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Introduction  

Sponsored by the Friends of Israel Educational Foundation (FIEF) and Ben-Gurion University of 

the Negev and supported by the EU COST action Zinc-Net (COST TD1304), a three-day 

collaborative UK-Israel workshop was organized by Drs Assaf Rudich, Imre Lengyel and Arie 

Moran. Participants from the UK and Israel met at the Desert Iris Hotel, Yeruham, Israel between 

the 28-30th of November 2016 for in-depth discussions, rather than a lecture series, to set the 

stage for future collaborative grants and projects on diabetes and zinc.  Two days of formal 

scientific sessions with dynamic and wide-ranging discussions was followed by a day of touring 

and informal networking in the Negev area. This format was previously recognized by our 

sponsors as both effective and enjoyable and all participants agreed at the end of the meeting that 

the 3-days provided an excellent basis for future scientific collaboration.  The discussions were 

centered on diabetes and obesity, already at pandemic levels, and zinc homeostasis which is 

related to the clinical issues and themes of the meeting. The free-flowing discussions were based 

on short presentations setting the scene for the six main topics: ‘Diabetes and zinc transporters’, 

‘Nutrition related factors’, ‘Biomarkers’, ‘Clinical epidemiology’, ‘the Microbiome and 

diabetes’, and ‘Related diseases’. The abstract style summary of the sessions is followed by the 

major discussion points raised by the Authors and other participants (UK: Patrik Rorsman, 

Oxford University; Alan Stewart, University of St Andrews and Israel: Assaf Rudich, Idit 

Liberty, Rahel Gol, Guy Las and Amos Katz, Ben-Gurion University; Sarah Zangen, Haddassa 

University). We hope that readers will find this discourse stimulating and some of the ideas 

might make their way into their research efforts.  

 

Obesity, Diabetes and Zinc 



Diabetes mellitus (DM), including Type 1 diabetes (T1DM), Type 2 diabetes (T2DM) and 

gestational diabetes, is a common devastating disease of dysglycaemia, affecting over 422 

million people worldwide as of 2014, with ≈75% of affected people living in disadvantaged 

regions where malnutrition may be common. As well as the acute effects of hyper- and hypo-

glycaemia DM is the cause for vascular and retino-, nephro- and/or neuro-pathy complications, a 

cardiomyopathy and is also associated with neurodegenerative disease and increased cancer 

incidence. Furthermore, diabetes can adversely impact pregnancy related outcomes for both 

mother and child.  Zinc has long been recognised as key to insulin production, storage, secretion, 

and action. However, the connections between obesity, DM and its complications and zinc need 

significantly increased attention. Whilst heart failure is common in people with diabetes and 

there is increasing recognition of a specific diabetic cardiomyopathy, independent of ischemic 

heart disease and hypertension, due to a relative lack of specific expertise amongst attendees 

there was limited discussion in this important area.  

 

Zinc in diabetes: a review and perspective (Guy A. Rutter)  

 

Zinc levels are exceptionally high in pancreatic β cells, ~20 mmol/L in insulin-containing 

secretory granules. There are two Zn2+ ions at the core of each insulin hexamer and Zn2+ is 

essential for crystallization of insulin, as demonstrated by loss of normal electron dense granules 

in mice expressing a mutant insulin (HisB10Asp) defective in insulin binding. Zn2+ levels are 

reduced ~75 % in the diabetic pancreas, partly reflecting β cell mass loss, and reduced insulin 

levels. Zn2+ is also critical to insulin signaling, affecting activity of phosphatases (e.g. PTP1B 

which dephosphorylates the insulin receptor), and activity of the adiponectin receptor, which 



regulates glucose utilization by skeletal muscle. Dietary Zn2+ supplementation studies to improve 

glucose homeostasis in rodents and in man have often been negative [1].  

 

At least two genome-wide association studies (GWAS) for T2DM risk identified non-

synonymous variants in the SLC30A8 gene, encoding the secretory granule transporter ZnT8 [2]. 

ZnT8 expression is predominantly in mammalian pancreatic islet β and α cells, making it a 

particularly interesting drug target. Whilst early studies suggested that the risk (R) variant was 

less active [3], recent studies demonstrate that this (R) variant is more active, which may explain 

why the rare, loss-of-function (LoF) variants protect against disease [4]. Nonetheless, more work 

is needed as mouse studies consistently show hyperglycaemia and/or an inhibition of insulin 

secretion after deletion of ZnT8 globally or in the β cell. Indeed, it may be that the chief effect of 

ZnT8 deletion is to lower Zn2+ release from the β cell which, in turn, enhances hepatic insulin 

clearance to impair peripheral insulin action [5, 6]. Whether lowered Zn2+ levels close to the islet 

persists after entry into the portal vein and the systemic circulation is debated and difficult to test 

experimentally. Nonetheless, ratios of C-peptide to insulin are increased in risk allele carriers in 

man, consistent with this hypothesis. Interestingly, ZnT8 is also expressed in α cells [7], and in 

contrast to earlier reports our recent findings using mice inactivated selectively for ZnT8 or 

overexpressing the transporter in α cells demonstrate a negative correlation between ZnT8 

expression and glucagon secretion, i.e. increased secretion as ZnT8 levels fall. These findings 

argue that lowered ZnT8 (by increasing glucagon) should raise glucose levels.  Therefore, the 

mouse data imply positive actions for ZnT8 (increased insulin, lowered glucagon) and, in 

contrast to LoF variant data suggest that pharmacologic activation of ZnT8 might be clinically 

helpful [8]. The development and testing of small molecular activators and inhibitors in animals 



and man is desirable. Despite all the information on ZnT8 and the role for zinc in insulin crystals 

the impact of changing zinc levels in DM are yet to be discovered. 

  

Nutrition effects - I 

Malnutrition, zinc status and diabetes (Nicola Lowe) 

 

Malnutrition encompasses both under-nutrition and adiposity.  The “double burden” of 

malnutrition can cause both stunted growth, deficiencies in essential nutrients alongside obesity 

in populations and within families.  The prevalence of overweight and obesity among women 

aged 20-49 years is up to 70% in the Americas and Caribbean, and >40% in Europe [9]. Obese 

pregnant women are more likely to develop gestational diabetes and later in life T2DM [10]. A 

systematic review of six Prospective Cohort Studies examined the relationship between zinc 

status or intake and T2DM risk. Only one study reported a reduced T2DM risk with increasing 

dietary zinc, four reported no association and one an increased risk of T2DM.  A recent 

systematic review and meta-analysis examined relationships between dietary zinc intake and 

status in people with vs. without DM, and found significantly lower zinc intakes in the T2DM 

group, which may be due to a lower calorie diet to treat their concurrent obesity. In addition, their 

serum zinc concentration was significantly lower than in healthy controls, consistent with altered 

zinc metabolism due to concurrent inflammation, and/or an increase in urinary zinc excretion, 

both of which occur in T2DM [11]. What about zinc supplementation and glycaemia?  A meta-

analysis revealed that zinc supplementation was associated with significantly lower fasting blood 

glucose levels and a trend to lower HbA1c levels. In summary, zinc status may be compromised 

in obesity and in T2DM, and changes in zinc homeostasis are likely present in DM.  



Interpretation of plasma zinc levels as a biomarker of zinc status is problematic due to the 

confounding by concurrent inflammation.  Future studies should consider alternative biomarkers 

such as hair or nail zinc concentrations, or measures of DNA fragmentation. 

The discussion explored the impact of the timing of zinc supplementation on the potential 

therapeutic impact on T2DM. There was extensive discussion on methods for the collection and 

storage of plasma for zinc determination [12] and what biomarkers could best reflect an 

individual’s zinc status. The conclusion was that as yet there is no reliable circulating biomarker 

for clinical use. 

 

 

Nutrition effects - II 

Fat deposits and lifestyle changes in humans (Iris Shai) 

 

It remains unclear whether specific lifestyle strategies can differentially mobilize fat /ectopic-fat-

deposits. Iris Shai described an 18-month trial in an isolated workplace with monitored and 

provided lunch, where participants with abdominal obesity/dyslipidaemia were randomly 

assigned to a low-fat (LF) or low-carbohydrate/Mediterranean (LC/MED) diet [13]. After 6-

months, participants were re-randomised; half of each study-arm were exposed to moderately-

intense physical-activity (PA+80%-aerobic; free gym membership) while the other half retained a 

relatively sedentary lifestyle. Whole-body magnetic-resonance-imaging (3-Tesla-MRI) was 

performed at 0,6,18 months. Of the 278 randomized participants 86.3% completed the trial. 

While the caloric deficit was similar, the LF group preferentially decreased saturated/unsaturated 

fats (p<0.001), and the LC/MED decreased carbohydrates (p<0.001) and trans-fat intake 



(p=0.029 vs. other diet). The PA+ group increased their MET/wk (p=0.009 vs. PA-). Fat 

depots/deposits were significantly and variably reduced [Hepatic:(-32%); deep-subcutaneous-

adipose-tissue (SAT):(-29%);visceral-adipose-tissue (VAT):(-25%); superficial-SAT:(-19%) and 

intra-pericardial:(-14%(-25mL))], with lesser changes of renal:(-9%); intermuscular:(-2%) and 

pancreatic-fat: (-1%). Although weight loss was comparable, LC/MEDPA+ favorably reduced 

waist-circumference and induced -14% further loss of intra-pericardial; p=0.003, -4% 

VAT;p=0.037 and -1.9% pancreatic-fat; p=0.007, compared to LFPA- changes. LC/MED 

decreased hepatic fat beyond LF diet by -15%. Conversely, renal-sinus and femoral-

intermuscular fat dynamics were similarly altered by lifestyle strategies. VAT-loss associated 

with improved lipids, and deep-SAT loss with improved glycaemia. In conclusion, human 

depots/ectopic-fat-deposits are substantially variable in their response to different long-term 

moderate weight-loss strategies. A LC/MED diet, particularly with PA, can favorably enhance fat 

mobilization in several depots [14, 15]. Results may suggest protocols for targeting specific fat 

storage sites.  

The discussion centered around how well intervention studies are designed to address these 

questions, and whether trial participants are generally well stratified so as to generate reliable 

trial data.  

 

Early signs biomarkers - I 

Diabetic Retinopathy (Tunde Peto) 

 

Diabetic eye disease (DED) is one of the leading causes of blindness in working age adults in the 

developed world and includes diabetic retinopathy (DR), diabetic maculopathy (DMac) and other 



complications such as cataract and diabetic corneal neuropathy [16]. With the rising DM 

prevalence DED is also rising. DR/DMac lend themselves to early diagnosis via photographic 

screening, as the retina’s microcirculation is the only visible vascular network in the body and 

investigations can detect small vascular changes such as microaneurysms, a hallmark of DED 

[17, 18]. Good glycaemic, blood pressure and cholesterol control and non-smoking reduces the 

risk of and delays any visual loss. It is not well-understood if and how vision loss could be 

further postponed by zinc-related therapies, but using the eye as a marker for early diabetic 

complications can become a non-invasive signal for vascular complications. As eye-imaging can 

be repeated frequently it may also be used to facilitate monitoring of other interventions. Even a 

small delay in DED could give individuals extra years with vision to care for themselves, their 

family and be in the workforce. People with DED sight-loss have more co-morbidities and longer 

hospital-stays than those without sight-loss. Preserving sight is increasingly important as many 

young people have DM and people, including in developing countries now live longer. Good 

diabetes control has great economic and non-monetary value, keeping people with diabetes in the 

workforce and after retirement helping with grandchildren and volunteering for different social 

services. Mobile-phone based imaging and handheld cameras coupled with (semi)-automated 

image analysis increases retinal imaging availability This may facilitate use of the eye as a 

surrogate marker for clinical trials and/or nutritional interventions in populations where this had 

not been possible before.  

 

A very active discussion followed about functional and biochemical changes in the eye in studies 

of zinc nutrition and the use of eye imaging in both animal models and human studies. Dr Peto 

confirmed that most clinical imaging and functional tests can be carried out in animals using the 



same or similar imaging devices as in human. Collaborations have already been established for 

using the eye as a surrogate in animal studies (with Dr Sarah Zangen) and in human 

supplementation trials (with Dr Nicola Lowe). 

 

Early signs biomarkers – II 

Foot ulcers in diabetes and novel therapies (Mogher Khamaisi) 

 

Chronic foot ulcers often lead to amputations. Peripheral vascular disease, neuropathy, insulin 

resistance, malnutrition, and reduced resistance to infection related to poor glycaemic control 

promote poor wound healing  [19]. Wound healing requires angiogenesis, cell adhesion, 

migration, proliferation, differentiation, and extracellular matrix (ECM) deposition, which are 

often abnormal in DM [20]. Formation of a stable vasculature in response to injury, is essential 

for restoring blood flow and tissue repair. The mechanisms of and therapeutic targets for wound 

healing in DM merits further study. Hyperglycaemia, insulin resistance, obesity, other vascular 

complications and local increase risk of foot ulcers.  The efficacy of several treatments, including 

cytokine replacement and transplantation of keratinocytes or fibroblasts are reduced in DM vs. 

non-diabetic subjects. Aggressive antibiotic therapy, debridement and negative pressure wound 

therapy can improve wound healing in DM patients [21]. 

Fibroblasts are a primary cell for regenerative therapy, due to their secretion of cytokines and 

angiogenic and immunomodulatory factors.  We compared fibroblasts from healthy subjects 

and from patients with T1DM for 50 years.  T1DM fibroblasts demonstrated reduced 

migratory responses to insulin, decreased vascular endothelial growth factor (VEGF) 

expression, and less phosphorylated AKT activation. Activated AKT is a downstream effector 

in the insulin pathway essential for wound healing [22]. Activation of the insulin receptor via 



overexpression of insulin receptor substrate 1 (IRS1) in endothelial cells improved angioblast 

differentiation, angiogenesis, and epithelialization, and wound healing [23].  However, 

fibroblast therapy is less effective in DM vs. non-diabetic patients. This may be due to 

metabolic memory or an ability of the diabetic milieu to rapidly induce cellular abnormalities 

in normal fibroblasts. 

Postnatal somatic cells can be converted into pluripotent-induced stem cells (iPSCs) that can be 

induced to differentiate into cardiac muscle, vascular smooth muscle, pericytes, hematopoietic 

stem cells and endothelial cells. Therapeutic iPSCs would involve isolation of differentiated cells 

from a patient, reprogramming to a pluripotent state, followed by differentiation to the desired 

cell types for re-implantation. As autologous tissue, this strategy avoids issues of 

immunogenicity and use of embryonic stem cells (ESs). iPSC transplants may benefit DM wound 

healing as iPSCs may not retain abnormalities common in fibroblasts from the diabetic host.   

Future studies will evaluate the efficacy of iPSCs and fibroblasts within the same subjects in 

enhancing diabetic wound healing, and compare activity of wound healing in iPSCs derived from 

those without DM.  

 

The discussion that followed concentrated on the similarities and differences in how organs are 

affected by micro- and macrovascular complications and how different fields might use data 

from other organ-specific groups.  



 

Clinical epidemiology - I 

Diabetes complications, pre-eclampsia associated with lower zinc levels, and outreach 

collaborative opportunities (Alicia Jenkins) 

 

Diabetes mellitus affects ≈7.5% of people in Westernized countries and up to 35% in high risk 

regions where poor nutrition is common.  Diabetes related complications include fluid and 

electrolyte imbalance, vascular damage and pregnancy-related complications such as increased 

rates of pre-eclampsia [24]. Risk factors for complications include hyperglycemia, dyslipidaemia, 

obesity, hypertension and smoking.  Poor diet, including micronutrient disturbances, is 

implicated in both the onset of DM and its complications [25].  There are few good micronutrient 

studies in DM, with challenges including the quantification of micronutrient status, including of 

zinc. Zinc deficiency is implicated in poor maternal and fetal outcomes in pregnancy in the 

general population, including pre-eclampsia. Some studies have demonstrated that zinc (and 

other micronutrient supplementation) of the pregnant woman can reduce rates of pre-eclampsia 

and of child mortality [26].   

Pre-eclampsia rates are increased in women with pre-existent T1DM (20% vs 5% in non-diabetic 

women).  In our prospective study in 151 women with T1DM in affluent countries higher 

circulating zinc levels and lower copper/zinc ratios in the first trimester predicted (3rd trimester) 

pre-eclampsia.  Confirmatory studies, including in disadvantaged regions and robust measures of 

circulating and tissue zinc status and supplementation are merited. Resources, including our 

international collaborative biobank biomarker facility, and the opportunity to collaborate with 

clinics in disadvantaged regions via two diabetes aid organizations were presented.  



 

During discussions, major micronutrient (including zinc) related questions in DM were identified 

and discussed. These related to: (i) relationships with DM onset and complications; (ii) the 

impact of region / diet / genotypes of study subjects on zinc status; (iii) how to best measure zinc 

status; (iv) how to increase zinc levels; and (v) clinical impact in epidemiological settings. It was 

raised that dialogue and international collaborations are needed to take advantage of the collected 

biomaterial resources and delivery of novel ideas and technologies, especially to disadvantaged 

countries.  

 

Clinical epidemiology – II 

The Metabolic, Lifestyle and Nutrition Assessment in Young Adult (MELANY) cohort –

relationships between adolescent weight and adult weight and cardiovascular disease. (Amir 

Tirosh) 

  

Increased body weight in adolescents is associated with increased cardiovascular disease in 

midlife, but it is yet unclear whether such an association is independently related to higher body 

weight early in life or to overweight and obesity in adulthood. Moreover, the applicability of the 

current definition of overweight and obesity in children and adolescents for prediction of future 

cardiovascular outcomes is controversial. In the session, Dr Tirosh presented his experience 

studying the Metabolic, Lifestyle and Nutrition Assessment in Young Adult (MELANY) cohort 

in addressing these questions. The MELANY cohort is a prospective study of >60,000 

adolescents with repeated anthropometric, biochemical, social and nutritional assessments into 

midlife [27, 28]. The study followed 37,674 healthy young teens with BMI of 15-36 kg/m2 at 



baseline for incident of angiography-proven coronary heart disease (CAD) or type 2 diabetes 

(T2DM) [29]. During a mean follow-up, 17.4 years, 327 cases of CAD and 1173 cases of T2DM 

were documented.  

In multivariate models adjusted for age, family history, blood pressure, lifestyle factors, and 

blood biomarkers, elevated adolescent BMI was a significant predictor of angiography-proven 

CAD (HR, 5.43; 95%CI;2.77-10.62, for the highest vs. the lowest decile). Further adjustment for 

BMI at adulthood did not attenuate the association with coronary heart disease (HR, 6.85; 

95%CI;3.30-14.21), as opposed to the complete reversibility of the risk for T2DM observed in 

this population. BMI values as low as 20.91 kg/m2 and above were strongly and independently 

associated with increased incidence of CAD in early adulthood.  Incorporating additional 

biomarkers, such as white blood count further improved prediction. Additional studies of over 2 

million male and female adolescents in Israel since 1950s with all-cause mortality records 

revealed that BMI at age 17 years at the 75th percentile and above (~23.5 kg/m2) is independently 

associated with a significant increase in mortality rates during 35 years of follow-up [30].  

 

During discussion, many questions were raised about how well we target patient groups. It 

became clear that further and better designed studies will need to be conducted at different 

countries. 

 

 

Microbiome and diabetes - I 

Links between the gut microbiome, diabetes and zinc (Simon Andrews) 

 



The gut ‘microbiota’ represent a diverse, mutualistic community composed mainly of bacteria 

(~100 trillion bacterial cells) that amount to ~2% of body weight.  The microbiota perform a 

number of important functions that provide significant health benefits including: fermentation of 

carbohydrates into short-chain fatty acids that provide energy sources for colonic epithelium, 

liver and muscle tissue; the synthesis of vitamins; metabolism of bile salts and xenobiotics; 

stimulation of hormone production directing the storage of fat; regulation of gut development; 

training the immune system; and excluding harmful, pathogenic bacteria. An increasing number 

of illnesses are being associated with alterations in composition and activity of the gut 

microbiota, including obesity and T2DM.  An increased Firmicute:Bacteroidetes  ratio has been 

linked to obesity and alterations in microbiota composition have likewise been reported for 

T2DM.    Certain probiotics can limit diabetes onset in animals by anti-inflammatory actions, 

suggesting a role for the microbiota in T2DM. Zinc is essential for microorganisms in the human 

gut.  That germ-free rats require half the level of dietary zinc than fully-colonized controls, 

indicates that a high proportion of dietary zinc is utilized by the microbiota [31].  Zinc 

availability is restricted within tissue fluids to deprive invading pathogens - a ‘nutritional 

immunity’ strategy.  Gut microbiota compete for zinc and change in response to changes in 

dietary zinc levels [32].  Low zinc availability in the gut enhances virulence for certain bacterial 

intestinal pathogens [33]. Thus, dietary zinc availability can alter the gut microbiota, which may 

influence T2DM development.  

 

The group discussed that it is currently uncertain whether dietary zinc affects the microbiota in a 

way that might influence T2DM onset, and this aspect merits investigation at one of the first sites 

of action of oral zinc. 



 

Microbiome and diabetes - II 

The gut microbiome, personalized diets and glycaemia (Niv Zmora) 

 

As an example of how the microbiota may influence onset of T2DM in an individualized manner, 

a recent study of Zeevi et al. was highlighted [34]. The study goal was to discover new 

approaches for controlling postprandial blood glucose levels. The Elianv and Segal laboratories 

monitored postprandial blood glucose levels in 800 healthy and pre-diabetic individuals. Blood 

parameters, anthropometrics, physical activity, and self-reported lifestyle behaviors, as well as 

gut microbiota were also recorded.  A high degree of interpersonal variability in postprandial 

glucose response to the same foods was demonstrated. A machine-learning algorithm was then 

used to integrate these multi-dimensional data to provide an accurate prediction of personalized 

postprandial glucose responses, which were validated experimentally using further data from a 

100-person cohort. Personalized dietary interventions significantly improved postprandial 

glucose responses accompanied by consistent alterations to the gut microbiota. It was therefore 

concluded that personalized diets, created with the help of an accurate predictor of blood glucose 

response that integrates parameters such as dietary habits, physical activity, and gut microbiota, 

may successfully lower postprandial blood glucose levels and its long-term metabolic 

consequences.  An influence of the gut microbiota in the responses of blood glucose levels to the 

individually-tailored diets is clearly suggested by the changes in microbiota composition 

observed, although the mechanisms remain unclear.  

 



The participants discussed how well these prediction models can be applied to other demographic 

locations, and how much differing nutritional intake may affect the modelling [35]. However, all 

agreed, that truly personalized intervention could be on the horizon for all [36]. 

 

Related diseases-1 

Mitochondria and obesity links (Atan Gross) 

 

Rates of obesity are increasing globally, which increases rates of pre-diabetes and Type 2 

diabetes.  Energy expenditure can be considered at whole body level (food intake versus physical 

activity) and at cellular level.  Mitochondria are key regulators of cell energy, and recent 

advances demonstrate links between the mitochondria, and diabetes and obesity, as well as 

earlier advances linking the mitochondria to neuromuscular disorders.   

  

Mitochondrial carrier homolog 2 (MTCH2) is a novel regulator of mitochondrial oxidative 

phosphorylation (OXPHOS) and its locus is associated with increased BMI in humans [37]. Our 

recent findings demonstrate that mice deficient for muscle MTCH2 are protected from diet-

induced obesity and hyperinsulinaemia, and have increased energy expenditure [38]. Deletion of 

muscle MTCH2 also increases mitochondrial OXPHOS and mass, triggers conversion from 

glycolytic to oxidative fibers, increases capacity for endurance exercise, and increases heart 

function. Moreover, metabolic profiling of mice deficient for muscle MTCH2 reveals preference 

to carbohydrate utilization, and an increase in mitochondria and glycolytic flux in muscles, 

resembling a “starved” phenotype. Thus, how does loss of MTCH2 protect mice from obesity? 

Our model is that an increase in mitochondrial respiration and diameter leads to more efficient 



burning of excess nutrients.  Ongoing research in this field may lead to the development of 

mitochondrial targeted therapeutics that may prevent or treat obesity and type 2 diabetes [39].  

 

Lively discussion followed, mostly related to the exact function of mitochondria and whether the 

model described can indeed explain the findings. It was also highlighted that zinc plays an 

important role in mitochondrial functions and therefore the connection between diabetes, 

mitochondria and zinc represent a new research frontier [40].  

 

Related diseases – II 

Zinc in health and disease: a laboratory perspective (Imre Lengyel)  

 

Zinc is essential for normal cellular function; therefore, it is ironic that we know so little about 

zinc biology. During ageing, changes in zinc homeostasis increase the incidence of age-related 

degenerative diseases [41]. The aging population are taking zinc supplements in the hope of 

forestalling maladies associated with ageing. However, without understanding the effects of 

supplements, their use is questionable. Imre Lengyel described experimental results generated on 

cells and model animals to understand how zinc supplementation might affect the body at a 

molecular level. He described efforts to visualize and quantitate how zinc levels are regulated by 

combining cell and molecular biology with the use of novel fluorescent zinc biosensors and 

ultrasensitive mass spectrometry. While the Lengyel lab studies the eye, the organ with the 

highest concentration of zinc in the body, results are likely applicable to other organs. In 

addition, ocular cells can be readily isolated, cultured and studied, but it is similarly easy to study 

them in living animals or humans, without surgical intervention, providing an unparalleled 



opportunity to understand and monitor zinc homeostasis and its association with diseases like 

age-related macular degeneration Alzheimer’s disease and diabetes.  

 

There were active discussions on the use of combined measurements of total and exchangeable 

zinc levels in experiments, which might be a better indicator of zinc status than either total or free 

zinc alone. There was discussion about issues in collecting biomaterial at remote locations 

without access to laboratory equipment and refrigeration. It was discussed whether tear could be 

used for assessing short-term zinc status [42] while nail clipping could provide information for 

long-term zinc status [43]. The potential to image zinc levels in vivo in the eye in real-time using 

novel fluorescent biosensors appealed to many, though caution is needed as these sensors 

interfere with biology, and as such might give misleading results [44]. Nevertheless, the 

consensus was that the new methodologies will be useful in diagnosis and treatment of diseases 

in which the role for zinc has been proven and the eye could be appropriate as a “window to the 

body”. 

 

Diabetes and Zinc transporters and enzymes - I 

Zinc transporters and their role in diabetes (Wolfgang Maret)  

  

This section explored the role of 24 human zinc transporter proteins in determining the correct 

amount of zinc in cells.  The zinc transporters belong to two family of proteins: Zip proteins (14 

members in humans) and ZnT proteins (10 members in humans).  In addition, at least a dozen of 

metallothioneins participate in the control of cellular zinc homeostasis.  Multiple polymorphisms 

in these proteins are associated with individual differences in zinc metabolism.  Zinc has 



insulinomimetic (insulin-sparing) effects on cells targeted by insulin, e.g. muscle, fat tissue.  One 

way of how this effect is expressed is the zinc inhibition of protein tyrosine phosphatases, in 

particular protein tyrosine phosphatase 1B (PTP1B), which controls signal transduction of the 

insulin and leptin receptors [45].  Proper control of zinc in pancreatic islets affects insulin and 

glucagon functions.  The zinc transporter ZnT8 is responsible for supplying the dense-core 

granules (insulin secretory vesicles) of pancreatic β-cells with zinc.  It is of particular interest for 

diabetes research due to the association of one of its prevalent polymorphic forms with the DM 

development and the interactions of zinc with insulin and the satiety hormone amylin.  Together 

with calcium, zinc is needed for the storage of crystalline hexameric insulin in the dense-core 

granules.  Furthermore, zinc controls the aggregation state of both insulin and amylin, 

implicating zinc in the amyloidogenesis of these hormones.  Zinc it has paracrine, autocrine, and 

endocrine effects when co-secreted with insulin and amylin from the pancreatig β-cells.     

 

The observation in animal models of type 1 or type 2 diabetes that zinc enhances the insulin 

response, while not enough zinc (zinc deficiency) generates insulin resistance [46, 47], was well-

received and may lead to collaborations to translate this preventive and therapeutic potential of 

zinc into clinical practice [48].    

 
Diabetes and Zinc transporters and enzymes – II 

Alpha-1 antitrypsin therapy, inflammation and diabetes (Eli C. Lewis) 

 

Human alpha1-antitrypsin (AAT) is an endogenous circulating anti-inflammatory glycoprotein 

presently infused weekly and life-long to patients with genetic AAT deficiency, with excellent 

safety and efficacy. Its anti-inflammatory and immune-modulatory properties make it a potential 



therapeutic agent for other conditions, and its physiology suggests some impact exists in yet 

understudied areas.  Circulating levels of AAT rise during inflammatory flares, as well as during 

the 3rd trimester of pregnancy and with advanced age. Yet in some conditions, AAT might fail to 

rise, or fail to function. In a study that addressed failure of AAT to rise during the 3rd trimester of 

pregnancy, an association was observed to suggest predisposition for premature rupture of 

membranes, severe preeclampsia, spontaneous abortions and gestational diabetes [49]. In acute 

graft-versus-host disease (GVHD), gut involvement renders the condition a frank protein-losing 

enteropathy; indeed, circulating AAT levels drop and stool content is high in AAT. Several 

clinical trials have addressed this phenomenon by introducing infused AAT to patients with 

treatment-refractory GVHD and were found to be, quite literally, lifesaving [50]. The challenge 

of the matter is not the exploration of further applications for AAT infusions, but rather the 

deciphering of its mode of action. To this end, it is believed that AAT addresses the injured cell, 

and only then indirectly alters the course of inflammation and immune system trajectories. 

 

The talk focused on research regarding AAT as more than an anti-protease, with many novel 

binding partners. Endogenous and exogenous AAT are at the junction between the immune 

system, inflammation, and the injured cell, as reflected by recent clinical trials that span 

conditions as diverse as T1DM, myocardial infarction, lung transplantation, graft-versus-host 

disease and cystic fibrosis, and by identifying multiple related co-morbidities in an expansive 

European four-million-patient study on conditions associated with sub-satisfactory levels of 

circulating AAT [51].  

The phenomenon of immune cell repopulation and its recently appreciated plasticity in the face 

of local injured tissue, forms a bridge between these pathologies and opens opportunities for 



tissue preconditioning using AAT, particularly when considering cell/organ grafting and wound 

healing.  

 

The discussion was centered around the notion that while no obvious direct evidence connects 

AAT and zinc biology, the outcomes of changes in the homeostasis of both agents suggest some 

functional overlap, perhaps indirectly. Therefore, more integrative studies are warranted.    

    

 

Concluding remarks 

A diverse multi-disciplinary group of clinicians and basic scientists held a dynamic workshop 

related to diabetes, obesity and zinc metabolism.  Knowledge was shared and wide-ranging 

discussions were held in a pleasant environment, with interventions (healthy meals and hikes) to 

reduce the risk of diabetes and obesity in attendees.  Ongoing dialogue, collaborations and a 

follow-up meeting are anticipated.   
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