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Abstract 28 

 29 

Accurate identification of Alzheimer’s disease (AD) is still of major clinical importance 30 

considering the current lack of non-invasive and low-cost diagnostic approaches. Detection of 31 

early-stage AD is particularly desirable as it would allow early intervention and/or recruitment 32 

of patients into clinical trials. There is also an unmet need for discrimination of AD from 33 

dementia with Lewy bodies (DLB), as many cases of the latter are misdiagnosed as AD. 34 

Biomarkers based on a simple blood test would be useful in research and clinical practice. 35 

Raman spectroscopy has been implemented to analyse blood plasma of a cohort that consisted 36 

of early-stage AD, late-stage AD, DLB and healthy controls. Classification algorithms 37 

achieved high accuracy for the different groups: early-stage AD vs healthy with 84% 38 

sensitivity, 86% specificity; late-stage AD vs healthy with 84% sensitivity, 77% specificity; 39 

DLB vs healthy with 83% sensitivity, 87% specificity; early-stage AD vs DLB with 81% 40 

sensitivity, 88% specificity; late-stage AD vs DLB with 90% sensitivity, 93% specificity; and 41 

lastly, early-stage AD vs late-stage AD 66% sensitivity and 83% specificity. G-score values 42 

were also estimated between 74-91%, demonstrating that the overall performance of the 43 

classification model was satisfactory. The wavenumbers responsible for differentiation were 44 

assigned to important biomolecules which can serve as a panel of biomarkers. These results 45 

suggest a cost-effective, blood-based biomarker for neurodegeneration in dementias.  46 

 47 

 48 

 49 

Keywords: Alzheimer’s disease; Dementia with Lewy bodies; Raman spectroscopy; blood 50 
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Introduction 52 

Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) constitute the two 53 

most common causes of dementia. AD and DLB can share common symptoms and clinical 54 

characteristics, which can lead to misdiagnosis. A clear distinction between these two causes 55 

of dementia is necessary in terms of pharmacological treatment and outcome evaluation 1, 2. 56 

The neuropathological hallmarks of AD include senile plaques (containing accumulated 57 

amyloid-beta (Aβ) peptide) and neurofibrillary tangles (composed of hyperphosphorylated tau 58 

protein), while in DLB the hallmark pathology is the abnormal aggregation of α-synuclein into 59 

Lewy bodies and Lewy neurites 3, 4. The ability to index the presence of these pathological 60 

features in very early stages (i.e., prodromal disease), or even before symptoms occur (i.e., pre-61 

clinical disease), would allow an earlier intervention before irreversible neuronal death occurs, 62 

as well as facilitating early recruitment into clinical trials.  63 

Accurate detection of dementia is essential for improving the lives of those affected. 64 

Current diagnostic approaches employ neuroimaging techniques, such as magnetic resonance 65 

imaging (MRI) and positron emission tomography (PET) scans (amyloid-PET and more 66 

recently tau-PET), or cerebrospinal fluid (CSF) biomarkers, but these methods have many 67 

limitations 5-8. A combination of family and clinical history, as well as a series of different 68 

memory and psychological tests is often required for diagnosis, but not all pathologically 69 

similar cases will present with the same “clinical phenotype”; many studies have shown 70 

contradictory results regarding the suitability of these biomarkers for accurate diagnosis. 71 

Recently, blood biomarkers have emerged as a potential means to test for neurodegenerative 72 

diseases, with some being capable of detecting early-stage disease 9-11. The rationale behind 73 

the use of blood samples is based on the daily release of 500 ml CSF into the bloodstream, 74 

which potentially renders blood a rich source of brain biomarkers 12.  75 
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Raman is a spectroscopic technique that extracts biological information by applying a 76 

monochromatic, laser light onto the sample under interrogation; electrons are thus excited to 77 

virtual energy levels. When these electrons return to the original energy level, in the form of a 78 

photon, there is no energy shift (known as elastic or Rayleigh scattering), whereas when they 79 

return to a lower or a higher energy level there is a gain or loss of energy, respectively (known 80 

as inelastic or Raman scattering) 13. The shift in the energy allows the generation of a spectrum 81 

which is indicative of the chemical bonds present in the sample. The characteristic spectra that 82 

are derived from Raman spectroscopy, represent a number of different biomolecules within a 83 

sample (e.g., proteins, carbohydrates, lipids, DNA) 14. Recent studies have employed Raman 84 

spectroscopy to study different diseases, such as malaria, oral and colorectal cancer, in 85 

biological fluids 15-17.  86 

 The aim of the present study was to diagnose patients with Alzheimer’s disease, in early 87 

and late disease stages, and patients with DLB, as well as to discriminate between AD and 88 

DLB. To achieve this, blood plasma was analysed with Raman spectroscopy as a minimally 89 

invasive procedure that would also allow repeated measurements for follow-up of individuals. 90 

Results  91 

We enrolled 56 individuals into this study who were classified into 4 groups; early stage 92 

AD (n=11; age range: 50-74 years), late stage AD (n=15; age range: 50-79 years), DLB (n=15; 93 

age range: 23-73 years) and healthy controls (n=15; age range: 23-73 years) (Table 1). Early 94 

and late-stage AD was defined according to the duration of illness, from designated age at onset 95 

up to age at sample collection. P-values were calculated based on age and statistical differences 96 

were detected only for the following two subgroup comparisons: Late AD vs Healthy (P=0.004) 97 

and DLB vs Healthy (P <0.001). For all the other comparison groups (Early AD vs Healthy, 98 

Early AD vs DLB, Late AD vs DLB, Early AD vs Late AD), there was no statistical difference 99 
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observed due to age (P >0.005) (Supplementary Table 1). Even though there was age difference 100 

between the controls and AD individuals, no correlation was observed between age and AD 101 

spectra after using partial least squares regression (R2 = 0.107, 2 latent variables with 99.93% 102 

cumulative explained variance) and no statistical difference was observed in the spectra of AD 103 

patients with age lower and higher than 54 years of age (average control age) with a 95% 104 

confidence level (P> 0.005). This indicates that age did not affect the spectral distribution 105 

within the AD class. Similarly, no statistical differences were observed in the Raman spectra 106 

of the different groups due to gender (male vs female) (Supplementary Fig. 8). 107 

Early stage AD vs healthy individuals.  After pre-processing of the spectral data, 108 

principal component analysis followed by linear discriminant analysis (PCA-LDA) was 109 

applied to the derived dataset. A one-dimensional (1D) scores plot was generated to account 110 

for differences and similarities between early stage AD and healthy subjects (Fig. 1A); after 111 

statistical analysis, the two classes showed significant differences (P <0.0001, 95% CI = 0.0503 112 

to 0.0622). A loadings plot served as a biomarker extraction method, identifying the top six 113 

peaks responsible for differentiation: 1650 cm-1, 1529 cm-1, 1432 cm-1, 1161 cm-1, 996 cm-1 114 

and 911 cm-1 (Fig. 1B). A statistical test was performed on each peak individually to calculate 115 

the P-value and investigate the differences in Raman intensity between the two groups 116 

(Supplementary Fig. S2, Supplementary Table 2). Figure 1C summarises the tentative 117 

assignments along with the P-values for these peaks (denoted with asterisks). Further analysis 118 

was conducted to classify the two classes; support vector machine (SVM) was the classification 119 

algorithm that was used, achieving 84% sensitivity and 86% specificity, with the G-score 120 

estimated at 85% and Youden’s index at 70% (Table 2, Supplementary Fig. 1A). 121 

Late AD vs healthy individuals.  A similar approach was followed for the discrimination 122 

between late AD and healthy individuals. Figure 2A represents the scores plot after cross 123 

validated PCA-LDA and reveals statistically significant differences between the groups (P 124 
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<0.0001, 95% CI = 0.0655 to 0.0834). The top six discriminatory peaks that were selected for 125 

this comparison group were 1648 cm-1, 1530 cm-1, 1432 cm-1, 1259 cm-1, 1164 cm-1 and 1003 126 

cm-1 (Fig. 2, Supplementary Fig. S3 and Supplementary Table 2). After the SVM classification, 127 

late AD was discriminated from healthy individuals with 84% sensitivity, 77% specificity and 128 

the G-score estimated at 80% and Youden’s index at 61% (Table 2, Supplementary Fig. 1B). 129 

DLB vs healthy individuals.  Scores plot was again generated after cross validated 130 

PCA-LDA to compare DLB with healthy controls. Statistically significant differences were 131 

found between the groups (P <0.0001, 95% CI = 0.0982 to 0.1166) and the wavenumbers that 132 

were mostly responsible for this discrimination are shown in the respective loadings plot (Fig. 133 

3B): 1647 cm-1, 1604 cm-1, 1418 cm-1, 1384 cm-1, 1002 cm-1 and 933 cm-1. The differences in 134 

Raman intensity for each wavenumber are shown in more detail in Supplementary Fig. 4 and 135 

Supplementary Table 2. Sensitivity and specificity, after SVM, were 83% and 87%, 136 

respectively, while the G-score was calculated at 85% and Youden’s index at 70% (Table 2, 137 

Supplementary Fig. 1C). 138 

Early stage AD vs DLB. The scores plot for the comparison between early stage AD and 139 

DLB is shown in Fig. 4A. After statistical analysis, the difference between these two cohorts 140 

was statistically significant (P <0.0001, 95% CI = -0.0791 to -0.0649). The wavenumbers that 141 

were found as the most important, after cross-validated PCA-LDA are shown along with their 142 

tentative assignments in Fig. 4 and were the following: 1645 cm-1, 1513 cm-1, 1376 cm-1, 1253 143 

cm-1, 1161 cm-1 and 1003 cm-1 (Supplementary Fig. 5 and Supplementary Table 2). The 144 

sensitivity and specificity values from this comparison were 81% and 88%, respectively, with 145 

the G-score at 84% and Youden’s index at 69% (Table 2, Supplementary Fig. 1D).  146 

Late AD vs DLB.  Analyses were conducted to discriminate between late AD and DLB 147 

(Fig. 5). Significant differences were found after statistical analysis on the PCA-LDA scores 148 
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plot (P <0.0001; 95% CI = 0.138 to 0.1596). The following are the top six wavenumbers that 149 

were found to be responsible for the observed differentiation: 1646 cm-1, 1614 cm-1, 1437 cm-150 

1, 1216 cm-1, 1164 cm-1 and 1003 cm-1. Differences in the Raman intensity at these peaks are 151 

given in Supplementary Fig. 6 and Supplementary Table 2. The tentative assignments for these 152 

wavenumbers are shown in Fig. 5C. Sensitivity and specificity were 90% and 93%, 153 

respectively, with G-score being 91% and Youden’s index at 84% (Table 2, Supplementary 154 

Fig. 1E). 155 

Early AD vs late AD.  A comparison between early and late-stage AD patients was also 156 

performed. After cross validated PCA-LDA, the scores plot revealed statistically significant 157 

differences between the two groups (P <0.0001; 95% CI = -0.0943 to -0.0624) (Fig. 6). The 158 

loadings plot denoted the following six wavenumbers as the most important: 1650 cm-1, 1476 159 

cm-1, 1432 cm-1, 1161 cm-1, 1003 cm-1, 642 cm-1 (Supplementary Fig. 7 and Supplementary 160 

Table 2). After classification of the two populations, 66% of the early AD spectra were 161 

correctly identified with 34% been misclassified as late AD; and 83% of the late AD cases 162 

were correctly identified with 17% misclassified as early stage AD (Table 2). G-score was 163 

calculated at 74% and Youden’s index at 49% (Table 2, Supplementary Fig. 1F). 164 

Discussion 165 

Amyloid PET imaging has been shown to improve the diagnostic accuracy of AD 18. 166 

However, one of the limitations is that only subjects with advanced dementia and relatively 167 

heavy plaque densities will be amyloid PET-positive; thus, individuals may not be identified 168 

early enough to be used in prevention studies using anti-amyloid therapeutics 19. The detection 169 

accuracy of neuropathologically defined AD with PET imaging has been estimated at 69-95% 170 

sensitivity and 83-89% specificity 20. In the case of DLB patients, PET imaging shows 171 

increased Aβ deposition in >50% of patients with DLB which limits its value in distinguishing 172 

between AD and DLB 3. In a recent study, clinical and pathological diagnoses were compared 173 
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and DLB patients were identified with 73% sensitivity and 93% specificity; such findings 174 

suggest that there is still need for improvement in discriminating between these conditions 21. 175 

When using MRI for AD diagnosis, a decreased volume of hippocampus and other temporal 176 

lobe structures is indicative of neurodegeneration; visual rating scales evaluating the degree of 177 

atrophy provide ~80-85% sensitivity and specificity when comparing AD to healthy 178 

individuals and slightly lower sensitivity and specificity when comparing to amnestic mild 179 

cognitive impairment (MCI) 6. However, atrophy patterns can be similar in different diseases 180 

while at the same time some unusual forms of AD may have atypical patterns 22.  181 

Established CSF biomarkers that are currently used in clinical practise to diagnose AD, 182 

also known as “core biomarkers”, include decreased levels of Aβ42, or decreased Aβ42:Aβ40 183 

ratio, and increased levels of total tau (T-tau) or hyperphosphorylated tau (P-tau) 23. In a 184 

systematic review and meta-analysis, a number of different biomarkers has been associated 185 

with AD in both CSF and blood; namely, neurofilament light chain (NfL), neuron-specific 186 

enolase (NSE), visinin-like protein 1 (VLP-1), heart fatty acid binding protein (HFABP), 187 

chitinase-3-like protein 1 (YKL-40) in CSF, as well as T-tau and P-tau in blood plasma 10, 24, 188 

25. More recently, an elevated level of plasma NfL has been suggested as a promising biomarker 189 

to distinguish AD and MCI from healthy subjects. The accuracy for the comparison between 190 

AD and healthy controls, after testing for NfL, was 87%, which is comparable to accuracies 191 

achieved by CSF testing (88% Aβ42; 90% T-tau; 87% P-tau; 89% NfL) and plasma tau (78%) 192 

11. Another study, discovered and validated a set of ten lipids in plasma to detect preclinical 193 

AD in cognitively normal older adults within a 2-3 year timeframe; this panel achieved 90% 194 

accuracy 9. Even though it is now established that the α-synuclein gene (SNCA) is associated 195 

with a few families with Parkinson’s disease (PD) and DLB, CSF α-synuclein is not yet proven 196 

as a potential biomarker. CSF and blood biomarkers for the diagnosis of DLB remain elusive, 197 
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with Aβ, Τ-tau and P-tau remaining the most current measurements to predict cognitive decline 198 

and determine associated AD pathology 3. 199 

In the present study, we included patients with AD, in both early and later stages of the 200 

disease, DLB, as well as heathy individuals. The blood-based Raman spectroscopic technique, 201 

provided excellent diagnostic accuracy not only between diseased and non-diseased states, but 202 

also between the two different types of dementia. Statistically significant age differences were 203 

only observed for Late AD vs Healthy (P=0.004) and DLB vs Healthy (P <0.001). The age 204 

difference between healthy controls and both Late AD and DLB patients was somehow 205 

expected as these diseases manifest mainly in older individuals. A larger dataset containing a 206 

wider age range would be necessary for adjusting the model for age. However, the fact that 207 

diagnostic accuracies remain exceptionally high for the subgroups with no age differences (e.g., 208 

Late AD vs DLB showing 90% sensitivity and 93% specificity), implies that the age factor was 209 

not solely responsible for the achieved segregation between the cohorts. Similarly, no statistical 210 

differences were observed due to gender after calculating the P values for each spectral 211 

wavenumber; therefore, gender differences did not change the spectral profile. 212 

Raman spectroscopy can reveal invaluable information about a biological sample as it 213 

provides the overall status of a sample, indicating disease. The results from such an approach 214 

are comparable to, and in some cases even better than, conventional methods, as they allow for 215 

simultaneous investigation of a panel of different biomarkers and therefore may be more 216 

suitable for complex diseases. Furthermore, Raman allows for a low-cost, label-free and non-217 

destructive diagnosis in contrast to current imaging techniques and molecular CSF and/or blood 218 

tests. Previous studies have estimated the cost of an MRI and PET scan at £163 and £844, 219 

respectively, while an enzyme-linked immunosorbent assay (ELISA) measurement (96-well 220 

plate) of the core biomarkers (Aβ42, T-tau, P-tau) costs £826 per kit 26, 27. In contrast, a blood 221 

test employing Raman spectroscopy is negligible in terms of consumables although there 222 
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would be costs in terms of employee time for samples preparation and analysis; overall cost 223 

would fall dramatically as the data infrastructure to allow remote classification of samples 224 

became available. Even the upfront cost or Raman instrumentation, often varying from £3,000-225 

£150,000, is low in comparison with other approaches and would again fall with the 226 

development of hand-held devices; also the running costs are minimal with electrical power 227 

being the only requirement. Over the longer-term, lasers may need to be replaced (~every 6-7 228 

years), but daily running costs are close to zero. 229 

Discriminatory peaks have also been identified for all of the different comparison 230 

groups and could possibly be used as biomarkers for differential diagnosis or screening of high-231 

risk populations. For instance, higher levels of Amide II peaks (~1530 cm-1) were seen in both 232 

early (P <0.0001) and late stage AD (P <0.0001) patients and could possibly be represented by 233 

an increase in tau proteins or NfL in plasma, which have been suggested previously as 234 

promising biomarkers (Supplementary Fig. 2, Supplementary Fig. 3) 11. Also, the observed 235 

decrease in lipids (~1432 cm-1) could be due to damaged phospholipid membranes caused by 236 

oxidative stress. These findings are in line with previous results of a larger-scale study our 237 

research team conducted, in which infrared (IR) spectroscopy was employed to diagnose AD 238 

28. An advantage of Raman spectroscopy over IR is its ability to analyse aqueous samples which 239 

would allow the analysis of fresh samples without the need of prior dehydration; this would be 240 

particularly beneficial for use in a clinic.  Noticeably, in this preceding study, lipid peaks were 241 

also decreased (~1740 cm-1, P <0.05; ~1450 cm-1, P <0.005) and Amide II was also increased 242 

(~1540 cm-1, P = 0.003) in AD patients. However, Amide I (~1650 cm-1), which is indicative 243 

of Aβ load, was not found to be statistically different (P = 0.12), in contrast to the current study 244 

where it was significant in both early (P = 0.0003, 95% CI = 0.0008 to 0.0028) and late stage 245 

AD (P <0.0001, 95% CI = 0.0016 to 0.0029). Previous studies have noted altered levels of 246 

aromatic amino acids in plasma and serum of AD patients 29. Some studies have shown an 247 
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increase in phenylalanine in the brain of AD subjects 30-32, while others suggest a decrease 33, 248 

34. In our study, the level of phenylalanine was increased in DLB cases, whereas in late AD 249 

phenylalanine was decreased when compared to healthy subjects. Between AD and DLB 250 

patients, the latter cohort showed higher levels of phenylalanine, which could possibly relate 251 

to their α-synuclein pathology (Supplementary Fig. 5). Previous studies have shown altered 252 

metabolic profiles of PD patients (also related to α-synuclein aggregation) when compared to 253 

normal controls, and these differences were related to metabolic pathway variations such as 254 

phenylalanine metabolism 35-37.  255 

We were particularly interested in examining early stage AD cases as it is of crucial 256 

importance to identify individuals before brain damage becomes very severe. Evidence of 257 

changes here would allow for an on-time intervention, potentially to slow down the disease, 258 

psychologically prepare the affected person and their family, as well as provide them with the 259 

opportunity to take part in early intervention trials. Surprisingly, the diagnostic accuracy was 260 

slightly higher for early AD than for late AD. After comparison of these two groups, 66% of 261 

early AD and 83% of late AD were correctly classified. Of the wavelengths which were shown 262 

to contribute the most to the segregation between the classes, a peak assigned to Amide II 263 

proteins (~1476 cm-1) and a peak assigned to C-C and C-S vibrations of proteins (~642 cm-1) 264 

were found to be statistically significant (Supplementary Fig. 7). A potential explanation for 265 

the decreased level of Amide II in early stage AD cases could be the lower density of 266 

neurofibrillary tangles in the brain during early stages. Previous studies have suggested that 267 

kinase mutations and dysfunction play an important role in the development of disorders such 268 

as cancer and neurodegeneration 38. Specifically, cyclin-dependent kinase 5 (cdk5), which is 269 

involved in the abnormal hyperphosphorylation of tau, has been suggested to accumulate at a 270 

relatively early stage in the neocortex 39; more recent research has also shown that a cellular 271 

stress response, caused by accumulation of misfolded proteins, induces the activity of a major 272 



12 
 

tau kinase (GSK-3β) and occurs at an early stage of neurofibrillary degeneration leading to AD 273 

pathogenesis 40. Therefore, this may potentially explain the increased level of the protein peak 274 

at 642 cm-1. Special attention was also given to the accurate diagnosis of DLB and 275 

differentiation from AD which is especially important to provide the appropriate treatment; 276 

DLB cases respond well to cholinesterase inhibitors but have severe neuroleptic sensitivity 277 

reactions, which are associated with significantly increased morbidity and mortality 41.  278 

A critical aspect for every new biomarker, diagnostic or treatment approach is the 279 

repetition and validation of the analytical process and in different cohorts. Previously, a few 280 

studies also employed Raman spectroscopy to diagnose AD in blood, achieving high 281 

classification accuracy. Carmona et al. distinguished AD (n=35) from normal (n=12) with 89% 282 

sensitivity and 92% specificity 42. Ryzhikova et al. included serum samples from 20 AD 283 

patients, 18 patients with other neurodegenerative dementias (OD) (5 with DLB, 10 with 284 

Parkinson’s disease dementia and 3 with frontotemporal dementia) and 10 healthy individuals 285 

and achieved 95% sensitivity and specificity 43. However, the fact that a range of different 286 

dementias were all taken in the same group, may obscure the actual classification capability 287 

between AD and DLB. Moreover, no spectroscopic approach has been employed so far to 288 

investigate DLB in more detail.  289 

A limitation of the current study is the small number of participants, which can affect 290 

sensitivity and specificity estimates. However, G-score values were estimated at 74-91%, 291 

denoting that the models were not overfitted. G-score does not account the size of classes, thus 292 

providing robust information about the classification ability even in smaller cohorts 44. 293 

Youden’s index values ranged between 49% (early AD vs late AD) and 84% (late AD vs DLB). 294 

This parameter is a probability indicator of the model’s ability to avoid failure. Youden’s 295 

indexes above 70% for early AD vs healthy, DLB vs healthy and late AD vs DLB indicate that 296 

these models have low probability of misclassification in the future. Another limitation of this 297 
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study, as well as similar previous ones, is the lack of serial samples from the same individuals 298 

which would validate the results and demonstrate repeatability. 299 

In summary, diagnosis of early stage AD, late stage AD, DLB as well as differentiation 300 

between the two dementias was achieved, opening a new road for potential applications in a 301 

clinical setting. Some of the future uses of spectroscopy could be the detection of 302 

prodromal/pre-demented cases; the differential diagnosis of different dementias that would 303 

allow the appropriate treatment and/or recruitment into clinical trials; and the further 304 

monitoring of patients that do finally take part in clinical trials. 305 

Methods 306 

Patient information.  We enrolled 56 individuals into this study who were classified 307 

into four groups; early stage AD (n=11), late stage AD (n=15), DLB (n=15) and healthy 308 

controls, usually spouses (n=15). Early and late-stage AD was defined according to the duration 309 

of illness, from designated age at onset up to age at sample collection. Early stage was defined 310 

as up to two years from designated age at onset, whereas late stage AD was defined as any 311 

duration beyond this time point. Clinical and demographic data is summarised in Table 1. 312 

Information on apolipoprotein ε4 (APOE4) status and gender was not available for two subjects 313 

from the healthy control group. Patients were recruited at Salford Royal Hospital (Salford, UK) 314 

with informed consent prior to enrolment in accordance with Local Ethical Approval 315 

(05/Q1405/24 conferred by North West 10 Research Ethics Committee Greater Manchester 316 

North). Patients were diagnosed according to battery of psychological testing (Manchester 317 

Neuropsychology Inventory) performed at a Specialist referral Centre (Cerebral Function Unit, 318 

Greater Manchester Neurosciences Centre, Salford Royal Hospital). All methods were 319 

performed in accordance with the relevant guidelines and all other applicable laws and 320 

regulations. At time of diagnosis patients were not receiving any medications, such as 321 
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anticholinesterase treatments. Most patients had received MRI scans but these were used only 322 

to support the neuropsychological outcomes. 323 

Sample preparation and APOE genotyping. Whole blood samples were collected into 324 

EDTA tubes, centrifuged at 2000 rpm at 4oC for 10 min to separate erythrocytes from plasma. 325 

Plasma was collected in 0.5 mL clean, plastic tubes, stored at -80oC and thawed at room 326 

temperature prior to spectroscopic interrogation. After the samples were thawed, 50 μL were 327 

deposited on glass slides covered with aluminium foil, which has been shown to be featureless 328 

in Raman 14, and were then left to air-dry overnight. DNA was extracted by routine methods 329 

from blood samples of patients and control subjects; APOE alleles were determined by PCR 330 

45. 331 

Raman spectroscopy. Raman spectra were collected with an InVia Renishaw Raman 332 

spectrometer coupled with a charge-coupled device (CCD) detector and a Leica microscope. 333 

A 200 mW laser diode was used at a wavelength of 785 nm with a grating of 1200 l/mm, and 334 

the system was calibrated to 520.5 cm-1 with a silicon source, before every run. After trial-and-335 

error measurements to optimise the experimental parameters, we concluded to a 10 second 336 

exposure time, 5% laser power and 2 accumulations at a spectral range 2000-400 cm-1 to 337 

achieve optimum spectral quality. Twenty-five point spectra were taken per sample using a 338 

50× objective to focus the laser beam on the sample.  339 

Pre-processing of spectral data and multivariate analysis. Spectra were initially 340 

corrected for cosmic rays using the Renishaw WiRe software. An in-house developed IRootLab 341 

toolbox (http://trevisanj.github.io/irootlab/) was then implemented within MATLAB 342 

(MathWorks, Natick, USA) for further pre-processing and computational analysis of the data. 343 

All spectra were cut at 1750-500 cm-1, first order differentiated with Savitzky-Golay (SG) 344 

(window of 9 points; 2nd polynomial filter) to smooth out the noise and vector normalised to 345 

http://trevisanj.github.io/irootlab/
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account for non-biological differences, such as varying concentration or thickness of the 346 

sample; the resulting dataset was then mean-centered before implementation of cross-validated 347 

(k-fold=10, leave-one-out) principal component analysis followed by linear discriminant 348 

analysis (PCA-LDA).  The leave-one-out cross-validation was implemented to avoid 349 

overfitting. This ensures that one sample is removed from the training set and predicted as 350 

external sample during model construction in an interactive process until all samples are 351 

predicted; this provides more realistic classification results. All classification models were 352 

validated using 10% of the samples in a test set. PCA is an unsupervised method that reduces 353 

the spectral dataset to only a few important principal components (PCs) which are responsible 354 

for the majority of the variation; using a Pareto function, a number of 10 PCs was found as 355 

optimal. LDA is a supervised technique, often coupled with PCA, to maximise the between-356 

class distance and minimise the within-class distance. Scores plots and loadings plots were 357 

generated after PCA-LDA to visualise the differences and similarities between the groups as 358 

well as to identify specific spectral peaks responsible for this differentiation; these peaks were 359 

tentatively assigned to different biomolecules which can potentially serve as biomarkers 46, 47. 360 

After the six peaks were identified from the loadings plot, they were then extracted from 361 

polynomial corrected, vector normalised spectra in order to avoid the spectral transformation 362 

that first order differentiation can cause. Classification of the different comparison groups was 363 

conducted using support vector machine (SVM) which is a machine-learning technique to 364 

classify spectral data. For SVM implementation, the pre-processed dataset (i.e., cut, SG 365 

differentiated, vector normalised) was normalised to the [0, 1] range and then the optimal (C, 366 

γ) combination was found using grid search. Sensitivities and specificities were therefore 367 

calculated for each comparison group 48. In order to overcome the limitation of using a small 368 

cohort in this study, G-score values were also calculated to assess the overall performance of 369 

the classification model 44. The G-score is calculated as the square root of sensitivity times 370 
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specificity. Youden’s index was calculated to assess the classifier’s ability to avoid failure. 371 

This parameter is estimated as sensitivity minus (1 – specificity). 372 

Statistical analysis. The values generated after cross-validated PCA-LDA, were imported 373 

into GraphPad Prism 7 to conduct the statistical analyses and calculate the P-values for each 374 

comparison. Differences between two groups were assessed using a Student’s t-test (two-tailed, 375 

non-parametric, Mann-Whitney test, 95% confidence interval). The data were expressed as the 376 

mean ± standard deviation (SD). A P-value of 0.05 or less was considered significant in all 377 

statistical tests. 378 
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Legends for the figures  576 

 577 

 578 

Figure 1. Early stage Alzheimer’s disease (AD) versus healthy individuals. One-579 

dimensional (1D) scores plot after cross-validated PCA-LDA (P < 0.0001, 95% CI = 0.0503 to 580 

0.0622) (A); loadings plot showing the top six discriminatory peaks between the two classes 581 

(B); important peaks along with their tentative assignments 45,46 (C). Data are expressed as the 582 

mean ± standard deviation (SD). A P-value of 0.05 or less was considered significant; P < 0.05 583 

(*) or P < 0.005 (**) or P < 0.0005 (***). 584 

 585 
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 587 
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 596 

Figure 2. Late stage Alzheimer’s disease (AD) versus healthy individuals. One-dimensional 597 

(1D) scores plot after cross-validated PCA-LDA (P <0.0001, 95% CI = 0.0655 to 0.0834) (A); 598 

loadings plot showing the top six discriminatory peaks between the two classes (B); important 599 

peaks along with their tentative assignments 45,46 (C). Data are expressed as the mean ± standard 600 

deviation (SD). A P-value of 0.05 or less was considered significant; P <0.05 (*) or P <0.005 601 

(**) or P <0.0005 (***). 602 
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 616 

Figure 3. Dementia with Lewy bodies (DLB) versus healthy individuals. One-dimensional 617 

(1D) scores plot after cross-validated PCA-LDA (P <0.0001, 95% CI = 0.0982 to 0.1166) (A); 618 

loadings plot showing the top six discriminatory peaks (B); important peaks along with their 619 

tentative assignments 45,46 (C). Data are expressed as the mean ± standard deviation (SD). A P-620 

value of 0.05 or less was considered significant; P <0.05 (*) or P <0.005 (**) or P <0.0005 621 

(***). 622 
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 635 

Figure 4. Early stage Alzheimer’s disease (AD) versus dementia with Lewy bodies (DLB). 636 

One-dimensional (1D) scores plot after cross-validated PCA-LDA (P <0.0001, 95% CI = -637 

0.0791 to -0.0649) (A); loadings plot showing the top six discriminatory peaks (early AD was 638 

used as reference class) between the two classes (B); important peaks along with their tentative 639 

assignments 45,46 (C). Data are expressed as the mean ± standard deviation (SD). A P-value of 640 

0.05 or less was considered significant; P <0.05 (*) or P <0.005 (**) or P <0.0005 (***). 641 
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 654 

Figure 5. Late stage Alzheimer’s disease (AD) versus dementia with Lewy bodies (DLB). 655 

One-dimensional (1D) scores plot after cross-validated PCA-LDA (P <0.0001, 95% CI = 0.138 656 

to 0.1596) (A); loadings plot showing the top six discriminatory peaks (late AD was used as 657 

reference class) (B); important peaks along with their tentative assignments 45,46 (C). Data are 658 

expressed as the mean ± standard deviation (SD). A P-value of 0.05 or less was considered 659 

significant; P <0.05 (*) or P <0.005 (**) or P <0.0005 (***). 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 



26 
 

 673 

Figure 6. Early stage Alzheimer’s disease (AD) versus late AD. One-dimensional (1D) 674 

scores plot after cross-validated PCA-LDA (P <0.0001, 95% CI = -0.0943 to -0.0624) (A); 675 

loadings plot showing the top six discriminatory peaks (early AD was used as reference class) 676 

(B); important peaks along with their tentative assignments 45,46. (C). Data are expressed as the 677 

mean ± standard deviation (SD). A P-value of 0.05 or less was considered significant; P <0.05 678 

(*) or P <0.005 (**) or P <0.0005 (***). 679 
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Table 1. Patient characteristics.  699 

 
Early stage 

AD 

Late stage  

AD 
DLB Healthya

 

Sample size, n 11 15 15 15 

Age, years, mean 

(SD, range) 
62 (10, 50-74) 64 (8, 50-79) 71 (6, 61-80) 54 (18, 23-73) 

APOE4 carriers, n (%) 6 (55) 11 (73) 6 (40) 6 (40)  

Female, n (%) 5 (45) 3 (20) 3 (20) 9 (60) 

Duration, years, mean  

(± SD) 
1.28 (±0.5) 4.56 (±3) 2.46 (±1) n/a 

 700 

AD: Alzheimer’s disease DLB: dementia with Lewy bodies; APOE4: apolipoprotein E4; n/a: not 701 
applicable 702 

a Two individuals from the ‘Healthy’ group had no information on APOE4 load (13%) and gender 703 
(13%). 704 
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Table 2. Sensitivity, specificity and G-score and Youden’s index for the different comparison 721 
groups after classification with support vector machine (SVM).  722 

Comparison Group 
Sensitivity 

(%) 

Specificity 

(%) 

G-Score 

(%) 

Youden’s 

index 

(%) 

Early AD vs 

Healthy 
84 86 85 70 

Late AD vs Healthy 84 77 80 61 

DLB vs Healthy 83 87 85 70 

Early AD vs DLB 81 88 84 69 

Late AD vs DLB 90 93 91 84 

Early AD vs Late 

AD 
66 83 74 49 

AD: Alzheimer’s disease; DLB: dementia with Lewy bodies 723 


