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Compared to skilled adult readers, children typically make more fixa-
tions that are longer in duration, shorter saccades, and more regressions,
thus reading more slowly (Blythe & Joseph, 2011). Recent attempts to
understand the reasons for these differences have discovered some sim-
ilarities (e.g., children and adults target their saccades similarly; Joseph,
Liversedge, Blythe, White, & Rayner, 2009) and some differences (e.g.,
children’s fixation durations are more affected by lexical variables;
Blythe, Liversedge, Joseph, White, & Rayner, 2009) that have yet to be
explained. In this article, the E-Z Reader model of eye-movement control
in reading (Reichle, 2011; Reichle, Pollatsek, Fisher, & Rayner, 1998) is
used to simulate various eye-movement phenomena in adults vs. chil-
dren in order to evaluate hypotheses about the concurrent development
of reading skill and eye-movement behavior. These simulations suggest
that the primary difference between children and adults is their rate of
lexical processing, and that different rates of (post-lexical) language pro-
cessing may also contribute to some phenomena (e.g., children’s slower
detection of semantic anomalies; Joseph et al., 2008). The theoretical
implications of this hypothesis are discussed, including possible alterna-
tive accounts of these developmental changes, how reading skill and eye
movements change across the entire lifespan (e.g., college-aged vs. older
readers), and individual differences in reading ability.
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‘‘Words, letters, and letter-groups flash into greater distinctiveness from moment to moment, and

there is some thought of a mental traversing of the lines. If we watch closely, we are apt to find
some sort of inner utterance of what is being read, and we have a notion of the meaning of it all. . .

Thus reading appears to the casual introspection of the reader. We find, however, that underneath
this apparent simplicity, there is an astounding complexity of processes. These have been built up
slowly, and by an immense amount of practice, until they have organized and settled into the
smoothly running machinery of our present-day reading.’’

–Huey (1908, p. 24)
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Introduction

It has long been appreciated that the ability to read is one of the most complex cognitive skills that
we routinely perform but did not specifically evolve to perform (Huey, 1908; Rayner & Pollatsek,
1989; Rayner, Pollatsek, Ashby, & Clifton, 2012). Inherent in this appreciation is an understanding that
reading skill is acquired through extensive practice, like other complex skills. Understanding the nat-
ure of the complex developmental processes that contribute to reading skill is essential for fully
understanding how children learn to read (Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2001,
2002). It is, therefore, somewhat surprising that eye movements, which have proven invaluable
behaviors for understanding the cognitive processes of adult readers (for reviews, see Rayner, 1998,
2009), have until fairly recently been largely ignored in the study of reading acquisition (for a review,
see Blythe & Joseph, 2011). This oversight is unfortunate because enough has already been learned
about the differences between the eye movements of children vs. adults to suggest that these discrep-
ancies provide an insight into how cognition interacts with the visual and oculomotor systems during
reading, as well as how these interactions change as a beginning reader develops into a skilled reader.

The remainder of this article will attempt to start to redress this oversight within the theoretical con-
text of a specific model of eye-movement control during reading—the E-Z Reader model (Pollatsek,
Reichle, & Rayner, 2006; Rayner, Ashby, Pollatsek, & Reichle, 2004; Reichle, Rayner, & Pollatsek, 2003;
Reichle, Warren, & McConnell, 2009; Reichle, Pollatsek, Fisher, & Rayner, 1998; for a review, see Reichle,
2011). Our objective is to use the model to test the feasibility of several existing hypotheses about how
development affects the patterns of eye movements that are reported when children who are beginning
readers (i.e., children who can read simple sentences but who have limited reading experience and pro-
ficiency) become skilled adult readers. In the remainder of this article, therefore, we first review what is
known about the eye movements of children vs. adult readers, including a discussion of known differ-
ences and possible accounts of those differences. We then provide a brief overview of the E-Z Reader
model and report a series of simulations that were designed to evaluate the feasibility of existing ac-
counts of why eye movements change in the manner that they do as beginning readers become skilled
readers. The value of these modeling exercises are threefold: First, they provide more formal hypotheses
about why eye movements change as reading skill develops; second, they provide a method for evalu-
ating the feasibility of these hypotheses; and finally, they provide new theoretical insights about the
development of reading skill that can in turn be the impetus for future experiments, including ones that
might lend further support for or falsify the assumptions of the E-Z Reader model.

Eye movements in children vs. adults

The following sections review what is currently known about the eye movements of children who
are reading, how their eye movements (as a group) are similar to but, in important ways, different
from those of adults, and two general accounts that have been provided to explain these similarities
and differences. The discussion of these topics is organized into four sections corresponding (respec-
tively) to the basic or more global characteristics of the eye movements, and how these eye move-
ments might be affected by oculomotor and visual constraints, lexical processing, and higher-level
(post-lexical) language processing.
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Basic characteristics of eye movements

Contrary to subjective experience, our eyes do not move smoothly across the line of printed text,
but instead make brief, ballistic movements called saccades. These saccades move the points of fixa-
tion to new viewing locations, where the eyes remain relatively stationary for brief periods called fix-
ations so that visual information from the viewing location can be extracted from the printed page.
This movement of the eyes is necessary because the type of high visual acuity that is required to iden-
tify the features of printed words is limited to a very small region of the retina, the fovea, which sub-
tends approximately two degrees of angle (i.e., 6–8 character spaces with typical font sizes and
reading distances) in the center of the visual field.

A considerable amount is known about the characteristics of eye movements during reading at this
very basic level of description (for comprehensive reviews, see Rayner, 1978, 1998, 2009; Rayner &
Pollatsek, 1989; Rayner et al., 2012). For example, although the majority of saccades move the eyes
forward through the text, 10–15% of eye movements are regressions that move the eyes back to earlier
parts of the text. These regressions are thought to generally reflect difficulty with language processing
(e.g., misanalysis of a sentence’s syntactic structure; Frazier & Rayner, 1982), but may also occasion-
ally reflect uncertainty about the identity of previously viewed words (Levy, Bicknell, Slattery, &
Rayner, 2009; Slattery, 2009). There are also return sweeps that move the eyes from the end of one line
of text to the beginning of the next, so that the eyes can continue advancing through the text. Although
individual fixations can vary quite markedly in their duration (50–1000 ms), in adult readers they tend
to be a little over 200 ms in duration on average, and their durations are modulated by a wide variety
of different perceptual, cognitive, and oculomotor variables (as will be discussed below). And although
75–85% of words are typically fixated at least once (Brysbaert & Vitu, 1998), words that are short in
length, occur frequently in printed text, are acquired at an early age, and/or are predictable in partic-
ular sentence contexts are sometimes skipped altogether, while words that are long, infrequent, ac-
quired late, and/or are unpredictable are often fixated more than once (Rayner, 1998, 2009).

As already indicated, there has been remarkably little empirical work examining children’s eye
movements during reading and how these behaviors are similar/dissimilar to those of adult readers.
A recent review by Blythe and Joseph (2011), however, indicates that there is a considerable degree of
consistency with respect to how the global characteristics of eye movements change as a child who is
learning to read becomes a skilled adult reader. As one might guess, these changes cause the overall
rate of reading to increase as skill increases; that is, as children become more skilled at reading, the
overall rate at which the eyes progress through a text increases, often despite the fact that the overall
difficulty of the texts being read also tend to increase (Blythe & Joseph, 2011). These changes are also
consistent across the different languages (e.g., English, German, Finnish, etc.) and education systems
that have been examined thus far, often despite non-trivial differences in both (e.g., English words
on average contain fewer letters and have less transparent grapheme-to-phoneme correspondences
than Finnish words; Seymour, Aro, & Erskine, 2003). Because little is known about how these differ-
ences might contribute to the key findings that will be reported below, the languages, ages, and grades
of the children in the main studies discussed below, along with the ages at which formal education
begins in the countries where the studies were conducted, are listed in Table 1. It is important to note,
however, that even the youngest children who participated in the studies listed in Table 1 have well
developed spoken language skills (e.g., knowledge of phonology, word meaning, syntax, and pragmat-
ics; Rayner et al., 2001) and were pre-screened to ensure that they were able to read at a level appro-
priate for their age/grade.

One study demonstrating these basic developmental changes was reported by Rayner (1986), who
compared the eye movements of three different groups of children (7–8, 9–10, and 11–12 year-olds)
to those of adults across four experiments, with each group reading either materials appropriate for
second grade (in Experiments 1–3) or fourth grade vs. college (in Experiment 4). Because the general
pattern of results was remarkably consistent across the experiments, only those from Experiment 1
will be mentioned here: As the ages of the children increased, so too did their overall reading rate,
ranging from 95 words per minute (wpm) with the 7–8 year olds to 210 wpm with the 11–12
year-olds and 290 wpm with the adults. This increase in proficiency with age reflected several more
basic changes. First, mean saccade length increased with age, ranging from 2.8 characters with the



Table 1
Languages, ages, grade levels, and ages at which formal education begins for the children who participated in the main studies
discussed in this article.

Study Language Ages (years) Grades Age formal education begins (years)

Blythe et al. (2009) (UK) English 7–9; 10–11 2–3; 4–5 5
Blythe et al. (2011) Finnish 8–9; 10–11 2; 4 7
Häikiö et al. (2009) Finnish 8–9; 10–11; 12–13 2; 4; 6 7
Huestegge et al. (2009) German 8; 10 2; 4 6
Hyönä and Olson (1995) (US) English 9–12 3–6 6
Joseph et al. (2008) (UK) English 7–12 2–6 5
Joseph et al. (in press) (UK) English 8–9 3 5
Rayner (1986) (US) English 7–8; 9–10; 11–12 2; 4; 6 6
Vitu et al. (2001) (US) English 12 5 6

Note: Conditions of interest within a study (i.e., age groups and their corresponding grades) are separated by semi-colons.
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7–8 year-olds to 6.4 characters with the 11–12 years olds and 6.8 characters with adults. Second, the
mean number of fixations per sentence (which were 6–9 words in length) decreased with age, ranging
from approximately 15 with the 7–8 year-olds to approximately 8 with the 11–12 year-olds and 6
with the adults. Third, the mean fixation duration also decreased with age, ranging from 280 ms with
the 7–8 year-olds to 240 ms with the 11–12 year olds and 235 ms with the adults. Finally, the mean
number of regressions per sentence also decreased with age, ranging from 4 with the 7–8 years olds to
2.5 with the 11–12 year-olds and 0.6 with the adults. Thus, to summarize, as the children increased in
age and reading ability, their patterns of eye movements came to more closely resemble those of
adults, such that they made both longer saccades and fewer, shorter fixations, fewer of which occurred
after regressions. And, as Blythe and Joseph (2011) document, this basic developmental pattern has
been independently replicated across several different studies that have examined eye movements
of children of different ages, educational backgrounds, languages, and experimental manipulations
(Blythe, Häikiö, Bertram, Liversedge, & Hyönä, 2011; Blythe et al., 2006; Blythe, Liversedge, Joseph,
White, & Rayner, 2009; Buswell, 1922; Huestegge, Radach, Corbic, & Huestegge, 2009; Häikiö, Bertram,
Hyönä, & Niemi, 2009; Häikiö, Hyönä, & Bertram, 2010; Joseph & Liversedge, 2013; Joseph, Nation, &
Liversedge, in press; Joseph, Liversedge, Blythe, White, & Rayner, 2009; Kirkby, Blythe, Drieghe, & Liv-
ersedge, 2011; McConkie et al., 1991; Taylor, 1965).

Rayner (1986) also documented two other important facts about how children read. Both of these
facts have to do with the perceptual span, or the ‘‘region from which useful information can be ob-
tained during a fixation in reading’’ (Rayner, 1986, p. 212). In adults, it is known that useful visual
information is only extracted from a very small spatial extent of the printed page. As indicated earlier,
part of the reason for this is that the type of high visual acuity that is necessary to identify the features
of printed words is largely delimited to the fovea. However, part of the reason for this limitation also
has to do with how visual attention is allocated. This latter fact has been demonstrated using a variety
of different gaze-contingent paradigms in which the text that is available to be processed on a computer
monitor is manipulated contingent upon where the reader is looking (Rayner, 1979b).

Rayner’s (1986) experiment used a particular type of gaze-contingent paradigm called the moving
window (McConkie & Rayner, 1975, 1976; Rayner & Bertera, 1979), which is schematically illustrated
in Fig.1. The figure shows how a single line of text would appear across three successive fixations in
the paradigm. As the figure shows, a ‘‘window’’ of normal text is displayed around the point of fixation,
with the text outside of this window being distorted in various ways (e.g., individual letters being re-
placed with Xs). Each time a subject moves his or her eyes, the text being displayed on the monitor is
updated (refreshed) either during the saccade or within a few milliseconds after the onset of the next
fixation so that the virtual window effectively ‘‘moves’’ with the point of fixation. Because useful vi-
sual information is not acquired during a saccade (Matin, 1974), subjects rarely notice the display
changes that occur each time the monitor is updated. Importantly, however, both the characteristics
of the window (e.g., its size and degree of symmetry) and how the material outside of the window is
distorted (e.g., whether the individual letters are replaced with similar-looking letters or Xs, whether
or not the blank spaces between the words are maintained, etc.) affect the subjects’ overall reading



Fig. 1. A schematic diagram illustrating the moving-window paradigm (McConkie & Rayner, 1975). All three panels show the
same sentence across three successive fixations (the locations of which are indicated by the asterisks). Panel A shows the
normal viewing condition. Panel B shows an example of the moving-window paradigm in which all of the letters outside of a
window extending 3 character spaces to the left and 7 character spaces to the right of fixation have been replaced with Xs, but
preserving the blank spaces between words. Panel C shows another example of the moving-window paradigm in which all of
the letters outside of a window consisting of the fixated word and one word to the right of fixation have been replaced with
letters of similar shape, but again preserving the blank spaces between words.
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rate. This simple fact allows one to estimate the perceptual span; that is, by comparing the rate of
reading when the text is displayed normally to the rate of reading when a particular type of moving
window is used, it is possible to determine the types of information that readers extract at various
eccentricities from the point of fixation. For example, adult readers of alphabetic languages like Eng-
lish (which are read from left to right) only extract information from a region extending 3–4 character
spaces to the left of fixation (or the beginning of the currently fixated word) to about 15 character
spaces to the right of fixation, while the region of lexical processing is even more restricted: Informa-
tion about letter shapes (e.g., whether a letter has an ascender or descender) is only extracted up to 10
character spaces to the right of fixation, and information about letter identity and hence the identity of
words is only extracted from 7–8 character spaces to the right of fixation (McConkie & Rayner, 1975).
Finally, the claim that the perceptual span is a function of attention rather than visual acuity was per-
haps most convincingly demonstrated by Pollatsek, Bolozky, Well, and Rayner (1981) in a study
involving English–Hebrew bilinguals; when these subjects read English, their perceptual span ex-
tended to the right of fixation, but when they read Hebrew (which is read from right to left), their per-
ceptual span extended to the left of fixation. This final result also indicates that the perceptual span is
affected by cultural differences, including differences between languages and/or writing systems.

As indicated previously, Rayner (1986) had children from three different age groups and adults
read easy and difficult sentences using the moving-window paradigm. Using this procedure, Rayner
replicated the basic findings related to the perceptual span for adult readers, but also documented



E.D. Reichle et al. / Developmental Review 33 (2013) 110–149 115
how the perceptual span of children differed from adults, and how the span of children changed with
both development and the difficulty of the text being read. More specifically, even the youngest chil-
dren (7–8 year olds) had perceptual spans that extended asymmetrically to the right of fixation, and
this perceptual span extended approximately 11 characters as compared to an adult perceptual span
of 14–15 character spaces. Furthermore, the results of Experiment 4 showed that the perceptual span
was modulated by the difficulty of the text that was being read; that is, for 9–10 year-old children, the
size of the perceptual span actually decreased as the text being read became more difficult to under-
stand (i.e., varying from easy, age-appropriate text to difficult, college-level text). This last result has
been interpreted as showing that, as the text being fixated becomes more difficult to process, less time
and/or fewer attentional resources are available for parafoveal processing, thus reducing the size of
the perceptual span and providing an account of this finding that is consistent with the well-docu-
mented interaction between foveal processing load and parafoveal preview (Henderson & Ferreira,
1990; Kennison & Clifton, 1995; White, Rayner, & Liversedge, 2005).

Similar findings were also been reported by Häikiö et al. (2009) in an experiment that examined the
perceptual span in four groups of native Finnish speakers: Children in second grade (mean age = 8
years), fourth grade (mean age = 10 years), and sixth grade (mean age = 12 years), and adults. This
study also used the moving-window paradigm (McConkie & Rayner, 1975) to estimate the letter-iden-
tity span, or distance over which readers can identify individual letters, across the four age groups by
contrasting reading under normal viewing conditions vs. a moving ‘‘window’’ in which the letters out-
side of the window were replaced by letters sharing common features (e.g., h and k, which both share
ascenders). The results of this experiment indicated that the letter-identity span increased from
approximately 5 characters to the right of fixation with the second graders to 9 character spaces with
both the sixth graders and adults. These results, when compared to those reported by Rayner (1986),
suggest that the letter-identity span is smaller than both the letter-feature span (i.e., distance over
which letters can be discriminated based on features like overall shape), which extended approxi-
mately 7 character spaces to the right of fixation with the second graders to 11–12 character spaces
with sixth graders and adults, and the word-length span (i.e., distance over which word boundaries are
perceived), which was even larger, extending 11 character spaces to the right of fixation with the sec-
ond graders and 14–15 character spaces to the right with sixth graders and adults. Thus, the two stud-
ies together show that the spatial extent of the perceptual span is modulated by the spatial frequency
of the visual information that is being extracted during any given fixation, extending farthest to the
right for the low-spatial frequency, coarse-grained information (e.g., word boundaries), but being
quite limited in extent for the high-spatial frequency, fine-grained information (e.g., features used
to identify individual letters). The studies also provide converging evidence that the perceptual span
increases in spatial extent with age, but that it becomes fairly adult-like by about the sixth grade (i.e.,
11–12 years of age).

The preceding experiments might be interpreted as showing that children are simply slower than
adults at extracting visual information from the printed page. By this account, the longer, more fre-
quent fixations and the smaller perceptual span that are observed with children reflect the fact that,
during each fixation, children are less effective in their extraction of the visual features of the text
printed on the page. Thus, the observed differences in the eye movements of children and adult read-
ers have nothing to do with differences in their relative rates of lexical and other linguistic processing,
per se, but instead reflect more basic differences in their rates of visual processing. This possibility was
ruled out, however, by the results of another series of experiments that used a different type of gaze-
contingent paradigm—the disappearing-text paradigm (Liversedge et al., 2004; Rayner, Liversedge, &
White, 2006; Rayner, Liversedge, White, & Vergilino-Perez, 2003).

In experiments using this paradigm, each word of the text being read disappears (or is masked)
some short amount of time (e.g., 60 ms) after it is first fixated, and remains invisible until the subjects
move their eyes to fixate another word, which in turn disappears. In this way, each time a subject
looked at a word, s/he would have 60 ms to view that word and extract whatever visual information
was necessary to identify it before it disappeared from view. Several experiments using this paradigm
have demonstrated that this seemingly severe inhibition of text visibility is remarkably unobtrusive,
and that adults can read text at a normal rate and with normal comprehension even when the text
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only remains visible for 40–60 ms per fixation (Liversedge et al., 2004; Rayner, Juhasz, Ashby, &
Clifton, 2003; Rayner, Yang, Castelhano, & Liversedge, 2011; Rayner et al., 2006).

Blythe et al. (2009) reaffirmed these conclusions across two separate experiments. The first com-
pared children (7–11 year-olds) and adults when each fixated word disappeared 60 ms after fixation.
This experiment showed that, relative to adults, the children exhibited the standard pattern of making
more fixations that were longer in duration, shorter saccades, and more regressions, but were no more
disrupted than the adults by the disappearing-text manipulation. The second experiment compared
two groups of children (7–9 and 10–11 year-olds) and adults when each fixated word disappeared
40, 80, or 120 ms after being fixated. Again, the children exhibited an overall slower rate of reading
but, like adults, were not adversely affected by the disappearing-text manipulation. Finally, Blythe
et al. (2011) reported very similar results in an experiment that compared 8–9 year-old, 10–
11 year-old, and adult native speakers of Finnish, again, reading text in which each word disappeared
60 ms after being fixated. For the present purposes, the results from all of these studies are important
because they collectively indicate that children as young as seven actually have little difficulty extract-
ing visual information from the printed page, and that despite being much slower readers than adults,
children require comparable time periods to adults in order to extract visual information necessary for
linguistic processing from fixation to fixation in reading.

The studies that were just reviewed indicate that, although many aspects of children’s eye move-
ments resemble those of skilled adult readers, there are also notable differences. A basic question,
therefore, is what accounts for this pattern of similarities and differences? In other words, as reading
skill develops in children, what causes the aforementioned changes in their eye-movement behavior?
At a general level, there are at least two possible answers to this question.

The first answer is perhaps the most intuitive—that the development of reading skill in turn causes
the observed changes in eye-movement behavior. By this account, as a child’s ability to read improves,
so too does his/her ability to rapidly and accurately identify printed words, as well as his/her ability to
perform the many other linguistic operations that are required to construct a representation of the
text that is being read. As these lexical and linguistic skills continue to improve, the primary task of
constructing a representation of the meaning of the words on the printed page becomes more effi-
cient, thus requiring even less time. Thus, with a speed up in lexical and linguistic processing, less time
is needed (on average) per fixation to perform these operations, so that the eyes can be more rapidly
moved from one viewing location to the next. Thus, as lexical and linguistic processing becomes more
efficient, fewer and/or shorter fixations will presumably be necessary to understand the text that is
being read. Throughout the remainder of this article, we will refer to this first possible explanation
as the linguistic-proficiency hypothesis. By this account, as children become increasingly skilled readers,
increasing proficiency with linguistic processing causes their eye movements to become increasingly
similar to those of skilled adult readers.1

A second possible answer to the question we posed regarding the development of eye-movement
behavior is that, through extensive practice, readers are able to ‘‘tune’’ their oculomotor control sys-
tem through learning so that the eye movements themselves become more optimal (or near-optimal)
during reading. For example, there is some evidence that young children have difficulty moving their
eyes as rapidly and accurately as older children and adults (for a review, see Luna & Velanova, 2011).
For example, there is considerable evidence using relatively simple oculomotor tasks (e.g., moving the
eyes to visual targets) that, relative to adults, children are slower at programming saccades (Cohen &
Ross, 1977, 1978; Groll & Ross, 1982; Klein & Foerster, 2001; Kowler & Martins, 1982; Miller,
1969) but exhibit equally rapid saccade velocities (Fukushima, Hatta, & Fukushima, 2000; Salman
et al., 2006). By this second account, therefore, the causal arrow goes from the development of
1 Perfetti and Hart (2002; see also Perfetti, 1985, 2007) proposed that a necessary condition for skilled reading is that the reader
have high-quality lexical representations—that is, representations of word spellings, pronunciations, and meanings that are fully
specified and fully interconnected so that any one representation (e.g., a word’s orthographic pattern) can be used to rapidly and
accurately access the other two (i.e., the word’s pronunciation and meaning). Although a weak form of this hypothesis has to be
true (e.g., someone who does not know Chinese words could not possibly read in that language), one unstated and—as far as we
know—untested prediction of the hypothesis is that, as a reader becomes more skilled, the increasingly higher quality
representations in his or her lexicon should result in fluent reading, as indexed, for example, by longer saccades and fewer, shorter
fixations.
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adult-like eye-movement behavior to increasingly adult-like reading skill; that is, increasingly skilled
eye-movement behavior (e.g., targeting saccades towards the centers of words) contributes to more
efficient reading. Although this second, oculomotor-tuning hypothesis is less intuitive—and perhaps less
plausible—than the linguistic-proficiency hypothesis, there is ample evidence that several oculomotor
and visual variables do markedly affect the rate and accuracy of lexical processing. For example, the
initial fixation location within a word affects the time that is required to identify the word (O’Regan
& Lévy-Schoen, 1987; Vitu, McConkie, Kerr, & O’Regan, 2001). Consequently this second hypothesis
also warrants some type of formal evaluation.

Finally, although it might be difficult to imagine a priori how changes in eye-movement behavior
would account for the majority of the behavioral variance that is observed in the development of read-
ers’ eye movements, it is logically possible that such changes in eye-movement behavior, in conjunc-
tion with increases in linguistic processing efficiency, are both necessary to explain the observed
changes. By this account, to explain how the eye movements of children come to resemble those of
adults, it is necessary to understand how both linguistic processing and eye-movement control change
with development. However, because of the inherent complexity of this third hypothesis (i.e., it entails
interacting linguistic and oculomotor factors that change with reading skill), this article will focus on
the linguistic-proficiency and oculomotor-tuning hypotheses.

In the sections of this article that follow, we will first review what is known about the various
word-based variables that influence readers’ eye movements and that provide some clues about what
happens as children become skilled readers. The specific variables that will be discussed include word
length, word frequency, and thematic role plausibility.2 Word length is a variable that affects both
where and when readers move their eyes. For example, consider what happens when a reader moves
his/her eyes to a long vs. short word that happens to be located in the parafovea. Because the long word
will be farther from the center of vision than the short word, a saccade directed towards the former will
tend to be longer in length. And because the long word will have received less parafoveal processing than
the short word, the former will tend to be fixated longer than the latter. Thus, one might gain a better
understanding of how saccade targeting and programming change with development by examining
how the effects of word length change with the development of reading skill. Similarly, word frequency
is a variable that affects the rate and accuracy of lexical processing and, therefore, speaks to how this
critical component of reading might develop with reading skill. Finally, thematic role plausibility is a var-
iable that reflects linguistic processing and, more specifically, the use of both verb selection restrictions
and world knowledge in relation to thematic assignment; the capacity to detect noun arguments that are
either implausible or anomalous thus speaks to the development of the process of thematic role assign-
ment in reading. Each of these three variables will now be discussed in their order of mention.

Word length and saccadic targeting

It is generally known that a word’s length (as measured in number of characters) affects both
whether the word will be fixated and, if it is, the duration of the fixation. For example, longer words
are more likely than shorter words to be fixated and to be the recipients of multiple fixations (Brysba-
ert & Vitu, 1998; McConkie & Rayner, 1976; Rayner & Fischer, 1996; Rayner & McConkie, 1976; Ray-
ner, Sereno, & Raney, 1996; Vitu, O’Regan, Inhoff, & Topolski, 1995). And when longer words are
fixated, they tend to be fixated for longer durations than shorter words, even when they are fixated
only once (Rayner & Fischer, 1996; Rayner & McConkie, 1976; Rayner et al., 1996). All of these studies,
however, used adult readers as subjects, and not children. To date, only five studies have explicitly
examined how word length influences eye movements during reading in children.

Hyönä and Olson (1995) examined the eye movements of children (mean age = 10.5 years) reading
aloud text that contained words of varying length. There were two key findings from this study. First,
as the mean length of the words increased, so too did the mean gaze duration, or sum of first-pass
2 Although there is also considerable evidence from studies of skilled reading that how predictable a word is from its preceding
sentence context influences both how long a reader will look at the word and whether or not it is skipped (Rayner, 1998, 2009),
word predictability will not be discussed in detail in this article because there are no studies examining how this variable
influences beginning readers.
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fixations, on those words. The second was that the mean total-viewing time, or the sum of all fixations
on a word irrespective of whether they occurred during the first pass through the text, also increased
with word length. However, despite this evidence that word length affects children’s eye movements
in a manner similar to what has been reported with adults, the study did not include adults to provide
an explicit baseline of comparison. Furthermore, the effect of word length was assessed post hoc
rather than by manipulating word length experimentally, thus introducing the possibility that some
other factors confounded with word length (e.g., word frequency; Rayner & Duffy, 1986) were driving
the effect.

The first of these two limitations of Hyönä and Olson’s (1995) study was addressed by Vitu, McCon-
kie, Kerr, and O’Regan (2001) in an experiment that examined the eye movements of children (mean
age = 12 years) and adults, but again using post hoc analyses to examine the effects of word length.
The results of these analyses again showed that children tend to make longer fixations on long than
short words. In addition, measures of where the children actually looked were remarkably similar
to those of the adults. For example, both groups tended to fixate longer words more often than shorter
words. Both groups also tended to direct their initial fixations just to the left of the centers of the
words, to the preferred viewing location (Rayner, 1979a). However, because of saccadic error, their fix-
ation landing-site distributions resemble truncated Gaussians, with missing tails due to instances
when the eyes under/overshot their intended targets (McConkie, Kerr, Reddix, & Zola, 1988; Rayner
et al., 1996; Vitu, O’Regan, Inhoff, & Topolski, 1995). And finally, with both groups, the locations of
the initial fixations also affected their durations, producing the inverted optimal-viewing position (IOVP)
effect, or finding that single-fixation and first-fixation durations tend to be longest for fixations located
near the centers of words (Nuthmann, Engbert, & Kliegl, 2005; Rayner & Fischer, 1996; Reingold,
Reichle, Glaholt, & Sheridan, 2012; Vitu, McConkie, Kerr, & O’Regan, 2001). These results, therefore,
suggest that word length affects the eye movements of children and adults in a very similar manner.3

More recently, Huestegge et al. (2009) also longitudinally assessed the development of word-
length effects during oral reading in children from second to fourth grade. They found that the
word-length effects decreased in magnitude from second to fourth grade. And finally, the most infor-
mative experiments showing how word length affects the eye movements of children vs. adults were
reported by Joseph et al. (2009) and Blythe et al. (2011). In the experiment reported by Joseph et al.,
children (mean age = 10 years) and adults read the same set of sentences that were constructed to be
appropriate for the children and that contained target words that were long vs. short but equated for
frequency and predictability. The findings of this experiment were as follows: First, the adults read
faster than the children, with the former group making longer saccades, fewer and shorter fixations,
and fewer regressions than the latter group. Second, gaze durations were longer on the long than short
words, but this effect of word length was more pronounced for children than adults. Similarly, both
groups were more likely to refixate and less likely to skip long than short words, but these effects were
again more pronounced with the children than the adults. Finally, both groups behaved very similarly
with respect to where they moved their eyes: Their initial fixations were directed towards the pre-
ferred viewing locations and resulted in similar fixation landing-site distributions, and refixations
were most likely to be initiated after initial fixations near the beginnings and endings of words (see
also McConkie, Kerr, Reddix, Zola, & Jacobs, 1989; Rayner & Fischer, 1996; Rayner et al., 1996; Vitu,
O’Regan, Inhoff, & Topolski, 1995). However, relative to the adults, the children were even more apt
to making refixations following initial fixations near the ends of words, causing the refixation-proba-
bility curves to be more U-shaped for children than adults.

Similarly, in the experiment reported by Blythe et al. (2011), two groups of children (8–9 year-olds
and 10–11 year-olds) and adult native Finnish speakers read sentences which contained 4- and
8-letter target words that were matched for both frequency and predictability in the disappearing-text
paradigm. Again, the basic findings were that, in the conditions involving the normal text, both the
children and adults exhibited word-length effects, with longer gaze durations and total-viewing times
on the long than short words. These word-length effects were also more pronounced for the children
3 McConkie et al. (1991) formed similar conclusions based on their analyses of children’s eye movements taken from a data
corpus collected by Grimes (1989).
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than adults, resulting in both significant interactions between age and word length, and a marginally
significant effect of word length on first-fixation durations in the youngest group of children.

The results of the experiments that were reviewed in this section thus collectively show that word
length similarly affects where adults and children move their eyes, but that this variable had a larger
effect on when children move their eyes. In other words, children seem to direct their eyes towards the
preferred viewing locations and are more likely to initiate a refixation following initial fixations near
the beginnings or endings of words, just like adults. And although children tend to fixate longer words
more often and for longer durations than shorter words, these word-length effects are larger in chil-
dren than adults, and larger in younger than older children.
Word frequency and cognitive control of fixation durations

The frequency with which a word appears in printed text (as tabulated by various corpora; e.g.,
Baayen, Piepenbrock, & Gulikers, 1995; Brysbaert & New, 2009; Francis & Kucera, 1982; New, Pallier,
Brysbaert, & Ferrand, 2004) is an important proxy measure for the difficulty associated with identify-
ing a word, with another such variable being the age at which a word is first learned (Juhasz & Rayner,
2003, 2006). As such, a word’s frequency of occurrence will on average strongly influence both
whether it will be fixated, and, if it is, the duration of the fixation(s) on the word. For example, several
eye-movement experiments have shown that high-frequency words are skipped more often and are
the recipients of fewer, shorter fixations than low-frequency words (Inhoff & Rayner, 1986; Just &
Carpenter, 1980; Kliegl, Nuthmann, & Engbert, 2006; Rayner & Duffy, 1986; Rayner et al., 2004;
Schilling, Rayner, & Chumbley, 1998) resulting in overall shorter fixation times on high-frequency
than low-frequency words. These word-frequency effects are due to the fact that the lexical processing
operations that are necessary to access a word’s pronunciation and meaning from its printed form be-
come more rapid and accurate with repeated exposure and practice (e.g., Joseph et al., in press; Taylor,
Plunkett, & Nation, 2010; for a review, see Nation, 2009). By this account, as the forms and meanings of
individual words become better represented in memory with practice, the words require fewer, short-
er fixations for identification in printed text. However, this conclusion is based largely on studies that
were completed using skilled adult readers. To reiterate, there have only been a few studies examining
word-frequency effects, or indeed any lexical-level variable (although see van der Schoot, Vasbinder,
Horsley, Reijntjes, & van Lieshout, 2009) in children.

One of these was the study by Hyönä and Olson (1995) that was reviewed in the previous section.
In addition to examining the effects of word length, they also completed post hoc analyses to examine
the effects of word frequency. These analyses indicated that the first-fixation durations, gaze dura-
tions, and total-viewing times decreased monotonically from high- to medium- to low-frequency
words. In addition, the number of first- and second-pass fixations increased as word frequency de-
creased. However, because the words were sorted post hoc rather than being manipulated experimen-
tally (e.g., by assigning length- and predictability-matched high- and low-frequency words to the
same sentence frames; Rayner et al., 2004), these results must be interpreted with some caution be-
cause word frequency is typically confounded with other variables that influence fixation-duration
measures (e.g., word length; Rayner & Duffy, 1986).

However, Blythe et al. (2009) subsequently examined how word frequency affects children’s eye
movements in their pair of experiments that were also discussed previously, in relation to the ques-
tion of whether children and adults differ in their rate of visual information extraction. Remember
that, in those experiments, a disappearing-text paradigm was used so that each word disappeared
from view 40, 60, 80, or 120 ms after it was first fixated. This manipulation had negligible effects
on the overall reading rate and comprehension in both children and adults. And furthermore, all three
groups’ eye movements were similarly affected by a manipulation of word frequency; that is, both
older and younger children as well as adults tended to look at the length-equated high-frequency tar-
get words for shorter durations than the low-frequency target words, resulting in shorter single-fixa-
tions, first-fixations, and gaze durations on the high-frequency words. And interestingly, these
frequency effects tended to be numerically larger for children than adults in both experiments (see
Blythe et al., Table 4).



120 E.D. Reichle et al. / Developmental Review 33 (2013) 110–149
Finally, another more recent study by Joseph et al. (in press) also investigated frequency effects for
target words embedded in sentences. In this experiment, Joseph et al. again compared the eye move-
ments of adults and children (8–9 year-olds) on sentences containing high- and low-frequency target
words, but using frequency counts based on child corpora and controlling for both adult frequency and
age of acquisition. The most interesting aspect of Joseph et al.’s results is their finding of clear fre-
quency effects in gaze duration for children, but not for adults. These results were interpreted as indi-
cating that frequency counts for words will differ with age, and that the most effective manipulations
of frequency in children will involve stimuli that are age specific in relation to this variable.

Taken together, these results are important because they suggest that the ‘‘decision’’ about when to
move the eyes during reading is under cognitive control to a similar degree in both children and
adults, as indicated by the fact that fixation durations are modulated by word frequency in both
groups even under viewing conditions where visual information is only available for brief intervals
of time. These results therefore strongly suggest that the rate of visual information extraction does
not differ between children and adults, but that differences in the rate of lexical processing are instead
important contributors to differences in their eye movements.

Thematic role plausibility and language processing

Skilled readers are able to use both information inherent in the meanings of words (e.g., whether
verbs are transitive or intransitive) and real-world knowledge to assign thematic roles to entities and
objects in text. These roles include being the agent (i.e., whatever is doing the action described by the
verb), the instrument (i.e., whatever is used to do the action described by the verb), the patient (i.e.,
whatever is the recipient of the action described by the verb), and so on. One demonstration that
skilled readers rapidly use this thematic role information comes from an eye-movement experiment
reported by Rayner, Warren, Juhasz, and Liversedge (2004). In this experiment, adult subjects read
sentences containing target nouns (e.g., carrots in the examples below) that were either plausible pa-
tient arguments for the preceding instrument noun and verb (e.g., . . .knife to chop. . .), implausible pa-
tient arguments (e.g., . . .axe to chop. . .), or anomalous patient arguments (e.g., . . .pump to inflate. . .).
Thus, whereas the first sentence (a) describes a completely plausible or normal situation, the second
(b) describes one that is implausible (although certainly possible), and the third (c) describes one that
is impossible or anomalous (at least outside of the context of some type of ‘‘cartoon world’’ scenario).

(a) John used a knife to chop the large carrots for dinner.
(b) John used an axe to chop the large carrots for dinner.
(c) John used a pump to inflate the large carrots for dinner.

Rayner et al. (2004) found that their subjects rapidly detected violations of both plausibility and
possibility. That is, readers immediately detected violations of possibility during the first pass through
the anomalous sentences, resulting in longer gaze durations on the target words in the anomalous (c)
than plausible (a) sentences. And although readers also detected violations of plausibility, these effects
were less immediate, manifesting as longer go-past times (i.e., the sum of all fixations from the first
fixation on a word until the eyes move to the right of that word) for the target words in the implau-
sible (b) than plausible (a) sentences. One explanation for this pattern of results is that adult readers
are able to very quickly use thematic role information that is inherent in a verb’s argument structure,
along with knowledge about potential verb arguments, to construct a (quite shallow) semantic repre-
sentation of a sentence, thus allowing them to rapidly detect situations that violate these verb restric-
tions because such situations are anomalous. However, adult readers are less facile using real-world
information to help construct sentence representations, so that they are slower detecting situations
that are not anomalous per se but that are instead implausible. Subsequent eye-movement experi-
ments examining the time-course over which readers detect violations of semantic implausibility
vs. anomaly have largely replicated these early findings (Warren & McConnell, 2007; Warren, McCon-
nell, & Rayner, 2008; and for a review, see Warren, 2011), corroborating the conclusions about the dif-
ferential rate with which adults can use verb selection restrictions vs. pragmatic knowledge to
construct text representations.
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More recently, the time-course over which readers use verb selection restrictions and pragmatic
knowledge has also been examined using both children and adults (Joseph et al., 2008). Other than
a very recent study investigating syntactic processing in children (Joseph & Liversedge, 2013), this
experiment is currently the only published experiment examining the effects of a higher-level linguis-
tic variable on the eye movements of both children vs. adult readers. In this experiment, children
(mean age = 9.5 years) and adults read sentences like the following:

(d) Robert used a trap to catch the horrible mouse that was very scared.
(e) Robert used a hook to catch the horrible mouse that was very scared.
(f) Robert used a radio to play the horrible mouse that was very scared.

As with the example sentences that were used to explain the Rayner et al. (2004) experiment, the
first sentence (d) describes a plausible situation, the second sentence (e) describes an implausible but
possible situation, and the third sentence (f) describes a situation that is impossible and thus anom-
alous. An off-line normative study using children and adults who did not participate in the actual eye-
movement experiment confirmed that both groups similarly rated the anomalous sentences as being
less plausible than the implausible sentences, and that the latter were rated as being less plausible
than the normal sentences. That being said, the basic findings from Joseph et al.’s (2008) eye-move-
ment experiment were as follows.

First, the children were slower than adults at reading the sentences, exhibiting the typical pattern
of making shorter saccades, more frequent and longer fixations, and more regressions. The pattern of
eye movements of the adults was very similar to the one that was reported by Rayner et al. (2004),
with inflated gaze durations on the target words (e.g., mouse) in the impossible sentences indicating
rapid detection of semantic anomalies, and inflated go-past times in the post-target regions of the
implausible sentences indicating that adults were slower at detecting violations of semantic plausibil-
ity. Finally, although the children also rapidly detected semantic anomalies, showing even longer gaze
durations on the target words in the anomalous sentences than did the adults, the children were also
much slower than the adults at detecting violations of semantic plausibility, only showing longer to-
tal-viewing times in the post-target regions of the implausible sentences. On the basis of these results,
Joseph et al. (2008) concluded that, like adults, children are able to use thematic role information that
is inherent within the lexical representation of a verb’s argument structure to rapidly construct sen-
tence representations, but that children are even less facile than adults at using pragmatic information
to construct sentence representations.

With the brief overview of what is known about the basic characteristics of eye movements of chil-
dren vs. adults and how three commonly studied word-based variables differentially affect the eye
movements of the two groups, it is now possible to consider how developmental changes in the per-
ceptual, cognitive, and/or oculomotor systems that support reading might mediate the concurrent
development of eye-movement behavior and reading skill. Before doing this, however, it is first nec-
essary to briefly describe the E-Z Reader model of eye-movement control during reading—the frame-
work that will be used to evaluate the two hypotheses about how development mediates the changes
in eye-movement behavior that occur as children become skilled readers. Recall that these hypotheses
were that changes in eye-movement behavior reflect increasingly sophisticated language processing,
or alternatively, that more highly tuned eye-movement behavior permits more efficient language
processing.
E-Z Reader

E-Z Reader is a computational model that describes how vision and cognition interact with the ocu-
lomotor system to produce the approximate patterns of eye movements that are observed during the
first-pass reading of text. Because the model’s theoretical assumptions are described and justified in
great detail elsewhere (e.g., for the most recent version of the model, see Reichle, Pollatsek, & Rayner,
2012; for a detailed description of the model and its theoretical assumptions, see Reichle, 2011), it
will only be described in enough detail here to make the simulations reported below intelligible.



Fig. 2. A schematic diagram of the E-Z Reader model of eye-movement control during reading (Reichle, 2011). The components
of the model are labeled as follows: (1) V = pre-attentive stage of visual processing; (2) L1 = familiarity check; (3) L2 = lexical
access; (4) A = shift of attention; (5) I = post-lexical integration; (6) M1 = labile stage of saccadic programming; and (7)
M2 = non-labile stage of saccadic programming. The thick light-gray arrow represents low-spatial frequency information (e.g.,
word boundaries) that is used by the oculomotor system for selecting saccade targets, the thick dark-gray arrows represents
high-spatial frequency information (e.g., letter identities) that is used by the word-identification system for lexical processing,
the thin black arrows indicate how control passes between components of the model, and the thin dotted black arrows
represent the transfer of control that occurs only probabilistically.
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Fig. 2 is a schematic diagram of the model showing its functional components and how both informa-
tion and the control of processing are passed among those components. The model does not provide a
detailed or ‘‘mechanistic’’ account of any of the components shown in the figure, but instead provides
a precise description of how those components dynamically interact to produce the approximate pat-
terns of eye movements that are observed when readers initially move their eyes through text. As
such, the model is—like all formal models of cognition—a simplification of the mental processes that
it is used to simulate, but is for precisely that reason an extremely useful analytical tool for thinking
about those mental processes.4 (For an introduction to formal models of cognition, including a discus-
sion of both why they are useful and their inherent limitations, see Hintzman, 1991.) Indeed, as we will
demonstrate below, the results of our simulations using the E-Z Reader model provide novel predictions
about which factors should and should not contribute to the developmental changes in eye movements
that are observed as children become skilled readers.

The E-Z Reader model has been described as ‘‘a cognitive-control, serial-attention model’’ (Reichle,
Pollatsek, & Rayner, 2006) because of its assumptions that: (1) cognition—or more specifically, an early
stage of lexical processing called the familiarity check—controls the movement of the eyes through text
4 Although the E-Z Reader model does not provide a mechanistic account of the component processes involved in reading,
Heinzle, Hepp, and Martin (2010) recently implemented a biologically realistic model of eye-movement control during reading
that is based on networks of spiking neurons and which shares two core assumptions with E-Z Reader—that attention is allocated
in a strictly serial manner, and that the completion of an early stage of lexical processing initiates saccadic programming to move
the eyes from one word to the next.



Table 2
The E-Z Reader parameters, their interpretation and relation to perception, cognition, and oculomotor control, and their default
values.

Type of processing Parameter Interpretation Default
values

Word identification a1 Mean maximum L1 time (ms) 104
a2 Effect of frequency on L1 time (ms) 3.5
a3 Effect of predictability on L1 time (ms) 39
D Proportional difference between L1 and L2 0.34
A Mean attention-shift time (ms) 25

Language processing I Mean integration time (ms) 25
pF Probability of integration failure 0.01
pN Probability of regression being directed to prior word 0.5

Saccadic programming and
execution

M1 Mean labile programming time (ms) 125
n Proportion of M1 allocated to ‘‘preparatory’’ sub-stage 0.5
M1,R Additional time required for labile regressive programs

(ms)
30

M2 Mean non-labile programming time (ms) 25
W Optimal saccade length (character spaces) 7
X1 Effect of launch-site fixation duration of systematic error 6
X2 Effect of launch-site fixation duration of systematic error 3
g1 Mean minimum random error (character spaces) 0.5
g2 Effect of saccade length on random error (character

spaces)
0.15

k Increase in refixation probability (character spaces) 0.16
S Saccade duration (ms) 25

Visual processing V Eye-to-brain transmission time (ms) 50
e Effect of visual acuity 1.15

Misc. rc Standard deviation of gamma distributions 0.22
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during reading; and (2) the type of attention that is necessary for lexical processing is allocated in a
strictly serially manner, to only one word at any given time. There is thus a decoupling between
the signal that initiates saccadic programming and the signal that causes attention to shift; whereas
the completion of the familiarity check on wordn initiates saccadic programming to move the eyes to
wordn+1, the completion of lexical access on wordn causes attention to move to wordn+1. The model
therefore differs from other computational models that either assume that cognition has little or no
immediate effect on eye movements during reading (Feng, 2006; McConkie & Yang, 2003; Yang,
2006) or that make different assumptions about how cognition affects eye movements during reading
(McDonald, Carpenter, & Shillcock, 2005; Reilly, 1993; Reilly & Radach, 2003, 2006). For example,
according to the SWIFT model, attention is allocated as a gradient that supports the concurrent pro-
cessing of several words, and an autonomous timer that can be inhibited by lexical-processing diffi-
culty determines when the eyes move (Engbert, Longtin, & Kliegl, 2002; Engbert, Nuthmann,
Richter, & Kliegl, 2005; Richter, Engbert, & Kliegl, 2006; for a review, see Engbert & Kliegl, 2011).
(For a review of several current models of eye-movement control in reading, see the 2006 special issue
of Cognitive Systems Research.)

According to the assumptions of the E-Z Reader model, the familiarity check is an early stage of lex-
ical processing that corresponds to an overall ‘‘feeling’’ of familiarity (i.e., in the sense of dual-process
theories of recognition; Yonelinas, 2002; see also Reichle & Perfetti, 2003) and/or a preliminary stage
of word-form processing (e.g., orthographic processing; Reichle, Tokowicz, Liu, & Perfetti, 2011; Rein-
gold & Rayner, 2006). Irrespective of the type(s) of information that might contribute to a word’s
familiarity, however, the functional significance of the familiarity check is that it indicates that lexical
access is imminent, and thereby provides a ‘‘heuristic’’ that can be used to initiate saccadic program-
ming so that the eyes leave a word right after its meaning has been accessed—neither sooner nor later
(Liu & Reichle, 2010; Liu, Reichle, & Gao, in press; Reichle & Laurent, 2006; Reichle, Rayner, & Pollatsek,
2012). The mean time (in ms) required to complete the familiarity check on wordn is denoted by L1

and this time is modulated by a word’s frequency of occurrence in printed text (as tabulated in various



124 E.D. Reichle et al. / Developmental Review 33 (2013) 110–149
corpora; e.g., Francis & Kucera, 1982) and its within-sentence cloze predictability (as tabulated by the
mean proportion of subjects that correctly guess a word from its preceding sentence context; Taylor,
1953). More precisely, with some probability equal to a word’s cloze predictability, wordn is ‘‘guessed’’
from its context and the mean time to complete L1 is set equal to 0 ms. However, in the vast majority
of instances, the time needed to complete L1 is set equal to a value specified by Eq. (1):
5 For
with r
increase
L1 ¼ a1 � a2 lnðfrequencynÞ � a3predictabilityn ð1Þ
In Eq. (1), the values of the free parameter that controls the mean maximal time to complete L1 (i.e.,
a1) and the parameters that control how this time is attenuated by both word frequency (i.e., a2) and
word predictability (i.e., a3) are shown in Table 2.

During each Monte-Carlo simulation run of the model, the actual time to complete the familiarity
check is a random deviate that is sampled from a gamma distribution with a mean specified by Eq.
(1).5 This time is then adjusted using Eq. (2) to simulate the slowing effect that visual acuity restrictions
have on lexical processing; the exponent of Eq. (2) corresponds to the mean absolute spatial disparity (in
character spaces) between each of the N letters of the word being processed (indexed by i) and the fix-
ation location, so that long words and/or words far from the center of vision require more time to process
than short words and/or words close to the center of vision.
L1  L1e

XN

i¼1

jletteri�fixationj=N

ð2Þ
The mean time (in ms) required to complete lexical access, L2, is given by Eq. (3) and is equal to
some fixed proportion (specified by the parameter D) of the mean time needed to complete the famil-
iarity check (i.e., the time specified by Eq. (1)) under the assumption that the activation of a word’s
semantic codes requires some minimal amount of time to complete. For that reason, L2 is not adjusted
by eccentricity to simulate the slowing effect of visual acuity restrictions.
L2 ¼ DL1 ð3Þ
As indicated, the completion of lexical access causes attention to shift to the next word so that pro-
cessing of it can begin. The mean time (in ms) required to do this is specified by parameter A, with the
actual time during any given simulation also being a random deviate that is sampled from a gamma
distribution. The completion of lexical access also causes post-lexical processing of that word to begin.
This processing corresponds to the minimal amount of processing (in ms, as specified by the param-
eter I) that is required to ‘‘know’’ that there will probably be no problem integrating the word’s mean-
ing into the overall representation of the sentence that is being incrementally constructed.
Importantly, this minimal integration can fail in two ways. The first is by failing to complete the inte-
gration of wordn prior to the identification of wordn+1. The second is that, upon attempting to integrate
wordn, there is some probability pF that this attempt will simply fail, and this probability reflects the
difficulty of the linguistic structure of the sentence that is being processed, as might occur, for exam-
ple, during the mis-parsing of a syntactically complex ‘‘garden-path’’ sentence (Frazier & Rayner,
1982) or when the meaning of a mis-identified word cannot be integrated into the meaning of the sen-
tence (Levy et al., 2009; Slattery, 2009). However, irrespective of its actual cause, integration failure
results in the cancelation of any pending saccadic programs, and thus a pause and/or a movement
of the eyes and attention back to the source of processing difficulty. However, because the model does
not provide a detailed account of linguistic processing, these regressions are directed back to where
integration failed (i.e., wordn) with probability pN and to an earlier location (i.e., wordn�1) with prob-
ability 1 � pN. (This latter assumption is a proxy to mimic some of the variability that is observed in
where regressions are directed under the assumption that readers may not always know precisely
where the source of post-lexical processing difficulty is located.)

All of the remaining model assumptions are related to saccadic programming and execution. First,
saccadic programs are completed in two successive stages: a labile stage that requires M1 ms (on
the sake of simplicity, the durations of all of the stochastic processes in the model are sampled from gamma distributions
= 0.22 l (i.e., in Table 1, rc = 0.22). It is therefore important to note that, as the mean durations of stochastic processes
, so too does their overall variability.
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average; see Footnote 5) to complete but that can be canceled by the initiation of a subsequent sac-
cade; followed by a non-labile stage that requires M2 ms (on average) to complete but that cannot
be canceled. Furthermore, the labile stage is divided into two sub-stages: an initial stage in which
the oculomotor system is ‘‘engaged’’ as a word target is selected, followed by a stage in which the spa-
tial coordinates of the target are converted into a distance (or muscle force) metric. The proportion of
the M1 duration that is allocated to the former sub-stage is fixed by the parameter n. Finally, because of
inhibition of return (e.g., see Rayner et al., 2003), regressive saccades require an additional M1,R ms to
program.

Saccades are always directed towards the center of words, which is the optimal-viewing position
(OVP) or the fixation location from where words that are displayed in isolation can be most rapidly
identified (O’Regan & Lévy-Schoen, 1987). The length of any saccade that is actually executed, how-
ever, will be equal to the intended saccade length (i.e., a distance in character spaces that is repre-
sented by the variable programmed in Eqs. (4) and (5)), some amount of systematic error, and some
amount of random error. The systematic error (in character spaces) is specified by Eq. (4), which
causes programmed saccades that are longer/shorter than W character spaces in length to under/over-
shoot their intended targets. The amount of under/overshoot is also modulated by the duration of the
fixation on the launch-site word (as specified by the X1 and X2 parameters in the right-most term of
Eq. (4)), so that the systematic error becomes more pronounced for saccades from short fixations. Fi-
nally, the random error component of the saccade (in character spaces) is a random deviate that is
sampled from a Gaussian distribution with l = 0 and r that increases linearly with the intended (pro-
grammed) saccade length, as specified by Eq. (5). Using Eqs. (4) and (5), the model can thus account for
observations that fixation landing-site distributions on words tend to be approximately Gaussian in
shape, with missing tails that reflect instances when the eyes presumably either under- or overshot
their intended targets (McConkie et al., 1988; Rayner et al., 1996; Reingold et al., 2012; Vitu, O’Regan,
Inhoff, & Topolski, 1995).
systematic ¼ ðW� programmedÞ½ðX1 � lnðdurationÞÞ=X2� ð4Þ
r ¼ g1 þ g2programmed ð5Þ
The saccades themselves require S ms to execute. During the actual saccades, lexical processing
continues using whatever information was extracted from the page during the previous fixation
and until information from the new viewing location becomes available (which requires V ms, based
on estimates of the eye-to-brain lag; e.g., Foxe & Simpson, 2002). Furthermore, after the eyes land on
the new viewing location, there is some probability p (specified by Eq. (6)) of immediately initiating a
labile program to execute an ‘‘automatic’’ corrective saccade to rapidly move the eyes to a new view-
ing location—one that is typically closer to the center of the word. The rationale for this assumption is
that such a saccade is more likely following an initial fixation near either end of a word because it will
afford more efficient lexical processing from a better viewing location. The ‘‘decision’’ to refixate can
be made immediately because it is presumably based on information available from an efference copy
of the saccadic program that was generated to move the eyes to the word (Carpenter, 2000). Thus,
according to Eq. (6), the probability of initiating a labile program to execute a corrective refixation,
p, increases by an amount determined by the parameter k for each character space of absolute differ-
ence between the initial fixation on a word (i.e., fixation in Eq. (6)) and the intended target of that fix-
ation—the center of the word (i.e., OVP).
p ¼max½kjfixation� OVPj;1� ð6Þ
Another important aspect of Eq. (6) is that it allows the model to explain the IOVP effect, or the
finding that fixations near the beginnings and endings of words tend to (on average) be shorter in
duration than fixations near the centers of words (Vitu, McConkie, Kerr, & O’Regan, 2001): Because
a fixation near either end of a word is more likely to cause the rapid initiation of a saccadic program
to redirect the eyes towards the center of that word, a fixation near either end of a word will (on aver-
age) be shorter in duration than a fixation near the center of a word. This explanation of the IOVP ef-
fect is consistent with an error-correction account originally suggested by Nuthmann et al. (2005).
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One final aspect of the model warrants discussion: Because attention shifts require less time than
saccadic programming, lexical processing of wordn+1 usually begins when the eyes are still fixated on
wordn, thus allowing the model to explain both parafoveal processing of upcoming words and how—
on some occasions—easy-to-process parafoveal words are skipped (for an in-depth discussion of these
issues, see Pollatsek et al., 2006; Reichle & Drieghe, in press). Furthermore, because the times required
to both shift attention and move the eyes are (on average) constants (i.e., on average, saccades require
150 ms to program), but the time required to complete lexical access varies as a function of word-pro-
cessing difficulty, the time that is available for parafoveal processing is modulated by the processing
difficulty of the fixated word. The precise manner in which this happens is illustrated in Fig. 3, which
shows the time course of lexical processing for a word that is being fixated and how this, in turn, mod-
ulates the amount of time that is available for parafoveal processing of the upcoming word. As the fig-
ure shows, more parafoveal processing can be completed from easy-to-process foveal words, thus
allowing the model to explain how parafoveal processing is modulated by foveal load (e.g., Henderson
& Ferreira, 1990; Rayner, 1986; White et al., 2005).

The preceding model assumptions are sufficient for E-Z Reader to simulate a wide variety of differ-
ent reading-related phenomena, such as how eye movements might be affected by a reader’s language
and writing system (Chinese: Rayner, Li, & Pollatsek, 2007; French: Miellet, Sparrow, & Sereno, 2007),
how older (age 70 and over) reader’s eye movements differ from those of younger (college aged) read-
ers (Rayner, Reichle, Stroud, Williams, & Pollatsek, 2006), the patterns of eye movements that are gen-
erated when readers encounter compound words (Pollatsek, Reichle, & Rayner, 2003), and how the
presence vs. absence of biasing sentence context affects the patterns of eye movements that are ob-
served when readers encounter lexically ambiguous words (Reichle, Pollatsek, & Rayner, 2007), to cite
just a few examples (for a review, see Reichle, 2011). And more recently (e.g., see Reichle, Pollatsek, &
Rayner, 2012; Reichle et al., in press), the model has been used to examine whether its core assump-
tions about serial-attention allocation and cognitive control of saccadic programming are sufficient to
explain the patterns of eye movements that are observed in a variety of non-reading tasks (e.g., scan-
ning linear arrays of Landolt Cs to detect Os; Williams & Pollatsek, 2007). This work has collectively
demonstrated the model’s utility as a framework for examining the possible relationship between per-
ception, cognition, and eye-movement control, and it is in exactly this spirit that the simulations re-
ported below were completed. In other words, the model has been productively used to generate
novel predictions about theoretical issues related to reading and non-reading tasks, and in the present
article it is again being used in exactly this capacity to make precise predictions about the factors that
are (and are not) important in the development of eye-movement control during reading.

Simulations

As with our introductory discussion of eye movements in children vs. adults, our discussion of the
simulations using E-Z Reader are organized into four sections respectively corresponding to the more
global characteristics of the eye movements, and how these behaviors might be affected by oculomo-
tor, lexical, and post-lexical (linguistic) variables. All of the reported simulations were completed
using the Schilling et al. (1998) sentence corpus, 1000 statistical subjects per simulated condition,
and unless otherwise indicated, all of the model’s default parameter values (see Table 2 and Reichle
et al., 2012).6
6 The Schilling et al. (1998) sentences were used for two reasons. First, because they are relatively simple declarative sentences
containing 8–14 words for which all of the lengths, frequencies, and cloze-probabilities (which are difficult to obtain) are known.
And second, because the model’s default parameter values were selected to maximize the goodness-of-fit between various
empirical eye-movements measures collected from these sentences and the same measures as generated by the model. Although
one might object that using this corpus limits the degree to which the simulation results reported in this article generalize to other
subjects and/or materials, this objection can be countered as follows: First, all of our simulations are of general patterns of results
that are themselves quite robust, having been demonstrated across several studies; second, the effects of specific word-based
variables (e.g., word frequency) tend to be localized on specific target words and can thus be simulated using the sentences as
‘‘frames’’ in which properties of those target words can be embedded and manipulated; and finally, although there will be
discrepancies in word-frequency estimates based on children’s versus adult text corpora (cf., Joseph et al., in press), our
simulations only provide qualitative demonstrations of which factors are important determinants of reading skill development,
and as such our conclusions are not dependent upon accurate estimates of word frequency.



Fig. 3. The time course of processing wordn as a function of its frequency of occurrence, and how this in turn modulates the
amount of time that is available (represented by the gray region) for the parafoveal processing of wordn+1.
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Because one of the main purposes of the simulations is to formally evaluate the two hypotheses
that have been offered to explain the developmental patterns of eye movements that are observed
in reading, it was first necessary to instantiate these hypotheses within the framework of the E-Z
Reader model. Because the model has 22 free parameters, however, the task of evaluating how well
various combinations of parameter values affect different measures of when and where the eyes move
is a non-trivial task because the many parameters provide many degrees of freedom that can be used
to ‘‘fit’’ the model to the observed data (for a discussion of this problem, see Myung, 2000; Zucchini,
2000). Therefore, to make this task manageable, it was necessary to consider both the range of param-
eter values that were plausible on a priori grounds, as well as how the values of those parameters
might be predicted to change with development based on what is already known about how the pat-
terns of eye movements actually change with increasing reading skill.

For example, consider the two parameters that control how long it takes to program a saccade—M1

and M2 (see Table 2). In the model, increasing the value of either of these parameters will increase the
time required to program a saccade, which in turn increases the time available for parafoveal process-
ing (see Fig. 3), modulates the probability of making ‘‘corrective’’ refixations (see Eq. (6)), and thereby
interacts with other aspects of the model’s performance in complex ways. However, on the basis of
prior research using both reading (Reingold et al., 2012) and non-reading tasks (Becker & Jürgens,
1979; Molker & Fisher, 1999; Rayner, Slowiaczek, Clifton, & Bertera, 1983), it has been estimated that
adults require a minimum of 100–175 ms to program eye movements. That being the case, the param-
eters that determine how long it takes to program a saccade in the model are constrained in that they
must be set equal to values within this range. Furthermore, given the model’s estimates for how long it
takes adults to program a saccade (150 ms; see Table 2), and given that only an assumption that chil-
dren are less rapid than adults at saccadic programming could (by itself) explain why fixations are
longer in children than adults (e.g., Rayner, 1986), the choice of saccadic-programming parameter
values that one might use to explain the observation of longer fixation durations in children is not
completely arbitrary. The choice of parameter values is instead fairly tightly constrained—the values
must be increased, but probably not by more than 50–75 ms if the minimal saccadic latencies of
children are not to be so long as to be implausible.

Such a consideration and others (e.g., differences in the rate of lexical processing in children vs.
adults) result in a fairly circumscribed set of assumptions about how the model’s default parameter
values (which were selected to simulate the eyes movements of adult readers) might be adjusted to
explain the overall pattern of eye movements that is observed with children. These hypothetical
adjustments and their justification (or alternatively, their theoretical implications) are listed in Table 3,
where they are organized according to the two general hypotheses that were discussed earlier and
that were proposed to explain how eye movements change with reading skill. (A detailed exposition
of these hypotheses and the method that was used to evaluate them is provided below.) It is important



Table 3
How three developmental hypotheses are instantiated within the framework of the E-Z Reader model: Relevant parameters, their
adult (default) values, and their hypothetical values for children and the implications of these values.

Hypotheses Parameters Adult
values

Child
values

Theoretical implications of children’s parameter values

Linguistic-
proficiency

a1 104 >104 Slower overall rate of lexical processing
a2 3.5 ? Lexical processing rate is more/less modulated by word frequency

and/or predictability
a3 39 ? Lexical processing rate is more/less modulated by word frequency

and/or predictability
D 0.34 <0.34 Less able to use word familiarity to initiate saccadic programming
I 25 >25 Slower construction of linguistic structures from text
pF 0.01 >0.01 Less accurate construction of linguistic structures from text

Oculomotor-
tuning

M1 125 >125 Slower saccadic programming
M2 25 >25 Slower saccadic programming
W 7 ? Oculomotor system is not ‘‘tuned’’ to prefer 7-character saccades
X1 6 ? Systematic error is more/less modulated by launch-site fixation

duration
X2 3 ? Systematic error is more/less modulated by launch-site fixation

duration
g1 0.5 >0.5 Saccades more prone to random error
g2 0.15 >0.15 Saccades more prone to random error
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to acknowledge, however, that our a priori predictions about how the model’s parameter values might
be adjusted to accommodate the patterns of eye movements observed with children vary in terms of
their specificity. For example, the value of L1, the parameter that controls the overall rate of lexical
processing (see Eq. (1)), would a priori have to be increased if differences in this parameter value
are to explain differences between children and adults, while predictions about L2, the parameter that
controls how word frequency modulates the rate of lexical processing, are much less clear. Thus,
whereas some of the simulations reported below evaluate the effect of selectively increasing or
decreasing parameter values to test specific hypotheses, other simulations were completed twice to
evaluate the effect of both increasing and decreasing parameter values to test non-directional
hypotheses.

Finally, because the E-Z Reader model’s numerous parameters can interact in complex ways, it was
also important to exhaustively examine all of its parameters to determine if some non-intuitive
adjustments of the model’s parameter values might also be sufficient to account for the main devel-
opmental patterns that are observed in readers’ eye movements. This exhaustive evaluation was com-
pleted for two reasons. The first was to avoid possible criticisms of having ‘‘cherry picked’’ specific
parameters to evaluate—parameters that might lend themselves to simulating children’s eye move-
ments in a manner that confirms our collective intuitions about factors that should be important.
The second was that it provides a more rigorous ‘‘test’’ of the model’s assumptions by allowing for
the possibility that some non-obvious—and possibly demonstrably false—adjustments of the model’s
parameters are also sufficient to simulate children’s eye movements. To facilitate the exposition of our
simulation results, they are discussed in three sections, corresponding to parameters related to the lin-
guistic-proficiency hypothesis (see Tables 4 and 5), parameters related to the oculomotor-tuning
hypothesis (see Table 6), and the remaining model parameters that are not specifically related to
either language processing or saccadic programming/execution (see Table 7).

Simulating the basic characteristics of eye movements during reading

As indicated previously, the most basic difference between children and adults is that the former
read more slowly than the latter and, as such, tend to make shorter saccades, more frequent and long-
er fixations, and more regressions. Any explanation of the concurrent development of reading skill and
eye-movement behavior during reading must therefore be able to account for this basic pattern of dif-
ferences between children and adults. That being said, our first simulation was intended to adjudicate
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between two general accounts of these differences—the linguistic-proficiency vs. oculomotor-tuning
hypotheses.

This was done by examining the model’s overall performance in reading the Schilling et al. (1998)
sentences with each of the two hypotheses instantiated within the framework of the model. Six
dependent measures of this performance were examined: (1) Mean number of fixations per sentence
(mean sentence length = 11.17 words); (2) mean fixation duration (in ms); (3) mean forward saccade
length (in characters); (4) mean proportion of saccades that were regressions; (5) mean reading rate
(in wpm); and (6) mean perceptual span. As indicated earlier, a large number of studies (see Blythe &
Joseph, 2011) have independently shown that, relative to adult readers, children tend to make more
fixations that are longer in duration, shorter saccades, and more regressive saccades, resulting in a
slower overall rate of reading and a smaller perceptual span.

Because it is not possible to simulate the moving-window paradigm using the E-Z Reader model,7

in our simulations we estimated the efficiency of parafoveal processing using an alternative method—by
measuring the amount of benefit that accrues from having a valid as compared to an invalid parafoveal
preview of an upcoming target word, as measured using the boundary paradigm (Rayner, 1975). In this
gaze-contingent paradigm, either a valid preview of a target word (i.e., the target itself) or an invalid pre-
view (e.g., a string of Xs or random letters) is displayed in a target location until the subject’s eyes cross
an invisible boundary immediately to the left of the target, at which point the target word replaces the
invalid preview in the invalid-preview condition. By comparing fixation-duration measures on the target
word in valid- vs. invalid-preview conditions, it is possible to determine how much processing of the tar-
get word occurs prior to it actually being fixated (i.e., from the parafovea). On average, gaze durations are
40–50 ms shorter on the target word when it is preceded by a valid as compared to invalid preview
(Schotter, Angele, & Rayner, 2012). This preview benefit indicates that attention shifts from the pre-target
word to the target word rapidly enough to allow 40–50 ms of processing of the target (Hyönä, Bertram, &
Pollatsek, 2004). If parafoveal processing in children is less efficient than that of adults, then children
should show less preview benefit than adult readers. Therefore, in the simulations reported below, the
preview benefit on the Schilling et al. (1998) target words is our measure of parafoveal processing
efficiency.

Finally, to implement and evaluate possible instantiations of the linguistic-proficiency vs. oculomo-
tor-tuning hypotheses using E-Z Reader, we adopted the simple strategy of independently manipulat-
ing the values of those model parameters that are related to lexical and language processing, on the
one hand, and saccadic programming and execution, on the other. (And as already indicated, the
remaining model parameters were also manipulated for the purposes of exhaustively evaluating the
model’s capacity to explain developmental patterns of eye movements during reading.) The value of
each parameter was incrementally varied across a range of at least five plausible values using
equal-sized increments. Tables 4, 6 and 7 show the results of these simulations, organized by the indi-
vidual parameters (in rows) and the basic phenomena being simulated (column). The top row shows
the dependent measures for each of the phenomena that are predicted using the model’s default
(adult) parameter values. Each subsequent row then shows the dependent measures that are pre-
dicted by the model using a range of values that, on a priori consideration of the data being simulated,
might explain those data. Finally, the last column provides a qualitative evaluation of each simulation:
Simulations that are qualitatively consistent with what has been observed with children are indicated
with pluses and those that are inconsistent are indicated with minuses.8 (Values that are neither con-
sistent nor inconsistent are unmarked.) The sections that follow provide an explanation of each of the
simulations and the extent to which changes in their corresponding parameter values are sufficient to
7 This limitation stems from the fact that the model does not provide a detailed account of lexical processing, and as such does
not explain how the rate of lexical processing is affected when only some portion of a word’s letters are available for processing (as
occurs when a moving window exposes some portion of an upcoming word).

8 Our metric for deciding whether adjusting a parameter value affected a dependent variable in a manner consistent with what
is observed with children is somewhat arbitrary but is simple and consistent—a 5% change in the correct direction (e.g., longer
fixation durations) for number of fixations per sentence, fixation durations, saccade lengths, and reading rate resulted in a plus
symbol in Tables 4, 6 and 7, as did a 50% increase in the probability of making a regression and a 10% decrease in parafoveal
processing efficiency. Similarly, changes in each of the respective dependent variables of the same magnitude but in the incorrect
direction resulted in a minus symbol in Tables 4, 6 and 7.



Table 4
Results of simulations to evaluate how changing default (adult) parameter values associated with the linguistic-proficiency hypothesis about age-related differences in reading (see Table 2)
affect six dependent measures diagnostic of children’s eye-movement behavior during reading.

Sim. # Parameters Range of values
tried
(increments)

Mean #
fixations per
sentence

Mean fixation
duration (ms)

Mean saccade
length
(characters)

Mean
probability
of making
Regression

Reading
rate
(wpm)

Parafoveal
processing
efficiency (mean
preview benefit; ms)

Simulated
results
consistent
w/observations?

Default (adult) parameter values 7.28 215 6.28 0.04 315 43 N/A
1 a1 104–208 (4) 7.28–9.03 (+) 215–319 (+) 6.28–5.93 (+) 0.04–0.09 (+) 315–177 (+) 43–23 (+) Yes
2a a2 3.5–0 (0.5) 7.28–7.81 (+) 215–235 (+) 6.28–6.12 0.04–0.05 315–271 (+) 43–37 (+) ?
2b a2 3.5–7 (0.5) 7.28–6.32 (�) 215–202 (�) 6.28–6.87 0.04 315–384 (�) 43–45 No
3a a3 39–0 (3) 7.28–7.41 215–217 6.28–6.24 0.04 315–307 43–42 No
3b a3 39–60 (3) 7.28–7.22 215–214 6.28–6.31 0.04 315–319 43–42 No
4a D 0.34–0 (0.02) 7.28–6.97 215–209 6.28–6.44 0.04 315–338 (�) 43–48 (�) No
4b D and a1 See Table 5 7.28–7.77 (+) 215–239 (+) 6.28–6.17 0.04–0.06 (+) 315–268 (+) 43–41 ?
5 I 25–125 (10) 7.28–8.8 (+) 215–212 6.28–5.82 (+) 0.04–0.05 315–264 (+) 43–52 (�) No
6 pF 0.01–0.15 (0.01) 7.28–8.59 (+) 215–217 6.28–6.09 0.04–0.1 (+) 315–264 (+) 43–42 No

Note: ‘‘+’’ Indicates simulated values that are (qualitatively) consistent with children’s data;
‘‘–’’ indicates simulated values that are (qualitatively) inconsistent with children’s data (see Footnote 8).
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Table 5
Values of a1 and D used to equate total lexical-processing times to examine how increasing the disparity between the familiarity
check vs. lexical access affects eye movements in Simulation 4b (see Table 4).

a1 D Mean familiarity
check time [t(L1)
ms]

Mean lexical
access time [t(L2)
ms]

Mean total lexical-
processing time
[t(L1) + t(L2) ms]

Prop. of total lexical-processing
time required for familiarity
check

104 0.34 104 35.36 139.36 0.75
139.36 0 139.36 0 139.36 1
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explain children’s eye movements. As indicated, this discussion will be organized around the linguistic-
proficiency and oculomotor-tuning hypotheses.
Linguistic-proficiency hypothesis
By this hypothesis, changes in the values of one or more of the lexical- and/or language-processing

parameters should be sufficient to account for the observed changes in the basic patterns of eye move-
ments that are observed when children become skilled adult readers. The first attempt to evaluate this
hypothesis involved the independent manipulation of four parameters that control the rate of lexical
processing in E-Z Reader: (1) a1, the parameter that determines the overall (intercept) rate of lexical
processing; (2) a2, the (slope) parameter that controls the degree to which lexical processing is mod-
ulated by word frequency; (3) a3, the (slope) parameter that controls the degree to which lexical pro-
cessing is modulated by word predictability; and (4) D, the parameter that controls the proportion of
the total lexical-processing time that is required to complete the familiarity check.

Because larger values of a1 slow the rate of lexical processing by increasing the time required to
complete the familiarity check (see Eq. (1)), increasing the value of this parameter increased the mean
fixation duration (see Table 4, Sim. 1). Larger values of a1 also generated more fixations because the
automatic refixations that are initiated following mis-located fixations (Eq. (6)) were less likely to
be canceled by the rapid completion of the familiarity check on a word following its initial fixation.
The fact that there were more refixations in turn caused both a decrease in the mean length of the for-
ward saccades and an overall increase in the proportion of regressive saccades. All of these factors con-
tributed to reduce the overall rate of reading. And finally, because larger values of a1 also increased the
time required to complete lexical access (Eq. (3)), there was less time available for parafoveal process-
ing of upcoming words, which caused the parafoveal processing efficiency (as measured by preview
benefit) to decrease to approximately half of its normal (adult) value. Thus, as Table 4 shows, accord-
ing to the model, a simple decrease in the overall rate of lexical processing is sufficient to account for
all of the differences in eye movements that have been observed between children and adult readers
(Blythe & Joseph, 2011). However, this result should not be taken to suggest that a slower rate of lex-
ical processing has no other effect on reading ability; for example, less efficient lexical processing
might also cause less efficient (post-lexical) linguistic processing if the latter is dependent upon the
former. What the simulation does show, however, is that a decreased rate of lexical processing is
by itself all that is necessary to explain the differences (listed in Table 4) that have been reported be-
tween the eye movements of children and skilled adults readers.

As Table 3 indicates, there is more uncertainty about how the values of the next two lexical-pro-
cessing parameters (a2 and a3) should be adjusted to account for children’s eye movements: On the
one hand, decreasing the values of these parameters should slow the rate of lexical processing, result-
ing in a pattern very similar to the one that resulted from increasing the value of a1; on the other hand,
the fact that children are slower at processing words might exaggerate any differences due to word
frequency and/or predictability, thus justifying larger values for these two parameters. To examine
both of these possibilities, the effects of using both smaller (Sims. 2a and 3a) and larger values (Sims.
2b and 3b) were examined. As Table 4 shows, neither type of change produced the pattern of eye
movements observed with children. For example, although smaller values of a2 (Sim. 2a) increased
the mean number and duration of fixations, slowed the overall rate of reading, and decreased



Table 6
Results of simulations to evaluate how changing default (adult) parameter values associated with the oculomotor-tuning hypothesis about age-related differences in reading (see Table 2) affect
six dependent measures diagnostic of children’s eye-movement behavior during reading.

Sim. # Parameters Range of
values tried
(increments)

Mean #
fixations
per sentence

Mean fixation
duration (ms)

Mean saccade
length
(characters)

Mean probability
of making
regression

Reading rate
(wpm)

Parafoveal
processing
efficiency (mean
preview benefit;
ms)

Simulated
results
consistent
w/observations?

Default (adult) parameter values 7.28 215 6.28 0.04 315 43 N/A
1 M1 125–175 (5) 7.28–6.31 (�) 215–261 (+) 6.28–6.71 0.04–0.02 (�) 315–305 43–58 (�) No
2 M2 25–75 (5) 7.28–7.03 215–244 (+) 6.28–6.38 0.04 315–291 (+) 43–63 (�) No
3a W 7–3 (0.5) 7.28–7.62 215–217 6.28–5.78 (+) 0.04–0.02 (�) 315–298 (+) 43–47 (�) No
3b W 7–11 (0.5) 7.28–7.23 215–209 6.28–6.86 0.04–0.07 (+) 315–326 43–30 (+) No
4a X1 6–5.3 (0.1) 7.28–7.23 215–218 6.28–6.33 0.04 315–313 43–46 No
4b X1 6–8.3 (0.1) 7.28–8.44 (+) 215–198 (�) 6.28–6.55 0.04–0.09 (+) 315–293 (+) 43–25 (+) No
5a X2 3–0.7 (01) 7.28–8.98 (+) 215–198 (�) 6.28–6.93 0.04–0.14 (+) 315–275 (+) 43–22 (+) No
5b X2 3–15 (1) 7.28–7.17 215–218 6.28 0.04 315 43–46 No
6 g1 0.5–1 (0.05) 7.28–7.46 215–211 6.28–6.34 0.04–0.05 315–312 43–37 (+) No
7 g2 0.15–0.5 (0.05) 7.28–8.68 (+) 215–198 (�) 6.28–7.18 (�) 0.04–0.16 (+) 315–285 (+) 43–31 (+) No
8a k 0.16–0 (0.02) 7.28–6.65 (�) 215–236 (+) 6.28–6.33 0.04–0.01 (�) 315–317 43–42 No
8b k 0.16–0.3 (0.02) 7.28–7.94 (+) 215–200 (�) 6.28–6.24 0.04–0.07 (+) 315–308 43–38 (+) No
9a M1,R 30–0 (5) 7.28–7.3 215 6.28–6.27 0.04 315–314 43–44 No
9b M1,R 30–60 (5) 7.28–7.27 215–216 6.28–6.29 0.04 315–314 43–44 No
10a pN 0.5–0 (0.05) 7.28–7.33 215 6.28–6.27 0.04 315–312 43–44 No
10b pN 0.5–1 (0.05) 7.28–7.24 215 6.28 0.04 315–316 43–42 No
11a n 0.5–0 (0.05) 7.28–7.11 215–229 (+) 6.28–6.36 0.04–0.03 315–304 43–44 No
11b n 0.5–1 (0.05) 7.28–7.41 215–210 6.28–6.23 0.04 315–316 43–44 No
12 S 25–50 (5) 7.28–7.18 215–204 (�) 6.28–6.35 0.04 315–301 43–59 (�) No

Note: ‘‘+’’ Indicates simulated values that are (qualitatively) consistent with children’s data;
‘‘�’’ indicates simulated values that are (qualitatively) inconsistent with children’s data (see Footnote 8).
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Table 7
Results of simulations to evaluate how changing default (adult) parameter values associated with no specific hypotheses about age-related differences in reading affect six dependent measures
diagnostic of children’s eye-movement behavior during reading.

Sim. # Parameters Range of
values tried
(increments)

Mean # fixations
per sentence

Mean
fixation
duration
(ms)

Mean
saccade
length
(characters)

Mean
probability
of making
regression

Reading
rate (wpm)

Parafoveal
processing
efficiency (mean
preview benefit; ms)

Simulated
results
consistent
w/observations?

Default (adult) parameter values 7.28 215 6.28 0.04 315 43 N/A
1 V 50–100 (5) 7.28–7.54 215–228 (+) 6.28–6.27 0.04–0.05 315–289 (+) 43–60 (�) No
2 e 1.15–1.3 (0.01) 7.28–8.29 (+) 215–268 (+) 6.28–6.09 0.04–0.07 (+) 315–227 (+) 43–2 (+) ?
3 A 25–50 (2.5) 7.28–6.23 (�) 215–223 6.28–6.72 0.04 315–373

(�)
43–33 (+) No

4 rc 0.22–0.38 (0.04) 7.28–7.13 215–216 6.28–6.46 004–0.05 315–320 43–40 No

Note: ‘‘+’’ Indicates simulated values that are (qualitatively) consistent with children’s data;
‘‘�’’ indicates simulated values that are (qualitatively) inconsistent with children’s data (see Footnote 8).
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parafoveal processing efficiency, it did not increase either the mean saccade length or the rate of
regressions. And what is perhaps even more problematic is that smaller values of a2 would presum-
ably reduce the size of the word-frequency effect in children, contrary to the finding that such effects
actually tend to be larger with children than adults (Blythe et al., 2009). Finally, changing the value of
the parameter that modulates the effect of word predictability, a3, had very little effect on any of the
dependent measures because predictable words also tend to be short and frequent and are thus likely
to be rapidly processed irrespective of how their lexical processing rate is modulated by predictability.

The last parameter directly related to lexical processing is D, the parameter that controls the dif-
ference in the amount of time required to complete the familiarity check vs. lexical access (see Fig. 3).
The results of a recent series of simulations (Reichle et al., 2012) using the E-Z Reader to examine sev-
eral non-reading tasks (e.g., scanning arrays of Landolt-C to find an O target letter; Williams & Pollatsek,
2007) suggest that, relative to these tasks, reading affords more of a decoupling between the signal to
initiate saccadic programming (i.e., the familiarity check) and the signal to shift attention (i.e., lexical ac-
cess). This suggests that the familiarity check might emerge through extensive practice, as a reader
learns to use cues that are rapidly available and that are predictive of lexical access to initiate saccadic
programming. Given that children have much less reading experience than adults, this hypothesis about
how readers might learn to use the familiarity check suggests that children may be less reliant on the
familiarity check during reading, and that a smaller value of the D parameter might be necessary to ac-
count for children’s eye-movement behavior. Contrary to this prediction, however, smaller values of D
actually had little effect on the dependent measures reported in Table 4 (Sim. 4a). This null finding is lar-
gely due to the fact that, although decreasing the value of D increased the proportion of the completed
lexical-processing time required to initiate saccadic programming, it also reduced the overall lexical-
processing time. And as Table 4 shows, smaller values ofDalso increased parafoveal processing efficiency
because more time was available between when lexical access of a word finished and when the eyes
moved to the next word. This last finding is contrary to what is observed with children, and thus suggests
that smaller values of D are not sufficient to explain children’s eye movements.

However, one might argue that this evaluation of the D parameter was not a fair test because the
value of a1 was held constant, which meant that, as D decreased from 0.34 to 0, so too did the overall
word-identification latencies [i.e., t(L1) + t(L2)]. Thus, whatever processing loss might result from trig-
gering the saccade relatively late in the course of lexical processing (i.e., by using smaller values of D)
was offset by the fact that words required less time to identify. To address this potential limitation, a
second simulation was completed (Sim. 4b) to evaluate how changing values of D might influence eye
movements. In this simulation, the values of D and a1 were manipulated concurrently so that the
overall lexical-processing latencies could be held constant (139.36 ms). Table 5 shows the precise
parameter values that were used and how these values modulated the familiarity check and lexical
access durations. Importantly, as the value of D now decreased from 0.34 (i.e., the optimal value for
simulating adults) to 0, the familiarity check became increasingly slower, consuming a larger portion
of the total time needed to complete lexical processing of words. And as Table 4 shows, this produced
many of the effects that one would expect if children rely less upon the familiarity check for saccadic
programming: As the value of D decreased from 0.34 to 0 and the familiarity check consumed more of
the total lexical-processing time, both the mean number and duration of fixations increased, the pro-
portion of regressions increased, and the overall reading rate decreased. The results of this simulation
thus suggest that increasing reliance upon word familiarity (as simulated by using increasingly large
values of D) might explain some of the changes that occur in children’s eye movements as they learn
to read. However, for this variant of the linguistic-proficiency hypothesis to be viable, it would have to
be one of two or more factors that contribute to the developmental pattern of eye movements (cf.,
Sims. 4a vs. 4b). For example, an increasing reliance upon familiarity (i.e., larger values of D) in con-
junction with a general speed up of lexical processing (i.e., smaller values of a1) would be sufficient to
explain the full pattern of eye-movement results that are observed as children become adult readers.

Finally, the last two parameters that might in principle differ between children and adults if the
linguistic-proficiency hypothesis is correct are I and pF, the parameters that respectively modulate
the time needed to complete post-lexical integration and the probability that this process will result
in some type of integration failure. Because children have less experience reading than adults, it is only
reasonable to assume that integration will take longer and/or be more prone to error in children than
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adults. Both of these possibilities were examined, but as Table 4 (Sims. 5 and 6) shows, neither was
sufficient to account for the complete pattern of children’s data. Although increasing the value of I
(Sim. 5) increased the number of fixations, decreased the saccade length, and slowed reading, it did
not affect the fixation durations or the proportion of regressions, and actually increased the parafoveal
processing efficiency. Similarly, although increasing the value of pF (Sim. 6) increased the number of
fixations, the proportion of regressions, and slowed reading, it did not affect fixation durations, sac-
cade length, or parafoveal processing efficiency. Thus, although the model suggests that problems
associated with higher-level (i.e., post-lexical) linguistic processing might also contribute to some
of the differences that are observed between the eye movements of children and adults, these prob-
lems are not likely to explain all of those differences (e.g., the smaller perceptual span of children).

Based on these results, it is unlikely that increasingly efficient post-lexical processing is the pri-
mary cause of the differences that are observed in the eye movements of children vs. adults. These dif-
ferences seem to instead reflect a simple speed up in the overall rate of lexical processing, as
demonstrated by the fact that these changes can actually be simulated by increasing the value of
the a1 parameter in the E-Z Reader model. However, it is worth emphasizing once again that efficient
post-lexical processing may be critically dependent upon efficient lexical processing. That is, although
differences in the rate and accuracy of post-lexical processing do not seem to be sufficient to explain
the full pattern of differences between the eye movements of children vs. skilled adults, a decreased
rate of lexical processing (which does appear to be sufficient to explain such differences) might also
result in slower and/or less accurate higher-level processing if the latter is critically dependent upon
the former. For example, although the lexical processing that is associated with a mis-identified word
still might be sufficient to move the eyes forward, the meaning of that word would presumably cause
post-lexical integration to fail, resulting in pauses and/or regressions (Levy et al., 2009; Slattery, 2009).
And it is reasonable to assume that these problems with comprehension would occur more often with
children than adults to the extent that the former group is more likely to mis-identify words.

Given that the simulations reported in this section provide some preliminary support for this sim-
ple version of the linguistic-proficiency hypothesis, we now turn to the alternative explanation and
evaluate the plausibility of the oculomotor-tuning hypothesis. Before doing so, however, it is again
worth emphasizing that our conclusions about the sufficiency of the linguistic-proficiency hypothesis
are not established fact, but instead should be viewed as a hypothesis that has been made more pre-
cise and garnered additional support by having been shown to be feasible when instantiated within
the framework of a well-established formal model of eye-movement control during reading, E-Z
Reader.

Oculomotor-tuning hypothesis
Another possible explanation for the observed differences between the eye movements of children

vs. adults is that children are slower and/or less accurate at moving their eyes during reading. By this
account, slower and/or less accurate eye movements play a causal role in reading comprehension. For
example, inaccurate saccades might cause the eyes to move to poor viewing locations, which in turn
might be predicted to slow lexical processing and possibly increase the probability of misidentifying
words. A slower rate of lexical processing would obviously translate into a slower overall rate of read-
ing, but an increased propensity to misidentify words might also result in problems with higher-level
(post-lexical) language processing, increasing fixation durations and making regressions more likely.
Thus, in contrast to the linguistic-proficiency hypothesis, in which poor language-processing skills
cause the patterns of eye movements that are observed with children, the oculomotor-tuning hypoth-
esis would maintain that problems associated with the movement of the eyes are what cause language
processing difficulty.

The simplest variant of the oculomotor-tuning hypothesis is that children require more time to
program saccades. To evaluate this hypothesis, simulations were completed using larger values of
M1 and M2, the parameters that specify the mean times required to complete the labile and non-labile
stages of saccadic programming, respectively. As Table 6 shows, increasing the values of M1 (Sim. 1)
and M2 (Sim. 2) did not produce the correct pattern of results; although larger values of these param-
eters did increase the mean fixation duration, they had little effect on most other measures, and actu-
ally increased the perceptual span. These last finding is completely contrary to what is observed with
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children and, as such, it suggests that the hypothesis that children require more time to program sac-
cades—at least as implemented within the E-Z Reader model—is unlikely to explain thedifferences that
are observed between the eye movements of children vs. adults.

The next variant of the oculomotor-tuning hypothesis is that whatever ‘‘tuning’’ of the oculomotor
system occurs and is ultimately responsible for the systematic portion of saccadic error (see Eq. (4)) is
not completely established in children. For example, adults show a preference to make 7–8 character
saccades, with shorter/longer saccades tending to over/undershoot their intended targets by about
half a character space for each character space of deviation between the preferred saccade length
and the intended saccade length. And with adult readers, this systematic error is also modulated by
the fixation duration on the launch-site word. In the E-Z Reader model, these characteristics of the sys-
tematic error are controlled by three parameters: W, the parameter that controls the preferred saccade
length, and X1 and X2, the parameters that control how the launch-site fixation duration modulates
the size of the systematic error. Therefore, to evaluate this hypothesis, simulations were completed
using a range of values that were less than and greater than the default (adult) values (see Table 6,
Sims. 3–5). As Table 6 shows, none of these simulations were sufficient to explain the full pattern
of differences between children and adults. For example, although smaller values of X2 did increase
the mean number of fixations, increase the proportion of regressions, slow the rate of reading, and de-
crease parafoveal processing efficiency, they also decreased the mean fixation duration. This suggests
that possible developmental changes associated with the systematic range error—as implemented in
E-Z Reader model—are not sufficient to explain the full pattern of differences that are observed in chil-
dren’s vs. adults’ eye movements.

A third variant of the oculomotor-tuning hypothesis is that children’s eye movements are simply
more prone to (random) motor error. By this account, children lack the fine motor skills that are nec-
essary to accurately move their eyes in that manner that is required to support optimal reading. In the
E-Z Reader model, the amount of random motor error is controlled by two parameters (see Eq. (5)): g1,
the (intercept) parameter that determines the minimal amount of error, and g2, the (slope) parameter
that determines how much the error increases as a function of the intended saccade length. According
to this third version of the oculomotor-tuning hypothesis, the values of these two parameters should
be larger in children than adults. Therefore, to evaluate this hypothesis, two simulations (Sims. 6 and
7) were completed using a range of parameter values that were larger than the default (adult) values.
As Table 6 shows, these simulations were not successful in accounting for the developmental changes
in children’s eye movements. Although larger values of g2 (Sim. 7) increased the mean number of fix-
ations and rate of regressions and reduced the reading rate and parafoveal processing efficiency, they
also decreased the mean fixation duration and increased the mean saccade length. Thus, it is unlikely
that reduced saccade accuracy can by itself explain all of the differences that are observed between the
eye movements of children vs. adult readers.

The final ‘‘variant’’ of the oculomotor-tuning hypothesis was not a specific hypothesis per se, but
was instead a series of simulations that were completed to exhaustively evaluate the consequences
of adjusting each of the remaining model parameters that are in some way related to saccadic pro-
gramming and/or execution: (1) k, the parameter that controls the propensity to initiate ‘‘automatic’’
corrective refixations (see Eq. (6)); (2) M1,R, the additional time that is required to complete the labile
stage of programming for regressive saccades; (3) pN, the probability of directing regressive saccades
back to the preceding word; (4) n, the proportion of the labile programming stage that is required to
‘‘engage’’ the oculomotor system; and (5) S, the durations of the actual saccades. With the exception of
one of those parameters (i.e., S), a pair of simulations was completed to evaluate the consequences of
using values of each parameter that were smaller and larger than their default (i.e., adult) values. As
Table 6 shows (see Sims. 8–12), the values of these parameters had little effect on the majority of the
dependent measures. As such, the simulations demonstrate that these aspects of saccadic program-
ming and execution—as implemented within E-Z Reader—are not sufficient to explain developmental
changes in readers’ eye movements.

The results of the simulations reported in this section thus collectively demonstrate that adjust-
ments to the values of the parameters that control saccadic programming and execution in E-Z Reader
are not sufficient to simulate the full pattern of developmental changes that are observed in eye move-
ments as children become skilled adult readers. Therefore, to the degree that the model provides a
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valid description of the perceptual, cognitive, and motor processes that control readers’ eye move-
ments, the preceding simulation results provide some evidence against the oculomotor-tuning
hypothesis. It is worth pointing out, however, that these conclusions are not meant to imply that sacc-
adic programming and execution do not play important roles in eye-movement control during read-
ing; to the contrary, recent simulations also completed using the E-Z Reader model suggest that the
parameters that determine the preferred saccade length (i.e., W; see Eq. (4)) and the propensity to
make corrective refixations (i.e., k; see Eq. (6)) play important roles in the language-related differences
in eye movements that are observed between native readers of Chinese, English, and Finnish (Reichle,
Drieghe, Liversedge, & Hyönä, in preparation).

Miscellaneous parameters
The final set of simulations were completed to examine the consequences of adjusting the remain-

ing E-Z Reader parameters in an exhaustive fashion, irrespective of the fact that there was no a priori
reason to assume that the processes that are described by these parameters play important roles in the
developmental changes that are observed in readers’ eye movements. As Table 7 shows, we completed
four simulations to examine the consequences of increasing: (1) V, the parameter that controls the
duration of the pre-attentive stage of visual processing: (2) e, the parameter that modulates how vi-
sual acuity limitations attenuate the rate of lexical processing (see Eq. (2)); (3) A, the parameter that
controls the mean time needed to shift attention from one word to the next; and (4) rc, the parameter
that controls the overall variability of the gamma distributions that are used in our Monte-Carlo sim-
ulations (see Footnote 5).

As Table 7 shows, with one notable exception, increasing the values of these miscellaneous param-
eters was not sufficient to reproduce the basic developmental pattern of eye movements; the excep-
tion was the parameter that modulates the rate of lexical processing as a function of foveal
eccentricity, e (Sim. 2). As the table shows, increasing the value of this parameter increased the num-
ber and duration of fixations and the rate of regressions, but also decreased the saccade length, reading
rate, and parafoveal processing efficiency. Although these results suggest an alternative account of the
basic differences between the eye movements of children and adults, it is important to point out that,
by this account, one would have to posit that the delimiting effects of visual acuity become less pro-
nounced with age, so that adults become better able to identify peripheral words than children due to
changes in visual acuity. This possibility seems implausible (e.g., see Atkinson, 2000) and is contrary to
results that were discussed earlier indicating that children are as facile as adults at extracting briefly
displayed visual information from the printed page (Blythe et al., 2009, 2011). For that reason, the
hypothesis that the eye movements of children differ from those of adults due to differences in visual
acuity will not be consideredfurther.

Interim summary
The preceding simulations provide some support for a fairly strong version of the linguistic-profi-

ciency hypothesis—that developmental change in lexical-processing efficiency is the primary determi-
nant of why children’s eye movements change in the way that they do as children become skilled
adult readers. Although this conclusion remains tentative because it is based on a model which
may ultimately turn out to be invalid in some important way and because it is entirely possible that
some combination of changes in linguistic processing and oculomotor control will ultimately provide
a more precise account of these developmental changes, the simple linguistic-proficiency account is
both parsimonious and consistent with other behavioral changes that have been observed as children
learn to read (e.g., see Perfetti, 1985). That being said, the next three sections of this article provide
more rigorous tests of the specific hypothesis that larger values of the a1 parameter are sufficient
to explain what is currently known about children’s eye movements during reading and how they dif-
fer from those of adults. Therefore, the simulations reported next are intended to evaluate the model’s
account of important ‘‘benchmark’’ phenomena using two different values of a1: (1) a1 = 104 ms, the
default value for simulating adult performance (Reichle et al., 2012); and (2) a1 = 208 ms, the value
that will be used to simulate children’s performance. Note that the decision to use a value of
208 ms to simulate children’s performance was fairly arbitrary but does correspond to the maximum
value that was used in our first set of simulations (see Table 4) and thus should provide a good
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contrast between the dependent measures predicted using the two parameter values. In addition,
using this value gives a maximum mean word-identification latency of 329 ms for children, which
is not implausibly long considering that the mean time is 189 ms for adults according to the model.9

Simulating word-length effects and saccadic targeting

Our second set of simulations examined the effect of word length and the manner in which chil-
dren and adults target their saccades during reading. To accomplish these objectives, we examined
four different dependent measures on 4- to 9-letter words in the Schilling et al. (1998) corpus. The
mean probabilities of making initial fixations in each possible viewing position are shown in Fig. 4,
as are the mean probabilities of making refixations as a function of the initial fixation position. As Pan-
els A and B of the figure show, the simulations of adults and children produced very similar fixation-
landing site distributions, indicating that slowing the overall rate of lexical processing does not affect
the basic nature of saccadic targeting. Similarly, Panels C and D indicate that the two simulations also
produced similar patterns of refixation probabilities, although the simulation of children did result in
higher rates of refixations after initial fixations near the ends of words, consistent with what has actu-
ally been observed with children (see Joseph et al., 2009, Fig. 2). It is important to emphasize that this
last result was not necessarily anticipated prior to running the simulation, but instead emerged as a
consequence of the fact that slower lexical processing make it less likely that any ‘‘automatic’’ refix-
ation saccades initiated from the ends of words are canceled by the completion of the familiarity check
on those words. The model and our assumption that lexical processing is slower in children is there-
fore sufficient to explain this observed difference between children and adults.

Fig. 5 shows two other measures of saccadic targeting: the mean IOVP effects for single fixations
and the first (of one or more) fixations using the adult and child values of the a1 parameter. A com-
parison of Panels A vs. B and C vs. D indicates that both age groups were similarly affected by word
length and initial landing position: As word length increased, so too did the mean single-fixation
and first-fixation durations, and both measures were longer for fixations located near the centers of
words and shorter for fixations near the beginnings and ends of words. However, the effect of word
length was actually more pronounced for the simulation of children than adults, resulting in longer
overall fixation durations in children than adults and causing the simulated IOVP effects to be more
pronounced in the former group. All of these findings have been reported previously (e.g., see Vitu,
McConkie, Kerr, & O’Regan, 2001, Fig. 11) and thus provides additional support for our claim that slow-
ing the overall rate of lexical processing does not affect the basic nature of saccadic targeting. That
being the case, we now turn to discuss simulations of the word-frequency effect.

Simulating word-frequency effects and cognitive control of fixation durations

As indicated in the Introduction, a word’s frequency of occurrence in printed text is one of the
main lexical variables that predicts whether that word will be fixated, and if so, for how long (Inh-
off & Rayner, 1986; Just & Carpenter, 1980; Kliegl et al., 2006; Rayner & Duffy, 1986; Rayner et al.,
1996, 2004; Schilling et al., 1998). There have also been several demonstrations that word fre-
quency similarly affects the eye movements of adults and children (Blythe et al., 2009; Huestegge
et al., 2009; Hyönä & Olson, 1995; Joseph et al., in press), although these frequency effects tend to
be more pronounced with children (see Blythe et al., Table 4). To examine whether our assumption
that lexical processing is slower in children is compatible with these results, a simulation was
completed using both the adult and child values of the a1 parameter to examine how the fre-
quency of the Schilling et al. (1998) target words affected first-fixation and gaze durations on those
words. These simulations were completed using the actual Schilling et al. (1998) materials, with
the high- and low-frequency target words respectively having mean frequencies of 141 vs. 2
counts per million (as tabulated by Francis and Kucera (1982)). Table 8 shows the results of this
9 The maximal mean word-identification latency for children is 329 ms, or the sum of V (=50 ms), t(L1) (=208 ms), and t(L2)
(=71 ms). Note, however, that this value of t(L1) ignores any additional time that results from limited visual acuity (see Eq. (2)).
Similarly, the maximal mean time for adults is 189 ms, or the sum of V (=50 ms), t(L1) (=104 ms), and t(L2) (=35 ms).



Fig. 4. Two simulated measures of saccadic targeting. Panels A and B respectively show the first-fixation landing site
distributions using the adult (default) vs. child values of the a1 parameter. Similarly, Panels C and D show the probabilities of
making refixations as a function of the initial fixation locations using both values of a1. (In the figure, fixation position 0 on the
x-axis represents the blank space immediately to the left of each word of a given length.)

Fig. 5. Two simulated measures showing the interaction between saccadic targeting and fixation durations. Panels A and B
respectively show the single-fixation durations as a function of their locations using the adult (default) vs. child values of the a1

parameter. Similarly, Panels C and D show the durations of the first (of one or more) fixation durations as a function of their
initial locations using both values of a1. (In the figure, fixation position 0 on the x-axis represents the blank space immediately
to the left of each word of a given length.)
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Table 8
Simulations examining how word frequency affects first-fixation and gaze durations in adults (a1 = 104 ms) and children
(a1 = 208 ms).

Age group Condition Dependent measures

FFD GD

Adults (a1 = 104 ms) LF 239 305
HF 227 269
Frequency effect 12 36

Children (a2 = 208 ms) LF 358 476
HF 343 431
Frequency effect 15 45

Note: ‘‘FFD’’ = first-fixation duration and ‘‘GD’’ = gaze duration.
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simulation. As the table shows, frequency affected both dependent measures in both age groups,
but resulted in numerically longer measures and larger frequency effects with the children. This
indicates that, despite a slower overall rate of lexical processing, the frequency of a word still mod-
ulates how long a word is looked at, lending additional support to the feasibility of the hypothesis
that the main differences between the eye movements of children and adults reflects underlying
differences in lexical processing efficiency. We therefore now turn to our last simulation, which
examined the role of thematic role plausibility and how this important linguistic variable might
differentially affect the eye movements of children vs. adults.
Simulating thematic role plausibility and languageprocessing

Up to this point, our hypothesis about the underlying basis for the observed differences between
the eye movements of children vs. adults has been an extremely simple variant of the linguistic-pro-
ficiency hypothesis—that children are less proficient at lexical processing than adults. Because this ac-
count makes only one assumption (and in the context of the E-Z Reader model, can be simulated by
changing one free parameter value), this account is a strong version of the linguistic-proficiency
hypothesis. A weaker version might therefore be one in which some aspects of the observed differ-
ences between children and adults reflect some other underlying differences in how the two groups
process higher-level language. For example, one obvious possibility is that children are also less effi-
cient at integrating the meanings of words into the representations of the sentences that they con-
struct from the text. By this account, differences between the eye movements of children and
adults in experiments involving the manipulation of linguistic variables (e.g., thematic role plausibil-
ity; Joseph et al., 2008) might require assumptions besides the one that children are simply slower at
lexical processing. Therefore, to test this possibility, one final set of simulations was completed using
two values of a1 (104 vs. 208 ms) to determine if this assumption is also sufficient to explain the dif-
ferent patterns of eye movements that have been reported when children vs. adults read sentences
containing thematic role violations. However, before the results of these simulations are reported,
one important caveat is necessary.

Because the E-Z Reader model does not provide a detailed account of either language processing or
how it fails (e.g., what actually happens cognitively when a reader encounters a semantic anomaly),
the simulations reported below are by necessity very simple, and are intended only to demonstrate
some basic limitations of a strong linguistic-proficiency hypothesis. Although a detailed model of lan-
guage processing and how such processing interacts with other systems involved in reading (e.g.,
attention, lexical processing, etc.) will be necessary for a more rigorous test of whether or not a slower
rate of lexical processing is sufficient to account for the types of results reported by Joseph et al.
(2008), it is still possible to use the model in a productive manner to make general inferences about
the role of higher-level language processing and how it influences readers’ eye movements without
having to know all of the details.
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For example, the simulations reported next were completed using the values of the a1 parameter
that were previously used to examine the performance of adults vs. children. To simulate the effects of
a semantic implausibility in these two age groups, the model parameter that causes integration fail-
ure, pF, was increased from its default value of pF = 0.01 (simulating the low probability of failing to
integrated a very easy-to-integrate word) to a value of pF = 0.1 (simulating a ten-fold increase in the
probability of failing to integrate a word that is difficult to integrate) for the Schilling et al. (1998) tar-
get words. (The parameter pF was set equal to its default value for the other words in the sentences,
consistent with the assumption that the types of plausibility violations studied by Joseph et al., 2008
can be localized to specific words.) However, the value of the parameter that controls the time that is
required to complete post-lexical integration (irrespective of whether it succeeds or fails) was set
equal to its default value: I = 25 ms.

The results of this first simulation are shown in Table 9. As the table shows, an increased failure to
integrate an implausible word (pF = 0.1) increased the first-fixation duration on that word very little
relative to the normal integration condition (pF = 0.01), but increased the gaze duration modestly
and the total-viewing time fairly significantly. However, as Table 9 also shows, this pattern was evi-
dent with the simulation of both adults (i.e., using a1 = 104) and children (a1 = 208). (Table 9 shows
that, if anything, the simulated effect of implausibility was actually slightly larger with the children.)
The simulation thus demonstrates that, within the framework of the E-Z Reader model, any linguistic
manipulations that (by assumption) increase the probability of integration failure will increase both
gaze duration and total-viewing time, but that the magnitude of these effects will not be significantly
influenced by differences in the overall rate of lexical processing. For example, if semantic plausibility
violations of the type studied by Joseph et al. (2008) result in post-lexical integration difficulty, and if
the only difference between children and adults is that the children process words more slowly than
the adults, then the model will predict that the effects of semantic implausibility on eye movements
should be approximately the same size in children and adults. Clearly this prediction is wrong, indi-
cating either that: (1) the model is in some manner wrong and/or that (2) the hypothesis that only the
rate of lexical processing is different between adults and children is wrong.

However, if one assumes that the model provides a more-or-less accurate description of how cog-
nition (and in particular, both lexical and post-lexical processing) influence eye-movement behavior
during reading, then it is possible to evaluate other hypotheses about the reasons why the eye move-
ments of adults and children differ. One relatively simple alternative hypothesis is that the two groups
also differ in their rate of post-lexical processing. By this account, children might also be slower than
adults at integrating the meaning of individual words into sentence representations, thereby causing
any problems that might occur due to integration failure to be delayed. To test this idea, the previous
simulation of the children’s data was repeated using a different value of the parameter that controls
Table 9
Simulations examining how the accuracy and time required to complete post-lexical integration affect first-fixation durations,
gaze durations, and total-viewing times in adults (a1 = 104 ms) and children (a1 = 208 ms). The semantic-implausibility effects are
the mean differences (in ms) between each of the dependent measures in the normal vs. implausible conditions.

Age group Condition Parameters Dependent measures

I pF FFD GD TVT

Adults (a1 = 104 ms) Normal 25 0.01 233 287 293
Implausible 25 0.1 237 301 312
Semantic-implausibility effects (i.e., differences) 4 14 19

Children (a1 = 208 ms) Normal 25 0.01 348 452 481
Implausible 25 0.1 354 473 513
Semantic-implausibility effects (i.e., differences) 6 21 32
Normal 25 0.01 348 452 481
Implausible 125 0.1 347 449 512
Semantic-implausibility effects (i.e., differences) �1 �3 31

Note: ‘‘FFD’’ = first-fixation duration; ‘‘GD’’ = gaze duration; and ‘‘TVT’’ = total-viewing time.
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the time required to complete integration—one that increased the duration on integration to
I = 125 ms. Although this value of I is arbitrary, it is sufficient to simulate the consequences of slow
integration that might be predicted to occur with children. The results of this second simulation are
also shown in Table 9. As can be seen there, this slowing of integration caused the effect of the seman-
tic plausibility violation to be delayed; the difference between the normal and implausible conditions
is no longer evident in first-pass measures (e.g., first-fixation and gaze durations), but instead only ap-
pears in the measure that includes regressive fixations—total-viewing times.

The results of these simulations thus suggest that a strong version of the linguistic-proficiency
hypothesis—one in which all of the observed differences between the eye movements of children
and adults are due to slower lexical processing in the former group—is probably not viable. The sim-
ulations instead suggest that a weaker version of the hypothesis—one in which the rate of lexical and
post-lexical processing account for differences between children and adults—is more likely to be cor-
rect. A few of the more important theoretical implications of this possibility will now be discussed in
the final section of this article.
General discussion

Our main goal in completing the simulations that were reported in this article was to use the
framework of an existing model of eye-movement control in reading, E-Z Reader (Pollatsek et al.,
2006; Rayner et al., 2004; Reichle, 2011; Reichle, Rayner, & Pollatsek, 1999; Reichle et al., 1998,
2003, 2006, 2009), to interpret the patterns of eye movements that are observed as children become
skilled adult readers and to thereby gain a better understanding of what actually develops with read-
ing ability. To meet this goal, we completed a series of simulations in which key aspects of two
hypotheses—the linguistic-proficiency and oculomotor-tuning hypotheses—were instantiated within
the framework of E-Z Reader so that we could determine how the specific assumptions of these
hypotheses fared in explaining developmental trends in eye-movement control during reading.

The results of these simulations were informative. First of all, the basic pattern of eye movements
exhibited by children (i.e., longer fixations and shorter saccades with more regressions) could not be
generated by varying the values of any of the model’s parameters that control either the timing and/or
accuracy of saccadic programming and/or execution. This suggests that the differences that are ob-
served between the eye movements of children vs. adults cannot be explained by difference in how
the oculomotor system has been ‘‘tuned’’ (presumably through years of practice) in adults—at least
not in terms of how that ‘‘tuning’’ is specified within the framework of our model, where the initiation
of saccadic programming is tightly coupled to serial lexical processing.

However, the basic pattern could be generated by simply reducing the overall rate of lexical
processing in children (i.e., by increasing the value of the a1 parameter). Based on this result,
one might conclude that a strong version of the linguistic-proficiency hypothesis is correct, and
that an increase in lexical processing efficiency causes the eye movements of children to eventually
resemble those of skilled adult readers. Additional simulations supported this conclusion: Simula-
tions in which the rate of lexical processing was slowed indicated that various metrics of saccade
targeting were largely unaffected, consistent with findings that children and adults make similar
‘‘decisions’’ about where to move their eyes (Vitu, McConkie, Kerr, & O’Regan, 2001), but that lex-
ical variables (e.g., word length and frequency) influence the fixation durations of children more
than adults (Blythe et al., 2009; Joseph et al., 2009, in press). However, the final simulations
showed that this simple account could not fully explain the effects of certain post-lexical variables
(e.g., thematic role anomalies; Joseph et al., 2008); an explanation of these effects instead required
the additional assumption that, relative to adults, children are also less proficient at post-lexical
processing. Thus, the simulations collectively suggest that an understanding of the development
of language-processing skill in its entirety may be necessary to fully understand the concurrent
development of eye-movement behavior during reading.

From a pedagogical perspective, these simulation results are interesting because they suggest that
most of the variance in reading ability stems from differences in language processing skill, with very
little or none of the variance being due to differences in the basic mechanics of programming and



E.D. Reichle et al. / Developmental Review 33 (2013) 110–149 143
executing eye movements. On some level this should not be too surprising given the simple fact that,
in teaching children how to read, teachers spend a considerable amount of effort teaching their stu-
dents basic lexical (e.g., decoding) and other language-related skills, but virtually no effort teaching
children how to move their eyes (apart from perhaps occasionally pointing at a grapheme or word that
is being read). Rather, children seem to learn to move their eyes on their own, in a manner that pre-
sumably supports maximally efficient reading and that is sensitive to local processing difficulty. The
fact that even young children with minimal reading experience (e.g., 8–9 year-olds) target their sac-
cades in a manner very similar to skilled adult readers supports this assertion, and suggests that read-
ers’ eye movements are ‘‘tuned’’ through learning so that they come to afford optimal text processing
given the various physiological (e.g., limited visual acuity) and psychological (e.g., limited attention
capacity) constraints imposed by the perceptual, cognitive, and motor systems, as well as the linguis-
tic constraints imposed by both the language being read and its system of writing (Liu & Reichle, 2010;
Liu et al., in press; Reichle & Laurent, 2006). That being said, our evidence supporting a weak form of
the linguistic-proficiency hypothesis also speaks directly to two other, related areas of inquiry— the
question of how older readers come to differ from younger, college-aged readers, and the long-stand-
ing question of what makes one reader more skilled than another.

Two recent eye-movements experiments have examined how the eye movements of older readers
differ from those of college-aged adults (Kliegl, Grabner, Rolfs, & Engbert, 2004; Rayner et al., 2006).
The results of these two experiments were remarkably consistent, showing the same pattern of differ-
ences between the two age groups. Relative to the younger readers, the older readers tended to make
fewer fixations that are longer in duration, but seem to compensate for this slow-down by more often
skipping predictable words, but then also making more regressions back to the words that are skipped.
To explain these differences, both studies reported simulations of their findings and the main differ-
ences between college-age and older readers, using very different models and theoretical assumptions
to do so.

For example, Laubrock, Kliegl, and Engbert (2006) provided an account of the Kliegl et al. (2004)
results using the SWIFT model of eye-movement control in reading (Engbert et al., 2002, 2005;
Richter et al., 2006; for a review, see Engbert & Kliegl, 2011). According to this model, attention
is allocated as a gradient to support the concurrent processing of several (typically 3–4) words.
As the activation level for any given word in the gradient first increases and then decreases, so
too does the probability that it will be selected as the target of a saccade. The actual decision
about when to move the eyes, however, is determined by an autonomous timer that initiates sacc-
adic programming at random intervals, but whose activity can be inhibited (after some amount of
delay) if the word being fixated is difficult to process. The model thus explains all of the ‘‘bench-
mark’’ findings that can be explained by the current eye-movements models (for a review, see the
2006 special issue of Cognitive Systems Research). To explain the pattern of results observed with
older readers, Laubrock et al. simply assumed that older readers have a smaller gradient of atten-
tion, but that this gradient is also more asymmetrical to the right of fixation. The first assumption
is sufficient to explain the longer fixations observed in older readers because fewer attentional re-
sources are available to support lexical processing, making lexical processing more difficult, there-
by inhibiting the autonomous timer and inflating fixations. The second assumption is likewise
sufficient to explain the increased rate of skipping because the greater asymmetry in the older
readers’ attention gradient increases the probability that words far to the right of fixation will
be selected as saccade targets, thus causing any intervening words to be skipped.

Rayner et al. (2006) provided a very different account of the same pattern of behavioral results
using the E-Z Reader model as their theoretical framework. The basic logic of their account was that,
because older readers exhibit a general cognitive slowing, they tend to rely more upon their knowl-
edge of language and discourse and/or sentence context to ‘‘guess’’ the identities of predictable words.
But because this heuristic is not always successful, older readers are more prone to making errors (e.g.,
misidentifying words) that require regressions back to earlier parts of the text. The feasibility of this
‘‘risky’’ reading strategy was evaluated via simulations in which the overall rate of lexical processing
was slowed (i.e., the value a1 of was increased relative to its default value), the propensity to ‘‘guess’’
predictable words was increased (i.e., the value a3 of was also increased relative to its default
value), but this increased propensity to ‘‘guess’’ words was also made prone to error, leading to the
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misidentification of some proportion of words and thus more frequent regressions.10 These assump-
tions were sufficient to simulate the general pattern of eye movements observed with elderly readers.
However, it provides a very different account of the life-long developmental ‘‘trajectory’’ of reading skill
than the account based on SWIFT (Laubrock et al., 2006).

That is, according to the account based on E-Z Reader, two basic factors work to increase reading
skill across a reader’s lifespan—the increasing ability to identify printed words in a rapid, automatic
manner, and the ability to use prior reading experience to rapidly integrate the meanings of words
and to make inferences about upcoming linguistic structure and/or content. Both factors increase
markedly during the first few years of a reader’s experience, but with lexical-processing skill probably
increasing more rapidly and reaching asymptote sooner than the skills associated with higher-level
linguistic analysis and prediction. And in the later years, these increases in reading skill that come
from enhancements in lexical and linguistic proficiency are offset by a generally slowing in the rate
of cognitive processing, which decreases the rate of lexical processing. Skilled older readers therefore
come to rely upon their greater linguistic skill to compensate for this general slowdown, resulting in
greater rates of both skipping and making regressions. Thus, by this account, age-related differences in
reading skill and eye-movement behavior reflect underlying age-related differences in the skills that
are necessary to identify printed words and perform other linguistic operations; that is, the changes in
eye-movement behavior are caused by the changes in the skills that support reading.

Now, if one extrapolates from the SWIFT account of why older readers differ from college-aged
readers to explain how reading skill changes across the entire lifespan, then it would seem reasonable
to assume that the differences between children and adults also reflect underlying differences in how
the attention gradient is distributed. Such an account might, for example, claim that the size of the
attention gradient increases in size and becomes more asymmetrical to the right of fixation as children
become skilled adult readers, thus providing an account of why both the overall reading rate and the
span of perception increase with reading skill (Rayner, 1986). In the latter years, however, the atten-
tion gradient begins to shrink in size and to become even more asymmetric, thus both slowing the rate
of lexical processing and increasing propensity to skip words. The critical point to note about this ac-
count, however, is that it says nothing about the development of lexical and/or linguistic skill per se,
but instead says that age-related changes in reading ability reflect changes in the capacity to allocate
attention and/or the manner in which attention is allocated (e.g., the degree of gradient symmetry).
Thus, according to this account, age-related changes in reading skill and eye-movement behavior
may also reflect age-related changes in lexical- and linguistic-processing skills, but these latter
changes are themselves caused by even more basic age-related changes in the capacity to allocate
attention. That being said, the two basic accounts of how reading skill and eye-movement behavior
change with age make very different predictions about the etiology of those changes—that they reflect
either the development of linguistic skill or the skilled deployment of attention. Future research will
be necessary to adjudicate between these two very different accounts.

Another basic question related to the work reported in this article has to do with individual differ-
ences in reading ability, and the question of why some readers are better able to understand text than
others. This question has also been examined using eye-movement experiments, and the results of
two of these experiments are particularly relevant here. For example, an experiment by Schilling
et al. (1998) examined the performance of skilled and less-skilled readers in the identification of
length-matched high- and low-frequency target words using three different dependent measures:
(1) gaze durations on the target words in the sentences; (2) response latencies for deciding that the
target words were words rather than non-words in a lexical-decision task; and (3) response latencies
for pronouncing the words aloud in a naming task. Perhaps not too surprisingly, all three measures
were affected by word frequency, with shorter gaze durations and response latencies for high- than
10 The version of E-Z Reader that was used to complete these simulations (i.e., version 9; Pollatsek et al., 2006) was a precursor to
the current version (i.e., version 10; Reichle et al., 2009) and did not explain how higher-level language processing and its failures
might affect the movement of the eyes and attention during reading. Consequently, the simulations required an ad hoc parameter
that determined the probability of ‘‘misidentifying’’ words that were ‘‘guessed’’. In the current version of the model, this kludge
would be unnecessary because the increased propensity for older readers to make such errors would be simulated by increasing
the default value of the pF parameter (see Table 2), thereby increasing the probability of rapid integration failure.
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low-frequency words. More interesting, however, was that subjects’ overall performance tended to be
stable across tasks, so that, for example, a subject who responded rapidly on one measure tended to
respond rapidly on the others. These findings are important because they indicate that some aspect of
lexical processing (which was being measured by both the lexical decision and naming tasks) also
modulated gaze durations during reading, and that individual differences in this underlying ability
also mediated—at least to some degree—the observed, between-individual differences in reading abil-
ity. One theoretical implication of this conclusion is that a significant portion of the variability asso-
ciated with individual differences in reading ability might be readily explained by differences in the
speed and/or accuracy of lexical processing, consistent with the hypothesis about lexical quality
(see Footnote 1).

A second important eye-movement study examining individual differences in reading ability was
reported by Ashby, Rayner, and Clifton (2005; see also van der Schoot et al., 2009). This study com-
pared the eye movements of two groups of college-level readers: average readers who scored below
the 70th percentile on the Nelson–Denny standardized reading test (mean = 40th percentile) vs.
skilled readers who scored above the 74th percentile on the same test (mean = 88th percentile). Both
groups read sentences containing length-matched high- and low-frequency targets words that were
embedded in neutral contexts (Experiment 1) or contexts in which the words were either unpredict-
able vs. highly predictable (Experiment 2). Although the pattern of results across the two experiments
was complex, the overall pattern indicated that the average readers made longer fixations and more
regressions that the skilled readers, and that the average readers were slowed even more by the low-
frequency words than were the skilled readers, producing a larger frequency effect with average read-
ers. The size of the frequency effect was also not modulated by predictability with the skilled readers,
but was modulated by this variable with the average readers. Together, these results suggest that
skilled readers are less reliant upon sentence context to facilitate lexical processing, and that differ-
ences in both lexical processing efficiency and—to a lesser degree—higher-level language processing
contribute to the differences between skilled and average readers.

This conclusion is remarkably consistent with the linguistic-proficiency hypothesis and suggests a
common account of differences in reading ability both between individuals of differing ability and
within individuals across their lifespan. As Huey (1908) indicated, the ‘‘astounding complexity’’ that
is reading is ‘‘built up slowly, and by an immense amount of practice’’; our contribution in this article
is to suggest that what is being practiced to become a skilled reader is largely the identification and
subsequent linguistic processing of printed words.
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