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Abstract 

Much effort is currently being placed into developing new blood tests for cancer 

diagnosis in the hope of moving cancer diagnosis earlier and by less invasive means 

than current techniques, e.g., biopsy. Current methods are expected to diagnose and 

begin treatment of cancer within 62 days of patient presentation, though due to high 

volume and pressures within the NHS in the UK any technique that can reduce time to 

diagnosis would allow reduction in the time to treat for patients. The use of 

vibrational spectroscopy, notably infrared (IR) spectroscopy, has been under 

investigation for many years with varying success. This technique holds promise as is 

would combine a generally well accepted test (a blood test) with analysis that is 

reagent free and cheap to run. It has been demonstrated that, when asked simple 

clinical questions (i.e., cancer vs. no cancer), results from spectroscopic studies are 

promising. However, in order to become a clinically useful tool, it is important that 

the test differentiates a variety of cancer types from healthy patients. This study has 

analysed plasma samples with attenuated total reflection Fourier-transform IR 

spectroscopy (ATR-FTIR), to establish if the technique is able to distinguish normal 

from primary or metastatic brain tumours. We have shown that when asked specific 

questions, i.e., high-grade glioma vs. low-grade glioma, the results show a 

significantly high accuracy (100%). Crucially, when combined with meningiomas and 

metastatic lesions, the accuracy remains high (88-100%) with only minimal overlap 

between the two metastatic adenocarcinoma groups. Therefore in a clinical setting, 

this novel technique  demonstrates potential benefit when used in conjuction with 

existing diagnostic methods. 

 

 

Keywords: ATR-FTIR spectroscopy, biofluids, brain tumours, classification, 

sensitivity, specificity 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 3 

Introduction 

Blood testing for cancer diagnostics is a popular ideal. It uses an acceptable patient 

test, i.e., a blood test, which is minimally-invasive and machine analysed, can be run 

on a mass scale, and can target specific markers circulating in the blood. Whilst some 

cancers can be identified by the use of biomarkers, there are currently no such 

markers for primary or metastatic brain tumours, nor are any biomarkers yet involved 

in a mass-screening programme [1]. Brain tumours, both primary and metastatic, 

often present with a range of non-specific symptoms. The diagnostic process involves 

a combination of history taking, examination and radiology to determine the presence 

of a tumour and its possible origin [2]. There are specific radiological appearances 

that can help differentiate between primary and metastatic brain tumours; however, 

these rules do not always hold true [3]. A brain tumour may also be the first 

presentation of a metastatic cancer from elsewhere within the body; this accounts for 

up to a quarter of brain tumours [4]. Currently, a combination of radiological imaging 

and histology is used to detect the primary origin of a brain tumour. When metastatic, 

pathologists can apply immunohistochemical stains to formalin-fixed paraffin-

embedded (FFPE) tissue, within which a combination of positive and negative stains 

can help determine a primary site of origin. 

Over recent years the potential of vibrational spectroscopy has been touted as 

an ‘inexpensive, high throughput and reagent-free’ cancer diagnostic tool. In vivo 

studies have shown great promise using both tissue and blood component analysis 

with detection of cancer vs. non-cancer in many pilot studies showing promising 

results [5,6]. When considering biofluids, predominantly serum has been analysed for 

brain cancer, using attenuated total reflection Fourier-transform infrared (ATR-FTIR) 

spectroscopy, with varying sample methods used [7]. This is due to the erythrocyte 
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component in whole blood providing a strong interfering spectroscopic signal, likely 

masking the underlying changes seen in cancer vs. non-cancer patients [8]. The main 

limitations of these studies focus around different methods of sample preparation and 

analysis. No universal method of spectral analysis has yet been agreed. Butler et al. 

attempted to outline suggested methods of applying and analysing spectroscopic 

techniques on a variety of tissues, though it is unclear how widely accepted this has 

been [9]. 

Some studies have also compared the use of plasma or serum, with similar 

results. FTIR or Raman spectroscopy methods with biofluids have been used with a 

wide range of cancers; from head and neck (75% classification accuracy), bladder 

cancer (up to 80% accuracy), ovarian and endometrial cancer (96% and 81% 

respectively) and brain tumours (93% high-grade, 96% low-grade) [8, 10-16]. 

Spectral differences between gastric cancer patients vs. normal controls, leukaemia vs. 

normal controls and lung cancer vs. normal controls have all been demonstrated by a 

Chinese group [17-21]. These studies all demonstrate different points within the 

spectra of normal vs. malignant that exhibit specific changes. Whilst sensitivities and 

specificities have been high within the majority of these studies, they have all asked 

specific questions of the data, e.g., cancer type vs. normal control, gliomas vs. 

meningioma. 

There is then the limit of what question does ATR-FTIR need to answer. 

Within clinical medicine detection of a specific cancer is beneficial if suspected based 

on clinical suspicion. However, more frequently as symptoms are vague, a tool would 

be required to detect one from a number of primary cancers to provide early 

diagnostic utility. However, the majority of laboratory studies have focused on one 

cancer type and detecting its presence. It has been proposed that spectroscopy, more 
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specifically, FTIR spectroscopy, could be used as a stand-alone tool for diagnostics or 

within screening [20]. However, when either a healthy person (i.e., one without 

knowingly having the disease being tested for) presents for screening, or an unhealthy 

patient (i.e., a person with a collection of symptoms not specifically demonstrating a 

defined underlying illness) with a non-specific history presents, the ability of a 

spectroscopic blood test to detect a cancer and its tissue origin from a range of options 

remains to be tested. Studies demonstrating detection of low-grade malignancies are 

also lacking; within brain tumours, the differentiation of low- and high-grade gliomas 

has been demonstrated to good effect [14]. Hands et al., have also compared primary 

to metastatic tumours; however, this classed all brain tumours together vs. all types of 

metastasis [14]. On tissue, Krafft et al. have attempted to differentiate primary site 

from metastasis with limited effect. This study demonstrated that it was possible to 

separate by tumour type; however, adenocarcinomas for example, from two different 

primary sites gave markedly similar results [21]. Therefore in order to be clinically 

effective and aid other current diagnostic tools by adding value (i.e., providing 

information by less invasive means or more quickly than current testing), any new test 

must be able to detect cancer, with high accuracy, and aim to localise the cancer from 

a range of primary sites, as is currently possible following biopsy with the use of 

immunohistochemistry. 

The changes found within ATR-FTIR studies of peripheral blood components 

between cancer and non-cancer states are not yet clearly understood. Changes are 

seen at several wavelengths, e.g., Apolipoprotein A1 within endometrial cancer [15] 

and several reports of changes in vibrations from C-O, C=O and C-H bonds 

associated with lipids and proteins within patients with brain metastases [14]. It has 

also been shown to be possible to detect epidermal growth factor receptor (EGFR) 
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mutation status from peripheral blood of lung cancer patients [22]. This may be due to 

circulating tumour cells within the blood or in the case of ATR-FTIR spectroscopy-

detected protein changes within the peripheral blood.  These changes are likely caused 

by the release of enzymes and cytokines from the tumour as it grows. 

Worldwide, neurological disorders account for >20% of disease burden and 

are frequently seen in General Practitioner (GP) clinics [23]. If a typical secondary 

care neurology clinic is used as an example, patients are referred via their GP due to 

underlying symptoms such as headaches. From the history, examination and any 

relevant investigations the clinician determines the underlying cause. MacDonald et 

al. looked at an unselected population from GP services in London who had been 

referred to tertiary neurology services. This was to understand the range of underlying 

diagnoses. They found non-tumour related pathology made up the vast majority of 

these presentations [24]. Similar results have been reported elsewhere, including a 

Nigerian study [23]. Hence any new investigative tool would need a high accuracy in 

picking out individual patients with a brain tumour against a backdrop of many 

confounding factors. 

Therefore this study was performed to determine the accuracy of ATR-FTIR 

spectroscopy in detecting biochemical signatures of a range of primary and metastatic 

brain tumours from blood plasma when analysed in the same grouping. This approach 

aims to investigate whether ATR-FTIR spectroscopy is a useful tool to detect tumours 

within blood plasma when asked to differentiate on a wider-scale more akin to a 

typical clinical setting. Tumours were selected to encompass primary brain tumours 

and metastasis that commonly occur within the brain. Lung adenocarcinoma and 

malignant melanoma cause brain metastasis frequently, with lung adenocarcinoma 

resulting in the majority of brain metastasis [25-27]. Colorectal adenocarcinoma was 
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chosen to compare two adenocarcinomas with often similar morphology but slightly 

different immunohistochemical profiles to determine if ATR-FTIR spectroscopy 

would be able to differentiate two adenocarcinomas of different primary origins. To 

the authors’ knowledge this is the first paper to compare multiple tumour types using 

ATR-FTIR spectroscopy on plasma. 

Methods 

Plasma from 50 patients comprising normal, i.e., no known brain tumour (n=10), 

glioma high-grade (n=5) or low-grade (n=5), meningioma (n=10) and brain metastasis 

patients, a mix of lung adenocarcinoma (n=7), colorectal adenocarcinoma (n=7) and 

malignant melanoma (n=6) patients were obtained from the Brain Tumour North 

West tissue bank (BTNW). This was under ethical approval number (RTB - ethics 

NRES14/EE/1270). These were stored at -80°C and defrosted prior to use. From the 

samples, 50 μL of plasma was pipetted onto a glass slide wrapped in aluminium foil. 

This has previously been shown to be as effective as slides such as CaF2-coated 

windows [28]. 

The slides were left to dry overnight prior to spectral acquisition. ATR-FTIR 

spectra were collected using a Bruker TENSOR 27 FTIR spectrometer with Helios 

ATR attachment containing a diamond crystal internal reflective element and a 45o 

incidence angle of IR beam. In the ATR module, the light goes through the sample in 

a reflectance mode and, after successive reflections between the sample and the ATR 

crystal, an evanescent wave is generated contained the attenuated IR signal of the 

sample [29-30]. For each case 32 scans with 8 cm-1 spectral resolution were taken at 

10 randomly selected points. A new background spectrum was collected prior to each 
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new sample, followed by cleaning of the crystal with distilled water. The sampling 

aperture was 250 μm × 250 μm and the mirror velocity was 2.2 Hz. 

Computational analysis was then performed within a Matlab environment 

using IRootlab toolkit as a user interface [31]. Spectra were then pre-processed by 

cropping the region of interest (1850-800 cm-1), followed by polynomial baseline 

correction and vector normalisation. Following this, principal component analysis-

linear discriminant analysis (PCA-LDA) was performed to determine differences 

between the groups, along with PCA-linear discriminant classifier (PCA-LDC) to 

calculate the classification accuracy of each group. In addition, support vector 

machines (SVM) was employed for class differentiation using a radial basis function 

kernel. All PCA-LDC and SVM parameters (gamma value and number of support 

vectors) were optimized using leave-one-out cross-validation. Sub-dataset generation 

specification algorithm was employed for assigning 10% of the samples as external 

test dataset. The number of principal components was determined according to the 

maximum explained variance and lowest root mean square error of cross-validation. 

Statistical significance was then determined using a one-way ANOVA within PRISM 

(GraphPad Software) statistical analysis software. 

Results 

From the 50 cases 500 spectra (i.e., 10 spectra per sample) were obtained. Following 

pre-processing (see Figure 1 for mean spectra), a PCA-LDA was performed to 

identify if the groups (or categories) are significantly different based upon their 

spectra, along with PCA-LDC to generate confusion matrices to look at the accuracy 

of the spectra in detecting each tumour type. Spectra appeared visibly different within 

the 1100-1000 cm-1 range. 
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Analysis was then performed initially looking at normal vs. each tumour group and 

then combining all groups together to determine if they could be differentiated 

accurately from each other, as would occur in a typical clinical setting. 

 

Figure 1. A) Mean pre-processed spectra with standard-deviation for all groups 

analysed; B) mean pre-processed spectra for all groups analysed with tentative 

assignment of main bands [29, 32]. Key: N, normal; LG, low-grade; HG, high-grade; 

Men, meningioma; MM, melanoma metastasis; CA, colorectal adenocarcinoma 

metastasis; LA, lung adenocarcinoma metastasis. Band assignment: νs, symmetric 
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stretching; νas, asymmetric stretching; δ, deformation; blue: DNA/RNA absorptions; 

red: protein absorptions; green: lipids absorptions. 

Figure 2 shows normal compared to low-grade and high-grade gliomas. It 

shows how well the spectra are separated based upon them being classed as normal or 

high-grade, particularly with SVM, with a100% accuracy (Table 1). 

 

Figure 2. Discriminant function (DF) plot for PCA-LDC (A) and SVM (B) models. N 

stands for normal, LG for low-grade glioma, and HG for high-grade glioma samples. 

PCA-LDC performed with 10 principal components and SVM performed using 48 

support vectors. 

 

Table 1. Confusion table containing the accuracy for PCA-LDC and SVM models for 

distinguishing control (N), low-grade (LG) and high-grade (HG) gliomas.  

 
PCA-LDC 

(accuracy = 90%) 

SVM 

(accuracy = 100%) 

 N LG HG N LG HG 

N 89% 11% 0% 100% 0% 0% 

LG 16% 84% 0% 0% 100% 0% 

HG 0% 2% 98% 0% 0% 100% 

 

This differentiation between the three groups is statistically significant using a one-

way ANOVA, as shown in Table S1 [see Supplementary Information (SI)]. Using the 

A) B)
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SVM method as the primary example, similar results are seen throughout, with 

minimal overlap seen within the two metastatic adenocarcinoma groups (Figures 3-6 

and Tables 2-4). Given the morphological and immunohistochemical similarities 

between these two tumours this is to be expected. The PCA-LDC results, demonstrate 

high accuracy, which drops as the clinical question becomes increasingly complex 

(i.e., by adding in different tumour types). 

 

A)

C)

E)

B)

D)

F)
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Figure 3 Discriminant function (DF) plot for PCA-LDC and SVM models. (A) PCA-

LDA and (B) SVM for normal (N) vs. meningioma (Men); (C) PCA-LDA and (D) 

SVM for normal (N) vs. metastasis (Met); (E) PCA-LDA and (F) SVM for normal 

(N) vs. different metastatic groups, colorectal adenocarcinoma (CA), lung 

adenocarcinoma (LA) and melanoma (MM). PCA-LDC performed with 10 principal 

components in (A)-(F), and SVM performed using 31 (A), 29 (D) and 140 (F)  

support vectors. 

 

Table 2. Confusion table containing the accuracy for PCA-LDC and SVM models for 

distinguishing control (N), meningioma (Men), metastasis (Met), colorectal 

adenocarcinoma (CA), lung adenocarcinoma (LA), and melanoma (MM). 

 PCA-LDC 

(accuracy = 87%) 

SVM 

(accuracy = 95%) 

 PCA-LDC 

(accuracy = 94%) 

SVM 

(accuracy = 100%) 

 N Men N Men  N Met N Met 

N 89% 11% 91% 9% N 96% 4% 100% 0% 

Men 14% 86% 0% 100% Met 8% 92% 0% 100% 

 PCA-LDC 

(accuracy = 63%) 

 SVM 

(accuracy = 97%) 

 N CA LA MM  N CA LA MM 

N 98% 1% 1% 0%  100% 0% 0% 0% 

CA 19% 38% 22% 21%  0% 88% 12% 0% 

LA 0% 16% 63% 21%  0% 0% 100% 0% 

MM 3% 28% 15% 54%  0% 0% 0% 100% 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 13 

 

Figure 4 Discriminant function (DF) plot for (A) PCA-LDC and (B) SVM models. N 

stands for normal, LG for low-grade glioma, HG for high-grade glioma, Men for 

meningioma, and Met for metastasis samples. PCA-LDC performed with 10 principal 

components and SVM performed using 245 support vectors. 

 

Table 3. Confusion table containing the accuracy for PCA-LDC and SVM models for 

distinguishing normal (N), low-grade glioma (LG), high-grade glioma (HG), 

meningioma (Men), and metastasis (Met).  

 PCA-LDC 

(accuracy = 65%) 

SVM 

(accuracy = 97%) 

 N HG LG Men Met N HG LG Men Met 

N 75% 0% 8% 10% 7% 91% 0% 0% 9% 0% 

HG 10% 90% 0% 0% 0% 0% 100% 0% 0% 0% 

LG 30% 1% 41% 10% 18% 0% 0% 100% 0% 0% 

Men 4% 0% 3% 63% 30% 0% 0% 0% 100% 0% 

Met 4% 0% 15% 23% 58% 0% 0% 5% 0% 95% 

 

 

When examining the PCA-LDC, the classification accuracy drops further if the 

metastasis category is split by primary tumour location, with only the detection of 

high-grade glioma maintaining >90% (Figure 6). However, the use of SVM maintains 

A) B)
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accuracy approaching 100% for almost all groups. The overlap between meningioma 

and normal is difficult to explain without including patient factors within the 

algorithm, which is beyond the scope of this paper (Figure 6, Table 4). 

 

 

Figure 5 Discriminant function (DF) plot for (A) PCA-LDC and (B) SVM models. N 

stands for normal, LG for low-grade glioma, HG for high-grade glioma, Men for 

meningioma, MM for melanoma metastasis, CA for colorectal adenocarcinoma 

metastasis, and LA for lung adenocarcinoma metastasis.  PCA-LDC performed with 

10 principal components and SVM performed using 293 support vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

A) B)
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Table 4. Confusion table containing the accuracy for PCA-LDC and SVM models for 

distinguishing control (N), low-grade glioma (LG), high-grade glioma (HG), 

meningioma (Men), and melanoma metastasis (MM), colorectal adenocarcinoma 

metastasis (CA), and lung adenocarcinoma metastasis (LA). 

 PCA-LDC 

(accuracy = 54%) 

SVM 

(accuracy = 97%) 

 N LG HG Men MM CA LA N LG HG Men MM CA LA 

N 85% 6% 0% 0% 9% 0% 0% 91% 0% 0% 9% 0% 0% 0% 

LG 25% 61% 4% 0% 10% 0% 0% 0% 100% 0% 0% 0% 0% 0% 

HG 8% 0% 92% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 

Men 4% 0% 0% 43% 36% 3% 14% 0% 0% 0% 100% 0% 0% 0% 

MM 0% 0% 0% 35% 22% 13% 30% 0% 0% 0% 0% 100% 0% 0% 

CA 0% 3% 0% 5% 28% 50% 14% 0% 0% 0% 0% 0% 88% 12% 

LA 18% 2% 0% 13% 29% 14% 24% 0% 0% 0% 0% 0% 0% 100% 

 

 Receiver operating characteristic (ROC) curves agree with the results in 

Tables 1-4, as can been seen in supplementary information Figures S2-S7 (see SI). 

Discussion 

With an ageing population, complex clinical presentations of cancer are 

becoming more frequent, with up to a quarter of all new brain tumour diagnoses 

representing metastases [4]. Therefore, this study was designed to mimic a clinical 

setting with a variety of primary and metastatic brain tumours. The aim was to 

determine if ATR-FTIR spectroscopy would be able to detect a brain tumour from 

peripheral blood and if so determine type. If this were to prove possible, the potential 

of ATR-FTIR in a frontline clinical setting as part of an initial workup of the patient 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 16 

may be demonstrable, as has previously been proposed [20]. The metastatic brain 

tumours were chosen based on both propensity for cranial spread and to provide 

tumours, which are morphologically similar (lung and colorectal adenocarcinomas) 

and a contrast (metastatic melanoma) to enable testing of ATR-FTIR spectroscopy to 

differentiate metastatic tumours by their primary origin [25-27]. Our results 

demonstrate that ATR-FTIR spectroscopy is able to detect patients with primary or 

metastatic brain tumours using plasma samples from peripheral blood. The SVM 

method of analysis, has demonstrated accuracy from 88-100% with minimal overlap 

between the two metastatic adenocarcinoma groups primarily, with ROC curves 

demonstrating specificity and p <0.001. Given the similar morphological features of 

the two adenocarcinoma groups this was expected. Accuracy decreases slightly as the 

clinical question progresses from cancer vs. no cancer to which type of brain tumour 

and then primary metastatic location. With the differences seen within the spectra 

(Figure 1), this when combined with the classification accuracy, demonstrates the 

potential of ATR-FTIR spectroscopy to be built into clinical practise as a primary 

diagnostic step. 

Previous studies performed by both this group and others have demonstrated 

that spectroscopic techniques can differentiate normal from cancer cases within 

biofluids alone. Owens et al. found a 93% accuracy when determining ovarian cancer 

patients from negative cases using plasma alone [11]. Gajjar et al. demonstrated 

similar findings when also comparing normal to ovarian and endometrial cancer 

patients [5]. Moving to bladder cancer, Ollesch et al. were also able to separate 

normal from bladder cancer patients [8]. Within brain tumours, Hands et al. have also 

shown the capabilities of ATR-FTIR spectroscopy with plasma, demonstrating 

classification of high and low grade glial tumours with accuracies of over 90%. These 
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dip slightly when comparing to metastatic tumours [13-14]. Therefore our results, 

demonstrate comparable accuracies when compared across the published literature. 

They also take forward most of the studies above by combining different tumour 

types, both primary and metastatic. 

Our study, has however, not included confounding patient factors within the 

analysis.  The number or location of the brain tumours is unknown, nor with the 

metastatic patients the burden of metastatic disease. When patients initially present to 

a medical professional, it is unlikely they will have had all investigations completed 

and a known diagnosis, therefore for this initial study, it was felt to add other 

confounding factors into the algorithm would prove too complex and unlikely to yield 

usable results. Brain tumours account for a small number of diagnosed tumours per 

annum (11,432/359,960 in 2015) in comparison to extracranial tumours therefore it 

was felt limiting this study by size and location of brain tumours would be unlikely to 

be of benefit [33, 34]. 

To take this technique further forward and validate the results seen above 

clinically, it would be crucial to test a wide range of non-cancer disorders to ensure 

this would not affect the results. Current clinical trials for use of ATR-FTIR 

spectroscopy currently underway should be able to determine if within a clinical 

setting this technique can maintain the accuracies seen within this study. It would also 

be interesting to test cancer patients without brain metastases to see if this impacted 

the results and how this could be differentiated. 

This study has shown that ATR-FTIR spectroscopy could play a role in 

plasma testing for both primary and extrinsic brain tumours. The advantages of ATR-

FTIR spectroscopy in a clinical setting would be the relative low-cost of 
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instrumentation; the fact that the technique is non-analyst dependent, thus not biased 

according to the analyst training; non-destructive, thus the sample could be reused for 

further analysis; and easily translated to automation, by using computer-based 

technologies. In addition, the use of ATR-FTIR spectroscopy clinically may be able 

to speed up the diagnostic process, though robust clinical studies would be required to 

eliminate any of the current diagnostic steps within the patient pathway. 

As limitation, for such chemometric methods and instrumental techniques to 

be translated into a clinical setting, all possible experimental and computation 

configurations should be analysed, where all possible circumstances must be taken 

into consideration before clinical implementation. Evaluation of further biochemical 

factors and test with larger datasets are necessary before translation. This paper shows 

the potential usefulness of ATR-FTIR allied with chemometric methods as a biofluid 

screening tool, which remains to be further investigated. 

Conclusions 

This study demonstrates that ATR-FTIR spectroscopy is able to differentiate brain 

tumour types from blood plasma with accuracies of up to 100%. Further work is 

required to determine if this technique can discrimianat tumours from complex non 

cancer related disorders in order to all clinical medicine to harness the use of ATR-

FTIR spectroscopy within the clincal pathway, hopefully decreasing time taken from 

clinical presentation to diagnosis. 
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Highlights 

 

 Vibrational spectroscopy can diagnose brain tumours in biofluids 

 Reagent-free and inexpensive blood test 

 Can be applied in a clinical setting with multiple tumour types 

 Accuracy in terms of sensitivity / specificity remains high 

 ATR-FTIR spectroscopy could be a robust diagnostic technique 
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