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Abstract  

The development of a diabetic cardiomyopathy is a multifactorial process, and evidence is 

accumulating that defects in intracellular free calcium concentration [Ca2+]i or its 

homeostasis are related to impaired mechanical performance of the diabetic heart leading 

to a reduction in contractile dysfunction. Defects in ryanodine receptor, reduced activity of 

the sarcoplasmic reticulum calcium pump (SERCA) and, along with reduced activity of the 

sodium-calcium exchanger (NCX) and alterations in myofilament, collectively cause a 

calcium imbalance within the diabetic cardiomyocytes. This in turn is characterized by 

cytosolic calcium overloading or elevated diastolic calcium leading to heart failure. 

Numerous studies have been performed to identify the cellular, subcellular and molecular 

derangements in diabetes-induced cardiomyopathy (DCM), but the precise mechanism(s) is 

still unknown. This review focuses on the mechanism behind DCM, the onset of contractile 

dysfunction and the associated changes with special emphasis on hyperglycaemia, 

mitochondrial dysfunction in the diabetic heart. Further, management strategies, including 

treatment and emerging therapeutic modalities are discussed.  
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Diabetes mellitus (DM) 

Diabetes mellitus (DM) is a heterogeneous metabolic disorder characterised by chronic 

hyperglycaemia (HG) that results in dysfunction in the cell’s ability to transport and utilize 

glucose [1]. Type 1 DM (T1DM), is caused by T lymphocyte-mediated autoimmune 

destruction of the pancreatic β-cells, resulting in insufficient insulin production and 

subsequent decrease in glucose utilization [2]. Type 2 DM (T2DM) results from an insulin 

resistance that instigates hypertrophy of the β-cell to compensate, and resulting in 

hyperinsulinemia leading to eventual insulin resistance [3, 4]. Advanced failure of the β-cells 

in T2DM decreases the amount of insulin produced resulting in pathophysiological changes 

that produce elevated blood glucose levels (hyperglycaemia), impaired cellular glycolysis 

and pyruvate oxidation [5]. In chronic hyperglycaemia, comorbidities include some long-

term complications as peripheral vascular disease, retinopathy, kidney failure, neuropathy 

and eventually, cardiac dysfunction/failure or cardiomyopathy [6].  

Currently, more than 422 million people worldwide – almost one in every 11, suffer from 

DM and this number is likely to increase to 650 million within the next 15-20 years [7], 

making it one of the five leading causes of death in developed and developing countries. 

Between 1980 and 2014 the number of adults with diabetes quadrupled from 108 million to 

422 million. The prevalence of DM was higher in the developed countries but now, the 

major increase in people with diabetes occurs in the developing countries such as China, 

India, and those in Middle East and Africa.  

Type 2 DM (T2DM) is specifically epidemic due to the rising rates of obesity throughout the 

world. Over one billion people worldwide are overweight (BMI >25 and <29.9) or obese 

(BMI >30) in most cases and they are also pre-diabetics [8]. With such high rates of 

morbidity and mortality, DM represents a major medical, sociological and economic 

challenge and burden to the national health services globally.  

Cardiovascular diseases (CVDs) are the leading cause of death throughout the world and on 

the basis of 2011 death rate data, mortality owing to cardiovascular disease accounted a 

astounding 2150 people dying daily with an average of 1 death every 40 seconds [9]. 

Interesting, CVD- related mortality with DM have been reported to be about 65% [10] and 

68% of adults with DM older than 65 years die of some form of heart disease.  The 

Framingham Heart Study demonstrated that the frequency of heart failure is five times 

greater in diabetic women and two times greater in diabetic men compared with age-
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matched control subjects [11,12].  

Diabetic heart disease is now recognized as an important and growing public health risk 

which affects the heart in three ways: cardiac autonomic neuropathy (CAN), coronary artery 

disease (CAD) due to accelerated atherosclerosis, and diabetic cardiomyopathy (DCM) [10].  

DCM is a heart failure syndrome found in diabetic patients that is characterized by impaired 

myocardial relaxation dynamics or diastolic dysfunction, and structural abnormalities 

leading to left ventricular hypertrophy (LVH) or a combination of these [13]. Presently, DCM 

is defined as myocardial dysfunction (MD) in patients with DM in the absence of 

hypertension and structural heart diseases such as valvular heart disease or CAD [14]. 

Other features of DCM include: interstitial fibrosis, myocyte hypertrophy [15], lipid 

accumulation in cardiomyocytes and fetal gene reactivation [16]. Furthermore, DCM is also 

accompanied by comorbidities such as obesity, smoking, hypertension and others and these 

complications often precede the development of systolic dysfunction, CAD and heart failure 

[17].  

With DM being a well-known risk factor for the development of heart failure, which leads to 

a poor quality of life in affected individuals, the situation now becomes complicated in 

treatment of DM resulting in alteration of the pharmacokinetics of anti-diabetic 

medications. Therefore, in this review we focus on the mechanism behind DCM, the onset 

of contractile dysfunction and the associated changes with special emphasis on 

hyperglycaemia, mitochondrial dysfunction in the diabetic heart and management 

strategies, including treatment and emerging therapeutic directions.  

 

Mechanism of DCM  

 

Several factors are involved in the development of diabetic cardiomyopathy, including 

metabolic, biochemical, and ultrastructural changes within the cardiac myocyte [18,19]. In 

particular, because of the primary role of mitochondria in ATP production, weakening of 

mitochondrial respiratory function is a key contributing factor to decreased contractile 

function of the diabetic heart. Numerous mechanisms have been proposed to contribute to 

this clinical situation, including oxidative stress, microvascular abnormalities, and decreased 

sarcoplasmic reticular calcium uptake [20]. Other proposed mechanisms include: subcellular 

component abnormalities, metabolic disturbances, cardiac autonomic dysfunction, 

alterations in the renin-angiotensin-aldosterone system (RAAS), and maladaptive immune 
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responses [21]. However, the molecular mechanisms that cause this cardiac dysfunction are 

still largely undefined. An established hypothesis is that hyperglycemia plays a critical role in 

the development of DCM, though multiple complex mechanisms and the interplay of many 

metabolic and molecular events within the myocardium and plasma contribute to its 

pathogenesis. The principal metabolic abnormalities in DM are hyperglycemia and 

hyperlipidemia, all of which stimulate the production of reactive oxygen species (ROS) or the 

nitrogen species that cause most diabetic complications, including DCM and diabetic 

nephropathy [22]. These abnormalities further induce alterations in downstream 

transcription factors, which result in changes in gene expression, myocardial substrate 

utilization, myocyte growth, endothelial function and myocardial compliance. 

 

The development of DCM is a multifactorial process, and accumulating evidence has 

revealed that defects in [Ca2+]i homeostasis are related to impaired mechanical performance 

of the diabetic heart leading to the prevalence of contractile dysfunction [23]. It has been 

suggested that diastolic dysfunction may be due to cardiomyocyte hypertrophy and 

myocardial fibrosis. In turn, at cellular level, these are associated with defects in calcium 

transport and mitochondrial calcium uptake due to mitochondrial dysfunction and reduced 

activity of SERCA pump which are all responsible for calcium sequestration during 

cardiomyocyte diastolic relaxation [24-26]. Also, there is much evidence that reduced 

activity of NCX, myocardial contractile protein collagen formation and fatty acid metabolism 

are also associated with diastolic dysfunction. In vivo functional changes include decreased 

ventricular filling, decreased ventricular ejection fraction, decreased fractional shortening, 

increased ventricular wall stiffness and increased pre-ejection time [17]. 

As stated in the aforementioned section, hyperglycaemia stimulates an increase in reactive 

oxygen species (ROS) and reactive carbonyl species (RCS) production, because of increased 

input of reducing equivalents into the mitochondrial electron transport chain [27-28]. 

Hyperglycaemia-induced cell damage is a consequence of increased flux through metabolic 

pathways (polyol pathway flux, advanced glycation- end product formation, activation of 

protein kinase C (PKC) isoforms and increased hexosamine pathway flux) [22,29]. 

Mitochondrial function is highly impaired by hyperglycaemic conditions in part because of 

decreased mitochondrial transcription factor A (TFAM) activity and/or expression [30-31].  

These topics will be discussed more in-depth in subsequent sections. 
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Glucose metabolism regulation by insulin and fatty acids 

It was reported over 40 years ago [32] that glycolytic metabolism is increased in cardiac 

hypertrophy and congestive hearth failure and it is now well-known that cardiac glucose 

metabolism declines in diabetes [33] due to a decline in insulin, insulin resistance or 

increased availability of fatty acids. Healthy hearts derive most of their energy from free 

fatty acids and only a small proportion from circulating glucose while; in contrast, diabetic 

hearts use more fat and less glucose than normal hearts. 

The diabetic heart is characterized by distinctive metabolic events including elevations in 

fatty acid uptake and oxidation combined with a decrease in glucose uptake and oxidation. 

A major factor in the elevated uptake and oxidation of fatty acids in cardiomyocytes has 

been linked to Increased release of fatty acids by the adipocyte and liver resulting in 

elevated circulating fatty acids and triglycerides. [34]. In the heart, utilization of glucose 

stimulated by insulin, is inhibited by fatty acid metabolism via transcriptional regulation of 

limiting enzymes. The generation of enzymes of fatty acid oxidation entails the 

transcriptional regulators PPARα and/or PPARβ, which regulate gene expression of these 

enzymes and are elevated and activated in diabetic hearts [25]. It has been suggested that 

the presence of glucose reduces fatty acid metabolism, probably by increasing intracellular 

levels of malonyl CoA [36], while increased fat dependence also appears to play a role in the 

function of decreased glucose metabolism. The initial step in cardiomyocyte glucose usage is 

uptake, which is significantly regulated by insulin in the heart. In DM there is also a 

persistent reduction in cardiac glycolytic capacity [37] and glucose oxidation is further 

reduced by a decline in pyruvate dehydrogenase activity [37,38]. 

The concept of limiting enzymes and limiting steps in glucose metabolism has been reported 

to contribute to development of DCM [27] where limiting steps have become potential sites 

of pathology.  The concept of one such limiting step was explained by Randle et al. [32] in 

the 1960’s and more recently by An and Rodrigues [5] relating to glucose uptake via the 

glucose transporters GLUT1 and GLUT4 in myocardial glucose metabolism. These authors 

underlined that enabling of glucose transport by insulin involves both the translocation of 

GLUT4 to the cell membrane and the upregulation of the transporter, an effect that is 

impaired in diabetes. It was reported that despite the significant reduction in glucose 

uptake, the size of the intracellular glucose pool is elevated in the type 1 diabetic heart. 
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[31]. Data collected revealed that impaired GLUT4 activity in the diabetic heart does not 

limit glycolytic flux and would imply that key bottlenecks in glycolysis develop downstream 

from the glucose transporters in the diabetic heart. 

Glycolysis is the metabolic pathway that involves a sequence of ten enzyme-catalysed 

reactions, which converts glucose into pyruvate. One such important limiting enzyme in the 

diabetic heart is phosphofructokinase (PFK), which catalyses the conversion of fructose-6-

phosphate to fructose 1,6 bisphosphate. Enhanced rates of fatty acid β -oxidation lead to 

elevations in cardiac levels of both acetyl CoA and citrate, and it has been shown previously 

that citrate is a potent inhibitor of PFK [40]. Thus, this enzyme is a key target of fatty acid-

mediated regulation of glycolysis. Owing to the fact that diabetes is associated with 

enhanced rates of fatty acid β - oxidation and elevations in citrate levels, it has been 

proposed that PFK activity is diminished in the diabetic heart [40]. Further research also 

implicates this enzyme as a major sensor of the high-energy phosphate content of the heart 

[41]. Elevations in AMP kinase activity as well as low ATP/ADP ratio has shown to stimulate 

the activity of this allosteric enzyme. 

Other researchers [42] have proposed data supporting a role for PFK in diabetes-mediated 

glycolytic impairment that correlate with elevations in glucose-6-phosphate levels and 

reductions in fructose 1,6 bisphosphate content. Based upon these findings, a bottleneck 

consequently develops in the glycolytic pathway of the diabetic heart, resulting in an 

increase in myocardial levels of glucose-6-phosphate and fructose-6- phosphate. These 

events have important pathological consequences, as they serve as substrates for four 

pathological pathways involved in the development of DCM (see Figure 1). 

Other limiting steps/enzymes in regulation of glucose metabolism in the heart include: (I) 

the three- enzyme pyruvate dehydrogenase complex (PDH) and (II) Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) – especially during myocardial ischemia. 

 

https://en.wikipedia.org/wiki/Metabolic_pathway
https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Glucose
https://en.wikipedia.org/wiki/Pyruvate
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Figure 1: Flow diagram showing metabolic mechanisms of diabetic cardiomyopathy and how 

ROS from the mitochondria can leave the mitochondria as H2O2 and activate PKC in the 

cytosol. PFK- phosphofructokinase; DAG – diacylglycerol; PKC – protein kinase C; FA – fatty 

acid; NADH – nicotinamide adenine dinucleotide (reduced form); FADH – flavin adenine 

dinucleotide (reduced form); diagram drawn by hand. 

 

Mitochondrial dysfunction and changes in PKC activities in the diabetic heart 

Mitochondrial acetyl Co-A is a crucial factor of the citric acid cycle. In mammalian cells, 

mitochondrial acetyl-CoA is produced from pyruvate or by the β-oxidation of fatty acids, and 
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then feeds into the citric acid cycle. Since the 1960’s researchers [43] have highlighted the 

important role of acetyl-CoA in diabetic heart. Bowman [43] concluded that elevated levels 

of citric acid cycle intermediates in hearts of diabetic rats and in normal hearts perfused 

with fatty acids and ketone bodies are due largely to increased availability of acetyl-CoA. 

Another factor that plays an important determinant role in the citric acid cycle flux is 

slowing of the respiratory chain flux. Several authors have suggested [44-47] that this event 

would contribute to the inhibition of α -ketoglutarate dehydrogenase and elevate the 

NADH/NAD+ ratio, which in turn, would result in diminished citric acid flux. 

Complexes in the respiratory chain are determined by the transcriptional activity of 

mitochondrial transcription factor A (TFAM), which is essential for mitochondrial DNA 

transcription and replication. It has been proposed [48] that TFAM transcriptional activity is 

decreased in diabetic cardiomyopathy and TFAM activity may be responsible for some of 

the alterations caused by hyperglycaemia. These researchers [48] investigated the effect of 

TFAM overexpression on hyperglycaemia-induced cytosolic calcium handling and 

mitochondrial abnormalities. They discovered that overexpression of TFAM dramatically 

affects the function of neonatal rat cardiomyocytes incubated in medium containing 30 mM 

glucose. ATP content was reduced by 30% and mitochondrial calcium decreased by 40% 

after high glucose. Calcium transients were prolonged by 70% after high glucose, which was 

associated with diminished sarco(endo)plasmic reticulum Ca2+-ATPase 2a and cytochrome-c 

oxidase subunit 1 expression. In summary, it was demonstrated that: (I) hyperglycaemia 

increases the levels of O-GlcNAcylated TFAM, which diminishes the activity of TFAM and 

reduces the activity of oxidative phosphorylation and (II) TFAM overexpression protected 

cell function against the damage induced by high glucose in cardiomyocytes. 

An additional consequence of weakened respiratory chain flux is the generation of reactive 

oxygen species (ROS) – produced as electrons are diverted from the respiratory chain to the 

acceptor oxygen.  

Figure 1 shows how ROS (O2-) generated from the mitochondria can leave the organelles as 

H2O2 and activate PKC in the cytosol. The outcome of PKC activation by ROS, in turn, triggers 

activation of NADPH oxidase and results in considerably increased cytosolic ROS content. 

Consequently, diabetes-mediated mitochondrial dysfunction contributes to the 

development of DCM by altering ATP generation and Ca2+ movement. 
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Protein kinase C (PKC) has been shown to inhibit sarcoplasmic reticular Ca2+ pump and 

myofibrillar ATPase [49,50] activities, and several investigators have suggested that 

subcellular changes in the diabetic heart may be due to alterations in the PKC activity and/or 

PKC-mediated signal transduction mechanism. Some examples include (I) increased 

phosphorylation of troponin-I in the diabetic heart has been considered to be due to the 

activation of PKC [51,52] and (II) diabetes is related with translocation of the -isoform of 

PKC from cytosolic to particulate fraction of cardiomyocytes. This change is prevented by 

the blockade of angiotensin II receptors, which are known to activate PKC [51] and it has 

also been established that concentration of diacylglycerol, a known activator of PKC [53] 

was increased in the diabetic heart. 

One important study undertaken by Liu et al. [54] examined PKC activities in the 

homogenate, cytosolic, and particulate fractions from diabetic hearts. They found Ca2+-

dependent PKC activity was increased by 43 and 51% in the homogenate fraction and 31% 

and 70% in the cytosolic fraction from the 4- and 8-weeks diabetic hearts while Ca2+-

independent PKC activity was increased by 24% and 32% in the homogenate fraction and 

52% and 89% in the cytosolic fraction respectively, both cases in comparison with control 

values. They also examined changes in the contents of different PKC isozymes in cardiac 

homogenate, cytosolic, and particulate fractions in diabetes induced by streptozotocin (STZ) 

in rats.  The results showed relative protein contents of PKC--- and , isozymes were 

increased by 43%, 31%, 48%, and 38%, respectively, in the homogenate fraction and by 

126%, 119%, 148%, and 129%, respectively, in the cytosolic fraction of the 8-weeks diabetic 

heart. These results provided reliable evidence that the increased myocardial PKC activity 

and increased protein contents of the cytosolic PKC isozymes are associated with subcellular 

alterations and cardiac dysfunction in the diabetic heart. 

For more in-depth review and explanations on regulation of myocardial glucose, fatty acid 

metabolism diseases and dysfunctions, several excellent review articles have been 

published in the area of diabetes induced cardiac dysfunction [55-59]. 

 

Role of HG and its biochemical pathways in the development of cardiac 

dysfunction  

Various mechanisms of HG are responsible for the generation of diabetes-induced heart 

disease, including metabolic abnormalities such as cellular calcium overload and altered 
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calcium metabolism in cardiomyocytes leading to contractile dysfunction [60-63]. One major 

contributor to HG-induced diabetic abnormalities is increased oxidative stress along with 

depleted antioxidant defences and raised levels of reactive oxygen species (ROS). Persistent 

hyperglycaemia results in Increased glucose metabolism, which increases oxidative stress 

via the development of ROS from the mitochondria. ROS can cause damage to the 

mitochondria together with poly (ADP-ribose) polymerase-1 (PARP) activation leading to the 

inhibition of the cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 

This inhibition initiates a series of cellular processes, by activating pathways that lead to HG-

associated cellular/tissue damage [64]. Inhibition of GAPDH diverts glucose from glycolytic 

pathways into alternative biochemical pathways, including advanced glycation end product 

(AGE) formation, hexosamine, polyol pathway, and protein kinase C (PKC) activation [65]. 

Increased formation of AGEs is involved in forming irreversible cross-links with 

macromolecules such as collagen leading to myocardial fibrosis, inactivation of SERCA2a and 

RyR2 calcium release channel, together with impaired cardiac contractility, relaxation and 

ventricular stiffness [66-69]. Increased polyol flux is associated with reduced levels of 

intracellular glutathione and an increase in cardiac cell apoptosis [70]. Furthermore, 

inhibition of this pathway has been claimed to provide protection for the heart from 

ischaemic injury [71]. The hexosamine biosynthetic pathway is known for reducing SERCA2a 

mRNA and protein expression, along with reduced SERCA2a promoter activity via increased 

nuclear O-GlcNAcylation. This results in prolonged calcium transients and impaired 

myocardial relaxation [72-73]. Finally, the activation of protein kinase C (PKC) via de novo 

synthesis of the lipid second messenger diacylglycerol (DAG) leads to vascular alterations at 

pathological, cellular and functional levels which include basement membrane thickening, 

extracellular matrix expansion, vascular permeability, enzymatic alterations such as Na+- K+- 

ATPase, and MAP kinase, multifocal fibrosis, myocyte necrosis, decreased left ventricular 

performance and left ventricular hypertrophy [74]. Impaired calcium handling and cellular 

efflux may further contribute to impaired relaxation, or diastolic dysfunction. Overall, HG via 

multiple biochemical pathways results in myocardial, cellular and functional changes, all 

which contribute to the development of a cardiomyopathy leading to HF. Figure 2 illustrates 

these pathways as a flow chart. 
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Figure 2: A schematic flow chart representation highlighting the role of hyperglycaemia and 

its biochemical pathways including hexosamine biosynthetic pathway, Protein Kinase C 

(PKC) pathway, advanced glycation end-products pathway and the Polyol flux pathway in 

the development of cardiac dysfunction. {DAG; diacylglycerol, ECM; Extracellular Matrix, 

PARP; poly (ADP-ribose) polymerase-1, SERCA; sarcoplasmic reticulum Ca2+-ATPase}. See 

text for discussion; Diagram drawn by hand. 

 

Regulation of calcium in normal cardiac muscle 

The major function of the heart is to pump blood efficiently by virtue of an orchestrated 

contraction–relaxation cycle of the working cardiomyocytes. Contractility of these 
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cardiomyocytes is regulated by a spatially defined programme of ion channels and 

exchangers that precisely control Ca2+ entry in and out of the cell and the SR. Regulation of 

contractility and hence, the control of Ca2+ release is principally achieved via the electrical 

activity of the sarcolemma. Depolarization of the cardiac cell membrane, during a normal 

action potential is sustained in the plateau phase by the activation of voltage-gated L-type 

Ca2+ channels (ICa,L) [75]. It is this small influx of Ca2+ via these channels that triggers a 

much larger release of Ca2+ from the SR by a process called calcium–induces calcium release 

(CICR). Upon activation of the SR, there is a transient rise in cytoplasmic Ca2+ concentration 

[Ca2+]i. This phenomena is commonly referred to as the calcium transient [Ca2+]i and this 

CICR process is generally accepted as the major mechanism of Ca2+ release from the SR. Ca2+ 

release from the SR is mediated by intracellular calcium receptors commonly known as 

ryanodine receptors (RyR), with type 2 RyRs being the most abundant intracellular Ca2+ 

channels in cardiomyocytes [75,76]. Contraction is initiated when free Ca2+ causes the 

interaction of the myofilaments via troponin C and the thick and thin filaments, namely 

actin and myosin leading to cell shortening. Exclusion of Ca2+ from the cytosol is achieved 

mainly by several mechanisms, including SR uptake via the SR Ca2+ transporter (SERCA), 

removal through the sarcolemma via the NCX and to a small extent by the Ca2+-ATPase 

pump [77-78]. These changes result in both cyclic increases and decreases in Ca2+ and in 

contractility of the individual myocytes. 

In diabetic cardiomyopathy, it is well known that Ca2+ homeostasis is deranged leading to 

elevated diastolic Ca2+. This is due to a failure of SERCA to pump back Ca2+ into the SR, 

increased asyncrynous SR Ca2+ leak via RyRs and dysfunction of the NCX. These three Ca2+ 

transport proteins participate during calcium transient [Ca2+]i decline leading to a slow 

steady-state in resting Ca2+ [77]. In the new balanced state, a generously proportioned 

fraction of activating Ca2+ also enters the cell at each beat via the L-type Ca2+ channel (e.g. 

smaller Ca2+ release causes less Ca2+ inactivation). Consequently, these 4 major transporting 

proteins have been identified and they seem to contribute to the disturbed diastolic Ca2+ 

accumulation observed in the failing heart. Firstly, increased Ca2+ leak through RyR, secondly 

reduced SERCA activity, decreased trans-sarcolemal elimination of Ca2+ by the NCX and lastly 

the L-type Ca2+ channel [79-80]. These issues are further examined in the following text.  

Ryanodine receptor dysfunction  

A major feature in diabetic cardiomyopathy is the increased Ca2+ leak from the SR due to 

enhanced RyR open probability. Because leak, as measured by Ca2+ sparks, is increased with 
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higher SR Ca2+ load, any intervention to increase SR Ca2+ load without reducing the leak 

decreases efficiency of ECC process with increased energy consumption with arrhythmias as 

potential side effects [79,81]. 

RyRs were first observed in the 1970’s as ‘foot’ structures in electron micrograph images of 

striated muscle filling the gaps that are found at specific junctions between the sarcolemma 

and the SR membrane [82-83]. Lai and colleagues identified the RyR as an integral SR 

membrane protein with a role in Ca2+ release [84]. The complementary DNA encoding three 

distinct RyR channels was cloned and the corresponding gene sequences obtained for three 

isoforms; RyR1 [85-86], RyR2 [87-88], and RyR3 [89]. It was not until the 1990s that the 

central role of RyRs through numerous biochemical, physiological, molecular and 

pharmacological studies and the physiological characteristics of excitation–contraction 

coupling (ECC) were recognized [89-91]. During the past decade numerous discoveries have 

been made of RyR2 gene mutations, which underlie the arrhythmogenesis leading to 

sudden cardiac death, which has added a new focus to the role of RyR2 dysfunction in 

cardiac disease [79-80, 92-93]. 

 

Dysregulation of sarcoplasmic reticulum and Na+/H+, Na+/K+ & Na+/Ca2+ 

exchange 

The sarcoplasmic reticulum (SR) constitutes the main intracellular calcium store in striated 

muscle and it plays an important physiological role in the regulation of excitation-

contraction-coupling (ECC) and of intracellular calcium concentrations during contraction 

and relaxation. Intracellular pH and [Na+] in the heart are regulated by the sarcolemmal 

membrane Na+/H+ exchange pathway. DCM is characterized by reduced cardiac contractility 

due to direct changes in myocardium function independent of vascular disease. It is now 

becoming clear that cardiac dysfunction in chronic diabetes is I ntimately involved with Ca2+-

handling abnormalities in the diabetic heart. These abnormalities occur mainly due to 

defects in sarcolemmal Na+/K+ ATPase, Na+/Ca2+ exchange, Na+/H+ exchange, Ca2+-channels 

and Ca2+-pump activities as well as changes in sarcoplasmic reticular Ca2+-uptake and Ca2+-

release processes; these alterations may lead to the occurrence of intracellular Ca2+ 

overload.  

This section investigates the alterations of cardiac sarcoplasmic reticulum Ca2+-ATPase 

activity and cardiac function. 
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Early innovative work performed by Ganguly et al. [94] investigated the defective 

sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. The results of this 

study provided some evidence that the depression in cardiac sarcoplasmic reticular calcium 

accumulation during diabetes is a consequence of insulin deficiency and associated chronic 

metabolic changes, but the hypothyroid condition that accompanies experimental diabetes 

does not appear to play any role in this defect. In follow-up research [95], experiments were 

designed to monitor rats that were injected with streptozotocin (65 mg/kg), killed 8–10 

weeks later, and sarcolemmal membrane vesicles isolated from pooled ventricles. The 

results from these studies showed significant depressions in Na+/K+-adenosine 

triphosphatase (ATPase) activity and Na+/Ca2+ exchanges were observed in the diabetic 

preparations in comparison to control. Further, a striking depression in cardiac sarcolemmal 

Na+/H+ exchange was observed in the diabetic animals in comparison to control.] Other 

studies, [96] focused on sarcolemmal Ca2+ transport in streptozotocin-induced diabetic 

cardiomyopathy in rats, provided results that indicated a depression in the ability of the cell 

to remove Ca2+ through Na+/Ca2+ exchange and Ca2+-pump mechanisms in sarcolemma. It 

was further concluded that these defects might contribute to the occurrence of intracellular 

Ca2+ overload and diabetic cardiomyopathy. Lun et al. [97] examined alterations in Ca2+-

channels during the development of diabetic cardiomyopathy with specific binding of 3H-

nitrendipine studied at different concentrations. The outcome of their studies showed 

significant decrease in both dissociation constant and maximal number of 3H-nitrendipine 

binding observed after 3 and 8 weeks. Also, it was revealed that treatment of diabetic 

animals with insulin prevented the occurrence of these changes in the myocardium. In 

summary, a relationship was seen between number of 3H-nitrendipine binding sites and 

increased affinity of Ca2+ channels with the former partly explaining the depressed cardiac 

contractile force development in chronic diabetes, and latter, partly explaining the 

increased sensitivity of diabetic heart to Ca2+. 

Further work by Dhalla et al. [98] highlighted the fact that while reductions in sarcoplasmic 

reticular Ca2+ pump and Ca2+ release channel function are associated with cardiac 

dysfunction, alterations in sarcolemmal Na+/Ca2+ exchanger and Na+/K+ ATPase activities 

contribute to intracellular Ca2+ overload at late stages of diabetes. The constant buildup of 

Ca2+ in mitochondria produces Ca2+ overload in these organelles, and this change induces 

impairment of energy production, depletion of energy stores, as well as further promotion 

of oxidative stress in chronic diabetes. These observations, coupled with generation of 
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oxyradicals results in the opening of mitochondrial pores, leakage of toxic proteins and 

myocardial cell damage in diabetes, supports the view that alterations in sarcoplasmic 

reticular and mitochondrial functions produce intracellular Ca2+ overload and therefore, play 

an critical role in the development of cardiac dysfunction in DCM. 

Numerous researchers conducted other studies on the sarcoplasmic reticulum transport 

mechanism. Some of these are explained in the following text. 

In cardiac muscle, the SR has been shown to be the most active subcellular organelle 

implicated with the sequestration of activator calcium. SERCA 2a ATPase, together with 

sarcolemma NCX are responsible for lowering [Ca2+]i, leading to the relaxation of muscle. 

Experiments have shown that calcium binding and/or uptake by cardiac SR is altered in a 

variety of physiological and pathological states [99-101].   

Studies involving molecular cloning have identified a family of SERCA pumps encoded by the 

three homologous genes, SERCA1, SERCA2 and SERCA3 Of the 3 genes. The gene of interest 

here is the SERCA2, which is alternately spliced and encodes SERCA2a and SERCA2b isoforms 

[102]. SERCA2b isoform is expressed ubiquitously and is associated with inositol 

triphosphate (IP3) gated Ca2+ stores, whereas SERCA2a is the primary isoform expressed in 

the heart [103]. SERCA-2a ATPase is the major protein pump involved in the process of 

calcium reuptake into the sarcoplasmic reticulum [103]. Previous studies employing rats, 

mouse and rabbits have demonstrated that the expression of SERCA pump gradually 

increases during development [104-105]. Several other studies have shown that DCM is 

associated with decreased contractility and impaired relaxation [61]. As explained, the 

expression levels of SERCA pump protein appear to be a critical determinant of cardiac 

contractility. SERCA2a mRNA expression and protein level and activity have been 

demonstrated to be down-regulated in streptozotocin-induced (STZ) type 1 DM and the 

alteration of SERCA expression is accompanied by functional changes [105-106]. Studies 

from many laboratories have demonstrated that the expression level of SERCA is 

significantly decreased in pressure overload (Po) induced hypertrophy and HF [105-107]. 

Within these studies, the main finding has been decreased SR Ca2+ transport and function. In 

addition to animal studies on cardiac diseases, there is considerable evidence for alterations 

in SR Ca2+ transport and function. In end stage human HF, intracellular Ca2+ measurements 

using Fura-2 have shown markedly prolonged Ca2+ transients [Ca2+]i in both Ca2+ release and 

uptake phases in muscle samples from human hearts [102]. Further, other research by 
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Connelly and colleagues, revealed substantial reduction of SERCA-2a ATPase in diabetic Ren-

2 rats [109]. Upon examining the abundance of the inhibitory protein PLB, which is a 

regulator of SERCA 2a ATPase, a reduction of the active, phosphorylated from of PLN was 

observed in the diabetic state that is similar to that seen in the human hearts. Thus, it was 

predicted to reduce calcium transport and prevent actomyosin dissociation contributing to 

delayed relaxation and reduced contractility [110]. Lacombe et al. [111] reported that 

diabetes-induced diastolic dysfunction together with preserved overall systolic performance 

is coupled with abnormalities of intra-myocyte calcium regulation. Their findings included, 

prolonged Ca2+ transient decay, reduced intra-SR Ca2+ stores, reduced Ca2+ sparks, and 

decreased SERCA2a protein content, which were all consistent with decreased SR Ca2+ 

reuptake during the relaxation phase of cardiac myocytes. The decrease in SR Ca2+ load, 

combined with decreased ECC efficiency may contribute to the decrease in Ca2+ transient 

amplitude and Ca2+ spark frequency. One alternative mechanism for this approach could be 

defined as a compensatory mechanism via reduced SR Ca2+ leak which will enhance SR Ca2+ 

load [103,112] leading to the conclusion that impaired calcium reuptake during the diastolic 

phase, results from an impaired SERCA pump function. 

Dhalla et al. [58] reported that activation of sympathetic nervous system and RAAS as well 

platelet aggregation, endothelial dysfunction and generation of oxidative stress promote 

differential changes in SR activities and protein content during the development of diabetes. 

This result in alterations in SR function and SR remodeling occur in the diabetic heart. On 

the basis of these observations, it is suggested that oxidative stress and subcellular 

remodeling due to hormonal imbalance and metabolic defects play a critical role in the 

genesis of heart failure during the development of DCM. Remodeling of other subcellular 

organelles, including sarcolemma and myofibrils, has also been reported during the 

development of DCM [113-114]. 

Reduced calcium transients in diabetes mellitus  

During the last decade, accumulating evidence has been presented revealing that altered 

calcium homeostasis is of significant relevance for the pathophysiology of myocardial 

dysfunction and HF. Moreover, various mechanisms have been postulated as a result of 

many clinical and experimental studies. In addition, many outcomes have been identified 

from reduced Ca2+ transients and altered intracellular calcium cycling, reduced amplitude of 

Ca2+ transients with reduced systolic calcium concentrations and increased diastolic calcium 
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levels in isolated myocytes, together with decreased rates of SR calcium uptake in the failing 

human heart in type 1 DM [115-119]. Abnormal [Ca2+]i homeostasis has also been 

implicated in DCM and may precede clinical manifestation. Studies in cardiomyocytes have 

shown that diabetes results in impaired [Ca2+]i homeostasis due to altered SERCA and NCX 

activity [120]. Belke et al. [121] investigated contractile performance and Ca2+ transients in 

Langendorff-perfused hearts and isolated cardiac myocytes. They showed that in diabetic 

mouse hearts there was a decrease in rates of contraction, relaxation, and pressure 

development along with Ca2+ transients; significantly lower diastolic and systolic levels of 

calcium in myocytes from diabetic hearts. Furthermore, the decay rate of the Ca2+ transient 

was significantly reduced in diabetic myocytes, suggesting a diminished capacity for 

cytosolic calcium removal not associated with a change in NCX activity. Their study revealed 

that this decrease in contractile performance of the insulin-resistant (T2DM) diabetic model 

parallels the decrease in contractile performance observed in insulin-deficient (T1DM) 

diabetic models. However, recent study by Salem et al. [122] demonstrated no significant 

alterations in Ca2+ transients and L-type Ca2+ current in ventricular myocytes from 10-11 

months old Goto Kakizaki (GK) sedentary compared to control sedentary rats or by exercise 

training (2-3 months of treadmill exercise). A study by Zhang et al. [123] found no evidence 

to support the idea that altered Ca
2+ 

homeostasis underlies the contractile deficit of DCM. 

They postulated that the slower action potential and reduced SERCA2a expression could 

explain the slower Ca
2+ 

transient kinetics in diabetic rats, but not the contractile deficit. 

Instead, they suggest that the observed LV remodelling may play a crucial role that is 

explained elsewhere [124-125].  

 In conclusion, the observed changes in contractility and in [Ca2+]i handling are most likely 

attributable to functional disturbances of SERCA2a, NCX and RyR2 in this transitional phase 

of diabetes.  

 

Heart failure with normal ejection fraction  

Ejection fraction is the volume of blood (usually presented as a percentage) pumped out of 

the ventricles during each heartbeat or cardiac cycle. It is now extensively acknowledged 

that the clinical features of HF can occur in patients with normal left ventricular ejection 

fraction (LVEF) [126-128] a complex broadly referred to as HF with normal left ventricular 

ejection fraction (HFnEF). The finding of a reduced LVEF in patients with typical signs and 
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symptoms of HF provides objective proof that the patients suffer from cardiac abnormality 

and makes it obvious that the patient’s clinical syndrome is indeed HF.  

LV diastolic dysfunction is most commonly observed among patients with hypertension as 

well as the elderly [129]. While asymptomatic advanced LV diastolic dysfunction is also 

predictive of the future occurrence of HF [130], it is not clear why a number of patients with 

LV diastolic dysfunction have HFnEF while others remain asymptomatic. LV diastolic 

dysfunction has been suggested as the initial manifestation of diabetic heart disease in both 

T1DM and T2DM patients. In the Strong Heart Study [131], which investigated the effect of 

DM on LV filling pattern in normotensive and hypertensive individuals, T2DM was 

associated with an impaired relaxation pattern independently of age, blood pressure (BP), 

LV mass and LV systolic function.  

 

The occurrence of DM in HF is approximately 20-35% [132] and is to some extent higher in 

patients with HFnEF, at 30-40% [133]. HFnEF and T2DM commonly coexist. Both conditions 

are associated with hypertension, obesity and ageing [23], all of which promote the 

prevalence of HF. However, irrespective of underlying CVD, DM has a central role in HFnEF 

as demonstrated in the CHARM study [134] whereby the relative risk of cardiovascular 

death or HF hospitalization conferred by DM was significantly greater in patients with HFnEF 

compared with those with HFrEF [134]. The prevalence of HFnEF may be high even in 

asymptomatic and well-controlled diabetic subjects [135,136]. Regardless of the increased 

prevalence and poor outcome, pathophysiological features underlying HFnEF in DM remain 

uncertain [137]. A recent study by Ehl et al. [138] demonstrated a significantly lower LVEF in 

diabetic compared with non-diabetic patients (P<0.001) in a large patient population. Even 

though the difference was small, this finding may have important epidemiological impact, 

since LVEF is one of the most important predictors of survival. This hypothesis is supported 

by data from the Mayo clinic, which have confirmed a significantly worse survival of even 

asymptomatic diabetic patients with an LVEF of 50% [139].  

Various morphological changes occur in the diabetic heart leading to the abnormal 

physiological findings described above. These include increased extracellular collagen 

deposition, interstitial fibrosis, myocyte hypertrophy and intra-myocardial micro-

angiopathy. These changes are probably secondary to altered myocardial glucose and free 

fatty acid metabolism (FFA) in DM as outlined in Figure 3. 
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Figure 3: A schematic representation of the pathophysiological mechanisms underlying 

HFnEF in diabetes mellitus; drawn by hand.  

 

With respect to fibrosis and HFnEF, a population studied by van Heerebeek et al [140] 

showed different clinical characteristics to those observed in epidemiological studies. 

Consequently, as suggested by Connelly et al. [109], it should not be concluded that fibrosis 

does not contribute to HFnEF in DM. Several animal studies have demonstrated that fibrosis 

contributes to this syndrome [140] while human studies have shown that collagen volume 

fraction is increased approximately 2-fold in both DM and non-DM subjects with HFnEF 

[141]. Both fibrosis and cardiomyocyte are linked attributes to HFnEF in DM though the 

relative contribution of each remains under debate. Further research to unravel the 

pathophysiology of HFnEF in very well characterized patients and appropriate control 

subjects with a focus on the exercise response and the neuro-humoral axis is needed to 

establish therapeutic strategies [142].   

 

Role of myofilaments in cardiac dysfunction  

Myofilament properties have a major role in the governing cardiac relaxation. Though it is 

acknowledged that it is essential for the intracellular calcium concentration to decline in 

order to initiate and facilitate relaxation, the rate at which healthy myocardium relaxes is 

predominantly regulated by the properties of the myofilaments [143]. The peak of the 

[Ca2+]i amplitude is usually reached long before the peak of force development, and once 

force development initiates to decline, the Ca2+ concentration is near or below the 

concentration where the myofilament can begin activation.  
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DM is also known to be associated with a loss of cardiac myofibrils [144], which are the main 

contractile components for muscle contraction. Severe loss of myofibrils can lead to 

decreased contraction and cardiac output that are frequently reported in diabetic patients. 

Experiments conducted by Pierce and Dhalla [145], demonstrated that the basal ATPase 

activity of myofibrils from diabetic hearts was significantly lower than the controls over 8 

weeks. Their results also highlighted: (i) the basal and Ca2+ stimulated ATPase activities in 

diabetic rats demonstrated a greater sensitivity to KCl than control preparations, (ii) the 

myofibrillar basal ATPase, unlike Ca2+ stimulated ATPase, in diabetic animals exhibited a 

greater sensitivity to ethylene glycol and (iii) supports the view regarding the presence of 

some subtle structural and conformational changes in diabetic myofibrils. In subsequent 

work [146], diabetes was introduced in rats where they were maintained in a diabetic state 

for 6 weeks and then given 2 weeks of insulin treatment in vivo. The results obtained 

emphasized: (i) Mg2+-ATPase and Ca2+-stimulated ATPase activities were depressed in 

diabetic rat hearts in comparison to control, (ii) the depression in myofibrillar ATPases was 

of gradual onset as no changes were detected 2 weeks after inducing diabetes, (iii) Mg2+-

ATPase activity of myofibrillar preparations from control and diabetic hearts responded 

differently to N-ethylmaleimide modification, and interestingly and (iv) myofibrillar 

sulfhydryl reactivity to 5,5'-dithiobis (2-nitrobenzoic acid) was significantly depressed in 

diabetic preparations in comparison to control and insulin-treated diabetic animals. 

While many studies focused on animal studies, Jweied and colleagues [147] conducted a 

study to determine whether human diabetes mellitus is associated with depressed cardiac 

myofilament function. Assessment of Myofilament function was achieved by determination 

of the developed force-Ca2+concentration relation in skinned cardiac cells from flash frozen 

human biopsies. Separate control experiments revealed that flash freezing of biopsy 

specimens did not affect myofilament function. In this study, all patients in the DM group 

were classified as T2DM patients, and most showed signs of diastolic dysfunction. Data from 

the results revealed that DM was associated with depressed myofilament function, that is, 

decreased Ca2+ sensitivity (29%, P < 0.05 vs. control) and a trend toward reduction of 

maximum Ca2+-saturated force (29%, P = 0.08 vs. control). Results from this study 

highlighted that human diabetes mellitus is associated with decreased cardiac myofilament 

function and further, depressed cardiac myofilament Ca2+ responsiveness may underlie the 

decreased ventricular function characteristic of human diabetic cardiomyopathy. 
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Prevention, treatment and potential targets for DCM 

In order for proper and improved management options to be effective, it is essential to have 

better understanding of pathophysiology and pathogenesis in patients with DCM. These 

options include; lifestyle modification, glycaemic control, management of coexistent 

hypertension and heart failure. Some of aforementioned management options, in addition 

to emerging treatment modalities are discussed in the following section. 

Lifestyle modification  

Exercise training is necessary to maintain a healthy body and it is recognized that regular 

exercise with better diabetic control would have beneficial effects on the disease outcome.  

In a recent study [148] physical activity was associated with a significant reduction in 

cardiovascular disease and all-cause mortality in patients with DM in many clinical studies. 

Exercise training was beneficial for reducing the incidence of DCM in both human patients 

and animal models [149,150]. Weight loss, control of fat and regular physical activity can 

positively adjust metabolic abnormalities and thus improve systemic insulin resistance. 

Insulin resistance can be achieved by increasing post-receptor-signaling and increasing 

insulin-mediated glucose transport, which seems to be associated with signal transduction 

at the level of phosphatidylinositol 3-kinase and insulin receptor substrate [151,152]. In 

addition to exercise, maintaining healthy eating patterns that are suitable for diabetic 

patients can also be expected to show similar beneficial effects.  

Glycaemic control  

Clinical trials have demonstrated that poor glycaemic control has been associated with an 

increased risk of cardiovascular mortality – with an increase of 11% for every 1% rise in 

glycated haemoglobin (HbA1c) level [153]. It is expected that the effects of tight glycaemic 

control would be beneficial to patients because microvascular disease plays an important 

pathogenic role in the development of DCM. In one case-controlled study using cardiac MRI 

in patients with T1DM it was demonstrated that rigorous glycemic control was associated 

with better DCM outcome parameters [154] while in animal studies, improved glycaemic 

control delayed DCM in animal models [155]. However, other studies (UK Prospective 

Diabetes Study) failed to show a significant benefit of intensive blood glucose control using 

either sulphonylureas or insulin on the risk of developing macrovascular disease in patients 

with Type II diabetes [156]. 
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Anti-diabetic medication 

There are various classes of anti-diabetic drugs, and their selection depends on the nature 

of the diabetes, age, as well as other factors. Some of the more popular and effective drugs 

will be discussed in this section. These include: metformin, thiazolidinediones, empagliflozin, 

GLP-1 and DPP-4. 

Metformin, believed to be the most widely used medication for diabetes that is taken by 

mouth, upregulates cardiac autophagy, which is linked to DCM prevention and is primarily 

used to treat T2DM. Metformin facilitates glucose uptake and GLUT4 translocation in 

insulin-resistant cardiomyocytes and the myocardium by activating 5´-adenosine 

monophosphate-activated protein kinase [157]. This drug was reported to reduce mortality 

and improve the clinical outcome in overweight patients with HF and DM, however, 

metformin increase the production of lactate in the large intestine, which could potentially 

contribute to lactic acidosis [158].  

Thiazolidinediones (TZDs) are a class of insulin sensitizers compounds for treating patients 

with T2DM.  They act by increasing insulin sensitivity in skeletal muscle and adipose tissue 

through binding and activation of PPAR-γ, a nuclear receptor that has a regulatory role in 

differentiation of cells [159]. 

Apart from insulin-sensitizing fat and skeletal muscle, TZDs increase the expression and 

function of glucose transporters in the heart, leading to improved glucose metabolism, and 

reduce non-esterified fatty acids (NEFA) utilization by the myocardium [160]. However, 

thiazolidinedione therapy can cause chronic symptoms that resemble heart failure. 

Therefore, the drug is generally not recommended in patients with heart failure.  

Empagliflozin is a new anti-diabetic drug of the gliflozin class that was approved for 

treatment of T2DM in 2014.  It is an inhibitor of sodium-glucose co-transporter 2 (SGLT-2), 

which reduces HbA1c levels in patients with T2DM by controlling visceral adiposity, blood 

pressure, arterial stiffness, albuminuria, weight, oxidative stress, hyperinsulinemia, and 

circulating uric acid levels [161]. 

Glucagon-like peptide-1 (GLP-1) is a known incretin that has the ability to decrease blood 

sugar levels in a glucose-dependent manner by enhancing the secretion of insulin. Synthetic 
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GLP-1, which has a longer half-life than natural GLP-1, has shown to attenuate myocardial 

apoptosis and enhance vasodilation [162]. This new group of drugs has shown promise in 

the management strategy in obese T2DM patients with DCM and further, GLP-1-based 

treatment has been associated with weight loss and lower hypoglycemia risks. 

Dipeptidyl peptidase 4 (DPP-4) is an enzyme that metabolizes endogenous GLP-1. DPP-4 

inhibitors can prevent cardiac diastolic dysfunction and cardiac hypertrophy by inhibiting 

fibrosis and oxidative stress in mouse models of insulin resistance and obesity [163]. 

 
Statins  
 
Statins (hydroxymethylglutaryl CoA reductase inhibitors) is a class of drug that lowers the 

level of cholesterol in the blood by reducing the production of cholesterol by the liver. 

Statins works by inhibiting HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A 

reductase), an enzyme found in liver tissue that plays a key role in the production of 

cholesterol in the body. 

In multiple clinical trials [164] it was found that the use of statins reduces cardiovascular 

mortality and events in patients with diabetes and vascular risk factors, and it is beneficial 

even for primary prevention in patients without established cardiovascular disease [165].  

It has been reported that atorvastatin, a lipid-lowering agent, reduces myocardial fibrosis, 

intramyocardial inflammation, and improves LV function in rat models of experimental 

DCM, independently of its LDL-C-lowering capacity [166]. Likewise, fluvastatin is useful for 

attenuating cardiac dysfunction and myocardial interstitial fibrosis in rat models of the 

disease [167].  

 

Vasoactive medications - blockers and inhibitors 
 
Many vasoactive medications have been tried in both animal and human patients models 

with DCM, with variable results. 

-blocker is a class of medications that are particularly used to manage abnormal heart 

rhythms, and to protect the heart from myocardial infraction after a first heart attack.  

Initially, there was a reluctance to use β-blockers in patients with diabetes for fear of 

adverse effects on insulin resistance and an unawareness of hypoglycaemia. However, with 

the recent advances in the understanding of HF and the realization of the importance of the 

SNS in the release of vasoactive substances, they have become an essential treatment for 

HF [168].  
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Earlier studies of β-blockers in the early 90’s involved recruited patients with advanced HF 

and, although LV function improved, mortality did not [169,170]. However, subsequent 

studies enrolled patients with mild-to-moderate HF and showed significant reductions in 

mortality rate of 32% and 34 % respectively [171,172]. The third generation β-blocker 

carvedilol, which antagonizes both α and β receptors, has been proven to have a highly 

significant effect on mortality (67% reduction) in patients with severe HF [173]. Other β-

blocker such as bisoprolol and metoprolol have been shown in large-scale randomized 

controlled trials to reduce heart failure mortality [174] and more recently, Sharma et al. 

demonstrate that β-Adrenoreceptor blockers were effective in experimental models of DCM 

[175]. 

The importance of (RAAS) antagonism in the prevention of diabetic CVD has demonstrated 

the key role that the RAAS plays in diabetic CVD onset and development. Angiotensin 

converting enzyme (ACEi) inhibitors and angiotensin II receptor blockers (ARB) represent the 

first line therapy for primary and secondary CVD prevention in patients with diabetes [176]. 

 (ACEi), renin inhibitor (aliskiren) and (ARB) were all shown to be protective against DCM in 

rat models [177]. Other studies have demonstrated that ACEis and ARBs were also beneficial 

in both human and animal models of DCM [178,179].  

Recently, Poly (ADP-ribose) polymerase (PARP) inhibitors have stimulated much excitement. 

PARP-1 is a member of the PARP enzyme family and is one of the most abundant nuclear 

proteins which functions as a DNA-nick-sensor enzyme [180]. Research conducted by Du et 

al. [181] revealed that hyperglycemia-induced overproduction of superoxide by the 

mitochondrial electron transport chain activates the three major pathways of hyperglycemic 

damage found in aortic endothelial cells by inhibiting GAPDH (glyceraldehyde-3-phosphate 

dehydrogenase) activity. Thus, inhibition of PARP blocks hyperglycemia-induced activation 

of multiple pathways of vascular damage and provides a unique approach as it blocks 

activation of all the major pathways thought to mediate tissue damage in diabetes. 

 
Metabolic modulators 
 
Metabolic modulators are a newer class of drugs that benefit patients by modulating cardiac 

metabolism without altering hemodynamics. They have the potential to relieve symptoms in 

patients with refractory heart failure who are already on optimal medical therapy. These 

drugs increase glucose metabolism at the expense of free fatty acid metabolism, thereby 

enhancing efficient use of oxygen. Three metabolic modulators drugs that could potentially 
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be used for HF therapy and CDM are: trimetazidine, resveratrol and ranolazine. 

 

Trimetazidine, a competitive inhibitor of the terminal enzyme in β-oxidation has promising 

beneficial effects on heart failure in diabetic patients with both idiopathic and ischemic 

dilated cardiomyopathy [182]. Studies of animal models revealed that trimetazidine reduce 

free radical injury, improve endothelial function, inhibit apoptosis and attenuate lipotoxicity 

[183]. However, human trials are needed to investigate the beneficial effects of this drug on 

the treatment and prevention of DCM. Studies on resveratrol revealed that it reduces 

glucose levels; improve triglyceride level, heart rate, and glycemia [184] while ranolazine, a 

potent late Na+ current inhibitor, normalize altered cardiomyocyte intracellular calcium 

concentration due to the close relationship between Ca2+ and Na+ handling by the Na+/Ca2+ 

exchanger [186]. 

 
New therapeutic directions  

Within the past five years, research into new therapeutic direction focused on the areas of 

cell/genetic therapy and targeting mitochondrial oxidative stress. A few of these new 

emerging treatment modalities will be discussed in this section. An excellent review on this 

topic was done by Huynk et al. [186] in which they discussed both conventional and novel 

therapeutic approaches for the treatment of left ventricular dysfunction in diabetic patients. 

 

mi-RNA. 

The dysregulation of micro-ribonucleic acid (mi-RNA) function serve as an important 

pathogenic mechanism of diabetes and its complications. mi-RNAs have been reported to be 

potential biomarker for early detection of DCM and they have become the subject of an 

active area of research to establish their potential contribution to heart disease in patients 

with T2DM. The noncoding RNA, miR-223 was found to be associated with regulation of 

GLUT4 expression in adult cardiomyocytes [187] while data from experimental studies 

underscore the contribution of miR-21 in stimulating MAP kinase signaling in mouse 

fibroblasts, consequently promoting fibrosis and contractility alterations as features of DCM 

in diabetic animal models [188,189]. Other research have implicated miRNA to be involved 

in regulating extracellular signal regulated kinases (ERK) in diabetic conditions and 

therefore, modulating ERK1/2 derived-pathway which opposes oxidative stress-induced 

insulin resistance in cardiomyocytes [190]. 
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Coenzyme Q10. 

Recent research by Mortensen et al. [191], on the effect of coenzyme Q10 on morbidity and 

mortality in chronic heart failure patients using randomized controlled trial, showed that 

long-term coenzyme Q10 treatment in patients with chronic heart failure is safe, improves 

symptoms, and reduces all-cause mortality by 42% and cardiovascular death by 43%. Other 

reports have also established that coenzyme Q10 improves cardiac function in patients with 

DM and concurrent heart failure [192,193]. 

 

Pim-1.  

Pim-1 (serine/threonine-protein kinase pim-1) gene therapy was shown to improve LV 

diastolic function, prevent cardiac apoptosis, fibrosis, and development of HF [194]. While in 

other studies [195], it was demonstrated that Pim-1 downregulation contributes in the 

pathogenesis of diabetic cardiomyopathy. Thus, establishing that intravenous gene therapy 

with pim-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy 

through promotion of pro-survival signaling and represents a novel and effective approach 

to treat the disease. 

 

Phosphoinositide 3-kinase. 

In a very recent research, Prakoso and colleagues [196] investigated the therapeutic 

potential of a delayed intervention with cardiac-targeted phosphoinositide 3-kinase (PI3K) 

gene therapy, administered to mice with established diabetes-induced LV diastolic 

dysfunction. After study endpoint, it was discovered that diabetes-induced LV dysfunction 

was significantly attenuated by a single administration of recombinant adeno-associated-

virus 6-constitutively active PI3K (p110α) (rAAV6-caPI3K), administered 8 weeks after the 

induction of diabetes. Their results clearly demonstrate that cardiac-targeted PI3K (p110α) 

gene therapy limits diabetes-induced up-regulation of NADPH oxidase and cardiac 

remodelling suggests new insights into promising approaches for the treatment of diabetic 

cardiomyopathy. 

 
Szeto-Schiller peptide.  

The SS (Szeto-Schiller) peptide antioxidants represent a novel approach with targeted 

delivery of antioxidants to the inner mitochondrial membrane. The structural motif of these 

SS peptides centers on alternating aromatic residues and basic amino acids (aromatic-

cationic peptides). These SS peptides can scavenge hydrogen peroxide and peroxynitrite and 



28 
 

inhibit lipid peroxidation. By reducing mitochondrial ROS, these peptides inhibit 

mitochondrial permeability transition and cytochrome c release, thus preventing oxidant-

induced cell death [197]. 

The Szeto-Schiller peptide d-Arg-2′, 6′-dimethyltyrosine-Lys-Phe-NH2 (SS31) is a positively 

charged free-radical scavenger that can accumulate to high levels in the mitochondria and 

prevent diastolic dysfunction, fibrosis, and cardiac hypertrophy [192].  

This technique represents a promising approach for preventing DCM by targeting excess 

myocardial ROS with novel antibiotics. 

 

Conclusion 

The prevalent rise in DM worldwide has made DCM an increasing health concern. As the 

incidence and prevalence of DM continue to rise, HG-induced structural and ultrastructural 

changes may cause a reduction in heart perfusion and eventually HF. A variety of treatment 

options have shown to be effective in treating DCM and novel therapeutic strategies, such 

as gene therapy targeting the phosphoinositide 3-kinase PI3K (p110α), signaling pathway, 

and miRNA dysregulation have shown good promise. In addition to these, targeting redox 

stress and mimetic peptides targeting calcium channels may represent a future strategy for 

combating the ever-increasing incidence of heart failure in the diabetic population. 
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