were stored on ice. 

 

Figure 26. Scanning electron micrograph of porcine erythrocyte ghosts prepared 

using a drop preparation protocol, viewed under 2400X magnification (bar 

represents 20 µm). The ghosts were prepared from a day old suspension of 

erythrocytes. The ghosts in the image were stored on ice. 
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Figure 27. Scanning electron micrograph of a porcine erythrocyte ghost prepared 

using a drop preparation protocol, viewed under 24000X magnification (bar 

represents 1 µm). The ghost was prepared from a day old suspension of 

erythrocytes. The ghosts in the image were stored on ice. 

To clearly distinguish morphological features of ghosts from erythrocytes a 

greater magnification was required. Figure 27 shows a micrograph with the 

highest magnified image of a porcine erythrocyte ghost. The image shows a 

spherical structure similar to the previous images. However, presence of an 

indent in the centre of the ghost may signify the release of Hb, which may have 

caused the ghost to shrink and take the form of structure with an indent in the 

centre. This shape could also be formed due to the process of drying 
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1.6.4 Measuring the diameter of porcine erythrocytes and erythrocyte 
ghosts 

 

Light micrographs of porcine erythrocytes and ghosts shown in Figure 17 and 

Figure 20 were measured for their diameter using image j software. Figure 28 

shows a significant difference between the sizes of these two types of cells. The 

porcine erythrocytes have a diameter of 4.11 µm (± 0.14). The ghosts have a 

smaller diameter of 2.3 µm (± 0.11). 

 

Figure 28. Size of porcine erythrocytes (control) compared to porcine erythrocyte 

ghost. The cells from the light micrographs (Figure 17 and Figure 20) were 

measured using an imaging software known as image j. “*”P≤0.05, “**”P≤0.01 

and “***”P≤0.00. Error bars represent standard error of the mean (n=30). 

 

Figure 29. Size of porcine erythrocytes compared to porcine erythrocyte ghosts. 

The cells from the scanning electron micrographs (Figure 21 and Figure 24) were 

measured using image j. “*”P≤0.05, “**”P≤0.01 and “***”P≤0.001.Error bars 

represent standard error of the mean (n=30). 
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The mean cell diameter in Figure 29 was measured by a computer software 

known as image j. The porcine erythrocytes have a diameter of 4.71 µm (± 0.18) 

and the erythrocyte ghosts have a diameter of 2.95 µm (± 0.10). In both figures 

the erythrocyte ghosts have a smaller diameter compared to the porcine 

erythrocytes.  

1.6.5 Haemoglobin release during synthesis of porcine erythrocyte ghosts 
 

To synthesize erythrocyte ghosts, nine different treatments (cell washes) involved 

in the procedure. These treatments included a range of different isotonic solutions 

(the osmotic pressure in the extracellular medium is the same as the intracellular 

osmotic pressure) and a hypotonic solution (The osmotic pressure in the 

extracellular medium is greater than the intracellular osmotic pressure). After 

each treatment, the cells were centrifuged at 500 x g and the supernatant was 

aspirated with a Pasteur pipette and stored at 4°C, which was later used to 

measure its Hb concentration. The nine treatments were titled according to the 

buffer used to wash the cells. The treatments are buffy coat and plasma (BCP), 

NaCl, NaCl 2, NaCl 3, Lysis, Tris-NaCl 1, Tris-NaCl 2, KCl and distilled water 

(DH2O). 



71 

Hb concentration after the nine treatments was measured using the 

haemoglobincyanide method. The absorbance after the nine treatments 

correspond to Hb concentrations on the standard curve. The standard curve in 

Figure 30 was measured by diluting the bovine Hb standard (572 mg/l) to the 

concentrations provided in  

Table 3 and read for its absorbance at 540 nm. The bovine Hb standard was 

diluted with Drabkins reagent, therefore the standard did not require the addition 

of external Drabkins reagent.  The R2 value is known, as the coefficient of 

determination is a statistical number that shows how well the data fits the 

regression line. The standard curve has an R2 value of 0.9995, which means that 

99.95% of the data fits the regression line, showing a strong positive relationship. 

 

Figure 30. Standard curve of bovine Hb diluted with Drabkins reagent and read 

at 540 nm for absorbance. The standards were kept on ice prior to measurement. 

Error bars represent standard error of the mean (n=3).  
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Porcine erythrocyte ghosts were synthesised after a hypotonic (lysis) buffer  was 

added to the porcine erythrocytes. The production of erythrocyte ghosts was 

followed by the loss of Hb from the cytoplasm of the erythrocytes.  Figure 31 

shows the concentration of porcine Hb released after each treatment. Hb release 

was tested with the presence of a protease inhibitor (PI), as Hb could be 

susceptible to degradation by plasma proteases. The primary treatment was 

BCP, which is a separation step. This involved centrifuging the whole blood. The 

whole blood was separated into the RBC suspension, the buffy coat (white blood 

cells and platelets) and plasma. The buffy coat and plasma made up the 

supernatant. This centrifugation step showed 0.303 g/dl (± 0.02) Hb released 

from porcine erythrocytes.  

The supernatant on top of the erythrocyte suspension was discarded after the 

centrifugation step. The erythrocyte suspension was followed by three washes 

with 166 mM NaCl.  This allowed release of unbound Hb present around the 

 

Figure 31. Concentration of Hb after each treatment, during porcine erythrocyte 

ghosting, with the presence of a protease inhibitor. Hb was allowed to react with 

Drabkins reagent and measured for absorbance at 540nm. The supernatant 

collected after the nine treatments were stored at 4°C prior to Hb estimation. 

Maximum Hb released from a 2% (v/v) porcine erythrocyte suspension was 2.5 

g/dl “*”P≤0.05, “**”P≤0.01 and “***”P≤0.001. Error bars represent standard error 

of the mean (n=3). 
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porcine erythrocytes. There were no significant differences recorded between 

these treatments. The washed erythrocyte suspension was then subjected to 

haemolysis using a hypotonic buffer (refer to section 1.5.3). According to Figure 

31, the lysis treatment had released maximum Hb at 1.51 g/dl (± 0.48). This step 

synthesised the porcine erythrocyte ghosts. The concentration of Hb released 

decreases after the lysis treatment, as the treatment is followed by isotonic 

washes, which allowed removal of residual Hb.   

1.6.6 Protein release during porcine erythrocyte ghosting 
 

Membrane proteins are essential in maintaining cell structure and integrity. The 

concentration of protein released during porcine erythrocyte ghosting was 

recorded. Since the production of erythrocyte ghosts involved the use of 9 

different treatments, the concentration of protein released was measured after 

each treatment.  

 

 

 

Figure 32. Standard curve of reconstituted BSA, measured at 595 nm using the 

Bradford reagent. The standards were kept on ice prior to measurement. Error bars 

represent standard error of the mean (n=3). 
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Figure 32 is a standard curve using reconstituted BSA. The BSA was diluted in 

PBS to the concentrations shown in Table 4 and was allowed to react with 

Bradford reagent. This solution was read for its absorbance at 595 nm. The 

measured absorbance after the nine treatments correspond to protein 

concentrations on the standard curve. The standard curve has an R2 value of 

0.986, which shows that 98.6% of the data fits the regression line. 

 

Figure 33 shows the amount of protein released during each wash of porcine 

erythrocyte ghosting. Protein is mainly released in three treatments: BCP, NaCl1 

 

Figure 33. Concentration of protein released after each treatment, during 

porcine erythrocyte ghosting. The supernatant collected after nine treatments 

were stored at 4°C prior to protein estimation. These supernatants were 

allowed to react with Bradford reagent and measured for absorbance at 595 

nm. Protein concentrations measured, fit into the standard curve and multiplied 

with appropriate dilution factors to obtain the above values.“*”P≤0.05, 

“**”P≤0.01 and “***”P≤0.001. Error bars represent standard error of the mean 

(n=3).  
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and lysis. The BCP treatment contains the buffy coat (buffy coat: white blood 

cells) and plasma (plasma: plasma proteins and platelets) as the supernatant. 

The BCP treatment has the highest amount of protein present at 43.62 mg/ml 

(±3.82). This concentration of protein released may suggest that the proteins in 

this treatment could be plasma proteins (Weiss et al., 2010) and unbound Hb. 

The second treatment NaCl 1 also has 1.83 mg/ml (±1.82) of protein present. 

NaCl 1 is an isotonic solution, which maintains a balance of osmotic pressure 

between the intracellular and extracellular compartments. Due to the balance of 

osmotic pressure, the proteins in NaCl1 may also be plasma proteins and not 

RBC membrane proteins. The NaCl 2 and NaCl 3 have no presence of protein, 

which signifies that all the plasma proteins have been removed after NaCl 1 

treatment. The lysis treatment is a hypotonic solution; its role is to lyse the porcine 

RBCs. This treatment has a small amount of protein release at 1.43 mg/ml. This 

treatment is significant, as at this stage ghosts are produced. Therefore, there is 

a small amount of membrane proteins released. Not all RBCs become ghosts at 

this stage. Comparatively this assay may overlap with the Hb estimation assay 

as the values obtained by this assay could be a combination of plasma proteins, 

membrane proteins and Hb. For this assay a 0.70 mg/ml BSA control was used. 

This had an absorbance of 0.90. Moreover highest protein release was shown to 

be by the BCP treatment, as explained above.  

1.6.7 Size of erythrocyte vesicles  
 

Erythrocyte vesicles were synthesised using ovine erythrocyte ghosts, as 

described in chapter 1 section 1.5.9. Ovine blood is the more susceptible to lysis 

by streptolysin-O compared to the other mammalian species. Synthesizing 

biomimetic nanosponges utilizes a top down approach. Ovine erythrocytes were 

used to synthesise nanosponges using this approach. The ovine erythrocytes 

were lysed to produce re-sealed erythrocyte ghosts using the same method 

provided for porcine erythrocyte ghosts. This allowed isolation of the ovine 

erythrocyte membranes. The ovine erythrocyte ghosts were subjected to 

sonication at 20°C for varying amounts of time. This technique produced 

polydispersed suspensions of ovine erythrocyte vesicles of different sizes (Figure 

34). 
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The sonicated ovine erythrocyte vesicles are subjected to extrusion through a 

400 nm and 100 nm polycarbonate membrane. This technique ensured 

production of a monodispersed suspension of nanosponges with a cell size of 

181 nm (± 39). The zetasizer was calibrated every 6 months for size and 

polydispersity by Malvern. Moreover, to ensure consistency repeat 

measurements were conducted in batches to obtain an average size.  

 

 

 

 

 

Figure 34. A graphical representation of varying sizes of ovine erythrocyte 

vesicles. The graph shows the effect of different sonication times and extrusion 

on the size of ovine erythrocyte vesicles at 20°C, measured using the Malvern 

zetasizer. Error bars represent standard error of mean (n=3). Refer to appendix 

one section 1.8.1 for distribution data.  
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Dispersity of a suspension is measured by the polydispersity index (PDI). The 

PDI is a measure of the distribution of the particle size in a suspension. Figure 35 

shows the PDI of ovine erythrocyte vesicles after they were subjected to varying 

sonication times and extrusion.  According to Figure 35 there is no correlation 

between sonication time and PDI. However, the plot does show that after 

sonication, polydispersed suspensions were produced. After sonication, the 

ovine erythrocyte vesicles were extruded through a 400 and 100 nm 

polycarbonate membrane. The PDI after 100 nm extrusion has decreased to 

0.128 (± 0.015).  

1.6.8 Size of PLGA nanoparticles and ovine nanosponges 
 

The PLGA cores were prepared using a solvent evaporation method at room 

temperature. The PLGA cores were dissolved with isotonic PBS and 

characterised for size using a Malvern zetasizer.  Figure 36, shows the average 

size distribution of PLGA nanoparticles measured by dynamic light scattering. 

Figure 36 shows two different peaks indicating two distinct sizes. Peak 1 has a 

 

Figure 35. The polydispersity index of ovine erythrocyte vesicles after the 

suspensions have been subjected to varying sonication times and serial extrusion 

through 400 nm and 100 nm polycarbonate membranes. Sizes were measured 

using the Malvern zetasizer. Error bars represent standard error of mean (n=3).  
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size of 75 nm (± 21) and peak 2 has a size of 303 nm (± 86). The zetasizer 

software has reported an average size of 243 nm (± 107 nm) with a PDI of 0.347.  

 

The nanosponges were synthesised by extruding the ovine erythrocyte vesicles 

with the PLGA nanoparticles. The nanosponges were dissolved with isotonic PBS 

and characterised for size. Figure 37 shows the size distribution of ovine 

nanosponges measured using dynamic light scattering. According to Figure 37 

the average size of the ovine nanosponges was 185 nm (± 50) with a PDI of 

0.134. 

 

 

 

Figure 36. Size distribution graph of 1 mg/ml PLGA nanoparticles prepared using 

the solvent evaporation method. This plot was acquired from the Malvern 

zetasizer data analysis software.   

 

 

Figure 37. Size distribution graph of 1 mg/ml ovine nanosponges prepared by 

fusing ovine erythrocyte vesicles with PLGA nanoparticles. This plot was 

acquired from the Malvern zetasizer data analysis software.   
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1.6.9 Zeta potential of PLGA nanoparticles and nanosponges 
 

The PLGA nanoparticle cores and the ovine nanosponges were characterised for 

their zeta potential. Zeta potential is a significant parameter, as it is a measure of 

the electrostatic charge between particles in a suspension.  Figure 38 shows the 

zeta potential distribution of PLGA nanoparticles. According to Figure 38 the 

average zeta potential is -12.3 mV.  

 

 

Ovine nanosponges were also measured for their zeta potential. Figure 39 shows 

the zeta potential distribution of ovine nanosponges. According to Figure 39 the 

average zeta potential is -10.5 mV.  

 

Figure 38. Zeta potential distribution graph of 1 mg/ml PLGA nanoparticles.  This 

plot was acquired from the Malvern zetasizer data analysis software.   

 

Figure 39. Zeta potential distribution graph of 1 mg/ml ovine nanosponges.  This 

plot was acquired from the Malvern zetasizer data analysis software 
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1.6.10 Size of lyophilized nanosponges after reconstitution with PBS 
 

Ovine nanosponges were lyophilized with 5% (w/v) sucrose and stored at 4°C in 

the lyophilized form.  The lyophilized suspensions were kept at 4°C for two 

different lengths of time. One of the suspensions was reconstituted with isotonic 

PBS after 1 week and the other suspension was reconstituted after 6 months.   

The control nanosponge and the reconstituted nanosponge suspensions were 

measured for size.  Figure 40, shows the average sizes of the three nanosponge 

suspensions. There is a significant difference is size between the control 

nanosponges and the suspension reconstituted after 6 months. The lyophilized 

nanosponges that have been stored for 6 months have a size of 377 nm (± 46 

nm) with a PDI of 0.297. There appears to be no significant difference in size 

between control nanosponges and nanosponges that were reconstituted after 1 

week.  

 

Figure 40. Average size of three nanosponge suspensions. Control nanosponges (1 

day old), nanosponges lyophilized with 5% sucrose (w/v) reconstituted after 1 week 

and lyophilized nanosponges reconstituted after 6 months. The sizes were 

measured using a Malvern zetasizer. “*” P≤0.05, “**” P≤0.01 and “***” P≤0.001. Error 

bars represent standard error of the mean (n=3).  
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1.6.11 Stability studies of ovine nanosponges  
 

Stability of ovine nanosponges was assessed by measuring the size, PDI and 

zeta potential of the particles at four different temperatures (4°C, 24°C, 37°C and 

40°C) over one week (Figure 41). The parameters were assessed in triplicates. 

The suspensions were kept in a water bath at the aforementioned temperatures. 

Stability of the nanosponges was tested at 4°C, as it is a standard condition for 

storage of whole blood. Moreover hypothermic storage is based on the principle 

that biochemical and molecular reactions can be suppressed by a reduction in 

temperature (Scott et al., 2005). Similarly, nanosponges were tested at 24°C as 

for future clinical application, as it is easier to transport batches of therapeutics at 

this temperature. Nanosponges were tested at 37°C and 40°C as they represent 

physiological conditions in humans. 37°C is the average temperature in the 

human body and 40°C mimics the elevated body temperature during sepsis (Lee 

et al., 2012). 
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Figure 41. Nanosponge stability study. The effect of four different temperatures on the (A) size, (B) PDI and (C) zeta potential of nanosponges. 

The nanosponges were placed in water bath at the respective temperatures. Size was measured by a Malvern zetasizer. Error bars represent 

standard error of the mean (n=3).  
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The stability of the ovine nanosponges were assessed using size, PDI and zeta 

potential. According to Figure 41, size of ovine nanosponges increase over a 

period of 1 week. At 4°C the size increases to 702 nm (± 1.46) from 270 nm (± 

3.08); at 24°C the size increases to 592 (± 4.98) from 263 (± 1.14); at 37°C the 

size increases to 760 nm (± 73.1) from 172.5 (± 0.27) and at 40°C the size 

increases to 530 nm (± 16.04) from 192 (± 3.54). Overall, this figure shows a 

positive correlation between size and time in days.  Similarly, the PDI of ovine 

nanosponges has also increased, over a duration of one week at these respective 

temperatures. The highest PDI on day 7 was shown to be at 4°C, (0.58, ± 0.01) 

and the lowest was shown to be at 40°C, (0.54, ± 0.01). The zeta potential of 

nanosponges decreased over a period of one week. According to Figure 41C, 

the most significant decrease is shown at 37°C, as the nanosponges have a zeta 

potential of -25.4 mV (± 2.31) on day 7. Ovine nanosponges incubated at 24°C 

have a decreased zeta potential value at day 7 (-12.97 mV, ± 1.49). However, the 

decrease is not as significant as the other suspensions.  Overall, Figure 41 

showed that ovine nanosponges over a period of one week become unstable at 

the experimental temperatures.  

 

1.6.12 Surface area to volume ratio 
 

The surface area to volume ratio is the amount of surface area per unit volume 
of an object.  

Table 9 shows the difference in the calculated surface area to volume ratio 

between porcine erythrocytes and porcine erythrocyte ghosts (Beals., 2000). The 

sizes obtained for the theoretical calculations were taken from Figure 28 and 

Figure 29. The surface area to volume ratio were measured using the equations 

shown below: 

Surface area of a sphere  =  

Volume of a sphere  =  
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Table 9 - The surface area to volume ratio of the porcine erythrocyte and porcine 

erythrocyte ghosts 

Cell type Surface area 
(µm2) 

Volume (µm3) Surface area: 
Volume 

Measurements calculated from light microscopy 
Erythrocyte 53.03 36.36 1.45:1 
Erythrocyte 

ghosts 
16.58 6.37 2.60:1 

Measurements calculated using scanning electron micrographs 
Erythrocyte  69.74 54.70 1.27:1 
Erythrocyte 

ghosts 
27.40 13.27 2.06:1 

 

Nanosponges were designed using ovine and leporine erythrocytes. Ovine 

erythrocyte vesicles were synthesised by sonicating and extruding the ovine 

erythrocyte ghosts.  The surface area to volume ratio of ovine erythrocyte vesicles 

was calculated using the above equations. The sizes used for the calculations 

were obtained from Figure 34 and Figure 37 for nanosponges. 

Table 10- The surface area to volume ratio of ovine erythrocyte vesicles 

 

 

 

 

 

 

 

Cell type Surface area 
(µm2) 

Volume  
(µm3) 

Surface area: 
Volume 

Vesicles after 7 
mins of sonication 

14.45 5.16 2.7:1 

Vesicles after 14 
mins of sonication 

12.39 4.1 3.0:1 

Vesicles after 21 
mins of sonication 

3.39 0.58 5.8:1 

Vesicles after 400 
nm extrusion 

0.21 0.009 23.3:1 

Vesicles after 100 
nm extrusion  

0.101 0.003 33.6:1 
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Table 11- Surface area to volume ratio of ovine erythrocytes and ovine 

nanosponges 

 

1.6.13  Statistical analysis 
Significance of recorded results was denoted by “*” symbol, was determined by 

a paired T-Test using SPSS 22.0 (IBM, North harbour, Portsmouth, UK) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type of cell Surface area 
(µm2) 

 

Volume (µm3) 
 

Surface area: 
Volume 

 
Ovine 

erythrocyte 
 

40.7 
 

24.4 
 

1.7:1 
 

Ovine 
Nanosponges 

 

0.107 
 

0.003 
 

32.4:1 
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1.7 Discussion 
 

The overall aim of the research was to develop techniques to produce a model 

nanosponge constructed from biomimetic erythrocyte membranes. Secondarily 

the physical properties and storage characteristics were studied and finally, 

adsorption studies were carried out (See chapter 2 section 2.3.2). Erythrocytes 

are recognised as one of the oldest coating systems in the field of nanomedicine 

and drug delivery (Bhateria et al., 2014). The application behind this approach is 

to use the nanosponges to adsorb PFTs. The erythrocyte membrane contains 

surface properties that allow adsorption of a wide range of PFTs regardless of 

their molecular structure (Hu et al., 2013). In order to achieve synthesis of 

nanosponges, the primary step was to produce erythrocyte ghosts. 

1.7.1 Haematological parameters of mammalian blood 
 

Prior to synthesis of erythrocyte ghosts, blood from different types of mammalian 

species were collected. Quality of mammalian blood was assed using five 

different parameters RBC count, concentration of Hb, haematocrit (viscosity of 

blood), MCV (average volume of red blood cells) and MCH (average mass of Hb 

per RBC). Quality assessment of blood is significant as Bosman et al. (2008) has 

shown that blood stored for long periods of time before transfusion has led to 

aggregation between erythrocyte membranes and degradation of integral 

membrane protein band 4, which is essential to maintain structural integrity of the 

membrane. Another study suggested that stored blood led to the loss of proteins 

in the lipid raft regions (Kriebardis et al., 2007). This ideally could lead to the loss 

of the lipids present in these regions, which are essential in maintaining fluidity of 

the membrane. The primary choice of animal blood was porcine blood due to the 

anatomical similarities between humans and pigs (Sullivan et al., 2001). 

According to Table 5, the haematological parameters of porcine blood are within 

the reference ranges. This suggests that the blood is in good condition for 

experimentation. Leporine, murine and ovine were chosen as controls. However, 

according to studies shown in chapter 2 and chapter 3, ovine and leporine 

membranes form the basis for a therapeutic model as compared to porcine and 

murine.  
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1.7.2 Morphological examination of porcine erythrocyte ghosts 
 

Previous studies have been conducted in order to study the membrane of 

mammalian erythrocytes (Dodge et al., 1963, Schwoch and Passow, 1973, Weed 

et al., 1963). These researchers lysed the erythrocytes with hypotonic solutions, 

which opened the membrane allowing the intracellular contents to leak out 

producing erythrocyte ghosts. These ghosts are useful in studying chemical and 

physiological properties of the erythrocyte membrane. Morphological 

examination of erythrocyte ghosts helps confirm membrane structure, shape and 

size. The morphology of porcine erythrocyte ghosts has been previously 

examined by transmission electron microscopy and scanning electron 

microscopy (Kostic et al., 2014). Similar to the previously mentioned study, 

morphological differences were found between porcine erythrocytes and ghosts, 

under light microscopy and scanning electron microscopy.  

Figure 20 shows a light micrograph of porcine erythrocyte ghosts. They are 

spherical in shape and smaller than porcine erythrocytes. The reduction in size 

could be due to the loss of Hb, water, calcium and potassium from the cytoplasm 

of the cell (Dodge et al., 1963, Weiss et al., 2010).  Ideally, a hypotonic solution 

would completely lyse a cell surrounded by a lipid bi-layer due to the tonicity of 

the solution. Interestingly, erythrocytes have a property to reseal, although the 

reason for this phenomenon is unknown (Schwoch and Passow, 1973). This is 

what gives the ghost its spherical structure, as a study conducted by Gupta et al. 

(2014) shows that preparation of erythrocyte ghosts by hypotonic lysis followed 

by a resealing procedure produces ghosts with a spherical morphology. In 

comparison to the ghosts in Figure 20, porcine erythrocytes (Figure 17) appear 

to have crenations or formation of artefacts on the surface of the cell. These 

crenations were also observed in Figure 21 and Figure 22, which are scanning 

electron micrographs of porcine erythrocytes. These crenations are commonly 

known as echinocytes and are found in porcine blood. The crenated structures 

form as the cells were allowed to contact air or could have formed during air-
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drying of the sample. The air drying process increases surface tension, which 

could cause the sample to form these artefacts (Price, 2002).  

A scanning electron micrograph shows porcine erythrocyte ghosts, which appear 

to be non-crenated and have taken on a phase dark appearance (Figure 24),. 

Most of the porcine erythrocyte ghosts on the borders of the micrograph are 

aggregated. The aggregation could be caused by two factors: the use of low ionic 

strength buffer or the release of a protein known as spectrin. The use of low ionic 

strength buffers causes flocculation (the process by which particles are caused 

to clump together) and this is enhanced by increased centrifugation speeds and 

time. Porcine erythrocyte ghosts could have aggregated, as the spectrin 

molecules on the cytoplasmic surface of the erythrocyte ghost membranes forms 

a meshwork by binding to other cells, thereby reducing cell mobility (Elgsaeter 

and Branton, 1974). Porcine erythrocyte ghosts have shown to have an indented 

structure similar to those seen in human erythrocytes. This suggests that the cell 

takes on this morphology due to the loss of Hb or the loss of water during drying. 

Compared to erythrocytes in Figure 21, porcine erythrocytes take on a spherical 

appearance when diluted with an isotonic solution (Figure 23). This is because 

the erythrocyte has an influx of water from the extracellular compartment, which 

helps to maintain a balance in the osmotic pressure between the intracellular and 

extracellular compartment of the cell (Deuticke, 1968). According to the 

discussed images, there is a significant difference in morphology between these 

two cell types. However, these cell types are mainly distinguished by their cell 

size. 

 

1.7.3 Testing the difference in cell size between porcine erythrocytes and 
ghosts 

 

The above study showed that under hypotonic conditions the porcine erythrocyte 

ghosts undergo morphological changes in order to produce erythrocyte ghosts. 

This study provides evidence that the change in morphology is correlated with 

size of the erythrocyte ghosts. Johnson et al. (1980) showed using hypotonic 

lysis, that erythrocyte ghosts undergo morphological changes. These changes 

are correlated with the volume of Hb present in the cell. Another well-established 

study showed that after hypotonic lysis causes the MCV and MCH decrease with 
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respect to time (Tatsumi, 1981). Figure 28 shows that there is a significant 

difference in size between porcine erythrocytes and ghosts. Porcine erythrocytes 

have a diameter of 4.11 µm (± 0.14). The ghosts have a smaller diameter of 2.3 

µm (± 0.11). The porcine erythrocyte diameter is within the size reference range 

(4-8 µm), which shows that there was no loss of intracellular contents during 

storage. The scanning electron micrographs further show the difference in size 

between the porcine erythrocytes and the porcine erythrocyte ghosts. Figure 29 

shows porcine erythrocytes have a diameter of 4.71 µm (± 0.18) and the 

erythrocyte ghost have a diameter of 2.95 µm (± 0.10). 

 
This clearly shows that due to the hypotonic lysis, which caused the loss of 

intracellular Hb, the erythrocyte ghosts have a reduced cell size. Synthesis of 

nanosponges utilises a top down approach, which means from an erythrocyte to 

the development of nanosponges, there will be a significant reduction in cell size. 

Moreover reduction in size plays a very significant role, as a study conducted by 

Walkey et al. (2012) showed. From a size range (15-90 nm) of gold nanoparticles 

the 15 nm particles were able to adsorb maximal amount of serum proteins 

compared to the other sizes. The significance lies in the surface area to volume 

ratio. Therefore, the reduction in size is correlated with an increase in the surface 

area to volume ratio. It is hypothesised that the larger the surface area to volume 

ratio, the more area to volume there is on the nanosponge for toxin adsorption. 

 

Figure 42. Diagrammatic representation of porcine erythrocyte ghosting. The 

morphology and size of porcine erythrocytes and ghosts were adapted from the 

captured scanning electron micrographs (Figure 22 and Figure 24).  
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According to Table 9, theoretical measurements of surface area and volume do 

in fact show that from porcine erythrocytes to erythrocyte ghosts there is an 

increase in surface area to volume ratio.  The average sizes taken from Figure 

28 showed that the surface area to volume ratio increased from 1.45 to 2.6. 

Similarly, the average size taken from Figure 29 showed that the surface area to 

volume ratio increased from 1.27 to 2.06. The reduction in size could also make 

a significant impact when introduced to the blood stream of a patient suffering 

from sepsis. The thickness of blood vessel walls in the human body range from 

1.0 mm in diameter to 0.5 µm in diameter (Burton, 1954). A study conducted by 

De Backer et al. (2002) shows that patients suffering from sepsis have a decrease 

in the diameter of the blood vessels, in addition to decreased perfusion in smaller 

blood vessels like capillaries. The reduction is size of the particle may help the 

particle to traverse into inaccessible vessels. 

 
1.7.4 The relationship between the loss of haemoglobin and synthesis of 

erythrocyte ghosts  
 

According to Schwoch and Passow (1973)  ghost preparation requires the 

removal of Hb content. Estimating the release of Hb during the ghosting 

procedure confirms the synthesis of porcine erythrocyte ghosts, which is shown 

in Figure 31. The figure shows nine different treatments, which include a range 

of isotonic buffers and a hypotonic buffer. The experiment was carried out with 

presence of PI. The use of PI was significant, as it may have blocked an enzyme 

known as haem oxygenase-1, which is found in the plasma during stress 

conditions. This enzyme plays a role in the Hb degradation pathway and 

catalyses Hb into a compound known as biliverdin (Shibahara et al., 2002).  

According to Figure 31, the first treatment shows minimal Hb release, as the BCP 

treatment is a separation step, which involves centrifuging the whole blood. The 

whole blood is separated into the erythrocyte suspension, the buffy coat and 

plasma. The buffy coat and plasma make up the supernatant. Since the cells are 

not lysed during this treatment the Hb is known as free Hb, which is released 

during erythrocyte  storage (Han et al., 2010). This result suggests that the 

erythrocytes stored with the presence of PI achieved optimum storage as a study 

conducted by Seghatchian and Krailadsiri (2002) shows that systems containing 
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optimum storage conditions have a lower concentration of Hb released over a 

period of 35 days.  

Maximum Hb was released during the lysis treatment. The lysis treatment uses a 

hypotonic solution, which caused the cells to swell and take on a spherical shape. 

When the haemolytic volume was reached, haemoglobin is released through tiny 

pores in the membrane (Schwoch and Passow, 1973). This treatment released 

1.51 g/dl (±0.483) of Hb.  The hypotonic solution contained EDTA and the TRIS 

NaCl 1 and Tris NaCl 2 contained Tris-HCl, which are used to regulate the acidity 

and osmolarity of the lysate, as Tris-HCl has the property to buffer solutions, 

keeping them in the pH range of 7.0 to 9.0 (Aitken, 2012). The Hb concentration 

decreases from the lysis treatment up to the distilled H2O treatment. This 

decrease is due to all the solutions being isotonic after the lysis stage. This 

method suggests that the fate of Hb is related to the treatment used. 

Measurements by Hoffman (1958) showed that at the end of the lysis the Hb 

distribution between the cells and the medium reach an equilibrium. After this 

equilibrium, the erythrocyte ghosts regain their permeability to Hb and reseal. 

Therefore, there is a minimal amount of Hb present at the last treatment. Finally, 

the loss of Hb during ghosting also explains the reduction in size of erythrocyte 

ghosts shown from Figure 28 and Figure 29.  

 

1.7.5 The effect of ghosting on the release of proteins from the membrane 
of porcine erythrocyte ghosts 

 

Protein plays a significant role in maintaining the structural integrity of the 

membrane as most plasma membranes consist of approximately 50% lipid and 

50% protein by weight (Cooper, 2000). Figure 33 shows the effect ghosting has 

on the loss of proteins during ghosting of porcine erythrocytes. Similar to the Hb 

assay, this assay was carried out with the presence of a protease inhibitor. The 

accurate analysis of protein concentration required the presence of a protease 

inhibitor as plasma contains an abundance of proteases, many of which are 

released from activated, dying or lysed neutrophils (Ayache et al., 2006).  

Figure 33 shows the loss of protein during porcine erythrocyte ghosting. The 

primary treatment, which is the BCP treatment, is a separation step, which 
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involves centrifuging the whole blood. The supernatant is made up of the buffy 

coat and plasma. The concentration of protein released during this step is 43.62 

mg/ml (±3.82). This concentration of protein released may suggest that the 

proteins in this treatment could be plasma proteins, as the reference range for 

plasma proteins present in porcine blood is between 60-80 mg/ml (Weiss et al., 

2010).  The lysis treatment has released a small amount of protein, as at this 

stage erythrocytes are lysed to synthesise ghosts. The result could suggest that 

a small amount of membrane protein has been released. According to chapter 2 

section 2.3.2, this result does not hinder the process of adsorption by 

nanosponges.  

1.7.6 Characterisation of ovine erythrocyte vesicles 
 
In order to synthesise nanosponges,  ovine erythrocyte ghosts were subjected to 

sonication and extrusion to produce ovine erythrocyte vesicles.  A study was 

designed to test if varying sonication times have an effect on the size of ovine 

erythrocyte vesicles. Synthesised ovine erythrocyte ghosts were subjected to 

sonication at varying amounts of time to determine size of produced ovine 

erythrocyte vesicles.  Figure 34 illustrates that as the time of sonication increases, 

the size of ovine erythrocyte vesicles decrease. This takes place as sonication 

uses high frequency sound waves that agitate the suspension, causing 

vibrations, that have the potential to break particles apart, producing particles with 

a decreased average size (Gupta et al., 2014). However sonication does not 

maintain the uniformity of particle size, as shown in Figure 34. Sonication 

produces polydispered suspensions of ovine erythrocyte vesicles. Vesicles 

sonicated for 21 minutes were chosen as the standard sonication time to produce 

nanosponges, as it had the smallest average size.  

 

In order to maintain uniformity, sonicated ovine erythrocyte vesicles were 

subjected to extrusion. The ovine erythrocyte vesicles were extruded through a 

400nm and 100 nm polycarbonate membrane. Figure 34 shows a decrease in 

size and uniformity after sonicated vesicles are extruded through the two different 

membranes.  Extrusion uses the principles of mechanical force, generated by a 

the push of a syringe as depicted in Figure 16. The generated mechanical force 

pushes the vesicles through the polycarbonate membranes of defined pore sizes. 

This technique ensures a reduction in size and synthesizes monodisperesed 
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suspensions, as shown in Figure 34. The reduction in size is of significant 

interest, as this leads to the increase in size decreasessurface area to volume 

ratio, shown in Table 11. The surface area to volume ratio is of considerable 

interest as shown in chapter 2 section 2.3, as it plays a significant role in toxin 

adsorbtion. Sizes obtained by sonication and extrusion from this study have also 

been reported by recently published studies (Hu et al., 2011, Rao et al., 2016).  

 
1.7.7 Characterisation of nanosponges and PLGA nanoparticle cores 
 

Extruded ovine erythrocyte vesicles were added to the PLGA nanoparticle cores 

and further extruded through a 100 nm polycarbonate membrane. The 

mechanical force generated during extrusion coated the PLGA core with the 

ovine erythrocyte membrane (Rao et al., 2016). Prior to extrusion, the prepared 

PLGA cores were characterized for size, PDI and zeta potential. The average 

size of PLGA cores was 243 nm (± 71) with a PDI of 0.303 and a zeta potential 

of -12.3 mV (Figure 36 and Figure 38). This shows that the suspension prepared 

was a polydispersed suspension. The zeta potential value is a particle 

characteristic used to assess stability of a suspension. The electrostatic repulsion 

between particles prevents aggregation of the spheres (Ravi Kumar et al., 2004). 

The negative zeta potential of PLGA may originate from the carboxylic group of 

PLGA as hydroxyl groups on the PLGA on molecule carry a negative charge. 

(Lee et al., 2015). 

The solvent evaporation procedure adopted from Hu et al. (2011), produced two 

distinct PLGA sizes, shown from Figure 36. Several factors could cause this to 

happen.  The solvent evaporation procedure used in this study to produce PLGA 

nanoparticles required used of solvents such as acetone. Han et al. (2012), has 

shown that residual amounts of solvent present in the PLGA suspension do affect 

nanoparticle characteristics. Moreover, to improve PLGA nanoparticle 

characteristics, the technique is followed by homogenization procedures to 

develop highly negatively charged monodispersed nanoparticles (Hadinoto et al., 

2013).  For example Mieszawska et al. (2012) prepared lipid polymeric 

nanoparticles using PLGA as a core for the structure. The technique used by the 

author to develop PLGA nanoparticles was followed by vortexing and ultra-

sonication resulting in stable monodispersed formulations of PLGA nanoparticles 

with a zeta potential of -30 mV. 
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The nanosponges were also characterised using size, PDI and zeta potential. 

The size of the nanosponges was recorded as 185 nm (± 50) with a PDI of 0.134 

with a zeta potential of -10.5 mV  (Figure 37 and Figure 39). The size of the ovine 

nanosponges increase after fusion with the PLGA core compared to ovine 

erytrhocyte vesicles. The increase in size is due to the fusion, as a coating is 

formed around the PLGA core. The zeta potential of the particle reduces from -

12.3 (before coating) to -10.5 mV (after coating with ovine erythrocyte vesicles). 

The negative charge on the erythrocyte membrane is caused by the carboxyl 

groups of sialic acid present on the end terminus of glycoproteins and glycolipids 

(Eylar et al., 1962, Luk et al., 2014). Moreover the reduction in zeta potential may 

suggest that the erythrocyte membrane has a lower concentration of carboxyl 

groups compared to PLGA.  

 

 

Figure 43. The chemical structure of a PLGA polymer. The structure on the left 

is the lactic acid group and the structure on the right is the glycolic acid group. 

Image adapted from Dumitru et al. (2015) 
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A recently published study could confirm the recorded results in Figure 38 and 39 

The authors showed that coating the PLGA cores with erythrocyte membranes 

led to a reduction in the zeta potential of the particle. This could confirm the 

prescence of an ovine erythrocyte coating around the prepared PLGA cores (Luk 

et al., 2014) (Rao et al., 2016). These authors have also highlighted, that using 

this extrusion technique results in the synthesis of nanosponges with a right side 

out orientation.  However this could not be confirmed as scanning electron 

imaging led to the melting of the nanosponges, which generated unclear images. 

(refer to appendix section 1.8.2) Obtaining micrographs of nanosponges was 

tried using a lower voltage (decreased beam strength) and a lower spot size, 

however it still produced images similar to the micrograph shown from section 

1.8.2.  

 
 
1.7.8 Stability of ovine nanosponges 
 
In the field of nanomedicine, stability is one of the critical aspects in ensuring 

safety and efficacy of therapeutic products. In administration of 

 

Figure 44. An illustration of an erythrocyte membrane with a glycoprotein. The 

glycoprotein has structures on it made out of carbohydrates known as glycans. 

The end terminus of the glycans have presence of sialic acid. The phospholipids 

and fatty acid tails are represented by the colour blue. The glycoprotein is 

represented by the colour black and the glycan chains are represented by the 

brown structure. The red represents the sialic acid residue.  
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nanosuspensions, formation of particles larger than 5 µm could lead to a blockage 

in the cappilaries, which could be fatal to a patient. Therefore, particle size and 

distribution need to be monitored. During storage and administration of 

nanosuspensions, the particles come into contact with different temperatures, 

which could cause sedimentation of particles, morphological changes and 

aggregation of particles. Stability studies associated with nanoparticles deserve 

significant attention in therapeutic product dvelopment (Wu et al., 2011). Figure 

41-43 are stability sudies conducted on ovine nanosponges, which test the effect 

of different temperatures (4°C, 24°C, 37°C and 40°C) on ovine nanosponges over 

the period of one week. Well established studies show that synthesising mouse 

blood coated PLGA nanoparticles using this extrusion method over a 2 week 

period produces no significant increase in size at 37°C (Rao et al., 2016, Hu et 

al., 2011, Hu et al., 2013). However the recorded results here do not agree.   

 

Figure 41-42 indicate the effect temperature has on the size and PDI of ovine 

nanosponges. These figures show a correlation between size or PDI and 

incubation time at these temperatures. Over a week of incubation, the size and 

PDI of the ovine nanosponges increased. Suggesting that the nanosponge 

suspensions are unstable at the experimental temperatures.  There are a few 

reasons as to suggest why nanosponges increase in size over the tested time 

period. As shown from Figure 38-Figure 39, the zeta potential distribution curves 

of ovine nanosponges, indicate presence of positively charged nanosponges. 

Therefore, over a period of time they do have the potential to form aggregates 

with negatively charged nanosponges, which may lead to increased sized 

nanosponges (Luk et al., 2014). There is a probability that some of the PLGA 

nanoparticle cores may not have been coated and therefore, presence of positive 

PLGA cores (shown by Figure 38) in the solution may cause aggregation between 

the particles.  A study published by De and Robinson (2004) has shown, that 

PLGA nanoparticles aggregate into long fibres after day 2 at 24, 37 and 40°C. 

The author stated that this takes place, due to presence of residual organic 

solvent present within the PLGA nanoparticles.  

 
In order to ensure stability of nanosponges, there are techniques used to prevent 

aggregation of nanoparticles.  For instance, Wu et al. (2011) has stated that for 

particles that have unstable profiles, a common strategy to enhance 
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nanosuspension stability, is to store the suspension in a solid form.   Figure 40 

shows the effect of lyophilization with 5% sucrose on the size of ovine 

nanosponges over a period of one week to six months.  This figure shows that 

there is no significant difference in size between the control nanosponges and 

the suspension reconstituted after a week. However, the suspension 

reconstituted after 6 months has increased in size by 192 nm (PDI 0.298). 

Comapritively, nanosponges stored in a lyophilized form, have shown to be more 

stable in size than storing the suspensions at the tested temperatures used In the 

stability studies.  Lyophilization could be a better approach to store the ovine 

nanosponges because of the chemical properties of sucrose.  

 

In a sugar crystal, sucorse molecules are arranged in a pattern which extends 

into all three dimesions. The sucrose molecules are all linked together by 

intermolecular forces. When added to water, these linked sucrose molecules start 

seperating, as they are attracted to water molecules. During this procedure some 

sucrose molecules are also crystalizing by binding to other sucrose molecules. 

This process works on Le Chateliers principle. In terms of sucrose, the principle 

states that when sucrose is cooled down, in an attempt to bring the temperature 

up, the molecules will join together to form crystals, which release energy 

(Husband, 2014). This crystal formation, creates a stable glassy matrix during 

 

Figure 45. Diagrammatic representation of the molecular structure of sucrose. 

The structure of the left is the structure of sucrose, which is formed by glucose 

and fructose. The structure on the right is a model showing repeating units of 

sucrose, forming a crystalline structure (Husband, 2014).  
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lyophilization, which prevents formation of ice crystals that have the potential to 

break the nanosponges apart.  

 

There are other ways to prolong stability, other than lyophilization. One way to 

achieve stability is through steric stabilisation. This could be accomplished by 

coating the nanosopnge with polyethylene glycol (PEG). PEG are long chain 

amphipathic copolymers that inhibit aggregation between suspensions. PEG 

covers nanoparticles in such a way, that the long loops extend out into the 

solution. Since they are hydrophillic tails they are only attracted to water and are 

not attracted to each other, this creates a repulsion between the nanoparticles. 

This is known as steric stabilisation (Stolnik et al., 1994).  
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1.8 Appendix  
 

1.8.1 Size distribution graphs for ovine erythrocyte vesicles, PLGA 
nanoparticles and nanosponges 

 

The average size (z-average) of ovine erythrocyte vesicles that were plotted in 

Figure 34 and Figure 35  were recorded using a Malvern zetasizer. Below are the 

distribution plots of the recorded average sizes. Sonication of ovine erythrocyte 

ghosts produced polydispersed suspensions of ovine erythrocyte vesicles, shown 

in  Figure 34. Moreover, showed that longer sonication times lead to a reduction 

in particle size.  

 

 

 

Figure 46. Size distribution plot for ovine erythrocyte vesicles, which were 

subjected to 7 minutes of sonication at 20°C. This plot was acquired from the 

Malvern zetasizer data analysis software.   



100 

 

 

 

 

 

 

Figure 47. Size distribution plot for ovine erythrocyte vesicles, which were 

subjected to 14 minutes of sonication at 20°C. This plot was acquired from the 

Malvern zetasizer data analysis software.   

 

Figure 48. Size distribution plot for ovine erythrocyte vesicles, which were 

subjected to 21 minutes of sonication at 20°C. This plot was acquired from the 

Malvern zetasizer data analysis software.   
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Figure 49. Size distribution plot for ovine erythrocyte vesicles, which were 

subjected to extrusion through a 400 nm polycarbonate membrane at 20°C. 

This plot was acquired from the Malvern zetasizer data analysis software.   

 

Figure 50. Size distribution plot for ovine erythrocyte vesicles, which were 

subjected to extrusion through a 100 nm polycarbonate membrane at 20°C. This 

plot was acquired from the Malvern zetasizer data analysis software.   
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1.8.2 Scanning electron micrographs on nanosponges  

 

 

 

 

 

 

 

  

 

Figure 51. A scanning electron micrograph of ovine erythrocyte nanosponges. The 

sample was prepared by fixation with 3% glutaraldehyde and 2% osmium 

tetroxide. The micrograph shows melting and complete aggregation of the sample. 

Scale bar represents 5.0 µm. 
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Chapter 2  
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2 Streptolysin-O haemolysis and adsorption studies 
 

2.1 Introduction 
 

2.2 Streptococcus 

 

Stevens (1995) stated that “An emerging pathogen can be one that is new, one 

that was known but has only recently been identified, or one that is old but has 

learned new tricks,”.  Regardless of environmental pressures many pathogens 

that were discovered in the past have become major clinical problems, such as 

penicillin resistant pneumococcus, MRSA and Vancomycin resistant enterococci 

(VREs). According to Stevens (1995) group A Streptococcus  is an example of a 

well researched pathogen that has become more virulent over time. From 1995, 

British tabloids referred to Streptococcus as “The Flesh eating bug” to describe 

necrotizing infections. 

Group A streptococcal infections are currently increasing in the UK (chapter 1 

section 1.4.7).  The epidemiology of streptococcal infections is quite complex 

since there are more than 80 different serotypes of Streptococcus pyogenes. 

From the start of the 21st century there have been severe streptococcal infections, 

associated with shock and organ failure (Stevens, 2016).  

 

Figure 52. A timeline showing major Streptococcal outbreaks from the 16th 

century to the 20th century (Stevens, 1995, Ferretti 2016).  
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2.1.1 Streptococcal toxic shock syndrome  
 

Cases of severe streptococcal toxic shock syndrome (TSS) caused by group A 

Streptococcus have been reported since 1987. Hackett and Stevens (1992) 

reported a group A streptococcal infection outbreak in 1989, associated with renal 

failure, toxic shock and blood-borne bacteraemia that occurred in 20 people in 

outbreaks in Northern Europe and the US. Of the isolated strains of group A 

Streptococcus, 80% of these strains produce exotoxins (Stevens, 1995). Since 

then, similar cases have been reported in the United Kingdom. Genetic analyses 

has shown that strains having the speA gene (codes for exotoxin A) are more 

likely associated with TSS infection. 

Another group A strain, known as Streptococcus pyogenes produces 

streptolysin-O; a toxin named in the 1980s, as one that belongs to the thiol-

activated cytolysin group of toxins, later known as cholesterol binding toxins. 

Streptolysin-O was shown to be cardiocytotoxic and leukocytolytic both in vitro 

and in vivo (Reitz et al., 1968, Bryant et al., 1992).  Hackett and Stevens (1992) 

have shown that toxic shock caused by streptolysin-O is mediated by the 

cytokines, tumour necrosis factor (TNFα) and interleukin (IL-1β). These cytokines 

have been shown to cause fever and induce shock. Signalling by these mediators 

occurs via transmembrane receptors known as toll-like receptors. Within the 

monocyte, nuclear factor-κβ (NF-κβ) is activated, which leads to the production 

of pro-inflammatory cytokines, TNFα and IL-1β. These mediators, including 

prostaglandins, leukotrienes and platelet-activating factor (Figure 53).  Finally 

causing capillary leakage, production of adhesion molecules on the endothelial 

cells and neutrophils. Interaction between the neutrophils and endothelial cells 

causes endothelial injury through the release of neutrophil components. 

Neutrophils release nitric oxide, which is a vasodilator that leads to toxic shock 

syndrome that leads to sepsis (LaRosa, 2010).  
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There are several symptoms that a patient could have during TSS. The initial 

symptom is severe pain and fever. Confusion is present in some patients. Many 

of the patients have clinical signs of soft tissue infection, such as swelling and 

erythema and 70% of these patients’ progress to necrotizing fasciitis and sepsis.  

2.1.2 PFTs 
 

PFTs are produced by many pathogenic bacteria and are significant virulence 

factors. PFTs are the largest class of bacterial toxins form a major part of a class 

of pore forming proteins (Dal Peraro and van der Goot, 2016). These PFTs are 

highly conserved in bacteria and are an ancient family of proteins, present in all 

kingdoms of life. In the past, these proteins were viewed as toxins that form 

“pores in membranes”.  However, advances in the past decade have discovered 

the complex chemistry, and molecular mechanisms that surround pore formation 

in humans. 

During bacterial invasion of epithelial barriers. PFTs target plasma membranes 

on cells. On binding, these toxins have the ability to alter the plasma membrane’s 

permeability of their target cells, leading to leakage of intracellular contents and 

 

Figure 53. A diagrammatic representation of the role TNFα and IL-1β play in 

causing inflammation and coagulation, leading to toxic shock syndrome. The 

diagram was adapted from  (LaRosa, 2010).  
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ultimately cell death. These toxins are classified in two groups’ α-PFTs and β-

PFTs. The groups are named according to the secondary structure of the toxin, 

which is composed of either α-helices or β–barrels (Dal Peraro and van der Goot, 

2016).  Different structures of these toxins have been discovered, which has led 

to the discovery of a range of strategies used by these proteins to traverse plasma 

membranes.  

All currently discovered PFTs have specific targets on the plasma membrane, 

which are either lipids or proteins (Figure 55). The toxin exists as monomeric units 

when released by the bacteria. However, upon binding the monomer 

oligomerizes into either a α-helix or β-barrel. The α-helices family of toxins include 

enterotoxins of Vibrio cholerae and Escherichia coli, whereas the β-barrel family 

of toxins include α-haemolysin from Staphylococcus aureus, aerolysin from 

Aeromonas hydrophila and cholesterol-binding toxins of various other bacterial 

species. The α-helices family of toxins is well researched; therefore, the area of 

focus of this project is on toxins damaging the cellular membrane through 

formation of β-barrels (Gilbert, 2002). 

2.1.2.1 β-barrels PFTs 
 

The β-barrels family of toxins include the haemolysin family, aerolysin and 

cholesterol binding toxins. The haemolysin family of toxins are produced by 

Staphylococcus aureus and Clostridium perfringens. This family of toxins is 

described in chapter 3.  The second family of toxins is the aerolysin family, which 

was the first discovered family in this class of toxins. Aerolysin is produced by 

Aeromonas spp. Others include α-toxin produced by Clostridium septicum, 

monalysin produced by Pseudomonas entomophila and parasporins produced by 

Bacillus thuringiensis (Gurcel et al., 2006). Aerolysin from pathogens such as 

Aeromonas hydrophila work by disrupting epithelial barriers, which could lead to 

deep wound infections.  

The final group of toxins under this family are cholesterol-binding toxins (CBTs). 

These toxins are identified in five genera of bacterium: Streptococcus, Listeria, 

Clostridium, Bacillus and Arcanobacterium (Alouf et al., 2006) .  The most 

prominent CBTs are streptolysin-O from Streptococcus pyogenes, perfringolysin 

from Clostridium perfringens, listeriolysin from Listeria monocytogenes and 

pneumolysin from Streptococcus pneumoniae. In general, CBTs act on the 
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cholesterol present in cell membranes.  This chapter will mainly focus on the PFT 

streptolysin-O, as there is a great number of infection rates caused by 

streptococcus (Figure 8). 

 

2.1.2.1.1 Streptolysin-O  
 

Streptolysin-O is part of the CBTs group produced by the bacteria Streptococcus 

pyogenes (a group A Streptococcus).  This toxin is produced as a water-soluble 

monomer in the form of single chain polypeptide. It contains four domains, similar 

to other CBTs. There is one cysteine residue present in each molecule. 

Biochemical modification of this residue causes toxin inactivation (Walev et al., 

1995).  

 

 

Figure 54. Molecular mechanism of pore formation. The image clearly describes 

pore formation in 5 steps. (Step 1) Binding, (Step 2) Dimerization, (Step 3) 

Release of the prestem, (Step 4) Prestem to prepore formation by the process of 

amino acid reorientation and (Step 5) Transmembrane pore formation 

(Yamashita et al., 2014).    
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Figure 55. Diagrammatic representation of pore formation by PFTs. Diagrammatic representation of pore formation. PFTs specific for certain 

receptors, recognize the target site on the membrane, which are either lipids or proteins. The red colour represents alpha and beta chains 

of the protein structure, the blue colour represent phospholipid heads and tails and the yellow represents cholesterol in the membrane 

(Chhabria and Beeton, 2016).  
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The principal function of streptolysin-O is to disrupt host cell membranes.  

Streptolysin-O has four domains. Domain 4 contains an undecapeptide, which 

binds to cholesterol (Figure 56).  After binding, between 35-50 streptolysin-O 

monomers oligomerize into ring-shaped pre-pores 30 nm wide, as depicted in 

Figure 55. Once the pre-pore is assembled, the domains undergo a 

conformational change from α-helices to insert β-sheets into the membrane 

forming a β-barrel pore in the membrane. 

 

Figure 56. Diagrammatic representation of streptolysin-O (CBTs) have high 

affinity towards the lipid raft domain embedded in cholesterol.  The dark blue 

represents the PFT, streptolysin-O, The yellow represents cholesterol in the 

membrane, the grey represents a type of phospholipid (phosphatidylcholine), the 

blue represents phospholipid heads and tails and the orange represents a 

transmembrane protein 
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2.2 Material and methods 
 
All chemicals were analytical grade and purchased from Fisher scientific UK Ltd 

(Loughborough, UK), Sigma-Aldrich Ltd (Dorset, England), Diagnostic Reagents 

Ltd, (Oxon, England) and TCS biosciences (Buckingham, UK) 

 

2.2.1 Concentration dependent haemolysis assay 
 

The haemolysis assay is adopted form Duncan (1974) and Bernheimer (1988), 

and was optimized here to simulate human physiological conditions. This assay 

aims to test lysis of mammalian erythrocytes at different concentrations of 

streptolysin-O. Washed mammalian blood (ovine, porcine, murine and leporine) 

was diluted with PBS (137mM NaCl, 2mM KH2PO4, 8mM Na2HPO4) to make a 

2% (v/v) erythrocyte suspension. 25 ml of this 2% erythrocyte suspension was 

incubated at 37°C in a water bath for 1 hour. At the same time, 10 ml Drabkins 

reagent was separately heated to 37°C for 1 hour. Streptolysin-O (0.2 mg/ml) was 

diluted with PBS and 0.01M L-cysteine (0.121 g added to 100 ml PBS) to make 

a stock of 2000 ng/ml. The stock was diluted to produce the concentrations shown 

in Table 12. L-cysteine was used as a reducing agent in the buffer as streptolysin-

O is oxygen labile.  

 

Table 12. Preparation of different concentrations of streptolysin-O diluted with 

PBS and 0.01M L-cysteine to produce the following concentrations 

 

 

No Volume of 
streptolysin-O 

Stock (μl) 
 

Volume of 
PBS+L-cysteine 

buffer (μl) 
 

Total 
volume 

(μl) 

Final 
concentration of 
streptolysin-O 

(ng/ml) 
1 6 44 50 250 
2 12 38 50 500 
3 19 31 50 750 
4 25 25 50 1000 
5 31 19 50 1250 
6 38 12 50 1500 
7 44 6 50 1750 
8 50 0 50 2000 
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For each concentration shown in Table 12, 50 μl of streptolysin-O was added to 

an Eppendorf tube containing 500 μl 2% erythrocyte suspension (Figure 57). The 

tubes were allowed to incubate for 30 minutes at 37°C. 

The tubes were then centrifuged for 5 minutes at 900 x g in an Eppendorf 540R 

microcentrifuge at 4°C (Duncan, 1974). This temperature stopped the reaction. 

20 μl of this supernatant is added to 4 ml of Drabkins reagent and was allowed to 

stand for 15 minutes (Bhakdi and Tranum-Jensen, 1987). The absorbance was 

assayed at 540 nm using a Jenway spectrophotometer  

 

 

 

 

 

Figure 57.  A diagrammatic representation of the volumes of streptolysin-O and 

2% erythrocyte suspension present in the Eppendorf tubes. These solutions are 

then incubated at 37°C for 30 minutes. 
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2.2.2 Time dependent haemolysis assay 
 

The washed animal blood (ovine, porcine, murine and leporine) was diluted with 

PBS to make a 2% erythrocyte (v/v) suspension. The 2% erythrocyte suspension 

and the Drabkins reagent were incubated at 37°C in a water bath for 1 hour. 6 μl 

of streptolysin-O was diluted with 994 μl of PBS and 0.01 M L-cysteine to make 

a concentration of 1230 ng/ml (estimated physiological concentration during 

infection) from a 0.2 mg/ml stock solution of streptolysin-O, with a total volume of 

1 ml (Alouf, 1980). The tubes were prepared according to the table below: 

 

Table 13- Concertation of streptolysin-O and incubation time of each test sample 

prepared in the assay 

 

Tube no Incubation time for test  
sample (mins) 

Final streptolysin-O 
concentration  

(ng/ml) 
1 10 1230 
2 20 1230 
3 30 1230 
4 40 1230 
5 50 1230 
6 60 1230 

 

The ratio of toxin to blood was added according to Figure 57. Each tube that was 

prepared was incubated at 37°C in a water bath for a particular amount of time 

shown from Table 13. The tubes were then centrifuged for 5 minutes at 900 x g 

in a microcentrifuge at 4°C, which stopped the reaction. 20 μl of the supernatant 

was added to 4 ml of Drabkins reagent and was allowed to stand for 15 minutes 

(Bernheimer, 1974). The absorbance was assayed at 540 nm.  

 

2.2.3 Toxin adsorption studies 
 

This method is adopted from Hu et al. (2013) and optimized to achieve desired 

conditions. This test aimed to test nanosponges and its components as a toxin 

adsorbing system under different temperatures. Ovine blood was chosen for 

these studies as ovine erythrocytes showed maximum susceptibility towards 

streptolysin-O lysis compared to leporine, murine and porcine blood. 
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2.2.3.1 Testing the efficacy of erythrocyte ghosts as a toxin adsorbing 
system  

 

Absorption of streptolysin-O by erythrocyte ghosts was tested using a novel 

assay. Washed ovine blood was diluted to make a 2% (v/v) erythrocyte 

suspension, 2% (v/v) erythrocyte ghost suspension and a 2% (v/v) mixed (ghosts 

and erythrocytes) RBC suspension Figure 58. The 2% erythrocyte ghost 

suspension was made by adding 2 parts of washed blood to 98 parts of hypotonic 

buffer (9.64mM NaCl, 1.20mM KH2PO4, 1mM EDTA and 3.61mM Na2HPO4). This 

buffer was used to lyse erythrocytes to synthesize the erythrocyte ghosts. The 

erythrocyte ghost pellet was washed three times with isotonic PBS and then 

reconstituted in it. The 2% mixed erythrocyte suspension was made by adding 1 

part of the 2% erythrocyte suspension to 1 part of the 2% erythrocyte ghost 

suspension. 1230 ng/ml (estimated human physiological concentration) of 

streptolysin-O was added to the 3 suspensions and incubated in a water bath at 

37°C for 30 mins. The suspensions were then centrifuged for 5 minutes at 900 x 

g in an Eppendorf microcentrifuge (Arlington business park, Stevenage, UK) at 

4°C. The concentration of Hb was measured by adding 20 μl of the supernatant 

to 4 ml Drabkins reagent and the solution was allowed to stand for 15 minutes. 

The optical density was read at 540 nm (Hb A). 250 μl of the supernatant was 

aspirated using a Pasteur pipette from each system and added to a separate 2% 

erythrocyte suspension, which was incubated for 30 mins at 37°C. The tubes 

were then centrifuged at 4°C for 5 minutes at 900 x g. 20 μl of the supernatant is 

added to 4 ml of Drabkins reagent and was allowed to stand for 15 minutes. The 

optical density was then assayed at 540 nm (Hb B). The Concentration of Hb 

released by unbound toxin was measured by subtracting Hb A from Hb B.  
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2.2.3.2 Testing the efficacy of ovine nanosponges as a toxin adsorbing 
system 

 

Toxin absorption by nanosponges were tested using a published method (Hu et 

al., 2013). A 0.2 mg/ml solution of streptolysin-O was diluted to 1230 ng/ml (sheep 

physiological concentration at which 50% of the erythrocytes were lysed) by 

adding 6 µl of the 0.2 mg/ml stock to 994 µl of PBS and 0.01M L-cysteine. L-

cysteine was added as a reducing agent, cause streptolysin-O is sensitive 

towards oxygen .50 μl of a 1230 ng/ml streptolysin-O solution was added to four 

test systems as shown in Figure 59. The total volume in the four different systems 

was 550 μl. The four systems were then incubated in a controlled water bath at 

37°C. After 30 minutes of incubation, the four systems were then centrifuged for 

5 minutes at 900 x g using a microcentrifuge at 4°C. This temperature stopped 

the reaction. 20 μl of this supernatant is added to 4 ml of Drabkins reagent and 

was allowed to stand for 15 minutes. The absorbance was assayed at 540 nm 

using a spectrophotometer. This assay was repeated at 40°C, which emulated 

the elevated body temperature during sepsis (Lee et al., 2012) 

 

Figure 58. Diagrammatic representation of the volumes of streptolysin-O and 2% 

RBC suspension present in the three different solutions. The three suspensions 

were then incubated at 37°C in a water bath for 30 minutes. 
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2.2.3.3 Testing the efficacy of reconstituted ovine nanosponges as a toxin 
adsorbing system 

 

Nanosponges at a concentration of 1 mg/ml were lyophilized using the 

lyophilization method stated in section 1.5.13.  One batch of the lyophilized 

nanosponges were stored at 4°C for a week and the second batch was stored for 

6 months at 4°C.  After a week of storage, nanosponges were reconstituted with 

1 ml of isotonic PBS (pH 7.2). Nanosponges were characterized for size and zeta 

potential, using a Nano-zs zetasizer. Nanosponges at a concentration of 1mg/ml 

were tested for their ability to adsorb 1230 ng/ml streptolysin-O. 50 μl of a 1230 

ng/ml streptolysin-O solution was added to 4 test systems shown in Figure 59. 

The four systems were then incubated in a controlled water bath at 40°C. After 

30 minutes of incubation, the 4 systems were then centrifuged for 5 minutes at 

900 x g at 4°C.  20 μl of this supernatant was added to 4 ml of Drabkins reagent 

and was allowed to stand for 15 minutes. The absorbance was assayed at 540 

nm using a spectrophotometer.  

 

 

 

 

 

 

Figure 59. A diagrammatic representation of the volumes of streptolysin-O and 

2% erythrocyte suspension present in the four different systems. The four 

different suspensions were then incubated at 37°C and 40°C in a water bath for 

30 minutes. 
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2.2.3.4 Ovine nanosponge dose dependent study  
 

A stock solution of 0.2 mg/ml nanosponges was diluted with isotonic PBS (pH 

7.2) to produce the concentrations shown in Table 14.  

 

Table 14- Volume of ovine nanosponge stock solution and PBS added to prepare 

the following concentrations of ovine nanosponges. 

No. Volume 

from 

nanosponge 

stock (μl) 

Volume of PBS 

diluent (μl) 

Total volume 

(ml) 

Final concentration 

of ovine 

nanosponges 

(ng/ml) 

1 10 990 1 2000 

2 20 980 1 4000 

3 30 970 1 6000 

4 40 960 1 8000 

5 50 950 1 10000 

 

A 2% ovine erythrocyte suspension was prepared along with the Drabkins 

reagent and was incubated at 40°C.  50 μl streptolysin-O at a concentration of 

1230 ng/ml was added to 250 μl 2% erythrocyte suspension, to which 250 μl of 

the prepared concentrations of nanosponges were added (Table 14). The five 

suspensions, each containing different concentrations of nanosponges were 

incubated in a temperature controlled water bath at 40°C. After 30 minutes of 

incubation, the five suspensions were then centrifuged for 5 minutes at 900 x g 

at 4°C.  20 μl of this supernatant was added to 4 ml of Drabkins reagent and was 

allowed to stand for 15 minutes. The absorbance was assayed at 540 nm using 

a spectrophotometer. 
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2.2.3.5 Adsorption of increasing concentrations of streptolysin-O by 
1mg/ml ovine nanosponges.  

 

This method aims to test the efficacy of ovine nanosponges to adsorb increasing 

concentrations of streptolysin-O. A 0.2 mg/ml streptolysin-O stock solution was 

diluted with PBS and L-cysteine to prepare the following concentrations:  

Table 15- The volume from a stock solution and diluent to prepare the following 

streptolysin-O concentrations 

No Volume 
streptolysin-O 

stock (µl) 

Vole of PBS 
diluent (µl) 

Total volume 
(µl) 

Final 
concentration 

of 
streptolysin-O 

(μg/ml) 
1 25 225 250 20 

2 50 200 250 40 

3 75 175 250 60 

4 100 150 250 80 

5 125 125 250 100 

 

A 2% (v/v) ovine erythrocyte suspension was prepared along with the Drabkins 

reagent and was incubated at 40°C. 25 μl streptolysin-O at different 

concentrations (Table 15) were added to 125 μl 2% (v/v) erythrocyte suspension, 

to which 125 μl of the 1mg/ml ovine nanosponges were added. The five 

suspensions, each containing different concentrations of streptolysin-O were 

incubated in a temperature controlled water bath at 40°C. After 30 minutes of 

incubation, the five suspensions were then centrifuged for 5 minutes at 900 x g 

at 4°C.  20 μl of this supernatant was added to 4 ml of Drabkins reagent and was 

allowed to stand for 15 minutes. The absorbance was assayed at 540 nm using 

a spectrophotometer. 
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2.2.4 Cholesterol assay 
 

The aim of this method was to quantify the concentration of cholesterol present 

in 2% erythrocyte suspensions from the four chosen mammalian species.  This 

protocol makes use of a Sigma-Aldrich cholesterol quantitation kit and works by 

using cholesterol esterase, which hydrolyzes cholesteryl esters to cholesterol. A 

probe is added to the mix which, upon detection of cholesterol generates a pink 

colour.  

2.2.4.1 Quantification of cholesterol in mammalian blood 
 

The cholesterol quantitation kit included 25 ml cholesterol assay buffer, 0.2 ml 

cholesterol probe, 1 vial enzyme mix, 1 vial cholesterol esterase and 0.1 ml 

cholesterol standard (2 μg/μl). The assay could be used for 100 reactions. The 

cholesterol assay buffer was allowed to come down to room temperature before 

use. The enzyme mix and cholesterol esterase were reconstituted with 220 μl 

cholesterol assay buffer and kept on ice.   20 μl of the 2 μg/μl cholesterol standard 

was diluted with 140 μl cholesterol assay buffer to produce a stock of 0.25 μg/μl. 

A standard curve was plotted based on the reaction volumes shown in the 

appendix section 2.5.2. Reactants in in each well were denoted by abbreviations. 

Cholesterol standard (S), cholesterol assay buffer (CAB), cholesterol probe (P), 

enzyme mix (EM) and cholesterol esterase (CE). The total volume in each 

reaction well was 50 μl. Row 1 of the 96 well plate was used to measure 

background (appendix section 2.5.2). From rows 2-6, increasing volumes of the 

standard solution was added to produce a standard curve. After addition of the 

reactants the plate was incubated at 37°C for 30 minutes to allow the reaction to 

start. The reaction was measured for absorbance at 570 nm using a FLUOstar 

Omega UV/Vis plate reader (Allmendgruen, Ortenberg, Germany).  The enzyme 

mix, cholesterol esterase, cholesterol probe, cholesterol and cholesterol assay 

buffer were aliquoted and stored at -20°C. 

2.2.4.2 Sample preparation and measurement 
 

Four mammalian blood species (ovine, murine, leporine and porcine) were 

measured for cholesterol using this assay. The whole blood was washed using 

the washing procedure describe in section 1.5.1.  The erythrocyte suspension 
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was diluted with isotonic PBS (pH 7.2) to produce a 2% (v/v) erythrocyte 

suspension.  The suspension was centrifuged at 900 x g using a microcentrifuge 

at 4°C. An extraction solution was prepared to extract cholesterol from the 

pelleted erythrocytes. The extraction solution contained a mix of 7 ml chloroform, 

11 ml isopropanol and 0.1 ml triton x-100. 200 μl of the extraction solution was 

added to the pelleted erythrocytes. The tube containing the extraction solution 

and the erythrocytes was vortexed for 2 minutes.  The tube was then centrifuged 

at 13000 x g for 10 minutes using a microcentrifuge, which pelleted the insoluble 

material. The supernatant, which contained the extracted cholesterol was 

pipetted into an Eppendorf tube. The Eppendorf tube containing the supernatant 

was placed on to a Thermo scientific heat block at 50°C, which allowed 

evaporation of the extraction solution. The dried cholesterol was kept in a 

desiccator overnight, which removed moisture from the sample. The dried 

cholesterol was reconstituted back to its original volume with cholesterol assay 

buffer. The sample was kept in a UW water bath sonicator (50-60 hertz) for 20 

minutes. The sample was assayed in a 96 well plate as shown in the appendix 

section 2.5.2.  

2.2.5 Incorporation of cholesterol into ovine nanosponges 
 

This method was adopted form Briuglia et al. (2015) and optimised to synthesize 

the nanosponge formulations shown in Table 16. The aim of this protocol was to 

incorporate different concentration of cholesterol into ovine nanosponges and 

test the adsorption of streptolysin-O by these nanosponges.  Ovine blood was 

washed, using the washing protocol described in section 1.5.1. 500 μl of ovine 

erythrocytes were lysed using a hypotonic buffer to synthesize ovine erythrocyte 

ghosts (section 1.5.3). The erythrocyte ghost pellet was dissolved in 200 μl 

extraction solution. The tube containing the erythrocyte ghost pellet and the 

extraction solution was vortexed for 2 minutes. The sample was centrifuged at 

13000 x g using a microcentrifuge, which pelleted the insoluble material. The 

supernatant was transferred to another Eppendorf tube (solution A).  5 mg of 

cholesterol was dissolved in 200 μl extraction solution to yield a 25 mg/ml stock 

solution (solution B). Solution A was mixed with solution B to produced ovine 

nanosponges with different concentration of cholesterol, as shown from Table 16.  
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Table 16- Amount of solution A and B to produce ovine nanosponges with 

different concentrations of cholesterol.   

Nanosponge 

formulations 

Volume of 

solution A 

(μl) 

Volume of 

solution B 

(μl) 

Volume of 

Chloroform 

(μl) 

Total volume 

(μl) 

NS1 200  50 50 300 

NS2 200 75 25 300 

NS3 200 100 0 300 

Control 300 0 0 300 

Solution A= Ovine erythrocyte ghosts dissolved in extraction buffer 
Solution B= 25 mg/ml cholesterol stock solution  

The control ovine nanosponges were prepared according to the method above    

(section 1.5.11). NS1, NS2 and NS3 were kept in a Thermo scientific heat block 

at 50°C. The dried nanosponges were kept in a desiccator overnight. The dried 

nanosponge samples were reconstituted back to their original volume with 

isotonic PBS (pH 7.2). The samples were then centrifuged for 10 minutes at 

13000 x g using a microcentrifuge; this allowed removal of any unincorporated 

cholesterol. This step was repeated three times. The samples were placed in a 

water bath sonicator (50-60 hertz) for 20 minutes. Each of the nanosponge 

formulations were then serially extruded through a 400 nm and 100 nm 

polycarbonate membrane, with a solution containing 0.2 mg/ml PLGA polymer. 

The quantitation of cholesterol was measured as shown in section 2.2.4.2 and 

adsorption of streptolysin-O by cholesterol incorporated nanosponges was 

conducted according to the method shown in section 2.2.3.2.  

2.2.6 Phospholipid assay  
 

The aim of this method was to investigate if phospholipids were lost during the 

synthesis of ovine nanosponges. The phospholipid quantification kit was 

purchased from Sigma-Aldrich. The kit provides a simple direct throughput assay 

for measuring choline containing phospholipids in biological samples.   Using the 

assay, phospholipids were enzymatically hydrolysed to release choline, which 

was determined using choline oxidase and a hydrogen peroxide dye.  Since ovine 

blood was used to synthesise nanosponges, the kit was used on ovine blood. 
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2.2.6.1 Phospholipid standard preparation 
 

The phospholipid quantitation kit included 10 ml assay buffer (AB), 120 μl dye 

reagent (DR), 1 vial enzyme mix (EM), 120 μl phospholipase D (PLD) and 400 μl  

2mM phosphatidylcholine standard (PS). The assay could be used for 100 

reactions. The assay buffer was equilibrated to room temperature before use; all 

the other reactants were thawed and kept on ice. The enzyme mix was 

reconstituted with 120 μl assay buffer and kept on ice. The assay was conducted 

in a Fisher-Scientific flat-bottomed 96 well plate. 24 μl of the 2mM 

phosphatidylcholine standard was added to 216 μl of ultra-pure water to prepare 

a 200 μM standard.  0, 30, 60 and 100 μl was added to separate tubes. Ultrapure 

water was added to each tube to bring the final volume to 100 μl. This generated 

four different concentrations 0 (blank), 60, 120 and 200 μM standards.  A 

standard curve was plotted based on the reaction volumes shown in the appendix 

section 2.5.2 Reactants in each well were denoted by abbreviations. The total 

volume in each reaction well was 88 μl. The plate was kept away from light and 

incubated at room temperature for 30 minutes. The reaction was measured for 

absorbance at 570 nm using a FLUOstar Omega UV/Vis plate reader. The 

enzyme mix, cholesterol esterase, cholesterol probe, cholesterol and cholesterol 

assay buffer were aliquoted and stored at -20°C. 

2.2.6.2 Sample preparation and measurement 
 

Synthesis of ovine nanosponges required the use of ovine blood. The ovine blood 

was subjected to hypotonic lysis, which produced ovine erythrocyte ghosts. The 

ovine erythrocyte ghosts were subjected to sonication and extrusion to 

synthesize ovine erythrocyte vesicles. The vesicles were extruded with the PLGA 

cores to synthesize ovine nanosponges. The quantification of phospholipids was 

estimated with each of these systems, to investigate the loss of lipids during 

preparation of ovine nanosponges.  Ovine blood was washed using the washing 

procedure describe in section 1.5.1. 500 μl of the erythrocyte suspension was 

added to 2 ml of an extraction buffer. The extraction buffer was prepared to 

extract lipids from the pelleted erythrocytes. The extraction solution contained a 

mix of 7 ml chloroform, 11 ml isopropanol and 0.1 ml triton x-100.  The tube 

containing the extraction solution and the erythrocytes was vortexed for 2 
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minutes.  The tube was centrifuged at 13000 x g for 10 minutes using a 

microcentrifuge, which pelleted the insoluble material. The supernatant, which 

contained the extracted lipids, was pipetted into an Eppendorf tube. The 

Eppendorf tube containing the supernatant was placed on to a Thermo scientific 

heat block at 50°C, which allowed evaporation of the extraction solution. The 

dried lipid was kept in a desiccator overnight, which removed moisture from the 

sample. The dried lipid was reconstituted back to its original volume with assay 

buffer. The sample was kept in a UW water bath sonicator (50-60 hertz) for 20 

minutes. The sample was assayed in a 96 well plate as shown in the appendix 

section 2.5.2. This protocol was repeated with ovine erythrocyte ghosts, 

erythrocyte vesicles and nanosponges. 
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2.3 Results 
 

2.3.1 Streptolysin-O haemolysis assay 
 

2.3.1.1 Concentration dependent assay  
 

Streptolysin-O was assayed for release of haemoglobin against four different 

mammalian species. From each of these mammalian species a 2% erythrocyte 

suspension was prepared, to which increasing concentrations of streptolysin-O 

was added. The suspensions were incubated at 37°C for 30 minutes. The 

suspensions were then centrifuged at 4°C, which separated the whole ovine 

erythrocytes cells from the released Hb. The released Hb present in the 

supernatant was assayed for at an absorbance at 540 nm. The measured Hb was 

estimated using a bovine Hb standard curve shown from Figure 30. Haemolysis 

of the suspensions were calculated as a percentage of the total amount of Hb 

present in the system, since each mammalian blood species has a different 

amount of Hb present in their system. According to Figure 60, as the 

concentration of streptolysin-O increases, the concentration of Hb increases for 

all tested mammalian species. There was a sequential difference between the 

mammalian blood in terms of lysis by streptolysin-O. This was 

murine>ovine>porcine>leporine up to 1250 ng/ml. Above 1250 ng/ml the 

sequence was ovine > murine >porcine>leporine, up to 2000 ng/ml streptolysin-

O. The 2000 ng/ml had the highest lysis of ovine erythrocytes at 80% release of 

haemoglobin (±1.40). This concentration of Hb release quantified in Figure 60 is 

shown qualitatively from Figure 61. 
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Figure 60. The effect of increasing concentration of streptolysin-O on Hb release 

from four different types of mammalian blood. The total Hb present in the 2% 

mammalian suspensions: leporine (2.67 g/dl, ± 0.07), murine (1.87 g/dl, ± 0.07), 

ovine (1.43 g/dl, ± 0.09) and porcine (2.47 g/dl, ± 0.32). Error bars represent SEM 

(n=3). R2 values were measured for the respective mammalian blood types. 

Murine (R2=0.935), leporine (R2=0.970), porcine (R2=0.913) and ovine (R2=0.871). 

Refer to the appendix section 2.5.1, for concentration of Hb release in “g/dl”.  

 

Figure 61. An image taken with a Nikon camera shows eight Eppendorf tubes, 

with increasing concentrations of Hb present in the supernatant. The first tube 

with the lowest intensity of red has a concentration of 250 ng/ml streptolysin-

O, whereas the last tube has a concentration of 2000 ng/ml. 
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2.3.1.2 Time dependent assay 
 

Similar to the concentration dependent assay, streptolysin-O was assayed 

against four different mammalian blood, with respect to time. The released Hb 

present in the supernatant was assayed for absorbance at 540 nm. The 

measured Hb was estimated using a bovine Hb standard curve shown in Figure 

30. The suspensions were incubated for 60 minutes at 37°C. Haemolysis of the 

suspensions was calculated as a percentage of the total amount of Hb present in 

the system. Figure 62 shows the effect 1230 ng/ml streptolysin-O has on four 

different mammalian blood during 60 minutes of incubation at 37°C. After 60 

minutes, ovine erythrocytes showed maximum susceptibility towards streptolysin-

O haemolysis, as at 60 minutes streptolysin-O released 91.9% (±1.39) Hb as 

opposed to porcine and leporine Hb release. Similar to the concentration 

dependent haemolysis assay, murine erythrocytes were more susceptible to 

haemolysis by streptolysin-O, compared to leporine and porcine erythrocytes, as 

after 60 minutes of incubation streptolysin-O released 53.2% (±1.42) Hb. 
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2.3.2 Streptolysin-O adsorption assays  
 

Streptolysin-O absorption was tested using ovine nanosponges, vesicles and 

PLGA. Figure 63 shows that ovine erythrocyte ghosts had the ability to absorb 

streptolysin-O. This test involved the addition of supernatant containing unbound 

toxin to a 2% erythrocyte suspension. This was shown by the degree of 

haemolysis. The system that contained 2% ovine RBC had the highest 

concentration of Hb release at 0.45 g/dl (± 0.05) compared to the system that 

contained 2% ghosts, which had the least Hb release at 0.30 g/dl (± 0.03). The 

system that contained a mixture of the ovine RBC and the ghost had nearly half 

the Hb release of the 2% ovine RBC system (0.36 g/dl, ± 0.03). These results 

 

Figure 62. The effect of 1230 ng/ml (human physiological concentration) of 

streptolysin-O on a 2% (v/v) mammalian erythrocyte suspensions over a 60 

minute time period. The Hb concentration was measured at 540 nm using 

Drabkins reagent. Leporine (2.67 g/dl, ± 0.07), murine (1.87 g/dl, ± 0.07), ovine 

(1.43 g/dl, ± 0.09) and porcine (2.47 g/dl, ± 0.32). Error bars represent SEM 

(n=3). R2 values were measured for the respective mammalian blood types. 

Murine (R2=0.796), leporine (R2=0.933), porcine (R2=0.825) and ovine 

(R2=0.925)  
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were compared to a positive control, which involved the addition of 0.1% Triton 

x-100 to the 3 different suspensions. This suspension has the ability to solubilize 

lipids, thereby releasing maximum amount of Hb from the erythrocytes and 

ghosts.  

The ovine erythrocyte ghosts were sonicated to produce ovine erythrocyte 

vesicles, which were extruded with the PLGA polymer to produce ovine 

nanosponges. Figure 64 shows the efficacy of the nanosponge and its 

components to absorb streptolysin-O.  This was tested by adding the streptolysin-

O and 2% ovine erythrocytes to systems containing the PLGA polymer, vesicles 

and nanosponges, which were incubated at 37°C for 30 minutes. Absorption was 

measured by concentration of Hb release, as shown in Figure 65.  

 

 

Figure 63. Testing absorption of 1230 ng/ml streptolysin-O by ovine erythrocyte 

ghosts. These systems were incubated at 37°C for 30 minutes. Adsorption of 

streptolysin-O was measured by degree of haemolysis at 540 nm. Maximum Hb 

released from a 2% (v/v) ovine erythrocyte suspension was 1.5 g/dl.“*”P≤0.05, 

“**”P≤0.01 and “***”P≤0.001. The results that do not contain “*” symbol are not 

significant. .Error bars represent SEM (n=3).  
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Figure 64. Testing the efficacy of ovine nanosponges and its components to 

adsorb 1230 ng/ml streptolysin-O, incubated at 37°C. Adsorption of streptolysin-

O was measured by degree of haemolysis at 540 nm. .“*”P≤0.05, “**”P≤0.01 and 

“***”P≤0.001. Error bars represent SEM (n=3). 

 

Figure 65. Testing the efficacy of the nanosponge and its components as a 

toxin absorption system. An image taken with a Nikon camera shows 4 

Eppendorf tubes with increasing concentrations of Hb present in the 

supernatant after incubation at 37°C for 30 minutes and then centrifugation at 

956x g. (increase in concentration of Hb is shown by the increased intensity of 

the red colour). Left to right: (Tube 1) 2% ovine erythrocytes+streptolysin-

O+PBS, (Tube 2) 2% ovine erythrocytes+streptolysin-O+vesicles, (Tube 3) 

2% ovine erythrocytes+streptolysin-O+PLGA and (Tube 4) 2% ovine 

erythrocytes+streptolysin-O+nanosponges. 
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According to Figure 64, the system that contained the nanosponges had the 

lowest Hb release at 0.005 g/dl (± 0.005) compared to the system containing just 

the toxin and erythrocytes (0.23 g/dl, ±0.01). The difference is shown by the level 

of significance “P≤0.001”. The system that contained the vesicles was able to 

absorb the toxins similar to the ovine erythrocyte ghosts in the previous test, as 

it had nearly half the Hb release (0.08 g/dl, ±0.01), as opposed to the system 

containing toxin and erythrocytes. The adsorption of streptolysin-O by ovine 

nanosponges was also tested at 40°C, which is the estimated human body 

temperature during sepsis. Figure 66, indicates the efficacy of ovine 

nanosponges to adsorb streptolysin-O at 40°C.  There was no Hb release in the 

system containing nanosponges at 40 °C compared to the system incubated at 

37°C (approximately 0.001 g/dl of HB released).  Yet, there is a significant 

difference in the concentration of Hb released between the systems containing 

ovine erythrocyte vesicles, when incubated at 37°C and 40°C. 

 

 

Figure 66. Testing the efficacy of ovine nanosponges and it components to 

adsorb 1230 ng/ml streptolysin-O, incubated at 37°C 40°C. Adsorption of 

streptolysin-O was measured by degree of haemolysis at 540 nm. .“*”P≤0.05, 

“**”P≤0.01 and “***”P≤0.001. Error bars represent SEM (n=3). 
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The synthesised ovine nanosponges and its components were lyophilized with 

5% (w/v) sucrose and stored at 4°C for a week, as stated in section 1.5.13. The 

nanosponges and its components were then reconstituted with isotonic PBS (pH 

7.2) and tested for their efficacy to adsorb streptolysin-O. Similar to the previous 

results, the system that contained the ovine nanosponges shows the least Hb 

release at 0.05 g/dl (± 0.04), as shown in Figure 67. 

2.3.3 Nanosponge dose dependent assay  
 

The ovine nanosponges (1mg/ml) were added in increasing concentration to 

systems that contained 2% ovine erythrocytes and 1230 ng/ml streptolysin-O. 

The suspensions were then incubated at 40°C for 30 minutes. The suspensions 

were then centrifuged and the supernatant was measured for concentration of Hb 

released.  According to Figure 68, 10,000 ng/ml nanosponge absorbed 1230 

ng/ml streptolysin-O, as the concentration of Hb released is minimal (0.009 g/dl, 

± 0.005).  Comparatively, the 2000 ng/ml nanosponge had the highest 

concentration of Hb released at 0.554 g/dl (± 0.03). 

 

 

Figure 67. Testing reconstituted ovine nanosponges (1mg/ml) and its 

components for absorption of streptolysin-O, incubated at 40°C.“*”P≤0.05, 

“**”P≤0.01 and “***”P≤0.001. Error bars represent SEM (n=3). 
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Figure 68. The effect of increasing concentrations of ovine nanosponges on 

adsorption of 1230 ng/ml streptolysin-O at 40°C for 30 minutes. Error bars 

represent SEM (n=3). R2= 0.882 

R² = 0.8828
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2.3.4 Cholesterol assays  
 

2.3.4.1 Quantifying total cholesterol in 2% mammalian erythrocyte 
suspensions 

 

The cholesterol quantitation kit was used to quantify the concentration of 

cholesterol present in 2% mammalian blood samples and ovine nanosponges. 

The Kit quantifies cholesterol by using a cholesterol esterase enzyme that 

hydrolyzes cholesteryl esters to cholesterol, and a probe that produces a pink 

colour. The kit was assayed for absorbance at 570 nm.  The 2% mammalian 

erythrocyte suspensions were quantified for concentration of cholesterol by using 

the standard curve, shown in Figure 69.  

 

 

Figure 69. Standard curve of total cholesterol. The assay uses cholesterol 

esterase, which hydrolyzes cholesteryl esters to cholesterol. The reaction 

produces a pink colour, which was assayed for absorbance at 570 nm. Error 

bars represent SEM (n=3) 
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The concentration of total cholesterol was estimated in four different mammalian 

species: ovine, murine, porcine and leporine (Figure 70). The figure shows that 

the 2% ovine erythrocyte suspension contains the greatest concentration of total 

cholesterol as opposed to the other blood types. The concentration of total 

cholesterol present in a 2% ovine erythrocyte suspension was 24 ng/μl (± 2.0). 

The lowest concentration of total cholesterol was present in a 2% leporine 

erythrocyte suspension, as the concentration of cholesterol was 8.0 ng/μl (2.0).  

2.3.4.2 Incorporation of cholesterol into ovine nanosponges  
 

The aim of this experiment was to test if incorporation of different concentrations 

of cholesterol into ovine nanosponges could have an impact on the adsorption of 

streptolysin-O.  Three different formulations were synthesised, each having 

varying volumes of cholesterol; NS1 (50 μl), NS2 (75 μl), NS3 (100 μl) and NS 

(control). The characteristics of the three formulations were compared to the 

control nanosponges. They were also compared in their ability to adsorb 

streptolysin-O. Figure 71 shows the effect of cholesterol incorporation on size of 

ovine nanosponges.  NS3 was formulated with a greater volume of cholesterol 

compared to NS1 and NS2, yet it shows a smaller size, as the size of NS3 was 

 

Figure 70. Estimating the concentration of total cholesterol present in 2% (v/v) 

erythrocyte suspensions from four different mammalian species. The reactions 

were incubated at 37°C for 30 minutes. The pink colour that was produced was 

assayed for its optical density at 570 nm.  Error bars represent SEM (n=3) 
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271 nm (± 27.5) with a PDI of 0.378. The graph shows a strong negative 

correlation between the concentration of cholesterol incorporation and the size, 

from NS1-NS3. NS in this study was used as the control, NS being ovine 

nanosponges developed by the method described in chapter one section 1.5.11.   

The zeta potential of these nanosponge formulations were also compared, as 

Figure 72 shows the zeta potential of the three different formulations. The 

average zeta potential of the formulations has increased compared to the control 

nanosponge. However, a student’s T-test shows no significant difference 

between the formulations and the control nanosponge.   

 

 

 

 

 

 

 

Figure 71.  The effect of cholesterol incorporation on size of three different ovine 

nanosponge formulations. NS1 (50 μl), NS2 (75 μl), NS3 (100 μl) and NS (control). 

Error bars represent SEM (n=3). .“*”P≤0.05, “**”P≤0.01 and “***”P≤0.001.  
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According to Figure 71, the change in size of the formulations could signify the 

incorporation of cholesterol. However, this was further tested by quantifying the 

concentration of cholesterol in each of the formulations by using the Sigma-

Aldrich cholesterol quantitation kit. The positive control is a known cholesterol 

standard, with a concentration of 45 ng/μl. Figure 73, shows the concentrations 

of total cholesterol present in each of the ovine nanosponge formulations. NS3 

has the highest concentration of incorporated cholesterol present at 23.5 ng/μl (± 

0.083) as opposed to NS2, which has the lowest concentration of incorporated 

cholesterol at 11.9 (± 4.1). However, a student’s T-test shows that there is no 

significant difference in the concentration of cholesterol between NS1, NS2 and 

NS (p>0.05). Concentration of total cholesterol in NS3 ovine nanosponges show 

a significant difference compared to NS1.  

The main aim of this experiment was to test if cholesterol incorporated 

nanosponges had the ability to completely adsorb 0.2 mg/ml streptolysin-O at 

40°C.  Figure 74 shows the effect different ovine nanosponge formulations had 

on the adsorption of streptolysin-O. The ovine nanosponge formulations were 

tested for their function to adsorb streptolysin-O by the method described in 

section 2.2.3. 0.1% Triton x-100 was used as a positive control in this study. 

Figure 74 shows that NS3 has completely adsorbed 0.2 mg/ml streptolysin-O, as 

 

Figure 72. The effect of cholesterol incorporation on the zeta potential of three 

different ovine nanosponge formulations. NS1 (50 μl), NS2 (75 μl), NS3 (100 μl) 

and NS (control). Error bars represent SEM (n=3) 
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the concentration of Hb released after addition of NS3 was 0 g/dl. A students T-

test validates the significance of this result (p<0.001). NS1, NS2 and NS have 

also adsorbed streptolysin-O, yet there is presence of Hb release as compared 

to NS3. Comparatively, NS2 has adsorbed more toxin than NS1 and NS as the 

concentration of Hb released is 0.07 g/dl (± 0.03), which is lower than NS1 and 

NS.  

 

 

 

 

 

Figure 73. Quantitation of total cholesterol present in the three different 

formulations and the nanosponge control, using the Sigma-Aldrich cholesterol 

quantitation kit. NS1 (50 μl), NS2 (75 μl), NS3 (100 μl), NS (control) and a positive 

control (45 ng/μl). Error bars represent SEM (n=3). .“*”P≤0.05, “**”P≤0.01 and 

“***”P≤0.001. 
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2.3.5 Phospholipid assay  
 

Phospholipids are essential components of the erythrocyte membrane as they 

maintain the cytoskeletal structure. The loss of lipids during nanosponge 

preparation could affect PFTs adsorption and the overall structure of the 

nanosponge. Therefore, the aim of this experiment was to quantify the 

concentration of lipids at each stage of ovine nanosponge preparation. The lipids 

were quantified using a Sigma-Aldrich phospholipid assay. Phospholipids were 

enzymatically hydrolysed to release choline, which was determined using choline 

oxidase and a hydrogen peroxide dye. The assay was incubated at room 

temperature. The reaction was then read for its optical density at 570 nm. In order 

to synthesise ovine nanosponges, ovine erythrocytes were lysed with a hypotonic 

buffer to synthesize erythrocyte ghosts. The ghosts were subjected to sonication 

to produced erythrocyte vesicles. The erythrocyte vesicles were extruded with the 

PLGA core, which synthesized ovine nanosponges. At each stage. The 

 

Figure 74. Adsorption of streptolysin-O by cholesterol incorporated ovine 

nanosponge formulations. The assay was incubated at 40°C for 30 minutes.  NS1 

(50 μl), NS2 (75 μl), NS3 (100 μl), NS (control) and a triton x-100 (0.1%). Error 

bars represent SEM (n=3). “*”P≤0.05, “**”P≤0.01 and “***”P≤0.001. 
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concentration of phospholipids were determined using a phospholipid standard 

curve, shown in Figure 75. 

 

 

Figure 76 shows the concentrations of choline containing phospholipids at each 

stage of ovine nanosponge preparation. According to Figure 76, the 500 μl ovine 

erythrocytes have a phospholipid concentration of 314.1 μM (± 31.9). Ovine 

erythrocyte ghosts derived form 500 μl ovine erythrocytes, have an increased 

phospholipid concentration of 626.4 μM (± 179.1). Since the erythrocyte ghosts 

have a greater concentration of phospholipids as opposed to ovine erythrocytes. 

It could be suggested, that lipid extraction on ovine erythrocytes may not have 

extracted all the phospholipids, and that extraction of phospholipids from ovine 

erythrocyte ghosts is the true estimate of concentration of phospholipids present 

in 500 μl of ovine erythrocytes. Samples were prepared from fixed volumes of 

ovine erythrocytes which excluded the retentate. 

 

Figure 75. Standard curve of choline containing phospholipids. The reaction was 

assayed for optical density at 570 nm.  Error bars represent SEM (n=3). 
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From Figure 76, it is shown that from the development of erythrocyte ghosts to 

ovine nanosponges there is a decrease in the concentration of phospholipids, as 

the concentration of ovine nanosponges were 205.6 μM (± 8.9).  The significance 

of this reduction is shown by a student’s T-test (p<0.01), Therefore, suggesting, 

that phospholipids are lost during synthesis of ovine nanosponges.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 76. Concentration of choline containing phospholipids at each stage of 

ovine nanosponge preparation. The assay was read for optical density at 570 nm. 

Error bars represent SEM (n=3). The positive control is a known concertation of 

phospholipids (120 μM). “*”P≤0.05, “**”P≤0.01 and “***”P≤0.001. 
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2.4 Discussion  
 

The overall aim of this research chapter was to test the efficacy of streptolysin-O 

haemolysis against ovine, porcine, leporine and murine blood. Furthermore, 

synthesized nanosponges constructed of a polymeric core and from mammalian 

blood. Ovine blood was chosen as a coating of the polymer as it was found to be 

more the most susceptible to streptolysin-O haemolysis. The synthesised 

nanosponge was then tested for its ability to adsorb streptolysin-O under different 

physiological and storage conditions.  

2.4.1 Streptolysin-O haemolysis assay 
 

The novel experiment investigated the degree of streptolysin-O haemolysis 

against ovine, porcine, leporine and murine erythrocytes. Streptolysin-O is a PFT 

secreted by group A Streptococcus and is shown to bind specifically to 

cholesterol on the erythrocyte membrane. Figure 60, shows that ovine 

erythrocytes were more susceptible to streptolysin-O haemolysis, compared to 

the other mammalian blood types, as 2000 ng/ml of streptolysin-O released 

approximately 80 % (± 1.40) ovine Hb. This is a significant result, as a previously 

reported study had shown that ovine erythrocytes had a higher concentration of 

cholesterol present in their membrane compared to the other tested blood 

(Nelson, 1967). At lower concentrations of streptolysin-O (250-1250 ng/ml), 

murine erythrocytes are more susceptible to streptolysin-O lysis, compared to 

ovine erythrocytes. The reason for this is unknown. Compared to the result 

obtained by this experiment, another study conducted by Shewell et al. (2014) 

has shown that lower concentrations of CBTs have close to 90% haemolytic 

activity as, 53 ng/ml pneumolysin (belongs to CBT family of PFTs) has a 

haemolytic activity of approximately 90% against a 1% (v/v) human erythrocytes. 

The author also shows that 400 ng/ml streptolysin-O has approximately 90% 

haemolytic activity against 1% (v/v) human erythrocytes.    

The specificity of streptolysin-O for cholesterol is caused due to a hydrogen 

bonding interactions which are known to be weakly covalent bonds (Ahmad et 

al., 2011). Streptolysin-O is secreted by the bacteria as a monomer containing 

four domains (Figure 77).  Domain 1 and 3 correspond to the membrane attack 

complex perforin family domain found in mammalian PFTs. Domain 4 contains a 
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undecapeptide region (11 amino acids) which binds to cholesterol present in the 

membrane (Keyel et al., 2013).  This undecapeptide region is thought to be 

necessary for cytolytic activity of the toxin. The undecapeptide region contains a 

tryptophan residue that binds to cholesterol via a weak hydrogen interaction 

allowing insertion into the membrane (Ahmad et al., 2011).  

Pore forming toxins such as streptolysin-O share lineage with proteins in other 

organisms, which may suggest that these toxins have evolved overtime to 

possess virulence. For example, pore forming toxin enterolobin found from a 

Brazilian plant Enterobium contortisiliquum has significant sequence homology 

to aerolysin found in Aeromonas hydrophila (Gilbert, 2002). Another study shows 

a cytolytic protein in the snail Biomphalaria glabrata share structural features to 

toxins in the β-PFT family (Galinier et al., 2013).  These PFTs cause diseases in 

humans and animals. Streptococcus has shown to cause diseases in humans, 

dogs, pigs and sheep. A study conducted by Staats et al. (1997) showed that 

Streptococcus causes a wide range of clinical diseases in pigs, such as arthritis, 

 

Figure 77. Structure of streptolysin-O monomer. The structure has four different 

domains. Upon binding to the membrane, the structure oligomerizes to form a 

pore (Ahmad et al., 2011).   
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meningitis, pneumonia and sepsis. Moreover, the study has also shown that the 

disease can spread to humans, particularly abattoir workers. The same study 

shows that dogs and sheep have also contracted diseases such as pneumonia 

and osteomyelitis from a streptococcal infection.  

 

Many infections if left untreated, either in humans or animals could lead to sepsis, 

as described in section 1.4.8. Early goal directed therapy is essential in 

management and treatment of sepsis. However, early goal directed therapy is 

essential in the golden hours of sepsis. Timing is important, as Figure 62 shows 

the effect 1230 ng/ml streptolysin-O has on 2% mammalian erythrocyte 

suspensions over a 60 minute period. After 60 minutes, streptolysin-O has 

released 91% of ovine Hb from erythrocytes (Figure 62) compared to murine, 

leporine and porcine erythrocytes.  Murthy (2014) stated that during sepsis there 

is a Hb cut off value that indicates a sign of severe sepsis. In the NHS, blood 

transfusions are administered within the first 6 hours of sepsis only if the Hb level 

decreases below 7 g/dl.  Kumar et al. (2006) showed that over the first 6 hours of 

sepsis, each hour of delay in initiation of effective antimicrobial therapy was 

associated with a decrease in survival of 7.6% (Figure 78).  This highlights the 

correlation between time of treatment and rate of survival.   
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2.4.2 Streptolysin-O adsorption studies 
 

Treatment options for sepsis include antibiotics, surgical drainage of infected 

fluids, blood transfusion, organ replacement and steroids. Most of these 

treatment strategies reduce the inflammatory response (Peters and Cohen). 

Chapter 1 introduced synthesis of a novel therapeutic model, nanosponge. This 

model was developed using ovine blood as an animal model. Previous studies, 

without nanosponges, have reported using ovine systems as a model for 

endotoxin derived sepsis, as the blood components are similar to that of humans 

and they have similar physiological parameters (Zarjou and Agarwal, 2011).  

Figure 60 shows that ovine erythrocytes were more susceptible to haemolysis by 

streptolysin-O compared to the other mammalian blood types.   

Nanosponges are biomimetic nanoparticles that consist of a polymeric core, 

coated by an erythrocyte membrane. Streptolysin-O binds specifically to 

cholesterol in membranes. Therefore, the ovine nanosponges were used to test 

the adsorption of streptolysin-O in vitro. Consequently, most of the assays 

 

Figure 78. The effect of antimicrobial administration on fraction of total patient’s 

survival with respect to time, following onset of septic shock-associated 

hypotension (Kumar et al., 2006).  
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developed in this chapter tested the ability of ovine nanosponges and its contents 

to adsorb streptolysin-O under physiological and storage conditions. To 

synthesize ovine nanosponges the primary step was to develop erythrocyte 

ghosts.   

The ovine erythrocyte ghosts were tested for adsorption of streptolysin-O using 

a novel assay.  This assay involved adding the supernatant of each of the 

systems into a fresh ovine erythrocyte suspension. The difference in Hb recorded 

before and after addition of the supernatant is what is shown in Figure 63.Figure 

63 shows the 2% (v/v) ovine ghost suspension absorbed the most streptolysin-

O, as the concentration of Hb released was the lowest compared to the other 

systems. Yet there is still Hb released after adsorption by erythrocyte ghosts, as 

depicted in Figure 79.  This shows a new postulated mechanism behind toxin 

adsorption by erythrocyte ghosts in vitro. Erythrocyte ghosts do adsorb 

streptolysin-O. Miyoshi et al. (1997) stated that pore forming toxins like 

streptolysin-O, have the ability to bind reversibly.  Kanbayashi et al. (1972) has 

transferred streptolysin-O, bound to leporine erythrocytes, to a fresh erythrocyte 

suspension, which then led to haemolysis, suggesting that there was possibility 

of binding reversibly (interpreted in Figure 79) .  Similarly Hu et al. (2013) has 

shown that erythrocyte vesicles had the ability to adsorb α-haemolysin. These 

vesicles, when transferred to a murine erythrocyte suspension, were able to lyse 

murine erythrocytes. This may suggest that α-haemolysin also has the ability to 

bind reversibly to erythrocyte membranes.In comparison to the system that 

contains just ovine erythrocytes and the toxin, ovine erythrocyte ghosts had a 

lower concentration of Hb released, indicating a small concentration of unbound 

toxin in the supernatant.  This therefore could signify that the ovine erythrocyte 

ghosts have the ability to adsorb the toxin.  
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The erythrocyte ghosts were subjected to sonication to develop erythrocyte 

vesicles, which were then extruded with the PLGA cores to formulate ovine 

nanosponges. Figure 64 showed the efficacy of the nanosponge and its 

components to adsorb streptolysin-O.  The system that contained the 

nanosponges had the least Hb release compared to the system containing just 

the toxin and erythrocytes. The ovine erythrocyte vesicles were also able to 

 

Figure 79. Diagrammatic interpretation of streptolysin-O binding to ovine 

erythrocyte ghosts. Supernatant containing unbound toxin from the system 

containing erythrocyte ghosts was transferred to a system containing whole 

erythrocytes. The supernatant from this system was then transferred to a 

separate Eppendorf tube and read assayed at 540 nm.  The Eppendorf tube 

containing erythrocyte ghosts shows that streptolysin-O has the ability to bind 

reversibly to erythrocyte membranes.  Step 1 involves binding of streptolysin-O 

to an erythrocyte membrane, step 2 involves detachment from the membrane 

and step 3 involves reattachment to another erythrocyte membrane.  
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absorb streptolysin-O as it had nearly half the Hb release, as opposed to the 

system containing just toxin and erythrocytes. Conversely the system containing 

the PLGA had no adsorption of streptolysin-O, as it showed a greater 

concentration of Hb released as compared to the other systems.  

When PLGA was coated by ovine erythrocyte vesicles (nanosponge), there was 

minimal lysis within the system.  As stated above PFTs like streptolysin-O might 

have the ability to bind reversibly, yet there is minimal Hb released in the system 

containing nanosponges (Figure 65). This may suggest that PLGA plays an 

important role in adsorption of streptolysin-O. There are three factors that might 

play a role in adsorption. (1) PLGA has been used for many clinical purposes and 

has shown to have a better interaction with biological materials. Examples include 

the use of PLGA for bone tissue engineering, stabilization of spinal segments, 

and scaffolds for tissue engineering (Gentile et al., 2014). (2) Presence of 

charged residues on streptolysin-O. Domain 1 and 3 of the streptolysin-O 

structure have a few charged polar residues, which could interact with PLGA. (3) 

The surface area to volume ratio of ovine nanosponges.  

The surface area to volume ratio plays a significant role in adsorption, as when 

the size of the nanosponge decreases, the surface area to volume ratio increases 

(table 11).  The results show that the ovine nanosponges have a greater surface 

area to volume as compared to ovine erythrocyte ghosts. Hu et al. (2013) has 

stated that transforming an erythrocyte to a nanosponge increases the collisional 

frequency with toxins by approximately 50 fold, due to the surface area to volume 

ratio. A study conducted by Waugh and Sarelius (1996) showed that there is a 

link between surface area and clearance by the immune system. They state that 

the loss of surface area ratio on mice erythrocytes leads to rapid clearance by 

the immune system. It is not clear from this study how quickly ovine nanosponges 

will be cleared from mammalian blood.  

Patients suffering from sepsis undergo several physiological changes such as 

tachycardia (increased heart rate), tachypnoea (rapid breathing), prolonged 

hypotension (low blood pressure), acidosis (increased acidity in the blood) and 

hyperthermia (increased body temperature) (Lee et al., 2012). Fajardo (1984) 

shows that there is destruction of cellular bodies under hyperthermic conditions 

(“lesions in the central nervous system, liver, kidney, heart, adrenal, testis, and 

bone marrow”).  Here the adsorption of ovine nanosponges was tested at 40°C, 



148 

which is an estimation of the elevated body temperature during sepsis (Lee et al., 

2012). Figure 66 shows the effect ovine nanosponges and its constituents have 

on the adsorption of streptolysin-O at 40°C. There was no difference in the 

concentration of Hb released by three of the systems incubated at 37°C and 

40°C. At 40°C, the system that contained the nanosponges had adsorbed the 

streptolysin-O as there was no Hb released compared to the system at 37°C. This 

may indicate the nanosponges have a better absorption efficiency at 40°C. This 

could be justified, as the physiological body temperature of sheep is 39°C 

(Piccione et al., 2002). Figure 67 shows a significant difference in concentration 

of Hb release by the systems containing ovine erythrocyte vesicles incubated at 

37°C and 40°C. The reason for this is unknown.  

Chapter 1 section 1.7.8 has shown that ovine nanosponges are not stable when 

stored at 4°C, 24°C, 37°C and 40°C. However, when lyophilized and 

reconstituted, the ovine nanosponges had no significant difference in size as 

opposed to the control nanosponges, suggesting that the ovine nanosponges 

were stable when reconstituted. A study conducted by Gill (2012) stated that 

lyophilization of nanoerythrosomes led to an increased shelf life of the 

nanoparticles.  Similarly, Hu et al. (2013) has shown that lyophilization of murine 

nanosponges, does not lead to the loss of function. Figure 67 shows the results 

of the adsorption of streptolysin-O by reconstituted ovine nanosponges and its 

components at 40°C. Even after lyophilization, the ovine nanosponges have 

retained their function of streptolysin-O adsorption, as the concentration of Hb 

released is minimal compared to the system containing ovine erythrocytes and 

streptolysin-O.   
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2.4.3 Nanosponge dose dependent assay 
 

A dose response curve plays a significant role in aiding treatment of a disease 

and was founded by professor Alfred Joseph Clark in 1931.  A dose response 

curve shows the maximum effect of the therapeutic agent at a certain 

concentration. In a clinical setting, it aids in establishing the right dose required 

to achieve a non-toxic, yet therapeutic effect (Aronson, 2007). Dose response 

curves are generated to test effects of anti-cancer therapeutics, anti-microbial 

testing, toxicity studies against endothelial cells etc. Therefore, this study tested 

the adsorption of 1230 ng/ml streptolysin-O by increasing concentration of ovine 

nanosponges.  Figure 68, shows an inverse correlation between the 

concentration of nanosponges and concentration of Hb released. As the 

concentration of ovine nanosponges increases the concentration of Hb 

decreases. The dose dependent study shows that 10,000 ng/ml ovine 

nanosponges are required to fully adsorb 1230 ng/ml streptolysin-O.  

 

2.4.4 Cholesterol assays 
 

Cholesterol is a significant class of membrane lipids. It is abundant in the plasma 

membrane of mammalian cells. Up to 30% of the entire lipid in the membrane is 

composed of cholesterol. Cholesterol is a major determinant of bilayer fluidity, 

and plays a significant role in maintaining structural integrity of the membrane. 

Nonetheless, studies mentioned in section 2.4.1, show that cholesterol plays an 

important part in streptolysin-O haemolysis, as it is the binding site for 

streptolysin-O pore formation. Consequently, a cholesterol esterase colorimetric 

assay estimated the concentration of cholesterol present in 2% (v/v) mammalian 

erythrocyte suspensions chosen in this study (Figure 70).  Figure 70 shows that 

ovine erythrocytes have the maximum concentration of cholesterol compared to 

the other mammalian blood types. A study conducted in 1967 shows that 27.8% 

of the total lipid content of ovine erythrocytes was composed of cholesterol. 

However, the study also shows that 29.9% of the total lipid content of leporine 

erythrocyte was composed of cholesterol (Nelson, 1967). The results recorded 

by this study do not agree with these results.  
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A study has reported elevated concentrations of cholesterol in erythrocyte 

membranes of humans, compared to the concentrations of cholesterol in 2% 

erythrocyte suspensions reported by this study. Tziakas et al. (2007) showed that 

human erythrocyte membranes have a range of cholesterol from 130.4-260.4 

µg/mg.  

Cholesterol is a significant component of lipid-based nano-formulations in the 

field of nanomedicine, as it maintains the rigidity of the structure. Cholesterol can 

improve stability of a particle by increasing packing of phospholipid molecules 

(Demel and De Kruyff, 1976), reduce membrane permeability to electrolyte 

solutes (Papahadjopoulos et al., 1973) and improve vesicle resistance to 

aggregation  (Briuglia et al., 2015).  Nonetheless, this study incorporated 

cholesterol into membranes of ovine nanosponges. The main aim of this study 

was to test if incorporation of cholesterol would increase adsorption of 

streptolysin-O.  However adding external lipids such as cholesterol will have an 

effect on nanosponge characteristics such as the size and zeta-potential (Wang 

et al., 2007). Figure 71 shows the effect different volumes of incorporated 

cholesterol have on the size of the nanosponges. Compared to the control 

nanosponge NS1 (577.1 ± 50.3), NS2 (487.4 ± 41.1) and NS3 (271.3 ± 27.5) all 

have an increased size after cholesterol incorporation. Moreover, NS1 has a 

greater size compared to NS3.  Even though NS3 was prepared with a higher 

volume of cholesterol, it has the lowest size as opposed to NS1 and NS2.  Briuglia 

et al. (2015) states that the highest concentration of cholesterol that can be 

incorporated is 50%. However, the ratio between cholesterol and lipid used to 

produce stable formulations is 2:1.  This could suggest a reason for NS3 having 

the lowest size, as it could be a more stable formulation. Furthermore, the author 

shows that incorporation of cholesterol into liposomes, created stable particles 

with no significant difference in size over a period of 30 days at 37°C. Therefore 

indicating that incorporating cholesterol has a stabilizing effect.  

As stated earlier in section 1.7.7, the zeta potential value is a particle 

characteristic used to assess stability of a suspension. The electrostatic repulsion 

between particles prevents aggregation of the spheres (Ravi Kumar et al., 2004). 

Magarkar et al. (2014) shows that addition of cholesterol in lipid membranes 

reduces the zeta-potential. A similar result has been obtained by the study shown 

in Figure 72. The figure shows that there is a significant difference in the zeta-
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potential between the cholesterol incorporated nanosponges (NS1, NS2 and 

NS3) and control nanosponges. Cholesterol incorporation reduces the zeta-

potential. Magarkar et al. (2014) states hat sodium ions bind to carbonyl and 

phosphate groups of lipids, which adds to an increase in charge on phospholipid 

membranes. However, incorporation of cholesterol reduces sodium ion binding 

to phospholipid, which leads to the reduction in zeta-potential of phospholipid 

membranes, as the author has shown that incorporating liposomes with 60% 

cholesterol reduces the zeta-potential from neutral to -7 mV.    

 

Characteristics of cholesterol incorporated nanosponges have shown a change 

in size and zeta-potential compared to control ovine nanosponges (Figure 71-

Figure 72). In order to justify cholesterol incorporation, a cholesterol esterase 

enzymatic colorimetric test was conducted to quantify the concentration of 

cholesterol incorporated in the four different nanosponge systems, which 

includes the control. Figure 73 shows no significant difference in the 

concentration of cholesterol between NS1, NS2 and the control nanosponges. 

However, NS3 has a greater concentration of cholesterol as opposed to the other 

nanosponges.   This could suggest, that 100 µl of a 25 mg/ml stock is required to 

incorporate cholesterol into nanosponges. However, the sample size is too small 

to justify the right volume and concentration required for cholesterol 

incorporation. A larger sample size is required to justify the optimum 

concentration and volume required to incorporate cholesterol in nanosponges.  

Even though Figure 73 showed no significant difference in the concentration of 

incorporated cholesterol between NS1, NS2 and control nanosponges, when 

tested for their ability to adsorb 0.2 mg/ml streptolysin-O, there was a significant 

difference in the concentration of Hb released in these three nanosponge 

systems (Figure 74). NS1 shows similar adsorption to the control nanosponge, 

as there is no significant difference in concentration of Hb released by the two 

systems. NS2 has a lower concentration of Hb released compared to NS1 and 

the control nanosponge. NS3 has adsorbed 0.2 mg/ml streptolysin-O compared 

to the control nanosponge, as there was no Hb release recorded.  The reason for 

this result is shown by Flanagan et al. (2009). The author states that reducing the 

size of the phospholipid headgroup caused an increase in cholesterol exposure 

on bilayer membranes, consequently leading to an increase in streptolysin-O 
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binding. Therefore, we suggest that rather than cholesterol being incorporated in 

NS2 and NS3, there could have been more exposure of cholesterol on the 

membrane leading to adsorption of streptolysin-O. Flanagan et al. (2009) has 

also shown that using perfringolysin (a type of CBT), several factors play a role 

in perfringolysin binding to cholesterol. The author states (1) that binding only 

occurs when the concentration of cholesterol exceeds the association capacity of 

phospholipids and (2) packing of lipid molecules in the bi-layer will dictate whether 

or no cholesterol is accessible to the toxin.    

 

2.4.5 Phospholipid assay  
 

Schwoch and Passow (1973) states that erythrocyte ghosts are widely used in 

study of composition, structure and function of the red blood cell membrane. 

Hanahan et al. (1974), Turner and Rouser (1974) and Kostic et al. (2014) have 

all studied the properties of erythrocyte ghosts and stated that, preparation of 

erythrocyte ghosts do not lead to the loss of lipids from the erythrocyte 

membrane. However, there are no studies that test the loss of lipids during 

nanosponge preparation. Therefore, we tested the loss of phospholipids during 

preparation of ovine nanosponges, by quantifying the concentration of 

phospholipids at each step of ovine nanosponge preparation. Figure 76, shows 

the concentration of phospholipids at each stage of ovine nanosponge 

preparation. The concentration of phospholipids decrease from the development 

of erythrocyte ghosts to nanosponges.  Hu et al. (2011) has stated “an excess of 

blood was used to compensate for the membrane loss during RBC ghost 

derivation and extrusion”, which produced nanosponges. . Cho et al. (2013) has 

stated that “some sample material may be lost during extrusion during passage 

through the porous membrane”.  This signifies, that the reduction in phospholipid 

concentration shown in Figure 76 is caused during extrusion.  

Figure 76 also shows that ovine erythrocyte ghosts have a greater concentration 

of phospholipids as opposed to ovine erythrocytes. Van Deenen and De Gier 

(1974) has stated that in the past erythrocyte lipid extracts have been conducted 

on erythrocytes and erythrocyte ghosts. Furthermore, the author states using 

erythrocytes produces unsatisfactory results as the erythrocytes congeal into a 

plastic puttylike lump, during extraction. Moreover, the haem pigment is often 
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extracted and has catalytic effects. Therefore could produce unreliable results.  

For these reasons, erythrocytes ghosts have shown a greater concentration of 

phospholipids and have been used to estimate concentration of phospholipids in 

erythrocyte samples.  
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2.5 Appendix 
 

2.5.1 Haemolysis assay result in grams per decilitre  
 

Table 17- Concentration of haemoglobin released by ovine erythrocytes in grams 

per decilitre  

Concentration of 
streptolysin-O (ng/ml) 

Average concentration 
of haemoglobin (g/dl) 

Standard error 

250  0.174 0.010 
500 0.174 0.010 
750 0.194 0.017 
1000 0.324 0.010 
1250 0.364 0.020 
1500 0.644 0 
1750 0.955 0.036 
2000 1.145 0.020 

 

Table 18- Concentration of haemoglobin released by murine erythrocytes in 

grams per decilitre 

Concentration of 
streptolysin-O (ng/ml) 

Average concentration 
of haemoglobin (g/dl) 

Standard error 

250  0.414 0.056 
500 0.414 0.056 
750 0.424 0.050 
1000 0.604 0.050 
1250 0.654 0.026 
1500 0.684 0.027 
1750 0.744 0.040 
2000 0.875 0.020 
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Table 19- Concentration of haemoglobin released by porcine erythrocytes in 

grams per decilitre 

Concentration of 
streptolysin-O (ng/ml) 

Average concentration 
of haemoglobin (g/dl) 

Standard error 

250  0.224 0 
500 0.274 0.026 
750 0.284 0.030 
1000 0.324 0.020 
1250 0.454 0.070 
1500 0.484 0.040 
1750 0.644 0.036 
2000 0.604 0.020 

 

Table 20- Concentration of haemoglobin released by leporine erythrocytes in 

grams per decilitre 

Concentration of 
streptolysin-O (ng/ml) 

Average concentration 
of haemoglobin (g/dl) 

Standard error 

250  0.049 0.025 
500 0.094 0.010 
750 0.094 0.010 
1000 0.164 0.030 
1250 0.187 0.049 
1500 0.264 0.020 
1750 0.314 0.062 
2000 0.364 0.053 
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2.5.2 Reactants and volumes used to produce a cholesterol and 
phospholipid standard curve 

 

Table 21- Reaction volumes in a 96 well plate to produce a cholesterol standard 

curve 

 1 2 3 4 5 6 
A 0 µl S 

  44 µl CAB 
2 µl P 

2 µl EM 
2 µl CE 

4 µl S 
40 µl CAB 
2 µl probe 
2 µl EM 
2 µl CE 

8 µl S 
36 µl 
CAB 
2 µl P 

2 µl EM 
2 µl CE 

12 µl S 
32 µl 
CAB 
2 µl 

probe 
2 µl EM 
2 µl CE 

16 µl S 
28 µl 
CAB 
2 µl 

probe 
2 µl EM 
2 µl CE 

20 µl S 
24 µl 
CAB 
2 µl 

probe 
2 µl EM 
2 µl CE 

B 0 µl S 
  44 µl CAB 

2 µl P 
2 µl EM 
2 µl CE 

4 µl S 
40 µl CAB 
2 µl probe 
2 µl EM 
2 µl CE 

8 µl S 
36 µl 
CAB 
2 µl P 

2 µl EM 
2 µl CE 

8 µl S 
36 µl 
CAB 
2 µl P 

2 µl EM 
2 µl CE 

16 µl S 
28 µl 
CAB 
2 µl 

probe 
2 µl EM 
2 µl CE 

20 µl S 
24 µl 
CAB 
2 µl 

probe 
2 µl EM 
2 µl CE 

C 0 µl S 
  44 µl CAB 

2 µl P 
2 µl EM 
2 µl CE 

4 µl S 
40 µl CAB 
2 µl probe 
2 µl EM 
2 µl CE 

8 µl S 
36 µl 
CAB 
2 µl P 

2 µl EM 
2 µl CE 

8 µl S 
36 µl 
CAB 
2 µl P 

2 µl EM 
2 µl CE 

16 µl S 
28 µl 
CAB 
2 µl 

probe 
2 µl EM 
2 µl CE 

20 µl S 
24 µl 
CAB 
2 µl 

probe 
2 µl EM 
2 µl CE 
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Table 22- Reaction volumes in a 96 well plate to produce a phospholipid standard 

curve 

A 1 2 3 4 
B 0 µl PS 

86 µl  AB 
1 µl EM 
1 µl DR 

20  µl PS (60 µM) 
6 µl AB 
1 µl EM 
1 µl PLD 
1 µl DR 

20  µl PS 
(120 µM) 
65 µl AB 
1 µl EM 
1 µl PLD 
1 µl DR 

20  µl PS 
(200 µM) 
65 µl AB 
1 µl EM 
1µl PLD 
1 µl DR 

C 0 µl PS 
86 µl  AB 
1 µl EM 
1 µl DR 

20  µl PS (60 µM) 
6 µl AB 
1 µl EM 
1 µl PLD 
1 µl DR 

20  µl PS 
(120 µM) 
65 µl AB 
1 µl EM 
1 µl PLD 
1 µl DR 

20  µl PS 
(200 µM) 
65 µl AB 
1 µl EM 
1µl PLD 
1 µl DR 

D 0 µl PS 
86 µl  AB 
1 µl EM 
1 µl DR 

20  µl PS (60 µM) 
6 µl AB 
1 µl EM 
1 µl PLD 
1 µl DR 

20  µl PS 
(120 µM) 
65 µl AB 
1 µl EM 
1 µl PLD 
1 µl DR 

20  µl PS 
(200 µM) 
65 µl AB 
1 µl EM 
1µl PLD 
1 µl DR 

 

2.5.3 Amount of nanosponges required to treat a streptolysin-O infection. 
 

The results obtained from the nanosponge dose dependent study (Figure 68), 

were used to theoretically calculate the therapeutic dose required to treat a 

streptolysin-O infection in a human, murine, leporine and porcine system. The 

equation for the theoretical calculation is shown below: 

Nanosponges (g) = 10000 ng/ml x total volume of blood present in the system (l) 

Table 23. Estimated nanosponge dose required to treat a streptolysin-O infection 

in five different mammalian systems  

System Total Volume of blood (l) Nanosponges (g) 

Human 6 0.06 

Murine 0.02 0.0002 

Leporine 0.12 0.0012 

Porcine 3 0.03 

Ovine 4.2 0.04 
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3 α-haemolysin- Haemolysis and adsorption studies  
 

3.1 Introduction 
 

3.1.1 Staphylococcus aureus 
 

Staphylococcus aureus is among the most successful of human pathogens. 

Colonization by Staphylococcus aureus of the skin, mucosa and nostrils is 

common (Kluytmans et al., 1997). Staphylococcus aureus is known to be the 

leading cause of bloodstream, lower respiratory tract, skin, and tissue infections 

worldwide (Tong et al., 2015). Despite its prevalence, much remains to be learned 

about how Staphylococcus aureus causes disease.  Although studies have been 

published about the genetics and microbiology of Staphylococcus aureus over 

the last few decades. There is still a lot of research to be conducted to fully 

understand the virulence of this microorganism.   

Staphylococcus spp were first implicated in disease in 1880, when famous 

Scottish surgeon Alexander Ougsten linked them to abscesses and neonatal 

diseases (Ogston, 1984). It was later shown that Staphylococcus spp disease 

was always present in nurseries, most often causing minor skin infections 

(Williams, 1958). The first identified nursery outbreak took place in the United 

States in 1889 and subsequent outbreaks took place in the 1900s (Shinefield and 

Ruff, 2009). Staphylococci spp are common in hospitals particularly in burn or 

surgical units, where there are patients with deep wound infections and patients 

that are catheterised. These provide easy entry for the bacteria into the body of 

the patient. Staphylococcus aureus infections are mostly caused by MRSA 

(Shinefield and Ruff, 2009).  

As discussed in section 1.4.7.1 mortality caused Staphylococcus aureus still 

remains high. The reason for death is because like Streptococcus spp, 

Staphylococcus aureus infections can lead to sepsis. If left untreated eventually 

it causes Toxic shock syndrome. This decreases the patient chance of survival.  
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3.1.2 Staphylococcus aureus toxic shock syndrome 
 

TSS is an acute, life threatening intoxication, characterised by hypotension, high 

fever, rash and multi-organ dysfunction. This is caused by exotoxins produced by 

Staphylococcus aureus. The disease was initially described in 1978 and came to 

public attention in 1980 with the  occurrence of a series of menstrual-associated 

cases (Zaghloul, 2015). However, about half the cases of TSS today occur in 

patients that are not menstruating.  For example, a study conducted by Murphy 

et al. (2001) shows than out of 574 vascular surgical patients that developed a 

MRSA infection. From 574 patients 23 died in the hospital. Out of the 23 patients 

that died, 10 acquired TSS but died as a result of sepsis.   

One of the contributing toxins behind Staphylococcus aureus virulence is a PFT, 

known as α-haemolysin. α-haemolysin is part of the family of β-barrel PFTs. This 

toxin is secreted in the body as a water-soluble monomer and is capable of 

binding and oligomerizing into a heptameric structure on the host cellular 

membrane (Song et al., 1996). A study conducted by Adhikari et al. (2012) and 

colleagues examined a population of 100 adults at risk for Staphylococcus aureus 

sepsis, revealing that the risk of sepsis was reduced in individuals with a higher 

serum antibody titters to α-haemolysin and a collection of four other toxins. 

Another study conducted by Fritz et al. (2013) examined serum anti- α-

haemolysin levels in 235 children, categorized into three groups. (1) 

Staphylococcus aureus colonized without evidence or history of infection, (2) 

primary skin/soft tissue infection and (3) invasive Staphylococcus aureus 

disease. Highest anti- α-haemolysin levels were discovered in children with an 

invasive Staphylococcus aureus disease.  

Similar to streptolysin-O, α-haemolysin has been associated with inflammatory 

mediators that are part of inflammatory pathways in sepsis. Craven et al. (2009) 

states that α-haemolysin has been shown to induce pulmonary hypertension and 

inflammation in rat and rabbit models.  In addition to pulmonary inflammation, α-

haemolysin has been shown to induce inflammatory reactions in skin, eye and 

the abdomen of rats. Inflammation is induced, due to inflammatory mediators. In 

endothelial cells α-haemolysin induces platelet activating factor (Suttorp et al., 

1993). In pulmonary derived cell lines, α-haemolysin causes release of nitric 
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oxide and other inflammatory mediators. It has also shown to induce cell death 

and IL-1β secretion from human monocytes (Bhakdi et al., 1989). All the above 

inflammatory mediators are released due to cellular/tissue injury (Figure 80).  The 

concentrations of α-haemolysin used in this study are higher than the 

physiological concentration (1230 ng/ml) for a 2% leporine erythrocyte 

suspension. Based on Figure 80, it could be confirmed that results in this chapter 

show that for leporine erythrocytes lysis does take place. However since this toxin 

was not used against other type of cells shown from Figure 80 , lethal 

concentrations for other cells are not confirmed. Moreover it would defeat the 

purpose of this study, which is to create a nanosponge   

3.1.3 α-haemolysin  
 

In the late 1800s were the first investigation on the toxic activity of Staphylococcal 

supernatants. These studies showed that addition of the supernatant to various 

animal models (guinea pigs and rabbits) caused dermonecrosis, inflammation 

and haemolysis (Christmas-Dirckinck Holmfeld, 1888).  The concept that 

supernatants contained Staphylococcus toxins came in the late 1920s following 

a tragedy in Bundaberg, Australia (Berube and Wardenburg, 2013).   21 children 

in that town were immunized for anti-diphtheria toxin. With hours 16 children 

experienced vomiting, high fever and unconsciousness. Within 2 days 12 children 

had died. The investigation stated that the culture supernatants from the vaccine 

was contaminated with Staphylococcus aureus. This led scientists to study 

culture supernatants of Staphylococcus aureus, finding out that there was 

presence of a toxin (Berube and Wardenburg, 2013).    

 

Figure 80. A diagrammatic representation of cellular responses to damage by α-

haemolysin (Berube and Wardenburg, 2013).  
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After this incident, there have been many studies conducted on the activity of this 

toxin. This toxin was found to be potent against leporine erythrocytes and was 

called α-toxin (Glenny and Stevens, 1935). In the 1960s, isolation of the toxin 

from culture supernatants allowed for a range of biochemical tests and biological 

experiments to be performed. It was later found out that α-toxin caused disease 

by disrupting host cellular membranes. From disrupted cells oligomeric structures 

were found and host cells had formation of large pores in the membrane 

(Bernheimer and Schwartz, 1963). The molecular mechanism of pore formation 

became the focus of investigation for many years. 

3.1.3.1 Mechanism of pore formation  
 

α-haemolysin is secreted by Staphylococcus aureus as a water-soluble 

monomer. The α-haemolysin assembly is divided into four steps: (1) The water-

soluble form approaches and binds to the membrane surface, (2) The monomers 

partially insert into the membrane (3) They oligomerize into a heptamer and (4) 

Full membrane insertion takes place and form a pore, which allows for the 

passage of molecules into the cell membrane (Figure 55). They finally cause the 

cell to swell up and burst. All β-barrel PFTs interact in the same way. These toxins 

are attracted to lipid bilayers made up of phosphatidylcholine, sphingomyelin and 

cholesterol, which are present in all mammalian cells (Bonardi et al., 2012). 

However, scientist believed that this toxin has to have specificity for a receptor 

on the erythrocyte membranes as low concentrations of this toxin caused 

haemolysis (Berube and Wardenburg, 2013). It was not until 2010, when ADAM 

10 was defined as the target for α-haemolysin (Wilke and Wardenburg, 2010). A 

disintegrin and metalloprotease 10 (ADAM 10) is a proteinaceous receptor for α-

haemolysin, and is found to be most abundant on leporine erythrocytes (Wilke 

and Wardenburg, 2010). It is a transmembrane protein on the surface of host 

cells. The extracellular domain of ADAM 10 is comprised of an N-terminal 

enzymatic domain known as disintegrin. Functioning as a sheddase ADAM 10 is 

responsible for cleavage of large protein present on the host cell surface.   
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3.2 Material and methods 
 

3.2.1 Preparation of leporine nanosponges  
 

Leporine nanosponges were prepared using the same protocol described in 

section 1.5.11. Similar to the previously used method the leporine erythrocyte 

vesicles and PLGA polymeric cores were added in equal volumes and extruded 

13 times through a 100 nm polycarbonate membrane at 20°C. The mechanical 

force of extrusion allowed fusion of the erythrocyte vesicles with the PLGA 

nanoparticle, synthesizing a nanoparticle with a lipid coating and a PLGA 

polymeric core. 

   

3.2.2 Characterisation of leporine nanosponges  
 

The leporine nanosponges were characterized using Malvern Nano-zs zetasizer. 

1 ml of the synthesized leporine nanosponge suspension was added to a 

polystyrene cuvette. This cuvette was inserted into the zetasizer ad assayed for 

nanoparticle size and zeta potential (Weber et al., 2000).  

 

3.2.3 Concentration dependent haemolysis assay 
 

The haemolysis assay is adopted form Duncan (1974) and Bernheimer (1988), 

and was optimized here to simulate human physiological conditions. The aims to 

test the concentration of mammalian Hb released after the addition of different 

concentrations of α-haemolysin.  Washed mammalian blood (ovine, porcine, 

murine and leporine) was diluted with PBS (137mM NaCl, 2mM KH2PO4, 8mM 

Na2HPO4) to make a 2% (v/v) erythrocyte suspension. 25 ml of this 2% 

erythrocyte suspension was incubated at 37°C in a water bath for 1 hour. At the 

same time, 10 ml Drabkins reagent was separately heated to 37°C for 1 hour.  α-

haemolysin (0.2 mg/ml) being an oxygen-stable PFT, was diluted with PBS to 

make a stock of 5000 ng/ml, and did not require the use of L-cysteine. The stock 

was diluted to produce the concentrations shown in Table 24.  
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Table 24. Preparation of different concentrations of α-haemolysin diluted with 

PBS to produce the following concentrations. 

 

No Volume of 

α-haemolysin stock 

(μl) 

Volume of 
PBS buffer 

(μl) 
 

Total 

volume (μl) 

Final 

concentration 

of α-haemolysin 

1 10 40 50 1000 

2 20 30 50 2000 

3 30 20 50 3000 

4 40 10 50 4000 

5 50 0 50 5000 

 

For each of the concentrations shown in Table 24, 50 μl of α-haemolysin was 

added to an Eppendorf tube containing 500 μl 2% erythrocyte suspension. The 

tubes were then placed in a water bath incubator for 30 minutes at 37°C. The 

tubes were then centrifuged for 5 minutes at 900 x g at 4°C. 20 μl of this 

supernatant was added to 4 ml of Drabkins reagent and was allowed to stand for 

15 minutes. The absorbance was assayed at 540 nm using a Jenway 

spectrophotometer  

 

3.2.4 Time dependent haemolysis assay  
 

This assay was design to test the correlation between time and the physiological 

concentration of α-haemolysin. The washed animal blood (ovine, porcine, murine 

and leporine) was diluted with PBS to make a 2% erythrocyte (v/v) suspension. 

The 2% erythrocyte suspension and the Drabkins reagent were incubated in a 

temperature controlled water bath at 37°C.  6 μl from a 0.2 mg/ml α-haemolysin 

stock was added to 994 μl PBS to produce a concentration of 1230 ng/ml, with a 

total volume of 1 ml.  The tubes were prepared according to Table 25.  
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Table 25. Concentration of α-haemolysin and incubation time of each test sample 

prepared in the assay 

 

No. Incubation time for test 
sample (mins) 

Final α-haemolysin  
concentration 

(ng/ml) 
1 10 1230 
2 20 1230 
3 30 1230 
4 40 1230 
5 50 1230 
6 60 1230 

 

The volume of α-haemolysin and 2% erythrocyte suspension were added 

according to Figure 57. Each of the above prepared tubes were incubated at 37°C 

in a water bath according to the times shown in Table 25. The tubes were then 

centrifuged for 5 minutes at 900 x g in a microcentrifuge at 4°C. 20 μl of the 

supernatant was added to 4 ml of Drabkins reagent and was allowed to stand for 

15 minutes. The absorbance was assayed at 540 nm.  

3.2.5 Toxin adsorption studies  
 

This method is adopted from Hu et al. (2013) and optimized to achieve desired 

conditions.  This test, aims to test the efficacy of nanosponges and its 

components to adsorb α-haemolysin, under different temperatures. Leporine 

blood was chosen for this study as leporine erythrocytes showed maximum 

susceptibility towards α-haemolysin lysis compared to ovine, murine and porcine 

blood. 

 

3.2.5.1 Testing the efficacy of leporine nanosponges as a toxin adsorbing 
system  

 

Toxin absorption by nanosponges were tested using a published method (Hu et 

al., 2013). A stock solution containing 0.2 mg/ml α-haemolysin was diluted to 

1230 ng/ml, by adding 6 µl of the stock to 994 µl of PBS. 50 µl of the diluted α-

haemolysin was added to each test system, as depicted in Figure 59 (for this 
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method streptolysin-O replaced for α-haemolysin).  The 250 µl 2% (v/v) leporine 

erythrocyte suspension was added in last, as the addition of erythrocytes starts 

the reaction. However, for the system containing nanosponges, they were added 

in after the 2% leporine erythrocyte suspension. The total volume in the four 

systems were 550 µl. The four systems were then incubated in a controlled water 

bath at 37°C. After 30 minutes of incubation, the four systems were then 

centrifuged for 5 minutes at 900 x g. This allowed separation of the supernatant 

from the non-haemolysed components. 20 μl of this supernatant is added to 4 ml 

of Drabkins reagent and was allowed to stand for 15 minutes. The absorbance 

was assayed at 540 nm using a spectrophotometer. This assay was repeated at 

40°C, which emulated the elevated body temperature during sepsis (Lee et al., 

2012) 

 

3.2.5.2 Testing the efficacy of reconstituted leporine nanosponges as a 
toxin adsorbing system 

 
This method aims to test the efficacy of leporine nanosponges to retain their 

ability to adsorb α-haemolysin, after reconstitution. Leporine nanosponges were 

lyophilized at a concentration of 1 mg/ml with 5% (w/v) sucrose (refer to chapter 

1 section 1.5.13). The lyophilized nanosponges were stored at 4°C for a week. 

After a week, the leporine nanosponges were reconstituted with PBS (pH 7.2). 

Nanosponges were characterised for size and zeta potential. Leporine 

nanosponges at a concentration of 1mg/ml were tested for their ability to adsorb 

1230 ng/ml streptolysin-O. 50 μl of a 1230 ng/ml streptolysin-O solution was 

added to 4 test systems shown in Figure 59. . The four systems were then 

incubated in a controlled water bath at 40°C. After 30 minutes of incubation, the 

four systems were then centrifuged for 5 minutes at 900 x g. 20 μl of this 

supernatant is added to 4 ml of Drabkins reagent and was allowed to stand for 

15 minutes. The absorbance was assayed at 540 nm using a spectrophotometer. 
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3.3 Results 
 

3.3.1 Characterisation of leporine nanosponges 
 

The nanosponges were synthesized by extruding the leporine erythrocyte 

vesicles with the PLGA nanoparticle cores. The nanosponges were dissolved 

with isotonic PBS and characterised for size. Figure 81 shows the size distribution 

of leporine nanosponges measured using dynamic light scattering Figure 81 

shows two distinct peaks. The tallest peak has a size of 571 nm and the shorter 

peak has a size of 114 nm. The software combined the two sizes to report an 

average size of 354 nm with a PDI of 0.443. 

Leporine nanosponges were lyophilized with 5% (w/v) sucrose and stored at 4°C 

for a week. After a week, the lyophilized suspension was reconstituted with PBS. 

The reconstituted suspension was measure for size, using a zetasizer.  Figure 82 

shows the size distribution of reconstituted leporine nanosponges after one week 

of storage. Figure 82 shows two different peaks. The tallest peak has a size of 

575 nm and the shorter peak has a size of 119 nm. The software combined the 

two sizes to report an average size of 394 nm with a PDI of 0.302.  

 

 

 

 

Figure 81. Size distribution graph of 1 mg/ml leporine nanosponges prepared by 

fusing ovine erythrocyte vesicles with PLGA nanoparticles. This plot was 

acquired from the Malvern zetasizer data analysis software 
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The leporine nanosponges were also characterised for their zeta potential. It 

measures the electrostatic charge between the particles in a suspension. Figure 

83 shows the zeta potential distribution plot of leporine nanosponges. The 

average zeta potential is reported as -9.0 mV.  

 

 

 

 

 

 

Figure 82. Size distribution graph of nanosponges lyophilized with 5% sucrose 

(w/v) reconstituted after 1 week, with PBS. This plot was acquired from the 

Malvern zetasizer data analysis software. 

 

Figure 83. Zeta potential distribution graph of 1 mg/ml leporine nanosponges.  

This plot was acquired from the Malvern zetasizer data analysis software.   
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The leporine nanosponges that were lyophilized with 5% sucrose were also 

characterised for their zeta potential after reconstituting it with PBS. Figure 84 

shows the zeta potential distribution of reconstituted nanosponges after one week 

of storage in a lyophilized form. According to Figure 84, the average zeta potential 

is -11.1 mv. 

 

3.3.2 α-haemolysin haemolysis assays  
 

3.3.2.1 Concentration dependent assay 
 

α-haemolysin was assayed against four different types of mammalian blood 

(leporine, murine, ovine and porcine). From each of these mammalian blood 

types a 2% (v/v) erythrocyte suspension was prepared. To which increasing 

concentrations of α-haemolysin were added. The suspensions were incubated at 

37°C for 30 minutes. They were then centrifuged at 4°C for 5 minutes, which 

separated the unlysed erythrocytes from the released Hb. The released Hb was 

assayed for optical density at 540 nm. The measured Hb was estimated using a 

bovine Hb standard curve shown from Figure 30. . Haemolysis of the suspensions 

were calculated as a percentage of the total amount of Hb present in the system, 

since each mammalian blood species has a different amount of Hb present in 

their system. Figure 85, shows the effect of increasing concentrations of α-

haemolysin on Hb release from 2% (v/v) ovine, leporine and murine erythrocyte 

 

Figure 84. Leporine nanosponges were lyophilized with 5% sucrose for one week. 

The zeta potential distribution curve refers to the electrostatic charge recorded 

after reconstituting the lyophilized suspension with PBS.  
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suspensions. Porcine data was not added to Figure 85 as it showed no 

concentration of Hb release, which meant that the porcine erythrocytes were 

unlysed and were not susceptible to haemolysis by α-haemolysin. According to 

Figure 85, as the concentration of α-haemolysin increases, the concentration of 

Hb released increases from the leporine, murine and ovine systems. Similar to 

streptolysin-O haemolysis assay there was a sequential difference between the 

mammalian blood in terms of lysis by α-haemolysin. This was leporine 

>murine>ovine up to 5000 ng/ml. Leporine erythrocytes released the highest 

concentration of Hb when incubated with 5000 ng/ml α-haemolysin, as 75% (± 

1.1) of the total Hb was released by leporine erythrocytes.  

 

 

 

 

Figure 85. The effect of increasing concentration of α-haemolysin on Hb release 

from three different types of mammalian blood. The total Hb present in the 2% 

mammalian suspensions: leporine (2.67 g/dl, ± 0.07), murine (1.87 g/dl, ± 0.07) 

and ovine (1.43 g/dl, ± 0.09). Error bars represent SEM (n=3). R2 values were 

measured for the respective mammalian blood types. Murine (R2=0.901), 

leporine (R2=0.849), porcine (R2=0.913) and ovine (R2=0.754). 
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3.3.2.2 Time dependent assay  
 

α-haemolysin was assayed against three different mammalian blood, with respect 

to time. According to the concentration dependent study, porcine blood did not 

show any signs of haemolysis against α-haemolysin. This could be as there aren’t 

any studies indicating the presence of ADAM10 receptors on the porcine 

membrane. .Therefore, porcine blood was not used in this study. The 

suspensions were incubated for 60 minutes at 37°C. The released Hb present in 

the supernatant was assayed for absorbance at 540 nm. The measured Hb was 

estimated using a bovine Hb standard curve shown from Figure 30. Haemolysis 

of the suspensions was calculated as a percentage of the total amount of Hb 

present in the system. Figure 87 shows the effect 1230 ng/ml streptolysin-O has 

on three different mammalian blood during 60 minutes incubation at 37°C. After 

60 minutes of incubation, leporine erythrocytes showed maximum haemolysis 

towards α-haemolysin. At 60 minutes α-haemolysin released 82% (± 1.35) Hb as 

compared to ovine and murine Hb release.  

 

 

Figure 86. An image taken with a Nikon camera shows five Eppendorf tubes, with 

increasing concentrations of Hb present in the supernatant. The first tube with 

the lowest intensity of red has a concentration of 1000 ng/ml α-haemolysin, 

whereas the last tube has a concentration of 5000 ng/ml. 

1000 ng/ml 5000 ng/ml 2000 ng/ml 

3000 ng/ml 

4000 ng/ml 
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3.3.3 α-haemolysin adsorption assays 
 

This study tested the ability of leporine nanosponges and its components 

(leporine erythrocyte vesicles and PLGA core) to adsorb 1230 ng/ml α-

haemolysin. This study used leporine nanosponges, because the concentration 

and time dependent haemolysis assays show leporine nanosponges are the most 

susceptible to haemolysis by α-haemolysin. Therefore, to test α-haemolysin 

adsorption, leporine nanosponges were developed for this study. Figure 88 

shows the effect of leporine nanosponge and its components to adsorb 1230 

ng/ml α-haemolysin. Adsorption was tested at 37 and 40°C, similar to the 

streptolysin-O adsorption assays. According to Figure 88, the system that 

 

Figure 87. The effect of 1230 ng/ml (human physiological concentration) of α-

haemolysin on a 2% (v/v) mammalian erythrocyte suspensions over a 60-minute 

time period. The Hb concentration was measured at 540 nm using Drabkins 

reagent. Leporine (2.67 g/dl, ± 0.07), murine (1.87 g/dl, ± 0.07) and ovine (1.43 

g/dl, ± 0.09). Error bars represent SEM (n=3). R2 values were measured for the 

respective mammalian blood types. leporine (R2=0.991), Murine (R2=0.829), and 

ovine (R2=0.935)  
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contained the nanosponges had the lowest Hb release at 37 and 40°C. At 37°C, 

the concentration of Hb released, in the system containing nanosponges was 

0.265 g/dl (± 0.02). At 40°C, the concentration of Hb released in the system 

containing the nanosponges was significantly greater compared to nanosponges 

incubated at 37°C. The difference is shown by the level of significance “P≤0.05”.  

 

 

The synthesised leporine nanosponges and its components were lyophilized with 

5% (w/v) sucrose and stored at 4°C for one week, as stated in section 1.5.13. 

The nanosponges and its components were then reconstituted with isotonic PBS 

(pH 7.2) and tested for their efficacy to adsorb α-haemolysin. Similar to the 

previous results, the system that contained the leporine nanosponges shows the 

least Hb release at 0.324 g/dl (± 0.02), as shown in Figure 89. 

 

 

 

Figure 88. Testing the efficacy of leporine nanosponges and it components to adsorb 

1230 ng/ml α-haemolysin, incubated at 37 and 40°C. Adsorption of α-haemolysin 

was measured by degree of haemolysis at 540 nm. .“*”P≤0.05, “**”P≤0.01 and 

“***”P≤0.001. Error bars represent SEM (n=3). 
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Figure 89. Testing reconstituted leporine nanosponges (1mg/ml) and its components 

for absorption of α-haemolysin, incubated at 40°C. “*”P≤0.05, “**”P≤0.01 and 

“***”P≤0.001. Error bars represent SEM (n=3). 
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3.4 Discussion  
 

The overall aim of this research chapter was to test the efficacy of α-haemolysin 

haemolysis against ovine, porcine, leporine and murine blood. A further aim was 

to synthesize nanosponges from mammalian erythrocytes. Leporine blood was 

chosen as a coating for the polymer as it was found to be the most susceptible to 

α-haemolysin haemolysis. The synthesised nanosponge was then tested for its 

ability to adsorb α-haemolysin under different physiological and storage 

conditions.  

3.4.1 Characterisation of leporine nanosponges 
 

Extruded leporine erythrocyte vesicles were added to the PLGA nanoparticle 

cores and extruded through a 100 nm polycarbonate membrane. The mechanical 

force generated during extrusion coated the PLGA core with the leporine 

erythrocyte membrane (Rao et al., 2016). The leporine nanosponge, like the 

ovine nanosponges were characterised for size and zeta-potential. Figure 81 

shows the size distribution of 1 mg/ml leporine nanosponges. There are presence 

of two peaks. However, the zetasizer software has reported an average size of 

354 nm with a PDI of 0.443.   The extrusion method used in this research, is used 

to coat the PLGA polymeric cores with the erythrocyte membrane. According to 

Figure 81, this procedure produces a polydispersed leporine nanosponge 

suspension with a large size.   

There are two factors that cause this to happen (1) extrusion pressure and (2) 

the composition of lipids on the erythrocyte membrane. Hunter and Frisken 

(1998) states that extrusion through 100 nm pores result in larger size vesicles. 

Nonetheless, extrusion is used to develop monodisperse suspension. However, 

the leporine nanosponge suspension is polydispersed. This could be due to the 

lipid composition on the membrane.  Pekİner (2002) showed that leporine 

erythrocyte have a higher concentration of phosphatidylethanolamine (PE) rather 

than phosphatidylcholine (PC).  This is significant as Paliwal et al. (2013) that PE 

liposomes have the tendency to form aggregates due to poor hydration of the 

head group. This gives them a higher affinity to adhere to cell membranes. This 

could be the reason as to why even after extrusion, leporine nanosponges form 

polydispersed suspensions.  



176 

As discussed in 1.7.8 sucrose has the potential to stabilise the nanosponges and 

was tested using ovine nanosponges (Wu et al., 2011). Similarly, leporine 

nanosponges were lyophilized with sucrose and reconstituted after a week with 

PBS. The reconstituted leporine nanosponges were characterised for size and 

zeta potential. Figure 82 shows the size distribution graph of lyophilized leporine 

nanosponges reconstituted after a week. Similar to Figure 81, Figure 82 has two 

peaks and look the same if observed by eye. However, the zetasizer software 

has reported an average size of 394 with a PDI of 0.302. The size of leporine 

nanosponges have increased and PDI has decreased, compared to the size of 

the nanosponges reported in Figure 81. This could suggest that sucrose could 

have stabilized the nanosponges. However, Figure 81 shows that the size has 

increased and the PDI reported indicates a polydispersed suspension. These 

parameters show that the leporine nanosponges are unstable. 

Leporine nanosponges were characterised for their zeta potential. Figure 83 

shows the zeta-potential of 1mg/ml leporine nanosponges. The average zeta-

potential reported was – 9.0 mv. As discussed earlier, the negative charge on the 

erythrocyte membrane is caused by the carboxyl groups of sialic acid present on 

the end terminus of glycoproteins and glycolipids (Eylar et al., 1962, Luk et al., 

2014).  Similarly, lyophilized leporine nanosponges were also characterised for 

their zeta potential. The average zeta-potential reported was – 11.0 mv. However, 

there is no significant difference between the zeta potential of leporine 

nanosponges and lyophilized nanosponge as the peaks do overlap.  

 

3.4.2 α-haemolysin haemolysis assay 
 

The novel experiment tested the effect of α-haemolysin against four different 

types of mammalian blood. α-haemolysin is a β-barrel PFT, and is shown to bind 

specifically to a protein known as ADAM 10 (Wilke and Wardenburg, 2010). 

Figure 85 shows the effect of increasing concentration of α-haemolysin on 

leporine, murine and ovine blood. Leporine erythrocytes have shown to be most 

susceptible to haemolysis by α-haemolysin, as 5000 ng/ml α-haemolysin has 

released 75% (± 1.1) of Hb present in a 2% (v/v) erythrocyte suspension. This 

result is significant as Berube and Wardenburg (2013) states during investigation 

of the Bundaberg case, culture supernatants that contained Staphylococcus 
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aureus α-haemolysin was injected into rabbits and caused lethal injury and 

haemolysis. Which eventually led to death. Furthermore, Cooper et al. (1966) and 

Cooper et al. (1964) show that leporine erythrocytes were the most sensitive to 

damage by α-haemolysin, compared to any other species of blood.  They went 

on to show that 2 μg/kg of the toxin caused lethal effects in the rabbit, the lowest 

of any species tested in their study.  In 2010, a study conducted by Wilke and 

Wardenburg (2010) shows that the reason α-haemolysin specific for rabbit 

erythrocytes is due to a protein, ADAM 10.   

The interaction between α-haemolysin and ADAM 10 cause a cascade of events 

that lead to inflammation and tissue injury. However, the chemistry behind the 

interaction is unknown. Inoshima et al. (2011) has suggested that the N-terminal 

segment of α-haemolysin undergoes a conformational shift (Figure 90) to latch 

on to the neighbouring protein (ADAM 10) stabilizing the heptameric pore 

structure. The requirement for ADAM 10 as a cellular receptor for Staphylococcus 

aureus pathogenesis was demonstrated using conditional knockout approaches 

in the alveolar epithelium and the mature epidermis (Inoshima et al., 2011). 

Similarly, ADAM 10 knockout in the skin was associated with reduction in the size 

of Staphylococcus aureus skin lesions (Inoshima et al., 2012) 

 

Figure 90. The molecular structure of α-haemolysin. This structure represents the 

form α-haemolysin take on during pore formation. The structure is made up of the 

cap, rim and the stem, which are essential for pore formation. The image was 

reproduced to depict the structure of α-haemolysin (Gurnev and Nestorovich, 

2014). 
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In reference to ADAM 10 mediated cellular injury, one of the domains of ADAM 

10 particularly the cytoplasmic tail of the molecule contributes to toxin-induced 

intracellular signalling. In context of epithelial cells that are targets of α-

haemolysin, E-cadherin is a principal substrate for ADAM 10. Cleavage of this 

substrate results in the loss of interaction of the cadherin molecules on adjacent 

cells thereby injuring the epithelial tissue barrier function (Maretzky et al., 2005). 

In vitro studies demonstrated that treatment of epithelial cells with sub-lytic 

concentrations of α-haemolysin leads to rapid up regulation of the 

metalloprotease activity of ADAM 10, which in turn dismantled the adherens 

junction through cleavage of E-cadherin (Maretzky et al., 2005)  

As discussed in 2.4.1 timing is significant in treatment of sepsis, as there is a 

correlation between time of treatment and rate of survival (Figure 78). Figure 87 

shows the effect 1230 ng/ml α-haemolysin has on leporine, murine and ovine 

blood over a period of 60 minutes.  After 60 minutes of incubation, the figure 

shows that leporine erythrocytes were most susceptible to haemolysis by α-

haemolysin, as 1230 ng/ml α-haemolysin released 82% (± 1.35) Hb.   Another 

study has shown that using 180 HU of α-haemolysin, has caused approximately 

80% haemolysis after 12.5 minutes (Cooper et al., 1964). Similarly, another study 

reported scanning electron images of rabbit red blood cells incubated with 1 HU 

of α-haemolysin. After 30 minutes, they showed scanning electron microscopy 

images of a disrupted RBC membrane (Klainer et al., 1972). 

3.4.3 α-haemolysin adsorption studies  
 

Chapter 1 and 2 introduce synthesis of a novel therapeutic model, nanosponge. 

This model was developed using ovine blood. In this chapter leporine blood was 

chosen as a coating for the polymer, to develop nanosponges, as it was found to 

be the most susceptible to α-haemolysin haemolysis. Figure 88 tested the ability 

of leporine nanosponges and its contents to adsorb α-haemolysin at 37 and 40ºC. 

The system that contained the nanosponges had the least Hb release compared 

to the system containing just the toxin and erythrocytes. However, there is still a 

significant amount of Hb released in the system with the nanosponges. Several 

factors may cause this to happen, (1) instability of the nanosponge, (2) loss of 

sample during extrusion and (3) loss of ADAM 10 during extrusion. As discussed 

in section 3.4.1, the instability of the nanosponge could be due to the lipid 
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composition of the leporine membrane and the fact that extrusion leads to 

formation of larger sized particles.  Furthermore, Cho et al. (2013) has stated that 

“some sample material may be lost during extrusion during passage through the 

porous membrane”.  Therefore, sample loss could account for the concentration 

of ADAM 10 being lost during extrusion. Nonetheless, there is a study that has 

reported the adsorption of α-haemolysin of by erythrocyte ghosts (Wilke and 

Wardenburg, 2010).  

Figure 82, shows the improvement in polydispersity as lyophilized leporine 

suspension were reconstituted after a week. This shows that lyophilization could 

improve stability of the particle. Therefore, lyophilized leporine nanosponge and 

its contents were tested for their ability to adsorb 1230 ng/ml α-haemolysin at 

40ºC. Similar results were obtained to the study conducted with non-lyophilized 

leporine nanosponges. There was no significant change in adsorption by 

reconstituted nanosponges at 40ºC.  
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4 Comparative studies  
 

This section aims to compare results obtained from prior chapters. Principally, 

the section will focus on the characteristics of the developed nanosponges, the 

haemolytic activity of streptolysin-O and α-haemolysin and the ability of the 

nanosponges to adsorb these PFTs at different temperatures.  

4.1 Characteristics of nanosponges 
 

Ovine and leporine nanosponges were characterised separately for their size 

zeta potential and PDI. However when merged together, these nanosponges 

show very distinct characteristics.  Figure 91, shows the size distribution of ovine 

and leporine nanosponges.  The ovine nanosponges have an average size of 

185 nm (± 50) with a PDI of 0.134. Comparatively, leporine nanosponges have 

an average size of 354 nm with a PDI of 0.443. The figure shows that leporine 

nanosponges have a greater size and are polydispersed. Whereas the ovine 

nanosponges have a smaller, size and are monodispersed. As stated earlier the 

polydispersity of the leporine nanosponges, is caused either due to the lipid 

composition of the membrane or the extrusion pressure (refer to section 3.4.1).  

This result suggests that ovine nanosponges are more stable than leporine 

nanosponges.  

 

 

 

Figure 91. Size distribution graph of 1 mg/ml ovine and leporine nanosponges 

prepared by fusing erythrocyte vesicles with PLGA nanoparticles at RTP. This 

plot was acquired from the Malvern zetasizer data analysis software.   

Ovine Leporine 
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Ovine and leporine nanosponges were also characterised for their zeta potential. 

Figure 92 shows the zeta potential distribution of ovine and leporine 

nanosponges. The figure shows that ovine nanosponges have an average zeta 

potential is -10.5 mV. Whereas leporine nanosponges have an average, zeta 

potential is reported as -9.0 mV. Ovine nanosponges have a similar zeta potential 

compared to leporine nanosponges. The ovine nanosponge has a greater zeta 

potential. For this reason, it is putative that ovine nanosponges are more stable 

than leporine nanosponges due to the repulsion of particles.  

 

4.2 Haemolysis assay 
 

Streptolysin-O has been assayed against four different types of mammalian 

blood. Similarly, α-haemolysin has also been assayed against these four types of 

mammalian blood.  However, this section will compare the haemolytic activity of 

streptolysin-O with α-haemolysin for each mammalian blood type. Figure 93 

shows the effect of increasing concentrations of streptolysin-O and α-haemolysin 

on three different mammalian blood types. Porcine blood was not included in this 

section, as it was only found to be susceptible to haemolysis by streptolysin-O. 

Figure 93A shows that ovine erythrocytes are the most susceptible to 

streptolysin-O haemolysis as compared to α-haemolysin haemolysis. As 2000 

. 

Figure 92. Zeta potential distribution graph of 1 mg/ml ovine and leporine 

nanosponges.  This plot was acquired from the Malvern zetasizer data analysis 

software. The green peak represents leporine nanosponges whereas the red 

peak represents ovine nanosponges.  
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ng/ml, released a greater concentration of ovine Hb compared to 5000 ng/ml α-

haemolysin. As stated in section 2.4.1, streptolysin-O has a high affinity towards 

membranes that contain a greater concentration of cholesterol.  

Figure 93B shows that murine erythrocytes are susceptible to haemolysis by both 

streptolysin-O and α-haemolysin. However, haemolytic activity was at lower 

concentrations of streptolysin-O, whereas 5000 ng/ml of α-haemolysin was 

required to achieve similar haemolytic activity to streptolysin-O. Figure 93C 

shows that leporine erythrocytes are the most susceptible to haemolysis by α-

haemolysin. As lower concentration of α-haemolysin, have a greater haemolytic 

activity compared to streptolysin-O haemolysis. As discussed section 3.4.2, α-

haemolysin has high affinity towards ADAM 10, which are present on leporine 

erythrocytes (Wilke and Wardenburg, 2010).  

The haemolysis assays were also conducted over a period of 60 minutes to test 

the haemolytic effect of streptolysin-O and α-haemolysin with respect to time. 

Figure 94 shows the effect of 1230 ng/ml streptolysin-O and α-haemolysin on 2% 

mammalian erythrocyte suspension over a 60 minutes period at 37°C. Figure 94A 

shows that over a 60-minute period ovine erythrocytes are more susceptible to 

streptolysin-O compared to α-haemolysin. . Figure 94B shows that over time 

murine erythrocytes are susceptible towards 1230 ng/ml streptolysin-O and α-

haemolysin. As discussed in section 2.4.1, mice erythrocytes have cholesterol in 

the membrane. Wilke and Wardenburg (2010) and Inoshima et al. (2011) have 

conducted studies with mice erythrocytes and α-haemolysin , as the erythrocyte 

membranes are enriched with the transmembrane protein ADAM 10 in the 

erythrocyte membrane. Figure 94C shows that over a 60 minute period leporine 

erythrocytes are the most susceptible to haemolysis by α-haemolysin.  
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Figure 93. The effect of increasing concentration of streptolysin-O and α-haemolysin on Hb release from three different types of mammalian 

blood. (A) Ovine, (B) murine and (C) leporine.  Error bars represent SEM (n=3). 
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Figure 94. The effect of 1230 ng/ml of streptolysin-O and α-haemolysin on a 2% (v/v) mammalian erythrocyte suspensions over a 60-

minute time period. (A) Ovine, (B) murine and (C) leporine. Error bars represent SEM (n=3).
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4.3 Adsorption studies  
 

After toxin studies, different nanosponges were developed and prepared for each 

toxin. Ovine nanosponges were developed to adsorb streptolysin-O and leporine 

nanosponges were developed to adsorb α-haemolysin. Ovine blood was found 

to be susceptible to haemolysis by streptolysin-O. Leporine blood was found to 

be susceptible to haemolysis by α-haemolysin. Previous studies compared the 

ability of the nanosponge at different physiological temperatures. However, this 

section will compare the adsorption ability of ovine nanosponges to that of 

leporine nanosponges. Figure 95 shows the comparison between ovine and 

leporine nanosponges to adsorb streptolysin-O and α-haemolysin at 37°C. Ovine 

nanosponges adsorbed most of the streptolysin-O as the concertation of Hb 

release from erythrocytes is minimal. Comparatively, leporine nanosponges have 

not adsorbed all the α-haemolysin as there is presence of haemolysis in the 

suspension. This is due to the characteristics of the prepared nanosponges. As 

shown is section 4.1 ovine nanosponges are more stable than leporine 

nanosponges. 

 

Figure 95. Testing the efficacy of ovine, leporine nanosponges to adsorb 1230 

ng/ml streptolysin-O and α-haemolysin, incubated at 37°C and 40°C. Adsorption 

of streptolysin-O and α-haemolysin was measured by degree of haemolysis at 540 

nm. .“*”P≤0.05, “**”P≤0.01 and “***”P≤0.001. Error bars represent SEM (n=3). 
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Ovine and leporine nanosponges were also compared for their ability to adsorb 

streptolysin-O and α-haemolysin at 40°C. Similar to the comparative study at 

37°C, ovine nanosponges have adsorbed all the streptolysin the system as there 

is no presence of haemolysis. Whereas, the leporine nanosponges have shown 

presence of haemolysis.  
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5 Conclusion  
 

This thesis showed production of model ovine and leporine nanosponges that 

have the ability to adsorb PFTs such as streptolysin-O and α-haemolysin. 

However the nanosponges did face poor pharmaceutical characteristics. 

Nanosponges designed in this study showed increased particle aggregation with 

time, therefore indicating poor particle stability. Moreover structural features of 

vesicles and nanosponges could not be confirmed in the study due to sample 

melting under the SEM. Furthermore, resources to complete this study were 

limited. However, Luk et al. (2014) has shown that erythrocyte nanoparticles can 

be viewed under TEM using a glow discharged carbon coated grid. Moreover the 

authors have shown that by freeze drying the suspension with 5% sucrose, could 

improve long term stability of the nanosponge. These techniques could help show 

true vesicle and nanosponge formation and could help improve nanoparticle 

characteristics. 

5.1 Overall thoughts and Future studies  
 

This study did have some limitations which can be overcome in the future. 

Primarily this study used animal blood to produce nanosponges such as ovine 

and leporine. According to the study these blood types were chosen as they 

showed to be the most susceptible to toxin binding.  Moreover, as discussed in 

this study they share certain physiological similarities with humans. Nonetheless, 

the blood parameter values differ between the animals and humans.  The blood 

parameter values are close to the human reference ranges, however they differ 

due to many significant properties in blood such as size of erythrocytes, 

morphology of erythrocytes and viscosity of blood present in these different 

species. Therefore it is true by saying that in the future this study may have to be 

conducted by producing nanosponges with human blood or using animal blood 

that might be compatible in the human body.  

The proof of principle of this study relied on the ability of the nanosponges to 

adsorb PFTs. The concept of adsorption or absorption was not tested in this 

study. However, we did assume that the toxin was being adsorbed on the surface 

of the nanosponge as the toxin is a protein (solid) and by definition adsorption is 
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the process by which a solid adheres to a surface. For the toxin to be absorbed 

rather than adsorbed it would have to be within the surface rather than on the 

surface. However this can be overcome. A study conducted in 2011 showed that 

adsorption of serum protein on gold nanoparticles could be confirmed using an 

optimised SDS-PAGE procedure. Moreover the author did also confirm this by 

using TEM (Walkey et al., 2012). Another novel technique could be by using 

Taylor dispersion analysis, which has the ability to determine the size of proteins 

up till 0.5 nm(Zaman et al., 2017).  

The nanosponges were prepared by using extrusion. Extrusion helped coat the 

PLGA core with the respective erythrocyte membranes. During this process, our 

study showed that there is a decrease in the concentration of phospholipids. This 

takes place as Cho et al. (2013) has stated that “some sample material may be 

lost during extrusion during passage through the porous membrane”. The sample 

(retentate) either leaks during extrusion or becomes part of the porous 

polycarbonate membrane. To measure the concentration of the retentate would 

be close to impossible as one would have to completely disintegrate the extruder 

and the polycarbonate membrane to quantify the lost sample. Moreover if the 

sample leaks during extrusion it adheres to the chamber of the extruder. This 

would be difficult to isolate. Therefore, to overcome the loss of sample during 

extrusion, an increased concentration of the sample could be used, as this would 

overcompensate for the loss.  

As stated in this study the nanosponges possess a unique property to adsorb 

PFTs. For example, ovine nanosponges have managed to completely adsorb 

streptolysin-O. The adsorption assay we used was one way of confirming PFT 

binding. The study showed that ovine erythrocyte vesicles had the ability to 

adsorb nearly half the streptolysin-O in the suspension, The PLGA cores did not 

adsorb any toxin and finally the nanosponges were able to adsorb all the toxin.  

This is because the membrane that surrounds the PLGA core has lipid or protein 

targets for the toxin to bind. Moreover other studies discussed in section 2.4.2 

have stated that PLGA posses unique biological properties, which may allow it to 

act as an anchor for the toxin.  Finally, this study has shown that streptolysin-O 

has the ability to bind to different types of mammalian erythrocytes mainly ovine 

and alpha haemolysin has shown specificity toward leporine erythrocytes. The 

reason they bind is due to specific protein and lipid targets on the membrane. 
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Thus indicating that PFTs in general require a target to bind. Some are specific 

and other non-specific and their ability to cause an infection is concentration and 

time dependent.  

The use of cellular membranes as biomimetic therapeutic agent is a novel field 

of nanomedicine. Current research has shown that the field is limited to 

erythrocyte membranes. To take this study further, nanosponges could be 

produced by stable biomimetic formulations, such as platelets or white blood cell 

membranes for drug delivery and toxin adsorption. This biomimetic platform could 

also evolve into a diagnostic tool to test presence of exotoxins in bodily fluids. In 

conclusion, the ideal nanosponge required to treat sepsis would be one that is 

non-immunogenic, stable over a period of 6 months, have the ability to adsorb 

streptolysin-O and α-haemolysin and does not agglomerate (cause clots). The 

nanosponges developed by this study are therapeutic models for the treatment 

of sepsis in human medicine and animal veterinary medicine. 
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