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ABSTRACT
Evidence presented by Yershov, Orlov, and Raikov apparently showed that the WMAP/Planck
cosmic microwave background (CMB) pixel-temperatures (T) at supernovae (SNe) locations
tend to increase with increasing redshift (z). They suggest this correlation could be caused by
the Integrated Sachs–Wolfe effect and/or by some unrelated foreground emission. Here, we
assess this correlation independently using Planck 2015 SMICA R2.01 data and, following
Yershov et al., a sample of 2783 SNe from the Sternberg Astronomical Institute. Our analysis
supports the prima facie existence of the correlation, but attributes it to a composite selection
bias (high CMB T × high SNe z) caused by the accidental alignment of seven deep survey
fields with CMB hotspots. These seven fields contain 9.2 per cent of the SNe sample (256
SNe). Spearman’s rank-order correlation coefficient indicates the correlation present in the
whole sample (ρs = 0.5, p-value = 6.7 × 10−9) is insignificant for a sub-sample of the seven
fields together (ρs = 0.2, p-value = 0.2) and entirely absent for the remainder of the SNe
(ρs = 0.1, p-value = 0.6). We demonstrate the temperature and redshift biases of these seven
deep fields, and estimate the likelihood of their falling on CMB hotspots by chance is at
least ∼6.8 per cent (approximately 1 in 15). We show that a sample of 7880 SNe from the
Open Supernova Catalogue exhibits the same effect and we conclude that the correlation is an
accidental but not unlikely selection bias.

Key words: methods: statistical – surveys – supernovae: general – cosmology: cosmic back-
ground radiation – cosmology: observations.

1 IN T RO D U C T I O N

Observations of the cosmic microwave background (CMB) and
Type Ia supernovae (SNIa) are exceptional probes of cosmological
parameters. The measurements of the CMB by the WMAP satellite
(Bennett et al. 2013) and SNIa by the high-z supernova search team
(Riess et al. 1998) and the supernova cosmology project (Perlmutter
et al. 1999) have established the six parameter � cold dark mat-
ter (�CDM) cosmological model. Precision measurements of the
CMB temperature, polarization, and lensing anisotropies from the
South Pole Telescope, Planck satellite, and Atacama Cosmology
Telescope (e.g. Story et al. 2013; Planck Collaboration XIII 2016c;
Louis et al. 2017, and references therein) have strongly reinforced
the preference for �CDM as the concordance model of cosmology.

Cross-correlation of CMB observations with the large-scale
structure (LSS) of the Universe, revealed by surveys such as the
Sloan Digital Sky Survey (SDSS; Alam et al. 2015) and the Dark

� E-mail: tfriday@uclan.ac.uk

Energy Survey (DES; DES Collaboration et al. 2016), provide pow-
erful tests of �CDM (e.g. Giannantonio et al. 2016; DES Collab-
oration et al. 2017). Increased efforts are currently being made for
accurate and precise calibration of the distance–redshift relation
using SNIa up to high redshifts (e.g. LSST Science Collaboration
et al. 2009; Kessler et al. 2015) in order to understand the expansion
history and late-time (z ≤ 1) accelerated expansion of the Universe
attributed to dark energy.

Yershov et al. (2012, 2014) combined CMB and supernovae
(SNe) data and detected a correlation between the CMB temperature
anisotropies (T) and the redshift (z) of the SNe (CMB T × SNe z).
High-z SNe appear to be preferentially associated with hotter CMB
temperatures (Fig. 1). This effect was particularly strong for SNIa.
They concluded that the correlation are not caused by the Sunyaev–
Zel’dovich (SZ) effect (Sunyaev & Zel’dovich 1970) and suggested
that it might instead be caused by the Integrated Sachs–Wolfe (ISW)
effect (Sachs & Wolfe 1967) or some remnant contamination in the
CMB data, possibly from low-redshift foreground (Yershov et al.
2014).
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Figure 1. Plot of CMB temperature at SNe locations versus SNe redshift
binned with bin sizes �z = 0.01. Data are restricted by Galactic latitude
(|b| > 40◦), redshift (z > 0.005), and Planck UT78 confidence mask. Error
bars are the standard error on the bin mean. The dashed line indicates or-
dinary least-squares linear regression, representing the correlation reported
by Yershov, Orlov & Raikov (2012, 2014).

In this paper, we re-analyse the SNe samples of Yershov et al.
(2012, 2014) and offer an alternative explanation for the correlation,
namely that it is a composite selection bias caused by the chance
alignment of certain deep survey fields with CMB hotspots. This
bias (high CMB T × high SNe z) is the combined result of a selection
bias (high z SNe in deep fields) and the chance alignment of those
deep fields with CMB hotspots.

The remainder of this paper describes our analyses of the reported
correlation. In Section 2, we describe the data and summarize the va-
riety of methods used to demonstrate the prima facie existence of the
correlation in these data. We present the results from re-analysing
the SNe sample of Yershov et al. (2012, 2014) in Section 3. Specifi-
cally, we identify SNe fields with a high surface density of SNe (3.1)
and show that these cause the apparent correlation (3.2) due to their
bias to hotter CMB temperature and higher redshift than the remain-
der of the SNe sample (3.3). We quantify the likelihood of this bias
occurring by chance: at least 6.8 per cent, or approximately 1 in 15
(3.4). We present corroborating results from analysing alternative
data in Section 4. In Section 5, we conclude that the correlation
reported by Yershov et al. (2012, 2014) is actually an accidental but
not exceptionally unlikely composite selection bias and we briefly
speculate on further potential implications for cosmology.

2 DATA A N D M E T H O D S

2.1 SNe and CMB data

We used CMB data from the Planck 2015 (Planck Collaboration I
2016a) maps,1 specifically SMICA R2.01 with Nside= 2048. These
maps are provided and analysed using the Hierarchical Equal Area
iso-Latitude Pixelization scheme (HEALPIX,2 Górski et al. 2005).
Our temperature distribution was consistent with that previously

1http://irsa.ipac.caltech.edu/data/Planck/release 2/all-sky-maps/matrix c
mb.html
2http://healpix.jpl.nasa.gov/

determined by Yershov et al. (2014) using the Planck 2013 (Planck
Collaboration I 2014a) SMICA R1.20 map.

The Planck component-separated CMB maps were produced
using four techniques: Commander (Eriksen et al. 2008), NILC
(Delabrouille et al. 2009), SEVEM (Fernández-Cobos et al. 2012)
and SMICA (Cardoso et al. 2008). Planck Collaboration IX (2016b)
provide a critical analysis of the applicability of the resultant four
2015 maps, and confirm that, as in 2013 (Planck Collaboration
XII 2014b), SMICA is preferred for high-resolution temperature
analysis.

As recommended by Planck Collaboration IX (2016b), for
analysing component-separated CMB temperature maps, we used
the Planck UT78 common mask. This is the union of the Com-
mander, SEVEM, and SMICA confidence masks. UT78 excludes
point sources, some of the Galactic plane (note also our subsequent
Galactic latitude restriction), and some other bright regions. It has
a fraction of unmasked pixels of fsky = 77.6 per cent. Note that our
results were consistent using an alternative mask (UTA76), and
without masking.

Our initial analysis used SNe data provided by Yershov et al.
(2014) as supplementary data,3 derived from the Sternberg Astro-
nomical Institute (SAI) Supernova Catalogue4 (Bartunov, Tsvetkov
& Pavlyuk 2007) as of 2013 October. This provides a sample of
6359 SNe of all types. To avoid contamination from the Galactic
plane, we restricted this sample to high Galactic latitude |b| > 40◦,
the same conservative restriction used by Yershov et al. (2014). We
could not reproduce the identical sample for the redshift restriction
apparently used by Yershov et al. (2014), so we adopted a restric-
tion of z > 0.005, which yielded a similar sample size to theirs.
We excluded SNe on masked (Planck UT78) HEALPIX pixels. The
resultant SAI sample contained 2783 SNe.

Above redshift z ∼ 1.2, SNe in the SAI sample become rather
sparse and are predominantly associated with hotter than average
CMB temperature. To analyse this high-redshift region further, we
obtained z > 0.005 data from the Open Supernova Catalogue5

(OSC, Guillochon et al. 2017) as of 2017 June. We removed SNe
without coordinate information, those not yet confirmed as SNe
(Type = Candidate) and gamma-ray bursts (Type = LGRB). These
selections provide a sample of 12879 SNe of all types. We also re-
stricted this sample to high Galactic latitude |b| > 40◦ and excluded
SNe on masked (Planck UT78) HEALPIX pixels. The resultant OSC
sample contained 7880 SNe.

Unless specified otherwise, all analysis in this paper was per-
formed on the SAI sample after the restrictions on Galactic latitude
(|b|> 40◦), redshift (z > 0.005), and Planck UT78 confidence mask.
We repeated our analyses using the OSC sample (Section 4.2) with
the same restrictions to verify that our results are not specific to the
SAI sample.

2.2 Methods

We constructed Fig. 1 broadly following Yershov et al. (2014).
We determined the temperature6 of the CMB map pixel at each
SN location. The data were grouped into redshift bins of width

3https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stu1
932
4http://www.sai.msu.su/sn/sncat/
5https://sne.space/
6We follow the common practice of referring to temperature anisotropies
(�T) as temperature (T).
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�z = 0.01 and the weighted mean CMB temperature of each bin
(T ) was calculated as

T =
n∑

i=1

wiTi

/
n∑

i=1

wi , (1)

where Ti is the individual pixel temperature, wi is the weight of
each pixel, and n is the number of SNe per bin. Error bars are the
standard error on the weighted bin mean (σT ), calculated from the
weighted variances as

σT =
√√√√ n∑

i=1

w2
i σ

2
i

/(
n∑

i=1

wi

)2

, (2)

where σ 2
i is our variance estimate for each pixel. Note that for bins

with only one SN, error bars are σT = σi .
Individual pixel variances (σ 2

i ) were estimated7 by producing
a squared, smoothed (0.5◦ FWHM) half-mission half-difference
(HMHD) map from the two Planck 2015 SMICA R2.01 half-
mission maps. Weights (wi) are thus

wi = 1/σ 2
i . (3)

The choice of smoothing scale and the method of estimating
pixel variance affects the resultant weights. We tested a number of
these and our results are consistent. See Appendix B for versions of
Fig. 1 produced using different smoothing scales (none, 5 arcmin,
0.5◦, and 5◦ FWHM) and different estimates of individual pixel
variance (Planck 2013 R1.20 SMICA map noise, Planck 2015 R2.01
SMICA, HMHD and HRHD maps, and Planck 2015 R2.02 143 GHz
and 217 GHz frequency maps).

We fitted an ordinary least-squares (OLS) linear regression to
the binned data (dashed line) using PYTHON’S STATSMODELS.API.OLS,
and calculated its slope plus the standard error on the gradient. We
followed the same method to calculate the OLS linear regression
gradient throughout this paper. Note that results using weighted
least-squares (WLS) linear regression (weighted by σT or n), and
results using OLS and WLS linear regression of unbinned data,
were consistent.

Several of our analyses compared various SNe sub-samples us-
ing the parametric independent 2-sample Welch’s t-test (or unequal
variance t-test, Welch 1938) and the non-parametric 1-sided Mann–
Whitney U (MWU) test. We used the unequal variance t-test to
account for the different angular extent of the deep survey fields,
and hence difference in variance of their CMB temperature. It also
accommodates the wide variation in the number of SNe per redshift
bin, and the resultant differing variance of both their CMB temper-
ature and their redshift. The MWU test does not assume that the
population follows any specific parameterized distribution, unlike
the t-test which assumes a normal distribution, and it is less sensitive
to outliers than the t-test.

The t-test gives the probability (p-value) of obtaining SNe sub-
samples with differences in mean CMB temperature (or SNe red-
shift) at least as extreme as those observed, assuming the null hy-
pothesis is true

H0 : μT 1 = μT 2 (H0 : μz1 = μz2). (4)

In other words, it tests whether the means of their populations
differ. The 2-sample Welch’s t-test was implemented using PYTHON’S

SCIPY.STATS.TTEST IND with EQUAL VAR = FALSE.

7Following private communications with Planck Legacy Archive and
NASA/IPAC Infrared Science Archive.

MWU combines the sub-samples of CMB temperature (or SNe
redshift), ranks the combined sample, and determines the mean of
the ranks (R) for each sub-sample. It gives the probability (p-value)
of obtaining SNe samples with differences in mean ranks at least as
extreme as those observed, assuming the null hypothesis is true

H0 : RT 1 = RT 2 (H0 : Rz1 = Rz2) . (5)

In practice, this is generally interpreted as whether the distribu-
tions of the sub-samples differ, since the ranks of the sub-samples
will differ if so. We used the 1-sided MWU to test the alternative
hypothesis that the CMB temperature (or SNe redshift) distribution
of one sub-sample was greater than that of the other

H1 : RT 1 ≥ RT 2 (H1 : Rz1 ≥ Rz2) . (6)

The 1-sided MWU test was implemented using PYTHON’S

SCIPY.STATS.MANNWHITNEYU with ALTERNATIVE = ‘GREATER’.
To analyse which modes dominate the apparent correlation (Sec-

tion 3.2.1), we filtered the map to remove large angular scales.
We used PYTHON’S HEALPY.SPHTFUNC.ALMXFL to apply a high pass fil-
ter to the spherical harmonic coefficients (a�m) of the Planck 2015
SMICA map. We then computed the filtered map from these filtered
a�m values. We repeated the OLS linear regression and Spearman’s
rank-order correlation coefficient analyses for each filtered map.

In our analysis of likelihood (Section 3.4), we performed random-
izations of SNe locations within fields and of SNe field centres on
the sky. We used PYTHON’S RANDOM.UNIFORM to select random HEALPIX

pixels, subject to the same Galactic latitude restriction (|b| > 40◦) as
the original sample. After each randomization the masking (Planck
UT78) was re-applied, the CMB temperature and variance were re-
sampled, and the weights were re-calculated before the OLS linear
regression was re-fitted.

We also assessed the likelihood by creating simulations of the
CMB. We used PYTHON’S HEALPY.SPHTFUNC.ANAFAST to compute the
power spectrum (C�) of the original (unmasked) Planck 2015
SMICA map. Note that this extracts C� values from the given map
and does not assume a particular power spectrum or underlying
cosmology. We then used HEALPY.SPHTFUNC.SYNFAST to generate new
synthetic maps from these C� values, at full resolution 5 arcmin
FWHM, Nside= 2048 (Planck Collaboration IX 2016b), to match
our fiducial Planck 2015 SMICA map. After each simulation the
CMB temperature was re-sampled. The SNe mask (Planck UT78),
variances, and weights were left unchanged (as the SNe had not
moved) and the OLS linear regression was re-fitted.

We apply these methods to the data and various randomizations
in the following sections.

3 R ESULTS: D EEP FIELD BIAS

Yershov et al. (2012, 2014) detected a correlation between SNe
redshifts and CMB temperature using OLS linear regression and
Pearson’s correlation coefficient. We verified this correlation using
the independent 2-sample Welch’s t-test, the 1-sided MWU test, and
Spearman’s rank-order correlation coefficient, so we do not dispute
that a correlation is found.

However, we do not believe that there is any astrophysical origin
of the correlation and conclude that it is a composite selection bias
caused by the chance alignment of certain deep survey fields with
CMB hotspots. In this section, we describe our identification of the
deep survey fields in question and determine the significance of their
contribution to the correlation. We show how their temperature and
redshift biases cause this composite selection bias and we quantify
the likelihood of it occurring by chance.
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3.1 Identification of fields

SNe are transient objects, historically detected both by chance and
by repeated observations of specific fields, galaxy clusters etc. Reli-
ably detecting and following the light curves of SNe at high redshift
requires particularly targeted approaches (e.g. Filippenko & Riess
1998; Dawson et al. 2009). As a result SNe are not evenly detected
across the sky and most SNe data sets are not spatially uniform.
This situation is changing with wide and time-domain surveys such
as DES (DES Collaboration et al. 2016).

We analysed the SAI sample to identify regions with a high
surface density of SNe. Visual inspection of a Topcat Sky Plot sug-
gested that defining these as regions containing ≥ 20 SNe with an
average surface density of ≥ 20 SNe per square degree would be
appropriate and productive. We placed no constraint on the over-
all angular size of the region. Our algorithm identified seven SNe
fields meeting these criteria, plus two additional fields within SDSS
Stripe 82.

Table 1 lists the seven SNe fields plus Stripe 82. These fields
contain a total of 921 SNe (33.1 per cent), with Stripe 82 contain-
ing 665 SNe (23.9 per cent), and fields 1–7 containing 256 SNe
(9.2 per cent) of the sample. For each field 1–7, we identified cor-
responding deep survey fields coincident with the SNe field. There
were three fields from the Supernova Legacy Survey (SNLS; Astier
et al. 2006), two from the ESSENCE supernova survey (Miknaitis
et al. 2007), the Hubble Deep Field North (HDF-N; Williams et al.
1996), and the Chandra Deep Field South (CDF-S; Giacconi et al.
2001).

For each field 1–7, we defined a square in RA and Dec orientation
consistent with the deep survey field footprint and encompassing
the bulk of the SNe identified by our algorithm. For the majority
of the fields the best fit was to increase the deep survey field edge
lengths by 10 per cent. For fields 2 and 7, coincident with HDF-N
and CDF-S, respectively, the best fit was to rotate (to RA and Dec
orientation) a square enclosing the deep survey field and increase the
deep survey field edge lengths by 20 per cent. Note that localizing
our SNe fields to the corresponding deep survey fields in this way
generally reduced their angular size and the number of SNe they
contained, which in some cases reduced the number of SNe and/or
their surface density below the initial detection thresholds used.

Fig. 2 shows the resultant boundary of field 1 (dashed box),
with SNe positions plotted with crosses (×), and CMB temperature
shown by the colour-bar (red indicating hotter than average, blue
indicating colder than average). For all fields 1–7 see Appendix. A.

3.2 Contribution to correlation

To test whether these fields contribute to the correlation, we com-
pared the OLS linear regression both with and without them in the
sample. We created ‘remainder’ samples containing SNe from the
SAI sample minus those in fields 1–7 combined, minus those in
Stripe 82, and minus those in fields 1–7 and Stripe 82 together.
We calculated the OLS linear regression gradient and Spearman’s
rank-order correlation coefficient of these remainders and compared
them with those of the whole sample. Note that results using WLS
linear regression, and values of Pearson’s correlation coefficient,
were consistent.

Table 2 shows the gradient of the OLS linear regression slope
for each remainder sample in units of μK per unit redshift, plus
the standard error on the gradient. In these units the gradient of the
whole sample is 61 ± 12μK z−1, which is significantly above zero.
Spearman’s rank-order correlation coefficient for the whole sam-

ple shows a moderate correlation (ρs= 0.5), which is statistically
significant (p-value = 6.7 × 10−9).

SDSS Stripe 82 is the largest field we identified, both in terms
of the number of SNe (665) and angular size. Therefore the SNe
in Stripe 82 cover a wider variety of CMB pixels and any statisti-
cal contribution from them should be much less prone to selection
bias. Indeed, removing Stripe 82 from the sample does not signif-
icantly affect the OLS linear regression slope (54 ± 14μK z−1)
or Spearman’s rank-order correlation coefficient (ρs = 0.4, p-
value = 4.9 × 10−7). However, removing fields 1–7 (256 SNe) re-
duces the gradient dramatically to −2 ± 22μK z−1, consistent with
zero, and there is no correlation evident (ρs = 0.1, p-value = 0.6)
in the remainder. Removing both fields 1–7 and Stripe 82 together
has a similar effect.

The result of removing fields 1–7 from the SAI sample is il-
lustrated in Fig. 3, which plots the weighted mean CMB temper-
ature at SNe locations in redshift bins of �z = 0.01. This plot
is repeated for the whole sample (3a), fields 1–7 only (3b), and
the remainder of the sample after fields 1–7 are removed (3c).
Note that OLS linear regression gradients of unbinned data were
consistent.

The OLS gradient and correlation present in the whole sample
(gradient = 61 ± 12μK z−1, ρs = 0.5, p-value = 6.7 × 10−9) are en-
tirely absent in the remainder (gradient =−2 ± 22μK z−1, ρs = 0.1,
p-value = 0.6). The OLS gradient of the fields 1–7 sample is slightly
positive (21 ± 20μK z−1) but Spearman’s rank-order correlation
coefficient indicates that there is no significant correlation evident
(ρs = 0.2, p-value = 0.2).

The data clearly indicate that the correlation is caused by fields
1–7 and that SDSS Stripe 82 does not contribute significantly.

3.2.1 Angular scales

We checked whether large-scale hot/cold spots, or anisotropies on
scales of ∼1◦ (� ∼ 100), dominate the apparent correlation. We fil-
tered the Planck 2015 SMICA map to remove large angular scales
(� < 10, � < 50, and � < 100) and repeated the OLS linear regres-
sion and Spearman’s rank-order correlation coefficient analyses.
In all cases there was no significant correlation evident (e.g. � <

50, ρs = 0.1, p-value = 0.1). The large angular scales are dom-
inating, as expected, indicating that the CMB map pixels at SNe
locations contribute no more than any other pixels within these
scales.

This supports our likelihood results (Section 3.4, Fig. 5a), which
indicate that the CMB map pixels at SNe locations are no more
relevant than any other pixels within fields 1–7 (an angular size
from 0.4◦ × 0.4◦ to 2.0◦ × 2.0◦).

3.3 Temperature and redshift

We investigated whether the CMB temperature at SNe loca-
tions and/or the redshift of SNe within fields 1–7 and Stripe
82 differ from those in the rest of the sample. We calcu-
lated the mean CMB temperature (T ± σT ) and mean SNe red-
shift (z ± σz) for each sample compared with the remainder.
We also analysed the CMB temperature and SNe redshift dis-
tributions using the independent 2-sample Welch’s t-test and
1-sided MWU test. Note that results using the median CMB
temperature at SNe locations, and median SNe redshift, were
consistent.
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Bias in CMB T and SNe z correlation 1141

Table 1. SNe fields identified in the SAI sample. ‘No. SNe’ is the number of SNe in each field after restrictions by Galactic latitude (|b| > 40◦), redshift
(z > 0.005), and Planck UT78 confidence mask. RA (α, J2000) and Dec (δ, J2000) are of the approximate field centres. Angular size is of a square (rectangle) in
RA–Dec orientation encompassing each field 1–7 (Stripe 82). The equivalent surface density of SNe per deg2 has been calculated. ‘No. pixels’ is the number of
CMB map pixels (Nside = 2048) whose centres are within the field and which are not masked by Planck UT78. ‘Deep survey field(s)’ lists examples coincident
with the SNe fields. Values for the ‘remainder’ sample (after removing fields 1–7 and Stripe 82), where applicable, have been shown for comparison.

Field No. α (J2000) δ (J2000) Angular No. SNe No. Deep survey field(s)
SNe h:m:s ◦ : ′ : ′′ size deg−2 pixels

Field 1 50 14:19:28 52:40:28 1.1◦ × 1.1◦ 41.3 1599 SNLS D3, EGS
Field 2 29 12:36:55 62:16:40 0.4◦ × 0.4◦ 181.3 221 HDF-N, GOODS-N
Field 3 54 02:31:41 −08:24:43 2.0◦ × 2.0◦ 13.5 4944 ESSENCE wdd
Field 4 22 02:25:55 −04:30:58 1.1◦ × 1.1◦ 18.2 1596 SNLS D1
Field 5 64 02:07:53 −04:19:04 2.0◦ × 2.0◦ 16.0 5000 ESSENCE wcc, NDWFS
Field 6 21 22:15:36 −17:42:17 1.1◦ × 1.1◦ 17.4 1593 SNLS D4
Field 7 16 03:32:26 −27:38:25 0.4◦ × 0.4◦ 100.0 219 CDF-S, GOODS-S
Stripe 82 665 00:55:00 00:00:00 90◦ × 2.8◦ 2.8 352 871 SDSS Stripe 82

Remainder 1862 n/a n/a 14 474 deg2 0.2 16 971 444 n/a

Figure 2. Gnomic projection of the Planck 2015 SMICA CMB map in
the vicinity of field 1 (colour on-line). The location of SAI sample SNe
are plotted with crosses (×). The dashed square is the boundary of field 1,
centred on the SNLS D3 deep survey field at the specified coordinates (α
and δ, J2000). See Appendix A for all fields 1–7.

Table 2. OLS gradient (with uncertainty of standard error on the gradient)
and Spearman’s rank-order correlation coefficient for the SAI sample after
removing subsets of SNe fields. ‘No. SNe’ is the number of SNe in each
‘remainder’ sample.

Fields removed No. Gradient Corr. Coeff.
SNe (μK z−1) ρs p-value

None 2783 61 ± 12 0.5 6.7 × 10−9

Fields 1–7 2527 − 2 ± 22 0.1 0.6
Stripe 82 2118 54 ± 14 0.4 4.9 × 10−7

Fields 1–7 and Stripe 82 1862 − 2 ± 25 0.0 0.7

3.3.1 Mean CMB T and mean SNe z

The mean CMB temperature (T ± σT ) at SNe locations, and of
all CMB map HEALPIX pixels within each sample, and mean SNe
redshift (z ± σz) are specified in Table 3. The samples are fields 1–7
individually, fields 1–7 combined, Stripe 82, and the whole sample.
Fig. 4 illustrates these distributions, namely CMB temperature at
SNe locations (1), CMB temperature of all CMB map HEALPIX pixels
within each sample (2), and SNe redshift (3) in these samples. In
both Table 3 and Fig. 4 SNe are restricted by Galactic latitude
(|b| > 40◦), redshift (z > 0.005), and Planck UT78 confidence mask
and CMB map HEALPIX pixels are restricted by Galactic latitude
(|b| > 40◦) and Planck UT78 confidence mask.

SNe in all fields 1–7 are biased to CMB temperatures hotter than
the mean of the whole sample (10.3 ± 2.0μK). Fields 3, 6, and 7 are
particularly extreme, with mean CMB temperatures at SNe locations
of 130.8 ± 9.2 , 199.3 ± 13.6, and 120.5 ± 12.0μK, respectively.
SNe in SDSS Stripe 82 are not biased to CMB temperatures hotter
than the mean of the whole sample. For all the fields, fields 1–7
and Stripe 82, the CMB temperature distribution (and mean) at SNe
locations is generally representative of the CMB map HEALPIX pixel
temperature distribution (and mean) to within ± ∼30μK.

SNe in all fields 1–7 are also biased to higher redshift than the
mean of the whole sample (z = 0.18 ± 0.00). Fields 2, 6, and 7 are
particularly extreme, with mean SNe redshifts of z = 0.94 ± 0.06,
z = 0.67 ± 0.04 and z = 0.89 ± 0.11, respectively. SNe in SDSS
Stripe 82 are biased to slightly higher redshift of z = 0.23 ± 0.01
than the whole sample. However, although Stripe 82 is deeper it is
not hotter, which explains why it does not significantly contribute
to the correlation.

3.3.2 MWU test and t-test

We analysed whether the CMB temperature distribution at SNe
locations and/or SNe redshift distribution within fields 1–7 and
Stripe 82 differ from the rest of the sample using the independent 2-
sample Welch’s t-test and 1-sided MWU test. To recap from Section
2.2, Welch’s t-test (or unequal variance t-test) accommodates both
the different angular extent of the deep survey fields, and hence
difference in variance of the CMB temperature, and the variation
in the number of SNe per redshift bin. The MWU test makes fewer
assumptions (in particular, the t-test assumes a normal distribution)
and is less sensitive to outliers than the t-test. Clearly not all the
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(a) Whole sample (2783 SNe)

(b) Fields 1-7 sample (256 SNe)

(c) Remainder sample (2527 SNe)

Figure 3. Plot of CMB temperature at SAI sample SNe locations versus
SNe redshift binned with bin sizes �z = 0.01. Data are restricted by Galactic
latitude (|b| > 40◦), redshift (z > 0.005), and Planck UT78 confidence
mask. Sub-figures are (a) the whole sample, (b) fields 1–7 sample, and (c)
remainder (fields 1–7 removed) sample. Error bars are the standard error
on the bin mean. The dashed line indicates ordinary least-squares linear
regression.

Table 3. Arithmetic (unweighted) mean CMB temperature, at SNe loca-
tions within each field sample and of all HEALPIX pixels within each field
sample area, and mean SNe redshift for each field sample and the whole
sample or sky. SNe are restricted by Galactic latitude (|b| > 40◦), red-
shift (z > 0.005), and Planck UT78 confidence mask. Pixels are restricted
by Galactic latitude (|b| > 40◦) and Planck UT78 confidence mask. The
uncertainty is the standard error of the mean.

Field CMB temperature (μK) Redshift
SNe Pixels SNe

Field 1 29.1 ± 9.1 47.5 ± 1.7 0.55 ± 0.03
Field 2 92.9 ± 3.3 94.3 ± 1.7 0.94 ± 0.06
Field 3 130.8 ± 9.2 137.5 ± 1.0 0.41 ± 0.02
Field 4 85.3 ± 14.3 81.7 ± 1.7 0.55 ± 0.05
Field 5 49.7 ± 8.5 68.2 ± 1.2 0.45 ± 0.02
Field 6 199.3 ± 13.6 168.9 ± 1.9 0.67 ± 0.04
Field 7 120.5 ± 12.0 100.8 ± 4.0 0.89 ± 0.11
Fields 1–7 87.4 ± 5.0 101.5 ± 0.7 0.57 ± 0.02
Stripe 82 3.8 ± 4.0 17.2 ± 0.2 0.23 ± 0.01
Whole sample 10.3 ± 2.0 3.1 ± 0.02 0.18 ± 0.00

samples we tested are normally distributed (see Fig. 4), but we have
included all the results for completeness.

We performed all the analysis using a constant ‘remainder’ sam-
ple created by removing fields 1–7 and Stripe 82 from the sample.
This was tested against samples containing SNe from fields 1–7
individually, fields 1–7 combined, and Stripe 82. See Table 4 for
the results (p-values). Note that comparison between the very small
p-values is unlikely to be meaningful.

For CMB temperature both p-values for SDSS Stripe 82 and the
MWU p-value for field 1 are above the α = 1 per cent significance
level. Therefore we cannot reject the null hypotheses that Stripe 82
has the same mean temperature and same temperature distribution
as the remainder of the sample, nor the null hypothesis that field
1 has the same temperature distribution as the remainder of the
sample.

However, for all the other tests the p-values indicate that the
individual field samples do not have the same mean temperature as
the remainder, and that the temperature distribution of the fields is
significantly hotter than that of the remainder.

For SNe redshift all the p-values of all the samples indicate
that the individual fields do not have the same mean redshift as
the remainder, and that the redshift distribution of the fields is
significantly higher than that of the remainder.

We have demonstrated that fields 1–7 are biased to hotter CMB
temperatures, specifically at SNe locations but also at all CMB map
HEALPIX pixels within the fields. We believe this is the result of the
chance alignment of those fields with CMB hotspots. This would
not on its own be sufficient to lead to the correlation reported by
Yershov et al. (2012, 2014). However, fields 1–7 are also biased to
higher redshifts because they are the result of deep survey fields.
The remainder of the SNe are generally lower redshift and are
spread more uniformly across the sky, so they have a mean CMB
temperature closer to the mean of the whole CMB map.

The composite effect is to introduce enough high-redshift SNe
at locations of sufficiently high CMB temperature to skew all the
analyses we have performed to demonstrate the presence of the
correlation, namely OLS linear regression, Welch’s t-test, MWU
test, and Spearman’s rank-order correlation coefficient. This effect
was caused by 256 SNe, comprising 9.2 per cent of the restricted
SAI sample of 2783 SNe.
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Figure 4. Histograms of SAI sample CMB temperature and SNe redshift distributions for fields 1–7, Stripe 82, and the whole sample or sky. Column (1)
shows the CMB temperature distribution at SNe locations within each field sample binned with bin sizes �T = 40μK. Column (2) shows the CMB temperature
distribution of all HEALPIX pixels within each field sample area binned with bin sizes �T = 40μK. Column (3) shows the redshift distribution of SNe within
each field sample binned with bin sizes �z = 0.15. The temperature and redshift scales are indicated on the bottom plot of each column. SNe are restricted by
Galactic latitude (|b| > 40◦), redshift (z > 0.005), and Planck UT78 confidence mask. Pixels are restricted by Galactic latitude (|b| > 40◦) and Planck UT78
confidence mask. Solid vertical lines are arithmetic (unweighted) mean values for each distribution. Dashed vertical lines in columns (1) and (2) are at �T = 0.
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Table 4. Results (p-values) from independent 2-sample Welch’s t-tests and
1-sided (greater) MWU tests of CMB temperature and SNe redshift for
each field sample. All tests are against a constant remainder sample after
removing fields 1–7 and Stripe 82.

Field p-values
CMB temperature SN redshift

t-test MWU t-test MWU

Field 1 5.8 × 10−3 1.8 × 10−2 5.8 × 10−17 3.0 × 10−26

Field 2 2.9 × 10−31 9.9 × 10−9 9.0 × 10−15 1.7 × 10−19

Field 3 9.6 × 10−20 1.8 × 10−18 2.3 × 10−20 3.9 × 10−25

Field 4 1.2 × 10−5 3.5 × 10−5 9.6 × 10−9 1.4 × 10−12

Field 5 1.0 × 10−6 1.7 × 10−5 1.5 × 10−23 1.9 × 10−29

Field 6 3.8 × 10−12 1.0 × 10−12 2.9 × 10−11 1.2 × 10−13

Field 7 6.1 × 10−8 7.6 × 10−7 6.0 × 10−6 8.2 × 10−11

Fields 1–7 3.8 × 10−42 1.6 × 10−36 3.7 × 10−71 1.2 × 10−112

Stripe 82 0.7 0.2 8.3 × 10−49 1.8 × 10−118

3.4 Likelihood

We quantified the likelihood of this selection bias happening by
chance by analysing the effect on the OLS gradient of moving SNe
to random positions within fields 1–7, and by moving fields 1–7
to random positions on the sky. In both analyses the SNe were
not moved between fields. We also analysed the effect on the OLS
gradient of simulating the CMB sky, without moving the SNe at all.

Within each field 1–7 we moved SNe to 1000 random positions
within the field boundaries defined in Section 3.1. We also moved
each field 1–7 to 10 000 random positions on the sky, compliant
with the Galactic latitude restriction (|b| > 40◦), whilst keeping
the field size and shape constant and the SNe in approximately the
same position within each field (within small angle approximation).
In both cases all other SNe outside fields 1–7 were left in their
original positions. After each move (within each field or of each
field on the sky) the masking (Planck UT78) was re-applied, the
CMB temperature and variance were re-sampled, and the weights
were re-calculated.

We created 10 000 simulations of the CMB sky from the power
spectrum of our fiducial Planck 2015 SMICA map, as described
in Section 2.2. All SNe were left in their original positions. After
each simulation the CMB temperature was re-sampled. The mask-
ing (Planck UT78) and variances were left unchanged as the SNe
remained on their original CMB map HEALPIX pixel.

Following each move or simulation and subsequent deriva-
tions/calculations we binned the data, re-calculated the weighted
mean CMB temperature of each bin, fitted an OLS linear regres-
sion, and determined the gradient of the slope as previously de-
scribed (Section 2.2).

Fig. 5 shows the distribution of OLS gradients after these ran-
dom moves and simulations. For comparison, the original gradient
(61 ± 12μK z−1) is shown as a solid vertical line. Note that the
uncertainty in the original gradient is the standard error on the
gradient as calculated by the OLS linear regression, whereas the
uncertainties in the means of the distributions, described below, are
the standard errors of the means.

After moving SNe within each field 1–7 to 1000 random positions
within the fields, the mean of the OLS gradient distribution (5a) is
60 ± 0μK z−1. The distribution is narrow and consistent with the
original gradient, indicating that the position of SNe within fields
1–7 does not significantly affect the correlation.

After moving each field 1–7 to 10 000 random positions on the
sky, the mean of the OLS gradient distribution (5b) is −1 ± 0μK

(a) Move SNe within fields 1-7

(b) Move fields 1-7 on sky

(c) Simulate CMB

Figure 5. Histogram of OLS gradient for the SAI sample after (a) moving
SNe to 1000 random positions within each field 1–7, (b) moving fields 1–7 to
10 000 random positions on the sky (|b| > 40◦), and (c) 10 000 simulations
of the CMB sky. SNe positions are restricted by Galactic latitude (|b| > 40◦)
and Planck UT78 confidence mask. Dashed vertical lines are at zero gradient.
Solid vertical lines are original value of the gradient.

z−1. The distribution is wide, centred near zero, and inconsistent
with the original gradient, unsurprisingly indicating that the position
of fields 1–7 on the sky is responsible for the correlation.

After 10 000 simulations of the CMB sky, the mean of the OLS
gradient distribution (5c) is −0 ± 1μK z−1. The distribution is
consistent with the results from moving each field 1–7 to 10 000
random positions on the sky.

Assuming a standard normal distribution, we calculated the
z-score (standard score) of the original OLS gradient (X) as

z = (X − μ)/σ, (7)

where μ is the mean of the gradient distribution and σ is its standard
deviation. We then used the standard normal distribution table to
provide the probability of observing a gradient at least as extreme
as X within our gradient distributions. For moving fields 1–7 on
the sky (5b) the probability is 6.8 per cent (approximately 1 in 15)
and for simulating the CMB (5c) it is 8.9 per cent (approximately
1 in 11). Therefore the chance alignment of fields 1–7 with CMB
hotspots is not an exceptionally unlikely event.
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Table 5. Number and proportion (per cent) of SNIa within the whole SAI
sample, fields 1–7 sample, and remainder (fields 1–7 removed) sample.

Sub-sample No. No. Per cent
SNe SNIa SNIa

Whole sample 2783 1749 62.8
Fields 1–7 256 235 91.8
Remainder 2527 1514 59.9

4 R ESULTS: A LTERNATIVE DATA

4.1 SNe types

Yershov et al. (2014) demonstrated that the correlation between
SNe redshifts and CMB temperature was particularly strong for the
SNIa sub-sample, whereas for the rest of the SNe it vanished. Is this
consistent with our assertion that the correlation is the result of a
composite selection bias caused by the chance alignment of certain
deep survey fields (fields 1–7) with CMB hotspots?

Table 5 shows the number and proportion of Type Ia SNe in our
SNe samples. Supernova surveys such as SNLS and ESSENCE
primarily targeted SNIa (Pritchet & SNLS Collaboration 2005;
Miknaitis et al. 2007), so it is unsurprising that fields 1–7 con-
tain predominantly SNIa (91.8 per cent). As expected in the whole
sample, a little over half the SNe are SNIa. Removing fields 1–
7 from the sample does not significantly decrease the proportion
of SNIa, which drops from 62.8 per cent in the whole sample to
59.9 per cent in the remainder. However, we have shown that the
correlation present in the whole sample (Fig. 3a) is entirely absent
in this remainder (Fig. 3c)

Fields 1–7 together comprise 9.2 per cent of the whole sample,
but when the sample is restricted to SNIa only this increases to
13.4 per cent. Thus, restricting the sample to SNIa increases the
influence of fields 1–7. We suggest that the correlation is not caused
by SNIa themselves, but that it is inadvertently enhanced by re-
stricting the sample to SNIa due to the dominance of SNIa in fields
1–7.

4.2 SNe catalogues

We have demonstrated that the correlation reported by Yershov
et al. (2012, 2014) is a composite selection bias caused by the
chance alignment of certain deep survey fields with CMB hotspots.
Yershov et al. (2012, 2014) analysed the Sternberg Astronomical
Institute (SAI; Bartunov et al. 2007) SNe catalogue, but it seems
reasonable that other SNe catalogues could show a similar effect.

We repeated our analyses from Section 3 using the Open Super-
nova Catalogue (OSC, Guillochon et al. 2017). Data were obtained,
restricted, and weighted as described in Section 2, yielding a sample
of 7880 SNe. We found that the OSC sample does indeed exhibit a
similar apparent correlation (with a gradient of 42 ± 7μK z−1) to
the SAI sample.

We applied the same SNe field detection algorithm with the same
detection thresholds described in Section 3.1 to the OSC sample.

Our algorithm identified the same seven SNe fields with the same
boundaries, but with somewhat increased SNe membership, plus
thirteen fields within Stripe 82. These fields (Table 6) contain a total
of 3121 SNe (39.6 per cent), with Stripe 82 containing 2445 SNe
(31.0 per cent), and fields 1–7 containing 676 SNe (8.6 per cent) of
the OSC sample. We compared the OLS linear regression both with
and without these fields in the sample and calculated Spearman’s

Table 6. SNe fields identified in the SAI and OSC samples and the num-
ber of SNe within each. See Table 1 for field positions, sizes, and further
information.

Field No. SNe
SAI OSC

Field 1 50 152
Field 2 29 91
Field 3 54 79
Field 4 22 116
Field 5 64 91
Field 6 21 92
Field 7 16 55
Stripe 82 665 2445

Table 7. OLS gradient (with uncertainty of standard error on the gradient)
and Spearman’s rank-order correlation coefficient for the OSC sample after
removing subsets of SNe fields. ‘No. SNe’ is the number of SNe in each
‘remainder’ sample.

Fields removed No. Gradient Corr. Coeff.
SNe (μK z−1) ρs p-value

None 7880 42 ± 7 0.6 2.0 × 10−15

Fields 1–7 7204 10 ± 11 0.1 0.5
Stripe 82 5435 38 ± 7 0.5 1.1 × 10−11

Fields 1–7 and Stripe 82 4759 11 ± 13 − 0.0 0.1

rank-order correlation coefficient of these samples, as described in
Section 3.2.

Table 7 shows the gradient of the OLS linear regression slope
for each OSC remainder sample in units of μK per unit redshift,
plus the standard error on the gradient. In these units the gradi-
ent of the whole sample is 42 ± 7μK z−1, which as for the SAI
sample is significantly above zero. Spearman’s rank-order correla-
tion coefficient for the whole sample shows a moderate correlation
(ρs = 0.6) which is statistically significant (p-value = 2.0 × 10−15).
These results are consistent with those for the whole SAI sample
(gradient = 61 ± 12μK z−1, ρs = 0.5 and p-value = 6.7 × 10−9).

SDSS Stripe 82 is again the largest field we identified, both
in terms of the number of SNe (2445) and angular size. Removing
Stripe 82 from the OSC sample does not significantly affect the OLS
linear regression slope (38 ± 7μK z−1) or Spearman’s rank-order
correlation coefficient (ρs = 0.5, p-value = 1.1 × 10−11). However,
removing fields 1–7 (676 SNe) reduces the gradient dramatically to
10 ± 11μK z−1, and there is no correlation evident in the remainder
(ρs = 0.1, p-value = 0.5). Removing both fields 1–7 and Stripe 82
together has a similar effect.

The result of removing fields 1–7 from the OSC sample is illus-
trated in Fig.6, which plots the weighted mean CMB temperature
at SNe locations in redshift bins of �z = 0.01. This plot is repeated
for the whole sample (6a), fields 1–7 only (6b) and the remainder
of the sample after fields 1–7 are removed (6c).

The results for the OSC sample indicate that the correlation is
caused by fields 1–7 and that SDSS Stripe 82 does not contribute
significantly, which is consistent with those for the SAI sample.

The results of our final two OSC sample analyses, namely deter-
mining the temperature and redshift biases of fields 1–7 and quan-
tifying the likelihood of the selection bias happening by chance,
are entirely consistent with those for the SAI sample (Sections 3.3
and 3.4, respectively).
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Figure 6. Same as Fig. 3 but for the OSC sample.

4.3 Planck CMB maps

Both our analysis and that of Yershov et al. (2014) used maps
produced by the Planck SMICA component separation pipeline
(Planck 2015 SMICA R2.01 and Planck 2013 SMICA R1.20, re-
spectively). To check our results are consistent across all four of
the Planck component separation pipelines we repeated selected
analyses from Section 3 using the Planck 2015 Commander, NILC,
and SEVEM CMB maps. In all cases the pixel variance estimates
were calculated from the corresponding HMHD maps as described
in Section 2.2.

We repeated the OLS linear regression gradient and Spearman’s
rank-order correlation coefficient analyses from Section 3.2. For
all four maps (Commander, NILC, SEVEM, and SMICA) the OLS
gradient and correlation present in the whole sample are entirely
absent in the remainder once fields 1-7 are removed. For SMICA the
contribution of fields 1–7 to the correlation was illustrated in Fig. 3.
For Commander, NILC, and SEVEM see Appendix C Figs C1, C2,
and C3 respectively.

We repeated the mean CMB temperature analysis from Sec-
tion 3.3.1. For all four maps SNe in fields 1–7, and all HEALPIX

pixels within each sample, are biased to CMB temperatures hotter
than the mean of the whole sample. In all cases fields 3, 6, and 7
are particularly extreme (Appendix C Table C1).

Our results are entirely consistent across all four Planck maps.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have shown that the apparent correlation of CMB temperature
and SNe redshift reported by Yershov et al. (2012, 2014) using OLS
linear regression, Pearson’s correlation coefficient, and an SAI SNe
sample, is also evident using Spearman’s rank-order correlation
coefficient, Welch’s t-test, and MWU test, and it is discernible in at
least one other SNe sample (OSC).

Whilst our analysis supports the prima facie existence of the ap-
parent correlation, the data indicate that it is actually a composite
selection bias (high CMB T × high SNe z) caused by the acci-
dental alignment of seven deep survey fields (fields 1–7) with CMB
hotspots. These fields include three from the Supernova Legacy Sur-
vey, two from the ESSENCE supernova survey, HDF-N, and CDF-
S. These comprise 9.2 per cent of the SAI sample and 8.6 per cent
of the OSC sample. These deep fields by their very nature con-
tain SNe at higher redshift than the remainder of the samples. We
have shown that the SNe within fields 1–7 are also biased to hotter
CMB temperature than the remainder of the samples. Our results
are consistent across all four of the Planck maps.

We have quantified the likelihood of fields 1–7 falling on CMB
hotspots by chance and have found this to be at least 6.8 per cent,
or approximately 1 in 15. We conclude that the correlation reported
by Yershov et al. (2012, 2014) is a composite selection bias caused
by the chance alignment of certain deep survey fields with CMB
hotspots. This bias (high CMB T × high SNe z) is the combined
result of both a selection bias (high z SNe in deep fields) and the
chance alignment of those deep fields with CMB hotspots.

This selection bias results in heteroscedastic data, where the vari-
ance of CMB temperature at SNe locations is unequal across the
range of redshifts. We have shown that high-redshift SNe tend to be
in deep survey fields, which given the chance alignments, generally
give hot Planck pixel temperatures. Low-redshift SNe are more uni-
formly scattered across the sky and thus have much wider variance
of hot and cold Planck pixel temperatures. This heteroscedasticity
was hidden by binning the data.
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This paper shows that deep survey fields have biased SNe cross-
correlation with CMB temperature, but the implications could ex-
tend further. Deep fields could potentially bias any cross-correlation
between astronomical objects (e.g. SNe, galaxies, GRBs, quasars)
and the CMB. It is conceivable that deep fields could, by chance,
also be aligned with distant large-scale structures, voids, cosmic
bulk flows, or even regions of anisotropic cosmic expansion (should
they exist).

Furthermore, perhaps the spatial non-uniformity of SNe data sets
could help explain some of the tensions that have been reported
between and within them (e.g. Choudhury & Padmanabhan 2005;
Nesseris & Perivolaropoulos 2007; Bueno Sanchez, Nesseris &
Perivolaropoulos 2009; Karpenka, Feroz & Hobson 2015).
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APPENDIX A : FIELDS 1–7

Figure A1. Gnomic projections of the Planck 2015 SMICA CMB map in the vicinity of fields 1–7 (colour on-line). The location of SAI sample SNe are
plotted with crosses (×). The dashed squares are the boundaries of fields 1–7, centred on the corresponding deep survey fields at the specified coordinates
(α and δ, J2000).
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(d) Weighted T, HMHD variance smoothed to 0.5º

(b) Weighted T, HMHD variance unsmoothed

(a) Unweighted T

(c) Weighted T, HMHD variance smoothed to 5′

(e) Weighted T, HMHD variance smoothed to 5º

Figure B1. Plot of CMB temperature at SNe locations versus SNe redshift
(method as Section 2, plot as Fig. 1). Planck 2015 CMB data used are:
CMB temperature from R2.01 SMICA CMB temperature intensity; variance
estimate from R2.01 SMICA half-mission half-difference (HMHD) maps.
Sub-figures are (a) unweighted T , (b) weighted T with unsmoothed HMHD
variance, (c), (d), and (e) weighted T with HMHD variance smoothed to 5
arcmin, 0.5◦, and 5◦ FWHM, respectively. Weight = 1/σ 2.

Figure B2. Same as Fig. B1 but for variance estimated using Planck 2015
R2.01 SMICA half-ring half-difference (HRHD) maps.
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(b) Weighted T, 217GHz covariance unsmoothed 

(a) Weighted T, 143GHz covariance unsmoothed

Figure B3. Same as Fig. B1(b) but for variance estimated using intensity
covariance in Planck 2015 R2.02 143 GHz and 217 GHz frequency maps.
Sub-figures are (a) weighted T with unsmoothed 143 GHz variance, and (b)
weighted T with unsmoothed 217 GHz variance. Weight = 1/σ 2.

Figure B4. Same as Fig. B1 but for variance estimated using Planck 2013
R1.20 SMICA map noise. Note that Planck included pixel noise values in
the R1.20 SMICA map, unlike R2.01.
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APPENDIX C : A LTERNATIVE PLANCK MAPS

Table C1. Same as Table 3 CMB temperature columns but for temperature measured, and variance estimated, using each of the Planck 2015 Commander,
NILC, SEVEM, and SMICA maps.

CMB temperature (μK)
Field Commander NILC SEVEM SMICA

SNe Pixels SNe Pixels SNe Pixels SNe Pixels

Field 1 32.4 ± 9.4 52.3 ± 1.7 30.5 ± 9.1 49.0 ± 1.7 35.7 ± 8.9 51.9 ± 1.7 29.1 ± 9.1 47.5 ± 1.7
Field 2 94.8 ± 2.8 95.2 ± 1.6 90.7 ± 3.1 92.9 ± 1.6 97.0 ± 3.1 96.1 ± 1.7 92.9 ± 3.3 94.3 ± 1.7
Field 3 133.0 ± 9.4 138.9 ± 1.0 132.1 ± 9.2 139.0 ± 1.0 132.2 ± 9.3 140.5 ± 1.0 130.8 ± 9.2 137.5 ± 1.0
Field 4 91.0 ± 14.7 85.7 ± 1.7 94.2 ± 14.5 88.2 ± 1.7 87.4 ± 13.8 85.6 ± 1.7 85.3 ± 14.3 81.7 ± 1.7
Field 5 51.8 ± 8.9 70.2 ± 1.2 52.1 ± 8.6 71.5 ± 1.2 51.8 ± 8.7 70.2 ± 1.2 49.7 ± 8.5 68.2 ± 1.2
Field 6 197.3 ± 14.5 169.5 ± 1.9 195.7 ± 14.1 167.4 ± 1.9 197.0 ± 13.8 167.1 ± 1.9 199.3 ± 13.6 168.9 ± 1.9
Field 7 117.5 ± 12.3 100.5 ± 3.9 121.0 ± 12.4 100.8 ± 4.1 121.9 ± 11.9 103.9 ± 4.0 120.5 ± 12.0 100.8 ± 4.0
Fields 1–7 89.4 ± 5.0 103.6 ± 0.7 88.4 ± 5.0 103.7 ± 0.7 90.1 ± 4.9 103.8 ± 4.0 87.4 ± 5.0 101.5 ± 0.7
Stripe 82 4.8 ± 4.0 17.9 ± 0.2 6.1 ± 4.0 19.5 ± 0.2 5.8 ± 4.0 18.6 ± 0.2 3.8 ± 4.0 17.2 ± 0.2
Whole sample 10.8 ± 2.0 3.2 ± 0.0 10.4 ± 2.0 2.2 ± 0.0 11.8 ± 2.0 3.0 ± 0.0 10.3 ± 2.0 3.1 ± 0.0
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Figure C1. Same as Fig. 3 but for temperature measured, and variance
estimated, using Planck 2015 Commander maps instead of Planck 2015
SMICA maps.

Figure C2. Same as Fig. 3 but for temperature measured, and variance
estimated, using Planck 2015 NILC maps instead of Planck 2015 SMICA
maps.
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Figure C3. Same as Fig. 3 but for temperature measured, and variance
estimated, using Planck 2015 SEVEM maps instead of Planck 2015 SMICA
maps.
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