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Abstract
This paper conducts an extensive investigation into fracture cleanup efficiency by considering 

several pertinent parameters instantaneously over a wide practical range. Injection, shut-in and 

production stages of the fracturing operation were simulated for 32 sets consisting of 113072 

runs. To perform such a large number of simulation runs, a computer code was utilised to 

routinely read input data, implement the simulation runs and produce output data. In each set 

(which consists of 4096 runs), instantaneous impacts of twelve different parameters (i.e., 

fracture and matrix permeability, Brooks matrix capillary pressure (Pc) parameters, and 

Brooks-Corey relative permeability parameters) were investigated. To sample the domain of 

variables, full factorial experimental design (two-level FFS) was employed. The linear surface 

methodology was used to map the simulation output, which is the loss in gas production (GPL), 

compared to the clean case (i.e., 100% clean-up) after three production periods of 10, 30 and 

365 days. 

The impact of various combinations of fracture fluid injection volume, fracture length, shut-in 

soaking time, matrix permeability variation range and drawdown on GPL were studied in 

different sets. Additionally, more simulation sets were performed to capture the impact of 

hysteresis, layering and mobile formation water on the clean-up efficiency.

Results indicated that in line with some literature data, factors that controlled the mobility of 

FF inside the fracture had the most significant impact on cleanup efficiency. It was also noted 

that injecting high volumes of FF, into very tight formations significantly delayed clean-up and 

impaired gas production. The effect of varying other parameters such as extending soaking 
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time or increasing pressure down in such a case delivered negligible GPL improvement. 

Introducing hysteresis made clean-up slightly faster in all production periods. 

The impact of the gravity segregation was discussed in this study. Considering the layered 

systems, it was indicated that in the top layer, the fracture mobility coefficients were more 

important than the ones in the bottom layer whist capillary pressure seems to become more 

important in deeper layers compared to the top layers.

Additionally, a slower clean-up was observed for sets with larger initial water saturation 

compared to those cases with immobile water saturation due to the detrimental effect of mobile 

water on gas production. In some cases, with significantly high values of water saturation, using 

chemicals (which IFT reducing agents) to reduce Pc could reduce GPL and improve cleanup 

efficiency.

These findings contribute to the further understanding of the fracture fluid cleanup process and 

provide practical guidelines to achieve economically successful hydraulic fracturing 

operations, which are popular but expensive for tight and ultra-tight reservoirs.

Keywords: Post Fracturing Cleanup; unconventional fields; Hydraulic Fracturing; Flowback; 

productivity; fracturing fluid 

1. Introduction & Literature Review
Hydraulic fracturing (HF), also known as Hydro-fracking, is one of the most widely used 

stimulation techniques in the oil and gas industry to enhance the production from 

unconventional fields. A hydraulic fracture is initiated and propagated by injecting a fluid with 

high pressure into the formation. The injection fluid also referred to as fracturing fluid (FF), is 

typically water albeit with suspended solid materials, usually sand or another type of proppants 

added to keep the fracture open. After fracturing, oil, gas and FF flow towards the well much 

more easily because of the presence of the fractures. 

Hydraulic fracturing is widely employed to increase the productivity of wells in tight and 

ultratight fields. However, this encouraging approach sometimes is not successful to meet the 

predicted production enhancement. The most common cause is an inefficient cleanup of the 

previously injected fracturing fluid.

Several studies have been conducted to understand this underperformance and to capture the 

impact of the pertinent parameters affecting the efficiency of FF cleanup 
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Tannich (1975) reported that the production loss due to FF presence in the fracture and matrix 

is more significant at the early production periods. Tannich also indicated that as the fracture 

length increases it takes a longer time for the well to cleanup. Additionally, he showed that the 

lower the fracture conductivity, the slower the cleanup process. Cooke Jr. & C.E., (1973) and 

Cooke Jr. & Cooke, (1975) investigated the cleanup efficiency experimentally and concluded 

that the FF presence in the fracture could substantially reduce the fracture conductivity. 

Numerous numerical and parametric works were conducted on the FF cleanup and its failure 

to further study the HF operation. (Ahmed et al., 1979; Montgomery et al., 1990; Bennion et 

al., 2000; Mahadevan and Sharma, 2005; Jamiolahmady et al., 2009, 2014; Bazin et al., 2010; 

Gdanski and Walters, 2010; Ghahri, 2009, 2010; Ghahri et al., 2011; Nasriani et al., 2014a; 

Nasriani et al., 2014b; Nasriani and Jamiolahmady, 2018).

Cheng (2012) highlighted that the flow of the fracturing fluid and water within the created and 

natural fractures has a substantial influence on the efficiency of hydraulically fractured wells. 

He also reported that a number of mechanisms govern the flow of water within a fracture. He 

constructed a numerical model to study the water saturation distribution within the fracture 

over production time and demonstrate its detrimental impact on gas production. He concluded 

that capillary forces and gravity segregation could have a significant impact on gas production.

Agrawal and Sharma (2015) constructed a three-dimensional planar hydraulic fracture 

numerical model to study the impact of different mechanisms within the fracture, i.e., capillary 

forces, viscous forces (relative permeability) and gravity forces. They concluded that liquid 

loading is very likely to occur in ultratight gas fields when the well is produced under the 

regular operational constraints. They recommended some guidelines to minimalize the impact 

of liquid loading on the gas production.

Ghanbari and Dehghanpour (2016) studied the governing parameters on FF and gas production 

during the clean-up period using numerical simulations. They noticed that the imbibition of FF 

deeper into the matrix during the shut-in time could increase the gas productivity at early 

production times. Therefore they highlighted that the early time flowback and gas production 

depends on capillary forces, the fracture networks’ complexity and the shut-in time. They noted 

that having higher capillary forces could result in higher gas production rates only during the 

early production times but the complexity of the created fracture networks has a significant 

impact on flowback recovery and gas production rates.

Xu et al (2016) developed a mathematical model to simulate the early time FF flowback and 

gas production. They considered several drive mechanisms during the shut-in time including 
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expansion of gas build-up, water expansion and fracture closure. They concluded that the gas-

water ratio (GWR) plots for shale gas formations follow a V-shaped trend, the first region, i.e., 

decreasing GWR during early gas production stage indicates the two-phase production from 

the fracture. The second region, i.e., increasing GWR during late gas production indicates the 

water displacement by the gas that flows from the matrix into the fracture. 

Zhou et al., (2016) selected a set of different wells (187 wells) of four different geological 

settings. From this set of wells, they considered different factors that affect FF flowback-

production including the number of hydraulic-fracture stages, lateral length, vertical depth, 

proppant mass applied, proppant size, fracture-fluid volume applied, treatment rate, and shut-

in time. They studied the correlation between flowback data and well completion for the four 

different geological groups. They estimated FF flowback volume in a spatial domain as a 

function of the aforementioned factors.

Wang and Leung (2016) conducted a quantitative investigation of the fluid and rock properties 

and geomechanics that control flowback recovery. They noticed that there is an important 

interaction between imbibition and geomechanics during FF and gas production. They 

highlighted that fracture cloture could increase the imbibition process and reduce the fracture 

conductivity due to a reduction in the pressure within the fracture.

Lai et al., (2017) conducted a numerical simulation to capture the impact of wettability, the 

viscosity of FF and FF filtration on water blockage and gas productivity in hydraulically 

fractured wells. They showed that FF is retained within the matrix at high surface tension 

values. They showed that a reduction in the interfacial tension could increase the flowback 

recovery and consequently improve the gas recovery. They also demonstrated that higher FF 

viscosity could significantly increase the damage and consequently impair the gas productivity.

(Fu et al., 2017) constructed diagnostic plots to highlight the physics of flow in two different 

regions. Region 1 refers to the pressure reduction duration within the fractures, and Region 2 

denotes the breakthrough of oil & gas into the active fracture network. They indicated that the 

duration of Region 1 is governed by original field pressure and the type of hydrocarbon.  They 

concluded that total injected FF volume, perforation intervals, and the number of clusters are 

the most important parameters to optimise the fracturing operation. 

Although these works were significant steps to better understand the flowback cleanup in post-

fracturing operation, they did not consider the impact of all pertinent parameters 

instantaneously over a wide practical range on the post-fracturing cleanup.
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In the Gas Condensate Recovery (GCR) team at Heriot-Watt University, Ghahri et al.(2009) 

conducted a single parameter analysis on the cleanup efficiency of the fracture in tight 

formations. This line of study was then extended to investigate the impact of sixteen different 

but pertinent parameters simultaneously for two simulation sets (with different volume of 

injected FF) on the cleanup performance (Ghahri et al., 2010, 2011). They employed 

experimental design linked with the response surface model methodology to capture the impact 

of the pertinent parameters. They reported that the mobility of FF and gas have a significant 

impact on the gas production and cleanup efficiency. They also showed that the higher the 

volume of the injected FF, the higher the gas production loss and consequently, it takes a longer 

time for flowback to be removed from the matrix and the fracture.

The two numerical simulation works that were conducted by Ghahri et al., (2009, 2011) 

required a very long central processing unit time (CPU time). Therefore, it limited the authors 

to the analysis of two sets of simulations with sixteen pertinent parameters. To facilitate 

studying more simulation sets and therefore analysing different scenarios of cleanup in 

unconventional formations, Jamiolahmady et al. (2014) reduced the number of the related 

parameters from sixteen to twelve by eliminating four variables that had the smallest effect on 

cleanup efficiency. The twelve pertinent parameters were fracture and matrix permeability, 

lambda, surface tension and fluid (gas and FF) mobility pertinent parameters in the fracture 

and matrix. As a result, more simulation sets with shorter CPU time were conducted in that 

study and the follow-up work (Nasriani et al., 2014a & b, Nasriani and Jamiolahmady, 2018).

In these studies, the authors ran forty five different sets of simulations with different shut-in 

time periods, pressure drawdown during the following production stage, the total volume of 

injected FF and different matrix permeability ranges (Jamiolahmady et al., 2014; Nasriani and 

Jamiolahmady, 2018). They concluded that a decrease in matrix permeability variation range 

resulted in a higher gas production loss and delayed the cleanup process. They mentioned that 

if the matrix permeability is increased, a better the cleanup performance is achieved. They also 

showed that the impact of Pc is more distinct in low drawdown pressure and/or prolonged 

soaking time sets (Jamiolahmady et al., 2014; Nasriani and Jamiolahmady, 2018).

1.1. The purpose of this study

This current work extends the line of studies that were previously conducted by various 

members of The Gas Condensate Recovery (GCR) team at Heriot-Watt University (Ghahri et 

al., 2009, 2011a; Jamiolahmady et al., 2014; Alajmi 2012 (his thesis) Nasriani and 
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Jamiolahmady, 2018). This work presents a more extensive investigation of the impact of 

parameters that affect cleanup of the hydraulic fracturing operation. This includes studying the 

impact of different combinations of varying fracture fluid injection volume, shut-in soaking 

time, matrix permeability variation range and drawdown on GPL in sets, which had not been 

considered in the previous studies. Additionally, more simulation runs have been performed to 

capture the impact of hysteresis, layering and mobile formation water on the cleanup efficiency. 

In this work, Altogether, 32 new sets (i.e., 131072 simulation runs) were performed to further 

improve the understanding of the hydraulic fracturing operation.

Similar to our previous work by same authors (Nasriani and Jamiolahmady, 2018) significant 

efforts were devoted to fitting the response surface models to the output data that could be more 

demonstrative of the trends noted in the implemented numerical simulations, that is, the 

dependent variable, i.e., gas production loss, was transferred to another domain. The 

dependency of the dependent variable, i.e., gas production loss, in the new domain, to the 12 

pertinent parameters were investigated at different production stages (ten, thirty and 365 days), 

by the tornado charts of fitted response surface coefficients, frequency of simulation runs with 

obtained GPL and saturation distribution maps of FF in the matrix in the vicinity of fracture 

and within the fracture. 

2. Methodology

Analysing a large number of numerical simulation runs is a real challenge and therefore, 

should be conducted in a very organised manner or it will lose its advantage. This section 

introduces the analysis method which was assumed in this study and defines terminologies that 

are used to make it more convenient for the reader to follow the presented results and 

conclusions. Figure 1 shows a flowchart explaining the workflow of the analysis of the post-

fracturing cleanup in this study. As it is demonstrated in the flowchart, the previously 

developed numerical model was modified and then validated. After the validation of the model, 

five different scenarios were considered. It should be noted that several sets were included in 

each scenario. In this approach, the full factorial experimental design sampling technique is 

employed to each set to generate the input to the simulation models, and at that point, the 

numerical simulation is carried out. Subsequently, an appropriate surface model is fitted to the 

results of each set. Finally, the results of different sets are analysed and compared. 

2.1. Development and Validation of a Numerical Model for this study
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In this study, A combination of several mechanisms have been considered to investigate the FF 

flowback in tight and ultratight dry gas formations extensively, i.e., imbibition, drainage, 

viscous forces, gravity segregation and hysteresis. In line with the team’s other investigations 

(e.g., Nasriani and Jamiolahmady 2018), it was assumed that the FF fills in the fracture instantly 

during the injection period eliminating the need to consider the impact of parameters on this 

flow period. In this procedure, the FF saturation distribution within the matrix, which 

contributes to the performance of cleanup to a much greater extent, is obtained by the simulator 

but that within the fracture is assumed to happen instantly, which is somewhat consistent with 

what happens in reality and reported in the literature.

In order to investigate a fractured well, a pre-fractured single well model, which had been built 

using ECLIPSE 100 (Schlumberger, 2015), was used. For this study, a single porosity model 

was considered. The initial reservoir pressure and matrix porosity were 7500 psi and 15% 

respectively. Table 1 displays the fracture and the reference model dimensions used in this 

study. The fracture half-length (Xf) was either 400m (long fracture sets) or 100m (short fracture 

sets). The gas properties of the reference model are tabulated in Table 2. The fracturing fluid, 

FF, was considered as water. The viscosity of 0.5 cp and compressibility of 5e-6 (1/psi) were 

considered for FF. For the base set defined as a reference, FF volume of twice the volume of 

the fracture was considered for the injection stage. Since a section of the system (a quarter of 

the system) was modelled (Figure 2), FF with a total injection volume of either 64 m3 (long 

fracture sets) or 16 m3 (short fracture sets) was considered. That is, the FF volume per fracture 

length, defined as (= Vinj / Lf, m3/m) was equal to 0.16 m3/m equivalent to 2 FVR (The injected 

FF volume to fracture volume ratio) defined as FVR= Vinj / Vf, m3/m3. In the second stages of 

the modelling, gas and FF phases were allowed to produce under controlled bottom-hole 

flowing pressure. After FF injection and before production, the well was shut-in for two days. 

It should be noted that local grid refinement (LGR) was applied to the areas near fracture face 

to more accurately capture the FF flowback.

To validate the model developed for fractured well cleanup operation, the predicted bottom 

hole pressures from the reservoir simulation outputs were compared with analytical models for 

the early time flow period. The governing equations for early time flow period have been 

discussed elsewhere (Nasriani and Jamiolahmady, 2018).

Figure 3 shows the predicted bottom hole pressure by the analytical model versus those of the 

simulation model with R2 of 0.9978 which is satisfactory.
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2.2. Pertinent Parameters affecting the Efficiency of Fracturing Fluid Cleanup

As it was mentioned earlier, 12 pertinent parameters have been considered in this work. The 

exponents of Brooks-Corey (gas or FF) relative permeability curve (ngi and nwi, where i refer 

to inside fracture or inside matrix), i.e., ngf, nwf, ngm & nwm respectively.

The endpoints of Brooks-Corey (gas or FF) relative permeability curve (Kmaxgi and Kmaxwi, 

where i refer to inside fracture or inside matrix), i.e., Kmaxgf, Kmaxwf, Kmaxgm & Kmaxwm 

respectively.

Three parameters control capillary pressure. These parameters are permeability of the matrix 

(Km), surface tension (IFT) and pore size distribution index (λ). 

Table 3 displays the ranges of variation of relevant parameters (12 parameters) that were 

considered in the numerical simulations during this study. These variables and their range were 

considered based on the understanding of the process gained by the work of the GCR team, 

i.e., Ghahri (2010) and Alajmi (2012), literature data and support of the GCR sponsors of the 

project that provided the real field data information. As shown in Table 3, the other remaining 

6 parameters, i.e., porosity and critical gas and water saturations in the matrix and fracture and 

pressure drawdown (DP), were considered constant in each simulation set. Porosity was fixed 

at a value of 0.15 and both residual gas saturation in the matrix (Sgrm) and fracture (Sgrf) were 

fixed at a value of 0.1. Additionally, critical water saturation in the matrix (Swcm) and fracture 

(Swcf) were fixed at a value of 0.15.

Equations 1, 2, 3 & 4 describe the capillary pressure (Thomas et al., 1968) and relative 

permeability curves (Brooks and Corey, 1966) for data of Table 3.

5.00075.0  K
IFT
Pd

 Entry pressure Pd, bar, (Thomas et al., 1968)

 Interfacial tension IFT (dyne/cm)

 Matrix permeability (K (mD))

1

Swr
SwrSw

Pc
Pd
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1max
4

Equation 2 is used to calculate Pc. This equation is linked to Equation 1. 

The impact of pressure drop (DP), which was considered constant, was treated separately, 

i.e. different sets of simulations were considered for each pressure drop (please note Table 4.a 

to 4.c). This brings the total number of variables from 16 in Ghahri’s work (Ghahri, 2010) to 

12 in Alajmi’s work (Alajmi, 2012) and this work. Based on this number of parameters, each 

fracture well model (mentioned earlier) requires 4096 simulation runs (for a two-level full 

factorial sampling (FSS) design), this brings the total number of simulation runs for all the 

analysed 32 sets of 12-parameter models to 131,072 simulation runs. As it was mentioned 

previously Ghahri (2010) had conducted 4 sets and Alajmi (2012) had 7 sets and those runs did 

not investigate the cases that are addressed in this work. Furthermore, the results of each Set 

are compared either with base reference set or with similar sets reported in this work or Alajmi 

(2012) highlighting the impact of pertinent parameters studied in this work.

In this study, to analyse the results more efficiently using the response surface method, 

described below, the parameters are scaled between 0 and 1 with zero corresponding to the 

lower bound of variation of a parameter and 1 corresponding to the maximum point. It also 

should be highlighted that in FFS approach, as one parameter changes and kept the other 

constant and due to the nature of the sensitivity analysis, no correlation is considered between 

the parameters that might be dependent on one another (e.g., Permeability and porosity, or Swi 

and porosity)

2.3. Main Response & Application of Response Surface Method (RSM)

The key output, i.e., main response, in this work is Gas Production Loss (GPL, %). GPL is 

described as a measure of unclean fracture cumulative production (FGPT) deviation from the 

cumulative production of the case with a completely clean fracture (Ghahri et al., 2009, 2011b; 

Jamiolahmady et al., 2009). 

𝐺𝑃𝐿 = 100 × [𝐹𝐺𝑃𝑇𝑐𝑙𝑒𝑎𝑛 ‒ 𝐹𝐺𝑃𝑇𝑢𝑛 ‒ 𝑐𝑙𝑒𝑎𝑛

𝐹𝐺𝑃𝑇𝑐𝑙𝑒𝑎𝑛 ] 5

In real field applications, it is hard, if not technically impractical, to get a completely clean 

fracture job. However, if one understands the relevant parameters and their impact on the 

cleanup procedure then it will be possible to define real field strategies to approach a 100% 

clean fracture job. One of the main benefits of using GPL is that GPL is a normalised quantity, 
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it allows the user to compare different cases more easily and draw conclusions more 

appropriately. In this work, the impact of 12 parameters on GPL is addressed. In this exercise, 

a parameter is assumed to have a positive impact if it decreases the GPL, i.e., more gas 

production, while parameter’s value is increased, whereas a negative impact parameter is the 

one, which increases GPL as parameter’s value is increased.

Response Surface Method, i.e., RSM, is a valuable means of analysing and expressing the 

sensitivity of a set of variables relevant to a specific output. It is a combination of mathematical 

and statistical approaches to find a suitable relationship between the main response y and 

independent variables x1, x2, x3... xn. The fitted polynomial function (f(xi)) is called the 

response surface model. This model can be a linear or quadratic (with or without interaction 

term) and described by Equation 6 (Joshi et al., 1998).

𝑦 = 𝑎0 +
𝑛
∑

𝑘 = 1
𝑎𝑘𝑥𝑘 +

𝑛

∑
𝑖 = 1

𝑛

∑
𝑗 = 𝑖 + 1

𝑎𝑖𝑎𝑗𝑥𝑖𝑥𝑗 +
𝑛
∑

𝑙 = 1
𝑎𝑙𝑥2

𝑙 6

In Equation 6, four different models could be considered:

 Linear Surface model, if constant (a0) and linear terms (akxk) are considered.

 Interactive Linear Surface model, if the interaction terms (aiajxixj) are also 

considered.

 Pure Quadratic Surface model, if constant & linear and quadratic terms (al
2xl

2) are 

considered.

 Full Quadratic Surface model, if constant& linear, interaction and quadratic terms 

are considered.

The interactive and non-interactive linear response models were employed to define the 

dependency of gas production loss (GPL) on pertinent parameters affecting the cleanup 

performance of an HFW. A MATLAB code (The MathWorks, 2013) was developed for sets 

to link different stages of the simulation and to model the two-level full factorial sampling 

approach. 

It should be highlighted that considerable efforts were dedicated to fit equations that are 

more representative of the trends observed in the performed simulations. In this exercise, the 

main dependent variable’s (i.e. GPL) domain of the fitted response surface model (RSM) was 

changed. That is, without the domain change there were cases whereby the predicted GPL was 

very different from the actual value and sometimes giving unrealistic negative or greater than 

100%, GPL values. However, with the domain change, this issue was eliminated. 
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To overcome this difficulty and to obtain more accurate RSM and benefiting from the 

support of MATLAB mathematical package technical support team, the GPL variable has been 

transferred to a different domain. That is, instead of defining the model with the output as GPL, 

the regression model has been defined in such a way that gives Log of (GPL/(101-GPL)) as the 

output. This ensures that GPL varies within the desired interval [0,100]. A full discussion on 

the domain change is discussed elsewhere (Nasriani and Jamiolahmady, 2018; Nasriani et al., 

2014; Nasriani et al., 2014a). It is noted that calculated GPL values using RSM in new domain 

correctly vary in the 0 to 100% range.

2.4. Analysis Methodology

In this study, as it is shown in Table 4a-c, the results of 32 different sets are investigated as 

follow:

 Long fracture well (400m) base reference set (1 set)

 Two-layer long fracture sets (4 Sets), To study the impact of gravity on the cleanup.

 Long fracture sets with/without hysteresis (2 Sets), to capture the impact of 

hysteresis on clean-up analysis

 Long fracture sets (400m) with high FF injection volume (15 sets)

 Short fracture sets (100m) with high FF injection volume, (8 sets) 

 Long fracture sets with initial mobile water saturation (2 sets). 

The results have been compared with those of a base reference set and other similar sets. 

These sets have identical reservoir dimensions as those of the base reference set but differ in 

the shut-in time period (ST), matrix permeability variation range (Kmr), pressure drawdown 

(DP) and length of the hydraulic fracture. 

For the simulation sets, there is a Base Reference set with parameters in the ranges indicated 

in Table 3 as defaulted values. The other sets are cited based on the differences of the 

parameters variation range from the Base Reference set, i.e., in each set any parameter that has 

a tick mark has the defaulted values otherwise the parameter’s value is stated in the table. All 

sets that have been considered in this work are listed here for the reference and convenience. 

The analysed sets in this study are listed in Table 4a and Table 4b.

It should be noted that the results of each Set are compared either with base reference set or 

with similar Sets reported highlighting the impact of pertinent parameters studied in this work. 

This means that set numbering might not be monotonic for sets reported in different sections.  

3. Results & Discussions
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3.1. The Base Reference Set 

The base reference set was thoroughly discussed elsewhere (Nasriani and Jamiolahmady, 

2018), therefore in this work, a brief summary of the main observations are presented here. 

From data of Figure 4, it is noted that fracture permeability (Kf), with the highest absolute 

coefficient value of 1, the most important parameter in fracture cleanup, i.e. the larger the Kf, 

the lower the GPL. This observation is in line with having a high coefficient for the Corey 

exponent and endpoint for FF relative permeability curve (nwf and Kmaxwf). That is, they all 

show that cleanup efficiency is improved if fracture fluid mobility inside the fracture improves.

The impacts of surface tension (IFT), pore size distribution index () are affecting the results 

such that if capillary pressure increases, there is a reduction in GPL or an improvement in the 

cleanup, as a larger volume of FF is imbibed into the matrix, leaving fracture clean for gas to 

flow. However, it should be noted that Km also affects Pc, which is discussed below.

Matrix permeability (Km) has a coefficient of -0.4, suggesting that the higher the Km the 

lower GPL. An increase in matrix permeability (Km) influences GPL in two ways: 

(i) It allows better mobility for fluids in the matrix during injection and production 

periods.

(ii) It reduces capillary pressure. 

According to what was mentioned above, a decrease in Pc should increase GPL. Hence, it 

could be concluded that in this base reference set, the contribution of Km in improving fluid 

mobility, particularly that of the FF flowing into the matrix, results in the better cleanup, i.e. 

lowering GPL. 

These observations also suggest that in set 1 base reference set, using chemicals (IFT 

reducing agents) to reduce Pc could increase GPL and impairs cleanup efficiency.

From cumulative frequency data of histogram shown in Figure 7, it is noted that during the 

first 10 days of production, over 83% of simulation runs have GPL larger than 20%, 

GPL20=17%. It is evident that GPL decreases significantly at longer production time. That is, 

the frequency of runs with GPL more than 20% is about 68% and 28% after 30 days and 1 year 

of production, correspondingly, i.e., the longer the production time the cleaner the fracture and 

consequently the lower the GPL.

The main observations of the base reference set are therefore (i). Enhancement in fracture 

conductivity and mobility of FF within the fracture results in an improved cleanup efficiency 

(ii) retaining high Pc by maintaining high IFT results in a cleaner fracture and higher cleanup 

efficiency.
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The cumulative gas and water flowback of the best and worst case scenarios are shown in 

Figure 8. The best-case scenario with the lowest GPL is the one for which all parameters (with 

a positive scaled coefficient value) are set to the minimum limit of their variation range while 

all other parameters (with a negative scaled coefficient value) are set to the maximum limit of 

their variation range. Contrariwise, the worst-case scenario with the highest GPL is the one for 

which all parameters (with a positive scaled coefficient value) are set to their maximum limit 

of range while all other parameters (with a negative scaled coefficient value) are set to their 

minimum limit of the range. It is noted from Figure 8  that significantly higher cumulative gas 

production and gas water ratio and lower cumulative flowback water production is observed 

for the best case than those for the worst case. This observation is in line with what was 

observed previously regarding the impact of Pc on the cleanup, i.e., if Pc increases, more FF is 

retained within the matrix and consequently less FF flowback is produced and as a result GPL 

decreases. Another interesting observation is that the V-shaped gas water ratio curve is 

observed for gas water ratio of the best case at early times as it was reported by Xu et al., 

(2016), i.e., a V-shaped trend caused by a gradual build-up of free gas in the fracture during 

the shut-in time could be noted.

3.2. Two-Layer systems

In this section, the results of layered systems with the cross-flow are presented to study the 

impact of layering and gravity in these sets. 

From data of Figure 4 (Single-layer, set 1) and Figure 9 (Two-layer, set 42), it is noted that 

the two tornado charts look similar in terms of magnitude and trends of coefficients. The only 

difference is that the impact of gravity for the two-layer set under study has caused a decrease 

in the absolute value of the Kf coefficient of the LRSM fitted to the total GPL only after 365 

days of production. More interesting observations are evident if the gas production loss of 

individual layers is studied. It should be noted that decreases in the impact of a parameter in 

one layer will be accompanied by an increase in the impact of that parameter in the other layer 

such that the overall impact is what it is seen in Figure 9.

If we compare the Tornado charts of the top (Figure 10a) and bottom (Figure 10b) layers in 

the two-layer set, it is noted that in the top layer, layer 1, the fracture mobility coefficient (i.e. 

Kf, Kmaxwf, nwf, Kmaxgf and ngf) are more important than the ones in the bottom layer especially 

after 365 days of production,. This trend is due to the fact that while injecting FF into the 

fracture, more FF goes to the bottom layer due to gravity making these parameters less 
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important in the bottom layer (Figure 10b) (and as discussed below other parameters are more 

important). It should be noted that Kf has two effects in this layered system: (1) increasing Kf 

reduces GPL due to production enhancement in all layers (2) increasing Kf causes more FF to 

travel from the top to bottom layer resulting in higher GPL values for the bottom layer. The 

result of these two effects causes the absolute value of the Kf coefficient for the bottom layer 

to be less than the top layer. This reduction seems to be very significant such that the overall 

impact on total gas production loss is a reduction in the absolute value of Kf as evident in Figure 

4 and Figure 9 where single-layer and two-layer results are compared. 

Data of Figure 10b also shows that the effect of Pc seems to be more important in the bottom 

layer as evident by the higher absolute value of coefficients for IFT and pore size distribution 

index (λ). This is due to the fact that there is more FF in this layer as a result of FF gravity 

segregation. The absolute value of the Km coefficient is lower for the top layer. That is, the 

negative impact of an increase in Km that reduces Pc and increases GPL has reduced the positive 

impact of an increase in Km that improves mobility and reduces GPL. This is particularly 

evident after 365 days of production whereby the coefficient of Km is positive, i.e. an increase 

in Km increases GPL because it reduces Pc and less fluid is imbibed into the matrix rather than 

flowing down to the bottom layer. For the bottom layer the impact of how easy fluid flows into 

the matrix is more important and hence the coefficient of Km is negative.

For the Two-Layer Low DP set (set 43 with DP=100psi) and Two-Layer Extended Shut-in 

time (set 44 with ST=20days), the same observations as those of Two-Layer Base Reference 

set (set 42), described above, were noted.

For the Two-Layer Lower Km range and Extended Shut-in time (set 45 with ST=20days and 

Kmr=10) also almost the same observations as what were reported above for set 42 are noted. 

The only difference here is that in the tornado chart of the bottom layer (Figure 11) we have a 

small positive coefficient value for Kf, i.e. the second effect of Kf (increasing Kf causes more 

FF travelling to the bottom layer and increases GPL in this layer) is more important. In other 

words, if the tornado charts of the bottom layer of the previous sets with the relevant top layer 

charts are compared, a reduction in the absolute value of Kf coefficient is noted but the 

coefficient is negative indicating that an increase in Kf reduces GPL due to improved fluid 

mobility in the fracture. However, in this set, the negative impact of the FF gravity segregation 

results in a positive Kf coefficient in the bottom layer.

3.2.1.Error Analysis Using Single/Two Layer sets
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The other reason to run the two-layer sets was to investigate how representative the single 

layer set results are for a layered system. In order to evaluate this, the behaviour of linear 

response surface functions, with interactive parameters (ILRSM), fitted to these data were 

studied. In this exercise, the predicted values by IRLSM fitted to single-layer and two-layer 

data were compared with the GPL values of the layered system obtained from our numerical 

simulation exercise referred to as true values.

The root mean square error, RMSE, Equation 7 and average absolute percentage deviation, 

AAD%, Equation 8, were used for this purpose with the results presented in Table 6.

𝑹𝑴𝑺𝑬 =

𝒏

∑
𝒊 = 𝟏

[𝑮𝑷𝑳𝒑𝒓𝒆𝒅𝒊𝒄𝒕 ‒ 𝑮𝑷𝑳𝒔𝒊𝒎]
𝟐

𝒏

7

𝑨𝑨𝑫% =

𝒏

∑
𝒊 = 𝟏

(
𝒂𝒃𝒔[𝑮𝑷𝑳𝒑𝒓𝒆𝒅𝒊𝒄𝒕 ‒ 𝑮𝑷𝑳𝒔𝒊𝒎]

𝑮𝑷𝑳𝒔𝒊𝒎
)

𝒏 ∗ 𝟏𝟎𝟎
8

For AAD% calculations, GPL results larger than 30% was considered due to the fact that 

low true GPL values (in the denominator), causes exaggerated AAD% values. Furthermore, 

such low GPL values are not of interest.

RMSE and also AAD% in Table 6 show that ILRSM fitted to single layer data predicts the 

two-layer results with almost the same accuracy as that predicted by ILRSM fitted to the 

layered data. These data suggest that fitted ILRSM for single layer could be used to predict the 

GPL in layered systems, in other words, the impact of gravity segregation on the overall 

flowback cleanup efficiency is not insignificant.

3.3. Cleanup with/without hysteresis effect

During injection time in the hydraulically fracturing process, FF imbibes into the matrix 

through the fracture faces and then is partially produced with hydrocarbon fluid in a drainage 

process. Here, the capillary pressure and relative permeability hysteresis processes could play 

a role to control the clean-up of FF from the matrix invaded zone. 
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In order to investigate the hysteresis effect, we benefited from available formulations in the 

literature relating the imbibition and drainage processes. Equations 9 &10 describe the Brooks-

Corey drainage/imbibition capillary pressure curves respectively(Brooks and Corey, 1966).
1

*( )
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w wr
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Equation Error! Reference source not found. is the rearranged form of Equation Error! 

Reference source not found., which has been used before in this study.

It is well documented that hysteresis of the wetting relative permeability is negligible, whereas 

hysteresis decreases the relative permeability to the non-wetting phase. In this set, for the case 

with hysteresis, the gas imbibition relative permeability Corey exponent, (ngm)imb, in the matrix 

was set to 1.5 as minimum and 5 as maximum. In order to obtain the higher drainage relative 

permeability value, Corey exponent (ngm)drainage, was assumed to be 1.25 and 2.5, respectively. 

These values were considered based on the understanding of the process gained by the work of 

the GCR team, literature data and support of our sponsors of the project.

For the case without hysteresis, due to the fact that in the real case, imbibition process is 

dominant during injection time of the hydraulically fracturing process and a combination of 

drainage and imbibition process is happening during the production period, imbibition capillary 

pressure curve and imbibition relative permeability, (ngm)imb, were used.

Comparing the tornado charts of the base reference set with hysteresis, set 47, (Figure 12a) and 

the base reference set without hysteresis, set 47, (Figure 12b), it is noted that the direction of 

impact of parameters and their magnitude are very similar. This indicates that considering 

hysteresis in this model does not change the tornado chart, in other words, the impact of 

considering hysteresis on the flowback cleanup performance is negligible.

Figure 13 compares the histogram charts of base reference set with and without hysteresis, 

showing that introducing hysteresis effect makes clean-up very slightly faster at all production 

periods. This is due to the fact that in the case without the hysteresis effect, lower imbibition 

gas relative permeability values have been used which results in lower gas production rate and 

slower clean-up.

3.4. Sets with Increased Fracturing Fluid’s Injection Volume (FVR=10)
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In high FVR sets, the ratio of the injected volume of FF to fracture volume (FVR) was 

increased from 2 in the base reference set to 10. As shown in the corresponding tornado chart 

of set 2 with only a higher FVR than the base reference set, Figure 14, the general trends of 

this high FVR set are similar to those of the reference set but with smaller coefficients (Figure 

4). It is due to the fact that larger amount of injected FF requires a longer time to produce. 

Accordingly, compared to the base reference set, higher GPL is experienced as seen in the 

corresponding histogram chart of the GPL cumulative frequency, Figure 15. Quite 

interestingly, coefficients (Figure 14) and frequency of GPL (Figure 15) of this set after 370 

days of production are similar to those of the base reference set after 30 days of production, 

Figure 4 and Figure 7. This implies higher injected FF only results in a delay in the cleanup 

process, in other words, increasing FVR from 2 to 10 significantly increased GPL and delayed 

fracture cleanup resulting in overall poorer and slower cleanup performance, Figure 15. 

Comparing the tornado charts of the base reference sets and that of set 2 with higher FVR, 

Figure 4 and Figure 14 respectively, shows that the relative importance of pertinent parameters 

when FVR=10 was less than those when FVR=2, especially at higher production periods.

The negative impact of larger amount of injected FF can clearly be seen in Figure 16a which 

shows the water saturation map of the best case after two days of a shut-in.  Comparing data of 

this Figure with those of Figure 5 in the base reference set, it is noted that the FF saturation in 

the matrix and fracture is much greater than that of the base case. Similarly, the FF saturation 

in the matrix and fracture in the worst case, Figure 17, is much higher than that of the base 

case, Figure 6. . As detailed elsewhere (Nasriani and Jamiolahmady, 2018) to have a better 

visualisation of the saturation distribution, dimensions of grid blocks have not been selected to 

the same scale as those of the well model under study.

20 additional sets, with a total of 81,920 simulation runs are also performed. These sets 

include studying the impact of a combination of increasing fracture volume ratio (FVR) with 

prolonging shut-in time, reducing matrix permeability range and decreasing or increasing DP 

on GPL in long fracture sets (Xf=400m) and short fracture sets (Xf=100m). The long sets are 

sets 9 and 29 to 41 and the short sets are sets 11, 20 and 49 to 54.

In summary, the main observations were that injecting a high volume of FF, FVR=10, into 

a very tight formation significantly impaired production. The effect of varying other parameters 

such as extending soaking time or increasing pressure drawdown significantly reduced the 

negative impact of high FVR resulting in less GPL reduction. 
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In the case of sets 38 to 41 with the very tight formation, high FVR resulted in 

inconsistencies in the results because of high GPL close or equal to 100%, which resulted in 

killing the well. The common characteristic between sets 38, 39, 40 and 41 is that they all 

include very tight formations (Km =0.01-1µD). In Figure 18, it is noted that as the matrix 

permeability range is reduced by a factor of a 100 (relative to the base reference set) in these 

sets, the tornado chart results (Figure 18) are significantly impaired, rendering comparison of 

pertinent parameters across sets unfeasible, as the parameter effects are masked by the high 

FVR damage. 

In set 38, the histogram chart of the GPL cumulative frequency, Figure 19, shows that 54% 

of simulated runs (2212 out of 4096) have a GPL greater than 90% after one year of production. 

Similar results for set 39, 50% (2048 out of 4096), have a GPL greater than 90% after one year 

of production. set 40 and 41 show similar results with 51% (2089 out of 4096) and 54% (2212 

out of 4096), respectively, having a GPL greater than 90% after one year of production. That 

is, the majority of runs in these very tight formation sets have exceptionally high GPL which 

results in a poor response surface model and consequently a less reliable tornado chart. In other 

words, once a high volume of fracturing fluid is injected into the tight formation, the well is 

effectively killed. 

The effect of varying other parameters such as extending ST or increasing DP provides no 

major differences as excessive FF has been injected into a very low permeability formation. 

Therefore, it can be concluded that it is inadvisable to inject too much FF, particularly in tight 

formations as gas production is significantly impaired. 

In short fractured wells and in line with what was observed in long fracture sets, increased 

FVR from 2 to 10 lead to increased GPL and poor cleanup efficiency, mainly due to the more 

FF invasion. Furthermore, when FVR was increased from 2 to 10 in short fractures, the 

parameters related to Pc became less important for the sets with a higher FVR. For both long 

and short fracture sets, it was observed that high DP (ΔP=4000psi) leads to an enhancement of 

the cleanup performance, reducing GPL and consequently, obtaining a greater production than 

in low drawdown sets. In tight formations, comparing short and long fractured wells using an 

FVR of 10, it was found that the effect of an increased FVR has a greater impact on GPL in 

short fractures at early times than in long fractures, being the other way around at later stages. 

IFT and ngf showed consistently greater values for long fractures. If an extended ST was 

applied when using an increased FVR of 10, the results obtained for both (with and without 
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increased ST) were, in some manner, the same, not improving GPL. However the parameters 

related to Pc had a greater impact after applying an extended ST.

3.5. Sets with Larger Initial Water Saturation

In two new sets, initial water saturation (Swi) was increased from 15% in the base reference 

set, set 1, to 50% in set 62 and 75% in set 63. In all sets, irreducible water saturation (Swir), as 

well as critical water saturation (Swc), were set to 15%, consequently, formation water was 

immobile in set 1 and mobile in sets 62 and 63.

Comparing the tornado chart of these three sets 1, 62 & 63, Figure 4, Figure 20 & Figure 21 

respectively, with each other, it is noted that the observed trends of all parameters in sets 1 and 

62 are more or less the same, but the value of some of the parameters are slightly different. The 

main difference between trends in these two sets compared to the set 63 with the highest Swi 

is that Kf is the most important parameter in sets 1 and 62 and second most important parameter 

after ngm in set 63. In set 63, due to the fact that formation water saturation is set to the largest 

value (Swi=75%), gas mobility in the matrix is the most critical parameter, in other words, ngm 

is the main controlling parameter on GPL. For the same reason, ngf/nwf is more/less important 

in sets 62 and 63 compared to those of set 1.

If one compares Pc pertinent parameters (IFT, λ and Km) in set 1 and 62, it is noted that the 

effect of Pc on GPL is less important in set 62 due to smaller absolute values for IFT and λ, i.e. 

keeping water in the matrix, due to its high water saturation, is not as important in improving 

the cleanup efficiency. 

The other important observation in Figure 21 is the trend change in the IFT coefficient in 

set 63. That is, in this set 63, IFT has a positive value indicating that an increase in IFT increases 

GPL. However, it should be noted that IFT is not the only parameter affecting Pc, hence, we 

need to see the effect of IFT, Km and λ all together to understand the effect of Pc on cleanup 

efficiency in this largest Swi set. In this sets, the capillary pressure was calculated and plotted 

by selecting the corresponding values of IFT, Km and λ for best and worst cases from their 

relevant tornado charts and also using Equations 6 and 7.

Figure 22 shows that in set 63, Pc of the worst case is higher than the best case whilst in sets 

1 and 62 Pc of the worst case is lower than the best case at all Sw. In other words, in set 1 and 

set 62, it was better to keep the FF in the matrix by having higher Pc, but in set 63, it was better 

to backflow the FF out of the matrix. This is due to large initial water saturation, which has a 
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detrimental effect on gas production especially noting that initial gas saturation is 25%, which 

is close to the residual trap gas saturation value of 10%.

Therefore, in set 63, unlike previous two sets (1 and 62), using chemicals (IFT reducing 

agents) to reduce Pc could reduce GPL and improve cleanup efficiency. Figure 23 shows the 

histogram chart that compares the GPL cumulative frequency of the runs in sets 1, 62 and 63. 

Slower/slowest cleanup is observed for sets 62 and 63 with larger/largest initial water saturation 

due to the detrimental effect of mobile water on gas production.

4. Conclusions

An extensive investigation on the cleanup efficiency of fractured wells was conducted to 

further improve the current understanding of hydraulic fracturing treatment for practical field 

applications.

In this study, the results of 32 different sets were discussed including the following sets:

 Long fracture (400m) base reference set (1 sets)

 Two-layer long fracture sets (4 sets)

 Long fracture sets with/without hysteresis (2 sets)

 Long fracture sets(400m) with high FF injection volume (15 sets)

 Short fracture set (100m) with high FF injection volume, (8 sets) 

 Long fracture sets with initial mobile water saturation (2 sets) 

 The results have been compared with those of a base reference set and other similar sets. 

These numerical models have similar geometry as those of the base reference set but are 

different in the shut-in time period (ST), matrix permeability variation range, pressure 

drawdown (DP) and length of the hydraulic fracture. 

A summary of the key conclusions is given below:

1. Fracture permeability (Kf), as well as FF flowback mobility pertinent parameters 

within the fracture,  were the key drivers of GPL improvement for all cases studied 

apart from sets with very low Km range, sets with very low Km range and low DP 

and sets with high Swi. 

2. Additionally, matrix permeability (Km) displayed a positive impact on GPL, i.e. an 

increase in Km reduced GPL and improved fracture cleanup, for all sets. 
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3. The coefficients of interfacial tension (IFT) and pore size index () parameters 

controlling capillary pressure indicated that an improvement of cleanup efficiency is 

attained when capillary pressure (Pc) is increased. 

 This is achieved when IFT is increased and/or  is decreased except for sets 

with a very low Km range and or the set with high Swi (set 63). 

4. The impact of considering hysteresis was negligible. 

5. In layered systems, Kf had two effects: (1) increasing Kf reduces GPL due to 

production enhancement in all layers (2) increasing Kf caused more FF to travel from 

the top to bottom layer resulting in higher GPL values for the bottom layer. 

 The impact of gravity in the two-layer sets caused a decrease in the absolute 

value of the negative Kf coefficient (i.e., first effect was still dominant). 

Generally, the result of these two opposing effects caused the absolute value 

of the Kf coefficient for the bottom layer to be less than the top layer. 

Additionally, in layered sets 42 (base reference set), 43 (DP=100) and 44 

(ST=20), the first effect of Kf on GPL was dominant in the bottom layer. 

However, in set 45 (Kmr=10 and ST=20) the second effect (more FF travels 

to bottom layer causing more GPL) was dominant resulting in a positive 

value for Kf. 

6. In two-layer sets, it was noted that in the top layer, layer 1, the fracture mobility 

coefficients (i.e. Kf, Kmaxwf, nwf, Kmaxgf and ngf) were more important than the ones 

in the bottom layer.

7. In layered sets, the effect of Pc seemed to be more important in the bottom layer as 

evident by the higher absolute value of coefficients for IFT and pore size distribution 

index () due to having more FF in this layer. 

8. RMSE and also AAD% results showed that ILRSM fitted to the single layer 

simulation data predicted the two-layer results with almost the same accuracy as that 

predicted by ILRSM fitted to layered data. These data suggested that fitted ILRSM 

to the single layer can be used to predict the GPL in layered systems.

9. Increasing FVR from 2 to 10 significantly increased GPL and delayed fracture clean-

up resulting in overall poorer cleanup performance. 

10. The relative importance of pertinent parameters when FVR=10 was less than those 

when FVR=2, especially at higher production periods. 
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11. Injecting a high volume of FF, FVR=10, into a very tight formation significantly 

impaired production. The effect of varying other parameters such as extending 

soaking time or increasing pressure draw down provided negligible GPL reduction. 

 In the case of ultratight cases, this increase in FVR resulted in inconsistencies 

in the results because of high GPL close or equal to 100%, which resulted in 

killing the well. The results of these four sets were considered unreliable.

12. In the short fracture set with higher injected FF, the effect of matrix pertinent 

parameters (Km, Kmaxwm, Kmaxgm, nwm and ngm) on GPL was more pronounced. 

13. Kf is the most important parameter in sets 1 and 62 with Swi of 15% and 50% and 

second most important parameter after ngm in set 63 with Swi of 75%. That is, due 

to the fact that as formation water saturation is set to the largest value (Swi=75%), 

gas mobility in the matrix is the lowest among these 3 sets. In other words, ngm is the 

main controlling parameter on GPL. 

14. Slower/slowest cleanup was observed for sets with larger/largest initial water 

saturation compared to the base reference set due to the detrimental effect of mobile 

water on gas production.

15. Unlike formations with low to moderate initial water saturation, using chemicals 

(IFT reducing agents) to reduce Pc could reduce GPL and improve cleanup 

efficiency in fields with high initial water saturation.
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Nomenclature
K absolute reservoir permeability

Kmax end point of the Corey relative permeability formula

P pressure

Pc capillary pressure

S saturation

n exponent of the Corey relative permeability formula

x x direction

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
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1296
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y y direction

z z direction

Subscript
g gas

w water

r residual

f fracture

m matrix

Abbreviations
LRSM linear response surface model

ILRSM linear response surface model with interaction

FVR the ratio of injected fracture fluid to fracture volume

IFT interfacial tension

FF fracture fluid

DP Pressure drawdown

GPL gas production loss

Kmr Matrix Permeability Ratio, i.e., if Kmr=10 mean the Km variation range is reduced by factor of 

10

ST Shut-in/Soaking time

VW Vertical Well

HF Hydraulic Fracturing
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5. Tables

Table 2 Fluid properties of gas used in this study.

P (psi) Bg )(cp

14.65 260.21 0.0147

400 9.4295 0.0149

600 6.2505 0.015

800 4.6658 0.0152

1000 3.7189 0.0154

1500 2.4673 0.016

2000 1.8527 0.0168

2500 1.492 0.0177

3000 1.2574 0.0187

3500 1.0942 0.0198

4000 0.9749 0.021

5000 0.8137 0.0235

6000 0.7109 0.026

7000 0.6401 0.0283

7500 0.6124 0.0295

8000 0.5886 0.0306

8500 0.5677 0.0317

Table 1 Basic properties of the (Xf is fracture half length) model

Xf(m) wf(m) Xres(m) Yres(m) Zres(m)

100 or 400 0.004 2000 2000 40
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1540
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1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
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1579
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1585
1586
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Table 3 The range of variation of uncertain parameters after fracturing.

Parameter Min Max

Fracture Permeability Kf (D) 1 30
Matrix Permeability Km 1 µD 100 µD

Matrix capillary pressure curve (Pc) Pore size index  1 4
Matrix capillary pressure curve (Pc) Threshold pressure Eq. (11) Eq. (11)

Matrix capillary pressure curve (Pc) Interfacial Tension 
(mNm/m) 2 50

Matrix Krg curve ngm 1.5 5
Matrix Krw curve nwm 1.2 4
Matrix Krg curve Kmaxg(end point) 0.5 1.0
Matrix Krw curve Kmaxw(end point) 0.05 0.6

Fracture Krg curve ngf 1.5 5
Fracture Krw curve nwf 1.2 4
Fracture Krg curve Kmaxg(end point) 0.5 1.0
Fracture Krw curve Kmaxw(end point) 0.1 0.75
Pressure Drawdown p (psi) 1000 1000

Porosity  0.15 0.15
Matrix Krg curve Sgrm 0.1 0.1
Matrix Krw curve Swrm 0.15 0.15

Fracture Krg curve Sgrf 0.1 0.1
Fracture Krw curve Swrf 0.15 0.15

Initial properties of the model
Initial water saturation within the 

matrix and fracture 15%

Initial gas saturation within the 
matrix and fracture 85%

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
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Table 4a Sets analysed

Set N
am

e

D
P (Psi)

FV
R

Shut-in tim
e (days)

Frack Length (m
)

K
f (D

)

K
m

 (µD
)

lam

IFT

ngm

nw
m

K
m

axgm

K
m

axw
m

ngf

nw
f

K
m

axgf

K
m

axw
f

Default 
Values

1000

2 2 400

1-30

1-100

1-4

2-50

1.5-5

1.2-4

0.5-1

0.05-0.6

1.5-5

1.2-4

0.5-1

0.1-0.75

SFVW-Set 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 2 ✓ 10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 9 ✓ 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SFVW-Set 

11 ✓ 5 ✓ 10
0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
20 ✓ 10 ✓ 10

0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
29

✓

10 20 ✓ ✓

✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
30

10
0 10 20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
31

4000 10 20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
32

100 10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
33

4000 10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
34

✓

10 20 ✓ ✓

0.1-10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
35 ✓ 10 ✓ ✓ ✓

0.1-10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
36

4000 10 20 ✓ ✓

0.1-10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
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Table 4b Sets analysed

Set N
am

e

D
P (Psi)

FV
R

Shut-in tim
e (days)

Frack Length (m
)

K
f (D

)

K
m

 (µD
)

lam

IFT

ngm

nw
m

K
m

axgm

K
m

axw
m

ngf

nw
f

K
m

axgf

K
m

axw
f

Default 
Values

1000

2 2 400

1-30

1-100

1-4

2-50

1.5-5

1.2-4

0.5-1

0.05-0.6

1.5-5

1.2-4

0.5-1

0.1-0.75

SFVW-Set 
37

4000 10 ✓ ✓ ✓

0.1-
10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
38 ✓ 10 20 ✓ ✓

0.01-
1

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
39

4000 10 20 ✓ ✓

0.01-
1

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
40

4000 10 ✓ ✓ ✓

0.01-
1

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
41 ✓ 10 ✓ ✓ ✓

0.01-
1

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
42 Two-

Layer
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
43 Two-

Layer

10
0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
44 Two-

Layer
✓ ✓ 20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
45 Two-

Layer
✓ ✓ 20 ✓ ✓

0.1-10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
47 

with/without 
Hysteresis

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
48 

with/without 
Hysteresis

10
0 ✓ ✓ ✓ ✓

0.1-10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
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Table 4c SFVW-Sets analysed

Set N
am

e

D
P (Psi)

FV
R

Shut-in tim
e (days)

Frack Length (m
)

K
f (D

)

K
m

 (µD
)

lam

IFT

ngm

nw
m

K
m

axgm

K
m

axw
m

ngf

nw
f

K
m

axgf

K
m

axw
f

Default 
Values

1000

2 2 400

1-30

1-100

1-4

2-50

1.5-5

1.2-4

0.5-1

0.05-0.6

1.5-5

1.2-4

0.5-1

0.1-0.75

SFVW-Set 
49

10
0 10 ✓ 10

0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
50

4000

10 ✓ 10
0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
51

✓

10 ✓ 10
0 ✓

0.1-10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
52 ✓ 10 ✓ 10

0 ✓

0.01-1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
53

4000 10 ✓ 10
0 ✓

0.01-1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
54

✓

10 20 10
0 ✓

✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
62, 

Swi=50%

✓

✓ ✓ ✓ ✓

✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SFVW-Set 
63, 

Swi=75%
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
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Table 5 Parameters for the worst and the best scenarios for the Base Reference Set, Set 
1.

CaseNo. Parameter Worst Best
1 Fracture Permeability Kf (D) 1 30
2 Matrix Permeability Km  (D) 1 100
3 Pore Size Index,  4 1

4 Matrix Capillary Pressure Interfacial Tension, 
IFT (mNm/m) 2 50

5 The exponent of the Corey gas relative 
permeability curve in the matrix ngm 5 1.5

6
The exponent of the Corey fracture fluid 
(water) relative permeability curve in the 
matrix

nwm 4 1.2

7 The endpoint of Corey gas relative 
permeability curve in the matrix Kmaxgm 0.5 1.0

8 Endpoint of Corey fracture fluid (water) 
relative permeability curve in the matrix Kmaxwm 0.05 0.6

9 The exponent of the Corey gas relative 
permeability curve in fracture ngf 5 1.5

10
The exponent of the Corey fracture fluid 
(water) relative permeability curve in 
fracture

nwf 4 1.2

11 The endpoint of Corey gas relative 
permeability curve in fracture Kmaxgf 0.5 1.0

12
The endpoint of Corey fracture fluid 
(water) relative permeability curve in 
fracture

Kmaxwf 0.1 0.75

13 Porosity  0.15
14 Residual water saturation in fracture Swrf 0.15
15 Residual water saturation in the matrix Swrm 0.15
16 Residual gas saturation in fracture Sgrf 0.1
17 Residual gas saturation in matrix Sgrm 0.1

Table 6 RMSE and AAD% for the fitted ILRSM for single/Two-Layer.
  10 days 30 days 370 days

 
 RMSE

AAD% 
for 

GPL>30%
RMSE

AAD% 
for 

GPL>30%
RMSE

AAD% 
for 

GPL>30%
Two-Layer 8.66 6.86% 10.12 6.63% 13.74 6.88%Set 1, Base 

Reference 
set Single Layer 8.92 6.79% 10.57 6.35% 15 7.05%

Two-Layer 20.82 17.58% 22.13 17.55% 22.81 16.31%
Set 3, ST20

Single Layer 20.87 17.50% 22.17 17.47% 23.11 16.70%

Two-Layer 12.83 9.38% 14.64 10.87% 19.34 0.76%Set 6, 
Dp100 Single Layer 13.77 9.76% 15.81 10.55% 21.17 4.34%

Two-Layer 8.98 10.6% 9.5 12.27% 16.1 29.8%Set 5, 
Kmr10ST20 Single Layer 18.7 24.08% 19.2 26.12% 22.8 51.8%
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6. Figures

Figure 1 A flowchart explaining the method

Figure 2 The section that is modelled 
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Figure 3 Predicated bottom hole pressure by the analytical model (Equation 2) vs the 
simulation model.
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Figure 4 Tornado chart showing LRSM coefficients of all pertinent parameters in the 
Base Reference Set (BC) at three production stages, (FVR=2, DP=1000 psi, ST=2 days 
and Kmr=1).

Figure 5 Fracturing Fluid saturation map of the best scenario of the Base Reference Set 
after 2 days of the shut-in period.

Fracture

2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065



36

Figure 6 Fracturing Fluid saturation map of the worst scenario of the Base Reference 
Set after 2 days of the shut-in period.

Figure 7 Histogram chart displaying cumulative frequency of the Base Reference Set 
(BC) at three production stages.
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Figure 8 Cumulative gas and water production for the best/worst case

Figure 9 Tornado chart comparing LRSM coefficients of all pertinent parameters at 
three production stages for Two-Layer Base Reference Set, Long Fracture, Set 42.
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a. Layer 1, Top Layer, Set 42

b. Layer 2, Bottom Layer, Set 42

Figure 10 Tornado chart comparing LRSM coefficients of all pertinent parameters at three 
production stages for Two-Layer Base Reference Set, Long Fracture, Set 42(a) Layer 1, Top Layer 
and (b) Layer 2, Bottom Layer.
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Figure 11 Tornado chart comparing LRSM coefficients of all pertinent parameters at 
three production stages for the Layer 2, Bottom Layer of set 45.

a. Base Reference set, with Hysteresis, Set 47

b. Base Reference set, without Hysteresis, Set 47
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Figure 12: Tornado chart comparing LRSM coefficients of all pertinent parameters at three 
production stages for (a) Base Reference set, with Hysteresis, Set 47 (b) Base Reference set, with 
Hysteresis, Set 47 

Figure 13: Histogram chart comparing GPL cumulative frequency of the Base Reference set 
with/without Hysteresis, Set 47 .at three production stages.
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Figure 14 Tornado chart showing LRSM coefficients of all pertinent parameters in Set 
2 with higher FVR at three production periods.

Figure 15 Histogram chart comparing the cumulative frequency of Set 2 with FVR=10 and 
Base Reference Set (BC) at three production periods.
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Figure 16 Fracturing Fluid saturation map of the best scenario of the Set2 (FVR=10) after 2 
days of the shut-in period.

Figure 17 Fracturing Fluid saturation map of the worst scenario of the Set2 (FVR=10) after 2 
days of the shut-in period.
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Figure 18 Tornado chart comparing LRSM coefficients of all pertinent parameters at three 
production stages, in the Set with FVR=10, Kmr= 100, ST=20 days, Long Fracture.

Figure 19 Histogram chart comparing the cumulative frequency of Set 38 with FVR=10, 
Kmr=100 and ST=20 and Set 2 with FVR=10 at three production periods.
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Figure 20 Tornado chart comparing LRSM coefficients of all pertinent parameters at three 
production stages, in Set 62 (Swi=50% &  Swirr=15%), Long Fracture

Figure 21 Tornado chart comparing LRSM coefficients of all pertinent parameters at three 
production stages, in Set 63 (Swi=75% &  Swirr=15%), Long Fracture
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Figure 22 Capillary pressure curves for Best/Worst case Base reference set, Set 1, Long Set 
62(Sw=50%) and Long Set 63(Sw=75%). 

Figure 23 Histogram chart comparing GPL cumulative frequency of the Base reference set, 
Set 1, Set 62 (Sw=50%)  and Set 63 (Sw=75%).
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