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Abstract 22 

Biospectroscopy has the potential to investigate and characterise biological samples and could, 23 

therefore, be utilised to diagnose various diseases in a clinical environment. An important 24 

consideration in spectrochemical studies is the cost-effectiveness of the substrate used to 25 

support the sample, as high expense would limit their translation into clinic. In this paper, the 26 

performance of low-cost aluminium (Al) foil substrates was compared with the commonly used 27 

low-emissivity (low-E) slides. Attenuated total reflection-Fourier transform infrared (ATR-28 

FTIR) spectroscopy was used to analyse blood plasma and serum samples from women with 29 

endometrial cancer and healthy controls. The two populations were differentiated using 30 

principal component analysis with support vector machines (PCA-SVM) with 100% sensitivity 31 

in plasma samples (endometrial cancer=70; healthy controls=15) using both Al foil and low-E 32 

slides as substrates. The same sensitivity results (100%) were achieved for serum samples 33 

(endometrial cancer=60; healthy controls=15). Specificity was found higher using Al foil 34 

(90%) in comparison to low-E slides (85%) and lower using Al foil (70%) in comparison to 35 

low-E slides in serum samples. The establishment of Al foil as low-cost and highly-performing 36 

substrate would pave the way for large-scale, multi-centre studies and potentially for routine 37 

clinical use. 38 

 39 

 40 

 41 

 42 

 43 
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Introduction  44 

Vibrational spectroscopy is increasingly utilised in biomedical research as a valuable tool in 45 

disease investigation. Allowing the analysis of a variety of biological samples, such as cells, 46 

tissues and biofluids, this spectrochemical analysis has a bright future ahead, not only in 47 

scientific/laboratory research but also in clinical practice. The key factor that renders this 48 

analytical method a perfect diagnostic tool, in comparison to other molecular methods, is its 49 

non-destructive, cost-effective and label-free nature. Over the years, infrared (IR) and Raman 50 

spectroscopic techniques have been employed to study a number of different diseases like 51 

cancer, neurological diseases, prenatal disorders and many others 1-10. Within the field of 52 

disease investigation, spectroscopy has the potential to diagnose and monitor a disease, while 53 

at the same time assessment of surgical margins of a tumour or determination of the subtype 54 

of a disease is also feasible. 55 

 Most spectroscopic studies so far, with only a few exceptions 8, 10, 11, have included a 56 

limited number of subjects which appears to be an important limitation for the establishment 57 

of the method and its migration into clinics 12-14. Standardisation and validation of methods 58 

should be performed in large clinical trials for more robust and trustworthy results. A further 59 

issue that limits the ability for clinical implementation relates to experimental methodology. 60 

Specifically, inconsistencies in the pre-analytical stages of sample collection and preparation 61 

to spectral collection and data analysis. A fundamental factor of the analytical procedure is the 62 

use of the correct substrate in order to avoid non-biological interference from the substrate in 63 

use. Unfortunately, the majority of the available, “featureless” substrates are high-cost 15, 16, 64 

something which prevents their use in large scale studies and routine analysis. Previous studies 65 

have even developed data correction algorithms to remove the substrate’s signal after the 66 

collection of the raw spectra 16-18. 67 



4 
 

 Different types of substrates are selected depending on the spectroscopic technique used 68 

each time (e.g., IR or Raman spectroscopy), as well as on the chosen sampling mode [e.g., 69 

transmission IR, transflection IR or attenuated total reflection (ATR)]. Namely, some of the 70 

substrates that have been used for IR and Raman spectroscopy over the years include barium 71 

fluoride (BaF2), calcium fluoride (CaF2), zinc selenide (ZnSe), gold-coated (Au), silver or 72 

silver-coated (Ag), fused silica (SiO2) and low-emissivity (low-E) slides 19, 20. However, due to 73 

their expense, efforts are being made to introduce novel, low-cost substrates that would 74 

facilitate the analysis of hundreds, even thousands, of samples cost-effectively. Glass substrates 75 

are routinely used in medical laboratories and hospitals for preparation of analysis of various 76 

types of biological samples; however, glass has been found unsuitable for spectroscopy as it 77 

generates background signal and distorts the biological information coming from the samples 78 

19. Therefore, an ideal approach would be to take advantage of the extremely cost-effective 79 

glass slides by covering them with a metallic surface that would eliminate any background 80 

noise. Previous proof-of-concept studies have been conducted showing aluminium (Al) foil’s 81 

potential as a suitable substrate 11, 16, 21. A robust and inexpensive substrate for both IR and 82 

Raman spectroscopic methods would be extremely beneficial. However, there has been no 83 

conclusive study comparing its effect on diagnostic accuracy with other, widely used 84 

substrates. 85 

 In this study, we used ATR-FTIR spectroscopy to explore whether Al foil could be an 86 

appropriate substrate for spectroscopic investigations. ATR-FTIR uses an internal reflection 87 

element (IRE) with a high refractive index to direct the beam to the sample; an evanescent 88 

wave is created, penetrating the sample by a few microns in order to derive its chemical 89 

information 22. A commonly used substrate for ATR-FTIR measurements is the low-E slide, 90 

which has been effectively used in numerous biological studies in the past 23-25.  Therefore, we 91 

compared our results from the low-E slides with those from Al foil slides to assess the 92 
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performance of the latter with regard to the diagnostic accuracy. For the purpose of this piece 93 

of work, we analysed blood samples from women with endometrial cancer, as well as from 94 

benign cases used as controls. Endometrial cancer develops in the endometrium (i.e., inner 95 

lining of the uterus) and is the fourth most common gynaecological cancer in the developing 96 

world, with an increasing incidence in postmenopausal women; in 2012 alone, 319,000 new 97 

cases were diagnosed worldwide 26. Although symptoms of endometrial cancer develop 98 

relatively early, which allows “timely” diagnosis and early intervention, a more objective, less 99 

expensive and non-invasive method of diagnosing this type of cancer is highly desirable and 100 

clinically indicated. Currently, a diagnosis is based on microscopic histological examination of 101 

endometrial tissue, which is dependent on subjective interpretation, therefore allowing human 102 

error. 103 

Materials and Methods 104 

Blood plasma and serum analysis 105 

The collection of all samples for this study was approved by the institutional review board at 106 

Imperial College Healthcare NHS Trust (tissue bank sub-collection number GYN/HG/13-020). 107 

All patients provided informed consent for use of their samples in this study. This study 108 

included age-matched cohorts; plasma samples were available for 70 endometrial cancer 109 

patients and 15 non-cancer individuals used as controls; serum samples were available for 60 110 

endometrial cancer patients and 15 controls. At time of diagnosis, patients were not receiving 111 

any medications such as Tamoxifen treatments which might affect the outcomes. Also women 112 

who had hyperplasia or hypertension have been excluded. Both blood plasma and serum 113 

samples were collected and stored at -80°C until analysis; prior to spectroscopic interrogation, 114 

the samples were left to defrost at room temperature before 50 μL of each were deposited on a 115 

substrate and left to air-dry for approximately 30 min. All of the samples were analysed in 116 
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duplicates using two different substrates: the IR-reflective glass slides (MirrIR Low-E slides, 117 

Kevley Technologies, USA) and cheap, microscope glass slides covered with Al foil. The latter 118 

were carefully flattened with the shiny side of the foil being exposed to achieve a greater level 119 

of reflectivity. Covering the slide with Al foil required ~30-45 seconds with one slide taking 120 

up to 3 different samples, rendering the slide preparation time insignificant. 121 

Spectrochemical Analysis 122 

All blood samples were analysed using a Tensor 27 FTIR spectrometer with Helios ATR 123 

attachment (Bruker Optics Ltd, Coventry, UK). The sampling area, defined by the internal 124 

reflection element (IRE), which was a diamond crystal, was approximately 250 μm × 250 μm. 125 

The slide with the sample is placed onto a moving platform with the sample facing up; the 126 

platform is then moved upward to achieve good contact with the diamond crystal. Spectral 127 

resolution was 8 cm-1 with two times zero-filling, giving a data-spacing of 4 cm-1 over the range 128 

4000-400 cm-1; 32 co-additions and a mirror velocity of 2.2 kHz were used for optimum signal 129 

to noise ratio. A CCTV camera attachment was used to locate the area of interest and spectra 130 

were acquired from ten different locations to minimize bias. Also, in order to take into 131 

consideration the natural phenomenon of “coffee ring” effect, spectra were mainly collected 132 

from the periphery of each drop where the absorbance intensity was higher, as important 133 

components, such as proteins and nucleic acids, migrate towards the edge of the drop after 134 

drying 27. The ATR crystal was cleaned with distilled water before moving to a different sample 135 

and a background spectrum was acquired to take into account any atmospheric changes. 136 

Spectral data handling and analysis 137 

All spectral information was converted to suitable files (.txt) before input to MATLAB 138 

(Mathworks, Natick, USA). Pre-processing and computational analysis of the data was 139 

performed using PLS Toolbox version 7.9.3 (Eigenvector Research, Inc., Manson, USA) and 140 
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an in-house developed IRootLab toolbox (http://trevisanj.github.io/irootlab/). Pre-processing 141 

of the acquired spectra is an essential step of all spectroscopic experiments and is used to 142 

correct problems associated with spectral acquisition, instrumentation or even sample handling 143 

before further multivariate analysis 28. In this study, spectra were cut at the biochemical 144 

fingerprint region (1800-900 cm-1), rubberband baseline corrected and vector normalised. 145 

The samples were divided into training (~70%), validation (~15%) and test (~15%) sets 146 

on a patient basis before chemometric analysis, using the Kennard-Stone sample selection 147 

algorithm 29; all spectra collected for each individual were used for model construction. In total, 148 

60 samples were used for training (n = 600 spectra), 12 for validation (n = 120 spectra) and 13 149 

for test (n = 130 spectra) with plasma samples; and 53 for training (n = 530 spectra), 11 for 150 

validation (n = 110 spectra) and 11 for test (n = 110 spectra) with serum samples. The training 151 

set was used for model construction, the validation set for optimization of the number of 152 

principal components and latent variables used, and the test set for final model evaluation. 153 

Cross-validation venetian blinds (10 splits with 1 sample per split) was used for optimization 154 

of support vector machines (SVM) parameters (cost, epsilon, gamma and number of support 155 

vectors) in principal component analysis with support vector machines (PCA-SVM). 156 

For the classification of endometrial cancer and non-cancer cases a number of 157 

chemometric techniques was used, such as partial least squares discriminant analysis (PLS-158 

DA); and principal component analysis followed by linear discriminant analysis (PCA-LDA), 159 

quadratic discriminant analysis (PCA-QDA) and support vector machines (PCA-SVM). 160 

PLS-DA is one of the most known chemometric technique of supervised classification. 161 

It is based on a linear classification model for which the classification criterion is obtained by 162 

partial least squares (PLS) analysis 30. For this, PLS is applied to the data reducing the original 163 

variables (e.g., wavenumbers) to a few number of latent variables (LVs) in an interactive 164 

http://trevisanj.github.io/irootlab/
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process, in which the category variables for each class in the training set (e.g., ±1) is used to 165 

optimise the model. A straight line that divides the classes’ regions is then found 31. 166 

Similarly to PLS, PCA also reduces the original data into a few set of variables called 167 

principal components (PCs). These variables are orthogonal to each other and account most of 168 

the explained variance from the original data set. They are composed of scores and loadings 169 

that are used to identify similarities/dissimilarities among the samples and the weight that each 170 

variable contributes for the PCA model, respectively 32. However, differently from PLS, the 171 

category variables are not used for this reduction. To perform a supervised classification model, 172 

the PCA scores are employed as input variables for discriminant algorithms. This procedure 173 

avoids collinearity problems and also speeds up computational analysis. 174 

LDA and QDA are discriminant algorithms that create a classification rule between the 175 

classes based on a Mahalanobis distance. The main difference between these techniques is that 176 

LDA uses a pooled covariance matrix to calculate the discriminant function between the 177 

classes, whereas QDA uses the variance-covariance matrix of each class separately 33. 178 

Therefore, QDA usually achieves better performance than LDA when analysing complex data 179 

sets where the variance structures between the classes are very different. The LDA (𝐿𝑖𝑘) and 180 

QDA (𝑄𝑖𝑘) classification scores are calculated following the equations 34: 181 

𝐿𝑖𝑘 = (𝐱𝑖 − 𝐱̅𝑘)T∑pooled
−1 (𝐱𝑖 − 𝐱̅𝑘) − 2 log𝑒 𝜋𝑘       (1) 182 

𝑄𝑖𝑘 = (𝐱𝑖 − 𝐱̅𝑘)T∑𝑘
−1(𝐱𝑖 − 𝐱̅𝑘) + log𝑒|∑𝑘| − 2 log𝑒 𝜋𝑘      (2) 183 

in which 𝐱𝑖 is the vector containing the classification variables for sample 𝑖 (e.g., PCA scores 184 

for A components); 𝐱̅𝑘 is the mean vector of class k; ∑𝑘  is the variance-covariance matrix of 185 

class k; ∑pooled  is the pooled covariance matrix; and 𝜋𝑘 is the prior probability of class k. 186 

These last three terms are calculated by 34:  187 
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∑𝑘 =
1

𝑛𝑘−1
∑ (𝐱𝑖 − 𝐱̅𝑘)𝑛𝑘

𝑖=1 (𝐱𝑖 − 𝐱̅𝑘)T        (3) 188 

∑pooled =
1

𝑛
∑ 𝑛𝑘∑𝑘 

𝐾
𝑘=1           (4) 189 

𝜋𝑘 =
𝑛𝑘

𝑛
            (5) 190 

where 𝑛𝑘 is the number of samples of class k; 𝑛 is the total number of samples in the training 191 

set; and 𝐾 is the number of classes. 192 

 On the other hand, SVM is a technique that classifies data sets in a completely non-193 

linear fashion. For this, SMVs classifiers work by finding a classification hyperplane that 194 

separates the data clusters providing the largest margin of separation 35. During model 195 

construction, the data is transformed into a different feature space by means of a kernel function 196 

that is responsible for the SVM classification ability 33. The most common kernel function is 197 

the radial basis function (RBF). The SVM classifier takes the form of 36: 198 

𝑓(𝑥) = sign(∑ 𝛼𝑖𝑦𝑖𝐾(𝐱𝑖 , 𝐳𝑗) + 𝑏
𝑁𝑆𝑉
𝑖=1 )        (6) 199 

where 𝑁𝑆𝑉 is the number of support vectors; 𝛼𝑖 is the Lagrange multiplier; 𝑦𝑖 is the class 200 

membership (e.g., ±1); 𝑏 is the bias parameter; and 𝐾(𝐱𝑖, 𝐳𝑗) is the RBF kernel function, 201 

calculated by: 202 

𝐾(𝐱𝑖, 𝐳𝑗) = exp (−𝛾‖𝐱𝑖 − 𝐳𝑗‖
2

)         (7) 203 

in which 𝐱𝑖 and 𝐳𝑗  are samples measurement vectors; and 𝛾 is the parameter that determines 204 

the RBF width. 205 

Results and Discussion 206 

By employing the above-mentioned multivariate techniques (PCA-LDA, PLS-DA, PCA-QDA 207 

and PCA-SVM), it was demonstrated that some provided superior performance than others. 208 
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The techniques were very different from each other and were used following a parsimonious 209 

order (PCA-LDA < PLS-DA < PCA-QDA < PCA-SVM). It is natural to expect an 210 

improvement of the results when more robust algorithms are applied, as the classification 211 

methods varied from a linear (PCA-LDA and PLS-DA) to a completely non-linear 212 

classification algorithm (PCA-SVM). Analysis of the plasma samples deposited on Al foil 213 

showed classification to be: 68% sensitivity and 70% specificity (68% accuracy) after PLS-214 

DA; 47% sensitivity and 75% specificity after PCA-LDA (51% accuracy); 83% sensitivity and 215 

45% specificity after PCA-QDA (78% accuracy); 100% sensitivity and 90% specificity (98% 216 

accuracy) after PCA-SVM. For plasma samples that were deposited on low-E slides the results 217 

were: 65% sensitivity and 65% specificity (65% accuracy) after PLS-DA; 46% sensitivity and 218 

85% specificity (52% accuracy) after PCA-LDA; 96% sensitivity and 15% specificity (84% 219 

accuracy) after PCA-QDA; 100% sensitivity and 85% specificity (98% accuracy) after PCA-220 

SVM (Table 1). All PCA-based models for plasma samples were built with 10 PCs, accounting 221 

99.11% and 96.84% of explained variance for Al and low-E substrates, respectively. PLS-DA 222 

was built with 10 LVs, accounting 98.97% and 95.28% of explained variance for Al and low-223 

E substrates, respectively. 224 

After applying classification algorithms for the blood serum samples, the results using 225 

Al foil as a substrate were: 82% sensitivity and 75% specificity (81% accuracy) after PLS-DA; 226 

90% sensitivity and 40% specificity (81% accuracy) after PCA-LDA; 94% sensitivity and 50% 227 

specificity (86% accuracy) after PCA-QDA; 100% sensitivity and 70% specificity (94% 228 

accuracy) after PCA-SVM. When using serum samples on low-E slides the results were: 78% 229 

sensitivity and 90% specificity (80% accuracy) after PLS-DA; 63% sensitivity and 50% 230 

specificity (61% accuracy) after PCA-LDA; 97% sensitivity and 20% specificity (83% 231 

accuracy) after PCA-QDA; 100% sensitivity and 75% specificity (95% accuracy) after PCA-232 

SVM (Table 2). All PCA-based models for serum samples were built with 10 PCs, accounting 233 
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for 98.78% and 97.50% of explained variance for Al and low-E substrates, respectively. PLS-234 

DA was built with 10 LVs, accounting for 98.43% and 90.24% of explained variance for Al 235 

and low-E substrates, respectively. 236 

Overall, PCA-SVM was found to provide optimal results for both plasma and serum 237 

samples regardless of the substrate that was used (Fig. 1 and 2). This was due to the fact that 238 

PCA-SVM can create a more complex decision boundary between the classes, classifying even 239 

non-linearly separable data 33, 35. In addition, SVM creates large margins of separation between 240 

the classes, which provides more stability to the classifier. In this sense, small disturbances or 241 

noises do not cause misclassification 35. Standard deviation (SD) was higher for Al foil in 242 

comparison to low-E slides (Fig. 1 and 2). This improved the Al foil classification models as 243 

more sources of variation were contemplated during model construction, thus creating well-244 

distributed boundary functions and increasing the robustness of the classification. The SD in 245 

the training set decreases the degree of overfitting and provides better predictive capacity 37. 246 

The PCA-SVM cost function and optimization to estimate RBF parameters are shown in Fig. 247 

3, where the red ‘X’ mark represents the optimal value. This optimization was performed in 248 

order to avoid overfitting and to ensure classification stability. Fig. 4 shows the reference and 249 

predicted class labels (1 for control; and 2 for cancer) using PCA-SVM with the samples from 250 

the test set; if the yellow (predicted) and blue (reference) lines are superposed, then the values 251 

are equal (i.e., no misclassification). For all substrates and type of samples (plasma and serum), 252 

there was no misclassification in the cancer set, reflecting the 100% sensitivity of PCA-SVM 253 

models. A degree of misclassification was observed in the control set, particularly when using 254 

serum samples. More specifically, specificity was higher in Al foil (90%) in contrast to low-E 255 

(85%); this has provided the slightly higher accuracy in Al foil (98.5%) in contrast to low-E 256 

(97.7%), in the plasma dataset. This can be seen in Fig. 4A and 4B as there are two and three 257 

misclassified spectra, respectively (“continuous” peaks represent more than one spectrum). The 258 
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specificity differed slightly in the serum dataset too, when Al foil (70%) and low-E (75%) were 259 

used. This contributed to the slightly lower accuracy in Al foil (94.5%) in contrast to low-E 260 

(95.5%). In this case, there were six misclassified spectra for Al foil and five for low-E slides. 261 

Although both PCA-LDA and PCA-QDA were regularized to correct classes having different 262 

sizes (prior probability term in eq. 1 and 2), the number of errors is larger on the smaller class 263 

(healthy control) due to the influence of the unequal class sizes to the classifiers. To summarise, 264 

Al foil has been seen to perform better than low-E in the plasma dataset, while in the serum 265 

dataset it achieved slightly lower specificity, but still high enough and comparable to low-E. 266 

PCA-SVM models (Fig. 5) have different loadings profiles according to the type of 267 

sample and substrate. The loadings are dependent on the nature of the dataset used for the PCA 268 

model and they can differ depending on the input. Even though the same sample type is used, 269 

the change of the substrate has subsequently changed the spectral profile as well. Any variation 270 

above the instrumental noise can cause variation in the loading profiles. For instance, 271 

differentiation was also observed at specific spectral peaks between Al foil and low-E 272 

substrates (Fig. S1). Even though some spectral regions were visually similar, the reasoning of 273 

using multivariate analysis is to overcome visual interpretation which can be inaccurate. 274 

Therefore, a statistical t-test (95% confidence level) has been performed to calculate p-values 275 

for each spectral point between Al foil and low-E as well as between plasma and serum. The 276 

results showed that many wavenumbers were statistically significant (p <0.05, 95% confidence 277 

level) irrespectively of the visual similarities (Fig. S2). Additionally, the fact that PC1 278 

accounted for low values of explained variance (70.09% for plasma-Al; 38.98% for plasma 279 

low-E; 69.48% for serum-Al; and 28.69% for serum low-E) due to the high complexity of the 280 

biological dataset, makes the loadings interpretation even harder. 281 

Using aluminium as substrate, larger coefficients were found between ~1000-1150 cm-282 

1 for both plasma and serum samples, indicating possible glycogen and phosphate absorptions; 283 
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between ~1400-1480 cm-1, indicating possible stretching vibrations of COO-
 groups in fatty 284 

acids and amino acids; at ~1504 cm-1 for serum, signalling amide II absorption; and at ~1744 285 

cm-1 for plasma, indicating C=O stretching of lipids 38. Using low-E slides as substrate for 286 

plasma samples, larger coefficients were found at ~1628 cm-1 (amide I), ~1655 cm-1 (amide I) 287 

and ~1744 cm-1 (C=O stretching of lipids); whereas for serum samples, the coefficients were 288 

greater at ~1504 cm-1 (amide II), ~1620 cm-1 (base carbonyl stretching and ring breathing mode 289 

in nucleic acids) and 1655 cm-1 (amide I) 38. Such absorptions are known for signalling 290 

biological changes using mid-IR spectroscopy 19. 291 

The classification accuracies achieved for the segregation between endometrial cancer 292 

patients and controls are remarkably high (~95-98%), suggesting that blood-based ATR-FTIR 293 

spectroscopy could potentially be an accurate and objective diagnostic tool for endometrial 294 

cancer. Investigation of a panel of multiple biomolecules could be the reason for the achieved 295 

accuracies. Several molecular biomarkers have been suggested over the years, such as 296 

carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), cancer antigen 15-3 (CA15-3), 297 

immunosuppressive acidic protein (IAP), human epididymis protein-4 (HE4), apolipoprotein-298 

1 (ApoA-1), prealbumin (TTR) and transferrin (TF); a combination of CA125 and HE4 has 299 

also been implied to improve diagnosis and classification of the disease 39-42. However, the 300 

resulting sensitivities and specificities of the above-mentioned biomarkers are low, rendering 301 

them clinically unusable. Therefore, spectroscopic methods are ideal, as they can 302 

simultaneously extract information from a range of molecules. Another possible rationale 303 

behind the diagnostic results could be the existence of circulating tumour DNA (ctDNA) 304 

fragments in the bloodstream of cancer patients, which would make them distinct from the 305 

normal population 43, 44. Nowadays, ctDNA is increasingly investigated and is considered to be 306 

useful as a biomarker for malignancy cases 45. Nevertheless, for an accurate and specific 307 

biomarker detection, vibrational spectroscopy would need to be complemented with other 308 
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techniques as well, or maybe make use of labels or antibodies that would be molecule specific. 309 

IR spectroscopy alone indicates some molecular fragments which are indicative of 310 

biomolecules, such as proteins, lipids or carbohydrates. However, each spectral peak may 311 

‘hide’ more than one molecules and thus, it is not preferred to assign specific biomarkers to 312 

specific peaks. 313 

In this study, plasma samples resulted in slightly higher diagnostic accuracies (~98%) 314 

in contrast to serum samples (~95%). Current studies are unclear on whether serum or plasma 315 

is a better source for ctDNA 44. However, plasma has been previously found superior and the 316 

specificity obtained using serum has been related to a higher concentration of normal cell-free 317 

DNA (cfDNA), produced by the lysis of white blood cells during clotting 46, 47. This could 318 

potentially justify the lower classification rates found when using serum. 319 

Careful consideration of the substrate, onto which the biological sample is placed, is 320 

critical in order to collect reproducible and high-quality spectra. When comparing the 321 

classification results coming from Al foil and low-E slides (Fig. 1 and 2), it is clear that Al foil 322 

not only achieved equally high results with low-E but, in the plasma dataset, it even provided 323 

slightly higher sensitivities and specificities (Fig. 1). Previous work has indicated that Al foil 324 

generates no background noise, leaving the quality of the biological spectra unaffected; our 325 

study used a larger number of subjects, which was needed to verify these preliminary results 326 

and also study the impact on the sensitivity and specificity. Studies have also demonstrated the 327 

enhancement of the IR signal in ATR mode when the sample is deposited onto metal surfaces 328 

creating a similar effect to surface enhanced Raman spectroscopy (SERS), which has been 329 

given the name surface enhanced IR absorption spectroscopy (SEIRAS). Molecules on metal 330 

surfaces show 10-100 times stronger signal that without the metal 48-51 and on the basis of this 331 

we have hypothesized that Al foil slides may also promote this effect. However, this requires 332 

further and more detailed investigation that will be the focus of a future study. The economic 333 
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cost of low-E slides has been estimated before and is not extremely high, especially when 334 

compared with substrates like CaF2 and Au-coated slides 21. Nonetheless, when it becomes a 335 

matter of routine use, in a clinical setting for instance, the annual cost becomes considerably 336 

high and this could render biospectroscopy prohibitive for translation into clinical practice. The 337 

fact that Al foil slides are suitable for both IR and Raman studies is also an important advantage 338 

as it would ease clinical implementation.  The results of our study have shown that Al foil 339 

slides could make an ideal, cost-effective substrate for biomedical studies employing 340 

vibrational spectroscopy. 341 

Conclusion 342 

To summarise, biospectroscopy could potentially be used as a screening tool for endometrial 343 

cancer in postmenopausal women as it provides exceptionally high sensitivities and 344 

specificities with a simple blood test. This could automatically enable a large number of women 345 

to be assessed on a daily basis. Using disposable, low-cost and, at the same time, high-346 

performance substrates would allow for universal studies with thousands of participants; this 347 

would probably also generate an interest for multi-centre studies which could further validate 348 

the pre-analytical, analytical and post-analytical phases of biospectroscopy. 349 
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 357 

Figures 358 

 359 

Figure 1: Pre-processed spectra of plasma comparing endometrial cancer (n=70) with 360 

controls (n=15). (A) Endometrial cancer versus healthy controls; samples were analysed on 361 

aluminium (Al) foil. Sensitivity and specificity were 100% and 90%, respectively. (B) 362 

Endometrial cancer versus healthy controls; samples analysed on low-E slides. Sensitivity and 363 

specificity were 100% and 85%, respectively.  364 

 365 
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 366 

Figure 2: Pre-processed spectra of serum comparing endometrial cancer (n=60) with 367 

controls (n=15). (A) Endometrial cancer versus healthy controls; samples were analysed on 368 

aluminium (Al) foil. Sensitivity and specificity were 100% and 70%, respectively. (B) 369 

Endometrial cancer versus healthy controls; samples analysed on low-E slides. Sensitivity and 370 

specificity were 100% and 75%, respectively.  371 

 372 



18 
 

 373 

Figure 3: PCA-SVM cost function and radial basis function (RBF) parameter 374 

optimization. (A) Plasma samples with aluminium (Al) foil as a substrate. (B) Plasma samples 375 

with low-E slides as a substrate. (C) Serum samples with aluminium (Al) foil as substrate. (D) 376 

Serum samples with low-E slides as substrate. Gamma: RBF parameter (𝛾). Colour bar: 377 

misclassification rate using cross-validation. 378 

 379 

A B
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 380 

Figure 4: Reference and predicted class labels using PCA-SVM in the test set. (A) Plasma 381 

samples with aluminium (Al) foil as a substrate; sensitivity was 100% and specificity 90% (two 382 

misclassified spectra). (B) Plasma samples with low-E slides as a substrate; 100% sensitivity 383 

and 85% specificity (three misclassified spectra). (C) Serum samples with aluminium (Al) foil 384 

as substrate; 100% sensitivity and 70% specificity (six misclassified spectra). (D) Serum 385 

samples with low-E slides as substrate; 100% sensitivity and 75% specificity (five 386 

misclassified spectra). Class 1 = control; and class 2 = cancer. 387 

Plasma: Al Plasma: Low-E

Serum: Al Serum: Low-E

A B

C D
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 388 

Figure 5: Loading plots generated after PCA analysis. (A) Loadings on PC1, PC2 for 389 

plasma samples deposited on aluminium (Al) foil slides. (B) Loadings on PC1, PC2 for plasma 390 

samples deposited on low-E slides. (C) Loadings on PC1, PC2 for serum samples deposited on 391 

aluminium (Al) foil slides. (D) Loadings on PC1, PC2 for serum samples deposited on low-E 392 

slides.  393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 
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Tables 405 

 406 

Table 1: Classification algorithms applied after the analysis of blood plasma samples. 407 

Results for both substrates, aluminium foil and low-E slide, are shown below.   408 

Correct classification rate (%): 409 

 Training (%) Validation (%) Test (%) 

Aluminium foil    

PLS-DA 69.1 64.5 68.5 

PCA-LDA 67.8 65.0 51.5 

PCA-QDA 85.2 80.0 77.7 

PCA-SVM 99.0 93.3 98.5 

Low-E    

PLS-DA 71.1 71.8 65.4 

PCA-LDA 62.7 54.2 52.3 

PCA-QDA 85.2 82.5 83.8 

PCA-SVM 99.8 97.5 97.7 

 410 

Quality parameters (%): 411 

 Accuracy (%) Sensitivity (%) Specificity (%) 

Aluminium foil    

PLS-DA 68.5 68.2 70.0 

PCA-LDA 51.5 47.3 75.0 

PCA-QDA 77.7 83.6 45.0 

PCA-SVM 98.5 100 90.0 

Low-E    

PLS-DA 65.4 65.5 65.0 

PCA-LDA 52.3 46.4 85.0 

PCA-QDA 83.8 96.4 15.0 

PCA-SVM 97.7 100 85.0 

 412 

  413 
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Table 2: Classification algorithms applied after the analysis of blood serum samples. 414 

Results for both substrates, aluminium foil and low-E slide, are shown below.   415 

SERUM 416 

Correct classification rate (%): 417 

 Training (%) Validation (%) Test (%) 

Aluminium foil    

PLS-DA 80.0 79.1 80.9 

PCA-LDA 72.1 79.1 80.9 

PCA-QDA 84.3 79.1 86.4 

PCA-SVM 98.3 93.6 94.5 

Low-E    

PLS-DA 85.7 71.8 80.0 

PCA-LDA 70.2 65.5 60.9 

PCA-QDA 84.2 88.2 82.7 

PCA-SVM 99.1 98.2 95.5 

 418 

Quality parameters (%): 419 

 Accuracy (%) Sensitivity (%) Specificity (%) 

Aluminium foil    

PLS-DA 80.9 82.2 75.0 

PCA-LDA 80.9 90.0 40.0 

PCA-QDA 86.4 94.4 50.0 

PCA-SVM 94.5 100 70.0 

Low-E    

PLS-DA 80.0 77.8 90.0 

PCA-LDA 60.9 63.3 50.0 

PCA-QDA 82.7 96.7 20.0 

PCA-SVM 95.5 100 75.0 

 420 

 421 

 422 

 423 
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